PRiME

PRIME Power-efficient, Reliable, Many-core Embedded systems

Engineering and Physical Sciences Research Council

Speedup and Power Scaling Models for Heterogeneous Many-Core Systems*

A. Rafiev, M. Al-hayanni, F. Xia, R. Shafik, A. Romanovsky, A. Yakovlev

INTRODUCTION

- Traditional speedup models help the research community and industry better understand system performance capabilities and application parallelizability.
- We introduce normal form heterogeneity, that supports a wide range of heterogeneous many-core architectures.
- The modelling method aims to predict system power efficiency and performance ranges.
- The models were validated through extensive experimentation on the off-the-shelf big.LITTLE heterogeneous platform and a dual-GPU laptop
- A quantitative efficiency analysis targeting the system load balancer on the Odroid XU3 platform was used to demonstrate the practical use of the method.

* Accepted for publication in IEEE Transactions on Multi-Scale Computing Systems.

LOAD DISTIBUTION

(a) Equal-share (naïve): $\begin{pmatrix} x \\ \nabla \end{pmatrix}$

(b) Balanced (ideal):

POWER MODELLING

HETEROGENEITY

- (a)Homogeneous system (classical Amdahl's Law)
- (b)Simple
 - heterogeneous model (Hill-Marty) consisting of 1 big and many little cores.
- (c)Proposed model: x types of cores represented by

their relative performances.

 $W_{total} = W_0 + W(\bar{n}),$ where W_0 is **background** power and W is **effective** power.

For w – BCE power, and ($\beta_1, ..., \beta_x$) – relative core powers:

 $W(\overline{n}) = wD_w(\overline{n}) S(\overline{n})$ $D_w(\overline{n}) = \frac{\frac{\beta_s}{\alpha_s}(1-p) + pg(\overline{n}) \frac{N_\beta}{N_\alpha}}{(1-p) + pg(\overline{n})}.$

ODROID XU3

benchmark	sqrt		int		log	
base workload	40000		40000		40000	
core type <i>i</i>	A7	A15	A7	A15	A7	A15
measured execution time, ms	49969	53206	52844	42665	41820	23506
measured active power, W	0.2655	0.8361	0.2760	0.8305	0.3036	0.9496
power measurement std dev	0.82%	0.18%	0.96%	0.87%	0.93%	0.42%
calculated effective power, W	0.1158	0.4887	0.1264	0.4830	0.1540	0.6022
$lpha_i$	1	0.9392	1	1.2386	1	1.7791
eta_i	1	4.2183	1	3.8221	1	3.9094

Speedup error < 1.2%

Power

AMDAHL'S LAW

error < 5.6%

WORKLOAD SCALING

 $I' = h\left(\overline{n}\right) \cdot \left(\left(1 - p\right)I + pg\left(\overline{n}\right)I\right)$

I - original workload, I' - scaled workload, g(n) - parallel scaling, h(n) - proportional scaling. General form speedup model:

$$S(\overline{n}) = \frac{(1-p) + pg(\overline{n})}{\frac{(1-p)}{\alpha_s} + \frac{pg(\overline{n})}{N_{\alpha}}}.$$

PARSEC BENCHMARKS

