Power-Normalized Performance
Optimization of Concurrent
Many-Core Applications

Matthew Travers, Rishad Shafik, Fei Xia

Newcastle
University PR

ACSD2016, June 2016, Torun

iME

Www.prime-project.org

Motivation

e Complex platforms with multiple processing units
(cores) facilitate the execution of concurrent
programs

* Programs contain concurrency within or can be

executed concurrently with other programs by the
OS

e Great for performance, power, etc. but
* Run-time management is an important issue

* Existing OS management utilities are limited and lack
sophistication

This work PRIME

* Experimentation targeting the running of
multiple applications concurrently on multi-
core systems

* Models targeting improved run-time
management

* In order to improve efficiency

— Measured in power-normalized performance
(IPS/Watt) which is the same as the amount
of computation per unit of energy

This work

Experiment with different
types of applications on
platform

Models and run-time
management algorithm

’

Experiment at ‘full system
scale to validate the
method

wwwwwwwwwwwwwwwwww

Different types of applications ***

 Performance — power characteristics are related to
multiple potentially independent variables

— System platform architecture

— Hardware control choices (voltage, frequency, clock
gating, power gating, etc.)

— Software control choices (types of tasks scheduled,
types of instructions executed, etc.)

— OS mapping choices (task-to-core scheduling
decisions, etc.)

— The problem is NP

Different types of applications ***

* In order to reduce the problem space, from
experience it is conducive to divide applications
(tasks) into different types

— Computation (CPU) intensive
— Memory intensive
— A combination of both

* In this work we try to restrict ourselves to the
three types listed above

— Large reduction of decision space

Bespoke apps vs. established PRIME.
benchmarks

* Bespoke programs allow fine tuning in experimentation

— You can set things in the program for various characteristics —
no black box

— Relation to ‘real world’ apps is relatively remote

— Good for theoretical models at the beginning of study

* Established benchmarks connect to real world apps
— ‘Standard’ group of apps that facilitate cross comparisons

— Inevitable degree of black boxing — difficult to know what’s
going on inside in certain cases in spite of open source

— Distance between theory and experimental results

Modelling for RTM PRIME.

 Runtime management is essentially a control system
— Observability, controllability

* Observations are based on monitors
— Run-time measurements for the parameters being controlled
— Infer ‘efficiency’ from things that you can measure

— IPS and Watt can both be measured through performance
monitors (all modern CPUs have them)

— Standard ones include ‘instructions retired’, ‘power consumption’,
‘cache misses’

— External to CPUs (e.g. battery life, plugged-in vs. not, etc.)

— Fault/error detection

Modelling for RTM PRIME.

* Controls are implemented through ‘knobs’

— Parameters that the RTM can directly tune

— H/W provides power islands, whose V and f are
tunable independently

— H/W provides multiple compute elements (cores)
— S/W has multiple threads
— Thread-to-core mapping can also be a knob

— Re-scheduling to combat faults and other scheduling
decisions

m:il
PRIME.:

R I | .\ ’ I www.prime-project.org

appiication 1. |y S PP A IR
Appiication N | P R PP P R

Distributed Kernels

Controls fH~ DVFS, redundancy...... Core activity, faults....... il y"’* Monitors

5

.~ Interconnect
Inferconnect 10

Modelling for RTM, - —.

° focusing on knobs PRiME.:
ThlS WOI'k and monitors

relationships

Experiment with different
types of applications on
platform

Models and run-time
management algorithm

Explore all
knobs and Experiment at ‘full system’

monitors scale to validate the
method

Including various
concurrent

scenarios
11

Explorative experiments

* A desktop PC around an Intel Core i7
— Sandy Bridge E with no GPU
— Four physical cores
— Hyperthreading for eight logical cores

* The best support (at the time of system design) for
monitoring

— On chip sensing for temperature, power, etc.

— Full set of performance counters accessible through
registers

— Robust/stable support from tools such as Likwid
12

Explorative experiments (1)

 H/W experimental support system
— To improve our own confidence in the on-ship sensing
— Measuring current through a CPU poses challenges

— Measure at the CPU or at the wall?

www.prime-project.org

13

Explorative experiments (1)

 H/W experimental support system
— To improve our own confidence in the on-ship sensing
— Measuring current through a CPU poses challenges

— Measure at the CPU or at the wall?

Measures the power of the entire PC
* Needs extensive gymnastics to
relate to processor power
consumption
* Found in some exercises
W, - * We needed higher resolution/
precision for correlating to on-chip
performance counters!

14

Explorative experiments (1)

 H/W experimental support system
— To improve our own confidence in the on-ship sensing
— Measuring current through a CPU poses challenges

— Measure at the CPU or at the wall?

But what’s the alternative?
* Directly measure current close to
the CPU block?

eeeeeeeeeeeeee

15

Explorative experiments (1)

 H/W experimental support system
— To improve our own confidence in the on-ship sensing
— Measuring current through a CPU poses challenges

— Measure at the CPU or at the wall?

But high-precision digital multimeters are
limited to 1A

 Andi7 routinely exceed 12W

16

Explorative experiments (1) PRIME.

 H/W experimental support system
— To improve our own confidence in the on-ship sensing
— Measuring current through a CPU poses challenges

— Measure at the CPU or at the wall?

Use a shunt resister
* aka current sensing resister
e Changes current measurement to
voltage measurement

Explorative experiments (1) PRIME.

 H/W experimental support system
— To improve our own confidence in the on-ship sensing
— Measuring current through a CPU poses challenges

— Measure at the CPU or at the wall?

Use a shunt resister
* aka current sensing resister
e Changes current measurement to
voltage measurement
Alternative is the clamp probe

Explorative experiments (1-2) ™

* Direct h/w measurements are expensive

Extremely tedious compared to reading performance counter outputs
(run experiment, download logged data through USB, collate and
analyse data, etc.)

Not usable at run-time — we used these to check on Likwid

Conducted a number of basic experiments with bespoke benchmarks

stressing different parts of the system (typically sqrt and sync as
example CPU stress and memory interface stress tasks, also tried

finding prime numbers and other more ‘general’ tasks)

Compared with what Likwid reported

Confirmed high confidence in Likwid for this system is warranted

org

19

Explorative experiments (2)

e Characterization experiments on the system
platform with Likwid

— Extablished benchmarks from the PARSEC suite

— Tried benchmarks that are memory-intensive (canneal),
cpu-intensive (fregmine) and both (streamcluster)

— Data collected used in building our models

“The Princeton Application Repository for Shared-Memory Computers
(PARSEC) is a benchmark suite composed of multithreaded programs. The
suite focuses on emerging workloads and was designed to be
representative of next-generation shared-memory programs for chip-
multiprocessors.”

— http://parsec.cs.princeton.edu/ 20

Explorative experiments (2)

* Characterization experiments on the system
platform with lilwid

— Extabli:

— Tried b
intensir —

blackscholes Mbodytrack Mcanneal Mfacesim Mfregmine ML MMMlanimate ¥ streamcluster

— Data cc

“The Pr
(PARSE(
suite fo —
represe
multipr

L1 hit L1 miss INST retired CPU CLK

— NUpP://parsec.cs.princeton.eau/ 21

CSoergy o Coormd Whols Symar Erwgs ke Frgree Whaw Sywen

www.prime-project.org

N o) PRiME

Fragaacy (G . Pard e of Thavad s Froqusiy (04 - Pagrd o of Thavad s

(a) canneal (b) fregmine

B streamcluster

By & 2rmndimte Whok Srifen

(c) streamcluster

Fig 2. Energy used for a complete run of each application at different operating
frequencies and number of cores allocated, data recorded with Likwid CPU CLK

LY./ / MaldTL.Lo. MlITILcLuli.cuuy 22

CSoergy o Coormd Whols Symar Erwgs bt Frgree Whaw Sywen

5 por Walt S Fragreme Aol Sester

AE

roject.org

(a) canneal
(a) canneal (b) fregmine

P3 g Wit L4 Stanrclaitn Wik Seaten

10000
ur:\

§ ol
ULLIBH
000

00 4

ey

o w of Thasads

Core scaling

(c) streamcluster

Fig 2. Energy used for a co
frequencies and number of cc Fig. 3. Average IPS/Watt for a complete run of each application at different

1. operating frequencies and number of cores allocated, data recorded with Likwid 23

Explorative experiments (3)

Investigate the behaviour of standard Linux governors as
RTMs (benchmarks being run singularly or in parallel)

Lowest energy (highest IPS/Watt) always happens with 4 cores

IPS/Watt closely follows energy (benchmarks are each a fixed
number of instructions so energy per benchmark is proportional
to energy per instruction)

Mem+CPU and CPU+CPU much better than Mem+Mem

Running two copies of the same benchmark gets the same IPS/
Watt for running one copy of it (does not modify parallelizability
etc.) — no need to investigate this option for RTM

www.prime-proje

cccccc

24

Modelling PRIME..

* To establish a model linking monitor-able and knob-able
parameters (operational state variables) with IPS/Watt

— Formula for power + formula for throughput

Piotar = Pstatic T denamic

Pstatic = VYV + w,
denamic = aCVZf’

N
IPS = f—,
CPI

25

Modelling PRIME

 To establish a model linking monitor-able and control-
able parameters (operational state variables) with IPS/
Watt

— Formula for power + formula for throughput

Piotar = Pstatic T+ denamic

Pstatic - V+
Constants mean linear
Piynamic = aCV?f, j| 2ssumption for static
power — one of the
fN simplest
IPS = — approximations

CPI

Modelling PRIME

 To establish a model linking monitor-able and control-
able parameters (operational state variables) with IPS/
Watt

— Formula for power + formula for throughput

Piotar = Pstatic T+ denamic

Pstatic = vV + w,

_ 2
denamic = aCV f’
Generally accepted
fN accurate model for

IPS = CPT dynamic power

Modelling PRIME

 To establish a model linking monitor-able and control-
able parameters (operational state variables) with IPS/
Watt

— Formula for power + formula for throughput

Piotar = Pstatic T+ denamic
Frequency, number of

instruction are easily
obtainable operational
state variables

denamic = aCVZf’

FN
cpI

IPS =

28

Modelling PRIME

 To establish a model linking monitor-able and control-
able parameters (operational state variables) with IPS/
Watt

— Formula for power + formula for throughput

Piotar = Pstatic T+ denamic

State variables include

Pstatic = VYV + w, f,V, N and CPI,
coefficients include C,
denamic — aCVZf’ a, Yand w
fN
[PS = —,
CPI

29

Modelling PRIME

* To establish the model we used linear regression

— It is possible to use this method during run-time with learning

n
he(x) = z 6,x; = 07X,
=0

h is the hypothetical

function

30

Modelling PRIME

* To establish the model we used linear regression

— It is possible to use this method during run-time with learning

Bixi = @TX,

h is the hypothetical

function

n is the number of
predictors

31

Modelling PRIME

* To establish the model we used linear regression

— It is possible to use this method during run-time with learning

Bixi = QTX,

his the hypothetical X are the predictors — a

predictor may be a non-

function

linear function of
independent
variable(s), e.g. N*f*V?

n is the number of
predictors

32

!’:!—H’ I.;.II
[IIIDI lu
. HOEE .
s an-anlllz
I EEn

I:.lD
L1 am

Modelling PRIME.

* To establish the model we used linear regression

— It is possible to use this method during run-time with learning

© are the fitting
coefficients — ‘linear’
means h is linear with ©

his the hypothetical X are the predictors — a
function predictor may be a non-
linear function of

n is the number of independent
predictors variable(s), e.g. N*f*V/2

33

Modelling PRIME

* To establish the model we used linear regression

— It is possible to use this method during run-time with learning

© are the fitting
coefficients — ‘linear’
means h is linear with ©

h is the hypothetical
function

X are the predictors —a
predictor may be a non-
linear function of

n is the number of independent
predictors variable(s), e.g. N*f*V/?

Regression =¥ fitting to optimize some metric — min squared prediction error
34

Modelling PR

* Predictors from state variables f, V, N and CPI
— h should be based on the following formulas
— but IPS/Watt is not linear with an easy to find ©

— so we have h=Watt and then combine with IPS, which has no coefficients
needing fitting

Piotar = Pstatic T denamic

Pstatic = vV + w,
Paynamic = aCVZf’

N
IPS = f—,
CPI

eeeeeeeeeeeee

35

Modelling PRIME..

 For commercially available platformes, it is usual
that f and N are not independent with each other

— So we can reduce the number of state variables by 1

V=19f+5

36

Modelling PRIME..

 For commercially available platforms, it is usual

Normalised Normalised
frequency frequency
Or Normalised OfF .
A power requirement A Normalised to
F max: Vmax
Platform | 1
Xilinx Z FPGA
Platform 2 e
Unscaled F,V]
— ARM
| Cortex-A7
(0425) .
Intel Xeon Phi
A [
ARM
aF] Cortex-A13
Normalised
voltage
0 Gyn Oy 1 Normalised O}/ 0 | Oy
voltage

37

Modelling PRIME..

* Predictors from state variables f, ¥ N and CPI
— h=Watt should then be

Watt = ho = 6, + 6, Nf + 6,Nf2 + BN f?

x1=Nf,x2=Nf2,x3=Nf3

38

Modelling PRIME..
* Hypothetical function for IPS/Watt

IPS fN
Watt CPI(0y + O.Nf + 0,Nf2 + 0;Nf3)

39

Modelling PRIME..

* Model reduction

IPS FN(1x109)
Watt ~ CPI(11.061 + 0.645fN + 1.4351f2)

IPS fN
Watt CPI(6y + O;Nf + 0,Nf2 + ;N[3)

40

Modelling PRIME..

* Model reduction

IPS fN(1x10)

Watt CPI(11.061 + 0.645/N + 1.435172)
IPS / N /E

Watt ~ CPI(0y + O.Nf + 0,Nf2 + G;Nf3)

41

Modelling

e Model reduction

IPS FN(1x109)

Watt CPI(11.061 + 0.6451

IPS / N

72)

Watt ~ CPI(6y + 6.Nf + 8,Nf2 + 6;Nf3)

www.prime-project.org

predictor change!

42

Modelling PRIME..

* This level of model reduction is justified by

— Common practice in many branches of engineering (chemical,
biological, materials, mechanical etc.)

— The fitting quality is very high (going with the ‘right’ function
does not further improve it significantly)

— The model will be used in run-time optimization, which is a
discrete-space programming problem (both models would give
the same optimal operation points for all the examples we
tried)

— In future run-time use, simpler functions are easier for learning
— lower overhead for the RTM (1 fewer predictor can cause a
substantial reduction in learning overhead)

43

Model vs. measurements PRIME::

1PS per Watt for Canneal

wole System

1PS per Watt for Freqrine Whole Systerm IPS per Watt for Streamcluster Whale System

IPS / WATT

oy (G 12 ency (GH2) 12 v (GHZ) g
Frequency (GHz) ! Number of Threads Frequency (GH2) ! Number of Threads Frequency (GHz) ! Number of Threads

Modelled IPS/Watt for Cannesl Modelied IPSAWatt for Streamchuster

model

Frequency (GHz) 1

ency (GHz; 125
Number of Cares Frequency (GHz) 1

Number of Cores Number of Cores

memory CPU memory+CPU

guantitatively close, qualitatively the same 44

RTM design PRIME

Algorithm 1: Run-time optimization

Check PID changes

If application scenano changed?
Obtain PID of new application
Calculate CPI of application
Calculate IPS/Watt using model (8)

Allocate cores to application

Change frequency for max(IPS/Watt)
End if

Wait for next activation

OO0 NN RN -

PID tracks processes being run or joining

45

RTM implementation.—.

then
se:_governc:
Python script running in conjunction =0
g q g Iri
with OS implementing the RTM PID=8{ cat PID.txt)
echo "neo program runnaing"®
galeep 1

else

echo "new program add=d"™

governor="userspac="
FID=5{ cat FPID.txt)
i=0
PID CPI_azzay
J=0
if [[6m -eq O 1]
then
gec_governcr
m=1
f1
1=0
CCRE_Allocation
j=0
Linear model
1=0
sleep 2

dane 46

Results PRIME

* General non-trivial improvements on IPS/Watt
over standard Linux governors recorded

— Between a few % points and 23%

47

Results PRIME .

* Traces show that the RTM changing
frequency and task to core mapping
frequently

3006406
2506406
N
Z 2.006+06
e o core)
5150(%
& 1.00£+06 =core 1
* 5 006405 s COFE 2
0.00€+00 e COFE 3
CHoTANTNOTNDROTNADOT N QRO T ND
NN Ar RS0 ~2R8R~3nNS3nBESSm
™ol - AN AN ~N NANANM

Time (s) 48

Results PRIME:

* |IPS changes as a result of the RTM’s
decisions

2.00E+09 -
1.508+08
£ 1.006+00 w—core 0
—core 1
5.00e+08
e COTE 2
0.006+0 w—COFE 3
OmME =T NN O T ANBR O T AER DTN LDY T D
MRsa " gge3 482 a~NS38I~ngENT A
- - o ot A ™ N NN ~Nm M

49

!

Modelling for RTM, i —.

° focusing on knobs PRiME.:
ThlS WOI'k and monitors

relationships

Experiment with different
types of applications on
platform

Models and run-time
management algorithm

Explore all
knobs and Experiment at ‘full system’

monitors scale to validate the
method

Including various Need to try a lot more cases: system
concurrent architectures, app. bechmarks,

scenarios different CPI granularities, etc.
50

