
Power-Normalized Performance
Optimization of Concurrent
Many-Core Applications

Ma#hew	Travers,	Rishad	Shafik,	Fei	Xia	

	

ACSD2016, June 2016, Toruń

Motivation
•  Complex	pla;orms	with	mul>ple	processing	units	
(cores)	facilitate	the	execu>on	of	concurrent	
programs	

•  Programs	contain	concurrency	within	or	can	be	
executed	concurrently	with	other	programs	by	the	
OS	

•  Great	for	performance,	power,	etc.	but	
•  Run->me	management	is	an	important	issue	
•  Exis>ng	OS	management	u>li>es	are	limited	and	lack	
sophis>ca>on	

2

This work

•  Experimenta>on	targe>ng	the	running	of	
mul>ple	applica>ons	concurrently	on	mul>-
core	systems	

•  Models	targe>ng	improved	run->me	
management	

•  In	order	to	improve	efficiency	
– Measured	in	power-normalized	performance	
(IPS/Wa#)	which	is	the	same	as	the	amount	
of	computa>on	per	unit	of	energy	

3

This work

4

Experiment	with	different	
types	of	applica>ons	on	

pla;orm

Models	and	run->me	
management	algorithm	

Experiment	at	‘full	system’	
scale	to	validate	the	

method

Different types of applications
•  Performance	–	power	characteris>cs	are	related	to	
mul>ple	poten>ally	independent	variables		
–  System	pla;orm	architecture	
– Hardware	control	choices	(voltage,	frequency,	clock	
ga>ng,	power	ga>ng,	etc.)	

–  SoXware	control	choices	(types	of	tasks	scheduled,	
types	of	instruc>ons	executed,	etc.)	

– OS	mapping	choices	(task-to-core	scheduling	
decisions,	etc.)	

– The	problem	is	NP		
	

5

Different types of applications
•  In	order	to	reduce	the	problem	space,	from	
experience	it	is	conducive	to	divide	applica>ons	
(tasks)	into	different	types	
– Computa>on	(CPU)	intensive	
– Memory	intensive	
– A	combina>on	of	both	

•  In	this	work	we	try	to	restrict	ourselves	to	the	
three	types	listed	above	
– Large	reduc>on	of	decision	space	
	 6

Bespoke apps vs. established
benchmarks
•  Bespoke	programs	allow	fine	tuning	in	experimenta>on	

–  You	can	set	things	in	the	program	for	various	characteris>cs	–	
no	black	box	

–  Rela>on	to	‘real	world’	apps	is	rela>vely	remote	
–  Good	for	theore>cal	models	at	the	beginning	of	study		

•  Established	benchmarks	connect	to	real	world	apps	
–  ‘Standard’	group	of	apps	that	facilitate	cross	comparisons	
–  Inevitable	degree	of	black	boxing	–	difficult	to	know	what’s	
going	on	inside	in	certain	cases	in	spite	of	open	source	

–  Distance	between	theory	and	experimental	results	

	

7

Modelling for RTM
•  Run>me	management	is	essen>ally	a	control	system	

–  Observability,	controllability	
•  Observa>ons	are	based	on	monitors	

–  Run->me	measurements	for	the	parameters	being	controlled		
–  Infer	‘efficiency’	from	things	that	you	can	measure		
–  IPS	and	Wa#	can	both	be	measured	through	performance	

monitors	(all	modern	CPUs	have	them)	
–  Standard	ones	include	‘instruc>ons	re>red’,	‘power	consump>on’,	

‘cache	misses’	
–  External	to	CPUs	(e.g.	ba#ery	life,	plugged-in	vs.	not,	etc.)	
–  Fault/error	detec>on	

	

8

Modelling for RTM

•  Controls	are	implemented	through	‘knobs’	
–  Parameters	that	the	RTM	can	directly	tune		
– H/W	provides	power	islands,	whose	V	and	f	are	
tunable	independently	

– H/W	provides	mul>ple	compute	elements	(cores)	
–  S/W	has	mul>ple	threads	

–  Thread-to-core	mapping	can	also	be	a	knob	
–  Re-scheduling	to	combat	faults	and	other	scheduling	
decisions	

	

9

RTM

10

This work

11

Experiment	with	different	
types	of	applica>ons	on	

pla;orm

Models	and	run->me	
management	algorithm	

Experiment	at	‘full	system’	
scale	to	validate	the	

method

Explore	all	
knobs	and	
monitors

Modelling	for	RTM,	
focusing	on	knobs	
and	monitors	
rela>onships

Including	various	
concurrent	
scenarios

Explorative experiments
•  A	desktop	PC	around	an	Intel	Core	i7	

–  Sandy	Bridge	E	with	no	GPU	
–  Four	physical	cores	
– Hyperthreading	for	eight	logical	cores	

•  The	best	support	(at	the	>me	of	system	design)	for	
monitoring	
– On	chip	sensing	for	temperature,	power,	etc.	
–  Full	set	of	performance	counters	accessible	through	
registers	

–  Robust/stable	support	from	tools	such	as	Likwid		

	

12

Explorative experiments (1)
•  H/W	experimental	support	system	

–  To	improve	our	own	confidence	in	the	on-ship	sensing	
–  Measuring	current	through	a	CPU	poses	challenges	

–  Measure	at	the	CPU	or	at	the	wall?	

	

13

Explorative experiments (1)
•  H/W	experimental	support	system	

–  To	improve	our	own	confidence	in	the	on-ship	sensing	
–  Measuring	current	through	a	CPU	poses	challenges	

–  Measure	at	the	CPU	or	at	the	wall?	

	

14

Measures	the	power	of	the	en>re	PC	
•  Needs	extensive	gymnas>cs	to	

relate	to	processor	power	
consump>on	

•  Found	in	some	exercises	
•  We	needed	higher	resolu>on/

precision	for	correla>ng	to	on-chip	
performance	counters!

Explorative experiments (1)
•  H/W	experimental	support	system	

–  To	improve	our	own	confidence	in	the	on-ship	sensing	
–  Measuring	current	through	a	CPU	poses	challenges	

–  Measure	at	the	CPU	or	at	the	wall?	

	

15

But	what’s	the	alterna>ve?	
•  Directly	measure	current	close	to	

the	CPU	block?

Explorative experiments (1)
•  H/W	experimental	support	system	

–  To	improve	our	own	confidence	in	the	on-ship	sensing	
–  Measuring	current	through	a	CPU	poses	challenges	

–  Measure	at	the	CPU	or	at	the	wall?	

	

16

12V

0V
But	high-precision	digital	mul>meters	are	
limited	to	1A	

•  And	i7	rou>nely	exceed	12W

Explorative experiments (1)
•  H/W	experimental	support	system	

–  To	improve	our	own	confidence	in	the	on-ship	sensing	
–  Measuring	current	through	a	CPU	poses	challenges	

–  Measure	at	the	CPU	or	at	the	wall?	

	

17

12V

0V
Use	a	shunt	resister		

•  aka	current	sensing	resister	
•  Changes	current	measurement	to	

voltage	measurement	

Explorative experiments (1)
•  H/W	experimental	support	system	

–  To	improve	our	own	confidence	in	the	on-ship	sensing	
–  Measuring	current	through	a	CPU	poses	challenges	

–  Measure	at	the	CPU	or	at	the	wall?	

	

18

12V

0V
Use	a	shunt	resister		

•  aka	current	sensing	resister	
•  Changes	current	measurement	to	

voltage	measurement	
Alterna>ve	is	the	clamp	probe

Explorative experiments (1-2)
•  Direct	h/w	measurements	are	expensive	

–  Extremely	tedious	compared	to	reading	performance	counter	outputs	
(run	experiment,	download	logged	data	through	USB,	collate	and	
analyse	data,	etc.)	

–  Not	usable	at	run->me	–	we	used	these	to	check	on	Likwid	
–  Conducted	a	number	of	basic	experiments	with	bespoke	benchmarks	

stressing	different	parts	of	the	system	(typically	sqrt	and	sync	as	
example	CPU	stress	and	memory	interface	stress	tasks,	also	tried	
finding	prime	numbers	and	other	more	‘general’	tasks)	

–  Compared	with	what	Likwid	reported	
–  Confirmed	high	confidence	in	Likwid	for	this	system	is	warranted	

	

19

Explorative experiments (2)
•  Characteriza>on	experiments	on	the	system	
pla;orm	with	Likwid	
–  Extablished	benchmarks	from	the	PARSEC	suite	
–  Tried	benchmarks	that	are	memory-intensive	(canneal),	
cpu-intensive	(freqmine)	and	both	(streamcluster)		

–  Data	collected	used	in	building	our	models	

20

“The	Princeton	Applica>on	Repository	for	Shared-Memory	Computers	
(PARSEC)	is	a	benchmark	suite	composed	of	mul>threaded	programs.	The	
suite	focuses	on	emerging	workloads	and	was	designed	to	be	
representa>ve	of	next-genera>on	shared-memory	programs	for	chip-
mul>processors.”	
	

-  h#p://parsec.cs.princeton.edu/

Explorative experiments (2)
•  Characteriza>on	experiments	on	the	system	
pla;orm	with	Likwid	
–  Extablished	benchmarks	from	the	PARSEC	suite	
–  Tried	benchmarks	that	are	memory-intensive,	cpu-
intensive	and	both	

–  Data	collected	used	in	building	our	models	

21

“The	Princeton	Applica>on	Repository	for	Shared-Memory	Computers	
(PARSEC)	is	a	benchmark	suite	composed	of	mul>threaded	programs.	The	
suite	focuses	on	emerging	workloads	and	was	designed	to	be	
representa>ve	of	next-genera>on	shared-memory	programs	for	chip-
mul>processors.”	
	

-  h#p://parsec.cs.princeton.edu/
L1 hit L1 miss INST retired CPU CLK

blackscholes bodytrack canneal facesim freqmine fluidanimate streamcluster x264

Explorative experiments (2)
•  Characteriza>on	experiments	on	the	system	
pla;orm	with	Likwid	
–  Extablished	benchmarks	from	the	PARSEC	suite	
–  Tried	benchmarks	that	are	memory-intensive,	cpu-
intensive	and	both	

–  Data	collected	used	in	building	our	models	

22

“The	Princeton	Applica>on	Repository	for	Shared-Memory	Computers	
(PARSEC)	is	a	benchmark	suite	composed	of	mul>threaded	programs.	The	
suite	focuses	on	emerging	workloads	and	was	designed	to	be	
representa>ve	of	next-genera>on	shared-memory	programs	for	chip-
mul>processors.”	
	

-  h#p://parsec.cs.princeton.edu/
L1 hit L1 miss INST retired CPU CLK

blackscholes bodytrack canneal facesim freqmine fluidanimate streamcluster x264

Explorative experiments (2)
•  Characteriza>on	experiments	on	the	system	
pla;orm	with	Likwid	
–  Extablished	benchmarks	from	the	PARSEC	suite	
–  Tried	benchmarks	that	are	memory-intensive,	cpu-
intensive	and	both	

–  Data	collected	used	in	building	our	models	

23

“The	Princeton	Applica>on	Repository	for	Shared-Memory	Computers	
(PARSEC)	is	a	benchmark	suite	composed	of	mul>threaded	programs.	The	
suite	focuses	on	emerging	workloads	and	was	designed	to	be	
representa>ve	of	next-genera>on	shared-memory	programs	for	chip-
mul>processors.”	
	

-  h#p://parsec.cs.princeton.edu/
L1 hit L1 miss INST retired CPU CLK

blackscholes bodytrack canneal facesim freqmine fluidanimate streamcluster x264

DVFS
Core	scaling

Explorative experiments (3)
•  Inves>gate	the	behaviour	of	standard	Linux	governors	as	

RTMs	(benchmarks	being	run	singularly	or	in	parallel)	
–  Lowest	energy	(highest	IPS/Wa#)	always	happens	with	4	cores	
–  IPS/Wa#	closely	follows	energy	(benchmarks	are	each	a	fixed	
number	of	instruc>ons	so	energy	per	benchmark	is	propor>onal	
to	energy	per	instruc>on)	

–  Mem+CPU	and	CPU+CPU	much	be#er	than	Mem+Mem	
–  Running	two	copies	of	the	same	benchmark	gets	the	same	IPS/
Wa#	for	running	one	copy	of	it	(does	not	modify	parallelizability	
etc.)	–	no	need	to	inves>gate	this	op>on	for	RTM	

24

Modelling
•  To	establish	a	model	linking	monitor-able	and	knob-able	

parameters	(opera>onal	state	variables)	with	IPS/Wa#	
–  Formula	for	power	+	formula	for	throughput	

25

Modelling
•  To	establish	a	model	linking	monitor-able	and	control-

able	parameters	(opera>onal	state	variables)	with	IPS/
Wa#	
–  Formula	for	power	+	formula	for	throughput	

26

Constants	mean	linear	
assump>on	for	sta>c	
power	–	one	of	the	

simplest	
approxima>ons

Modelling
•  To	establish	a	model	linking	monitor-able	and	control-

able	parameters	(opera>onal	state	variables)	with	IPS/
Wa#	
–  Formula	for	power	+	formula	for	throughput	

27

Generally	accepted	
accurate	model	for	
dynamic	power

Modelling
•  To	establish	a	model	linking	monitor-able	and	control-

able	parameters	(opera>onal	state	variables)	with	IPS/
Wa#	
–  Formula	for	power	+	formula	for	throughput	

28

Frequency,	number	of	
cores,	and	cycles	per	
instruc>on	are	easily	
obtainable	opera>onal	

state	variables

Modelling
•  To	establish	a	model	linking	monitor-able	and	control-

able	parameters	(opera>onal	state	variables)	with	IPS/
Wa#	
–  Formula	for	power	+	formula	for	throughput	

29

State	variables	include	
f,	V,	N	and	CPI,	

coefficients	include	C,	
α,	ϒ	and	ω

Modelling
•  To	establish	the	model	we	used	linear	regression	

–  It	is	possible	to	use	this	method	during	run->me	with	learning	

30

h	is	the	hypothe>cal	
func>on

Modelling
•  To	establish	the	model	we	used	linear	regression	

–  It	is	possible	to	use	this	method	during	run->me	with	learning	

31

n	is	the	number	of	
predictors

h	is	the	hypothe>cal	
func>on

Modelling
•  To	establish	the	model	we	used	linear	regression	

–  It	is	possible	to	use	this	method	during	run->me	with	learning	

32

X	are	the	predictors	–	a	
predictor	may	be	a	non-

linear	func>on	of	
independent	

variable(s),	e.g.	N*f*V2
n	is	the	number	of	

predictors

h	is	the	hypothe>cal	
func>on

Modelling
•  To	establish	the	model	we	used	linear	regression	

–  It	is	possible	to	use	this	method	during	run->me	with	learning	

33

X	are	the	predictors	–	a	
predictor	may	be	a	non-

linear	func>on	of	
independent	

variable(s),	e.g.	N*f*V2

Θ	are	the	fiqng	
coefficients	–	‘linear’	

means	h	is	linear	with	Θ

n	is	the	number	of	
predictors

h	is	the	hypothe>cal	
func>on

Modelling
•  To	establish	the	model	we	used	linear	regression	

–  It	is	possible	to	use	this	method	during	run->me	with	learning	

34

X	are	the	predictors	–	a	
predictor	may	be	a	non-

linear	func>on	of	
independent	

variable(s),	e.g.	N*f*V2

Θ	are	the	fiqng	
coefficients	–	‘linear’	

means	h	is	linear	with	Θ

n	is	the	number	of	
predictors

Regression	è	fiqng	to	op>mize	some	metric	–	min	squared	predic>on	error

h	is	the	hypothe>cal	
func>on

Modelling
•  Predictors	from	state	variables	f,	V,	N	and	CPI	

–  h	should	be	based	on	the	following	formulas	

–  but	IPS/Wa#	is	not	linear	with	an	easy	to	find	Θ	

–  so	we	have	h=Wa#	and	then	combine	with	IPS,	which	has	no	coefficients	
needing	fiqng	

35

Modelling
•  For	commercially	available	pla;orms,	it	is	usual	
that	f	and	N	are	not	independent	with	each	other	
–  So	we	can	reduce	the	number	of	state	variables	by	1	

36

Modelling
•  For	commercially	available	pla;orms,	it	is	usual	
that	f	and	N	are	not	independent	with	each	other	
–  So	we	can	reduce	the	number	of	state	variables	by	1	

37

Modelling

•  Predictors	from	state	variables	f,	V,	N	and	CPI	

– h=Wa#	should	then	be	

38

!"## = ℎ! = !! + !!!" + !!!!! + !!!!!	
	

!! = !", !! = !!! , !! = !!!	

Modelling

•  Hypothe>cal	func>on	for	IPS/Wa#	

39

Modelling

•  Model	reduc>on	

40

Modelling

•  Model	reduc>on	

41

θ3=0

Modelling

•  Model	reduc>on	

42

predictor	change!

θ3=0

Modelling
•  This	level	of	model	reduc>on	is	jus>fied	by	

–  Common	prac>ce	in	many	branches	of	engineering	(chemical,	
biological,	materials,	mechanical	etc.)	

–  The	fiqng	quality	is	very	high	(going	with	the	‘right’	func>on	
does	not	further	improve	it	significantly)	

–  The	model	will	be	used	in	run->me	op>miza>on,	which	is	a	
discrete-space	programming	problem	(both	models	would	give	
the	same	op>mal	opera>on	points	for	all	the	examples	we	
tried)	

–  In	future	run->me	use,	simpler	func>ons	are	easier	for	learning	
–	lower	overhead	for	the	RTM	(1	fewer	predictor	can	cause	a	
substan>al	reduc>on	in	learning	overhead)	

43

Model vs. measurements

44

measurements

model

memory CPU memory+CPU

quan>ta>vely	close,	qualita>vely	the	same

RTM design

45

PID	tracks	processes	being	run	or	joining

RTM implementation

46

Python	script	running	in	conjunc>on	
with	OS	implemen>ng	the	RTM

Results

•  General	non-trivial	improvements	on	IPS/Wa#	
over	standard	Linux	governors	recorded	
–  Between	a	few	%	points	and	23%	

47

Results

•  Traces	show	that	the	RTM	changing	
frequency	and	task	to	core	mapping	
frequently	

48

Results

•  IPS	changes	as	a	result	of	the	RTM’s	
decisions	

49

This work

50

Experiment	with	different	
types	of	applica>ons	on	

pla;orm

Models	and	run->me	
management	algorithm	

Experiment	at	‘full	system’	
scale	to	validate	the	

method

Explore	all	
knobs	and	
monitors

Modelling	for	RTM,	
focusing	on	knobs	
and	monitors	
rela>onships

Including	various	
concurrent	
scenarios

Need	to	try	a	lot	more	cases:	system	
architectures,	app.	bechmarks,	
different	CPI	granulari>es,	etc.

