
Copyright © 2015 Newcastle University

µSystems Research Group
School of Electrical and Electronic Engineering
Merz Court
Newcastle University
Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

A survey of theory and practice in compositional
design of asynchronous circuits

Jonny Beaumont

j.r.beaumont@ncl.ac.uk

NCL-EEE-MICRO-MEMO-2015-011

November 2015

Abstract

There are several methods of describing systems in a modular fashion. These descriptions may represent

a system in one of several ways, for example in a text form or as a graph. By using a modular representation,

a large system can be split into multiple smaller sections, which can make operations such as verification of a

system simpler and quicker.

Multiple methods of designing asynchronous circuits also exist, and each one has benefits for designing a

certain type of asynchronous circuits, and therefore has several pitfalls for designing another type of circuit.

Concepts [32] are a method of describing signal interactions in an asynchronous system, which can then

be composed with other concepts, which produce Signal Transition Graphs. Multiple graphs can then be

combined and used to produce a full specification of an asynchronous system. This method uses a modular

representation of systems to help in the design of an asynchronous system.

This document discusses multiple methods of modular description and existing asynchronous design meth-

ods, including concepts, and compares these based on several metrics, in an attempt to see what the features of

each method are, and how concepts fit in, and what further features could be added to concepts in the future.



Jonny Beaumont: A survey of theory and practice in compositional design of asynchronous circuits

Introduction

Tables 1 and 2 describe several modular methods for various purposes, including design and verification. Fol-
lowing this, Table 3 features a comparison of these methods, as well as concepts, the proposed method. This
comparison is based on several metrics.

Tables 4 and 5 describe several existing asynchronous design methods. The tables following, Tables 6 and 7,
compare these, as well as the proposed method, based on several metrics.

Finally, Tables 8 and 9 feature discussions of all of the modular methods and existing design methods
featured in this document. The metrics used for comparison are as follows:

Asynchronous circuit support

Do the methods feature support for asynchronous circuits? This is only applied to modular methods, as all the
design methods described are for asynchronous systems.

Software tool support

Which of these methods has some form of software which can assist in the design of a circuit? The proposed
method at this stage has some limited tool support, but a tool is in development to automate the process.

Composition

For modular methods only, this metric shows whether a method allows for composition of smaller elements of
a design.

Gate-level design

Can the existing design methods allow for logic gates to be designed? Can these then be referenced to abstract
the complexity of the gates when designing systems?

Event-level design

With the design methods, is it possible to design a system based on events which occur in a system or the
environment, such as signal transitions on inputs?

Protocol-level design

Can the listed design methods allow for signal protocols, such as handshakes, to be described and then be used
in abstract to avoid repetition of the causal relationships between these signals?

Design focus

Asynchronous circuits can be little digital focused, for example a control system, which interacts with and aims
to control analogue circuitry using a control signals and sensors. Asynchronous circuits can also be big digital
focused, where they are aimed at data operations, with wires which are multiple bit widths. For only the design
methods from Table 3, this metric will explain the main focuses of the design methods listed.

NCL-EEE-MICRO-MEMO-2015-011, Newcastle University 2



Jonny Beaumont: A survey of theory and practice in compositional design of asynchronous circuits

Title Authors University Description Ref
Algebra
of para-

meterised
graphs

Andrey
Mokhov,

Victor
Khomenko

Newcastle
University

Algebra of Parameterised Graphs [26] has been introduced to
overcome limitations of CPOGs, such as the lack of structural
abstraction and composition methods, as well as the difficulty
of formal analysis and verification. Similarly to CPOGs, PGs
target little digital systems and support signal and gate level
modelling of asynchronous circuits. PGs have a moderate

support in Workcraft [28, 1]

[26]
[1]

Algebra
of

switching
networks

Andrey
Mokhov

Newcastle
University

Algebra of Switching Networks [24] specifically addresses
signal and transistor level design of little digital circuits. The
key differentiating feature of this modelling approach is that

both structure and behaviour of a system can be captured by the
same mathematical expression and therefore both analysis and

synthesis tasks can be achieved by rewriting the expression
according to specific sets of rules. This modelling method
supports various forms of composition, however there is

currently no tool support.

[24]

Compositi-
onal

models of
distributed

systems

Eric Fabre Cité Uni-
versitaire
Beaulieu,

France

A method of describing distributed systems as a set of
interacting elementary components. There is no global

synchronisation, all components are self contained and run
concurrently to one another, and interact by sharing variables.

These are composed to provide the operation of the whole
system. State estimation can be performed on each component

and viewed, and because these components are small, this
avoids the possibility of state explosion which can occur when

performing this on the full system.

[9]

Composit-
ional

Verifica-
tion

David E. Long Carnegie
Mellon

School of
Computer
Science,

Pennsylvania,
USA

This verification approach aims at taking an asynchronous
system design, and decomposing it into a set of components
which all run in parallel. Each of these components is then

verified for certain local properties separately, and the result of
these will determine the integrity of the full specification. This

also extends into abstraction, where a model is simplified
before verification to produce an abstract model. This makes

the verification process more efficient, providing that there is a
relationship between the original component model and the

abstract which proves that the verification of the abstract model
will correctly verify the original model.

[17]

Conditional
Partial
Order

Graphs

Andrey
Mokhov

Newcastle
University

Conditional Partial Order Graphs (CPOGs) [27, 23]target a
class of systems that are comprised of multiple acyclic

behavioural scenarios, such as microprocessors [25]. CPOGs
are equipped with powerful scenario-level composition
techniques that are automated in Workcraft [28, 21, 1].

Structural composition of CPOGs is very limited and not
automated at present. The CPOG model has been extended to
model asynchronous circuits with cyclic scenarios [22] at the

levels of signals and gates, however, automation in this context
is limited at present.

[23]
[27]
[25]
[21]
[22]
[1]

Table 1: Description of modular, concept-like methods

NCL-EEE-MICRO-MEMO-2015-011, Newcastle University 3



Jonny Beaumont: A survey of theory and practice in compositional design of asynchronous circuits

Title Authors University Description Ref
DI

Algebra
M.B. Josephs Oxford

Univer-
sity,
UK

A method of describing systems as algebraic equations,
specifying causal relations between signal transitions, making it

ideal for asynchronous control systems. Each equation
represents an operation of the specification, and these can be

composed and simplified for a more compact version. All
equations can then be composed to find an equation for the

whole specification and again simplified for a more compact
version.

[13]

Hierarchical
design of

DI
systems

P.N. Lam
H.F. Li

Department
of

Computer
Science,

Concordia
University

Provides a set of building blocks, either Delay Insensitive (DI)
or hybrid (Non-DI) blocks, which are not necessarily individual

logic gates. These are composed by describing the
interconnections between the blocks, and this forms a module.

Modules can then be composed with other modules in the
hierarchy. Signal Transition Graphs are used in this method for
specification of a circuit from blocks and modules, and this can

be used for analysis of the circuit.

[15]

Resynthesis Arseniy Alekseyev,
Ivan Po-
liakov,

Victor Kho-
menko,

Alex Yakovlev.

Newcastle
Univer-

sity,
UK

A process of decomposing a full model and recomposing it of
selective components to reproduce a smaller model. This can be

used to reduce the number of signals to connect two separate
models for example. This process is regularly used for

optimisation of BALSA circuits (see Table 2).

[2]

Snippets Igor Benko,
Jo Ebergen

University
of

Waterloo,
Canada
and Sun

Microsys-
tems,
USA

Smaller state graph models which are used to compose full state
graphs of larger systems. Snippets describe the operation of a
part of a system in terms of input and output alphabets, and in

which ways these snippets can fail. When composed with other
snippets it can produce a working system state graph model.

[6]

Structural
Design

Craig
Armenti

Zuken
USA

Features re-usability of modular components. A component
design can be used multiple times across full device designs in
conjunction with several other circuit modules. These modules

can be changed in some way without affecting how they are
used in a full device and how they interact with other modules.

This method aims at promote reuse of circuit designs across
different full systems, and reducing the need for redesign of

correctly working systems for each new device.

[3]

Table 2: (cont.) Description of modular, concept-like methods

NCL-EEE-MICRO-MEMO-2015-011, Newcastle University 4



Jonny Beaumont: A survey of theory and practice in compositional design of asynchronous circuits

Title Authors University Asynchronous
support

Software tool
support

Composition

Concepts (Proposed
Method)

Jonathan Beaumont,
Andrey Mokhov,

Danil Sokolov, Alex
Yakovlev

Newcastle
University

Yes Limited (Yes) Yes

Algebra of
parameterised graphs

Andrey Mokhov,
Victor Khomenko

Newcastle
University

Yes Yes Yes

Algebra of switching
networks

Andrey Mokhov Newcastle
University

Yes No Yes

Compositional
models of distributed

systems

Eric Fabre Cité Universitaire
Beaulieu, France

Yes No Yes

Compositional
Verification

David E. Long Carnegie Mellon
School of Computer

Science,
Pennsylvania, USA

Yes No Yes

Conditional Partial
Order Graphs

Andrey Mokhov Newcastle
University

Yes Yes No

DI Algebra M.B. Josephs Oxford University,
UK

Yes No Yes

Hierarchical design
of DI systems

P.N. Lam
H.F. Li

Department of
Computer Science,

Concordia
University

Yes No Yes

Resynthesis Arseniy Alekseyev,
Ivan Poliakov,

Victor Khomenko,
Alex Yakovlev.

Newcastle
University, UK

Yes Yes Yes

Snippets Igor Benko,
Jo Ebergen

University of
Waterloo, Canada

and Sun
Microsystems, USA

No No Yes

Structural Design Craig Armenti Zuken USA No Yes No

Table 3: Comparison of modular, concept-like methods

NCL-EEE-MICRO-MEMO-2015-011, Newcastle University 5



Jonny Beaumont: A survey of theory and practice in compositional design of asynchronous circuits

Title Authors University Description Ref.
Balsa Doug Ed-

wards,
Andrew Bard-

sley

Department
of

Computer
Science,

University
of

Manchester,
UK

A design approach which features a REGISTER TRANSFER LANGUAGE
(RTL) like language, similar to VHDL or VERILOG, which aims to produce

both data-driven and control circuits. This approach closely follows the
process of the Phillip’s Tangram compiler. A specification written in this
language is used to produce a circuit implementation in two steps. First, a

balsa program is converted into a format describing a network of handshaked
components. This format can then be used for simulation, circuit diagrams
and in the second step, which maps handshaked components on to library

components for synthesis.

[8]
[30]

Biscotti Gang Jin,
Lei Wang,

Zhiying Wang

National
University

of
Defense
Techno-

logy
Changsha,

China

C-like language which features ’forever’ blocks, in which code runs
sequentially, but all blocks run concurrently to each other. This design method

starts by specifying a circuit. This is then compiled into formats for use by
tools, Petri nets for verification in WORKCRAFT, for optimisation and net list
generation. If these stages are successful, then the circuit can be synthesized.

This is designed for data-driven asynchronous systems.

[12]

Caltech
Syn-
thesis

Method

A.J. Martin California
Institute
of Tech-
nology

Individual signal interactions, such as those for control systems, are specified
using a regular expression style language, based on

Communicating Sequential Processes (CSP). After these programs have been
specified as a list of processes, they are then compiled, where a process is

decomposed into a set of processes which are equivalent to the original. This
occurs until all processes are in a simpler form that the compiler can continue
to use. Next is handshake expansion, where handshaking replaces connections

between each process. During this, some process orders may be changed
which do not affect the operation, but may avoid issues such as deadlocks, this
is known as reshuffling. Finally, operator reduction is performed to reduce the

number of operators used in the new set of processes, by finding operators
which can be described by other more standard operators. After this, the

program will be synthesisable using a library of standard operations.

[19]
[18]
[11]

CHP Alain J. Mar-
tin,

Chris-
topher D. Moore

Department
of

Computer
Science

California
Institute
of Tech-
nology,
Califor-

nia,
USA

Communicating Hardware Processes (CHP) is a programming language
which is primarily used for designing asynchronous circuits. A program

written in CHP consists of a fixed set of concurrent processes which
communicate by messages. These processes are written separately, the code in

each of which is usually sequential but some in-process concurrency is
allowed, and a full system is produced from parallel composition of these

processes.
CHP processes use variables for data manipulation and for signal interactions,

allowing standard programming constructs such as if..then statements for
example which allow for selection of signals, useful for control systems.

Processes do not share these variables however, and data is passed in
messages through communication channels.

There is a tool as part of CHP, called CHPsim which simulates CHP programs.

[20]

Table 4: Descriptions of existing design methods

NCL-EEE-MICRO-MEMO-2015-011, Newcastle University 6



Jonny Beaumont: A survey of theory and practice in compositional design of asynchronous circuits

Title Authors University Description Ref.
Cλash
(Clash)

Christiaan
Baaij

University
of Twente,

Nether-
lands

Another tool which uses HASKELL. There are similarities to LAVA; both
feature built-in verification carried out in the same way, and users can define
their own functions. However, CLASH has built in synthesis and simulation,

avoiding the need to export VHDL for use in external tools, however this
feature remains. A major difference is that in CLASH, some syntax of

HASKELL is directly synthesisable as an asynchronous operation, for example
a case statement can be used to specify choice in the circuit. To do this in

LAVA, a user would have to compose functions in a certain way.

[14,
4]

Lava Per Bjesse,
Koen

Claessen,
Mary

Sheeran

Chalmers
University
of Tech-
nology,
Sweden

A tool written in the functional programming language HASKELL, with its
own associated design flow able to design data-driven or control circuits, and

all design steps can be performed in LAVA. It features several predefined
functions, such as simple logic gates which can be used either as direct

operations for circuits, or as part of user defined functions. A user can define a
function in terms of inputs, operations on these inputs, and outputs. A circuit

is defined as inputs, stored in variables, operations are performed on these
using functions which can be sequential or parallel, and then variables are set

as outputs. Lava has built in verification, using a parameter which defines
verification property. This returns a logic equation which is automatically
processed, returning a value determining whether the property is satisfied.

Lava also features the ability to generate code for other languages, primarily
VHDL, which can then be used by other tools for simulation and synthesis.

[7]

Proteus Peter A.
Beerel,

Georgios D.
Dimou,

Andrew M.
Lines

University
of

Southern
California

and
Fulcrum

Microsys-
tems

Pipelines are the channels which pass data between stages of an asynchronous
system which in some cases can cause bottlenecks, a major source of delay as
data passage is slowed. PROTEUS is a tool which automatically analyses and
optimises a pipelined system to reduce bottlenecks and delays. It takes in a

RTL language or a CSP like specification. This is then synthesized, producing
a net list which is then analysed and optimised to produce a new pipelined

implementation which will have the best performance.

[5]
[10]

Tiempo Alex
Yakovlev,

Pascal Vivet,
Marc

Renaudin

Tiempo,
France

TIEMPO introduced a design flow which uses a tool called ASYNCHRONOUS
CIRCUIT COMPILER (ACC). This tool uses VERILOG which is used to model

operations and communication channels between asynchronous entities,
which are normally handshaked. The tool allows the use of several

asynchronous architecture types aimed at data-driven circuits, i.e. pipelined,
parallel, sequential etc. Synthesis uses libraries which contain asynchronous

cells, and constraints such as timing information have to be specified for us by
the tool . First, a net list is produced and further constraints produced by the
tool. A place and route tool then optimises and verifies the system based on

the constraints, and a few necessary properties.

[31]

Uncle Robert B.
Reese,

Scott C.
Smith,

Mitchell A.
Thornton

Mississippi
State Uni-

versity,
University

of
Arkansas,
Southern
Methodist
University

A tool which uses a design approach aimed at producing an implementation
using Null Convention Logic (NCL), a set of components which have a state
similar to precharge. Each component starts in the null state where outputs
and inputs are all null, which does not represent any data. It remains in this
state until data is present on all inputs, at which point the component will
output data based on the inputs. This data will be held on the output of the

component until all inputs return to null, when the output will return to null.
UNCLE uses an RTL language. This tool then synthesises the specification
using a library of NCL components which can be simulated and verified,

ultimately producing an NCL implementation.

[29]
[16]

Table 5: (cont.) Descriptions of existing design methods

NCL-EEE-MICRO-MEMO-2015-011, Newcastle University 7



Jonny Beaumont: A survey of theory and practice in compositional design of asynchronous circuits

Title Authors University Tool
support

Gate-level
design

Event-
level

design

Protocol-
level

Design

Design
focus

Concepts
(Proposed
Method)

Jonathan
Beaumont,

Andrey Mokhov,
Danil Sokolov,
Alex Yakovlev

Newcastle
University

Limited
(Yes)

Yes Yes Yes Little
digital

Algebra
of para-

meterised
graphs

Andrey Mokhov,
Victor

Khomenko

Newcastle
University

Yes Yes Yes No Little
digital

Algebra
of

switching
networks

Andrey Mokhov Newcastle
University

No Yes No No Little
digital

Balsa Doug Edwards,
Andrew Bardsley

Department of
Computer
Science,

University of
Manchester, UK

Yes Yes No Yes Big digital

Biscotti Gang Jin,
Lei Wang,

Zhiying Wang

National
University of

Defense
Technology

Changsha, China

Yes Yes No No Big digital

Caltech
Synthesis
Method

A.J. Martin California
Institute of
Technology

No Yes Yes Yes Little
digital

CHP Alain J. Martin,
Chris-

topher D. Moore

Department of
Computer
Science

California
Institute of

Technology,
California, USA

Yes No Yes Yes Big digital

Table 6: Comparison of existing design methods

NCL-EEE-MICRO-MEMO-2015-011, Newcastle University 8



Jonny Beaumont: A survey of theory and practice in compositional design of asynchronous circuits

Title Authors University Tool
support

Gate-level
design

Event-
level

design

Protocol-
level

Design

Design
focus

Cλash
(Clash)

Christiaan Baaij University of
Twente,

Netherlands

Yes Yes No Yes Big digital

Conditional
Partial
Order

Graphs

Andrey Mokhov Newcastle
University

Yes Yes Yes No Little
digital

Lava Per Bjesse, Koen
Claessen,Mary

Sheeran

Chalmers
University of
Technology,

Sweden

Yes Yes No Yes Big digital

Proteus Peter A.
Beerel,Georgios

D. Dimou,
Andrew M. Lines

University of
Southern

California and
Fulcrum

Microsystems

Yes Yes No No Big digital

Tiempo Alex Yakovlev,
Pascal Vivet,

Marc Renaudin

Tiempo, France Yes Yes No Yes Big digital

Uncle Robert B. Reese,
Scott C.

Smith,Mitchell
A. Thornton

Mississippi State
University,

University of
Arkansas,
Southern
Methodist
University

No Yes No No Big digital

Table 7: (cont.) Comparison of existing design methods

NCL-EEE-MICRO-MEMO-2015-011, Newcastle University 9



Jonny Beaumont: A survey of theory and practice in compositional design of asynchronous circuits

Title Authors Comparison Ref.
Balsa Doug

Edwards,
Andrew
Bardsley

RTL languages are regularly used for synchronous design, thus a designer can adapt more
easily to asynchronous design. These languages feature the ability to easily perform

operations on multiple bits unlike the proposed approach, and uses programming constructs
such as conditional statements for control. Specifying a control system can lead to a

complicated program which can be difficult to comprehend, in comparison to the STGs
produced in the proposed approach, in which signal interactions can be visualised. RTL

languages do allow for reuse of modules, something we aim to address with the proposed
method, and this can speed up the design process.

[8]
[30]

Biscotti Gang Jin,
Lei Wang,
Zhiying
Wang

Similar to BALSA, a C-like language can be easy to adapt to, as designers are likely to have
programming knowledge. BISCOTTI, however is designed primarily for data-driven circuits,
for specifying data operations which run in parallel, and communications between them. As
with BALSA and RTL languages in general, specifying an asynchronous control system can
become complex, the more signals there is to describe, however, reuse of written code can

help to produce a quicker design process.

[12]

Caltech
Synthesis
Method

A.J.
Martin

As with the proposed method, the Caltech Synthesis Method is used to describe causalities
at the level of signal transitions. Because of the CSP language, understanding a program can
be complicated if there are more than a handful of signals, and while writing a specification
is somewhat simpler than in that of an RTL language, reusing a CSP specification is not as
simple, nor as simple as with the reuse of concepts and scenarios in the proposed method.

[19]
[18]
[11]

CHP Alain J.
Martin,
Chris-

topher D.
Moore

CHP provides an easier language for specifying asynchronous circuits than those methods
which use an RTL language, and CHP is popular for this reason. Specifying control through
signal states is simpler, and data operations can be specified also. It is similar to BISCOTTI
in that blocks of sequential code are written, and these all run concurrently, but CHP offers
simpler methods of specifying the communication channels between these blocks. Reuse is
therefore available in CHP, but a control system featuring many signals and interactions can

still be difficult to specify, comprehend and debug.

[20]

Cλash
(Clash)

Christiaan
Baaij

HASKELL is a functional language, and has a greatly differing syntax to that of C, or any
RTL language. This can therefore be hard to learn. CLASH has some benefits over LAVA

and similarities to VHDL and VERILOG such as syntax directly mapping to asynchronous
operations. Specified components can be reused which can be useful, but HASKELL is not
widely used with various existing design tools, and while CLASH does feature built in tools
for verification, simulation and synthesis, it can be hard to integrate this with other existing

methods.

[14,
4]

Compo-
sitional

models of
distributed

systems

Eric Fabre This method, while not used to design asynchronous circuits, features similar ideas to
scenarios from the proposed method. Splitting a system and verifying them separately can

be useful for both efficiency, and for debugging.

[9]

Compo-
sitional
Verifica-

tion

David E.
Long

As with Compositional Models of Distributed systems, this methodology aims at
decomposing a full system into several smaller components, and verifying these separately.

Our proposed method is similar to this, but rather than decomposing a full system, we aim to
design from the ground up into several smaller scenarios, verifying these and then

combining them to produce a full system specification.

[17]

DI
Algebra

M.B.
Josephs

The proposed method is similar to DI algebra, however concepts are described textually,
which is different to DI algebra and as such, simplification does not occur at concept level,
but during the composition and combination steps. To the best of our knowledge there are
no tools or methodologies supporting compositional design of asynchronous circuits based

on DI algebra and thus it is incompatible with the rest of our design flow and not suitable for
use in industrial settings.

[13]

Table 8: A comparison of the proposed method, and all methods mentioned above

NCL-EEE-MICRO-MEMO-2015-011, Newcastle University 10



Jonny Beaumont: A survey of theory and practice in compositional design of asynchronous circuits

Title Authors Comparison Ref.
Hierarchical
design of

DI
systems

P.N. Lam
H.F. Li

Hierarchical design of DI systems is very similar to the proposed method. Both feature a
lower level of specification (building blocks or concepts) which is used to create an STG

specification (modules or scenarios) and these are then combined in some manner to
produce a full system specification. The difference is that the building blocks provided in
the hierarchical design method are set, and our proposed method allows for users to define

their own low level specification components.

[15]

Lava Per
Bjesse,
Koen

Claessen,
Mary

Sheeran

Due to LAVA being a HASKELL based language, it features similar issues to CLASH. It
features fairly different syntax to languages used in other existing methods. Unlike CLASH,
LAVA does not feature built in tools for synthesis and simulation, and as such, specifications

must be converted into VHDL for these processes, a feature which is built in.

[7]

Proteus Peter A.
Beerel,

Georgios
D. Dimou,

Andrew
M. Lines

PROTEUS takes in a specification in the form of CSP or VHDL, which can be useful for
designers who may prefer one language over another, however PROTEUS is a tool which

analyses and optimises a pipelined system which are generally data-driven systems, and as
such is used for the design and optimisation of a different type of asynchronous circuit to the

proposed method.

[5]
[10]

Resynthesis Arseniy
Alekseyev,

Ivan
Poliakov,

Victor
Kho-

menko,
Alex

Yakovlev.

This process is regularly used for optimisation of BALSA control circuits, however in
BALSA the set of predefined components is fixed, so a designer cannot easily introduce new

scenarios. Resynthesis requires full models which are decomposed. For the proposed
methodology we take a ground-up approach to design, starting with concepts to be

composed, producing scenarios which are combined into a complete model. Resynthesis can
be used at a later stage of the proposed approach, once the complete model of a system (or a

subsystem) has been obtained.

[?]

Snippets Igor
Benko,

Jo
Ebergen

Snippets specify the operation of part of a system in terms of input and output alphabets,
showing the outputs produced from the inputs based on the state, where as with our

proposed approach we want to go deeper than this and compose a component from concepts
which are responsible for capturing signal behaviours for system features, such as

handshakes, mutual exclusion, synchronisation, etc.

[6]

Structural
Design

Craig
Armenti

The ideas of this method are similar to that of the design method we are proposing to reduce
design time by reusing previously designed elements. However, this method is at a much
higher level, using fully designed and tested components where as we propose to allow

reusability of when modelling at circuit level, using composed concepts.

[3]

Tiempo Alex
Yakovlev,

Pascal
Vivet,
Marc

Renaudin

TIEMPO uses VERILOG as a specification language, another RTL language. This has some
differences to design flows like BALSA, mainly in how it verifies and synthesises a

specification, but the advantages and disadvantages are similar. These design methods are
usually used for data-driven systems, making them unsuitable for control systems.

[31]

Uncle Robert B.
Reese,

Scott C.
Smith,

Mitchell
A.

Thornton

UNCLE also uses an RTL language for specification of circuits, and these are discussed
above. In UNCLE, specifying a circuit is carried out in effectively the same way as other

methods, the differences are in the synthesis and verification, where null convention logic is
used which operates differently and requires different verification properties to standard

logic types produced by other design tools.

[29]
[16]

Table 9: (cont.) A comparison of the proposed method, and all methods mentioned above

NCL-EEE-MICRO-MEMO-2015-011, Newcastle University 11



Jonny Beaumont: A survey of theory and practice in compositional design of asynchronous circuits

References

[1] Workcraft framework webpage: www.workcraft.org.

[2] Arseniy Alekseyev, Ivan Poliakov, Victor Khomenko, and Alex Yakovlev. Optimisation of balsa control
path using stg resynthesis. In UK Asynchronous Forum, 2009.

[3] Craig Armenti. Get to market faster with modular circuit design. Electronic Engineering Journal, 2015.

[4] Christiaan Baaij. Clash: From haskell to hardware. Master’s thesis, University of Twente, 2009.

[5] P.A. Beerel, G.D. Dimou, and A.M. Lines. Proteus: An asic flow for ghz asynchronous designs. Design

Test of Computers, IEEE, 28(5):36–51, Sept 2011.

[6] Igor Benko and Jo Ebergen. Composing snippets. In Jordi Cortadella, Alex Yakovlev, and Grzegorz
Rozenberg, editors, Concurrency and Hardware Design, volume 2549 of Lecture Notes in Computer Sci-

ence, pages 1–33. Springer Berlin Heidelberg, 2002.

[7] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: hardware design in haskell. In ACM

SIGPLAN Notices, volume 34, pages 174–184. ACM, 1998.

[8] D. Edwards and A. Bardsley. Balsa: An asynchronous hardware synthesis language. The Computer

Journal, 45(1):12–18, 2002.

[9] Eric Fabre. Compositional models of distributed and asynchronous dynamical systems. In Decision and

Control, 2002, Proceedings of the 41st IEEE Conference on, volume 1, pages 1–6. IEEE, 2002.

[10] G. Gill and M. Singh. Automated microarchitectural exploration for achieving throughput targets in
pipelined asynchronous systems. In Asynchronous Circuits and Systems (ASYNC), 2010 IEEE Symposium

on, pages 117–127, May 2010.

[11] Charles Antony Richard Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, 1978.

[12] Gang Jin, Lei Wang, and Zhiying Wang. A new description language for data-driven asynchronous circuits
and its design flow. In Circuits, Communications and Systems, 2009. PACCS ’09. Pacific-Asia Conference

on, pages 322–325, May 2009.

[13] M.B. Josephs and J.T. Udding. An overview of d-i algebra. In System Sciences, 1993, Proceeding of the

Twenty-Sixth Hawaii International Conference on, volume i, pages 329–338 vol.1, Jan 1993.

[14] Jan Kuper and Christiaan Baaij. Hardware specification with cλash. DSL 2013, 2013.

[15] PN Lam and HF Li. Hierarchical design of delay-insensitive systems. Computers and Digital Techniques,

IEE Proceedings E, 137(1):41–56, 1990.

[16] Michiel Ligthart, Karl Fant, Ross Smith, Alexander Taubin, and Alex Kondratyev. Asynchronous design
using commercial hdl synthesis tools. In Advanced Research in Asynchronous Circuits and Systems,

2000.(ASYNC 2000) Proceedings. Sixth International Symposium on, pages 114–125. IEEE, 2000.

NCL-EEE-MICRO-MEMO-2015-011, Newcastle University 12



Jonny Beaumont: A survey of theory and practice in compositional design of asynchronous circuits

[17] David E Long. Model checking, abstraction, and compositional verification. PhD thesis, Citeseer, 1993.

[18] A. Martin. Compiling communicating processes into delay-insensitive vlsi circuits. Distributed Comput-

ing, vol. 1(4), pages 226–234, 1986.

[19] Alain J Martin. A synthesis method for self-timed vlsi circuits. IEEE Computer, pages 224–229, 1987.

[20] Alain J Martin and Christopher D Moore. Chp and chpsim: A language and simulator for fine-grain
distributed computation. Technical report, Caltech Technical Report CS-TR-1-2011, 2011.

[21] A Mokhov, A Alekseyev, and A Yakovlev. Encoding of processor instruction sets with explicit concurrency
control. Computers & Digital Techniques, IET, 5(6):427–439, 2011.

[22] A. Mokhov, D. Sokolov, and A. Yakovlev. Adapting asynchronous circuits to operating conditions by
logic parametrisation. 2012 IEEE 18th International Symposium on Asynchronous Circuits and Systems,
pages 17–24, 2012.

[23] Andrey Mokhov. Conditional Partial Order Graphs. PhD thesis, Newcastle University, 2009.

[24] Andrey Mokhov. Algebra of switching networks. IET Computers & Digital Techniques, 2015.

[25] Andrey Mokhov, Alexei Iliasov, Danil Sokolov, Maxim Rykunov, Alex Yakovlev, and Alexander Roman-
ovsky. Synthesis of processor instruction sets from high-level isa specifications. IEEE Transactions on

Computers, 63(6):1552–1566, 2014.

[26] Andrey Mokhov and Victor Khomenko. Algebra of parameterised graphs. ACM Transactions on Embed-

ded Computing Systems, 13(4s), 2014.

[27] Andrey Mokhov and Alex Yakovlev. Conditional partial order graphs: Model, synthesis, and application.
IEEE Transactions on Computers, 59(11):1480–1493, 2010.

[28] Ivan Poliakov, Victor Khomenko, and Alex Yakovlev. Workcraft–a framework for interpreted graph mod-
els. In Applications and Theory of Petri Nets (ATPN), pages 333–342. Springer, 2009.

[29] R. B. Reese, S. C. Smith, M. Thornton, et al. Uncle-an rtl approach to asynchronous design. In Asyn-

chronous Circuits and Systems (ASYNC), 2012 18th IEEE International Symposium on, pages 65–72.
IEEE, 2012.

[30] Kees Van Berkel. Handshake circuits: an asynchronous architecture for VLSI programming, volume 5.
Cambridge University Press, 1993.

[31] Alex Yakovlev, Pascal Vivet, and Marc Renaudin. Advances in asynchronous logic: From principles to
gals amp; noc, recent industry applications, and commercial cad tools. In Design, Automation Test in

Europe Conference Exhibition (DATE), 2013, pages 1715–1724, March 2013.

[32] J. Beaumont A. Mokhov D. Sokolov A. Yakovlev. Compositional design of asynchronous circuits from
behavioural concepts. In ACM-IEEE International Conference on Formal Methods and Models for System

Design MEMOCODE15, June 2015.

NCL-EEE-MICRO-MEMO-2015-011, Newcastle University 13


