
School of Electrical, Electronic & Computer Engineering

Asynchronous Communication Circuits:
Design, Test and Synthesis

Delong Shang

Technical Report Series

NCL-EECE-MSD-TR-2003-100

April 2003

Contact:
Delong.Shang@ncl.ac.uk

NCL-EECE-MSD-TR-2003-100
Copyright c© 2003 University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,
Merz Court,
University of Newcastle upon Tyne,
Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

University of Newcastle upon Tyne

School of Computing Science
School of Electrical, Electronic and Computer Engineering

Asynchronous Communication
Circuits: Design, Test, and Synthesis

A thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy

NCL-EECE-MSD-TR-2003-100

 i

C o n t e n t s

 Page

 Contents i
 List of Figures iv
 List of Tables xii
 Acknowledgements xiii
 Abstract xv

Chapter 1 Introduction .. 1
 1.1 Motivation 1
 1.1.1 General purpose motivation 1
 1.1.2 Special topics of concern in this thesis 5
 1.1.3 Automated asynchronous circuit design (synthesis) 7
 1.2 Contributions of this thesis 8
 1.2.1 Self-timed ACMs 8
 1.2.2 Testing ACMs 8
 1.2.3 Synthesis 9
 1.3 Organization of this thesis 9
 1.4 Publications on the Thesis 10

Chapter 2 Background .. 13
 2.1 Asynchronous circuit design 13
 2.1.1 Delay models and hazards 18
 2.1.2 Circuit classification 22
 2.1.3 Signalling conventions 29
 2.1.4 Data representation 31
 2.1.5 Basic asynchronous components 34
 2.2 Metastability 39
 2.3 Asynchronous circuit design methodology 39
 2.3.1 Formal methods 40
 2.3.2 Specification languages 42
 2.4 Asynchronous communication mechanism (ACM) 51
 2.5 Synthesis 56
 2.6 Conclusions 58

Chapter 3 New Classification and Self-Timed Implementation of

Asynchronous Communication Mechanisms (ACMs) ………….

59

 3.1 Introduction 59
 3.2 New classification for ACMs 60
 3.3 Current situation with ACMs 62
 3.4 Self-timed Pool specification and implementation 69
 3.4.1 Self-timed four-slot Pool 70

NCL-EECE-MSD-TR-2003-100

 ii

 3.4.2 Differences between FM and SI solutions 85
 3.4.3 Self-timed three-slot Pool 86
 3.5 Self-timed Signal specification and implementation 101
 3.5.1 State graph specification of Signal 104
 3.5.2 Circuit synthesis 108
 3.5.3 Hardware implementation 110
 3.6 Message, the dual of Signal 116
 3.7 Conclusions 117

Chapter 4 ACM Testing ……………………………………………………… 119
 4.1 Introduction 119
 4.2 Asynchronous circuit testing methodology 120
 4.2.1 Terminology 120
 4.2.2 Asynchronous circuit testing methodology 122
 4.3 Testing method of ACM circuits 126
 4.4 Test aims and environment 127
 4.5 On-chip testing circuit 128
 4.6 Testing methods and results 133
 4.6.1 Testing general functioning 135
 4.6.2 Testing asynchrony 135
 4.6.3 Testing data freshness, coherence and data loss 135
 4.7 Conclusions 137

Chapter 5 A New Direct Translation Synthesis Method and the PN2DCs

Tool based on Petr i nets …………………………………………..

139

 5.1 Introduction 139
 5.2 Existing synthesis techniques and problems 140
 5.2.1 Logic synthesis 141
 5.2.2 Direct translation 142
 5.3 Our synthesis design flow 148
 5.4 New direct translation method and specification refinement

149

 5.4.1 New method and specification decomposition 149
 5.4.2 Refinement to the method and specifications 154
 5.5 Direct translation 160
 5.5.1 The PN2DCs tool 160
 5.5.2 Basic components and the given library of PN2Dcs tool

167

 5.5.3 Proof of SI solutions 173
 5.6 Optimization 182
 5.6.1 Reducing the number of DCs 182
 5.6.2 Introduce VDC to further reduce memory elements

183

 5.6.3 Special optimization method 187
 5.7 Conclusions 187

NCL-EECE-MSD-TR-2003-100

 iii

Chapter 6 Case Studies ……………………………………………………….. 189
 6.1 Asynchronous processor 189
 6.2 Fully-decoupled latch controller 195
 6.3 Two-slot Signal ACM controller 202
 6.4 Master-read benchmark 207

Chapter 7 Conclusions and Future Work Discussion ………………………. 210
 Summary 210
 7.1 Introduction 211
 7.2 Conclusions 212
 7.2.1 Self-timed ACM implementations 212
 7.2.2 Testing ACM 214
 7.2.3 Synthesis 215
 7.3 Areas of future research 216
 7.3.1 Summary 216
 7.3.2 Direct-translation method based on DCs 217
 7.3.3 Asynchronous design for testing method 217
 7.3.4 Fast and reliable asynchronous circuits 218
 7.3.5 Theory work 218

 References …………………………………………………………. 219

 Appendix A ………………………………………………………... 238

NCL-EECE-MSD-TR-2003-100

 iv

List of Figures

Figure �2.1 A circuit with hazards... 21

Figure �2.2 Huffman sequential circuit structure. .. 23

Figure �2.3 Burst-mode specification... 24

Figure �2.4 An isochronic fork (left) and an equivalent SI circuit (right).................. 27

Figure �2.5 Channel signalling protocols. .. 30

Figure �2.6 (a) 2-phase push protocol and (b) 2-phase pull protocol. 30

Figure �2.7 (a) 4-phase push protocol and (b) 4-phase pull protocol. 31

Figure �2.8 4-bit dual-rail completion detection logic. ... 33

Figure �2.9 The Muller C-element: possible implementation, symbol and function

definition. ... 34

Figure �2.10 D-element possible implementation and its STG specification............. 35

Figure �2.11 The possible implementation of Mutexes.. 36

Figure �2.12 (a) Schematic of a DC and (b) The simplest DC.................................... 37

Figure �2.13 (a) Linear PN fragment (b) Its implementation using DCs and (c) Signals

in two adjacent DCs. .. 38

Figure �3.1 A simple ACM model... 60

Figure �3.2 Hardware diagram for the mechanism in Table �3.2. 63

Figure �3.3 Schematic of the 4-slot mechanism... 63

Figure �3.4 The model of 4-slot with FM assumptions... 65

Figure �3.5The wr statement in 4-slot mechanism (wr: d[n,s[n]’]:=input). 66

Figure �3.6 The w0 statement in 4-slot mechanism (w0: s[n]:=s[n]’)......................... 66

Figure �3.7 The w1 statement in 4-slot mechanism (w1: l:=n || n:=r’)........................ 67

Figure �3.8 The r0 statement in 4-slot mechanism (r0: r:=l)....................................... 68

NCL-EECE-MSD-TR-2003-100

 v

Figure �3.9 The r1 statement in 4-slot mechanism (r1: v:=s)...................................... 68

Figure �3.10 The rd statement in 4-slot mechanism (rd: output:= d[r,v[r]]). 69

Figure �3.11 The modified writer mechanism... 70

Figure �3.12 The modified reader mechanism. ... 71

Figure �3.13 PN model for each statement.. 72

Figure �3.14 PNs model of the four-slot ACM. .. 72

Figure �3.15 The refined w0 statement. .. 73

Figure �3.16 Basic structure of the modified 4-slot ACM with SI circuits. 74

Figure �3.17 The hardware diagram of the self-timed ACM. 75

Figure �3.18 Hardware for the statement wr. ... 76

Figure �3.19 The self-timed implementation of the rd statement................................ 77

Figure �3.20 The self-timed implementation of the w0 and r1 statements................. 78

Figure �3.21 Mutual exclusion between w1 and r0.. 78

Figure �3.22 SI master-slave latch circuit and its symbol (MSLatch)........................ 79

Figure �3.23 SI latch circuit and its symbol (DLatch).. 79

Figure �3.24 Handshake interface between a statement and its environment. 80

Figure �3.25 STG specification of write statement control. 80

Figure �3.26 Write statement control circuits using DCs... 81

Figure �3.27 STG of the circuit in Figure �3.26... 81

Figure �3.28 Analogue simulation waveforms with metastability within Mutex....... 82

Figure �3.29 Analogue simulation waveforms showing general handshake operations.

.. 82

Figure �3.30 Din and Dout value sequence at the beginning of a simulation. 84

Figure �3.31 Din and Dout value sequence in the middle of a simulation................. 84

Figure �3.32 PN model of the self-timed three-slot ACM. ... 89

NCL-EECE-MSD-TR-2003-100

 vi

Figure �3.33 Schematic of three-slot mechanism... 89

Figure �3.34 The structure of the three-slot Pool. .. 90

Figure �3.35 The wr statement in three-slot ACM. ... 91

Figure �3.36 The block diagram of the function. .. 91

Figure �3.37 The circuit of the w1 statement. .. 92

Figure �3.38 The differ circuit.. 93

Figure �3.39 The three state latch.. 93

Figure �3.40 The circuits for the l and r registers... 94

Figure �3.41 The control circuits... 94

Figure �3.42 The STG of the writer.. 95

Figure �3.43 The STG of the reader. .. 95

Figure �3.44 The STG form of the w0 and w1 control circuit. 96

Figure �3.45 The control circuit of the w0 and w1 statements................................... 97

Figure �3.46 The control circuit of the r0 statement... 97

Figure �3.47 Analogue simulation waveforms with metastability within the Mutex. 98

Figure �3.48 Comparing the applicabilities of the Pool and Signal. 101

Figure �3.49 Basic definition of the Signal protocol. ... 102

Figure �3.50 Signal with non-atomic writing. .. 103

Figure �3.51 Simple state graph specification for a two-slot Signal (s0 is initial state).

.. 107

Figure �3.52 "Distributing" states between reader and writer using regions............ 107

Figure �3.53 PN specification of the two-slot Signal. .. 108

Figure �3.54 Block diagram of first circuit design. .. 109

Figure �3.55 Basic diagram of Signal circuit implementation. 110

Figure �3.56 The set/reset circuit with completion logic... 111

NCL-EECE-MSD-TR-2003-100

 vii

Figure �3.57 Implementation of a 4-phase 'sync'.. 111

Figure �3.58 Circuit implementation of the write part using DCs............................ 112

Figure �3.59 Logic for 2dc block.. 113

Figure �3.60 Simple DC (with extra wire for a 'mild' relative timing assumption).. 114

Figure �3.61 Simple DC with 'aggressive' relative timing. 115

Figure �3.62 Illustrating metastability. ... 116

Figure �4.1 Introducing test points for signal x. An observation point (left), a control

point (middle), and both (right).. 125

Figure �4.2 A scan-register... 125

Figure �4.3 Evolution of testing methodology. .. 127

Figure �4.4 A simple testing board... 127

Figure �4.5 The photo of our testing environment. ... 128

Figure �4.6 The block diagram of the on-chip testing circuits and the ACM. 129

Figure �4.7 The floorplan of the chip. ... 130

Figure �4.8 The STG for a control circuit. ... 131

Figure �4.9 The logic circuit of choice function for the delay counter. 131

Figure �4.10 The PN model of the writer part.. 132

Figure �4.11 The control circuits of the writer part.. 132

Figure �4.12 Testing results.. 136

Figure �4.13 Testing results.. 136

Figure �4.14 The layout of the ACM.. 137

Figure �4.15 The VLSI chip of the ACM... 137

Figure �5.1 The traditional design flow... 140

Figure �5.2 The implementation and PN specification of a linear fragment............. 143

Figure �5.3 The implementation and PN specification of an event join fragment. ... 144

NCL-EECE-MSD-TR-2003-100

 viii

Figure �5.4 The implementation and PN specification of an exclusive join fragment.

.. 144

Figure �5.5 The implementation and PN specification of an event fork fragment.... 144

Figure �5.6 The implementation and PN specification of an alternative fork fragment.

.. 145

Figure �5.7 (a) The block diagram (b) Its function in STG format (c) Its PN

specification. .. 146

Figure �5.8 (a) An implementation (b) An SR latch with completion detection logic.

.. 147

Figure �5.9 Our synthesis design flow... 148

Figure �5.10 An implementation. .. 150

Figure �5.11 A complex event join case and a possible decomposition.................... 151

Figure �5.12 Another possible decomposition. ... 152

Figure �5.13 A decomposition method for a complex exclusive join case. 153

Figure �5.14 A decomposition method for a complex event fork case. 153

Figure �5.15 A decomposition method for a complex alternative fork case. 154

Figure �5.16 Refined specifications.. 155

Figure �5.17 (a) An implementation (b) A modified SR latch. 156

Figure �5.18 (a) An implementation (b) A modified SR latch. 157

Figure �5.19 A refinement example. ... 159

Figure �5.20 Refined specifications (RS)... 160

Figure �5.21 An example... 162

Figure �5.22 An output file example. .. 167

Figure �5.23 An example of DC and its implementation. ... 168

Figure �5.24 The Syntax diagram for Definition 5.3... 169

NCL-EECE-MSD-TR-2003-100

 ix

Figure �5.25 The normal DC. .. 169

Figure �5.26 A modified DC, named DCsetAND2reset. ... 170

Figure �5.27 A refined event join fragment.. 170

Figure �5.28 An additional implementation. .. 170

Figure �5.29 A modified DC, named DCsetOR2reset.. 171

Figure �5.30 A modified DC, named DCsetresetAND2. ... 171

Figure �5.31 A modified DC, named DCsetresetOR2.. 171

Figure �5.32 A DCsetAND2resetAND2. .. 172

Figure �5.33 A DCsetAND2resetOR2... 172

Figure �5.34 A DCsetOR2resetAND2... 172

Figure �5.35 A DCsetOR2resetOR2.. 173

Figure �5.36 A PN example... 174

Figure �5.37 SI modelling method. .. 175

Figure �5.38 An example of SI model... 176

Figure �5.39 An STG of the simplest DC.. 176

Figure �5.40 An STG specification. .. 177

Figure �5.41 An example to prove it SI... 177

Figure �5.42 An SI model STG specification.. 178

Figure �5.43 A free-choice fragment... 179

Figure �5.44 An implementation. .. 179

Figure �5.45 An arbitration-choice fragment. ... 180

Figure �5.46 An implementation of the arbitration-choice fragment. 180

Figure �5.47 SR latches with completion detection. ... 180

Figure �5.48 Basic models.. 181

NCL-EECE-MSD-TR-2003-100

 x

Figure �5.49 A simple example. .. 182

Figure �5.50 The direct solution from the techniques 2-3... 183

Figure �5.51 The optimization circuit.. 183

Figure �5.52 An implementation based on the special optimization idea. 185

Figure �5.53 An example... 186

Figure �5.54 An implementation of this special case. .. 187

Figure �6.1 An asynchronous processor specified at high level............................... 189

Figure �6.2 The model of DC circuits. ... 191

Figure �6.3 The DC implementation of the asynchronous processor....................... 194

Figure �6.4 The STG specification of the fully-decoupled latch controller. 195

Figure �6.5 The RS format specification of the controller. 196

Figure �6.6 The DC control circuit of the controller. ... 198

Figure �6.7 The SR latch with completion-detection logic for handshake signals... 198

Figure �6.8 The output signal implementation in the controller............................... 198

Figure �6.9 The whole circuit. ... 199

Figure �6.10 The optimized implementation.. 199

Figure �6.11 The optimized implementation.. 200

Figure �6.12 The block diagram of RT solution... 201

Figure �6.13 The RT solution of the controller. ... 201

Figure �6.14 The PN specification of the two-sot signal.. 202

Figure �6.15 The specification for the writer. .. 204

Figure �6.16 A refined specification.. 204

Figure �6.17 The circuit obtained based on the direct-translation method............... 205

Figure �6.18 The implementation of the writer. ... 206

NCL-EECE-MSD-TR-2003-100

 xi

Figure �6.19 The circuit obtained from the direct-translation method..................... 206

Figure �6.20 The STG specification. .. 207

Figure �6.21 The RS specification of the benchmark... 208

Figure �6.22 The refined implementation... 208

NCL-EECE-MSD-TR-2003-100

 xii

List of Tables

Table �2.1 Dual-rail encoding of ternary values... 32

Table �2.2 Classification of ACMs... 53

Table �3.1 New Classification of ACMs... 61

Table �3.2 Simpson’s 4-slot mechanism. ... 62

Table �3.3 Truth table for the w1 statement in 4-slot ACM (w1: l:=n || n:=r’). 67

Table �3.4 Simpson's three-slot mechanism... 88

Table �3.5 A table of differ... 92

Table �3.6 The equations of the reader and writer from the Petrify tool.................... 96

Table �3.7 The differences between four-slot and three-slot Pools............................ 99

Table �3.8 The comparison result... 100

Table �3.9 Cycle times.. 115

Table �6.1 Comparison results.. 202

Table �6.2 Comparison results.. 209

NCL-EECE-MSD-TR-2003-100

 xiii

Acknowledgements

This thesis would not have been possible without the generous and invaluable help I

received from many people and organisations during the course of study.

Firstly, thanks to Alex Yakovlev and Albert Koelmans, my supervisors, for

introducing me in the world of asynchronous circuits. Their enthusiasm in the

asynchronous research field is the main motivation that has encouraged this work

since the early beginning. Alex and Albert have patiently taught me during these

years everything I know about research. They deserve my sincere gratitude.

Also my thanks go to Fei Xia. Words cannot express my gratitude to my friend and

colleague Fei Xia, whose endless enthusiasm and brilliant mind benefited much of

the work reported here. In addition, many thanks go to him for his careful reading of

the draft of this thesis and his constructive suggestions for improvement.

I also address a big thanks to Alex Bystrov and Frank Burns for many useful

discussions related to this thesis and their valuable help in English language in these

years.

The same thanks go to all other colleagues of the VLSI group in the Department of

Computing Science and my officemates for their enthusiasm and encouragement

during these years.

I appreciate help and useful feedback received from the members of the COMFORT

project, as well as members of the UK and international community working in

asynchronous designs.

I am also grateful to the UK asynchronous Forum, AINT 2000 international

workshop, ASYNC 2000 and ASYNC 2001 international conferences, DDECS 2001

NCL-EECE-MSD-TR-2003-100

 xiv

international workshop, ISCAS 2002 international conference and so on, which give

me chances to present my work.

Here, I would also like to thank the EPSRC and the Department of Computing

Science in the University of Newcastle upon Tyne for vital financial support which

kept me alive during the many years of research work, and the Shenyang Institute of

Computing Technology, the Chinese Academy of Sciences, for letting me have a

chance to study for this degree.

Finally, thanks to my parents Shiyuan and Yelan for their love and support. My

special gratitude and love goes to my wife Junying and my son Ersong. They

sometimes waited patiently at home and sometimes joined in the fun. They have been

the indispensable persons to complete this research. Their combined efforts have

made possible these lines. The work is dedicated to them.

September 2002 Newcastle upon Tyne

NCL-EECE-MSD-TR-2003-100

 xv

 A b s t r a c t

This thesis presents the design and testing of asynchronous communication

mechanism (ACM) circuits, and the development of an asynchronous circuit

synthesis method which not only supports the ACM work but also has much wider

application potential.

ACMs are a unique approach to data transmission between subsystems not

synchronized with one another. The successful systematic implementation of ACM

hardware circuits presented here demonstrates the potential of ACM applications in

hardware systems and establishes a number of techniques well suited for ACM

hardware design and synthesis. Novel testing procedures are developed specially for

ACM circuits, and testing carried out on fabricated ACM circuits complement

knowledge on the ACM implementations gained from analyses and simulations.

The asynchronous circuit synthesis method proposed in this thesis and its useful

library proved to be very helpful in bringing an element of automation to the design

and implementation process. Not limited to ACM circuits, this method can be further

developed to help designers of general asynchronous circuits.

NCL-EECE-MSD-TR-2003-100

Asynchronous (or self-timed) circuits and systems have attracted increasing attention

from the research community in recent years. The inherent concurrency in their

operation and the absence of the requirement for a pre-determined settling period, the

clock cycle, means that these systems reflect more naturally the processes happening

in real life.

1.1.1 General purpose motivation

Most digital circuits designed and fabricated today are “synchronous” . In essence,

they are based on two fundamental assumptions that greatly simplify their design:

1. all signals are binary and;

2. all components share a common and discrete notion of time, as defined by a

clock signal distributed throughout the circuit.

By making the assumption of a synchronous mode of operation, designers can

abstract from the problem of tracking of all intermediate states of the system. It can

be safely assumed that the clock period is chosen to be long enough for the signals to

settle to their new values. Any feedback is cut off to prevent the changing outputs

Chapter 1: Introduction

1.1 Motivation

NCL-EECE-MSD-TR-2003-100

Chapter 1: Introduction

 2

from affecting the inputs. The arrival of a new clock pulse triggers a transition to the

next state of the system.

Asynchronous circuits are fundamentally different. In an asynchronous circuit there

is no such a “start-stop” mechanism. They also assume binary signals, but there is no

common and discrete time. Any change of signals may cause a transition of the

system into the next state. Instead the circuits use handshake protocols between their

components in order to perform the necessary synchronization, communication and

sequencing of operations. Expressed in ‘synchronous terms’ this results in a

behaviour that is similar to systematic fine-grain clock gating and local clocks that

are not in phase, and whose period is determined by actual circuit delays – registers

are only clocked where and when needed [Sparsø 2001].

This difference gives asynchronous circuits inherent properties that can be (and have

been) exploited [Amulet] in the following areas:

1. Low power consumption;

During the operation of a synchronous circuit the clock signal is propagated

to every operational block of the circuit even if this block is not used in a

particular computation. Thus the power is spent on driving the clocked inputs

of gates which do not perform any useful actions.

Each part of an asynchronous circuit operates only when signalled to

commence the operation, after the data has been prepared on the inputs of this

part. Therefore, until such a request is produced, this part of the circuit does

not consume any power at all (apart from very small leakage currents). In

other words, asynchronous circuits work under fine grain clock gating and

zero standby power consumption.

2. Average case performance;

The clock cycle of every synchronous circuit is determined by the longest

propagation delay of the circuit. The rate of the clock signal must

accommodate the settling times for the longest possible operation. Therefore,

during a faster operation some of the part of the circuit will stay idle while the

NCL-EECE-MSD-TR-2003-100

Chapter 1: Introduction

 3

clock signal is due to switch. To overcome this problem, designers need to

come up with elaborate scheduling and re-timing schemes.

In an asynchronous circuit, every part works at its own pace. As soon as the

data has been processed by one part, the next part is informed and may start

working with the data. Thus the overall cycle time, i.e. the average time

between the completions of two sequential operations, will be the average of

the execution times of all operations.

3. Less emission of electro-magnetic noise;

Electro-magnetic emission generated by synchronous circuits causes

interference with other equipment. Much of this interference is attributed to

the clock signal which produces a steady peak in the spectrum on the

frequency at which the transistors are switched.

The transistor switching frequency in an asynchronous circuit depends on the

data which is being processed by the circuit. Thus the spectrum is smoother

and the peak values are lower.

4. Robustness towards variations in supply voltage, temperature and fabrication

process parameters;

Timing is based on matched delays (and can even be insensitive to circuit and

wire delays) [Sparsø 2001].

5. Better composability and modularity;

Synchronous circuits are subject to precise synchronisation between the

modules comprising them. Redesigning of any module requires meeting

heavy restrictions on the execution times to ensure the correct

synchronisation.

Because of the simple handshake interfaces and the local timing, any part of

an asynchronous circuit can be redesigned at will. The new module must, of

course, conform to the same interface protocol as the module that is being

NCL-EECE-MSD-TR-2003-100

Chapter 1: Introduction

 4

replaced. However, the speed at which the new module operates is irrelevant

allowing easy upgrading of asynchronous circuits.

6. No clock distribution and clock skew problems.

The existence of a propagation delay in the wires of a chip means that the

signal change may arrive at two ends of a forking wire at different times. This

phenomenon is known as the clock skew problem [Berkel 1992]. To

guarantee that all operational blocks work synchronously, the designer needs

to make sure that the block signal is received by each block at exactly the

same time. However, with growing clock rates it becomes increasingly

difficult to guarantee the absence of clock skew. In addition, clock wiring has

been reported to take up to 60% of all wiring in the chip.

By choosing an asynchronous implementation the designer escapes the clock

skew problem and the associated routing problem. That means there is no

global signal that needs to be distributed with minimal phase skew across the

circuit.

The above theoretical advantages have inspired a large number of researchers into

the asynchronous circuit area. The asynchronous community has demonstrated that it

is possible to design fully functional circuits beyond trivial examples. Several

microprocessors have been designed to date. Examples of microprocessor designs

can be found in works reported by the Caltech [Martin 1989a, Martin 1990c], Titech

[Nayna 1995], Philips [Gageldonk 1998] and Manchester [Furber 1999] research

groups. In Manchester, the AMULET group designed an instruction-level compatible

asynchronous version of the ARM6 microprocessor whose performance

characteristics are comparable to those of the synchronous one. In addition, Philips

reported a design of an asynchronous error correction chip [Berkel 1994a, Berkel

1994b] which demonstrated 80% saving in the power consumption. Kol has claimed

“Future processors will be asynchronous” [Kol 1997].

In addition, with the advent of sub-micro VLSI technology, which will soon enable a

billion of transistors to be placed on a single chip, hardware design becomes a big

NCL-EECE-MSD-TR-2003-100

Chapter 1: Introduction

 5

challenge. Future VLSI circuits will often be system-on-chip, even multiple systems

on a same chip, whose subsystems include processors, memory banks and

input/output controllers. Problems with distributing the global clock between these

subsystems, treated as Intellectual Property (IP) cores, are unavoidable. Systems-on-

chip will effectively lose the global notion of physical time and permit actions in

different parts of the systems to be executed in parallel or independently of one

another. Such hardware systems will inevitably become more asynchronous and

concurrent [ITRS 2001, Yakovlev 2000].

1.1.2 Special topics of concern in this thesis

1.1.2.1 Asynchronous communications

As mentioned above, many researchers focus on the asynchronous circuit design

area. However, the area of communication between two globally unsynchronised

processes (systems) has not been widely investigated and is worth being studied.

Simpson proposed a simple and elegant classification for this kind of

communication, which is named asynchronous communication mechanisms (ACMs)

[Simpson 1990, Simpson 1994]. The simplest model of Simpson’s ACMs assumes

that two independent processes, one the writer which supplies data and the other the

reader which consumes the data, communicate with each other independently.

Normally ACM has four types. They are Channel, Pool, Signal and Constant. The

definitions and more details will be given in Chapter 2.

So far, the Channel type is very popular (this is also named as FIFO). It has been

studied for long time and implemented in both software and hardware. Especially it

has been implemented by using asynchronous circuits, such as [Sutherland 1989,

Hoke 1999, Liljeberg 2001]. The important feature is that the above implementations

use asynchronous circuits, which show a large number of benefits [Sutherland 1989].

As for the other types of ACMs, most research on implementations of these

mechanisms is focused on using software, such as [Chen 1998b]. So far only

NCL-EECE-MSD-TR-2003-100

Chapter 1: Introduction

 6

Simpson himself described a hardware implementation for the Pool type ACM.

However this implementation is FM (Fundamental Mode) but not self-timed

[Simpson 1994]. Some timing assumptions are used, and in order to guarantee that

two processes -- the writer and reader -- run independently, four slot shared memory

is used to pass data. From the hardware point of view, it is not safe. It should work

under the worst case assumptions.

As an alternative to synchronous techniques, asynchronous techniques do not have

the above problems. Because of this, asynchronous techniques should give us a better

implementation.

The classification is based on the properties of the writer and reader, such as

“destructive” and “non-destructive” on the writer and/or reader. However, the

classification based on “destructive” and “non-destructive” properties has limitations.

For example, the Constant type ACM has not any communications between the

writer and reader.

All of the above are worth being studied.

1.1.2.2 Testing asynchronous circuits

Testing is a hot topic in hardware design. A number of testing techniques have been

developed for synchronous circuits [Wang 1991], such as Design For Testability

(DFT), Built-in Self Test (BST), Boundary Scan Techniques (BST) and so on. A

summary of one technique, DFT, is introduced in [Williams 1982]. However, in

asynchronous areas, designing asynchronous circuits has been challenging because

hazards and races must be carefully considered. Therefore the focus of research in

the area has been primarily directed to synthesis and verification techniques, while

little attention has been paid to techniques that efficiently verify whether a fabricated

asynchronous circuit has any physical faults.

As asynchronous circuits become larger and start to be used in commercial products,

testing concerns become critical [Hulgaard 1994]. However, synchronous circuit

testing techniques cannot be used on asynchronous circuits directly, especially self-

NCL-EECE-MSD-TR-2003-100

Chapter 1: Introduction

 7

timed circuits [Hulgaard 1994]. An example of asynchronous circuit testing using

synchronous testing techniques can be found in [Kondratyev 2002].

Some techniques for testing asynchronous circuits have been introduced in [Hulgaard

1994] and [Petlin 1994]. These include DFT, Path Delay Fault Testing (PDFT), and

self-timed circuit testing techniques. However they are not adequate for testing our

self-timed ACM. Self-timed circuits are delay-independent. We cannot exactly know

when an event happens and when the next event starts. This property is very difficult

to test [Petlin 1994]. Our self-timed ACM is a fully asynchronous system. Apart

from the self-timed implementation, it has three important properties: asynchrony,

data coherence and data freshness. These properties will be introduced in Chapter 2

and 3. So far no testing techniques for this kind of circuit have been developed.

With the advent of sub-micron VLSI technology, multiple independent systems in

one chip should be possible. Communication between them cannot be avoided.

Obviously this topic is worth being investigated.

1.1.3 Automated asynchronous circuit design (synthesis)

Although asynchronous circuits have a large number of advantages, and many

researchers are focussing on this area, asynchronous circuits are harder to design.

This is because mature asynchronous CAD tools are not available [Sutherland 2002].

Although some asynchronous CAD tools such as the Petrify tool [Petrify] and the

Tangram tool [Kessels 2001] have been presented, they have some limitations. One

important limitation is that they cannot deal with big designs. We will discuss this in

more detail in Chapter 5.

From our requirement point of view, the other main problem is that existing tools

cannot guarantee the obtained circuits are speed independent (SI). More details will

be discussed in Chapter 5.

As a result, in order to design asynchronous products and meet time-to-market

demands, much more research in this area is needed.

NCL-EECE-MSD-TR-2003-100

Chapter 1: Introduction

 8

1.2.1 Self-timed ACMs

The main objectives of this work are to investigate design techniques for

implementing communications between multiple independent systems (non-

synchronized), using self-timed circuits.

The work in this thesis is motivated by Simpson’s work [Simpson 1990, Simpson

1994]. As introduced in the motivation section, the work is focused on ACM

mechanisms and self-timed implementations. In addition, a new classification

(Channel, Pool, Signal and Message) is presented which is based on timing

properties, blocking and waiting. More details will be shown in Chapter 3.

As discussed above, in this thesis we focus on Pool, Signal and Message type ACM

mechanisms and self-timed implementations. In addition, the ACM is a slot

mechanism. We wish to use as few as possible slots to implement ACMs, to reduce

hardware size.

1.2.2 Testing ACMs

As mentioned in the above section, testing is very important. Generally, only after

testing can a circuit be expected to be correct.

After implementing and fabricating some of the ACMs using self-timed circuits, we

have the chance to study the asynchronous testing problem. The mechanism is a

special one. It has two global non-synchronized processes. As mentioned in the

above motivation section, it is very difficult to test this kind of circuit. No methods

are available. In this thesis, a method is proposed for testing such circuits.

1.2 Contributions of this thesis

NCL-EECE-MSD-TR-2003-100

Chapter 1: Introduction

 9

1.2.3 Synthesis

After implementing self-timed ACMs, we appreciate the difficulty of designing

asynchronous circuit systems. One reason is the lack of mature asynchronous CAD

tool support [Sutherland 2002]. We wish to develop an asynchronous methodology

to support design of self-timed circuits.

The idea is based upon Varshavsky’s direct translation method [Varshavsky 1996].

However, Varshavsky’s method is not automated and thus not good enough to

support asynchronous designs. The reason is discussed in Chapter 5. In this thesis,

we will extend the method and are trying to automate it.

Based on this new synthesis method, some optimization methods are also proposed

to improve the performance of asynchronous circuits.

Summary

In summary, the main contributions of the work described in this thesis are:

1. Study ACMs and implement them using self-timed circuits;

2. Test self-timed ACMs;

3. Extend Varshavsky’s direct translation method and automate it.

The remainder of the thesis is organised as follows:

Chapter 2 presents the background of my contributions. This consists of the

fundamental of asynchronous VLSI design, Simpson’s asynchronous communication

mechanisms and related work, the current situation of asynchronous CAD tools.

1.3 Organization of this thesis

NCL-EECE-MSD-TR-2003-100

Chapter 1: Introduction

 10

Finally, in order to develop CAD tools, a useful specification language, Petri

nets/STG is introduced.

Chapter 3 presents a new classification of asynchronous communication

mechanisms. In addition, four-slot and three-slot Pool type of mechanism are studied

and implemented using self-timed circuits. Furthermore, a two-slot Signal type of

mechanism is investigated and implemented using self-timed circuits.

Chapter 4 presents a testing method for asynchronous communication mechanisms.

We use the four-slot Pool as an example to demonstrate the testing method. Testing

results show the method is as expected.

Chapter 5 presents a purpose of an asynchronous synthesis tool which is used to

directly translate Petri nets specifications to logic circuits that are guaranteed speed

independent.

Chapter 6 presents some case studies based on the synthesis method introduced in

Chapter 5. In this chapter we illustrate how the application of the direct translation

may assist in implementing speed independent circuits.

Chapter 7 concludes the thesis, summarises the results presented in this work and

outlines the areas for future research.

The following papers, based on the work presented in this thesis, have been

published or submitted for publication:

• An Asynchronous Communication Mechanism using self-timed circuits [Xia

1999a]

(6th UK Asynchronous Forum);

1.4 Publications on the thesis

NCL-EECE-MSD-TR-2003-100

Chapter 1: Introduction

 11

• Self-timed and speed independent latch circuits [Bystrov 1999]

(6th UK Asynchronous Forum);

• Asynchronous Communication Mechanisms Using Self-timed Circuits [Xia

2000b]

(ASYNC 2000 Conference);

• A self-timed asynchronous data communication mechanism [Shang 2000a]

(1st PGNET 2000 Conference);

• An implementation of a three-slot asynchronous communication mechanism

using self-timed circuits [Shang 2000b]

(AINT 2000 Workshop);

• Testing a self-timed asynchronous communication mechanism (ACM) VLSI chip

[Shang 2000c]

(9th Asynchronous UK Forum);

• Testing a self-timed asynchronous communication mechanism (ACM) VLSI chip

[Shang 2001a]

(DDECS 2001 Workshop);

• Synthesis and implementation of a Signal-type asynchronous data

communication mechanism [Yakovlev 2001]

(ASYNC 2001 Conference);

• Asynchronous Circuit Synthesis via Direct Translation [Shang 2001b]

(11th UK Asynchronous Forum);

• Asynchronous Circuit Synthesis via Direct Translation [Shang 2002a]

(ISCAS 2002 Conference);

• Behavioural synthesis of asynchronous controllers: a case study with a self-timed

communication channel [Yakovlev 2002a]

NCL-EECE-MSD-TR-2003-100

Chapter 1: Introduction

 12

(ACiD-WG 2002 Workshop);

• Asynchronous communication mechanisms: classification and hardware

implementations [Xia 2002]

(MPCS 2002 Conference);

• Data communication in system with heterogeneous timing [Xia 2002b]

(IEEE Micro journal).

NCL-EECE-MSD-TR-2003-100

Computer pioneers designed digital computers based on thermionic valves [Williams

1948, Williams 1951] fifty years ago. Computer systems such as the Ferranti Mark I

[Ferranti 1952] were constructed based on digital signals, which have the following

properties:

• Two values, 0 and 1, represent information and they are represented as

distinct signal values (most commonly voltages);

• Signals must only be sampled or observed when in one of these two distinct

states.

The digital signal systems have three significant advantages in the design of digital

equipment [Hayes 1993]:

1. Most information-processing systems are constructed from switches, which

are binary devices.

2. The basic decision-making processes required of digital systems are binary.

3. Binary signals are more reliable than those formed by more than two

quantization levels.

Until now, the principles of binary digital design are the same as they are before.

Chapter 2: Background

2.1 Asynchronous circuit design

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 14

Generally, circuit design styles can be classified into two major categories, namely

synchronous and asynchronous. They are informally defined as follows:

• The synchronous (clocked) circuit is one with a global timing signal (clock

signal) which is distributed to all parts of the circuit. Transitions (rising

and/or falling depending on the design) on this clock line indicate moments at

which the data signals become stable;

• The asynchronous (self-timed) circuit is one which utilises time delays, as

indicated by local matched delay lines, to indicate when the data signals are

stable, or encodes the timing information in the data line activity itself.

In the early days of digital circuit design, little distinction was made between

synchronous and asynchronous circuits. However, since the 1960’s, the mainstream

of the digital circuit design enterprise has been primarily concerned with

synchronous circuits [Davis 1997].

These kinds of circuits make use of centralized control and are based on two major

assumptions: (1) all signals are binary, and (2) time is discrete. By assuming binary

values on signals, simple Boolean logic can be used to describe and manipulate logic

constructs. By assuming time is discrete, hazards and feedback can largely be

ignored. So synchronous circuits are easy to understand and design, even with

increasing complexity of design. As a result, most modern digital systems are

synchronous. They are organized around a global clock, and system events are

synchronized to the clock. On each clock tick, data is latched into storage elements

and then a new computation begins between two clock ticks. Computation must be

completed before the next clock tick [Hauck 1995, Nowick 1993].

However, as devices become smaller and faster, especially when the SoC (systems

on a chip) era arrives and hardware systems become much more complex and

concurrent, synchronous approaches will become increasingly unwieldy.

There are a number of difficulties with synchronous design as follows [Nowick 1993,

ITRS 2001]:

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 15

• Clock skew: in a synchronous system, if the clock is not distributed evenly,

clock skew results and the system may malfunction. Clock skew is an

inherent problem in most synchronous systems. However, in practice, the

effects of clock skew can be eliminated in two ways. First, the clock can be

slowed down to ensure correct operation. That is, a safety margin is added to

each clock cycle to ensure that the clock has been broadcast throughout the

system and all components are stable before a new cycle begins. However,

the cost of this approach is a performance loss. Alternatively, clock skew can

be minimized by using carefully balanced clock trees. The cost of this

approach is an increase in system area.

• Asynchronous external inputs: in a synchronous system, there is a

reliability problem when attempting to synchronize inputs which can arrive at

arbitrary times. Such inputs may cause synchronous storage elements to enter

into undefined states. This problem is called metastability [Chaney 1973]. No

known method can eliminate metastability. However, the probability of

entering a metastable state is significantly reduced by using a pair of storage

elements to “ resynchronize” an asynchronous input to the clock [McCluskey

1986]. However, such resynchronization results in a performance loss.

• Worst-case design: synchronous designs have difficulty taking advantage of

data dependent processing delays. If a component can process particular

inputs or data quickly, its performance is still bound by the global clock

speed. In fact, the speed of the clock is usually set assuming worst-case

conditions for process, temperature, voltage and data. As a result, even when

the system operates under nominal conditions, performance is limited by

worst-case design assumptions. In practice, the cumulative “derating” of

system performance based on these factors can be significant [Dean 1992,

Williams 1991]. Dean [Dean 1992] indicates that, if such design-for-worst-

case could be avoided, many systems would actually run almost twice as fast

on average.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 16

• Power consumption: at a time when designers are increasingly interested in

low power applications, the distribution of the clock throughout the system is

a large source of power consumption. The problem of power consumption

will only grow worse as clock frequency increases and feature size decreases.

• Modularity (reuse): in a synchronous system, a component cannot be

replaced without global implications. If the new component is slow, the

system may malfunction unless the global clock speed is reduced. If the new

component is fast, system performance will not change unless the clock speed

can safely be increased. The contrast to modern object-oriented software

systems is illuminating. In an object-oriented system, a software module can

be replaced without global implications. Such modularity increases the

lifetime of a system, allows rapid development, and simplifies system

organization. Modularity is an important feature in system design; however it

does not fit well with a synchronous paradigm.

• Composability: finally, at a time when designers are interested in

constructing large multi-chip systems, synchronous designs have limited

composability. It is difficult to combine synchronous subsystems operating at

different clock speeds.

To solve the above problems, an alternative approach is to build asynchronous

systems. Dean has proved that systems operated without the above assumptions have

the potential to generate better results [Dean 1992].

Asynchronous circuits have been studied in one form or another since the early

1950’s [Keister 1951] when the focus was primarily on mechanical relay circuits. A

number of theoretical issues were studied in detail by Muller and Bartky as early as

1956 [Muller 1956].

Asynchronous circuits are systems which do not have a global clock; instead, they

operate under distributed control. The key is that asynchronous systems avoid many

of the above problems by eliminating the global clock (see Chapter 1).

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 17

Over the past two decades, research into asynchronous design has concentrated on

finding more disciplined approaches which can challenge clock-based design in

offering a reliable basis for VLSI design. Often unbounded delay assumptions are

used, which guarantee that a circuit will always operate correctly under any

distribution of delay amongst the gates and wires within the circuit [Bainbridge

2000].

Currently, asynchronous design methods are well developed, and whole computer

systems can be constructed as a single integrated circuit using either synchronous or

asynchronous methods.

However, in spite of much research over the last 20 years, asynchronous designs are

notoriously difficult to build [Davis 1997, Hauck 1995]. Fundamental to an

understanding of asynchronous design is a familiarity with the assumptions

commonly made regarding the delays in the gates and wires within a circuit and the

mode in which the circuit operates. There are two common delay models, bounded

delay and unbounded delay. The bounded delay model was commonly used in the

early days of asynchronous design, and is still used in some backplane level

interconnection schemes such as the SCSI bus where part of the protocol is based on

known, fixed delays. Current asynchronous VLSI designs and research efforts use

the unbounded delay model for the implementation of state machines and controllers

since it leads to circuits that will always operate correctly whatever the distribution

of delays. It separates delay management from the correctness issue, allowing the

functionality of the circuit to be more easily verified. The bounded delay model is

still commonly used for datapath components, however, since in this area it can lead

to more efficient implementations.

The following sub-sections discuss other aspects of asynchronous circuits.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 18

2.1.1 Delay models and hazards

2.1.1.1 Delay models, circuits and the environment

There is a wide spectrum of asynchronous designs. One way to distinguish among

them is to understand the different underlying models of delay and operation. Every

physical circuit has an inherent delay. However, since synchronous circuits process

inputs between fixed clock ticks, they can often be regarded as instantaneous

operations, computing a new result in each clock cycle. On the other hand, since

asynchronous circuits have no clock, they are best regarded as computing

dynamically through time. Therefore, a delay model is critical in defining the

dynamic behaviour of an asynchronous circuit.

There are two fundamental models of delay: (1) the pure delay model and (2) the

inertial delay model [Unger 1969]. A pure delay can delay the propagation of a

waveform, but does not otherwise alter it. An inertial delay can alter the shape of a

waveform by attenuating short glitches. More formally, an inertial delay has a

threshold period, say δ . Pulses of duration which are less than δ are filtered out.

Delays are also characterized by their timing models. In a fixed delay model, a delay

is assumed to have a fixed value. In a bounded delay model, a delay may have any

value in a given time interval. In an unbounded delay model, a delay may take on

any finite value.

An entire circuit’s behaviour can be modelled on the basis of its component

behaviour. In a simple gate, or gate-level, model, each gate and primitive component

in the circuit has a corresponding delay. In a complex-gate model, an entire sub-

network of gates is modelled by a single delay; that is, the network is assumed to

behave as a single operator, with no internal delays. Wires between gates are also

modelled by delays. A circuit model is thus defined in terms of the delay models for

the individual wires and components. Typically, the functionality of a gate is

modelled by an operator with an attached delay.

Given a circuit model, it is also important to characterize the interaction of the circuit

with its environment. The circuit and environment together form a closed system,

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 19

called a complete circuit [Miller 1965]. If the environment is allowed to respond to a

circuit’s outputs without any timing constraints, the two interact in input/output

mode [Brzozowski 1989]. Otherwise, environment timing constraints are assumed.

The most common example is fundamental mode [Unger 1969] where the

environment must wait for a circuit to stabilize before responding to circuit outputs.

Such a requirement can be seen as the hold time for a simple latch or flip-flop [Davis

1998].

2.1.1.2 Hazards

A hazard is an unspecified change of the signal, e.g. a spike. It can be classified into

two types.

2.1.1.2.1 Function hazards

A function f which does not change monotonically during an input transition is said

to have a function hazard in the transition. The following definitions are from

[Bredeson 1972].

Definition 2.1 A Boolean function f contains a static function hazard for the input

transition from A to C iff:

1. f(A) = f(C), and

2. there exist some input states B ∈[A, C] such that f(A) ≠ f(B).

Definition 2.2 A Boolean function f contains a dynamic function hazard for the input

transition from A to D iff:

1. f(A) ≠ f(D),

2. there exist a pair of input states B and C (A ≠ B, C ≠ D) such that

 (a) B ∈[A, D] and C ∈[B, D] and

 (b) f(B) = f(D) and f(A) = f(C).

It is well known that, if a transition has a function hazard, no implementation of the

function is guaranteed to avoid glitches during the transition, assuming arbitrary gate

and wire delays [Eichelberger 1965]. Therefore, in the remainder of this thesis,

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 20

transitions are assumed to be free of function hazards except where otherwise

indicated.

2.1.1.2.2 Logic hazards

If f is free of function hazards for a transition from input state A to B, it may still

have hazards due to delays in the actual logic realization [Unger 1969].

Definition 2.3 A combinational circuit for a function f contains a static logic hazard

for the input transition from min-term A to min-term B iff:

1. f(A) = f(B),

2. no static function hazard exists in the transition from A to B,

3. for some delay assignment, the circuit’s output is not monotonic during the

transition interval.

Definition 2.4 A combinational circuit for a function f contains a dynamic logic

hazard for the input transition from mini-term A to mini-term B iff:

1. f(A) ≠ f(B),

2. no dynamic function hazard exists in the transition from A to B,

3. for some delay assignment, the circuit’s output is not monotonic during the

transition interval.

These definitions formalize the notion that a logic hazard occurs if, for some

particular gate and wire delays, the combinational circuit output glitches during the

transition (a pure delay model is of course assumed).

A fundamental difference between synchronous and asynchronous circuits is in their

treatment of hazards. In a synchronous system, computation occurs between clock

ticks. Glitches on wires during a clock cycle are usually not a problem. The system

operates correctly as long as a stable and valid result is produced before the next

clock tick, when the result is sampled. In contrast, in an asynchronous system, there

is no global clock; computation is no longer sampled at discrete intervals. As a result,

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 21

any glitch may be treated by the system as a real change in value, and may cause the

system to malfunction [Davis 1997].

Hazards were first studied in the context of asynchronous state machines, and much

of the original work focused on combinational logic. Sequential hazards are also

possible in asynchronous state machines; these are called critical races or essential

hazards.

In an asynchronous circuit design, two traditional classes of combinational hazards

are SIC (single input change) and MIC (multiple input change) hazards.

The original theory of SIC was developed by Huffman, Unger and McClusky [Unger

1969]. Generally for a SIC, a static hazard can be eliminated by inserting redundant

items. In terms of function, it is less efficient, but is necessary to eliminate the

hazard.

The case of a MIC is much more complex. A MIC transition has a start input value

M and a destination input value N where several inputs change monotonically

between M and N. Multiple input change can lead to function-hazards, static hazards

and dynamic hazards.

The static hazards and the dynamic hazards are informally defined as follows:

Definition 2.5 A circuit is said to be a static hazard at an output for the input

transition form A to B iff:

1. f(A) = f(B),

2. there exists a temporary output value at the output when the inputs

changing from A to B, say BAV → , and BAV → ≠ f(A).

out

x

y

z

Figure �2.1 A circuit with hazards.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 22

Figure �2.1 is used to show a static hazard. The circuit is assumed that all gates have a

gate delay of 1 unit, and the current state is (x, y, z) = (1, 1, 1). In this state, the

output is 1. If we change the inputs from (1, 1, 1) to (1, 0, 1), the output should still

remain at 1. However, because of the delay in the inverter, the top AND gate will

become false before the lower AND becomes true, and a 0 will propagate to the

output. This momentary glitch on the output is known as a static-1 hazard. A static-0

hazard is similar, with a value meant to remain stable at 0 instead momentarily

becoming 1.

Definition 2.6 A dynamic hazard is the case where a signal that is meant to make a

single transition (0 → 1 or 1 → 0) instead makes three or more transitions

(such as 0 → 1 → 0 → 1, 1 → 0 → 1 → 0).

Generally, function hazards cannot be avoided. Therefore, classic synthesis methods

focus only on MIC transitions which are already function hazard free. Static hazards

can be eliminated by using the same methods as those used in a SIC. A more difficult

problem is to eliminate MIC dynamic logic hazards.

2.1.2 Circuit classification

Asynchronous circuits can most easily be categorized by the timing models they

assume. The followings will introduce some most popular types of asynchronous

circuits.

2.1.2.1 Fundamental mode circuits (Huffman circuits)

The most obvious model to use for asynchronous circuits is the same model used for

synchronous combinational circuits which are generally referred to as Huffman

circuits. Specifically, in this kind of circuit it is assumed that the delay in all circuit

elements and wires is known, or at least bounded. Circuits designed with this model

usually are associated with the fundamental mode (FM) assumption.

However, since there is no clock to synchronize input arrivals, the system must

behave properly in any intermediate states caused by multiple input changes. In

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 23

terms of this point, asynchronous sequential circuits are different to synchronous

ones.

z 1

logic

combinational

state
next

z m

state

y1present

inputs outputs

delay elements

x1

xn

y1

yk

’

yk ’

Figure �2.2 Huffman sequential circuit structure.

In asynchronous sequential circuits, we use a model similar to that used for

synchronous circuits as shown in Figure �2.2. Since the restriction that only one input

to the combinational logic can change at a time is made, this forces several

requirements on our sequential circuit. First, we must make sure that the

combinational logic settles in response to a new input before the present-state entries

change. This is done by placing delay elements on the feedback lines as shown in

Figure �2.2.

2.1.2.2 Non FM circuits (extended Huffman circuits)

The FM assumption, while making logic design easy, greatly increases cycle time.

Therefore there could be considerable gains from removing this restriction.

One method is quite simple, and can be seen by referring back to the original

argument for the FM. The issue was that when multiple inputs change, and no single

cube covers the starting and ending point of a transition, there is the possibility of a

hazard. However, if a single cube covers an entire transition, then there is no need for

the FM restriction, since that cube will ensure the output stays at 1 at all times.

However, obviously this method cannot completely eliminate the FM assumption

[Hauck 1995].

Another method, proposed by Hollaar [Hollaar 1982], uses detailed knowledge of the

implementation strategy to allow new transitions to arrive earlier than FM

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 24

assumption allows. Essentially, Hollaar builds a 1-hot (introduced below) encoded

asynchronous state machine with set-reset flip-flop for each state bit. The set input is

driven when the previous state’s bit and the transition function are true. This basic

scheme is expanded beyond simple straight-line state machines, and allows parallel

execution in asynchronous state machines.

2.1.2.3 Burst-mode (BM) circuits

A

B

D

C

a−b−c−/x−y−

a+b+/x+ c+/y+

b+/x+a+c+/y+

Figure �2.3 Burst-mode specification.

Circuits designed with a bounded delay model do not necessarily have to use the

structures described previously. A different design methodology, referred to as burst

mode (BM), attempts to move even closer to synchronous design styles than

Huffman circuits. The BM design style was developed by Nowick, Yun and Dill

[Nowick 1991, Yun 1992a, and Yun 1992b] based on earlier work at HP laboratories

by Davis, Stevens and Coates [Davis 1993]. As shown in Figure �2.3, circuits are

specified via a standard state machine, where each arc is labelled by a non-empty set

of inputs (an input burst) and a set of outputs (an output burst). Similar to its use in

synchronous circuits, the assumption is that when in a given state, only the inputs

specified on one of the input bursts leaving this state can occur. These are allowed to

occur in any order, and the machine does not react until the entire input burst has

occurred. The machine then fires the specified output burst, and enters the specified

next state. New inputs are allowed only after the system has completely reacted to

the previous input burst. Thus, BM systems still require the FM assumption. Also, no

input burst can be a subset of another input burst leaving the same state.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 25

The above three kinds of circuits are all based on a timing assumption that is the

delay on all elements and wires in a system is bounded. Although the bounded delay

design methodologies have been successfully applied to complex asynchronous

systems, there are some common problems that restrict these asynchronous

methodologies. They are generally due to the fact that circuits are often not simply

single small state machines, but instead are complex systems with multiple control

state machines and datapath elements combined to implement the desired

functionality. Unfortunately, none of the methodologies discussed above address the

issue of system decomposition. Also, these methodologies cannot design datapath

elements. This is because datapath elements tend to have multiple input signals

changing in parallel, and the FM assumption would unreasonably restrict the

parallelism in datapath elements [Hauck 1995].

Even for circuits that the previous systems can handle, there can be performance

problems with these design styles. Most obviously, the FM and BM circuits

explicitly add delays to avoid certain hazard cases, decreasing performance. Also, the

modules must assume the worst-case in both input data and physical properties when

inserting delays, thus leading to worst-case behaviour. Finally, these circuits exhibit

what can be called additive skew.

2.1.2.4 Timed circuits

Generally the delays on gates and wires on a technology can be estimated reasonably

accurately. Based on this, timed circuits were proposed [Rosenblum 1985].

Timed circuits are a class of asynchronous circuits that incorporate explicit timing

information during some portion of synthesis. This timing information is typically

given as bounds on gate, wire and environment delays. Many of the asynchronous

designs done in industry today are timed. That is, their correctness is dependent on

meeting certain timing constraints. However, the techniques used for the design of

these circuits are typically ad hoc, and can result in unreliable designs [Myers

1995b].

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 26

Some systematic techniques exist for the design of timed circuits. Borriello describes

in [Borriello 1987] a method which uses timing information in the design of

transducers, interfaces between synchronous and asynchronous circuits. Lavagno in

[Lavagno 1995] develops a synthesis technique which uses methods similar to Chu

[Chu 1987] and Meng [Meng 1989] to get a complex gate implementation which is

then mapped to a gate library using synchronous technology mapping techniques. In

both of these approaches, timing analysis is applied only after synthesis to verify that

hazards do not exist. If hazards are detected, delay elements are added to avoid them,

degrading the reliability and performance of the implementation. Beerel et. al. has

shown in [Beerel 1994] that the more conservative SI model while resulting in

somewhat large circuits actually produces faster circuits compared with the timed

circuits described in [Lavagno 1995]. This surprising result can be attributed to the

fact that these timed circuits often need to have delay elements added to the critical

path to remove hazards [Myers 1995b].

However, the above four kinds of asynchronous circuits do not show off the

important advantage of asynchronous circuits, i.e. average performance. They are

still working under the worst-case performance. Unbounded asynchronous circuits,

as alternatives, can solve this problem.

Within the unbounded delay model, there are various different design styles in use,

each with its own merits and problems. Here we will introduce two kinds of

unbounded asynchronous circuits in order of increasing number of timing

assumptions. They are:

2.1.2.5 Delay insensitive (DI) circuits

Delay insensitive circuits use a delay model completely opposite to the bounded

delay model: they assume that delays in both elements and wires are unbounded. In

other words, a circuit whose operation is independent of the delays in both circuits

(gates) and wires is said to be delay insensitive.

With a DI model, unlike the bounded delay model, no matter how long a circuit waits

there is no guarantee that the input will be properly received. This forces the

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 27

recipient of a signal to inform the sender when it has received the information. This

function is performed by completion detection circuitry in the receiver. The sender in

this protocol is required to wait until it gets the completion signal before sending the

next data item.

This model also requires a new way of passing data. In synchronous circuits, the

value of a wire is assumed to be correct by a given time, and can be acted on at that

time. In DI circuits, there is no guarantee that a wire will reach its proper value at any

specific time, since some prior element may be delaying the output. However, if a

transition is sent on a wire, the receiver of that signal will eventually see that

transition, and will know that a new value has been sent.

This kind of arbitrary assumption that element and wire delays are unbounded leads

to significant complications in the signalling protocols. In fact, Martin has shown

that the range of true delay insensitive circuits that can be implemented in CMOS are

very restricted [Martin 1990a].

2.1.2.6 Speed independent (SI) and Quasi delay insensitive (QDI) circuits

SI circuits, associated with Muller’s pioneering work, make the assumption that gate

delays are unbounded and all wire delays are negligible (less than the minimum gate

delay). QDI circuits adopt the DI assumptions that both gate and wire delays are

unbounded, but augment this with isochronic forks [Martin 1989b], which are

forking wires where the difference in delays between destinations of an isochronic

fork is negligible. In practical, they are not much more different. A QDI model can

be easily changed to a SI model. The method is shown in Figure �2.4. So we only

discuss SI circuits instead of both of SI and QDI circuits in this thesis.

∆ = α ∆ = β

∆ = χ

−∆ = χ + ε

∆ = α + β + χ

∆ = ε

Gate Gate

Figure �2.4 An isochronic fork (left) and an equivalent SI circuit (right).

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 28

Speed independent (SI) circuits are one of the most broadly used asynchronous

circuit design styles. The main advantage of an SI circuit is its robustness to

parameter variations. Additionally, an SI circuit does not need any modifications to

guarantee its correctness after a technology migration.

Several kinds of SI definitions are defined based on the difference purpose, which

can be found in [Yakovlev 1996a]. Theoretically, SI circuits are defined as follows

[Beerel 1991]:

Definition 2.7 A circuit is SI if the state diagram representation of the circuit

satisfies the following three conditions:

1) The state diagram is strongly connected;

2) Each state in the diagram can be assigned a unique bit-vector;

3) If a signal transition is enabled in one state but not fired when the circuit

changes into a second state, that signal transition must still be enabled in the

second state.

Because of relaxing the timing limitation, a SI model allows more implementation

alternatives than DI circuits.

However, while the SI wire delay assumption may be valid in some technologies, it

is obviously unrealistic in many others [Hauck 1995]. In fact, in these unbounded

kinds of asynchronous circuits, it costs area and time to implement the requirement

of unbounded delay. When the datapath is large, for example, completion detection

will take a large amount of area and time.

2.1.2.7 Relative timing (RT) circuits

In order to get a better asynchronous circuit, RT circuits, introduced as an informal

asynchronous design method for aggressive asynchronous design, are an alternative

to metric timing which allows the designer to specify the effect of delays in a circuit

in terms of assertions on relative ordering of events.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 29

Metric timing requires the specification of propagation times or ranges [Myers

1995a, Young 1999]. Unfortunately metric timing analysis can explode in

complexity to the extent that the synthesis and verification of even moderately sized

timed circuits can become intractable [Alur 1994]. Metric timing typically needs

complete characterization of all device and environment delays to achieve

improvements over unbounded delay models. Complete characterization of

environment delays as well as estimation of the latencies of the circuits to be

synthesized is awkward.

RT circuits are designed to meet the relative orderings, or check that the restrictions

are already part of the delays in the system. There exists potential possibility to

improve performance, area, power and testability using RT circuits [Kondratyev

1998, Stevens 1999].

2.1.3 Signalling conventions

In traditional asynchronous circuits, the transfer of information across a channel is

negotiated between the sender and receiver using a signalling protocol. Every

transfer features a request (req) action where the initiator starts a transfer, and an

acknowledgement (ack) action allowing the target to respond. These may occur on

dedicated signalling wires, or may be implicit in the data encoding used (as described

below), but in either case, one event indicates data validity, and the other signals its

acceptance and the readiness of the receiver to accept further data.

There are two kinds of channels. One is the “push channel” , where information flows

in the same direction as the request signal. The other one is the “pull channel” , where

information flows in the same direction as the acknowledgement signal. These two

types of channel are illustrated in Figure �2.5, in which (a) is a push channel and (b) is

a pull channel.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 30

initiator

sender

target

receiver

initiator target

req

data

ack

req

data

ack

(a) (b)

receiver sender

Figure �2.5 Channel signalling protocols.

The request and acknowledge may be passed using one of the two protocols

described below; either a 2-phase event signalling protocol (a non return to zero

scheme) or a 4-phase level signalling protocol (a return to zero scheme).

2.1.3.1 2-phase (transition) signalling

req

ack

data

req

ack

data

1st 2nd 1st 2nd(a) (b)

Figure �2.6 (a) 2-phase push protocol and (b) 2-phase pull protocol.

In the 2-phase signalling scheme, the level of the signal is unimportant. A transition

carries information with rising edges equivalent to falling edges. Each is interpreted

as a signalling event. A push channel using a 2-phase signalling protocol thus passes

data using a request signal transition, and acknowledges its receipt with an

acknowledgement signal transition. Figure �2.6 illustrates the push and pull data

validity schemes for the 2-phase signalling protocol respectively.

Proponents of the 2-phase design style try to use the lack of a return to zero phase to

achieve higher performance and lower power circuits.

2.1.3.2 4-phase (level) signalling

The 4-phase signalling protocol uses the level of the signalling wires to indicate the

validity of data and its acceptance by the receiver. When this signalling scheme is

used to pass the request and acknowledge timing information on a channel, a return

to zero phase is necessary so that the channel signalling system ends up in the same

state after a transfer as it was before the transfer. This scheme thus uses twice as

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 31

many signalling edges per transfer than its 2-phase counterpart. Push and pull

variants of the 4-phase signalling protocol are shown in Figure �2.7.

req

ack

data

req

ack

data

1st 2nd 1st 2nd(a) (b)

Figure �2.7 a. 4-phase push protocol and b. 4-phase pull protocol.

4-phase control circuits are often simpler than those of the equivalent 2-phase system

because the signalling lines can be used to drive level-controlled latches and the like

directly.

Note: conversion between the different protocols has been well documented in [Liu

1997], with many of the latch controllers documented for converting between the

different 2-phase and 4-phase signalling protocols.

2.1.4 Data representation

A further dimension in asynchronous design is the choice of encoding scheme used

for data representation where the designer must choose between a single-rail, dual-

rail, 1-hot or other more complex n-of-m scheme. They are discussed below.

2.1.4.1 Single-rail encoding

Single-rail encoding [Peeters 1996] uses one wire for each bit of information. The

voltage level of the signal represents either a logic 1 or a logic 0 (typically Vdd and

Vss respectively for CMOS technology). This encoding is the same as that

conventionally used in synchronous designs. Timing information is passed on

separate request and acknowledgement lines which allow the sender to indicate the

availability of data and the receiver to indicate its readiness to accept new data. This

scheme is also known as the bundled-data approach. All single-rail encoding

schemes contain inherent timing assumptions in that the delay in the single line

indicating data readiness must be no less than the delay in the corresponding

datapath.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 32

Single-rail design is popular, mainly because its area requirements are similar to

those of synchronous design, as is the construction of any arithmetic components

using this scheme.

2.1.4.2 Dual-rail encoding

Table �2.1 Dual-rail encoding of ternary values

Logic value d.t d.f

Spacer “E” 0 0

Valid “0” 0 1

Valid “1” 1 0

Not used 1 1

Dual-rail circuits [Verhoeff 1995] use two wires (d.t and d.f) to represent each bit of

information. Table �2.1 shows the dual-rail encoding. Here the value (d.t=1 and d.f

=1) is not used. Each transfer will involve activity on only one of the two wires for

each bit i.e. only one of d.t or d.f can be 1, and a dual-rail circuit thus uses 2n signals

to represent n bits of information. Timing information is also implicit in the code, in

that it is possible to determine when the entire data word is valid or withdrawn by

detecting a level (for 4-phase signalling) or an event (for 2-phase signalling) on one

of the two rails for every bit in the word. A separate signalling wire to convey data

readiness is thus not necessary.

4-phase dual-rail data encoding is popular for the DI/SI design style but, as with all

dual-rail techniques, it carries a significant area overhead in both the excess wiring

and the large fan-in networks that it requires to detect an event on each pair of wires

to determine when the word is complete and the next stage of processing can begin.

As an illustration of this point, Figure �2.8 shows a circuit fragment suitable for

detecting the presence of a valid word on a 4-bit datapath. In this circuit, a Muller C

element is used.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 33

data valid

data bit 0

data bit 2

data bit 3

data bit 1

C

Figure �2.8 4-bit dual-rail completion detection logic.

2.1.4.3 1-hot (one-hot) encoding

In 1-hot encodings, each state iq is represented by a vector y with iy = 1 and with

jy = 0 for i ≠ j. A state transition from iq to jq is accomplished by first setting jy

and then resetting iy . Although the process requires two transitions, it simplifies the

associated logic. The final requirement is that the next external input transition

cannot occur until the entire circuit settles in a stable state. For a 1-hot encoding, this

means that a new input must be delayed long enough for three event propagations

through the combinational logic and two through the delay elements. With a 1-hot

encoding one can implement each state variable with the same type of module; state

transitions are then realized by appropriate connections between modules.

2.1.4.4 n-of-m encoding

Dual-rail encoding and 1-hot encoding are examples of an n-of-m encoding scheme

where n=1. Coded data systems using an n-of-m code where m > n operate correctly

regardless of the distribution of delay in the wires or gates, and are thus said to be

delay insensitive [Bainbridge 2000].

More complex codes exist (where n > 1) which use actions on more than one wire in

a group to indicate one of a set of possible codes. These offer better utilisation of the

available wires (for example a 2-of-7 code can transmit 4-bits of information over 7

wires in a delay insensitive manner), but result in large arithmetic circuits and

conversion between the coded form and a single-rail scheme is more expensive than

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 34

for the 1-of-m codes. An example can be found in [Yakovlev 1995], in which a 3-of-

6 circuit is used to design an asynchronous pipeline token ring interface.

2.1.5 Basic asynchronous components

Asynchronous circuits have been studied for more than fifty years. Especially in the

last two decades, because of the problems existing in synchronous circuits, this area

has been focused on by a large number of researchers. So far, many very useful

components have been proposed, such as the C-element, D-element, Mutex and so

on. In this sub-section, we will give a brief introduction to these useful components.

2.1.5.1 Muller C-element

The Muller C-element [Muller 1959] which is shown in Figure �2.9 (often known as

C-element or a C-gate) is commonly encountered in asynchronous VLSI design.

y

C OR

no change

no change

11

weaker

a

b

1

C
y

1 0

a

b
y

1

a

b

a b y

0 0 0

0

Figure �2.9 The Muller C-element: possible implementation, symbol and function definition.

The Muller C-element is a state-holding element much like an asynchronous set-reset

latch. When both inputs are 0 the output is set to 0, and when both inputs are 1 the

output is set to 1. For other input combinations the output does not change.

Consequently, an observer seeing the output change from 0 to 1 may conclude that

both inputs are now at 1; and similarly, an observer seeing the output change from 1

to 0 may conclude that both inputs are now at 0.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 35

2.1.5.2 D-element

In a synchronous circuit the role of the clock is to define points in time where signals

are stable and valid. In between clock-ticks, signals may exhibits hazards and may

make multiple transitions as the combinational circuits stabilize. This does not matter

from a functional point of view. In asynchronous circuits the situation is different.

The absence of a clock means that, in many circumstances, signals are required to be

valid all the time. This is because every signal transition has a meaning and,

consequently, hazards and races must be avoided.

Handshake circuits are an alternative which can be used to implement hazard-free

and race-free asynchronous circuits.

The D-element is a very popular handshake interface circuit, which has been

independently proposed in [Varshavsky 1990] and [Martin 1990c]. There are two

handshake protocols in a D-element. One is a master handshake and the other is a

slave handshake. When the master one receives a request signal from environment,

the slave one should issue a request signal. After the slave handshake receives an

acknowledgement signal and the slave handshake is finished, the master one gives an

acknowledgement signal to the environment. A possible implementation and the

STG specification of a D-element are shown in Figure �2.10.

r2

a2a1

r1
r1− a1+a1−

r1+ r2+ a2+ r2−

a2−

Figure �2.10 D-element possible implementation and its STG specification.

This implementation consists of four two-input NOR gates and one inverter.

2.1.5.3 Mutual exclusion elements, Mutex/Arbiter

Implementing fixed delays on the metastability characteristics of the hardware

technology is not an efficient way of doing things as the delays must be present

whether metastability (which is a very low probability event) has happened or not. In

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 36

comparison, it is possible to make use of self-timed, speed independent circuits so

that waiting/delay is only invoked when metastability occurs. This would provide, on

the average, a much faster performance [Kinniment 1998].

The capability of finding out whether metastability, if should occur, has settled, is of

utmost importance in such a self-timed design. This is easy to obtain by using

Mutexes with metastability detectors (sometimes known as metastability resolvers)

[Seitz 1980]. One simple circuit which may serve this purpose is shown in Figure

�2.11.

req1

gr1

gr2

req2

Figure �2.11 The possible implementation of Mutexes.

For the circuit shown in Figure �2.11, the intermediate outputs of the flip-flop can

indeed become metastable if the inputs arrive at approximately the same time. The

output of the metastability resolver, however, will not change until this metastability

has settled. If properly reset and arranged with “spacer” states an arbiter constructed

from this or based on a similar concept can indeed prevent metastability from passing

on to subsequent circuits.

2.1.5.4 David Cells (DCs)

The simplest DC, which was proposed in [David 1977], form one kind of distributed

circuit. Some extension work has been proposed [Varshavsky 1996, Yakovlev 1998].

However, it is not a popular type of asynchronous circuit and they are not enough to

be used to construct self-timed circuits. In this thesis, we further extend DCs and

give a formal definition as they are central to our synthesis method and asynchronous

implementations.

DCs are defined as follows:

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 37

Definition 2.8 David Cells (DCs) are a non empty finite set, where ∀ idc ∈ DCs,

idc is a tuple idc = <DCname, Function of SET, Function of RESET, Initial

State> where

� � DCname is the name of the idc ;

� � Function of SET is the “set” function of the idc . When the function is

true, the idc will be set. That means a Token is present;

� � Function of RESET is the “ reset” function of the idc . When the function

is true, the idc will be reset. That means a Token is absent;

� � Initial State represents the presence and absence of a Token in the idc

initially. If the initial value is logic high, that means the Token is held in the

idc . Otherwise no Token is in the idc .

In a DC, there are a group of set signals (s1, s2, ······, sn), a group of reset signals (r1,

r2, ······, rm), a forward signal (fw) and a backward signal (bk). A schematic

representation of DCs is shown in Figure �2.12 (a).

sn

s1
q qb

DC

r

10

fw

bk

s

re
se

t

se
t

bk

rm

r1

fw

DC

(b)

(a)

Figure �2.12 (a) Schematic of a DC and (b) The simplest DC.

In each DC, there exists a pair of complementary stable states, which can be used to

represent the presence and absence of a token in a corresponding 1-safe PN place. In

order to explain a DC’s function clearly, the simplest DC shown in Figure �2.12 (b) is

employed as an example. One of these states, q=0 and qb=1, represents the state of

no token in the place. The opposite state, q=1 and qb=0, represents a token in the

place. This simplest DC is a negative active component. So s, r, bk and fw signals are

normally at 1. The operation of a DC in this context is as follows: starting from no

token in the DC, when the set signal arrives (s=0), q will be set to 1 and owing to r

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 38

remaining at 1, qb will be 0. This means that the token has been transferred to this

DC. However, any events (transitions) controlled by this DC cannot be fired owing

to tokens having not been removed from preceding DCs according to PN rules. After

the qb becomes 0, any preceding DCs will be reset and then withdraw the set signal

(s=1). Since q=1 and the set signal is withdrawn, the forward signal fw will become

active (fw=0) to cause the firing of events controlled by this DC, thereby setting

subsequent DCs to start propagating the token. This DC waits for a reset signal from

subsequent DCs to reset itself back into the zero token state, which will allow events

controlled by subsequent DCs to start firing. This way a DC simulates a 1-safe PN

place perfectly.

For an event control system specified with a 1-safe PN, it is possible to build a circuit

satisfying the specification entirely out of DCs in this manner. The input and output

signals of the DCs can then be used to connect to the events being controlled (i.e. the

datapath).

DCi−1 DCi

Si−1 Si Si+1

i−1S +iS −

i−1S −

i

q2 + q2b − q1b + q1 −

set Token in DC reset Token in DC i−1 (b)

q1 q1b q2 q3q2b q3b
1 0 0 1 0 1

i−2 S i−1 iSS

(a)

(c)

Figure �2.13 (a) Linear PN fragment (b) Its implementation using DCs and (c) Signals in two

adjacent DCs.

A circuit built using simple DCs that implements the propagation of tokens in the

linear PN fragment shown in Figure �2.13 (a) is depicted in Figure �2.13 (b). Figure

�2.13 (c) shows the signal transitions of how two adjacent DCs interact. More details

of this example can be found in [Varshavsky 1996].

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 39

The term metastable operation refers to the prolonged transition time of a bistable

device that may result if the input that causes the bistable to change state is marginal.

The marginal input leaves the bistable in a “metastable state” or “metastable region”

that is between the two stable states, where theoretically it may remain for an

indefinite time before resolving to one of the stable states [Marino 1981]

Metastable operation is a fundamental phenomenon of sequential networks that

process asynchronous inputs [Kinniment 1972, Kinniment 1976].

Metastable operation has shown itself to be very important for both synchronous and

asynchronous circuit designs recently, especially asynchronous circuit designs. With

continuing advances in digital technology and increasing complexity of systems with

large-scale parallelism, especially those which integrate one billion transistors on a

chip, there are likely to be numerous high frequency asynchronous interactions,

which may result in frequent failures. As a result, some state register flip-flops may

respond to an old input value and others to a new value, producing a state transition

that is correct for neither value.

Theoretically, metastable operation can last an unlimited time. In practice, however,

it should be settled down in a limited amount of time [Kinniment 1999].

Much more difference exists between synchronous and asynchronous circuit designs

than we introduced above. Because of the absence of a global clock, asynchronous

circuits must operate without hazards. This is because in an asynchronous circuit,

2.2 Metastability

2.3 Asynchronous circuit design methodologies

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 40

there is no way to distinguish a spurious spike from a sequence of signal changes.

Any spike may be registered by a gate and cause the circuit to malfunction.

In order to ensure that an implementation is correct, some formal methods are

proposed.

2.3.1 Formal methods

2.3.1.1 State graph based models

In the state graph based methods the specification is given in term of a finite

automaton describing all possible states of the system [Cortadella 2002]. If the

system has many events that can happen concurrently, then the total number of states

in the system may be prohibitively large.

The problem with the size of the specification comes from the fact that any set of

concurrent events produces an exponential number of intermediate states, although

the state reached at the end is always the same. The use of the burst mode FSM

specifications allows a reduction in the size of the specification. In effect, a burst of

input and/or output signals captures all interleaving which would be possible had

these signals been allowed to change freely. The penalty paid for such a reduction is

the requirement for the difference between the moments of signal changes in one

burst to be negligible.

The state based models offer a direct route for obtaining the circuit implementations.

The states are encoded using binary codes and the truth tables are obtained in a

straightforward manner [Semenov 1997a].

2.3.1.2 Trace based models

The trace theory was originally suggested for the verification of SI circuits by Dill

[Dill 1988]. Ebergen [Ebergen 1989] suggested an approach for the synthesis of DI

circuits based on the trace theory. This approach uses a top-down design

methodology. A future circuit is specified using the trace theory description of its

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 41

input/output behaviour. The specification is verified for delay insensitivity.

Alternatively the specification can be constructed using a restricted automatically

using syntax-directed translation and a predefined table of the implementation

primitives.

Josephs [Josephs 1990] takes a similar approach suggesting an algebraic solution to

the synthesis of asynchronous circuits. Using a special DI algebra the specification is

transformed to the level of the implementation primitives.

The trace based model provides a powerful formal semantical foundation to the

automated synthesis of asynchronous circuits. The circuits are hazard free by

construction. This method, however, is more applicable to the verification of the

already designed circuits, i.e. the designer must take a trial and error approach if he

wishes to implement a particular specification. But the problem is that this model

does not have provision for the verification of such important properties as a

deadlock, i.e. a state from which no further advancement of the system can be made.

In addition, implementations produced by a syntax-driven synthesis process are often

far from optimal.

2.3.1.3 Event based models

The use of event-based models in asynchronous circuit design was prompted by the

difficulties with the state space size for complex behaviours. Instead of the complete

enumeration of all states of the system, an event-based formal model specifies events

and relations between them.

A suitable formal model for this was found in the form of Petri nets (PNs) [Peterson

1981]. In addition, Signal Transition Graphs (STGs) were suggested independently

in [Rosenblum 1985, Chu 1987] for the specification, verification and synthesis of

self-timed circuits. An STG is a PN where each transition is labelled with a directed

signal transition (up or down). We will introduce them in the following sub-sections.

Apart from them, a model closely related to the STG model, called Change Diagrams

(CDs), was suggested in [Kishinevsky 1993]. CDs have two distinctive features.

Firstly, they have provision for non-repeatable events using disengagable arcs.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 42

Secondly, they allow OR-causality, i.e. they are able to model an event whose

happening is induced by any of its causes. A set of algorithms for the verification and

automated synthesis of SI circuits was suggested in [Kishinevsky 1993].

Based on the above formal methods, hazard-free asynchronous circuits can be

obtained, although all of them exists some problems, such as explored states and so

on.

From the design point of view, specifications are an important aspect in formal

design methods. So far, a large number of languages are proposed for asynchronous

circuit designs from low level (signal level) to high level.

In this thesis we only introduce some specification languages concerned for

modelling and synthesis of asynchronous circuits.

2.3.2 Specification languages

2.3.2.1 Petri Nets (PNs) [Peterson 1981]

PNs provide a simple graphical description of the system with an easy representation

of concurrent events or a choice between alternative events. In addition, the set of

researchable states can be obtained from a PN using a straightforward algorithm.

PNs do not make any assumptions about the time at which an event occurs. This

makes them attractive for asynchronous circuit design. Patil [Patil 1974] was among

the first who suggested to use no syntax-directed approach for the translation of PN

specifications of asynchronous systems into implementations.

The following PN definitions are useful to understand PNs:

Definition 2.9 A Petri net (PN) is a tuple N = <P, T, F> where

P is a set of places, and

T is a set of transitions such that P
�

T = φ , and

F is a flow relation between places and transitions, F ⊆ P × T � T × P.

Both P and T are assumed to be finite unless stated otherwise.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 43

A PN is represented in the form of a graph with two types of vertices: circles, which

correspond to places, and bars (or boxes), which correspond to transitions. The flow

relation F is represented by directed edges (arcs) of the graph. A bi-directional arc is

used sometimes as shorthand for a pair of arcs going in the opposite directions

between a place and a transition.

Each element ∈x P � T of a PN N has a set of input elements (which are connected

with x by the arcs going to x) and a set of output elements (which are connected with

x by the arcs originating from x). These sets of PN are called the pre-set and post-set

of x respectively and are defined as follows:

Definition 2.10 The set x• and •x are called the pre-set and post-set of ∈x

P � T respectively iff:

x• = { ∈y P � T | (y , x) ∈F}

•x = { ∈y P � T | (x , y) ∈F}

Structural properties of PNs define structural classes of PNs. Some useful classes are

identified below:

Definition 2.11 A free choice PN (FCPN) is a PN N such that for any ip ∈ P

with 2|| ≥•ip the following is true: 1||: =••∈∀ iii tpt .

Definition 2.12 An extended free choice PN (EFCPN) is a PN N such that for

any ip ∈ P the following is true: jiiji ttptt •=••∈∀ :, .

A dynamic system is usually described by its structure and some initial state from

which the system progresses. In terms of PNs this is defined as a marked PN.

Definition 2.13 A marked PN is a tuple N = <P, T, F, M 0> where M 0 is an

initial marking of the PN N.

In this thesis, any PN will be treated as a marked PN unless stated otherwise.

Transitions of a PN fire from its initial marking M 0 and firing may continue while

there exists at least one enabled transition. A sequence of transitions such that: σ =

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 44

M1 → 1t M 2 → 2t M 3 … is called a firing sequence from M1 . Obviously a

transition it may be included several times in one firing sequence. Given a marking

M1and a sequence σ , it is easy to know (restore) all visited markings by firing the

transitions in the order of transitions inσ .

Definition 2.14 A marking M m is said to be reachable in a PN N from M1 iff

there exists at least one firing sequence σ = M1 → 1t M 2 → 2t

M 3 … → −1mt M m . This is also denoted as M1 →σ M m .

Definition 2.15 Two transitions it and jt of a PN N are said to be concurrent

iff there exists a reachable marking M at which both transitions are enabled

and M contains the multiset it• and jt• ; i.e. Mtt ji ⊆•+• .

Definition 2.16 Transition it of a PN N is said to be in dynamic conflict with

another transition jt at a marking M iff both transitions are enable at M and

the firing of it disables jt .

Definition 2.17 A labelled PN (LPN) is a tuple N L = <N, A, L> where

N is a marked PN,

A is a set of actions, and

L: T → A is a labelling function which associates each transition of the PN N

with some action from A.

Definition 2.18 A deadlock is a marking at which no transition is enabled.

Obviously a deadlock represents a state of the system from which no further progress

can be made. Presence of deadlocks is regarded as an error in a system which

operates in cycles. A deadlock can be found while traversing the RG (researchability

graph) as a node with no outgoing arcs.

Another notion, closely related to the correct functioning of the system is

boundedness.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 45

Definition 2.19 A PN is said to be k-bounded iff the number of tokens in any

place at any reachable marking does not exceed k.

When k = 1 (1-bounded), the net is called a 1-safe PNs. In this thesis, all PNs are 1-

safe unless otherwise stated.

Definition 2.20 A transition ∈t T of a PN N is called live at a marking M if

there exists a firing sequence σ : M →σ … such that σ∈t .

Definition 2.21 A PN is called strongly live if every transition from T is live at

every reachable marking.

A PN is called weakly live if every transition from T is live at M 0 .

A transition which is never live usually indicates that some operation of the designed

system can never be performed. A live action of an LPN is defined in a similar way.

Another important notion is persistency, i.e. the ability of transitions and actions to

stay enabled while other transitions are firing.

Definition 2.22 A transition it of a PN N is said to be persistent with respect

to another transition jt if jt is not in dynamic conflict with it at any

reachable marking M enabling both it and jt .

Definition 2.23 An action ia of an LPN N is said to be persistent with respect

to another action ja if ja is not in dynamic conflict with ia at any reachable

marking M enabling both actions.

2.3.2.2 Signal Transition Graphs (STGs) [Rosenblum 1985, Chu 1985, and Chu

1987]

An STG specification serves as a low-level description of the future circuit’s

behaviour. They became popular because of their close relationship to PNs, which

provides a powerful theoretical background for the specification and verification of

asynchronous circuits. In addition, once the binary code assignment is completed the

implementation is generated by deriving the truth tables. So an asynchronous circuit

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 46

can be synthesised from its STG specification if it satisfies certain criteria of

implementability.

In order to understand STG very well, the following definitions are introduced:

Definition 2.24 A Signal Transition Graph (STG) is a tuple G = <N, A, 0v ,

Λ > where

N is a marked PN,

A is a set of signals,

0v is an initial state of the STG, which is a binary vector of dimension |A|: 0v

∈ { 0, 1} ||A ,

Λ is a labelling function which labels every transition of N with a signal

transition a+ or a- where a ∈ A.

It can be observed from the definition that STGs are a particular case of LPNs where

the set of actions is restricted to signal transitions, i.e. a+ (a-) represents the change

of the value of the signal a from logical 0 to logic 1 (from 1 to 0). The set signal

transitions on A is defined as *A = A × { +, -} so that *a ∈ { a+, a-} and |*a| denotes

the signal itself, i.e. |*a| = a. There also exists a less strict definition of the STG

which implies that some of the transitions of the STG can be dummy transitions, i.e.

they do not change the values of any signal in the STG.

STGs were introduced as a formal model for the specification of asynchronous

circuits. Each transition is associated with some signal transition of the circuit or its

environment. Therefore, the set of signals of an STG is usually divided into two

subsets: a set of input signals and a set of output signals. Obviously, not every

behaviour can be regarded as a correct one for circuit implementation. The notion of

correctness of an STG is defined on the firing sequences that it can generate. First, a

valid firing sequence is defined.

Definition 2.25 A firing sequence σ : M 0 →σ M is valid iff for every signal

a: σ∈∃t :)(tΛ = *a the following is true:

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 47

the next possible change of signal a after a+ (a-) can only be a- (a+),

the first change of signal a is consistent with the initial state of the STG, i.e. if

the value of a is 0 (1) in the initial state, then a+ (a-) is the first change of a in

any firing sequence.

The first condition is known as switchover correctness [Kishinevsky 1993]. The

second condition is known as stability of the initial marking, also due to

[Kishinevsky 1993].

Definition 2.26 An STG is called valid (correct) iff the underlying PN is finite,

bounded and every feasible sequence in it is valid.

Definition 2.27 An STG is invalid if there exist two concurrent transitions

labelled with signal transitions of one signal a.

The above property proves to be very important later in the analysis of STGs using

the PN unfolding method. Its correctness follows from the fact that concurrent

transitions are enabled together in at least one reachable marking. Hence, further

advancement of the system from this marking will violate at least one of the

conditions of a valid sequence.

STGs are a particular subclass of LPNs. Thus they have the same properties as LPNs

defined as before. An additional important property of STGs, related to the

correctness of the circuit functioning, is output signal persistency which is defined

below.

Definition 2.28 A signal ia of an STG G is said to be persistent with respect to

another signal ja if ja is not in dynamic conflict with ia at any reachable

marking M which enables transitions labelled with both actions.

Since the set of signals is divided into sets of input and output signals, the signal

persistency can be defined with respect to a set of signals.

Definition 2.29 An STG G is called persistent with respect to a set of signals

A’ ⊆ A if every signal ia ∈ A’ is persistent with respect to any other signal

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 48

ja ∈ A at any reachable marking M which enables a transition labelled with

ia .

An STG where A’ = A is simply called a persistent STG. The output signal

persistency has an important practical meaning.

Definition 2.30 An STG is called output signal persistent if it is persistent with

respect to its output signals.

Output signal persistency is closely related to the correct operation of the circuit. It

guarantees that the outputs of the circuit cannot change non-deterministically. Thus,

for the observer in the environment, the circuit always reacts deterministically to any

input stimuli.

Special note: in all figures of this thesis, input signals (events) at low level (signal

level) are identified by underscored letters in STG and PN format specifications.

2.3.2.3 Finite state machine (FSM)

A finite state machine (FSM) is the most popular design model in computer science

and engineering. The model consists of a set of states, a set of transitions between

states, and a set of actions associated with either states, transitions or both states and

transitions. More formally, an FSM is defined as follows:

Definition 2.31 An FSM is a tuple <S, I, O, f: S × I →S, h: S × I →O>.

where

S = { is } is a set of states,

I = { ji } is a set of input values, and

O = { ko } is a set of output values;

f and h are the next state and output function that map a cross product of S

and I into S and O respectively.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 49

The basic FSM model can be limited or extended to represent different target

architectures. For example, this model provides formal underpinning for the Burst-

Mode synthesis methods [Nowick 1993].

2.3.2.4 High-level specification languages

High-level description languages specify the system in a similar way to the

conventional programming languages. Among the most well-known are Martin’s

[Martin 1990b] and Brunvand’s [Brunvand 1989, Brunvand 1991] compilation

systems and van Berkel’s Tangram language [Berkel 1991, Berkel 1992]. Most of

these methods are based on the theory of Communicating Sequential Processes

[Hoare 1985] using a channel as the primary communication mechanism between

subsystems.

Martin’s compilation system used a CSP-like hardware description language whereas

van Berkel suggested a completely new language. The approach is, however, similar.

The system is specified as a composition of the communicating processes. Once the

system is specified, each process is decomposed into simpler processes. At the low

level, the communication and synchronisation commands are expanded into a four-

phase handshake protocol. The final circuit is obtained after re-shuffling of the

transitions and the insertion of state signals to eliminate any ambiguities.

Brunvand’s approach is based on a subset of Occam. Similar to the techniques

described above, the system is specified as a program. Each statement has a

corresponding hardware primitive. The program is directly translated into a set of

interconnected primitives. The resulting circuit is often very poor with respect to size

and performance. Similar to programming language compilers, this approach uses

optimisation to increase the performance and the area results. The optimisation,

called peephole optimisation, is based on detecting those parts of the circuit which

can be safely substituted by an already optimised fragment with an equivalent

behaviour.

Recently, most researchers have focussed on commercial design languages, such as

VHDL and Verilog. Because they are very popular, we introduce them only briefly.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 50

2.3.2.4.1 Commercial design languages (VHDL/Verilog)

VHDL (VHSIC Hardware Description Language) and Verilog are two very popular

commercial hardware design languages, especially in the synchronous circuit design

area.

They have the following characteristics:

• Structural description of the design (netlist, schematic and HDL);

• Behavioural model for each device in the design;

• Stimulus for the design (test vectors);

• Design configuration information (specify which version of each device

model to use during simulation).

Generally, they provide a wide range of modelling methods from the architecture

level to the gate level. In a typical design environment, they are used in two distinct

fashions:

• High level behaviour specification. Use of abstract data types for signals.

• Low level structure specification. Use of standard components supplied by a

library, modelling logic level data type for signals.

VHDL/Verilog applications on asynchronous circuit designs can be found in [Blunno

2000b] and [Eles 1998].

2.3.2.4.2 Others

Apart from the above high-level languages being used in asynchronous circuit

designs, there exist others, such as Tangram, developed by Philips Semiconductors

[Berkel 1991], Balsa, developed by Manchester [Sparsø 2001], and so on. They are

beyond the scope of this thesis.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 51

The term “Real Time Network” is used for a form of real time system description in

which active processing elements (activities) are interconnected through passive

inter-communication data areas. The original form of real time network was

proposed in [Phillips 1967]. Since then, it has been investigated by many researchers,

such as Simpson [Simpson 1979, Simpson 1986] and Jackson [Jackson 1977].

An activity in a real time network is potentially continuously active and can be

regarded as running in an endless loop to perform its dedicated system function. This

model of activity interaction is also used to express the relationship between a

network system and the environment in which it operates. Within the system

boundary it is usual for the activities to be regarded as software processes scheduled

by multi-tasking executives.

Although the real time network is primarily a software concept, it can also be

extended to cater for processes and data which are to be directly implemented in

hardware. The only qualification here is that the shared data ideas for interaction

between processes should be preserved. The ability to include specialised hardware

within the general scheme is an important possibility, allowing mixed

hardware/software systems to be developed within a common methodological and

notational framework.

These principles are particularly relevant to the field of real time, embedded,

distributed and multi-processor systems. Generally such systems will react

simultaneously to many uncorrelated and unsynchronised inputs. Furthermore they

will generate many outputs in parallel. Implementation will often involve the use of

multi processor configurations. Furthermore, design in terms of multiple processes

may constitute the most natural form of software partitioning. Real time networks are

ideally suited to this purpose.

2.4 Asynchronous communication mechanism (ACM)

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 52

Real time networks are characterised by the explicit recognition of shared data for

communication and interaction between processes. The accurate and timely transfer

of data between concurrent processes is of crucial importance in the exploitation of

parallel architectures within distributed real time data processing systems.

Techniques for solving this problem generally rely on mutual exclusion principles

[Raynal 1986] to control access to shared communication resources.

The implementation of shared data objects is a very important issue in

multiprocessor real time systems because the commonly used lock-based exclusion

mechanism not only reduces parallelism but also introduces priority inversion in

which a task has to wait for the lock on a shared data object to be released by another

task with lower priority. When data sharing is between processors, a task may also be

blocked waiting for tasks running on different processors. Such waiting and blocking

cause problems in both the scheduler and the schedulability of the task set [Chen

1998b].

Instead of locking shared data, loops of “ read-and-check” operations have been

introduced to the reader to achieve non-interfered reading [Kopetz 1993, Lamport

1977]. Alternatively, the writer is made to write multiple copies of the shared data so

that the reader can obtain an uncorrupted version of the shared data [Peterson 1983,

Vidyasankar 1990]. These approaches are lock-free or non-blocking because no

locking mechanism is involved and the shared data is accessible at any time.

However, repeated operations of “ read-and-check” imposes an increase in reader’s

response time while writing multiple buffer slots increases writer’s execution time

and space requirement. A trade-off between such time and space overheads in order

to satisfy application requirements is thus necessary. For real time applications, lock-

free data sharing mechanisms are suitable and beneficial only if the timing behaviour

of the tasks is still predictable and analyzable. The timing overheads of “ read-and-

check” loops therefore should be avoided or at least restricted to a minimum.

To solve the above problems, Simpson has systematically studied these kinds of

mechanisms. He proposed a loop-free mechanism in the sense that no loop of read-

and-check operations is involved and presented his approach using a four-slot fully

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 53

asynchronous data sharing mechanism with which a single writer communicates with

a single reader [Simpson 1990]. The mechanisms can completely eliminate timing

interference. A typical example of the mechanisms is Simpson’s “ four-slot fully

asynchronous communication mechanism (ACM)” [Simpson 1990].

The important properties of this kind of mechanism are:

• Asynchrony: neither process may affect the timing of the other as a direct

result of its communications;

• Coherence: data must always be passed as a coherent set, i.e. interleaved

access to any data record by any process is not permitted;

• Freshness: the latest complete data record produced by a process must be

made available for use by the other processes.

An ACM is a scheme which manages the transfer of data between two processes not

necessarily synchronised for the purpose of data transfer. It is assumed that the data

being passed consists of a stream of individual items of a given type. It is also

assumed that the processes in question are single thread cycles, one providing and

the other making use of a single item of data during each cycle.

In order to study the mechanisms clearly, one simple and elegant classification

system for ACMs, developed by Simpson, was based on the number of items of data

in the ACM and its modification by the reader and writer accesses [Simpson 1994].

In this classification, the basic data state is the item of data in the ACM, which the

writer and reader accesses modify by a system of “destructive” and “non-destructive”

reading and writing. The scheme of this classification is shown in Table �2.2.

Table �2.2 Classification of ACMs

 Destructive Reading Non Destructive Reading

Destructive Writing Signal Pool

Non Destructive Writing Channel Constant

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 54

In Table �2.2, “Pool” , “Signal” etc. are the names given by Simpson for the protocols

that demonstrate the corresponding writing and reading rules. They are defined as

follows [Simpson 1994]:

Definition 2.32 A Pool is characterised by non destructive reading and

destructive writing. It allows reference data to be passed from one process to

another. The reference data (a single coherent record in conventional

programming terms) is retained within the Pool where it can be consulted at

any time by the reader and refreshed at any time by the writer. Special

techniques can be used to maintain the coherence of the data whilst ensuring

that there is no temporal interference between writer and reader when the

Pool is implemented in private or shared memory. An initial (legal) value

should be loaded in a Pool at build time to cater for the situation where the

Pool is first accessed by the reader before any value has been inserted by the

writer.

Definition 2.33 A Signal is characterised by destructive reading and

destructive writing. It allows event data to be passed from one process to

another. Event data (a single coherent record) can be overwritten at any time

by the writer, but the data can only be actioned once by the reader. It follows

that some data may not be actioned at all if the reader is too slow or if the

writer “changes its mind” before the event data has been read. A Signal

should be initialised to empty at build time. The Signal is an important

communication mechanism in real time systems, as it avoids back

propagation of temporal interaction effects (i.e. the actions (or inaction) of the

reader have no direct effect on the timing of the writer).

Definition 2.34 A Channel is characterised by destructive reading and non

destructive writing. It allows message data to be passed from one process to

another. Whereas the Pool and the Signal notionally hold a single coherent

record value (from the functional viewpoint), the Channel has a capacity and

can be used to retain a number of values between processes. Thus complete

characterisation must include the capacity of the Channel. It is now possible

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 55

that, at the time of a destructive read, several items will be available for

removal. Thus an additional constraint is needed which defines that items are

removed from a Channel in the order in which they are inserted. A Channel

should be initialised to empty at build time.

Definition 2.35 A Constant can be regarded as configuration data. It

essentially provides a “write once” capability. Generally the value of a

Constant is established (written) at build time, and we would not expect to

see any real time networks which show a process writing to a Constant; hence

the use of a restricted form of symbol which indicates no means of

connection for a writer.

In the above definitions, the destructive and non destructive properties of reading and

writing are mentioned. The meanings of them are as follows:

• Destructive Writing: this means that the writing process for a Pool can

never be held up. Note here that although the data in a Pool is always

destroyed by a writer, this is not generally the case for a Signal where the

data will usually have already been destroyed by a read. The point is that the

writer behaves as if it were destroying the data, and therefore cannot be held

up.

• Non Destructive Writing: this means that the writing process for a Channel

or Constant may be held up if there is no space to put the data. Note here that

an attempt to write (notionally) to a Constant will always stop the writer

(forever) as there is no mechanism for creating space in the (notional) route.

• Destructive Reading: this means that the reading process for a Signal or

Channel may be held up if there is no data in the route waiting to be read.

• Non Destructive Reading: this means that the reading process for a Pool or

Constant can never be held up.

One of the most important real time properties for ACMs is the amount of

blocking/waiting the data state of the ACM demands of either accessing process. The

data state cannot hold up the writer in a destructive writing scheme and the reader in

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 56

a non-destructive reading scheme. The writer must wait until the ACM is empty if

writing is non-destructive, and the reader must wait until the ACM is full if reading

is destructive.

Synthesis is usually defined as the translation of a behaviour representation of a

design into a structural design description, similar to the compilation of

programming languages into an assembly language. Each component in the structural

description is in turn defined by its own behavioural description. The component

structure can be obtained through synthesis at a lower abstraction level. Synthesis,

sometimes called design refinement, adds an additional level of detail that provides

information needed for the next level of synthesis or for the manufacturing of the

design. This more detailed design must satisfy design constraints supplied with the

original description or generated by a previous synthesis step [Eles 1998].

In some cases, however, the translation process does not necessarily mean the

creation of a purely structural representation.

The whole synthesis process consists of several consecutive steps performed at

different abstraction levels. The different steps make use of different basic

implementation primitives and employ synthesis methods at the different levels. The

following synthesis steps can usually be identified:

• System level: accepts an input specification in the form of communicating

concurrent processes. The synthesis task is to generate the general system

structure defined by processors, ASICs, buses, etc. System level synthesis

operates at the highest level of abstraction where fundamental decisions are

taken which have great influence on the structure, cost and performance of

the final product.

2.5 Synthesis

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 57

• High level: the input specification is given as a behavioural description which

captures the functionality of the system to be designed. High level synthesis

is, therefore, also called behavioural synthesis. Using functional units and

memory elements as basic primitives, a high level synthesis tool generates an

implementation at the RTL level. The basic high level synthesis steps are

scheduling, allocation and binding. RTL level synthesis is typically

considered to be a subset of high level synthesis where allocation and binding

are done automatically while scheduling is carried out by the designer.

• Logic level: this can be divided into combinational and sequential logic

synthesis. The combinational logic synthesis accepts as input Boolean

equations, while the sequential logic synthesis accepts some sort of finite

state machine description. Logic level synthesis produces a gate level netlist

as output.

• Physical level: this accepts a gate level netlist and produces the final

implementation of the design in a given technology. This synthesis step

depends on the implementation technology. However, the common main

tasks are placement and routing.

Generally, synthesis is of key importance in digital circuit design, and even more so

in asynchronous circuit design.

In this thesis, we study the synthesis process which synthesizes PN or STG

specifications to generate self-timed circuits through self-timed implementations of

asynchronous communication circuits. In addition, we also investigate their

automatic synthesis.

NCL-EECE-MSD-TR-2003-100

Chapter 2: Background

 58

This chapter briefly introduced a number of fundamental concepts and references on

asynchronous circuit designs, metastability, asynchronous circuit design

methodology, asynchronous communication mechanisms, and automate

asynchronous circuit designs (synthesis). They are the background of the work in this

thesis. The reader will probably want to revisit some of the material in this chapter

again while reading the following chapters.

2.6 Conclusions

NCL-EECE-MSD-TR-2003-100

ACMs have been briefly introduced in Section 2.4. However, as noted in Chapter 1,

classifying ACMs based on whether data accesses destroy data in the ACM has

limitations. One of the most significant shortcomings of this system lies with the role

played by the type Constant which in effect does not allow any writing. That means

no communication between processes. This hardly qualifies as an ACM. In order to

make ACMs more meaningful, a modified classification is proposed in this chapter.

In addition, apart from Channel having been implemented in both synchronous

circuits and asynchronous circuits, we are unaware of any asynchronous circuit

implementations of the other kinds of ACMs such as Pool and Signal. As mentioned

in Chapter 1, asynchronous circuits have many advantages such as low power, fast

and safety. Especially asynchronous Channel, Micropipeline, shows a large number

of benefits [Sutherland 1989]. In this chapter we also introduce new designs for Pool,

Signal and Message.

Chapter 3: New Classification and Self-

Timed Implementation of Asynchronous

Communication Mechanisms (ACMs)

3.1 Introduction

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 60

So in this chapter, we will present a new classification of ACMs, the relevant topics

such as current situations and self-timed four-slot Pool, three-slot Pool and two-slot

Signal mechanisms and implementations.

An ACM has a capacity, a non-negative constant, which is the number of data items

it contains. Each data item an ACM contains is either read or unread, at any time.

The basic data state of an ACM consists of the number of unread data items it

contains.

In order to study it clearly, the simplest model with one writing process, called writer

which provides data, and one reading process, called reader is employed, which is

shown in Figure �3.1.

memory
shared Writer Reader

Figure �3.1 A simple ACM model.

In this model, write data accesses are divided into writing and overwriting. Read data

accesses are divided into reading and re-reading. Writing increases the data state by 1

(one more unread item in the ACM) and reading decreases it by 1 (one less unread

item in the ACM) while overwriting and re-reading do not modify the data state.

Overwriting may occur, if permitted by the ACM protocol, only when the ACM’s

data state is equal to its capacity, for example, when all items of data in it are unread.

Re-reading may occur, if permitted by the ACM protocol, only when the ACM’s data

state is 0, i.e. when none of the items of data in it is unread.

ACMs are classified according to whether overwriting and re-reading are permitted

as shown in Table �3.1.

3.2 New classification for ACMs

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 61

Table �3.1 New Classification of ACMs

 Non Re-Reading Re-Reading

Non Overwriting Channel Message

Overwriting Signal Pool

In Table �3.1, the Channel, Pool and Signal protocol names are inherited from the

classification introduced in Section 2.4 and are unchanged in effective specification.

A new ACM type, Message, is the dual of Signal. That means that overwriting is not

allowed and re-reading is permitted in Message which is defined as follows:

Definition 3.1 A Message is characterised by re-reading and non-overwriting. It

allows event data to be passed from one process to another. Event data can be

re-read at any time by the reader, but the data is not allowed overwriting

before it is read. However, rather than “write once” capability in Constant, re-

write is allowed in Message when the data has been read by the reader.

In terms of the blocking of data accessing by the data state, if re-reading is permitted

there will be no holding up of the reader and if overwriting is permitted there is no

holding up of the writer. If re-reading is not permitted, the reader must wait when the

data state is 0. If overwriting is not permitted, writer must wait when the data state

equals the ACM’s capacity.

Compared to Constant, the new Message type is more general. In fact, Constant is a

special case of Message where writing is disallowed entirely and reading is re-

reading all the time.

This classification is deliberately non-specific for data item arrangements within

ACMs with non-1 capacities in order to be as general as possible. Overwriting and

re-reading in ACMs with capacities greater than 1 are treated as implementation

issues. More details about this new classification please refer to [Yakovlev 2001] and

[Xia 2002].

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 62

Although the protocols developed by Simpson implied software implementations and

most of the detailed ACM designs seen in [Simpson 1990, Tromp 1989, Kirosis

1987, Chen 1998a] indeed assume implementations in software, this section will

concentrate only on hardware implementations.

The Channel type of ACM, which is the common no-loss buffer and most often

connected with a FIFO arrangement, is used widely in data communications. Many

kinds of Channel have been reported, such as Sutherland’s Micropipeline

[Sutherland 1989]. Because the Channel type of ACM is very popular, it will not be

discussed in this thesis.

The Pool type of ACM can be used to implement truly atomic data transfer with full

asynchrony for both the reader and writer. This makes the Pool very suitable for

transmitting reference data, as a kind of replacement for an analogue wire holding a

variable value.

The Simpson’s four-slot fully ACM [Simpson 1990] is a typical Pool

implementation. This Pool ACM was studied systematically by Simpson. The

dynamic properties of several possible designs are briefly discussed before

concentrating on a fully asynchronous form called a four-slot mechanism.

Table �3.2 Simpson’s 4-slot mechanism.

Writer Reader

wr: d[n, s[n]’] := input; r0: r := l;

w0: s[n] := s[n]’ ; r1: v := s;

w1: l := n || n := r’ . rd: output := d[r, v[r]].

3.3 Current situation with ACMs

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 63

One way to implement the four-slot mechanism presented in [Simpson 1990] is

shown in Table �3.2 in algorithm form and in Figure �3.2 as a schematic hardware

diagram. For more details about this schematic hardware diagram please refer to

[Simpson 1990].

0
1

0
1

0
1

0
1

0
1

0
1

0
1

d[0,1]

d[0,0]

d[1,0]

d[1,1]

s[0]

w1

wr data

wr

w0

r0

read data

r1
s[1] v[1]

v[0]

n l r

Figure �3.2 Hardware diagram for the mechanism in Table �3.2.

Simpson’s four slot mechanism shifts the problem of synchronization from the data

memory (coarse granularity) to the control variables (fine granularity). This model is

shown in Figure �3.3.

d[0,0]

d[0,1]

d[1,0]

d[1,1]

Writer

control variables

data storage

n, l, r,s and v

Reader

(asynchronous)

(synchronized to
 a process during
 data access)

Figure �3.3 Schematic of the 4-slot mechanism.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 64

Here the writer and reader processes are single thread loops with three statements

each. The mechanism maintains the storage of four data slots d[0,0] to d[1,1] and the

control variables n, l, r, s[0..1], and v[0..1], which are either single bits or vectors of

two single bits. The statements wr and rd are the data accesses and the other

statements are used by the writer and reader to choose slots and indicate such choices

to the other side.

The four-slot mechanism is designed assuming that, at the time of use, the value of a

control variable is stable, rather than metastable. If at the time of use, the value of a

control variable is metastable, an element of uncertainty is introduced into the

system. If the control variable value is used to determine that of another control

variable, the worst case is that the metastability is passed on to the other control

variable. If the control variable is used directly in the selection of a data slot, the

worst case is that two data slots may be accessed during one read/write action. As all

control variables eventually affect data slot selection, it can be said that metastability

of a used control variable may cause data coherence failures [Xia 2000a].

For this Pool ACM, however, the writer and reader are two independent processes

without any timing relationship assumptions. This implies that they may be allowed

to operate entirely independently in time. So, as mentioned in Chapter 2, it is

impossible to avoid metastability at the hardware level, although the mechanism is

very ingenious. For example, in Figure �3.2, because signals w1 and r0 are not

synchronized, it is possible that r0 latches an unsettled l into the r register. It will

affect the value of r.

Fortunately, although the metastability can theoretically last forever, it will, in

practice, settle down within a finite time [Kinniment 1998]. In the case of the value

of a metastable control variable being used to determine that of another control

variable, the probability of passing on this metastability is very small, making it less

likely that it will eventually affect data coherence.

Based on this, the conventional way to implement this mechanism is to make

fundamental mode assumptions by specifying that both the writer and reader

processes must have enough delay between the acquisition of the value of a control

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 65

variable, where metastability is possible, and the value is used. This delay ensures

that any metastability would have settled down with a reasonably high probability by

the time it is used. That means each statement in this mechanism works under the

worst case timing assumption illustrated as in Figure �3.4.

w1

delay−r1

wr

w0

delay−wr

delay−w0

delay−w1

r0

r1

rd

delay−rd

delay−r0

the relevant control variables are settled before used
all delays are long enough to guarantee

Figure �3.4 The model of 4-slot with FM assumptions.

Apart from the above study and hardware implementation of this Pool type of ACM,

some formal methods of modelling with PNs were used to systematically analyse the

properties of this kind of ACM in [Xia 2000a].

In [Xia 2000a], a PN model of the mechanism is presented. The wr, w0, w1, r0, r1

and rd statements of this model are shown in Figure �3.5, Figure �3.6, Figure �3.7,

Figure �3.8, Figure �3.9, and Figure �3.10 respectively in PN format.

The PN specification of the w1 statement is very complex. In order to understand it

easily, the truth table of this statement is given in Table �3.3. In order to explain this

truth table, the transition t15 is used as an example. In the model, if each of p2, p17,

p18 and p20, all holds a token, t15 will be fired. This means that n=0 (p2), l=0 (p18),

w1 ready (p17) and r=0 (p20) are the necessary conditions to fire t15. After that,

each of p1, p3, p18 and p20 will get a new token. This means that wr ready (p1), n=1

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 66

(p3), l=0 (p18) and r=0 (p20) are prepared for the next step. This realizes the

function of the w1 statement.

p4, s[0]=1

p1, wr ready

t1

t2

p6, s[1]=1
t3

t4

p2, n=0

p3, n=1

p5, s[0]=0

p7, s[1]=0

p9. writing slot d[0,1]

p8. writing slot d[0,0]

p10. writing slot d[1,0]

p11. writing slot d[1,1]

p13, not writing d[0,1]

p12, not writing d[0,0]

p15, not writing d[1,1]

p16, w0 ready

p14, not writing d[1,0]

t5

t6

t7

t8

Figure �3.5The wr statement in 4-slot mechanism (wr : d[n,s[n]’]:=input).

p3, n=1
p16, w0 ready

p4, s[0]=1

p2, n=0

p6, s[1]=1

p5, s[0]=0

p7, s[1]=0

p17, w1 ready

t9

t10

t11

t12

Figure �3.6 The w0 statement in 4-slot mechanism (w0: s[n]:=s[n]’).

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 67

t17t16t18t15

p20, r=0

t13 t20 t14 t19

p21, r=1

p18, l=0

p19, l=1
p17

p2

p3

p1

Figure �3.7 The w1 statement in 4-slot mechanism (w1: l:=n || n:=r ’).

Table �3.3 Truth table for the w1 statement in 4-slot ACM (w1: l:=n || n:=r ’).

before statement after statement transition firing

l n r l n r

0 0 0 0 1 0 t15

0 0 1 0 0 1 t13

0 1 0 1 1 0 t18

0 1 1 1 0 1 t20

1 0 0 0 1 0 t16

1 0 1 0 0 1 t14

1 1 0 1 1 0 t17

1 1 1 1 0 1 t19

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 68

p22, r0 ready

p19, l=1

p18, l=0

t21

t22

t23

t24

p20, r=0

p21, r=1

p23, r1 ready(1)

p27, r1 ready(2)

Figure �3.8 The r0 statement in 4-slot mechanism (r0: r :=l).

p5, s[0]=0

p4, s[0]=1

p6, s[1]=1

p7, s[0]=0

p27, r1 ready(2)

t25

t26

t27

t28

p25, v[0]=0

p26, v[0]=1

p27, v[1]=1

p28, v[1]=0

p24, rd ready

p23, r1 ready(1)

Figure �3.9 The r1 statement in 4-slot mechanism (r1: v:=s).

The results from [Xia 2000a] are that the four-slot mechanism under FM

assumptions has been finally proved to maintain data coherence under normal

operations, even with control variable statements taking arbitrarily long time to

complete; this mechanism maintains data freshness, even with control variable

statements taking an arbitrarily long time to complete; this mechanism does run fully

asynchronously without hidden problems in the communications.

In addition, the Simpson four-slot mechanism has been proved to be very robust

when a single control variable becomes metastable but settles to a logic level by the

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 69

time it is referred to. It has shown to be robust even when a single control variable

assumes an incorrect value in a random manner.

p25, v[0]=0

p24, rd ready

t29

t30

p28, s[1]=0
t31

t32

p20, r=0

p21, r=1

p26, v[0]=1

p27, v[1]=1

p30. reading slot d[0,1]

p29. reading slot d[0,0]

p31. reading slot d[1,0]

p32. reading slot d[1,1]

p34, not reading d[0,1]

p33, not reading d[0,0]

p36, not reading d[1,1]

p22, r0 ready

p35, not reading d[1,0]

t33

t34

t35

t36

Figure �3.10 The rd statement in 4-slot mechanism (rd: output:= d[r ,v[r]]).

Furthermore, the results show that it is both possible and desirable to use PNs as a

modelling and analysis tool on the lowest discrete level systems.

Apart from the Channel and Pool ACMs, the other two kinds of ACMs, Signal and

Message, we have not seen any hardware implementations of these two kinds of

ACMs so far.

As mentioned above (Section 3.3), the conventional way to implement ACMs is to

make FM assumptions by inserting long enough delay time for each statement in the

writer and reader. In order to meet the requirements, the delay should be made based

on the worst case timing. Generally it will degrade performance.

3.4 Self-timed Pool specification and implementation

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 70

In fact, metastability seldom happens in logic circuits. However, delays are always

inserted regardless whether metastability happens or not. As discussed in the above

section, FM assumptions are only used when metastability happens to guarantee that

the control variables are settled down before processes entering the next step because

synchronous circuits do not know when the actions finish. If after one action finishes

the next one can happen immediately. This means that actions know how much time

they take for each action. This will improve the performance. Asynchronous circuits,

especially self-timed circuits, have this ability. They are running at average case

speed, rather than worst case speed, because they are event-driven.

3.4.1 Self-timed four-slot Pool

3.4.1.1 PN modelling

This mechanism is based on Simpson’s four-slot ACM. Three statements in each

process, the writer and reader, work in sequence in this mechanism. After one

statement finishes, the next one can start immediately. This naturally fits the

traditional start-done handshake protocol [Berkel 1992]. Based on this we refine the

original mechanism of the writer process to the one shown in Figure �3.11.

wr start wr wr done w0 donew0w0 start

w1 startw1w1 done

w0 ready w1 ready

wr ready

Figure �3.11 The modified wr iter mechanism.

In this refined version, the wr statement is in the “wr start/wr done” handshake

protocol. This means that after the request signal wr start arrives, the statement wr

can fire and then the acknowledge signal wr done will be given when wr finishes.

The w0 statement is in “w0 start/w0 done” and w1 in “w1start/w1 done” .

In Figure �3.11, some handshake signal pairs may be treated as single signals because

a done signal of one handshake protocol, in fact, is the same as the start signal of the

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 71

next handshake protocol. For example, wr done and w0 start may be treated as a

single signal, called w0 ready (in order to be consistent with [Xia 2000a]).

r0 start r0 r0 done r1r1 start r1 done

rd startrdrd done

Figure �3.12 The modified reader mechanism.

As we have done for the writer, the original mechanism of the reader is also changed

to a new one as shown in Figure �3.12.

There are three handshake protocols, “r0 start/r0 done” , “r1 start/r1 done” and

“rd start/rd done” . They cover the r0 statement, the r1 statement and the rd

statement respectively.

In this mechanism, the handshake protocols “wr start/wr done” and

“rd start/rd done” can be guaranteed as atomic actions because the writer and reader

cannot access the same slot at the same time if all the control variables have settled

before these two statements start. The other handshake protocols cannot be

guaranteed as atomic actions because there exists the potential possibility that the

control variables (shared resources) are accessed at the same time by the writer and

reader under no FM assumptions. This will result in metastability (see section 3.3

and Chapter 2).

In fact, in this four-slot ACM, w1 and r0, w0 and r1 are critical sections because they

involve access to shared control variables. In a self-timed implementation, we

introduce mutual exclusion operations for these critical sections. This will affect the

fully asynchronous property. However, because the statements w0, w1, r0, r1 only

work on a few one-bit or two-bits control variables, it should be very fast. We can

ignore this interference.

In order to analysis this self-timed four-slot ACM we model it using PNs, since PNs

are very suitable to specify this kind of system. We propose the following model for

each statement. It is shown in Figure �3.13.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 72

start operation done

Figure �3.13 PN model for each statement.

In Figure �3.13, there are three transitions, start, operation and done. Start and done

can be taken as atomic because they are only the request and acknowledge signals in

practice. Operation can be very complex. It is not necessarily atomic.

As discussed above, w1 and r0 are a critical section. So only one, either w1 or r0, can

happen at a time. In the PN model, an extra place with a token is used to specify this

kind of function. It is not free-choice but arbitrating choice with regard to the models

of w1 and r0. The same method can be used to construct a PN model for the w0 and

r1 critical section. The whole model of the mechanism is shown in Figure �3.14.

r0 start

p101

wr start w1 donew1 startw0 donew0 startwr donewr w0 w1

rd donerd startr1 doner1 startr0 doner0 r1 rd

p100

Figure �3.14 PNs model of the four -slot ACM.

In this model, there are two not free-choice but arbitrating choice places, p100 and

p101, which are used to specify the two critical sections respectively. Here we call

this kind of place as guards.

Using the same method introduced in [Xia 2000a], we can systematically analyse this

model. After running it, the results are as expected.

For example, when w0 start and r1 start arrive at the same time or at very close

times, only one of the two signals will be granted permission, and the relevant

operations will happen. The other one must wait until the first one finishes.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 73

In this PN model, the place p100 can only pass its token to one of two transitions w0

start and r1 start. As a result, only one relevant operation, either w0 or r1, can

happen. Following this PN model, after this operation finishes and then returns the

token to p100, the other operation can start. For instance, when wr done finishes (wr

done• has a token), w0 start is expected to happen, and at the same time, r0 done

finishes and r1 start is expected to start too, because the guard (p100) only holds one

token (1-safe PNs), based on the rules of PNs, so only one transition (either w0 start

or r1 start) can happen. The choice is random. For example, if w0 start starts, w0 and

w0 done will start sequentially. After w0 done finishes, the token is returned back to

p100. After that, r1 start, r1 and r1 done can start sequentially.

This new mechanism does not affect the original function. We only put on a

handshake protocol for each statement. For example, the refined w0 statement is

modelled using PNs shown as in Figure �3.15.

p3, n=1

p4, s[0]=1

p2, n=0

p6, s[1]=1

p5, s[0]=0

p7, s[1]=0

p17, w1 ready

t9

t10

t11

t12p16, w0 ready

p100

(wr done)

to other branch

p16’

w0 start

Figure �3.15 The refined w0 statement.

Compared to Figure �3.6, in this model, one place p100 acts as a guard, place p16’ has

been copied from place p16, and transition w0 start has been added. w0 start is a

handshake signal. So the function of this model is the same as the model in Figure

�3.6.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 74

However, this mechanism has shifted metastability from the control variables to the

handshake interfaces. As a result, no metastability happens on the control variables.

This means that slot selection is always correct. In addition, as mentioned above, this

mechanism is not a pure form of fully asynchronous communication. Because there

are fine granularity data items (simple control variables) in these arbiter circuits and

it only takes a short time, we can ignore this short running time. In addition, the

original Simpson four-slot ACM allows that when one process is running the other

process can enter several times.

3.4.1.2 Implementation

Based on the above discussions, the overall structure of the self-timed four-slot ACM

is shown in Figure �3.16.

Writer Reader
Din DoutACM

4 slots

start
done

start

done

wr done

wr start

w0 start

w0 done
w1 start

w1 done

r0 start

r0 done
r1 start

r1 done
rd start

rd done

co
nt

ro
l

hardware

statement

st
at

em
en

t
w

ri
te

re
ad

st
at

em
en

t
co

nt
ro

l

ACM control part

(steering)

Figure �3.16 Basic structure of the modified 4-slot ACM with SI circuits.

Figure �3.16 shows that the system includes reader and writer interface control logic,

and statement circuits (both control variables and data slot selection and indication).

The four phase handshake bundled data protocol is used for Din, start and done on

the writer side and Dout, done and start on the reader side. There are three internal

handshake protocols (interfaces) in each process, the writer and reader. In each

process, the three handshake protocols work sequentially. In practice, buffer devices

can be employed to manage the three interfaces while the access processes interface

with the extended ACM only once per cycle.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 75

In order to avoid the worst case, as discussed above, handshake circuits are used to

construct this ACM instead of via FM assumptions. However, because shared

variables are used in this mechanism, we will deal with them using critical sections

when implementing this ACM as discussed before. In self-timed circuits, Mutexes

are very suitable to deal with critical sections. Based on these and the PN model

shown in Figure �3.14, from the hardware implementation point of view, a hardware

diagram for this self-timed ACM is shown in Figure �3.17.

0
1

0
1

0
1

0
1

0
1

0
1

0
1

Mutex

Mutex

d[0,1]

d[0,0]

d[1,0]

d[1,1]

s[0]

s[1] v[1]

v[0]

n l r

w1w1 start

wr data read data

r0 r0 start

wrwr start

r1w0

w0 start r1 start

Figure �3.17 The hardware diagram of the self-timed ACM.

3.4.1.2.1 Self-timed implementation for the statements

In this self-timed implementation, we assign a handshake protocol for each

statement. This means that the request signal is used to start the statement and after

the statement finishes, the acknowledge signal is given. Here in order to describe

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 76

concisely, we still use the original statement names, such as wr, w0, w1, instead of

the request and acknowledge signals unless somewhere specially stated.

The wr and rd statements

The data slot access statements wr and rd are implemented with SI circuits which

contain completion signals. The overall design of the hardware implementation of wr

is shown in Figure �3.18.

x

xb

c

cx1

cx0

Sel circuit

Req

Db

D Q

Qb

Done

DLatch
Req

Db

D Q

Qb

Done

DLatch

Req

Db

D Q

Qb

Done

DLatch
Req

Db

D Q

Qb

Done

DLatch

nb
n

wr

s1b
s1

s0b
s0

wr11
wr10

x
xb

Sel

Sel

Sel

c

x
xb

xb
x

c

c

cx1
cx0

cx1
cx0

cx1
cx0

wr01
wr00 Done0

Done1
Done2
Done3

wr done

D<0:7>
Db<0:7>

D<0:7>
Db<0:7>

D<0:7>
Db<0:7>

D<0:7>
Db<0:7>

wr11

wr01

D0<0:7>
D0b<0:7>

D1<0:7>
D1b<0:7>

D2<0:7>
D2b<0:7>

D3<0:7>
D3b<0:7>

Done0 Done1

Done2 Done3wr10

wr00

Figure �3.18 Hardware for the statement wr .

The slot steering logic consists of simple selection elements implemented in purely

combinational logic. There are no hazards or SI violations; when the signal wr

arrives, the values of n and s are entirely stable. They have been set during the

previous w0 and w1, which are guaranteed to have been completed.

The completion of wr is dependent on the data path in this implementation, which is

conservative in terms of self-timed considerations. If the data items being transmitted

are large in size, however, such completion may turn out to be overly complex and

performance inhibiting. In this case the external protocol can be modified and the

completion signal is specified to be the responsibility of the writer. Then it will be

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 77

simple to implement using normal processor to memory communication

assumptions.

As for rd, its function is to obtain the data for the reader. Because slot memory has

been implemented in wr, here only the multiplexer is implemented which is shown in

Figure �3.19. A similar method is used to implement the selection part.

rd00

rd01

rd10

rd11

v0b

rb

v0

rb

v1b

r
v1

r

rd

outDb<0:7>

Done<0:7>

outD<0:7>

rd10

D0b<0:7>

rd11

rd10

rd01

rd00

rd11

D1b<0:7>

rd01

rd00

D3<0:7>

D2<0:7>

D1<0:7>

D0<0:7>

D3b<0:7>

D2b<0:7>

Figure �3.19 The self-timed implementation of the rd statement.

The w0 and r1 statements

w0 assigns a new value to control variable s. r1 uses s. As mentioned above, s is a

shared control variable for w0 and r1. So, it is in a critical section. Only one action

can start at a time. If they happen simultaneously, metastability will occur. In the

above PN model, we use a guard place to guarantee that only one action can happen.

In self-timed circuits, this guard can be implemented by using a Mutex introduced in

Chapter 2. Two handshake request signals w0 start and r1 start go to the Mutex to

apply for the grant. In Mutexes, if two requests arrive at the same time or very close,

only one request signal can be granted and the grant signal will be kept until the

request signal withdraws. Then the relevant operations start. The self-timed circuit

implementing w0 and r1 is shown in Figure �3.20.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 78

x
xb

Sel

c

cx1
cx0

Req

Q

Qb

Done

TLatch

Req

Q

Qb

Done

TLatch

nb
n

Req

Db

D Q

Qb

Done

DLatch

Req

Db

D Q

Qb

Done

DLatch

v1
v1b

v0
v0b

dns1

dns0

dnv1

dnv0

mutex

s1
s1b

s0
s0b

w0 r1

w0 start r1 start

Figure �3.20 The self-timed implementation of the w0 and r1 statements.

Sel, DL and TL will be introduced later.

The w1 and r0 statements

These two statements have the same problems as in the w0 and r1 statements. If two

statements are being carried out simultaneously, it causes metastability. This is

because r and l are shared control variables. By protecting these statements with a

Mutex, metastability can be avoided.

Specifically, in the case of the statements r0 and w1, if signals w1 and r0 are

generated by a Mutex so that they are never near enough in time, there will be no

metastability at either r or n. In this case, any metastability would be moved to the

Mutex, and only when it has settled would one of the clock pulses be generated.

Mutex

l rn

rb

w1 start

w1 r0

r0 start

MS DL DL

Figure �3.21 Mutual exclusion between w1 and r0.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 79

This is schematically shown in Figure �3.21, where the statement starting signals

w1start and r0 start must go through a Mutex element before activating the statement

hardware.

Since Mutexes require waiting for the side that lost the arbitration, the temporal

relation between two processes arbitrated by such an element does not conform to

full asynchronism. However, any delay is at the bit control variable level, not the slot

level.

In the above implementations, the control variable assignment statements w0, w1, r0

and r1 are implemented by SI latch circuits within the ACM which contain

completion detection signals. These latch circuits consist of self-timed dual rail

master-slave latches (MS) and SI dual rail latches (DL and TL). The MS and DL are

shown in Figure �3.22 and Figure �3.23 respectively. For more details please refer to

[Bystrov 1999]. They fully support the handshake interface protocol of Figure �3.24.

MS

Req Done

D,Db
(dual
 rail)

Q,Qb
(dual
 rail)

D

Db

Rst

Req

Q

Qb

Done

Rst

Figure �3.22 SI master -slave latch circuit and its symbol (MSLatch).

As for the other useful self-timed circuits, such as T-latch (TL), we will not introduce

them here.

D

Req

Db

Q

Qb

Done DL

Req Done

D,Db
(dual
 rail)

Q,Qb
(dual
 rail)

Figure �3.23 SI latch circuit and its symbol (DLatch).

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 80

3.4.1.2.2 Self-timed control circuit

This section introduces the implementation of the control circuit.

In this design, we take the approach shown in Figure �3.14 with self-timed circuits

employed in the write and read statement buffers. This requires that a sequential

arrangement of two statements is secured by means of control elements, so that the

second statement starts only when the first has finished. It is therefore important that

each statement is implemented with hardware providing a start/done handshake

interface to its environment, as specified in Figure �3.25. This is shown in Figure

�3.24.

environment statement
start

done

Figure �3.24 Handshake inter face between a statement and its environment.

The signal sequencing of the write statement control is specified in STG format

shown in Figure �3.25. This ensures the statement sequencing specified by the

algorithm in Table �3.2. The reader statement control has essentially the same STG.

w0 start+

wr_start+ wr done+ wr start− wr done−

w0 start− w0 done−

w1 start+ w1 satrt− w1 done−

w0 done+

w1 done+

start+ done+start−done−

Figure �3.25 STG specification of wr ite statement control.

In order to retain an element of regularity and extendibility, a kind of circuit known

as a DC (see Chapter 2), is chosen as the building block with which to assemble this

circuit.

A control circuit managing four consecutive handshakes needs four DCs connected

in series. By organising the initial condition so that only one of the DCs is active

(q=1 and qb=0) and the others are “spacers” (q=0 and qb=1), the circuit shown in

Figure �3.26 would produce an STG shown in Figure �3.27.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 81

1 0 DC
qb0q0

DC
qb1q1

DC
qb2q2

DC
qb3q3

10 10 10

start

wr start wr done w0 start w0 done w1 start w1 done

done

Figure �3.26 Wr ite statement control circuits using DCs.

w0 start− w0 done−

w1 satrt− w1 done−

start− done+

w0 start+

wr done+

w1 start+

w0 done+

w1 done+

start+ done−

q1+ q1b− q0b+ q0− wr start− wr done−wr start+

q2+ q2b− q1b+ q1−

q3+ q3b− q2b+ q2−

q0+q0b−q3b+q3−

Figure �3.27 STG of the circuit in Figure �3.26.

In Figure �3.27, if we remove all q’s and qb’s events, the remainder is the same as the

STG specification in Figure �3.25. Here the q’s and qb’s are the internal signals of the

flip-flops within the DCs and are not directly made use of by the control logic. They

serve the same purpose as the CSC signals from a Petrify solution. From the STG, it

is clear that this circuit can be used for both the writer and reader statement control

logic blocks for the appropriate statement handshakes.

The similar method is used in the reader part to construct the control circuit for the

reader.

3.4.1.3 Circuit analysis and conclusions

This four-slot Pool design has been put through the VLSI design flow using the

Cadence tools. Top-level simulations, both analogue and digital, have been carried

out.

3.4.1.3.1 Analogue simulation results

Analogue simulations have been run for the four-slot ACM design with the Spectre

simulator from within the Cadence tools. Apart from studying the entire circuit under

a number of possible operating conditions, effort has been concentrated on the

behaviour of Mutexes and the entire system when the statements r1 and w0 occur

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 82

simultaneously. The result of this study is given below. Similar studies have been

done for the case when the statements r0 and w1 occur simultaneously, with similar

conclusions.

metastability inside mutex

Figure �3.28 Analogue simulation waveforms with metastability within Mutex.

Figure �3.29 Analogue simulation waveforms showing general handshake operations.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 83

Figure �3.28 shows the transient response of the handshake signals associated with the

statements r1 and w0 when metastability has been generated within the Mutex

between these statements, because the requests are close in time. The metastable

response within the Mutex (at signals net7 and net9, between 4 and 5 ns) only delays

the response of the rest of the system and is never propagated out of the Mutex. The

Mutex is also shown to have successfully created mutual exclusion between the two

statements.

Figure �3.29 shows the general handshake operations on the writer side. Similar

results have been obtained for the reader side. This conforms with the specifications

give in Figure �3.25.

3.4.1.3.2 Digital simulation of the four-slot Pool

Digital simulations have been run for the four-slot ACM design from the Cadence

toolkit on the circuit. In order to maximally reveal data coherence and data freshness

properties, a writer process was created in Verilog code which sends byte data for

255 cycles, with the data increasing in value from 1 to 255. The data received at the

reader end was then collected for analysis. The writer and reader processes have been

programmed so that their extra ACM delays take exponentially distributed time

lengths with mean values varying from 10 to 500ns.

From these simulations, no data coherence and data freshness violations have been

observed. This is true even when, owing to the stochastic nature of the reader and

writer extra-ACM delays, one side traverses many cycles with the other side stuck.

This is to be expected because this Pool design is a faithful implementation of the

four-slot algorithm which has been verified analytically to maintain these properties

if the FM assumptions hold. This Pool design, by dealing with the issue of

metastability explicitly and using SI circuits, makes sure that no statement gets

started without its preceding one having completed. From the state-transition system

point of view this is functionally equivalent to the FM assumption holding in the

original four-slot algorithm.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 84

time (ns)

400.0 450.0 500.0 550.0 600.0 650.0 700.0

Din

Dout

00 01 02 03 04 05 06

00 01 00 01 00 03 00 04 00 04 00 06

Figure �3.30 Din and Dout value sequence at the beginning of a simulation.

time (ns)

2700.0 2750.0 2800.0 2850.0 2900.0 2950.0 2994.758

Din

Dout

20 21 22 23 24 25

00 21 00 24 00 24

Figure �3.31 Din and Dout value sequence in the middle of a simulation.

The data value sequences for Din and Dout from a simulation run is selectively

shown in Figure �3.30 and Figure �3.31. Date coherence, freshness, sequencing, loss

and re-reading properties can all be obtained by observing such sequences. For

instance, the loss of data items 22 and 23 can be observed in Figure �3.31, and the re-

reading of data items 01 and 04 can be observed in Figure �3.30. The second reading

of data value 04, while data value 05 has clearly been available for some time, does

not violate data freshness according to the definition found in [Xia 1999b].

According to this definition, when the statement r0 and r1 overlap with the statement

w0 and w1, the reader is allowed to obtain the latest but one item of data in the Pool.

This is because the location of the slot where the latest data item resides is indicated

by the writer through w0 and w1 and obtained by the reader during r0 and r1. When

these statements overlap in time the Pool should not be expected to always pass the

latest data item.

The simulations show that the functional behaviour of the circuit is as expected.

Analogue simulations have established that metastability does not propagate through

the system, but is contained within the Mutexes. Digital simulations have revealed

the data coherence and data freshness properties for the design.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 85

In our four-slot Pool implementation, we have slightly relaxed the fully

asynchronous requirement. The results show that this self-timed four-slot Pool

realizes the functions of the original fully asynchronous Pool very well. In addition,

it should be faster and safer than the FM one (see the discussions above).

3.4.2 Differences between FM and SI solutions

The solutions proposed in [Simpson 1990] provide full asynchronism for the writer

and reader. They are, however, dependent on FM assumptions, namely that the

switching processes in the hardware implementation settle between adjacent

statements.

In the SI solutions, there is certainly not an absolute temporal division between the

reading and writing sides within the ACM, because of the waiting required by the

Mutexes. It is worth noting, however, that such waiting only happens during control

variable setting statements (w0, w1, r0 and r1), and, that the data slot access

statements wr and rd are not affected directly. In other words, by retaining the ACM

algorithms, the broad idea of realising atomic data transfer by using safe bit registers

is retained. In effect, critical sections are moved from data slots to bit variables.

Temporal independence, when required, is required between the reader and writer

processes and not between the internal read and write sides of the ACM. From Figure

�3.16, it is clear that there are two pairs of handshakes where such temporal divisions

can be maintained in the new design. These are the global read and write start/done

interfaces. For instance, rather than the more rigid protocol normally associated with

the handshake, the writer can be specified to follow the more flexible protocol

outline below:

• Issue start to the write side of the ACM;

• Wait for done from the ACM;

• In the absence of done, wait for a predetermined maximum time period (FM

assumption);

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 86

• Continue its own cycle, knowing whether done or the expiration of the

maximum time period has happened. This allows the writer client to decide

whether to operate in FM or SI fashion. While still realising the potential of

speeding up the response provided by the SI solutions, it also allows an upper

bound for the complete ACM write cycle to be specified, therefore effectively

decoupling temporally the writer process from the reader one. A similar

arrangement can be employed at the reader side.

Such a maximum waiting period can be easily obtained by finding the normal time

expenditure of all statements and assuming that metastability happens at an

arbitration point (it is trivial to show for the four-slot ACM that in a single cycle of

operation only one of the arbitration points could be activated, assuming that both the

read and write sides of the ACM are implemented using the same hardware

technology on the same chip) and then this side loses the arbitration. The statement

timing can be obtained through simulations, since the entire ACM is designed in

hardware “ in house” . The metastability settling time can be estimated by the method

outlined in [Kinniment 1999], where it is demonstrated that 5ns is sufficient time for

all metastability to have settled firmly in modern CMOS technology with

“practically” probability 1.

3.4.3 Self-timed three-slot Pool

In Simpson mechanisms, because the control variables may not be stable, they may

settle to the opposite values when used. In order to guarantee the properties of

ACMs, four slots are shown to be needed. For more details please refer to [Simpson

1990].

Since the self-timed four-slot ACM has shifted the metastability from the control

variables to handshake interfaces, all control variables used in this mechanism will

be stable before they are used. The case of settling to the opposite values will not

happen. On the other hand, slot-type ACMs take up a large number of memory

elements in implementations. Generally they are very expensive in modern computer

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 87

systems. We would like to construct ACMs limiting the occurrence of redundant

slots.

In [Simpson 1990], the other three mechanisms, one-slot, two-slot and three-slot

mechanisms, have been proposed as well. However, they cannot be implemented

correctly under FM assumptions. The reasons were explained clearly in that paper.

In this thesis, we would like to study the one-slot, two-slot and three-slot ACMs

again based on the implementation method used in the self-timed four-slot Pool. In

the other words, we slightly relax the full asynchronous requirement and introduce

mutual exclusion on the handshake interface signals to the one-slot, two-slot and

three-slot Pool types of mechanism to see what happens.

The one-slot mechanism only contains one possible place for data transit and offers

no choice to the writer and reader when they come to access the mechanism.

Integrity of the one-slot mechanism is only preserved if the writer and reader never

overlap. However for the general case of asynchronous writer and reader there

always is the danger of a loss of coherence, although when the data read is coherent

it will always be the freshest available. This is not what we expect.

The two-slot mechanism is sometimes called the swung buffer since alternate data

items are written to alternate slots which are then swung into visibility for output. In

any form of signal writer to signal reader asynchronous communication it can be

assumed that the access operations are of finite duration and that successive

operations on each side are separated by a finite interval. Thus a reading process

takes a certain amount of time to obtain data (read duration) and then makes use of

this data in subsequent computation before returning for further accesses. The

writing process, following a write operation, takes a certain amount of time to

prepare new data (interval between writes) before returning for further accesses.

In the case of the two slot mechanism, a read starting between writes will access

coherent data up to the start of the next-but-one write, whereas a read starting during

a write will only access coherent data up to the start of the next write. Thus, in the

absence of any overall control, the mechanism can only be guaranteed to work

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 88

satisfactorily if the interval between successive writes is always greater than the

duration of any read. This condition holds in a range of applications so the two-slot

mechanism is of some practical significance. Like the one-slot mechanism, failure

results in the coherence requirement not being met.

3.4.3.1 PN modelling of self-timed three-slot Pool

The original three-slot mechanism from [Simpson 1990] is shown in Table �3.4.

Table �3.4 Simpson's three-slot mechanism

Writer Reader

wr: d[n] := input; R0: r := l;

w0: l := n; rd: output := d[r].

w1: n := differ(l, r).

This mechanism is similar to the four-slot mechanism in that the writer and reader

processes are single thread loops with three and two statements each respectively. n,

r, and l are control variables.

The original three-slot Pool does not guarantee the atomic transfer of data through

the slots (a property known as “data coherence”) if the statement r0 cannot be

regarded as atomic relative to the statements w0 and w1. In other words, if before the

beginning and the end of a single r0 statement, a sequence of w0 and w1 is started

and completed, the reader and writer may clash on the same data slot simultaneously.

However, if the statement r0 can be regarded as atomic relative to the statements w0

and w1, the Pool maintains atomic transfer of data through the slots [Xia 1999b].

This Pool has also been shown to maintain “data freshness” , whereby the reader

always obtains the most up-to-data data item from the Pool, under the same

assumptions of atomicity [Xia 1999a]. This is similar to our self-timed four-slot

Pool, which is realized by introducing Mutexes in implementation.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 89

In order to systematically study this three-slot ACM, firstly a PN model is built

according to the method modelled the self-timed four-slot ACM. The PN model is

shown in Figure �3.32.

wr start w1 donew1 startw0 donew0 startwr donewr w0 w1

r0 start

p102

r0 doner0 rd start rd rd done

Figure �3.32 PN model of the self-timed three-slot ACM.

In Figure �3.32, we introduce a guard place (p102) in the model. It is used to

guarantee that only one, either r0 start/r0 done or w0 start/w1 done, can start at a

time. After running this model using the PN rules, the mechanism shows as expected.

3.4.3.2 Self-timed implementation

writer reader
n, l, & r

d[1,0,0]

d[0,1,0]

d[0,0,1]

control variables

data starage

Figure �3.33 Schematic of three-slot mechanism.

The three-slot Pool implementation includes reader and writer interface control logic,

statement circuits (both control variables and data slot selection/data path steering).

The mechanism, shown schematically in Figure �3.33, maintains the storage of three

data slots, d[1], d[2] and d[3], corresponding to d[1,0,0], d[0,1,0] and d[0,0,1]

respectively in Figure �3.33, and the control variables n, l and r, which are ternary

signals. One-hot encoding is adopted here in order to implement SI easily. The

statements wr and rd are the data accesses and the other (control variable) statements

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 90

are used by the writer and reader to choose slots and indicate choices to the other

side.

Based on the implementation method used in the self-timed four-slot ACM, the

overall structure of this Pool is shown in Figure �3.34.

wa

wr

rd

ra

writer

w
ri

te
 s

ta
te

m
en

t c
on

tr
ol

ACM data path
(three data slots)

MUTEX

reader

read statem
ent control

r0

rd

l

r
rndiffer &

n Reg l Reg r Reg

w0 & w1

wr

n r

Data IN Data OUT

wr_start

wr_done
w

0_
do

ne

w
o_

st
ar

t

w
1_

do
ne

w
1_

st
ar

t

rd_start

rd_done

r0
_s

ta
rt

r0
_d

on
e

ACM control part

l

Gr0

r0

Gw0

w0

1

2

3

1

2

Figure �3.34 The structure of the three-slot Pool.

In Figure �3.34, for the same reason as in the four-slot ACM, a Mutex is used to

implement the critical section in this mechanism.

3.4.3.2.1 Implementation of the wr and rd statements

This wr implementation is very similar to the one in the four-slot ACM. The block

diagram of the wr implementation is shown in Figure �3.35. Because n is 1-hot

encoded, only one of n1, n2 and n3 can be 1 at a time. This guarantees that in each

cycle, only one slot can be written. Because n is settled before it is used, no data

coherence violation happens. A similar method in the wr circuit of the four-slot

ACM is used to construct the rd circuit (which is not shown here).

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 91

Req

Db

D Q

Qb

Done

DLatch

Req

Db

D Q

Qb

Done

DLatch
Req

Db

D Q

Qb

Done

DLatch

D<0:7>
Db<0:7>

D<0:7>
Db<0:7>

D<0:7>
Db<0:7>

wr3

wr1

D1<0:7>
D1b<0:7>

D2<0:7>
D2b<0:7>

D3<0:7>
D3b<0:7>

Done1

Done2 Done3wr2

wr start

n1

n2

n3

wr1

wr2

wr3

Done1
Done2
Done3

wr done

Figure �3.35 The wr statement in three-slot ACM.

3.4.3.2.2 Implementation of the w0, w1 and r0 statements

Because (w0, w1) and r1 operate in a critical section, only one of (w0, w1) and r1 can

start. As mentioned before, Mutexes can be used to implement this function in self-

timed circuits. The method used in the four-slot ACM is employed here, and the

block diagram of this function is shown in Figure �3.36.

w0 statement

mutex

Gr0

w1 statement

w0 r0

Gw0

wa ra

r0 statement

Figure �3.36 The block diagram of the function.

This only gives a solution to deal with the critical section. The following will give

the details of the implementation for all statements.

In this mechanism, Statement w1 is a special one, in which the control variable n is

assigned a value different from the current values of both l and r. In practice, the

following method can be used to deal with this efficiently:

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 92

differ = ((2,3,2), (3,3,1), (2,1,1));
… …
n := differ [l, r];

… …

The above method can be presented by using a table shown in Table �3.5.

Table �3.5 A table of differ

r = n

1 2 3

1 2 3 2

2 3 3 1

l =

3 2 1 1

For instance, when l = 3 and r = 2, n is assigned a value 1.

The circuit implementing the w1 statement (the differ and n Reg block) is shown in

Figure �3.37, in which the differ and the three state latch circuits are shown in Figure

�3.38 and Figure �3.39 respectively. All gates involved are simple monotonic with no

more than four inputs. The differ circuit is SI because of “one-hot” encoding.

3 state

latch
differ

w1 done

l1

w1 start

l1b

l2

l3

r1

r2

r3

r1b

l2b

l3b

r2b

r3b

n1b

n2b

n3b

n1

n2

n3

Figure �3.37 The circuit of the w1 statement.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 93

l1b

n3b

n2b

n1b

r3b

r2b

r1b

l3b

l2b

Figure �3.38 The differ circuit.

w1 done

n2b

n3

n2

n1

n3b

n1b

Figure �3.39 The three state latch.

The statements w0 and r0 are assignment statements. The registers for control

variables l and r employ the three-state latch shown in Figure �3.39. We use the

following circuit to implement them. The general arrangement is shown in Figure

�3.40.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 94

in3

in2b

in3b

in1

in2

start

in1b out1

out2

out3

done

3 state

latch

Figure �3.40 The circuits for the l and r registers.

3.4.3.2.3 Implementation of the control circuit

In this three-slot implementation, the control circuits are designed to be as concurrent

as possible in order to increase speed, instead of being maximally sequential.

By employing a Mutex element carefully in this design, both the relative atomicity of

crucial statements and potential metastability can be resolved simultaneously.

r0

Gr0

r0 start

r0 done
control

logic

read

circuit

rd

ra

read start

read done rd start

rd done

w0

Gw0

w0 start

w0 done

w1 start

w1 done

control

logic

write

circuit

wr

wr start

wr done

wa

write start

write done

a) The block diagram of the write control circuit b) The block diagram of the read control circuit

Figure �3.41 The control circuits.

The statement circuits are entirely self-timed and SI, with some parallel

arrangements of signals managed by a series of handshake protocols instead of via

FM assumptions. Based on Figure �3.34, the schematic write and read statement

control circuits are given in Figure �3.41. The signal sequences of the write and read

statement control circuits specified in STG form are shown in Figure �3.42 and Figure

�3.43. The two control circuits are joined at the Mutex.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 95

INPUTS: write_start,wr_done,Gw0,w0_done,w1_done
OUTPUTS: write_done,wr_start,w0,w0_start,w1_start

INTERNAL: wr,wa

w
ri

te
_s

ta
rt

+

w
r_

st
ar

t+

w
r_

do
ne

+

w
r_

st
ar

t−

w
r_

do
ne

−

w
r+

w
0+

G
w

0+

w
0_

st
ar

t+

w
0_

do
ne

+

w
0_

st
ar

t−

w
0_

do
ne

−

w
1_

st
ar

t+

w
0−

w
1_

do
ne

+

w
1_

st
ar

t− w
1_

do
ne

−

w
a+ w
a−

w
r−

G
w

0−

w
ri

te
_d

on
e+

w
ri

te
_s

ta
rt

−

w
ri

te
_d

on
e−

Figure �3.42 The STG of the wr iter .

INPUTS: read_start,Gr0,r0_done,rd_done
OUTPUTS: read_done,rd_start,r0,r0_start

INTERNAL: rd,ra

re
ad

_s
ta

rt
+

rd
+

r0
+

G
r0

+

r0
_s

ta
rt

+

r0
_d

on
e+

r0
−

ra
+

r0
_s

ta
rt

−

G
r0

−
rd

−
r0

_d
on

e−

ra
−

rd
_s

ta
rt

+

rd
_d

on
e+

rd
_s

ta
rt

−

rd
_d

on
e−

re
ad

_d
on

e+

re
ad

_s
ta

rt
−

re
ad

_d
on

e−

Figure �3.43 The STG of the reader .

In Figure �3.41, only one Mutex with a metastability resolver is used, compared with

two Mutexes with resolvers used in the four-slot implementation. The functions of

the Mutex and resolver have been introduced in Chapter 2. With the Mutex, the r0

statement is atomic relative to the w0 and w1 statements.

In this interface there are three pairs of handshake signals in the writer part. They are

wr and wa, w0 start and w0 done, w1 start and w1 done respectively. The other

interface signals, w0 and Gw0, connect to the Mutex, one for the request and the

other for the grant. Figure �3.44 shows the simplified STG, derived from Figure �3.34

and Figure �3.42, for the writer statement control with only the signals directly

relating to the statements being shown. Some parallelism is introduced in this circuit,

such as after the falling edge of w0 start; while we wait for the falling edge of w0

done, the w1 start signal can change. In addition, after the falling edge of w1 start,

the falling edge of w1 done, the raising edge of wa and the falling edge of w0 can

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 96

happen at the same time. We wait for the completion of all these signals at the falling

edge of wa. This means that before the falling edge of wa is triggered, the other

operations should be finished.

w0−Gw0−

w0 start−wr+ w0+ Gw0+ w0 start+ w0 done+

w1 done−

w0 done−w1 start+w1 done+w1 start−wa+wr−wa−

Figure �3.44 The STG form of the w0 and w1 control circuit.

The STG specifications were fed to the Petrify tool. Here only the w0, w1, r0

statements, as well as the request signals to the Mutex, were considered. The

implementation of the data access statements are included here only as an illustration

of how these can be done. Effort is concentrated on the control variable statements

here because data slot circuits must be tailored to particular applications and should

not, therefore, be included in any generalized study.

The equations for the control circuits of the write and read parts produced by the

Petrify tool are shown in Table �3.6.

Table �3.6 The equations of the reader and wr iter from the Petr ify tool.

[r0] = rd * csc0; [w0] = wr * csc2 + w0 done + w1 start;

[r0 start] = Gr0 * csc0; [wa] = w1 start’ * csc2’ ;

[ra] = csc0’ ; [w0 start] = Gw0 * csc1;

[csc0] = r0 done’ * (Gr0’ * rd’ + csc0). [w1 start] = csc2 * csc1’ * w0 start;

 [csc1] = w0 done’ * csc1 + Gw0’ ;

 [csc2] = w1 done’ * (wr’ * csc1 + csc2).

In order to maximize technology independence with respect to preserving speed

independence, simple monotonic gates are used to assemble the circuits

implementing these equations, rather than the complex gate solutions normally

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 97

assumed by the Petrify tool. This leaves the question of whether the final circuits are

SI open to debate, which will be dealt with later. For the moment, the main parts of

these statement control circuits are shown in Figure �3.45 and Figure �3.46. The writer

statement control circuits are represented informally below. The reader statement

control circuits can be derived following similar reasoning.

w1 done

w1 start

w0 done

w0 start

Gw0

w0

wr

wa

1312

5

11
10

4

9

8
76

3
2

1

Figure �3.45 The control circuit of the w0 and w1 statements.

r0 done

r0 start

Gr0

r0

ra

rd

Figure �3.46 The control circuit of the r0 statement.

The writer interface connection with the environment is shown in Figure �3.41. The

input signals are wr, Gw0, w0 done and w1 done. The output signals are wa, w0,

w0 start, and w1 start.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 98

In Figure �3.45, cross-coupled gates 3 and 7 form an SR latch. This “csc2” latch is set

via gate 6 when w1 done, wr and csc1b are all low. It is reset via gate 2 when w1

done is high. Cross-coupled gates 10 and 12 form another SR latch. This “csc1” latch

is set when Gw0 is low, and reset via gate 9 when w0 done is high. The initial values

of these latches are both set to logic one. Gate 1 is used to generate the signal w0.

Gate 5 is used for the signal wa, gate 11 for the signal w1 start and gate 12 for the

signal w1 done. There are also some auxiliary logic circuits.

In Figure �3.45, gates 4 and 8 are used to guarantee that the circuits are SI. Without

these gates we have a circuit that may only be considered SI under certain

assumptions.

metastability inside mutex

Figure �3.47 Analogue simulation waveforms with metastability within the Mutex.

The three-slot Pool design has been built using the VLSI design tool Cadence (0.6

micron technology). All simple gates in which there are no more than four input pins

are from standard libraries.

3.4.3.3 Circuit analysis

Simulations have shown that the functional behaviour of the circuits is as expected,

and any metastability does not propagate throughout the system but is contained

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 99

within the Mutex (net22 and net25). The analogue simulation result is shown in

Figure �3.47.

3.4.3.4 Compar ison

Self-timed Pools based on four-slot and three-slot algorithms have been designed and

implemented in VLSI circuits. The illustrative data path implementations are the

same in both cases. The crucial statement control circuits are different. The main

differences are shown in Table �3.7.

Table �3.7 The differences between four -slot and three-slot Pools.

 four-slot three-slot

circuits building block monotonic simple gate

Mutex 2 1

control logic Sequence as parallel as possible

aim Safety faster and safety

In the four-slot implementation, in order to retain an element of regularity, circuits

known to be completely SI are chosen as the building blocks with which to assemble

the control circuits. In the three-slot implementation, all control circuits are designed

directly by using the Petrify tool with maximum parallelism.

The physical size of the final implementation of the three-slot Pool should be smaller

than that of the four-slot Pool, especially considering that there is one fewer data

storage area to incorporate.

The comparative merits on data coherence and other ACM properties are discussed

in [Xia 1999b].

The three-slot Pool is faster than the four-slot one, by virtue of having fewer and

simpler control variable statements. For the implementations the speed difference is

increased because the three-slot one has been designed with maximum parallelism.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 100

Analogue simulations have been run for the three-slot and four-slot Pool

implementations. The results are shown in Table �3.8.

Table �3.8 The compar ison result.

 four-slot min time three-slot min time

w0 + w1 9.9ns 4.2ns

r0 (+ r1) 3.5ns 1.4ns

3.4.3.5 Ver ification

Although the equations produced by the Petrify tool are for SI circuit solutions,

whether or not the implementation is SI depends on how the equations are realized,

especially when complex gates specified by the Petrify solution are replaced by

simple gates. The Versify [Versify] tool has been used to verify whether the final

decomposed circuits are SI. The Petrify tool assumes that inverters have zero delay

and guarantees that the circuits constructed using complex gates and zero-delay

inverters are SI. However it is easy to prove that certain circuits which are taken as

SI solutions by the Petrify tool are not SI if input inverters do not have zero-delay, as

has been found by running the versify tool on them.

Using the Versify tool, an asynchronous circuit can be verified by comparing it with

the STG specification. The Versify tool takes the circuit specification in BLIF format

[Sentovich 1992] comprising the gates and latches from the “versify.genlib” library

and an optional user library.

The STG files and the BLIF files were compared through the Versify tool. The

following results have been obtained.

The versify report generated is: for the read statement control circuits, “ the number

of Traversing net Reachable states is 34” ; “ the number of Traversing circuit

Reachable states is 71” ; “ the circuit implements its specification” ; “ the circuit has no

deadlock and no livelock” ; and “ the circuit is speed independent” .

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 101

The versify report generated is: for the write statement control circuits, “ the number

of Traversing net Reachable states is 46” ; “ the number of Traversing circuit

Reachable states is 197” ; “ the circuit implements its specification” ; “ the circuit has

no deadlock and no livelock” ; and “ the circuit is speed independent” .

A Pool type of ACM is not suitable if, for instance, the reader process needs to

continue only when there is new data available. This may be significant if the reader

process is implemented with an asynchronous device where power savings can be

realised by allowing it to wait whenever it can, or if the data being transmitted are of

the interrupt and exception type.

For such applications, the other kinds of ACMs are proposed (see Table �3.1), such as

the Signal type ACM which is more suitable for the above example. The basic Signal

protocol does not hold up the writer but does hold up the reader if the ACM is empty.

The difference between Pool and Signal is shown in Figure �3.48.

Pool
(busy)
no wait
real time

(busy)
no wait
real time

(busy)
no wait
real time

(lazy)
can wait
low power

Signal

Figure �3.48 Compar ing the applicabilities of the Pool and Signal.

The basic Signal protocol specified an ACM with capacity 1, re-reading not

permitted and overwriting permitted. In other words, writing can happen when the

Signal contains either 0 or 1 item of unread data. A write data access modifies that

data state of the Signal to 1, but reading can only happen when there is one item of

unread data in the Signal.

3.5 Self-timed Signal specification and implementation

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 102

This is a special case of the general definition of the Signal with capacity n, n ≥ 0, of

which the “overwriting buffer” schemes found in many places in the literature (such

as [Sgroi 2000]) are also special cases.

This basic Signal definition is captured by the PN model in Figure �3.49. Here the

place 0 and place 1 are complementary to each other, one and only one being marked

at all times.

overwrite

write
read

1

0

Figure �3.49 Basic definition of the Signal protocol.

This definition treats the write and read data accesses as atomic processes, which is

not sufficiently clear for system synthesis and implementation. In reality, data

accesses by the reader and writer must take time, and the timing relationship between

the reader and writer processes is important for an ACM in a real time system.

In other words, apart from the timing requirements imposed on the reader and writer

by the data state of the ACM, data access at one side may affect the temporal

behaviour of the other side. For example, the reader may or may not be required to

wait while the writer is in the middle of an access because of the implementation.

The model in Figure �3.49 is not specific about such distinctions.

In order to represent the concept of non-atomicity of data accesses by the writer and

reader, such accesses must be represented as distinctive states in the model. This is

achieved by using the techniques introduced in [Clark 1998]. Such a refinement is

shown in Figure �3.50. By treating the read and write data accesses asymmetrically,

this definition maintains the possibility of full temporal independence for the writer,

but prescribes waiting for the reader while either writing or overwriting is in

progress. It also means that the reader will always obtain the newest item of data

from the writer available at the time of reading and the writer is always allowed to

access the Signal, regardless of the data state of the Signal state of the reader. This

definition is used in this section.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 103

read

overwrite

write

1

0

Figure �3.50 Signal with non-atomic wr iting.

Having only one token in the models implies that the writer and reader are dealing

with complete items of data one at a time and that the integrity of these items of data

is maintained, i.e. the reader is not supposed to obtain an item of data that is

assembled from parts of different items provided by the writer, or otherwise

corrupted.

Formally, the definition in Figure �3.50 specifies the following properties:

1. Data states and their updating: The Signal has a data capacity of 1. In other

words, at any time, it contains either 0 or 1 items of unread data. At the start

of a read data access, the Signal’s data state is set to 0 (empty). At the end of

a write data access, the Signal’s data state is set to 1, the item of data

provided by this write data access being unread.

2. Conditional asynchrony for the reader : A read data access may start only

when the data state of the Signal is 1 and no write data access is occurring. A

read data access can be arbitrarily long.

3. Unconditional asynchrony for the wr iter : The writer must be allowed to

start and complete a data access at any time, regardless of the data state of the

Signal and the status of the reader.

4. Data coherence: The Signal and the data accesses of the writer and reader

processes must not modify the content of any item of data. In other words,

any item of data received by the reader must not have been changed since

being provided by the writer.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 104

5. Data freshness: Any read data access must obtain the data item designated as

the current unread item in the Signal, i.e. the item of data made available by

the latest completed writer access.

In the terminology of multi-slot ACMs [Simpson 1990], a “data slot” is a unique

portion of the shared memory which may contain one item of data. It is obvious that

a Signal in the form of Figure �3.50 cannot be implemented with only one data slot,

since it cannot possibly support writing and reading at the same time and maintain

data coherence. In other words, properties 3 and 4 cannot both be satisfied by an

implementation with only one slot.

Previous work has indicated that it is desirable to minimise the number of slots in

multi-slot ACM implementations (four-slot and three-slot Pools described above).

The advantages include smaller hardware expenditure both in the actual slot memory

areas and control circuits, leading to better temporal performance and higher

reliability.

Most of the software solutions in the literature also spend considerable effort on the

reduction of the number of slots needed for any particular ACM specification, with

similar reasons.

3.5.1 State graph specification of Signal

The conceptual definition of Signal in Figure �3.50 cannot be used as a formal

specification of the Signal protocol because it does not show the specifics of this

protocol, such as how, for example, blocking on writing is avoided by using multiple

slots. In this sub-section we construct a state graph specification for a two-slot

Signal, which will define a maximally permissible automaton satisfying the required

properties of the ACM. Let us first formulate those properties using the idea of states

and transitions labelled by write and read actions. The reason for using a state graph

for specifying the ACM protocol instead of trying to construct the PN model directly

is explained as follows. State graph modelling is much clearer for reasoning about

global system properties than PNs, because a state graph is based on the concept of

global states and interleaving semantics. A PN would already be a decomposition of

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 105

the system’s states into local states (places) and this is often non-trivial when systems

consist of a number of processes (write and read) and components (slots).

• Actions: Actions are processes whose start and completion are atomic events

and whose durations are finite but non-atomic.

• States: A state is the result of the completion of one or more actions. During a

state, actions may exist which have started, but not completed (in process),

and actions may exist which may start. These “ in process” and “may start”

actions cannot complete, however, without resulting in a new state.

• Previous sets: The previous set of a state s, denoted as sP , is the set of actions

that lead to s.

• Next sets: the next set of a state s, denoted as sN , is the combined set of

actions which may start during s and actions which may be in process during

s.

Here, the slots will be known as slot 0 and slot 1; write data access to slot i is known

as wri where i = 0, 1; read data access to slot j is known as rdj where j = 0, 1. These

are the only actions considered at the moment. So during each write cycle the writer

performs one action wri for some i and during each read cycle the reader performs

one action rdj for some j. With these assumptions, properties outlined in the previous

section require the following conditions:

1. Data states and their updating, and asynchrony for reader and writer:

wri ∉ sP � rdj ∉ sN , ∀ s, i and j; this means that if a state was not the

result of a completion of a write data access (i.e., it is solely the result of the

completion of a read data access), then a new read data access cannot start

during it (data state = 0).

wri ∉ sN , ∀ s; this means that a write data access must be allowed to start

or be in process during any state.

2. Data coherence:

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 106

¬ (wri ∈ sN & rdj ∈ sN) ∀ s, i, j and i = j; this means that there can be no

simultaneous read and write access of any slot.

3. Data freshness:

wri ∈ sP & rdj ∈ sP � wrj ∈ sN & rdi ∈ sN , ∀ s and i ≠ j; this “slot

swapping” fully utilises the two available slots so that the reader always

obtains the item of data provided by the latest completed write data access.

4. No “retry loops” :

rdj ∈ msN & rdj ∉ ksP � rdi ∉ sN , ∀ ms preceding s, i ≠ j, and for all

ks on the state trajectory between ms and s, including ms ; this is also true for

write data accesses.

Condition 4 reflects the desire to avoid “ retry loops” [Chen 1998a], so as to keep the

solution simple for the first attempt. It means that, once the reader (or the writer) has

been allocated a slot for access, it must perform this access before it can be allocated

the other slot for access.

A simple state graph specification has been obtained using these conditions. It

conforms to the definition in Figure �3.50 and is shown in Figure �3.51. The initial

state s1 is labelled with a big arrow. In this state, the ACM starts as “empty” with

only writing to slot 1 enabled.

In Figure �3.51, the dotted edge denotes that the two states at its ends are essentially

the same state and the state graph is in closed form for readability.

All conditions mentioned above have been incorporated into the specification. For

instance, at state s2 in Figure �3.51, rd1 cannot be in the next set because rd0 was in

the next set at state s0 and has not featured in the next set of any state on the

trajectory from s0 to s2 (condition 4). At state s1, no reader slot access is in the next

set because there is no writer action in its previous set (condition1).

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 107

rd0

s0

s1

wr1

wr1
rd0

s2

s3 s5

s0s4

wr1

rd1

wr0

wr0

wr0

rd1

Figure �3.51 Simple state graph specification for a two-slot Signal (s0 is initial state).

wr1

wr1

λ0wr1

λ2
λ3

λ3

µ1µ1

rd0 rd0

43
6

wr0

wr0

λ1

rd1λ1

µ0 µ0
wr0

rd1

21 5

wr1

λ0wr1

λ2
λ3

µ1µ1
wr0

wr0

λ1

µ0 µ0
wr0

12

rd0 λ3
wr1

rd0

rd1 rd1λ1

reader’s (elementary) states

reader’s (super) states

writer’s (elementary) states

writer’s (super) states

8

9

10

7

11

Figure �3.52 " Distr ibuting" states between reader and wr iter using regions.

This specification is not detailed enough for implementation, because the actual

means which maintain the slot steering for the writer and the reader processes remain

undefined. A further refinement is obtained by adding “silent actions” , which

perform the necessary functions of the slot-management control; variable statements

used in published multi-slot ACMs [Simpson 1990, Tromp 1989, Kirosis 1987, Chen

1998a and the above four-slot and three-slot Pools]. The result of this refinement is

shown in Figure �3.52. This refinement will also be needed in order to satisfy the

separation conditions for PN synthesis, described in the following section.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 108

Both halves of Figure �3.52 show the same state graph. The reason for duplication is

simply to avoid cluttering when deriving regions corresponding to the actions related

to write and read parts (cf. next section). In Figure �3.52, the λ ’s denote silent actions

performed in the write part that separate the states with the same connections to the

main actions of data slot accessing. For instance, 0λ is the control action that

separates the Signal for giving next assess to slot 1 to the reader and next access to

slot 0 to the writer. Before 0λ the writer was allocated slot 1 and the reader was

allocated slot 0. The µ ’s denote silent actions performed in the read part. For

example, 1µ stands for the request of the reader to start reading slot 1, and also the

fact that slot 0 is no longer used for reading. This should indicate to the writer that it

should move to slot 0 if it has finished or when it finishes with slot 1. Hence,

depending on whether action 1µ has or has not been performed by the reader, the

writer decides whether to do 0λ (move to writing slot 0) or to do 3λ (keep writing

slot 1).

w0

6

wr0

2

λ2

λ1

λ0

4

3

w1

5

rd0
wr1

λ3

rd1

µ0

1 7

8

9

10

r1

11

r0

12

µ1

Figure �3.53 PN specification of the two-slot Signal.

3.5.2 Circuit synthesis

After PNs synthesis from the state graph specification, a PN specification of the two-

slot Signal is obtained, which is shown in Figure �3.53.

More details can be found in [Yakovlev 2001].

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 109

That the PN already captures the notion of a “decomposed state” in its places is

extremely important because we can exploit this distribution in the “net-to-circuit”

translation.

+

−

+
−

wr0

rd1 rd0

TL TL
wr1

λ2λ1λ3 λ0

arb arb

r1
r0

w0

µ0

hs hs

hs hs

w1

3 1

4 2

7
9

10
µ18

Figure �3.54 Block diagram of first circuit design.

Our first “sketch” of the Signal’s circuit implementation, which is basically a

homomorphic translation of the PN in Figure �3.53, is shown in Figure �3.54. The

circuit is built with two-phase (event-based) signalling in mind (see [Sutherland

1989]). It consists of the control skeleton part and the operational part, involving the

write and read operations and the latches that implement variables w and r. These

latches are equipped with pairs of control signals for set and reset handshakes,

labelled “+” and “ -” (note that these handshakes ensure that both the setting and

resetting of w and r are properly acknowledged). The latches also produce “dual-rail”

signals, r0 (when r=0) and r1 (when r=1) for r, and similarly for w. The write control

part (see labelling of wires by numbers 1-4) is obtained by simply associating places

1 and 3, whose input transitions fire in a mutually exclusive manner, with XOR

gates, and places 2 and 4 with requests to two ‘arb’ blocks, which are arbiters for

sampling the (potentially changing) levels on signals r0 and r1, and depending on the

‘r0=true’ or ‘r1=true’ state of the test, generating one of the event-based outputs

corresponding to the appropriate λ transition. These signals then either activate the

appropriate write operation, either wr0 and wr1, depending on which of the two slots

is supposed to be written, or send a request to toggle (set or reset) the state of w. In

the read part, the control flow is very simple (note wire labels 7-11 to indicate

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 110

correspondence with appropriate places in the PN) and it does not need arbitration. It

waits, at one of the event-based DL gates (initially, it is the left one, associated with

the initial position of the token in the read part at r=1) the arrival of the condition w0

to be at 1 and then activates the rd1 operation, followed by the resetting of the r

variable. After that it performs a similar action with r0 as soon as the w signal

becomes 1.

This implementation is very schematic. In order to build the complete circuit for the

Signal from it, it needs to be refined by providing interconnections with the two

environment handshakes, write’s request and acknowledgement and read’s request

and acknowledgement, which are implicit in this circuit. These two handshakes could

be created by breaking the wires that are indicated in Figure �3.53 by the ovals

labelled with hs. Of course, there have to be suitably multiplexed by using known

two-phase elements, such as e.g. CALL from [Sutherland 1989].

We have also studied, at greater length (believing that this will give us a faster

implementation), another circuit translation of the PN model, the one based on four-

phase signalling. This translation method, described in [Yakovlev 1998], is based on

the idea of a “one-hot-encoded” implementation of the PN model, in which places of

the PN are associated with memory elements (called DCs, cf. Chapter 2) of the

control circuit.

3.5.3 Hardware implementation

The structural idea of the circuit implementation for Signal is shown in Figure �3.55.

data in

w

testpart

write
wr

wr_done

wr0

wr1

r

test

data out
mux

read
part rd_done

rd

rd0
slot0

slot1 rd1

set/clear

set/clear

Figure �3.55 Basic diagram of Signal circuit implementation.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 111

3.5.3.1 Implementation of the datapath and control var iables

The slot part is implemented similarly to ones in the four-slot and three-slot Pools.

We will not discuss it further. In this mechanism, two control variables w and r are

used. They are set by one side and reset by the other. The circuit implemented this

function is shown in Figure �3.56.

set clr

a

setack clrack

Figure �3.56 The set/reset circuit with completion logic.

In this circuit, completion logic is needed from the self-timed circuit point of view.

Because set and reset actions cannot happen at the same time according to the

mechanism, this simple circuit is sufficient for the purpose.

In systems with true timing heterogeneity, metastability in the ‘sync’ arbiters is

unavoidable if both sides of an ACM are permitted unlimited access. In our

implementation, metastability is contained within the ‘sync’ arbiter block, which is

shown in Figure �3.57. Here ck0 is the sample signal and rbar is the sampled signal.

Only when ck0 is active, sync can work.

mutex
rbar_1
rbar_0

(r=0)
(r=1)

λ2
λ1

ck0

rbar

Figure �3.57 Implementation of a 4-phase 'sync'.

In this mechanism, for example, after sampling rbar; if rbar equals 0 (r=1),

write_ack is set directly; if rbar equals 1 (r=0), write_ack is set after resetting w (see

Figure �3.58).

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 112

3.5.3.2 Self-timed implementation of control circuit

The read part is conceptually simpler than the write part and its description is left

out. The write part, whose PN specification can be traced back to Figure �3.53, is

shown in Figure �3.58. This synthesis process from PNs to hardware will be shown in

Chapter 6 as a case study. The research topic will be explained in Chapter 5. Here we

only explain it from the optimized resulting circuit. This circuit consists of a set of

DCs (shown in bold) to store the distributed state of the control and blocks

representing the control logic. The controlled (operational) logic is simply inserted

between the cells, by breaking the wire that signals the next call about the arrival of

the token. Note that the environment itself is inserted between cells (as handshake

“done/wr”). We first consider the DC part.

2dc

odc1 odc0

sync

r

sync

rbar

sdcsdcsdcsdc

wr

write_start

write_ack

r_0 r_1
rbar_0 rbar_1

odc1 odc0wr1 wr0

ck1 ck0

3 1

4 2

43 41 2321

slot1

wr1 wr0

slot0

slot1 slot0

clrw setw

Figure �3.58 Circuit implementation of the wr ite part using DCs.

The cells, built essentially around SR flip-flops (cf. Chapter 2), represent the marking

of the corresponding places in the PN (the absence of a token in a place is associated

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 113

with state 01 in the flip-flop, the presence of a token with state 10). The labels of

these places are shown in circles. In particular, blocks odc0 and odc1 stand for the

cells corresponding to places 2 and 4. Block 2dc encapsulates two cells that model

places 1 and 3 (the internal logic structure of this block is shown in Figure �3.59). The

two pairs of sdc cells, labelled with 43 and 41, 21 and 23 respectively, are added in

order to implement the appropriate branching of a token from place 4 either to place

3 or to 1 (similarly, for a token from place 2 to either place 1 or 3) depending on the

arbitration decision made in the ‘sync’ block, which samples the value of the output r

(rbar) of the binary variable ‘ read’ . Such a sampling corresponds to testing the

marking of places 11 and 12 (by read arcs) using transitions 3λ and 0λ .

2dc
(0)

(1) (0)

odc1 odc0wr wr1 wr0

(1)

slot0 slot1

Figure �3.59 Logic for 2dc block.

The cells named sdc are all built using a simple logic structure; they model the

‘ linear’ pass of the control token. The cells named odc0 and odc1 are slightly more

complex and allow merge of acknowledgements from two mutually exclusive

branches of token flow (from place 4 and 2). For example, cell odc1 (for place 4) can

either be reset to 0 after the pushing of the token back to place 3 (via the sdc cell 43)

or to place 1 (via sdc cell 41), the latter also involving the execution of setw (event

2λ in the net). This is shown schematically by depicting images of the OR gate at

the resetting input of cell odc1, which collects ack signals from the sdc’s 43 and 41.

Implementing such a more complex reset function requires the use of 3-input

NANDs in place of the gate which generates xb in Figure �3.60.

The operation of the control logic based on DCs can be visualised by performing a

sequence of transitions on the cells signals as shown in Figure �3.60. The arrival of

the token corresponds to the left-hand side handshake request signal (inr) going to 0.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 114

inr− x+ xb− ina− inr+

outa− outr−xb+ina+

x− outr+ outa+

x xb

ina

inr

outa

outr

"mild" relative
timing

Figure �3.60 Simple DC (with extra wire for a 'mild' relative timing assumption).

A similar method can be used to construct the control circuit for the reader part.

3.5.3.3 RT implementation of the control circuit

The dotted connection (from outa) in all DCs should be disregarded when the circuit

is built maximally SI. However, adding such a connection would introduce a

relatively ‘mild’ delay dependency (cf. relative timing [Stevens 1999]), concerned

with the fact that the return of x back to its quiescent state (0) is left

unacknowledged. The gain from this is that transitions xb+, x- in the above sequence

are executed concurrently with the forward propagation of the token. Under realistic

delays in the gates, even with a zero delay for the controlled operations between the

cells, there is sample time to complete these transitions (reset of the token) before the

‘ front’ of the new token comes back through the control loop.

A bit more ‘aggressive’ relative timing is applied when the ‘ front’ of the token is

allowed to propagate forward as soon as it has been recorded in the cell, without

even waiting for the completion of the preceding handshake. Again, under realistic

delays, and assuming that the operational part takes at least a couple of inverter

delays, this should be sufficiently robust. The modified logic of the case of a simple

cell (linear transfer) is shown in Figure �3.61. Here the delay of passing the token

through the cell is absolutely minimal – it takes two inversions, x and xb, from inr- to

outr-.

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 115

inr− x+ xb− outr− outa−

xb+ina+ ina− inr+
x−

x xb

ina

inr

outa

outr

Figure �3.61 Simple DC with 'aggressive' relative timing.

3.5.3.4 Circuit simulation

Extensive analogue simulations (for 0.6 mµ CMOS technology) have been

conducted on two circuit implementations, one maximally SI using DCs and the

other with aggressive relative timing (RT) [Stevens 1999] using the circuit in Figure

�3.61. Both implementations have been confirmed qualitatively to satisfy their

specifications. Their relevant full (write, read) cycle times are given in Table �3.9.

These times are measured between the adjacent rising edges of the write requests

(write start+ → write start+) and read requests (read start+ → read start+). For

writes the two modes considered are those that do SR and do not involve NSR

switching (setting or resetting) the value of flag of w. For reads, which can be

naturally blocked by the absence of new data, only one mode, called “no waiting” for

new data (NW), is considered.

Table �3.9 Cycle times

type Write read

 NSR SR NW

SI 9.0ns 10.4ns 9.0ns

RT 4.8ns 6.3ns 6.6ns

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 116

In our implementation, metastability is contained within the ‘sync’ arbiter block

(Figure �3.57) and analogue simulations (Figure �3.62) confirm that it does not

propagate through the system. Note that, after the write request is set to high and ck0

is generated, in order to sample the current value of variable r, the latter is marking

its transition from high to low. This puts the SR flip-flop (we use a standard Mutex

implementation due to Seitz [Seitz 1980]) into a metastable state (see the upper

window in Figure �3.62), which is eventually resolved in favour of rbar_0, i.e., the

old value of r (high). The outputs of the Mutex, rbar_0 and rbar_1, produce clean

edges. These signals are then used to generate ack signals leading to the control

logic, which in this case passes control to one of the DCs, labelled 21 and 23, to

perform either nothing or ‘setw’ (setting w to 1), followed by the rise of the write ack

signal.

metastability inside mutex

write response time

input of sync

output of sync

Figure �3.62 I llustrating metastability.

The new ACM classification in Table �3.1 makes it possible to define a more useful

dual for the Signal. This is the new Message type which permits re-reading but not

overwriting.

3.6 Message, the dual of Signal

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 117

The Message therefore does not hold up the reader, but does hold up the writer when

the data state is equal to the ACM’s capacity (all data items in the ACM unread).

Such an ACM is useful when loss of data items is not permitted and when the reader

process must be given temporal independence from the ACM’s data state. Roughly

speaking, from the writer side, new Messages may not be generated if previous ones

have not been received, as compared with Signals being generated regardless of

previous ones not being received. The reader, on the other hand, will not wait for a

new Message to appear but will re-use the previous one if needed, and will stop and

wait for a new Signal if one is not available.

Obviously, the Message is a simple mirror image of the Signal. The defining models

in Figure �3.49 and Figure �3.50 can be simply reversed to form similar definitions for

a 1-capacity Message, and it can be said that the implementation above is also that of

a simple Message with full asynchronism for the reader. It just needs to be connected

to the writer and reader processes the other way round from the Signal.

A new classification for ACMs was presented in this chapter. From the timing point

of view, the new classification is more meaningful than the original one. In addition,

all basic ACMs can be implemented in hardware, especially self-timed circuits.

Four-slot Pool, three-slot Pool, and two-slot Signal were implemented by using self-

timed circuits, and two-slot Message was discussed in the end of this chapter, which

is a dual of the two-slot Signal. As a result, after implementing the two-slot Signal, it

is easy to implement this two-slot Message.

Both digital and analog simulations were done for the four-slot Pool, three-slot Pool,

and two-slot Signal designs. The results show that they function as expected.

3.7 Conclusions

NCL-EECE-MSD-TR-2003-100

Chapter 3: New classification and self-timed implementation of ACMs

 118

The ACM designs, within their local boundary, are not fully asynchronous (in the

sense of non-blocking) by virtue of the unpredictable waiting introduced by Mutexes.

However, no metastability propagates through the Mutexes, and it is settled down in

a limited amount of time.

The difference between the FM solution (four-slot Pool by Simpson) and our self-

timed solution (SI four-slot Pool) was investigated in this chapter. The performance

of the worst case of the SI solution equals the one of the FM one. The SI solution has

the potential to run as fast as possible, because metastability is such a rare event. In

addition, metastability was shifted from the control variables to the handshake

interfaces. The SI solutions are safer than the FM ones.

Especially, it is possible to make some modification in the SI solutions in order to

obtain fast ones. Although they are not SI, they are safe under some timing

assumptions. The example in this chapter is the RT implementation of the three-slot

Pool.

In addition, several different design styles were used in the implementations.

NCL-EECE-MSD-TR-2003-100

As identified in the introduction, testing is a hot topic in both synchronous circuits

and asynchronous circuits. Many testing techniques have been developed for

synchronous circuits. However, the testing techniques used for synchronous circuits

are not generally suitable for asynchronous circuits, although examples exist in

[Kondratyev 2002]. This is because asynchronous circuits are event driven, and not

timing driven as synchronous circuits. In addition, because of variety of timing in

asynchronous circuits, it is very difficult to test this kind of circuit.

Although some techniques for asynchronous circuits have been presented which can

be used to test normal asynchronous circuits, including self-timed circuits, they are

not satisfactory for testing fully asynchronous communication circuits such as our

self-timed ACM. The reason is discussed in this chapter.

With advent of SoC, communication between multiple independent systems built on

one chip should be needed. Testing of this kind of system is worthwhile to be

studied.

In this chapter, we introduce a method to test this kind of circuit, and develop a

method to test our self-timed four-slot Pool type of ACM.

Chapter 4: ACM testing

4.1 Introduction

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 120

Testing is an essential part of the overall realization of logic circuits, especially VLSI

circuits. The main purpose of testing is to verify the correct operation of a circuit and

detect the possible presence of certain processing faults [Shepherd 1996].

However, several aspects of asynchronous circuits make them harder to test than

synchronous circuits. The reasons are as follows [Hulgaard 1994]:

1. Asynchronous circuits have by definition no global synchronization signals

(clock). This drastically reduces the amount of control over the circuit as it

cannot easily be “single stepped” through a sequence of states, which is a

common way to test synchronous circuits;

2. Asynchronous circuits tend to have more state holding elements than

synchronous circuits, so generating test vectors is harder, and design

techniques to ease testing will have a higher area overhead;

3. Asynchronous circuits may have hazards or races when faulty, and these

delay faults are notoriously difficult to detect.

Fortunately, the other aspects of asynchronous circuits tend to make them easier to

test. Because asynchronous circuits use local handshakes instead of global clock

signals to synchronize operations, a stuck-at fault on the signals used for

handshaking will cause communicating modules to wait indefinitely, an effect that is

easily observable. These differences lead to new approaches for testing asynchronous

circuits or a re-evaluation of the trade-offs involved when applying techniques

developed for testing synchronous circuits [Hulgaard 1994].

4.2.1 Terminology

A number of terms are used in testing:

4.2 Asynchronous circuit testing methodology

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 121

1. Primary outputs: the outputs of the circuit under test are called primary

outputs, and we assume that they can be easily observed.

2. Primary inputs: the inputs of the circuit under test are called primary inputs,

and these are assumed to be easily controllable.

3. Controllability: the controllability of a circuit is the ability to establish a

specific signal value at each node in the circuit by proper setting of the

circuit’s primary inputs.

4. Observability: observability of a circuit is the ability to determine the value

at any node in the circuit by observing the primary outputs while controlling

the primary inputs.

5. Testability: the testability of a circuit is a measure that attempts to reflect the

ease with which a circuit can be tested. A circuit with high testability

generally has a higher degree of observability and controllability than one

with low testability.

6. Fault detection: fault detection is the process of determining whether a given

circuit contains one or more faults. This is done by applying a sequence of

input values (called test vectors) to the circuit and observing the primary

outputs. If the outputs differ from the specification, a failure has occurred and

a fault is present in the circuit.

7. Fault coverage: in a test, a set of test vectors are applied to the circuit in

order to detect as many faults as possible. The effectiveness of a test is

measured by the fault coverage, which is the ratio of faults potentially

detected by the test to the total number of possible faults in the circuit.

8. Fault model: a fault model is employed to test a circuit efficiently based on

its structure rather than on its functionality. The fault model is an abstraction

of the physical faults we try to detect. The more detailed the fault model, the

more actual (physical) faults can be modelled. But this higher precision is

obtained at the expense of more complex test generation algorithms, longer

test generation times, and longer test times.

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 122

4.2.2 Asynchronous circuit testing methodology

4.2.2.1 Self-checking circuits

Generally, circuits that have the property that they halt for all faults are called self-

checking [Beerel 1992a, Varshavsky 1990]. A test for a self-checking circuit

attempts to toggle all nodes at least once, i.e., during a test all nodes are driven both

high and low.

However, as mentioned in [Hulgaard 1994], the method used for testing

asynchronous circuits should be different from the one used for synchronous circuits.

In synchronous systems special codes or state assignments are used so that the circuit

produces an illegal output in the presence of a fault. Because a global clock signal

exists in this kind of circuit, it is easy for a separate circuit (a checker) to

synchronously detect the illegal output code and raise an error signal. Faults are

detected while running the circuit at its operation speed (called on-line testing).

While a synchronous circuit can easily be single-stepped through different states by

using the global clock, this is much harder (sometimes impossible) for asynchronous

circuits. The lack of global clock signal means that synchronization must be achieved

by other means. Two general approaches have been used. One approach, used in the

design of classical asynchronous state machines, is to make timing assumptions

about the delays of the gates and wires (FM assumption). In addition, in order to

avoid critical races and hazards it is often necessary to add extra, functionally

redundant, circuitry and appropriate delays. The state machines have timing

constraints that must be met to ensure correct operation (such as the FM assumption)

and these constraints are hard to satisfy when composing multiple machines. This

makes it very difficult to fully test this class of circuits. The other approach is to use

explicit handshake signals for local synchronization. Because no absolute timing

assumptions are made on the handshake, circuits are robust and easily composable, a

property that has made this design approach popular. While the lack of global

synchronization decreases the controllability of the circuit and thus makes an

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 123

asynchronous circuit harder to test, the local synchronization tends to increase the

observability.

Similar self-checking approaches used for testing synchronous circuits have been

applied to testing asynchronous circuits. The method is based upon the theory of

classical asynchronous state machines. The circuit will be brought into a special state

when a fault exists [Sawin 1974, Mukai 1974]. However, designing asynchronous

circuits using the classical state machine approach and related approaches has turned

out to be problematic for large systems. Mostly it is not suitable for testing

asynchronous circuits.

4.2.2.2 Test generation

The purpose of test generation is to determine input sequences that will cause a

faulty circuit to behave differently from its specification [Hulgaard 1994]. This is a

very popular method to test synchronous circuits. Basically, a test procedure includes

three main steps: test pattern generation, applying the set of test patterns to the circuit

under testing (CUT), and evaluating the responses observed on the outputs of the

CUT [Petlin 1994, Petlin 1996].

The test pattern generation step is to derive those tests which will detect all possible

faults. The test patterns can be applied in two ways. The first way is to use external

test equipment to apply test to the CUT and check the responses. The second way

presumes the application of test patterns inside the CUT. The method of applying test

patterns internally is equivalent to the arrangement of the self-checking procedures

discussed above. The results of the process of evaluating the responses obtained from

the CUT can help to resolve two test tasks: the definition of a faulty circuit and the

indication of the position of the fault in the CUT (fault location testing).

However, in asynchronous circuits, because of no global clock signals to synchronize

the circuits, if the circuits have redundant logic, the behaviour of a faulty circuit may

depend on the delays of the circuit elements. For example, a fault may cause hazards

or races that only occur for certain combinations of delays. On the other hand, we

cannot expect an event to happen at a given time in asynchronous circuits. So to

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 124

guarantee that these circuits will work under a large range of conditions, the values

of the actual delays must be checked. This needs special care in order to guarantee

that no hazards and critical races we introduced during the test [Petlin 1994].

Generally this is impossible, especially for self-timed circuits.

4.2.2.3 Design for testability (DFT)

Generally, there are two key concepts involved in testing techniques: controllability

and observability. A level of controllability and observability may not be sufficient to

test all possible faults [Hulgaard 1994]. For example, to test for a premature firing,

the circuit must be held in a state where the premature firing occurs and the faulty

transition propagates to a primary output. This is not always possible. As a

consequence, in order to increase the testability, techniques for testing asynchronous

circuits by adding test circuitry during the design phase, usually called Design For

Testability (DFT), have been proposed.

The procedure for DFT assumes that modifications to the circuit are made in order to

ease the generation and application of test vectors to the circuit to be tested. To

improve testability three groups of DFT techniques have been used: ad hoc

strategies, structured approaches and built-in self-test techniques. There are several

basic criteria which must be taken into account when choosing the most suitable DFT

method for designing a VLSI circuit. These are as follows [Petlin 1994]:

• Impact on the original VLSI design: the increase in silicon area; effects on

performance; the testability of the extra logic,

• The ease of implementation of the technique chosen,

• The effects on test pattern generation: reduction in computational time;

improved fault coverage; reduction in engineering effort,

• Additional requirements for automatic test generation tools.

The simplest way to increase testability is to introduce a test point into the circuit.

Test points are of two types. An observation point is used to access an internal node

by making the node a primary output. A control point is used to set the value of an

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 125

internal node from a primary input. A test point can also be both an observation and a

control point. The schematic types of test points are shown in Figure �4.1. Where test

points should be inserted to minimize the total number is a difficult problem.

x

uo

0

1

ui test

x

uo ui

x x

Figure �4.1 Introducing test points for signal x. An observation point (left), a control point

(middle), and both (right)

Generalizing this idea leads to the popular method of simplifying test generation by

introducing a scan-path. The registers in the circuit are extended to become scan

registers, illustrated in Figure �4.2 using a conventional clocked register.

out

scan out

in

scan in

latch signal test mode

DQ
0

1

Figure �4.2 A scan-register.

In normal operation (test mode = 0), the scan registers work exactly the same as the

original registers. In test mode, the scan registers form a shift register as the scan-

output of one register is connected to the scan-input of the next. Their content can

then be serially shifted out to the scan-output, and new values can be shifted in on the

scan-input. Full observability and controllability is obtained for the values stored in

the registers.

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 126

As described in Chapter 3, the ACM circuit has three important properties:

asynchrony, coherence and freshness. These properties mean that an ACM can work

as fast as possible or as slow as possible, even if one process of an ACM, the writer

or the reader, stops. For example, the writer (the reader), one of two independent

processes in an ACM, works on its own running cycle no matter what the reader

(writer) does. In addition, our ACMs are implemented by using SI circuits. That

means that the ACM is not only a self-timed circuit but also a globally

unsynchronised system, and it is not a pure control unit but a communication

mechanism with data transfer.

So testing this kind of circuit is a difficult problem, even more difficult than testing

self-timed circuits (just circuits without a global clock).

Some methods for testing DI/SI circuits, such as the methods introduced in [Petlin

1996], have been proposed. However, most of them focus on the stuck-at fault

problems using DFT techniques. This is not enough for testing ACMs, especially

when testing the data coherence and freshness properties.

In order to test ACMs, some new methods are needed. In [Xia 1999b], a testing

method has been proposed in which the property of freshness could be verified by

testing for data item sequence. Based on the above asynchronous testing methods,

this chapter shows that such ACM systems can be tested by looking at a sequence of

data items, rather than individual items, whilst varying the rates of data

communication. A schematic illustration of the method is shown in Figure �4.3, in

which an evolution of testing methodology is shown. For fully ACM kinds of

asynchronous circuits, both DFT (built-in) and varying delay methods are used from

the testing evolution.

4.3 Testing method of ACM circuits

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 127

circuits

clocked

circuits
timed
self−

(ACMs)

asynch
fully

systems

classical system testing
(based on testing patterns)

can only be tested
with built−in testing logic

not only this but
also varying delay

Figure �4.3 Evolution of testing methodology.

In our case, the three properties of ACMs (see Chapter 3) need to be verified. In

addition, because this is a VLSI chip, testing is needed to find whether it works at all

and whether it works as expected. Apart from these concerns, such additional

problems as data loss need to also be investigated compared with the simulation

results produced by the Cadence tool [Xia 2000b, Shang 2000b].

GND

VDD

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61

10
11
12
13
14
15
16
17
18
19

25

20
21
22
23
24

26

27 29 31 33 35 37 39 41 43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2

3
4

5
6
8

10
12
14
16
18
20
22
24
26

9
7

11
13
15
17
19
21
23
25
28
30
32

27
29
31
33

34
35
37
39
41
43
45
47
49
51
53
55
57
59

36
38
40
42
44
46
48
50
52
54
56
58
60

62
64
66
68

61
63
65
67

Figure �4.4 A simple testing board.

4.4 Test aims and environment

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 128

In order to test the chip, some facilities are needed. A simple testing board was built,

which includes a 68 pin socket and connectors which are linked to the pins of the

socket as shown at the middle part in Figure �4.4.

A digital analysis system (DAS 9100), a digital oscilloscope, an analogue

oscilloscope and a multi-meter were also required.

A photo of our testing environment is shown in Figure �4.5.

Figure �4.5 A photo of our testing environment.

During the development of the hardware implementation of the four-slot ACM, the

problem of testing the important properties and general functions in hardware arose

[Xia 2000b]. Although the general functions and the properties have been verified

both theoretically and via digital simulation (using the Cadence tool), testing for such

properties in hardware is necessary to show that the fabricated chip functions as

designed. The ACM hardware was implemented with relatively fast VLSI

technology, as testing was desired to be performed at maximum performance. In

order to force the ACM to work at maximum speed, the testing circuits, the writer

4.5 On-chip testing circuit

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 129

and reader hardware, had to be built into the same chip as the ACM and kept as

simple as possible.

Based on the method proposed in [Xia 1999b], a simple solution consisting of a

counter serving as the writer and a FIFO buffer serving as the reader is proposed. An

on-chip FIFO buffer is needed because external connections cannot keep up with the

production of data from the reader part of the ACM, and dumping data out directly

implies slowing down the reader via its external handshakes. With an on-chip FIFO,

data from the reader can be downloaded off-line after an experiment. In order to test

the ACM efficiently, a function part which can vary the cycle length is also needed.

This is implemented by a delay part which is adjustable. Of course, control circuits

are needed in the testing circuits. The whole block diagram is shown in Figure �4.6. In

order to keep the testing circuit simple and the testing process efficient, the testing

circuits and the ACM can be run in several modes which are set up before testing.

Input Counter

Delayer

Control Registers

Stop/
Unstop Delayer

Control Registers

Output FIFO

ACM
Out−

Interface

Initial Setup

External

Figure �4.6 The block diagram of the on-chip testing circuits and the ACM.

The testing circuits work as the environment of the ACM. They can supply data to

the ACM, and collect data from the ACM. In order to save space, only 8-bit data path

width is used. Because all circuits are SI, they are easily connected together.

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 130

ACM

tester FIFOthe other Application

on chip testing circuits

Figure �4.7 The floorplan of the chip.

The 8-bit input counter, which is a self-timed dual-rail ripple carry counter, is

designed as the data generator (the writer). Data with values from 0 to 255 can be

sent to the ACM in increasing order. On the opposite side, the FIFO buffer collects

the data from the ACM as the reader. In order to analyze the data collected from the

ACM, the FIFO should be big enough to store as much data as possible. On this chip,

the ACM and its on-chip testing circuits share the chip area with circuits from other

projects. As a result, there is not enough space to build a really big FIFO. Eventually,

a 64 stage FIFO, which occupies more than half of the total chip area used by the

ACM and its testing circuits, was included on-chip. The floorplan of the chip is

shown in Figure �4.7.

In order to test the properties of the ACM, some relative timing assumptions are

needed. So in the on-chip testing circuits, two delay parts are designed for this

purpose for both the writer and reader respectively. For each delay part, there is an 8-

bit counter using the same technology as the input counter. The delay length of these

counters can be set up by writing an initial value, which is chosen from 1 to 255

based on the requirements of the control circuit. In testing, when the counter counts

up to the initial value, it takes some time. We use this method to realize delays for

the writer and reader. However, from a time point of view, the counter is discrete

with too large a granularity (about 2ns for each step). In order to adjust the delay as

finely as possible, another type of delay is also included. This part consists of

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 131

inverters connected in series. In our case, there are 64 inverters in total through the

input data bus which can supply eight kinds of different delays. These provide the

fine-tuning required.

In the on-chip testing circuits, control circuits are needed to control the writer, the

reader and the delay parts. For example, one control circuit is used to decide whether

the circuit should continue counting or whether it should stop (done). The function of

the circuit described in STG format is shown in Figure �4.8. When a delay request

(delay_start) arrives, the counter will add one, and then compare the result with the

value set up initially. If these are equal, the done signal will be produced and the

delay_start signal will be withdrawn; if not, the go_on signal will be given to

stimulate the counter again. The circuit implementing this function is shown in

Figure �4.9. This circuit was derived by using the Petrify tool, and was subsequently

optimized by hand.

delay_start+

count+

go_on+ count−

go_on−

done+ count−

done−delay_end+delay_end− delay_start−

Figure �4.8 The STG for a control circuit.

delay_end

delay_start

done

count

go_on

1 0

Figure �4.9 The logic circuit of choice function for the delay counter.

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 132

In order to test the chip, at the writer side, an input counter with two working modes

was designed. The first mode is stoppable: when it counts to 255, the writer will stop.

This is used for downloading the data from the FIFO to analyse. The other mode is

unstoppable. The writer will send data from 0 to 255 and repeat this cycle. This is

used for debugging the circuit on-line. This function is realized by introducing a

simple switcher gate. We will not show it here.

The operations on the writer side are:

• Preparing the data;

• Writing into the ACM;

• Checking whether to finish and

• Inserting a delay i.e. (adjusting the delay length).

The PN model of the counter circuits for this part is shown in Figure �4.10. The

control circuits are built by using DCs and translated from the PN model directly by

hand. The circuits are shown in Figure �4.11. An automatic tool used to translate PN

model to DC circuits is introduced in Chapter 5.

data
prepare

check
stop/unstop

ACM
write to delay

part

Figure �4.10 The PN model of the writer part.

DC DC DC DCstart

op1 op2 op3 op4

done

Figure �4.11 The control circuits of the writer part.

At the reader side, the main control circuits are implemented by using a method

which is different from the writer side (which uses DCs). Four operations, reading

the ACM, writing to FIFO, reading from the FIFO and setting delay, are connected

using handshake circuits. This FIFO works as a Micropipeline [Sutherland 1989]. So,

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 133

after the ACM is read and the reading operation is done, a writing request to the

FIFO will occur. After the writing to the FIFO operation is done, the delay action,

which is used to adjust the delay length in testing, will happen. The FIFO reading

operation is only used by external connections for collecting the data from the chip.

At the read side, when the FIFO is full, reading from the ACM will stop. However,

we have included the external data interface (to an outside computer for example) in

the FIFO, so it is possible to incorporate some degree of on-line downloading of

reader output data.

As stated above, certain basic testing circuits, such as the input counter, the FIFO

buffer, the delay parts and the control circuits, have been built on the same chip with

the ACM in order to obtain results when the ACM is running at full speed. Testing

functions supported by the on-chip testing circuits are described below:

• The input counter can produce a sequence of data items with ascending value.

Since the order of the data going into the ACM from the input counter is

known, the data retrieved from the FIFO can be compared, to verify data

sequencing.

• There are two working modes for the writer and reader sides, one is stoppable

and the other is unstoppable. These can be set up initially based on the testing

requirement.

• The relative timing is variable for the writer and reader by adjusting the delay

lengths of the writer and reader parts in order to realize the different speed of

the writer and reader.

4.6 Testing methods and results

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 134

What we do when testing is to analyze the data collected from the observation points,

including the output of the FIFO, and the timing relationship for the control logic

signals.

In our testing circuits, the data values coming from the input counter, the ACM and

the FIFO can be observed. In addition, some control signals, such as “ start” and

“done” handshake signals, can also be observed by using oscilloscopes.

What we consider is how to use these functions provided by the testing circuits and

observation points to analyse the data and timing relationship for the properties of the

ACM and the general function of the circuits better. In order to test the properties of

the ACM, the simplest method is to analyze the data and the timing by adjusting the

relative timing between the writer and reader. Initially, some control parameters,

such as the delay lengths for the writer and the reader, need to be set up. This is done

by writing data chosen from 1 to 255 to the relevant registers in the testing circuits.

The concepts of asynchrony, data coherence and freshness have been defined in

Chapter 3. Based on these concepts and the functions provided by the testing circuits,

some testing methods for these properties are proposed.

The following test programs analyze the data collected from the observation points,

including the output of the FIFO, and the timing relationship for the logic signals.

They are:

• The writer and reader are both run as fast as possible;

• The writer is run faster than the reader;

• The writer is run slower than the reader;

• With the writer stopped, the reader is run as fast as possible;

• With the reader stopped, the writer is run as fast as possible.

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 135

4.6.1 Testing general functioning

The general functioning of the ACM and on-chip testing circuits need to be tested. If

they are not correct, any subsequent testing for the properties of the ACM can not be

considered.

We analyzed the timing of start/done handshake signals, initial values, wrote the data

to the ACM and then read it from the FIFO. The results demonstrated that the

general functioning is as expected.

4.6.2 Testing asynchrony

In asynchrony testing, the assumption is that if the writer and reader do not run

independently, it means that the writer (or the reader) will wait for something coming

from the reader (or the writer) and when the writer (or the reader) runs slowly or

stops, the reader (or the writer) should be affected. In other words, if the two sides

are temporally dependent, the faster side will be slowed down by the slower side. In

fact, no matter how we adjust the delay time for the reader and/or writer, no waiting

occurs according to the waveforms observed on both a digital and an analogue

oscilloscope. This indicates that the ACM on this chip does support asynchrony.

4.6.3 Testing data freshness, coherence and data loss

The same testing methods are used for these properties as were used in the above

section (�4.6.2). The difference is in the observed signals. Here we focus on the data

results collected from the ACM when we adjust the delay time for the writer and

reader. Since the order of the data going into the ACM from the input counter is

known if we adjust the relative timing for the writer and reader, the data collected

from the FIFO buffer should be regular and have the same order as the input data.

Otherwise data freshness is violated. In our case, in order to save chip space and

money, the width of the data transferred to the ACM and the FIFO buffer is 8 bits.

With such a data packet size, it is very difficult to verify possible violations of data

coherence. In the circuits, the logic guarantees that the writer and reader cannot

access the same slot (packet) at the same time. If the writer and reader can access the

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 136

same slot at the same time, the data will then be combined and the frequency of the

data appearing will not be right. This implies that loss of data coherence should show

up in the observation as loss of data freshness. So by testing for data freshness we are

also testing for data coherence.

In actual testing, we have obtained a wide range of results. Two examples are shown

in Figure �4.12 and Figure �4.13.

41

41

41

42

42

42

44

44

44

45

45

45

46

46

46

48

48

48

49

49

49

4A

4A

4A

4C 4F

4C 4F

4C 4F

4D 50

4D 50

4D 50

With Twrite =80ns, Tread = 110ns, Tsample = 40ns.

1.

2.

3.

4.

5.

6.

8.

7.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Figure �4.12 Testing results.

With Twrite =80ns, Tread = 80ns, Tsample = 40ns.

1.

2.

3.

4.

5.

6.

8.

7.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

82

82

83

83

84

84

7F

7F

80

80

81

81

7C

7C

7D

7D

7E

7E

79

79

7A

7A

7B

7B

76

76

77

77

78

78

73

73

74

74

75

75

Figure �4.13 Testing results.

From the testing results, we can see that the data from the FIFO is very regular

without any obvious violations to data freshness and coherence, and the patterns of

data overwriting and re-reading (characteristic of the four-slot ACM) can be clearly

seen.

In addition, when the speed of the writer and reader does not match, data loss may

happen. The loss rate depends on the difference between the speed of the writer and

reader. The results are similar to the simulation results obtained by using the

Cadence tool.

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 137

The ACM used for testing is a four-slot Pool. It is implemented using SI circuits

under the Cadence VLSI design tool (0.6 micron technology). The layout is shown in

Figure �4.14. In addition, it is fabricated by EuroPractice. It is packed in a 68 pin

JLCC68 package. It is shown in Figure �4.15.

Figure �4.14 The layout of the ACM.

Figure �4.15 The VLSI chip of the ACM.

4.7 Conclusion

NCL-EECE-MSD-TR-2003-100

Chapter 4: ACM testing

 138

The testing results show the slot ACM implemented by using self-timed circuits

performed as expected. The mini-interlock introduced by using Mutexes does not

affect the operation of the ACM appreciably. No obvious violations of the three

important properties have been observed. In addition, the testing results

corresponded with the simulation results obtained by using the Cadence tool, which

indicates that the implementation did not introduce errors.

The testing methodology, in addition, is shown to be appropriate. The testing is

successful and on-chip testing circuits performed as expected.

NCL-EECE-MSD-TR-2003-100

In spite of a large amount of research done in the last two decades, asynchronous

circuits are still difficult to design, especially manually. One main reason is the

absence of mature asynchronous CAD tools to support asynchronous circuit designs

[Sutherland 2002].

In Chapter 1, we mentioned that a large number of automatic asynchronous design

techniques have been studied so far, and some asynchronous CAD tools have been

developed. However, they are not mature. There are some problems in these CAD

tools. They will be discussed in this chapter.

In Chapter 1 and Chapter 2, we found that although asynchronous circuits show

many benefits and can be expected to show benefits in the future, the above problems

will affect the use of asynchronous techniques. As main stream techniques, they

should possess properties such as quickly adapting to market changes and new

technology. In order to meet the above requirements, automated design tools are

needed.

Chapter 5: A New Direct Translation

Synthesis Method and the PN2DCs Tool

based on Petri nets

5.1 Introduction

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 140

From the asynchronous experiences shown in Chapter 3, we obtain a method for

designing self-timed circuits, especially SI circuits, to solve the above problems.

In this chapter, an attempt will be made to develop a direct translation synthesis

method based on PNs.

Significant efforts have been spent on studying and proposing automatic

asynchronous circuit design techniques that can alleviate the burden of design.

Automated logic circuit design flow for both synchronous and asynchronous circuit

designs generally consists of several parts, such as input, synthesis, simulation,

placement, routing and so on. A traditional design flow is shown in Figure �5.1.

Timing
Simulation

START

END

Specification
Behaviour

Simulation
Behaviour

Synthesis Optimization

Placement/
Routing

Post−
SimulationFabrication

Figure �5.1 The traditional design flow.

The main difference between synchronous and asynchronous design flow is the

synthesis techniques. In asynchronous circuit design, the correctness of an

5.2 Existing synthesis techniques and problems

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 141

asynchronous circuit not only depends on its structure, but also on the timing

behaviour of the individual gates and their interaction. So synthesis techniques in

asynchronous circuit designs are more important than in synchronous ones.

As an important stage in the automatic asynchronous circuit design flow, logic

synthesis for asynchronous circuits has been the focus of attention of many

researchers recently. Many attempts in this area have been made. Some successful

synthesis tools, such as the Petrify tool, have been presented.

In [Jung 1999 and Carmona 2001], a brief summary of asynchronous logic synthesis

techniques was reported. In general, synthesis techniques can be classified into two

types, one is based on the presentation of state space with abstract variables and the

other is direct (or syntax-driect) translation.

5.2.1 Logic synthesis

Logic synthesis techniques have been proposed in [Chu 1987, Meng 1989, Beerel

1992b, Couvreur 1994, Lavagno 1991, Myers 1993, Cortadella 2002]. They are

based on a state graph, in which each reachable state is assigned a binary code with

the value that represents the value of each signal at the state. Deriving logic

equations requires the generation of the binary codes for all states. There are two

methods to assign the binary codes to the states in the graph.

Most synthesis tools perform an exhaustive token flow analysis to obtain the

complete reachability graph and all binary codes. In this kind of tool, it is inevitable

that the state explosion problem is encountered.

Recently a new kind of method, called structural method, has been proposed [Pastor

1998, Carmona 2001], in which “structural” means “at Petri net level” without

requiring the explicit generation of the reachability graph. The methods are based on

a structural encoding of the systems.

Unfortunately, none of the above methods has been able to effectively tackle the

problem of finding an encoding of the specification that guarantees an

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 142

implementation, even with known structural methods working on some subclasses of

STGs [Carmona 2001].

Apart from the above problem, an assumption is introduced when SI circuits are

constructed. It is that the used gate library contains basic gates such as ANDs, ORs

and Muller C-elements with arbitrary fan-in and fan-out, and any number of inverters

with zero delay attached to the inputs. In fact, it is impossible to find such libraries.

Although these problems exist, there are several academic tools that use this kind of

logic synthesis method to produce circuits. This is because these tools work at the

logic level and attempt to optimize the resulting circuits by using variations of state-

of-the-art minimization techniques. As a result, the circuits produced can be very

effective and concise.

5.2.2 Direct translation

To overcome the state explosion problem, direct translation techniques that linearly

depend on the specification complexity have been proposed. Direct translation

techniques have a long history originating from Huffman’s work [Huffman 1954],

where a method of one-relay-per-row realisation of asynchronous sequential circuits

was introduced. This approach has been further developed by many researchers, such

as Unger [Unger 1969], Hollaar [Hollaar 1982] and Varshavsky [Varshavsky 1996].

Although direct translation methods have no state explosion problem and are

therefore more likely to guarantee an implementation, they do not exploit the

potential optimizations that can be performed at the logic level. Direct translation

methods usually generate circuit structures that cannot be locally transformed to

derived succinct representation of the same behaviour. Generally the size of the

obtained circuits is linear to the size of the specification. So they have problems in

cost and performance. On the other hand, because a direct translation method is

structure related, normally the circuits obtained should work under timing

assumptions.

Varshavsky’s method, which guarantees that resulting circuits are SI, belongs to the

class of direct translation algorithms. Based on PN specifications, this direct

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 143

translation method translates each place to a DC (refer to Chapter 2) and each

transition to an event, which is inserted between two relevant DCs.

A problem with this method is that within the DC definition (Definition 2.8), with

different set and/or reset functions, there exist a large number of different DCs. It is a

non-trivial problem to select the right type of DC for any particular place in a PN

specification.

Fortunately there are only five basic elements in PNs. They are linear, event join,

exclusive join, event fork and alternative fork [Varshavsky 1996, Yakovlev 1998]. A

PN specification should be constructed using these kinds of basic elements (maybe

not all of them). Because of the properties of this direct translation method, place to

DC and transition to event, what we need to do is to translate all basic structures to

logic circuits and then to construct all circuits obtained to a complete circuit.

The implementations and PN specifications of the above basic elements with two or

less predecessors and successors, such as linear, event join, exclusive join, event fork

and alternative fork, can be found in [Varshavsky 1996]. The simple schematic

representations are given in Figure �5.2, Figure �5.3, Figure �5.4, Figure �5.5, and Figure

�5.6 respectively. For more details please refer to that paper.

q q

S1
S1

Figure �5.2 The implementation and PN specification of a linear fragment.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 144

q

c

q

q

S1

S2

S31

S32

S3

S1

S2

S3 S4

Figure �5.3 The implementation and PN specification of an event join fragment.

q q

q

S1

S2

S3

S1

S2

S3

Figure �5.4 The implementation and PN specification of an exclusive join fragment.

q

q

q

S1

S2

S3

S1

S2

S3

Figure �5.5 The implementation and PN specification of an event fork fragment.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 145

q

q

c

c

q

S1

S2

S3

S1 S2

S3

Figure �5.6 The implementation and PN specification of an alternative fork fragment.

Here we consider only two or less predecessors and/or successors in join and fork

type basic elements. In fact, it is possible that there are three or more predecessors

and/or successors in a joined or forked basic element. Based on the rules of PNs,

such a complex specification can be decomposed to one constructed using simple

basic elements with only two or less predecessors and/or successors. This will be

discussed in detail in section �5.5.3.

From this, it may sound as if it is easy to translate specifications to DC circuits.

However the circuits implemented directly using Varshavsky’s method are

autonomous (no inputs/outputs). The only reasonable interfaces between the control

circuits and the environment are a set of abstract processes, implemented as request-

acknowledge handshakes, which are inserted into the breaks in the wires connecting

the DCs. This restricts this method to high (abstract) level design. The DC circuits

obtained are usually the control part in systems which also contain events being

controlled (data paths) as the environment of the control part. Autonomous circuits

include both control and data parts. We may treat low (signal) level signals as

abstract processes. However this will affect the functionality, the silicon cost and

performance. We use an example (Figure �5.7) to demonstrate these points.

Although in [Varshavsky 1996], an attempt to apply this method to low (signal) level

designs and to introduce external signals (inputs) was mentioned, it is not complete.

Inputs especially were still represented as abstract processes and some additional

DCs were introduced when implemented [Bystrov 2001].

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 146

Low level design is inevitable for most synchronous and asynchronous logic circuit

designers. Normally in low level design, the actions of signals are described very

clearly. Only when a system is translated into the low level, an appropriate gate level

circuit can be easily generated and then it can be placed, routed and finally

fabricated.

In low level event control systems, we assume that events are changes of binary

signals. In other words, our systems control the setting to 1 or resetting to 0 of binary

signals. This corresponds with 1-safe PN specifications [Yakovlev 1998].

b+ b−

b+ b−b (0) a(0)
f(x)

(b)(a)

(c)

a+ a−

a+ a−1 2 3 4

Figure �5.7 (a) The block diagram (b) Its function in STG format (c) Its PN specification.

Figure �5.7 gives an example specified at a low level. Signal a is an output and signal

b is an input. The block diagram and function specification in STG format are shown

in Figure �5.7 (a) and (b), respectively. In order to demonstrate the method, we

convert the STG specification to the PNs which are shown in Figure �5.7 (c). This is

the STG with the explicated places. Note that the most useful STGs are 1-safe PNs,

because they adequately capture the behaviour of control flow in hardware

[Yakovlev 1998].

Based on the direct translation method, each place is translated into a DC and each

transition is mapped to an event. This generates the control circuit shown in Figure

�5.8 (a), in which all events have been inserted. Because this example is a simple one

with only linear basic elements but no join and fork basic elements, only the simplest

DCs are used. This circuit does not include circuits implementing the events a+, b+,

a- and b-, which will need separate attention.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 147

aa+ack

a−ack

seta

clra
seta a+ack

b+

clra a−ack

b−4 1 2 3

(a) (b)

Figure �5.8 (a) An implementation (b) An SR latch with completion detection logic.

Because signal a is an output, we can use a modified SR latch shown in Figure �5.8

(b), in which a normal SR latch with completion detection functions implements

events a+ and a-. Note: in this chapter, the modified SR latch with completion

detection logic is called an “SR latch” and the normal SR latch is called “normal

latch” to distinguish them. When DC4 produces a request signal (seta=0), this circuit

changes signal a from 0 to 1. After the SR latch settles down, i.e. one state (signal a)

of the circuit has become 1 and its complementary state has become 0, an

acknowledgement signal (a+ack), which indicates that event a+ has been

accomplished, will be sent to DC1. Event a- can be implemented in the same way.

If we use the same method to implement events b+ and b-, according to the direct

translation method, b+ will be inserted between DC1 and DC2, and b- between DC3

and DC4. They will then be stimulated by request signals from DC1 and DC3. This

is obviously wrong because signal b is an input. From the original specification, the

events b+ and b- fire only depending on signal a in the environment. In other words,

events “b+” and “b-” are started by signal a directly. On the other hand, it is

unnecessary to keep input signals using SR latches the same as output signal a in

control circuits. Note that the control signals seta and clra cannot happen at the same

time (period). It is a reasonable assumption which does not affect the specification.

This is a problem for the direct translation method in implementing asynchronous

event control systems specified at a low level. In addition, as mentioned in

[Varshavsky 1996], the simplicity of the general technique itself does not guarantee

efficient and simple realizations.

Although Varshavsky’s direct translation method has disadvantages, his method has

a strong appeal to us. Because of the straightforward nature of this method,

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 148

automation is a distinct possibility. In addition, the circuits obtained by using this

method are SI. However, all of the above problems must be solved during the

development of any viable automatic tool.

In order to generate a good performance and low silicon cost circuit automatically,

we propose a synthesis design flow based on the design flow of synchronous circuit

designs.

Our asynchronous design flow consists of the following parts:

1. Initial specification;

2. Decomposition and refinement of specification;

3. Synthesis;

4. Technology mapping;

5. Optimisation.

Note that because the solution produced is SI, the circuit can work correctly under

any technology. That means we do not care what kind of technology is provided. So

the synthesis and technology mapping processes in our design flow are combined

into one process. We named it “direction translation method” (DT).

The schematic diagram of our design flow is shown in Figure �5.9.

START Specification
Direct

Translation Optimization END
PN original

Decomposition
Refinement &

Figure �5.9 Our synthesis design flow.

All processes will be discussed in detail in the following sections.

5.3 Our synthesis design flow

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 149

5.4.1 New method and specification decomposition

Varshavsky’s method [Varshavsky 1996] cannot translate input events specified in a

low level correctly (refer to section �5.2.2). In order to solve this problem, we propose

the following method.

5.4.1.1 New direct translation method (NDT)

Basically this method is based on Varshavsky’s. The same example shown in Figure

�5.7 is employed here to introduce this new method. The control circuit shown in

Figure �5.8 (a) has been generated based on Varshavsky’s method. All output signals

can be implemented directly using memory elements, such as SR latches, which are

inserted between the appropriate pairs of DCs in the control circuit.

Input signals, however, should be controlled and generated by the environment. Only

after the environment senses a change in signal a will it cause event b+ or b-. The

control circuit should be made to wait for changes in signal b at the relevant points.

Specifically, DC2 should wait for event b+ and DC4 should wait for event b-. In this

example, a NAND gate and an INV gate between DC1 and DC2, with the fw signal

of DC1 and signal b as inputs and the s signal of DC2 as output, implement the DC2

wait. The detail of the DC2 wait implementation is that the fw signal passes the INV

gate and then connects to one input pin of the NAND gate; the input signal b from

the environment goes to the other input pin of the NAND gate directly; the output of

the NAND gate connects to the DC2. This circuit is SI and implements the wait

function correctly. The reasons for this will be explained in section �5.5.3. Similarly,

an OR gate can be used between DC3 and DC4 to implement the waiting for event

b-. The complete circuit is given in Figure �5.10. Note that the DCs being used

5.4 New direct translation method and specification refinement

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 150

happen to have the simplest possible set and reset functions (f(set) and f(reset) in

Definition 2.8). This is because of the simplicity of the system specification (no

forks or joins in the PNs). However, even with forks or joins in the specification PN,

set and reset functions for the affected DCs would be easy to derive.

seta

4 1

a+ack clra a−ack

2 3

b
a−ack latch

SR a
clra

a+ack
seta

Figure �5.10 An implementation.

Theoretically, any persistent PN specification can be translated into a DC circuit

using this method. Each place is translated into an appropriate DC, and each

transition into either a memory element holding this output signal or some logic

circuits waiting for the input signal. This is guaranteed under the assumption that all

kinds of DCs exist in libraries. However, a given library must have a finite numbers

of gates. This assumption is not practical. In order to implement real-life DC circuits,

we must restrict the number of the gates in a given library.

According to the DC definition (Definition 2.8 in Chapter 2), in a DC, only the set

function and reset function are changeable. Generally they are decided by the number

of predecessors and successors of the mapped place respective. The number of the

fan-in in the set function is the same as the number of the predecessors. The number

of the fan-in in the reset function is the same as the size of the successors. So in order

to limit the numbers of a given library, we must restrict the numbers of the

predecessors and successors for each place.

On the other hand, from the logic design point of view, fan-in and fan-out affect the

performance of logic gates. Generally, gates with three or less fan-in and/or fan-out

are preferred. Based on this discipline, we can define a library used for our method.

It will be introduced in section �5.5.2. At the same time this discipline restricts PN

specifications too. In order to implement a specification using the given library, a PN

specification must be transferred to one in which each basic element has no more

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 151

than three inputs or outputs. Here we prefer two or less inputs and/or outputs for each

basic element.

Similar to Varshavsky, we only study the five kinds of basic elements in our method.

This does not affect the generality of our method because based on the rules of PNs,

a complex specification fragment can be decomposed into a simple one. Complex

event join, exclusive join, event fork and alternative fork specifications can be

decomposed into more simple elements with the techniques introduced below.

5.4.1.2 Event join case decomposition

A complex event join fragment with more than two inputs is shown on the left side in

Figure �5.11.

p1

OPpn

pn+1

p1

p2
p3

p4

pn

pn+1

OP

dummy
dummy

dummy

Figure �5.11 A complex event join case and a possible decomposition.

In Chapter 2, we mentioned that all PN specifications in this thesis are 1-safe. Based

on PN rules, the transition in this fragment may fire only when all its predecessor

places have a token. If we directly implement this fragment based on our method,

there should be multiple inputs to a C-element or a dummy DC (see section �5.5.2),

which is unlikely to be available in the library. In order to solve this problem,

decomposition is needed. The method is to introduce some dummy events and

places. A complex fragment is replaced by using a tree-structure basic element in

which each simple fragment has two or less inputs. All input places are divided into

several groups. For each group, one dummy transition and place are introduced. If

the two places have tokens, this transition can be fired and then the token will be

transferred to the dummy place. All the dummy places introduced are coped with

using the same method. Finally only two or three dummy places are synthesized at

the transition used in the original fragment. This process is illustrated in Figure �5.12.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 152

p1

p2 dummy

pn−1

pn

dummy

dummy

pn+1

OP

Figure �5.12 Another possible decomposition.

Another option is that firstly two input places are synthesized at a dummy transition

and the token is transferred to a dummy place, and then this dummy place is

synthesized with the third input place at another dummy transition and another

dummy place is used to keep the token, and so on. Finally, all input places are

synthesized at the original transition. The illustrating diagram is shown on the right

side in Figure �5.11. These techniques will allow a specification of an arbitrarily large

n to be implemented with DCs with two or less input links.

5.4.1.3 Exclusive join case decomposition

As in the case above, it is unreasonable to assume that there are only two inputs to a

place. So in this case, before translating, decomposition is needed. A similar method

as the one dealing with the event join cases is used here based on PN rules.

A complex exclusive join fragment is shown on the left in Figure �5.13. Because of

the one-safe PN limitation in this thesis, among all input transitions of a place, only

one transition can fire each cycle in this exclusive join case. The above method used

to deal with the event join cases is used here to construct a tree structure in order to

replace the original complex fragment. In this tree structure, each place has two or

less input transitions. Dummy transitions and places need to be introduced. The

illustrating diagram is similar to one shown in Figure �5.12 (not shown here). Another

option is that two transitions are joined at a dummy place and this place can fire a

dummy transition if there is a token in one place. After that this dummy transition

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 153

and the third transition join at another dummy place and so on. Finally the last

transition and a dummy transition (introduced earlier) join at the place specified in

the original fragment.

The illustrating diagram of this method is shown on the right in Figure �5.13.

p1

pn

pn+1

p1

p2
p3 pn

pn+1

OP

OP

n

dummy

dummy
p4

OP

OP OP

OP

1

2

3

4

n

1
dummy

OP

Figure �5.13 A decomposition method for a complex exclusive join case.

Note: there are two general methods to decompose complex PNs. We only present

one diagram here to illustrate the decomposition.

5.4.1.4 Event fork cases decomposition

1 1

p1

p2

pn

dummy

OP

OPn

OP

OP2

OP2

OPn

dummy

Figure �5.14 A decomposition method for a complex event fork case.

A complex event fork fragment is shown on the left in Figure �5.14. Since PNs do not

place limitations on the number of successors of this kind of place, the fw signal of

the DC mapped from p1 place (see Figure �5.14) or the acknowledgement signal of fw

will go to or from several other DCs. This introduces fan-out problems. In addition,

fan-in problems still exist, as in the above event join and exclusive join cases. This is

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 154

because all the next DCs will give back the bk signals when all of them hold a token.

All bk signals will go to the DC mapped from p1 to reset it.

So in order to generate a reasonable circuit, it is necessary to decompose this kind of

fragment. This can be dealt with using the methods introduced in section �5.4.1.2.

One possible decomposition method is shown on the right in Figure �5.14.

5.4.1.5 Alternative fork cases decomposition

Both fan-in and fan-out problems exist in this kind of case due to the absence of

limitations of alternative forks (numbers of successors). It is possible to decompose

the original fragment into a tree structure to solve the problems based on the rules of

PNs using similar methods as discussed above. One possible decomposition method

is shown on the right in Figure �5.15.

1

dummy

p1

pn

p2

p2

pn

OP

OP2

OPn

OP2

OPn

dummy

Figure �5.15 A decomposition method for a complex alternative fork case.

Note: this NDT method is relatively straightforward. It can be used to deal with

decomposed PN specifications directly.

5.4.2 Refinement to the method and specifications

5.4.2.1 Basic ideas of specification refinement

Although with all the techniques introduced so far a DC based circuit can be found

for any PN specification, the resulting circuit is likely to be large and slow. This is

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 155

because of the large number of memory elements presented in such circuits. For

example, the solution shown in Figure �5.10, although straightforward, uses five

memory elements. This is mainly the result of strictly keeping the control path (the

DCs) and data path apart.

In fact, duplications of memory elements exist in the circuits obtained using the NDT

method which was introduced in section �5.4.1. By eliminating these duplications and

assuming that the responsibility of holding any signal rests with the part that

generates it, savings can be made.

We use the example shown in Figure �5.7 to introduce this refinement. In section

�5.4.1, the circuit shown in Figure �5.8 was obtained. In this case, DC1 and DC3

combined hold the states for events b+ and b- internally. However, because signal b

is an input, the environment must hold its value somewhere else at all times. DC4

and DC2 combined hold the states for events a+ and a- internally. Although signal a

is then stored by its own holding latch for interfacing with the environment, DC4 and

DC2 cannot be eliminated. This is because DC4 and DC2 must perform token

propagation functions. Although DC1 and DC3 have the same function as DC4 and

DC2, because signal b is an input and maintained elsewhere at all times, they are not

necessary. They can be eliminated by combining the events a+ and b+, a- and b- into

two events, one called a+,b+ and the other called a-,b-. A refined specification based

on these ideas is shown in Figure �5.16 (a).

a−,b− a−,b− a+,b+a+,b+ dummy

(a) (b)

2 4 2 4

Figure �5.16 Refined specifications.

In this PN specification, there are only two transitions and places. This introduces

another problem for the direct translation method. In general, it is impossible to

directly realize cycles of a length less than three with DCs, because with the accepted

discipline of token change, deadlocks appear [Varshavsky 1996]. Two methods were

proposed to solve this problem in the same paper. In order to keep our method

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 156

simple, we transform a cycle of length less than 3 into a cycle of length 3. So in this

example, a dummy place and a dummy transition are employed as shown in Figure

�5.16 (b).

This new specification can be used to directly translate. The events are a+,b+, a-,b-

and a dummy one. However, because the polarity of DCs is not as conveniently

organized as before, the “waiting for b to change” part needs further consideration.

5.4.2.2 Refinement technique

Fortunately the signals a and b are a pair of handshake signals. The SR latch holding

a can be modified to accommodate both directions of change for b. This is shown in

Figure �5.17 (b). Here we open up a connection in the original SR latch. Let the

output signal a go to the environment directly, and the input signal b go to the SR

latch directly replacing the internal connection (signal a). Using this modified SR

latch, when the set signal arrives, signal a will go to 1 and this is passed to the

environment. After that, the environment should respond by setting signal b to 1,

passing it back to the control circuit in reply, and then the state of the SR latch settles

down. Then an acknowledgement signal (setack) will be given to the next DC. The

event a-,b- can be implemented in the same fashion. The dummy event is empty, so

no extra circuits are inserted. The fw signal of the Dummy DC goes directly to DC4.

The resulting circuit is shown in Figure �5.17 (a). There are four memory elements in

this implementation. There are also some small savings on the number of simple

gates in the NDT, because the signals a and b form a handshake pair.

setack

clrack

set

clr

a

b

(a) (b)

setackset clr clrack

4 2

du
m

m
y

clrack
clra

seta
setack

b

a
SR

latch

Figure �5.17 (a) An implementation (b) A modified SR latch.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 157

However, in general, it is unreasonable to expect that input and output signals always

form handshake pairs. In case handshake pairs cannot be easily identified among

input and output signals, additional simple gates, such as INV, NAND, OR gates and

so on, may need to be employed to deal with the polarity issues of input signals in a

similar fashion to NDT method.

In this simple example, event a+,b+ indicates setting signal a to 1 and then waiting

for signal b at logic high (1). Here a is an output and b input, which means that DC2

waits for b+. The same method as NDT is used. So a NAND is employed, in which

one input comes directly from the signal b and the other input comes from the

acknowledgement signal (a+ack) of a+. After a+ack arrives and b changes to 1, DC2

can be set. If a+ack is active high, no further action should be taken. However, the

acknowledgement signal from the SR latch shown in Figure �5.8 (b) is active low, so

an inverter is needed to convert active low to active high. In general, two techniques

can be used to deal with the polarity issues conveniently. One is slightly modifying

the SR latch shown in Figure �5.8 (b) and the other is putting additional simple gates

on acknowledgement signals in SR latches. Here we adopt the former method rather

than adding an inverter. This modification involves the replacement of the OR gate

in the set part of the SR latch in Figure �5.8 with a NOR gate. The modified circuit is

shown in Figure �5.18 (b). In fact these two methods have the same functions. When

both the acknowledgement signal and the input signal b are high, the token can be

transferred. The dummy DC waits for signal b to become 0. The polarity of both

signal b and acknowledgement signal of b- is the same. We do not need to modify

the SR latch in the reset part. According NDT method, an OR gate is inserted before

the dummy DC. The resulting circuit is shown in Figure �5.18 (a). Similar to the result

from NDT method, this circuit is SI. The proof will be given in section �5.5.3.

du
m

m
y

seta

4

a+ack clra

2

a−ackb

seta

clra

aa+ack

a−ack

(a) (b)

a−ack latch

SR a
clra

a+ack
seta

Figure �5.18 (a) An implementation (b) A modified SR latch.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 158

This technique has the same memory element count as the NDT method, with extra

simple gate logic added so that it can be used when input and output signals do not

form handshake pairs.

It should be noted that savings from this refinement technique can be much greater

proportionally if the target circuit mainly contains longer cycles so that not many

dummy DCs are needed.

However, the original PNs cannot use this refinement technique directly. From the

above discussion, refinement on PN specifications is needed.

5.4.2.3 Systematic refinement of specifications

The discussions in this thesis assume that in a PN specification there are no multiple

consecutive input events in any path, i.e. any two input events along a path must be

interleaved by at least one output one. This assumption does not affect generality,

because at the specification stage, consecutive input signals can be bundled into a

single PN event.

The refinement technique uses the fact that some input events may not need to be

translated. These input events can be combined with their previous output events. As

a result, the places of the input events may be eliminated.

In order to automate the elimination of DCs controlling certain input events, we

introduce the following formalization into concrete steps for the first part of the

refinement within refinement technique:

1. Convert the original specification (e.g. STG format) to PN format.

2. Modify the PN format specification by removing all removable input events

and their places and replacing all un-removable input events and their places

with dummy events and places. Note that we define the places which are

given tokens after an event happens as the places of this event. In order to

keep this refining process simple and easy to automate, only those events

which have one output and the output has only one preceding transition (• (its

output) = 1) can be removed with their places. More complex removable

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 159

cases need investigation in the future, which are outside the scope of this

thesis. For each removed event, after removing it and its places, in order to

keep the specification complete, its next event should be connected with its

preceding place. This means that after the previous event has happened, the

following events can fire if we do not consider the input events. Here a place

not only holds a token but also identifies that its preceding events have been

finished. An example shown in Figure �5.19, in which each preceding event of

the removed input event has only one successor (input event itself) and the

removed input event has only one successor too, is used to illustrate this.

3. Construct the environment of the related control circuit via an explicit

representation for the value of each input signal, in the form of a

complementary pair of places connected with event transitions. This is the

standard PN representation of a binary signal, and is shown in Figure �5.19

(b). The implicit assumption here is that the event transitions are in the

environment and controlled by the environment and not the control circuit, so

such controls are not drawn in the specification.

4. According to the original specification, connect the results of steps 1 and 2

with consuming or read arcs based on the movement of tokens. For example,

for each removed event, in order to match with the original specification, the

preceding places of a removed event should carry out functions: 1) providing

tokens to the environment to fire the removed event; 2) consuming tokens

from the environment after the removed event in the environment has

finished; 3) supplying tokens to the next event of the removed event directly.

In addition, in the environment, the place of the input event removed from the

original specifications has the same functions as the places described above.

This is shown in Figure �5.19 (c).

Y+

(a)

Y+ Y−

Y=0

Y=1
(b)

X1+

X2+

Z+

Y+

(c)

X1+

X2+

Y is an input signal

Z+

Figure �5.19 A refinement example.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 160

Following these steps, the original specification shown in Figure �5.7 can be changed

to a new one shown in Figure �5.20 (a). We will call this type of specification “ refined

specification” (RS). The pure output signal (event control circuit) part in this new

specification is similar to the specification shown in Figure �5.16 (a). A direct

translatable specification of the example is shown in Figure �5.20 (b). This RS can be

translated into the DC circuit shown in Figure �5.17 and Figure �5.18 after using the

refinement technique.

b+ b− b+ b−

a− a+dummy

Input Signals

Pure Output Signals(a) Pure Output Signalsa− a+

Input Signals

(b)

Figure �5.20 Refined specifications (RS).

The refinement technique includes broadly two parts. The first is elimination of

unnecessary DCs controlling input events and the second is the fine tuning with

additional logic (such as INV, NAND and OR gates and so on) to implement the

correct polarity of signals. The first is entirely absent in the NDT method. For the

second, the additional logic needed for the NDT method is directly known from the

direction of signal changes, while the refinement technique needs much more

complex considerations. It has yet to be formalized into algorithmic steps so far.

5.5.1 The PN2DCs tool

PN2DCs (Petri Net to David Cells) is an automatic tool which can directly translate

PN format specifications to DC circuits using a given library. So far no other similar

tool has been reported.

5.5 Direct translation

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 161

This tool is based on the above methods including Varshavsky’s, our contributions (a

new method and its refinement), and a library defined by ourselves in section �5.5.2.

The methods have been introduced above. Here only the input/output format of this

tool will be introduced.

5.5.1.1 Input format

The Petrify tool is very popular. Its input is in Signal Transition Graph (STG) format,

which is an interpreted PN. Most asynchronous circuit designers are familiar with

STGs. In order to make our PN2DCs tool easy to use, an input format similar to that

of the Petrify tool is used.

However, this format is used for full PNs rather than STGs because this is demanded

by our method.

The following format is defined similar to that of the Petrify tool:

Places and transitions are specified following the key words “ .places” and

“ .transitions” respectively. Places with initial tokens are specified following the key

word “ .marking” . All places and transitions are distinguished by spaces in the

specification. Comments are defined following the ‘#’ character. In the “ .graph”

section, the connections between the places and transitions are specified. For each

line in the “ .graph” section, the first parameter is a place or transition. Following the

place (transition) are a number of transitions (places), which are the successors of the

place (transition), connected with the first place (transition) directly. In the case of

the first parameter being a place, only one of the following transitions can be fired if

the place has a token. In the case of the first parameter being a transition, if the

transition fires, each of the following places will receive a token. All of these satisfy

the PN definitions.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 162

PC MAR_r

1WdInst

Mem

IR
2WdInst

1WdEx

2WdEx

IF IE

Instruction
Fetching

Instruction
Execution

Figure �5.21 An example.

The following is an example input file, whose corresponding PN specification is

given in Figure �5.21.

.model I_execution

Declaration of signals

.places p1 p2 p3 p4 p5 p6 p7 p8 p9
.transitions pc mar_r mem ir t1wdinst t2wdinst t1wdex t2wdex
.marking p1 p4 p5

Petri net
.graph
p1 pc
pc p2
p2 mar_r
mar_r p1 p3
p3 mem
mem p6
p6 ir t2wdex
ir p7
p7 t1wdinst t2wdinst
t1wdinst p8
t2wdinst p4 p9
p8 t1wdex
t1wdex p4 p5
p4 mar_r
p5 ir
p9 t2wdex
t2wdex p4 p5

initial marking
#.marking {<p1,pc>}
.end

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 163

The example is an asynchronous processor specified at the top level. For more details

please refer to Chapter 6. In this example, at this level, the behaviour of the processor

consists of two actions. One is Instruction Fetching (IF) and the other one is

Instruction Execution (IE). They are performed sequentially. After refining, there are

nine places and eight transitions. Among the places, places p1, p4 and p5 have an

initial token.

So in this input file, after key_word “ .places” , p1 to p9 are listed. After “ .transitions” ,

all abstract events, such as PC, MAR_r, are added. In the “ .graph” section, according

to the PN specification shown in Figure �5.21, all connections between places and

transitions are given.

5.5.1.2 Output format

From the modern circuit design point of view, the synthesis process is only one part

of the whole circuit design flow. Digital electronic systems are increasing in

complexity over time. This fact, coupled with decreasing product lifetimes and

increasing reliability requirements, has forced designers to dramatically increase both

the productivity and the quality of their designs [Ashenden 1996]. Generally, the

results of the synthesis process cannot be manufactured directly. They should be fed

into the next process, which normally is the simulation process, in order to verify the

design proposal. This process is very important in modern logic circuit designs.

In order to simulate electronic hardware designs, structural description of the design

is required [Coelho 1989]. This is what we consider in this sub-section. Currently

most CAD tools support netlist, schematic, or HDL (Hardware Description

Languages) as inputs.

Generally all of them can satisfy our requirements. Using schematic input has a

friendly interface. However, schematic input is too complex. Auxiliary tools are

needed to generate schematic inputs. In addition, different CAD tools require

different schematic entry formats. It is difficult to design a universal format which

satisfies all CAD tools. Especially, schematic input is not easy to cope with in the

next process such as simulation. Normally it should be changed to netlist format.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 164

Netlist input is a text file, in which all signals in a system are named. Following each

named signal, all pins and components that this signal is connected to are listed.

However, a netlist is unreadable. Generally, it is a good as intermediate format, but

not as an independent input format. In our case, PN2DCs is an independent tool. We

wish it would be used independently, which means that a friendly interface is

expected. So, netlist input is not of interest.

HDLs were developed in response to this requirement. Most existing CAD tools

support hardware description languages, such as VHDL and Verilog. VHDL (VHSIC

Hardware Description language) has emerged as one of the most important electronic

design languages in both the commercial and military electronic design areas. It is

one of the most powerful HDLs [Armstrong 1993, Ashenden 1996, Coelho 1989].

An important feature of VHDL is its effectiveness as a design tool. The VHDL

language can be used independently from any tools. VHDL provides a wide range of

abstraction levels from the behaviour level down to the gate level. From this point of

view, VHDL is what we want.

The behaviour and/or functional specification guarantees the correctness of the

model, but it does not tell us how to implement the design, especially how to

implement SI/DI circuits, because of not having all possible kinds of complex gates

in a given library. Generally, synthesis is a translation process from high level to

gate level design. As for this high level design, before it can be translated to a gate

level solution, it must be translated to an intermediate specification, such as a STG or

PN format specification [Blunno 2000a].

Gate level design uses standard off the shelf components. If the timing properties of

these components are acceptable, this solution can be manufactured directly. It is

suitable as an output format of synthesis processes.

In the PN2DCs tool, we use PNs as the low level specification format to develop

asynchronous circuit designs. After synthesis and optimization, we expect to obtain

an implementable hardware circuit. The VHDL gate level satisfies our requirements.

VHDL has therefore been chosen as the output format of the PN2DCs tool.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 165

The results obtained from PN2DCs are based on a practical library, and employ the

low level structure type of design style. The following are definitions of the

modelling method:

Definition 5.1 A DC Netlist is a non empty set of wires represented implicitly in a

circuit model. The model consists of a non empty set of logic components

used in the circuits, and all input and output signals connected with all the

components used. This means that the Netlists can be represented using a

number of components and signals used in the circuits. Here one element of

the set of logic components defined above should belong to the library. Each

logic component can be a DC, C-element, Mutex, and general gate, such as

AND2, OR2. It is presented in the Netlist using its name. In addition, a DC

signal is defined as a wire in the circuits, which connects some logic

components directly based on logic circuits. It is presented by using its name,

which is a character string containing the instance name of each component

connected with the signal and the used pin names of each the component.

Each instance name and its pin name are joined together. The instance name

is at the beginning and followed by the pin name. They are separated by the

character “ :” . All connected sub-parts are organized as a string in which the

output instance name and its pin name are at the beginning. Then, follow is

the other sub-parts arranged incrementally (in alphabetical order). All sub-

parts are separated by the character “%”.

To explain these DC signals clearly, one line in a DC netlist shown in Figure �5.22 is

taken as an example.

U4_4: DCsetOR3resetAND2_1 (U4_4:b%U7_7:r1.1%U8_8:r1%U6_6:r1.1&U9_9:r1,

 U7_7:f%U4_4:s1%U9_9:s1%U8_8:s1,

 U8_8:f%U4_4:s2%U5_5:s1,

 U3_13:out%U4_4:s3%U5_5:s2,

 U4_4:f%U1_11:in2,

 U3_3:b%U2_2:r1%U4_4:r1,

 Udummy1_10:b%U2_2:r2%U4_4:r2);

Here the first U4_4 is the instance name of this DC. DCsetOR3resetAND2_1 is its

name of this DC. From this name, we know that there exist one backward signal (bk),

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 166

three setting signals (s1, s2, and s3), one forward signal (fw) and two resetting signals

(r1, r2). In addition, the initial state (1), setting function (OR) and resetting function

(AND) of this DC are known too. The

U4_4:b%U7_7:r1.1%U8_8:r1%U6_6:r1.1&U9_9:r1 is the first pin name. All pins of

the DCs are arranged in the order part 1, part 2, part 3, and part 4. All pins are

separated by the character ‘ ,’ .

• The first part (part 1) is the bk signal;

• The second part (part 2) is the list of setting signals. In this part, at least one

signal exists. How many signals there are depends on the set function;

• The third part (part 3) is the forward signal;

• The fourth part (part 4) is the list of reset signals, defined in a similar manner

as the set part. At least one reset signal is needed. How many depends on the

reset function.

The above example is the first pin. It should be signal bk. The name stands for the

passing path of a signal. All logic components are distinguished by ‘%’ . So this

signal passes components U4_4, U7_7, U8_8, U6_6, and U9_9. As we know each

component has a number of pins. In order to give a correct path, which pin(s) is

connected should be identified. So here pin name b of U4_4, r1.1 of U7_7, r1 of

U8_8, r1.1 of U6_6 and r1 of U9_9 are given.

A snapshot of an output file from PN2DCs tool is shown in Figure �5.22. The DC

circuit of this example is shown in Figure 6.3.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 167

Instant name

Component name (logic name)

Pin 1 name
Pin 2 name
Pin 3 name
Pin 4 name
Pin 5 name
Pin 6 name
Pin 7 name

Figure �5.22 An output file example.

The tool is used after the decomposition and simple specification refinement in our

synthesis design flow. So far only the main part has been coded into the tool, whose

development is on going and will incorporate the other methods in the future.

5.5.2 Basic components and the given library of PN2DCs tool

The results obtained from synthesis tools should be implemented based on an

existing library with a finite number of components. From an automation point of

view, this is very important, because it is unreasonable to ask designers to construct

logic components from scratch. Some existing synthesis tools have this kind of

problem, such as the Petrify tool.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 168

In our synthesis design flow, the decomposition method introduced in section �5.4.1 is

used, and it guarantees that a decomposed PN specification can be translated into a

DC circuit implemented using a given library with a finite number of components.

The basic components in this library consist of all the components of a normal

standard library, such as AND, OR and INV gates, and a set of extension

components, such as DCs, Muller C-elements, Mutexes and SR latches and so on.

Here we introduce only the extension part of the library.

Definition 5.2 A DCname is the name of a DC (refer to Definition 2.8 in Chapter 2).

It is used to identify the type of the DC in resulting circuits obtained from the

synthesis tool. It is a string of characters and the first two letters are “DC”,

followed by a sub-string “set” , the name of the set function of the DC, a sub-

string “ reset” , the name of the reset function of the DC, underscore “_” and

the initial state (value 1 indicates presence of a token, value 0 indicates

absence of a token) of the DC.

&

+

qb(1)

bk

fw

r1
r2

s2

s1

q(0)DCsetAND2resetOR2_0

s2
s1

bk

DC
fw

r1
r2

(a) (b)

Figure �5.23 An example of DC and its implementation.

An example of this Definition is shown in Figure �5.23, in which there are two set

signals, s1 and s2, two reset signals, an fw signal, and a bk signal. The function of

this DC is when both set ginals, s1 and s2, are active (s1=0 and s2=0), this DC is set

up to 1 which indicates a token is presence. When one of reset signals is active (r1=0

or r2=0), the DC is reset to 0. This means that the token is removed. So the set

function is “AND2” and the reset function is “OR2”. Initially there is no token in this

DC. So the initial state is 0. Finally this DC is named DCsetAND2resetOR2_0. The

logic circuit of this DC is shown in Figure �5.23 (b).

The syntax definition is given in Figure �5.24.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 169

DCset reset _
1

0the name of function the name of function

Figure �5.24 The Syntax diagram for Definition 5.3.

Mostly we do not mention the initial states of DCs when we describe them in the

context except in the results obtained from the tool. It is assumed that the initial state

will be assigned when it is needed based on the situation. Normally, the initial state

will be assign to state 0. In some special case such as a DC functioning as a Token, it

may be assigned to state 1.

Definition 5.3 The name of a C-element is a string with the sub-string “C_ele” at the

beginning. Following it is the fan-in number of the C-element, i.e. C_ele2, C-

ele3. (see Appendix A)

Definition 5.4 The string “Mutex” indicates a Mutex with two request inputs and two

grant outputs. (see Appendix A)

Because complex specifications can be decomposed into ones with only simple PN

basic elements, so that, only one Mutex and two C-elements: C-ele2 and C-ele3, are

included. Note that for each C-element there are two outputs, a positive and a

negative one. The library also includes a number of DCs.

The following DCs mapped from the basic elements of PNs are needed:

1. Normal DCs, DCsetreset, are used with the linear type of basic element in

specifications. The schematic representation of this type of DC is illustrated

in Figure �5.25.

(a)

q qb

r

fw

bk

s

(c)

DC
s1

bk r1

fw

(b)

DCsetreset

Figure �5.25 The normal DC.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 170

2. A modified DC, DCsetAND2reset, is employed to deal with the event join

type of basic element in specifications. This kind of DC is shown in Figure

�5.26.

q qb

s1

s2

bk r1

fw

event

&

DCsetAND2reset

DC
s1
s2

bk r1

fw

(a) (c)(b)

Figure �5.26 A modified DC, named DCsetAND2reset.

Here the event join frame shown in Figure �5.26 (a) is refined by introducing a

dummy transition and place shown in Figure �5.27. In this case two events

synchronize at the dummy DC as shown in Figure �5.26 (b, c).

dummy event

Figure �5.27 A refined event join fragment.

There is another method to realise this event join fragment. This method introduces a

C-element and the using the following circuit shown in Figure �5.28 to implement it.

C
event

Figure �5.28 An additional implementation.

In this solution two events synchronize at the C-element.

3. Another modified DC, DCsetOR2reset, is employed. An exclusive join type

of basic element in specification can be translated to this type DC which is

shown in Figure �5.29.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 171

q qb

s1

s2

bk r1

fw

DCsetOR2reset
bk

+

DC
s1
s2 fw

r1

(b) (c)(a)

Figure �5.29 A modified DC, named DCsetOR2reset.

4. A third modified DC, DCsetresetAND2, is used with the event fork type of

basic element in specifications. A schematic DCsetresetAND2 is shown in

Figure �5.30.

r2
fw

r1

bk

s1

q qb

DC

OPDCsetresetAND2

&
bk

s1 fw

r2
r1

(b) (c)(a)

Figure �5.30 A modified DC, named DCsetresetAND2.

5. A fourth modified DC, DCsetresetOR2, is used. It can be used with the

alternative fork type of basic element in specifications. The schematic

representation of DCsetresetOR2 is given in Figure �5.31.

q qb

bk

s1

r1

fw
r2

+

DC

DCsetresetOR2

s1

bk r1
r2

fw

(b) (c)(a)

Figure �5.31 A modified DC, named DCsetresetOR2.

Note: we do not give an implementation solution for free-choice fragment. In

Chapter 3 we showed that it can be implemented by using Mutexes.

The above DCs can be used to cope with 5 types of basic PN elements. For more

complex specifications, other complex DC types, such as DCsetAND2resetAND2,

DCsetAND2resetOR2, DCsetOR2resetAND2 and DCsetOR2resetOR2 which are

shown in Figure �5.32, Figure �5.33, Figure �5.34, and Figure �5.35, are provided in the

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 172

library. They are used after optimization to deal with combining event join and event

fork, combining event join and alternative fork case, combining the exclusive join

and event fork case and combining the exclusive join and alternative fork case

specification respectively.

&

bk r1

q qb

bk

s2
fws1

r1r2
DC

s2
s1 fw

& r2

(a) (b) (c)

DCsetAND2resetAND2

Figure �5.32 A DCsetAND2resetAND2.

&

q

bk

s2
fws1

bk r1

qb

DC

s2
s1 fw

+ r2 r1
r2

DCsetAND2resetOR2

(b) (c)(a)

Figure �5.33 A DCsetAND2resetOR2.

bk r1

q qb

bk

s2
fws1

r1r2
DC

s2
s1 fw

& r2

+

DCsetOR2resetAND2

(a) (b) (c)

Figure �5.34 A DCsetOR2resetAND2.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 173

bk r1

q qb

bk

s2
fws1

DC

s2
s1 fw

+ r2

+

r1
r2

DCsetOR2resetOR2

(a) (b) (c)

Figure �5.35 A DCsetOR2resetOR2.

The above DCs are adequate to implement the specifications because decomposition

is used before translation. However in order to provide more convenience, some DCs

with three or four inputs at set and reset functions are also supplied in this library. In

addition, some slightly more complex DCs, such as DCsetOA21resetOA21,

DCsetAO21resetAO21 and so on, are included in the library too. Here “OA” stands

for OR-AND gates. “AO” stands for AND-OR gates. Apart from these, their VDC

(see section �5.6.2) counterparts are also supplied in this library. All (V)DCs in the

library of the PN2DCs tool are listed in Appendix A.

Apart from the above components, such as C-ele2, C-ele3, Mutex, DCs, memory

elements, such as SR latches, are also provided in this library.

5.5.3 Proof of SI solutions

Because of the advantages of SI circuits, most circuits in this thesis are designed as

SI ones. Here, we present some, rather informal, proofs to guarantee that the circuits

designed using our methods are SI.

The classic SI definition in Chapter 2 (Definition 2.7) is based on state diagrams, not

on signal transition graphs (STGs), because classical asynchronous circuit designs

usually describe circuit behaviour using a state diagram. Hence the cardinality of the

input set, the number of states, is exponential in the number of signals. The first

condition ensures that the circuit is live; the second condition ensures that the circuit

is deterministic; and the third condition ensures that if a transition takes longer to

complete than other concurrent transitions, it will still be enabled before it is actually

fired.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 174

We use PN specifications as the inputs of the PN2DCs tool. To facilitate the proofs,

we convert these conditions defined on state diagrams to ones based on PNs.

The sufficient conditions for each of the three SI conditions on an STG can be easily

derived, based on the fact that a circuit state diagram is the interpreted reachability

graph of an STG. One sufficient condition for the third condition in Definition 2.7 is

that the corresponding STG is live. A live STG guarantees the existence of a state

assignment for each marking. The token marking mechanism on an STG asserts that

the enabling token will stay unconsumed on the enabling arcs until the enabled

transition is actually fired, no matter which state (marking) the circuit might be in;

hence, an enabled transition will remain enabled in the second state if not fired in the

first state, satisfying the third SI condition. Therefore, any live STG, if each state can

be uniquely assigned, represents a SI circuit by definition [Beerel 1991].

From the above discussion, we know that specifications based on state diagrams can

be easily transferred to ones based on STGs and STGs are interpreted PNs. So we

can use the conditions on STGs to prove the validity of our circuits.

Here, the assumption is that PN specifications are provided by designers. They are

required to supply suitable PN specifications which must be live and 1-safe. In this

kind of PN, all transitions can be taken as operations (including empty operations).

An example is shown in Figure �5.36.

x+

operation

Figure �5.36 A PN example.

Each operation can be implemented on an element of controlled logic circuits, i.e.,

the binary signal x shown in Figure �5.36. At every reachable marking of the PN at

most one transition of x is enabled, and the operation on x is consistent with its

current state. For example, if x = 0, then x-, and if x = 1, then x+ [Semenov 1997a].

In order to avoid deadlock, at least three places in each loop in PNs are required

[Varshavsky 1996].

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 175

However, although the specification should guarantee that an SI circuit

implementation should be possible based on the above requirements, whether the

final circuit is SI depends on the implementation details because decomposition is

used in implementations.

From a circuit consideration, an SI circuit is one which operates correctly regardless

of gate delays; wires are assumed to have zero or negligible delay [see Chapter 2].

According to this, we model a circuit using the following method to prove it is SI:

1. Inserting a delay component on the fan-out of each gate. The sum of the gate

delay and the appropriate wire delay are assigned to the delay component.

Note that all the delays in delay components are finite and in the range (0,

∞);

2. Ignoring all delays on all logic gates and wires. In other words all delays on

the logic gates and wires are treated as 0.

If the circuit still works correctly no matter how long the delay components are as

long as they are finite, the circuit is SI.

A schematic representation of this modelling method is illustrated in Figure �5.37.

9

8

2

3

4

710

gate1 gate2

gate3
gate4

gate1

gate3

gate2

gate4

11

11

4

17
delay

delay

delay

delay

Figure �5.37 SI modelling method.

In Figure �5.37, number 9 on the left side identifies the delay of gate1. Number 2

identifies the delay of the wire connected between gate1 to gate2 and gate4. The

same meanings are assigned to the other numbers. To model this circuit shown on the

left in Figure �5.37, we add a delay component for each gate shown on the right in the

same Figure. Using a delay component replaces the appropriate gate and wire delays.

So all logic gates and wires are treated as zero delay in this new model. The delay on

the delay components is unbounded but finite.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 176

From [Varshavsky 1996], we know that the control circuit constructed by using the

simplest DCs is SI. This is because (see Figure 2.11 (b)) they are connected by using

handshake protocols. This can easily be deduced from the STG specification shown

in Chapter 2 (Figure 2.12). NDT is an extension of Varshavsky’s method. It

introduces many complex DCs, such as DCsetAND2restOR2 and so on, and allows

insertion of operation events. However, all components are still connected according

to handshake protocols (request/acknowledge). So if all components used in the

circuits are proven to be SI, the circuits are SI.

In our case, the circuit is built using DCs, C-elements, Mutexes, SR latches and some

other simple standard gates, such as NAND gate, OR gate and so on. So firstly we

need to prove that all components are SI. Here we use the simplest DC as an

example, in which signals s and r are inputs and signals fw and bk are outputs.

Additionally, a pair of complementary states, q and qb, exist in this DC. According

to the SI modelling method, the simplest DC will be modelled by inserting delay

components for all gates as shown in Figure �5.38.

s

bk

fw

r

10 q qbq qb
0 1 DC

bk

s

r

fw s’ q’

r’

de
la

y

de
la

y

delay
delay

delay

Figure �5.38 An example of SI model.

In order to prove that this DC is SI, apart from three delay components added for the

three NAND gates, two additional delay components are added on the input signals, s

and r.

The original STG specification for this DC (Figure �5.38) is shown in Figure �5.39.

s+ fw−

r−

bk−qb−q+s−

qb+bk+q−fw+r+

Figure �5.39 An STG of the simplest DC.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 177

After SI modelling, we obtain a new STG specification, which is shown in Figure

�5.40.

s+

r−r+

s− s’− q+ q’+ qb− bk− s’+ fw’− fw−

r’−qb+bk+q−q’−fw’+fw+r’+

Figure �5.40 An STG specification.

From this new STG specification, we know that no matter how long the delays

inserted are, the circuit works correctly. For example, signal s is an input. After s-, no

matter how long the delay on this signal (as long as it is finite), only s- passes the

delay component, a NAND gate senses s’ - and then q+ happens. The same for q+ to

qb- (bk-), s+ to fw-, r- to qb+ (bk+), qb+ (bk+) to q-, and q- to fw+. The bk- to s+,

fw- to r-, fw+ to r+, and r+ to s- transitions are decided by the environment. So this

DC is SI itself.

The simplest DC is SI. Next we prove the modified DCs are SI. We use the

DCsetAND2resetAND2 shown in Figure �5.32 as an example. The SI model for

DCsetAND2resetAND2 and the STG of this DC are shown in Figure �5.41.

s1−

s2−
q+ qb− bk−

s1+

s2+
fw−

r1−

r2−
qb+bk+q−fw+

r1+

r2+
dmy

q qb

fw
r2

r1

s1
s2

bk

s1’
s2’

q’ qb’

r1’

r2’
fw’

de
la

y

de
la

y

delay

delay

delay

delay

delay

Figure �5.41 An example to prove it SI.

The function of this DC is when both setting inputs are active (s1- and s2-), the token

will be transferred in this DC from its previous DCs and then signal bk will be

generated to reset all previous DCs (remove all tokens and withdraw all setting input

signals). After that, because this DC holds the token and the two active input signals

have been withdrawn, signal fw happens (fw-) to fire related events and then to

transfer the token. This is followed by the reset signals resetting this DC and this DC

withdrawing fw (fw+). From the STG of this DC shown in Figure �5.41, it is easy to

understand its function.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 178

The same method is used to model this DC. The STG specification of the SI model is

shown in Figure �5.42.

s1+

s2+

r2−

r1−r1+

r2+

s1−

s2−

dmy

s1’−

s2’−
q+ q’+ qb− bk−

s1’+

s2’+
fw’− fw−

r1’−

r2’−
qb+bk+q−q’−fw’+fw+

r1’+

r2’+

Figure �5.42 An SI model STG specification.

The input setting signals, s1 and s2, synchronize at the left ON21 gate when both of

them are active (s1=0 and s2=0). Only then can the transition fire, no matter how

long the delays from s1 to s1’ and from s2 to s2’ are. After that, q+, qb-, and bk-

happen sequentially. We can take them as one-hot because each time only one signal

changes. So the above transitions from s1- and s2- to bk- are SI. The environment

should guarantee this after bk-, s1+ and s2+ happen. We do not care whether they

happen at the same time. This DC can synchronize them at the NAND gate. From

this circuit, only when signals, q, s1’ and s2’ (here s1’ is the signal s1 after a delay

component and s2’ is the signal s2 after a delay component), are 1, fw- happens.

Before s1’ and s2’ become 1, they are all 0. So here logic 1 is expected for them. No

matter how long the delays are, the NAND gate expects all inputs to be logic 1. After

fw-, this DC should be waiting for both r1- and r2-. This DC satisfies this

requirement owing to the right ON21 gate shown in Figure �5.41 no matter how long

the delays are at the resetting inputs. After that, this DC removes the token and

withdraws the fw signal. All of these can be taken as one-hot behaviour. After fw+,

the environment provides both r1+ and r2+. However the ON21 gate responds to

change on only one of them. Fortunately, the “ length of three” rule of constructing

DC circuits can guarantee that before starting the next cycle, the signals r1 and r2

must have been changed to 1. So this DC is SI. The same proof can be applied to all

modified DCs.

C-elements are asynchronous components. Only when all inputs are active is the

output active. Otherwise the output keeps the old value. Adding C-elements to SI

circuits therefore does not make them non-SI.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 179

The following will prove that circuits with Mutexes are SI. Only a free-choice and an

arbitration-choice fragment need Mutexes to construct DC circuits here. This kind of

fragment belongs to the type of alternative fork fragment. The PN specification and

implementation of this fragment are shown in Figure �5.6 (b). However, which branch

is taken depends on the other conditions; it is not strictly free-choice. In this case,

one of two branches is selected randomly. The PN specification is shown in Figure

�5.43.

p1

p3

p2

OP

OP 2

3

Figure �5.43 A free-choice fragment.

We propose a circuit which is shown in Figure �5.44 to implement this PN fragment.

q qb

bk

s1

r1

fw
r2

+

DC
DC

DC

m
ut

ex

standard DCs

Figure �5.44 An implementation.

We have proven that all DCs are SI. The fw signal of the DC mapped from place p1

goes to two inputs of the Mutex at the same time. Which branch is chosen depends

on the grant signal of the Mutex. Only one branch can be selected directly during

each cycle because of the 1-safe PN specification. After the appropriate operation

finishes, the fw signal will be withdrawn, and then the grant signal will be withdrawn

too. This means that the choice of operation depends on the fw signal. Only when the

fw signal arrives, does the appropriate operation work. After the operation finishes,

the fw signal will be withdrawn and then start the next operation. So this circuit is SI.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 180

p2

p3

2OP

3OP

p1

p4

p5

Figure �5.45 An arbitration-choice fragment.

However, free-choice without inputs does not make much sense. A very popular PN

fragment is not free-choice but arbitration-choice, which is shown in Figure �5.45.

+

&

&

&

&

m
ut

ex

p4

p3

p1

p5

p2

Figure �5.46 An implementation of the arbitration-choice fragment.

We proposed a circuit which is shown in Figure �5.46 to implement this PN fragment.

Using the above methods, it is easy to prove this circuit is also SI.

set clr

setack clrack

set clr

setack clrack

out in out

(a) (b)

Figure �5.47 SR latches with completion detection.

SR latches with completion-detection logic are another type of component in the

library. A simple example of such circuits is shown in Figure �5.47.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 181

 In Figure �5.47, (a) is used when handshake signals are distinguished explicitly.

Otherwise (b) is used.

After modelling these latches using the SI modelling method, under the reasonable

assumption that signals set and clr cannot happen at the same time (which can be

guaranteed by inserting a DC between these two signals), they can be shown to be SI.

Only when signal set arrives (maybe the SR latch has been waiting for long time due

to delays), the output signal will be set. Furthermore only when the normal SR latch

settles down, the completion (ack) signal happens. The same is true for the clr signal.

So from this point of view such circuits are SI.

DC DC

in+

DC DC

in−(a) (b)

Figure �5.48 Basic models.

As mentioned before, when directly translating low level specifications, in order to

produce concise circuits, sometimes a number of simple gates are employed in DC

circuits. This is because there exist input signals which are triggered and held in the

environment and not in the control circuit (see section �5.4.1, NDT method). The

basic model of this kind of circuit is shown in Figure �5.48, in which an input signal

from the environment goes to the simple gate. From the specification, we know that

each input signal should be set and reset once in each operation cycle. In addition, set

and reset operations should appear as a pair. Furthermore, once the input signal

changes, it will remain stable in the period between two DCs, because of the

properties of DCs, the operations before the DC and after the DC cannot happen at

the same time. So only the signal from the previous DC can withdraw the setting

input signals. Informally, this signal from the previous DC can be taken as one-hot

signal. So inverters can be inserted without affecting SI.

Now we have proven that all components used to construct circuits are SI. Because

all connections between components are handshake protocols, the circuits built using

this method are SI.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 182

Working SI circuits can be generated after the above decomposition, refinement and

direct translation process. However, such SI circuits tend to be large and slow. This

is because the specification refinement process cannot normally manage to eliminate

all memory element redundancies.

Therefore, there is usually scope for further optimization after the direct translation

step. A two-part optimization process, which specially target resulting circuits from

the NDT step, will be described in this section.

5.6.1 Reducing the number of DCs

As introduced in the refinement technique, so far only those input events which have

one output place and • (the output place) = 1 and their places can be removed.

According to the NDT method, there should be a large number of memory elements

in a DC circuit.

In practice, two closed transitions have always a sequential relationship. After one

fires, the other one should fire in turn. Apart from this, they do not share hardware

resources. A simple example for this case is shown in Figure �5.49.

x+ x−y+

Figure �5.49 A simple example.

This is an incomplete STG; it is just a fragment of a PN specification. Generally, we

can optimize the circuit obtained from the NDT method using the following method.

5.6 Optimization

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 183

Both signals x and y are outputs. After x+ happens, y+ should be fired. Except for the

ordering, they do not have any relationship. Using the NDT method to realize this

fragment, three DCs are needed. The schematic diagram is shown in Figure �5.50.

setx setyx+ack y+ackclrxx−ack
y−ack
clry

sety
y+ack

y
SR

latch
x−ack
clrx

setx
x+ack

x
SR

latch

Figure �5.50 The direct solution from the techniques 2-3.

In fact the DC between x+ and y+ is not necessary, because x+ and y+ are

independent from the implementation point of view. After x is set, setting y can be

implemented immediately rather than by first withdrawing the x setting signals and

then set y sequentially. It does not affect the functionality of the fragment. Ideally, if

several not related transitions (events) are connected, more DC reduction is possible.

Only between complementary events a DC is used to isolate them. Using this method

we can make the circuit simpler and faster than its original one obtained from the

NDT method. The following circuit shown in Figure �5.51 results after optimization

using this method.

setx setyx+ack y+ackclrxx−ack
y−ack
clry

sety
y+ack

y
SR

latch
x−ack
clrx

setx
x+ack

x
SR

latch

Figure �5.51 The optimization circuit.

In Figure �5.51, the signal sety comes directly from signal x+ack. In this circuit, one

DC is removed. More memory elements mean more delays, so the optimization is

advantageous. Most of this kind of DC can be deleted in optimization.

5.6.2 Introduce VDC to further reduce memory elements

During the specification refinement step, each transition is mapped onto an event

which is implemented by using an SR latch (normally used to keep an output

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 184

variable). A large number of this kind of memory element should exist in a circuit

obtained by direct mapping.

In fact, the DCs used so far act purely as clock signals. In other words, their only

function is to control events. However, since they are memory elements anyway, it

may be possible to use some of them to store the values of output variables in

addition to performing their event controlling duties. This is because in some cases,

the internal pair of latched signals in a DC may be made to coincide with the value of

an output variable. This may lead to a reduction in the number of SR latches needed

for the storage of output variables.

Definition 5.5 Variable-holding DCs (VDCs) are DCs in which the normal state

signals, q and qb, are used as output variables to the DC’s environment rather

than just the internal state variables. In other words, the state variables can be

supplied to the environment and connected to the DC’s environment via

direct wires.

VDCs can be used to perform both output variable holding and clock functions. In

order to make effective use of VDCs to store output variables, complementary output

events, such as a+ and a- in this example, need to be grouped together so that a single

VDC can be used to hold variable a. So the first step of this method is the

identification of likely output variables which might be held in VDCs instead of

dedicated SR latches.

We again use the same example shown in Figure �5.7 to explain the optimization.

Having identified likely candidate variables, in this case the variable a, a VDC must

be configured to hold each of them. This, however, requires a DC with non-simple

set and/or reset functions, unlike the DCs used so far in NDT method for this

example. This is because a DC, if used purely to control events, does not have to

maintain its q and qb based on the value of any output variable. Therefore the set and

reset functions can be made simple so that q and qb have meaningful values only

used during the token propagation. For a VDC that needs to hold the value of an

output variable, however, the set and reset functions must include additional

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 185

information so that q and qb are changed for the dual purpose of token propagation

and variable holding.

In this example, a+ should happen after b-. So the set function of the VDC holding

variable a (VDCa) should include both a term from its token propagation duty and a

term from variable b, i.e. b=0 activates. b+ should happen after a+, but this event is

controlled by the environment and therefore does not affect the configuration of

VDCa. a- should happen after b+. This may be implemented by configuring the reset

function of VDCa appropriately. However, because b is controlled by the

environment, it is safer to implement this handshake by modifying the set function of

the DC following VDCa. This is because in a DC circuit, each DC contributes to the

SI of the overall circuit by maintaining a correct relationship between signals s and

bk provided its subsequent stages manage to maintain SI between its fw and r signals.

Introducing signals controlled by the environment to the reset function of any DC

may therefore introduce errors if the environment fails to respond at the right speed.

Against this background, it is better to modify the set function for the DC(s) to

follow the VDC to achieve the same handshake functionality and preserve SI without

assumptions about the environment. In this case, the set function of the DC following

VDCa can be modified so that it includes b+. This guarantees that VDCa will not be

reset until b+ has happened.

The next step is to plug the resulting VDC and any other DCs modified during the

previous step into an overall DC circuit implementing the specification. This

produces the implementation shown in Figure �5.52 (a) for the current example. There

are only three memory elements in this new implementation.

& &

a

b

Figure �5.52 An implementation based on the special optimization idea.

In this example there is only one pair of handshake variables. This makes VDC easy

to apply. With more handshake variables, they need to be partitioned based on their

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 186

relationships. The optimization method in its current form is not mature and cannot

be automated. Because of the obvious advantages in cost and performance

improvements it may bring, it is a worthwhile subject for future investigation.

In addition, VDCs open up potentials for further optimization. Based on this method

we can obtain a fast relative timing (RT) circuit. RT techniques have become popular

recently [Stevens 1999].

In the resulting circuits obtained using the VDC optimization method, for example

the circuit shown in Figure �5.52 (a), we have made clear the set and reset functions

of each output signal. With this information, a circuit based on traditional SR latches

and not DCs can be constructed. Each output signal is implemented by using a

traditional SR latch. The set and reset function of this SR latch consist of the state

variables and appropriate input signals. The schematic diagram of the method is

illustrated in Figure �5.53 (a).

The output signal a is set when the input signal b is 0, and a is reset when b is 1.

Because this is a very simple example, state variables are not needed. So a simple

circuit results, shown in Figure �5.53 (b).

a

setb rst b

states states

(a) (b)
a qb

b b’

Figure �5.53 An example.

This circuit is not SI. It is correct under certain timing assumptions. Here the

assumptions are that a+ should be earlier than qb- and qb- should be earlier than b+.

Furthermore, qb- should come earlier than b-. Signals a and qb are internal ones.

Signal b is from the environment and it is fired by a. These assumptions are

reasonable if the environment does not take zero time to respond.

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 187

5.6.3 Special optimization method

Because there is only one pair of handshake variables in the example shown in

Figure �5.7, a pair of DCs can simply control this event sequence without additional

circuitry. Figure �5.54 presents an implementation solution for this example using this

method. Since this method does not have a wide application, it is just mentioned here

to show that special circumstances in the specification may allow clever tricks to

produce minimal results which a generalized tool based on DCs may never be able to

find.

a b

Figure �5.54 An implementation of this special case.

In this Chapter, a new direct translation synthesis method was reported, and based on

this method an automatic synthesis tool (PN2DCs) was developed.

This new synthesis method is based on Varshavsky’s method and uses DCs as

building blocks to implement asynchronous circuits. In this chapter, we presented a

formal definition for DCs and developed a DC library. In addition, we also

mentioned that DCs can function as general clock signals, which can make

asynchronous design less difficult.

Compared with the other synthesis methods which depend on encoding of the state

space using abstract variables, this new direct translation method based on DCs has

many advantages. It can be used to translate high (abstract) level to low (signal) level

5.7 Conclusions

NCL-EECE-MSD-TR-2003-100

Chapter 5: A new direct translation synthesis method and the PN2DCs tool

 188

specifications to DC circuits, overcoming the disadvantages in Varshavsky’s method.

In addition, it provides SI without resorting to assumptions about the speed of

devices such as the inverter, or about the existence of a large complex gate library.

In order to generate a good performance and low cost circuit, systematic

decomposition, refinement and optimization techniques were also introduced in this

chapter.

All of these build up a sound foundation of a completely automated asynchronous

synthesis tool.

NCL-EECE-MSD-TR-2003-100

Asynchronous event control systems can be specified at various levels from abstract

level to gate level. From the design point of view, the lower the more difficult. As

mentioned in Chapters 2 and 5, synthesis tools can be used to translate high level

specifications to gate level circuits. In this Chapter, we will demonstrate how to

design asynchronous systems using the PN2DCs tool.

PC MAR_r

1WdInst

Mem

IR
2WdInst

1WdEx

2WdEx

IF IE

Instruction
Fetching

Instruction
Execution

PC = Program Counter Update
MAR_r = Memory Address
Register, loading for Read
Mem = memory Read
IR = Instruction Register Load
1WdInst = One Word Instruction

2WdInst = Two Word Instruction

1WdEx = One Word Instruction

2WdEx = two Word Instruction

Decoding

Decoding

Execution

Execution

Figure �6.1 An asynchronous processor specified at high level.

Chapter 6: Case Studies

6.1 Asynchronous processor

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 190

PN2DCs can be used to cope with various level specifications from high abstract

level to low signal level. In this section, we will show how to design an

asynchronous processor using our PN2DCs tool. This example is from [Semenov

1997c] and it is specified at an abstract level which is shown in Figure �6.1.

At the high design level the behaviour is defined in terms of an asynchronous process

that can be represented by a labelled PN (LPN). The transitions of such a net can be

labelled with the names of relatively abstract operations in the datapath and/or

control components. In this example, at the top abstraction level, the behaviour of a

processor consists of two actions, Instruction Fetching (IF) and Instruction Execution

(IE), which alternate and are therefore performed sequentially.

The processor is very simple. However, we cannot obtain other useful meanings

from this top high level specification, and so, we cannot derive an implementation.

In order to make circuit design possible, we can refine these actions into sub actions

according to our ideas about the processor architecture. Thus, the IF action can be

seen as a process, i.e. a PN fragment, consisting of the following sub actions:

incrementing a Program Counter (PC), loading a Memory reading register (MAR_r),

and reading the new instruction word from Memory (Mem). The IE action can be

refined into a process (another PN fragment) involving other sub actions: loading an

Instruction Register (IR), and decoding, activating and executing the fetched

instruction for two possible instruction formats, a one word instruction (1WdInst and

1WdEx) and a two word instruction (2Wdinst and 2WdEx). The part of the process

concerned with the two word instruction execution requires two memory cycles. As

can be observed from the analysis of this PN, the initial sequential operation between

IF and IE has been refined into a model which allows concurrency between actions

with smaller granularity. For example, the PC action can be executed concurrently

with instruction reading, decoding and execution. Another paradigm appearing at this

level is that of choice between two types of instruction execution. The process of

refining the design can be continued until the designer realizes that the abstract

behavioural model satisfies the desired functional and quantitative requirements. The

result of this design stage is a specification of the control flow in such a form that its

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 191

actions, i.e. transitions in the labelled PN model, can be easily mapped onto the

primitive operations of the datapath units. More details of this asynchronous

processor can be found in [Semenov 1997c].

This refined asynchronous processor is implemented by using DCs and it is based on

the following model shown in Figure �6.2,

operation

req ack

Figure �6.2 The model of DC circuits.

in which an operation is inserted between two DCs. This operation fires by the req

signal from the DC control circuits. After it is finished, an ack signal will be given to

the DC control circuits. Using the direct translation method introduced in Chapter 5,

each place was translated to a DC and each transition was mapped to an operation

which is inserted between two relevant DCs, in the middle of the

request/acknowledgement handshake.

We generate an input file for the tool from the above LPN specification shown in

Figure �6.1. In Chapter 5, we have introduced the input format, which is similar to the

input file of the Petrify tool. As for this example, the input is shown as follows:

.model I_execution

Declaration of signals

.places p1 p2 p3 p4 p5 p6 p7 p8 p9

.transitions pc mar_r mem ir t1wdinst t2wdinst t1wdex t2wdex

.marking p1 p4 p5

Petri net

.graph

p1 pc

pc p2

p2 mar_r

mar_r p1 p3

p3 mem

mem p6

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 192

p6 ir t2wdex

ir p7

p7 t1wdinst t2wdinst

t1wdinst p8

t2wdinst p4 p9

p8 t1wdex

t1wdex p4 p5

p4 mar_r

p5 ir

p9 t2wdex

t2wdex p4 p5

initial marking

#.marking {<p1,pc>}

.end

The meaning of each part of this file has been explained in Chapter 5. After feeding

this input file to PN2DCs tool, we can obtain a result, specified in VHDL, which is

as follows:

U1_1: DCsetreset_1 (U1_1:b%Udummy1_10:r1,

 Udummy1_10:f%U1_1:s1,

 U1_1:f%U2_2:s1,

 U2_2:b%U1_1:r1);

U2_2: DCsetresetAND2_0 (U2_2:b%U1_1:r1,

 U1_1:f%U2_2:s1,

 U2_2:f%U1_11:in1,

 U3_3:b%U2_2:r1%U4_4:r1,

 Udummy1_10:b%U2_2:r2%U4_4:r2);

U3_3: DCsetreset_0 (U3_3:b%U2_2:r1%U4_4:r1,

 U1_11:out%Udummy1_10:s1%U3_3:s1,

 U3_3:f%U6_6:s1,

 U6_6:b%U3_3:r1);

U4_4: DCsetOR3resetAND2_1 (U4_4:b%U7_7:r1.1%U8_8:r1%U6_6:r1.1%U9_9:r1,

 U7_7:f%U4_4:s1%U9_9:s1%U8_8:s1,

 U8_8:f%U4_4:s2%U5_5:s1,

 U3_13:out%U4_4:s3%U5_5:s2,

 U4_4:f%U1_11:in2,

 U3_3:b%U2_2:r1%U4_4:r1,

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 193

 Udummy1_10:b%U2_2:r2%U4_4:r2);

U5_5: DCsetOR2reset_1 (U5_5:b%U8_8:r2%U6_6:r1.2%U9_9:r2,

 U8_8:f%U4_4:s2%U5_5:s1,

 U3_13:out%U4_4:s3%U5_5:s2,

 U5_5:f%U2_12:in1,

 U7_7:b%U6_6:r2.1%U5_5:r1);

U6_6: DCsetresetOA21_0 (U6_6:b%U3_3:r1,

 U3_3:f%U6_6:s1,

 U6_6:f%U3_13:in1%U2_12:in2,

 U4_4:b%U7_7:r1.1%U8_8:r1%U6_6:r1.1%U9_9:r1,

 U5_5:b%U8_8:r2%U6_6:r1.2%U9_9:r2,

 U7_7:b%U6_6:r2.1%U5_5:r1);

U7_7: DCsetresetOA21_0 (U7_7:b%U6_6:r2.1%U5_5:r1,

 U2_12:out%U7_7:s1,

 U7_7:f%U4_4:s1%U9_9:s1%U8_8:s1,

 U4_4:b%U7_7:r1.1%U8_8:r1%U6_6:r1.1%U9_9:r1,

 U9_9:b%U7_7:r1.2,

 U8_8:b%U7_7:r2.1);

U8_8: DCsetresetAND2_0 (U8_8:b%U7_7:r2.1,

 U7_7:f%U4_4:s1%U9_9:s1%U8_8:s1,

 U8_8:f%U4_4:s2%U5_5:s1,

 U4_4:b%U7_7:r1.1%U8_8:r1%U6_6:r1.1%U9_9:r1,

 U5_5:b%U8_8:r2%U6_6:r1.2%U9_9:r2);

U9_9: DCsetresetAND2_0 (U9_9:b%U7_7:r1.2,

 U7_7:f%U4_4:s1%U9_9:s1%U8_8:s1,

 U9_9:f%U3_13:in2,

 U4_4:b%U7_7:r1.1%U8_8:r1%U6_6:r1.1%U9_9:r1,

 U5_5:b%U8_8:r2%U6_6:r1.2%U9_9:r2);

Udummy1_10: DCsetreset_0 (Udummy1_10:b%U2_2:r2%U4_4:r2,

 U1_11:out%Udummy1_10:s1%U3_3:s1,

 Udummy1_10:f%U1_1:s1,

 U1_1:b%Udummy1_10:r1);

U1_11: CeleIn2 (U2_2:f%U1_11:in1,

 U4_4:f%U1_11:in2,

 U1_11:out%Udummy1_10:s1%U3_3:s1);

U2_12: CeleIn2 (U5_5:f%U2_12:in1,

 U6_6:f%U3_13:in1%U2_12:in2,

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 194

 U2_12:out%U7_7:s1);

U3_13: CeleIn2 (U6_6:f%U3_13:in1%U2_12:in2,

 U9_9:f%U3_13:in2,

 U3_13:out%U4_4:s3%U5_5:s2);

Because the specification is at the abstract level, we obtain only a main control

circuit. As for the operations, these need further consideration. From this output

result, the circuit implementing the asynchronous processor is shown in Figure �6.3,

in which all the events have been inserted. For example, the event labelled PC in

Figure �6.3 is inserted between DC1 and DC2.

C

C

&

&
 +

&

&
 +

&

&

&

C

&

 +

 +

2WdInst

1WdInst

1wdEx

2WdEx

MAR_r

PC

Mem

IR

1 2

(1)

dum

8 4

(1)

3
6

5

(1)

9
7

b r1

s1 f

b b

b b bb

b b b

f f

f f f f

fff

s1

s1 s1

s1s1

s1s1

s1
s2
s3

s1
s2

r1

r1
r2 r1.2

r1
r2

r1
r2

r1
r1.1

r2.1

r1
r1
r2

r1.1
r1.2
r2.1

Figure �6.3 The DC implementation of the asynchronous processor.

From the implementation point of view, the next step for the designer is to

implement all the events (i.e. operations). These operations are then inserted between

the request and acknowledgement signals in the control circuit. If all inserted events

are SI, the entire system will be SI.

This almost mechanical method yields a working result for any specification. Safety

is guaranteed because of the SI of the result. However, the cost in silicon tends to be

high and the performance tends not to be the best possible.

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 195

Rin+ Ain−Rin−Ain+dmy

Rout+ Aout+ Rout− Aout−

Figure �6.4 The STG specification of the fully-decoupled latch controller.

Figure �6.4 shows the original specification of a fully-decoupled latch controller in

STG format, in which there are two parallel paths in order to fully decouple the input

and output handshakes. This example is found in [Sotiriou 2001]. Here signals Rin

and Aout are inputs, signals Ain and Rout are outputs, and signals Rin and Ain, Rout

and Aout are two pairs of handshakes respectively.

The function of this controller is as follows: when Rin is asserted (Rin+), if the

handshake pair Rout/Aout is idle (Aout-), the flow is parallel and both output signals

Ain and Rout are active (Ain+, Rout+). Two handshakes are synchronized here. After

the environment senses them, Rin- and Aout+ are passed to the controller to respond

to them. Furthermore, the controller will withdraw Ain and Rout (Ain-, Rout-), and

then the environment withdraws Aout (Aout-). After that, the controller is idle and

waiting for the new request (Rin+).

As introduced in Chapter 5, the current PN2DCs tool is not suitable for dealing with

low level (signal level) specifications directly, because it may introduce a large

number of memory elements which affects the performance of the resulting circuits.

In order to synthesize this controller, firstly we convert the original specification

shown in Figure �6.4 into an intermediate format (we called it RS (refined

specification) format) based on the methods introduced in Chapter 5. The RS

specification is shown in Figure �6.5,

6.2 Fully-decoupled latch controller

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 196

dmy

Ain+ Ain−

Rout−

Rin− Rin+

Aout+ Aout−

Rout+

p1

p2

p3

p4p6

p5

Figure �6.5 The RS format specification of the controller.

in which we separate the input and output signals based on the ideas of the

refinement methods introduced in Chapter 5. Here the middle parts consist of output

signals and the top and bottom parts consists of input signals. Based on this new

specification we generate an input file as follows:

.model A_fully_decoupled_latch
Declaration of signals

.inputs p1 p2 p3 p4 p5 p6

.outputs Ain- Rout- Ain+ Rout+ dmy

.marking p1 p2

Petri net

.graph

p1 dmy

p2 dmy

dmy p5 p6

p5 Ain+

Ain+ p3

p3 Ain-

Ain- p1

p6 Rout+

Rout+ p4

p4 Rout-

Rout- p2

initial marking

.end

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 197

By employing the PN2DCs tool, we obtain an output result file as follows:

U1_1: DCsetresetAND2_1 (U1_1:b%U3_3:r1,
 U3_3:f%U1_1:s1,

 U1_1:f%U1_7:in1,

 U5_5:b%U1_1:r1%U2_2:r1,

 U6_6:b%U1_1:r2%U2_2:r2);

U2_2: DCsetresetAND2_1 (U2_2:b%U4_4:r1,

 U4_4:f%U2_2:s1,

 U2_2:f%U1_7:in2,

 U5_5:b%U1_1:r1%U2_2:r1,

 U6_6:b%U1_1:r2%U2_2:r2);

U3_3: DCsetreset_0 (U3_3:b%U5_5:r1,

 U5_5:f%U3_3:s1,

 U3_3:f%U1_1:s1,

 U1_1:b%U3_3:r1);

U4_4: DCsetreset_0 (U4_4:b%U6_6:r1,

 U6_6:f%U4_4:s1,

 U4_4:f%U2_2:s1,

 U2_2:b%U4_4:r1);

U5_5: DCsetreset_0 (U5_5:b%U1_1:r1%U2_2:r1,

 U1_7:out%U5_5:s1%U6_6:s1,

 U5_5:f%U3_3:s1,

 U3_3:b%U5_5:r1);

U6_6: DCsetreset_0 (U6_6:b%U1_1:r2%U2_2:r2,

 U1_7:out%U5_5:s1%U6_6:s1,

 U6_6:f%U4_4:s1,

 U4_4:b%U6_6:r1);

U1_7: CeleIn2 (U1_1:f%U1_7:in1,

 U2_2:f%U1_7:in2,

 U1_7:out%U5_5:s1%U6_6:s1);

This output file introduces six DCs and one C-element. According to the input

specification, the events Ain-, Rout-, Ain+, and Rout+ are inserted in DCs based on

the specification. Here we define the event Ain- as resetting the signal Ain, Ain+ as

setting the signal Ain. Similar for Rout- and Rout+. The resulting DC control circuit

is based on the DC model introduced in section �6.1 and shown in Figure �6.6.

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 198

C

&

&

setAin setAinack clrAinclrAinack

clrRoutack setRout setRoutack clrRout

Figure �6.6 The DC control circuit of the controller.

However, this is not a complete circuit. The signals Ain and Rout are outputs, and

they should be included inside the controller. The circuit shown in Figure �6.6 does

not have this feature; only setting and resetting signals are presented. In order to

implement the Ain and Rout signals, we employ the SR latch with completion-

detection introduced in Chapter 5. Because Rin/Ain and Rout/Aout are two

handshakes, the following SR latch (Figure �6.7) is used.

set clr

a b

setack clrack

Figure �6.7 The SR latch with completion-detection logic for handshake signals.

In Figure �6.7, a is an output signal and b is an input signal, and form a pair of

handshake signals. So Ain and Rout can be implemented as shown in Figure �6.8, and

the whole circuit is shown Figure �6.9.

setAin

setAinack

clrAin

clrAinack

Ain

Rin

setRout

setRoutack

clrRout

clrRoutack

Rout

Aout

Figure �6.8 The output signal implementation in the controller.

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 199

C

&

&

setAin setAinack clrAinclrAinack

clrRoutack setRout setRoutack clrRout

setAin

setAinack

clrAin

clrAinack

setRout

setRoutack

clrRout

clrRoutack

Ain

Rin

Rout

Aout

Figure �6.9 The whole circuit.

However, the circuit of the controller is not optimal. For instance, by combining two

of the DCs dotted in Figure �6.9, a simple circuit with the same functionality can be

obtained. This is shown in Figure �6.10.

setAin setAinack clrAin

setRout setRoutack clrRout

setAin

setAinack

clrAin

clrAinack

setRout

setRoutack

clrRout

clrRoutack

Ain

Rin

Rout

Aout

&

&

clrAinackclrRoutack

Figure �6.10 The optimized implementation.

Although this solution is better than the previous one, we can still optimize it. In this

solution, there are total 7 memory elements, five DCs and two SR latches. As

discussed in Chapter 5, more memory elements should affect the performance. In

Chapter 5, we have proposed an optimization method which is based on the VDCs.

Using this method, a simpler solution can be obtained. This circuit is shown in

Figure �6.11.

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 200

&

& &

&

&

&

1 2 4

Rout

 Aout

3Rin 5

Ain

Figure �6.11 The optimized implementation.

In this solution, only five memory elements are used, so it is better than the two

previous ones. Apart from this, there is another advantage in this solution: we can

optimize it to RT solution as shown in Chapter 5, which improves the performance.

From the solution shown in Figure �6.11, DCs 1, 4 and 5 are used only to maintain the

integrity of the token flow in this small circuit. This provides an opportunity for post-

translation optimization if timing assumptions can be introduced (i.e., allowing the

circuit to become not completely SI). The minimal solution should probably contain

no more memory elements than are needed to maintain the output variables (the

VDCs). If this is true, DCs 1, 4 and 5 may be removed and only VDCs 2 and 3 need

to remain. The main memory elements within a (V)DC is a normal SR latch. It may

be possible to use two SR latches with appropriate set and reset functions to replace

the VDCs in the circuit. So the “ length three” rule no longer applies and the other

DCs can be removed.

Based on the implementation in Figure �6.11, the inputs of the set function for both

SR latches which replace the VDCs should consist of signals Rin and Aout. The

inputs of the reset function should be from DC4 and DC5 respectively. The

operations of DC4 and DC5 are that DC5 is set after Aout+ happens, and DC5 is set

after Rin- happens. Then VDC2 (Rout-) and VDC3 (Ain-) are reset respectively.

This makes it possible to use signals Aout and Rin to replace the reset signals from

DC4 and DC5 respectively in the reset functions, which in addition should also

contain token propagation signals. Thus, we obtain a block diagram of an optimized

circuit (RT solution) shown as in Figure �6.12.

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 201

Rout a Ain b

setRin
Aout states

rst Aout rst Rin

states states

Figure �6.12 The block diagram of RT solution.

In Figure �6.11, DC1 is used only to maintain correct token propagation by setting

VDCs 2 and 3 under appropriate conditions. The initial values of signals Rout, Ain

can be used for this purpose instead. Following this path, and taking care of the

polarity of the signals involved, we build the simplified circuit shown in Figure �6.13.

Rout a Ain b

a

b
Rin

x2

x1

x3Rin

Aout

Figure �6.13 The RT solution of the controller.

This circuit is not SI but rather works only under certain RT assumptions, namely

that Rout+ should be earlier than x1+, b- and Rin-, and Ain+ should be earlier than

x1+, a- and Aout-. There assumptions are reasonable for this circuit, if both SR

latches have the same speed and the environment has finite speed. This is true if the

entire circuit is implemented with the same technology and the environment consists

of real circuits.

Using the PN2DCs tool, we generate a basic asynchronous circuit (SI) for this

example. Based on this basic solution, using the optimization methods introduced in

Chapter 5, we easily generate a VDC solution and an RT solution for this example.

We would like to compare the solution obtained based on this PN2DCs tool with

other ones. As a result, simulations have been used to compare the circuit from the

original article [Sotiriou 2001], a circuit designed using Hollaar’s method [Hollaar

1982], a circuit constructed from simple gates found in standard libraries based on

the Petrify solution [Petrify], the circuit shown in Figure �6.10 and the circuit shown

in Figure �6.13.

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 202

Table �6.1 Comparison results

Rin+ −> Rin+

Rin+ −> Ain+

Rin+ −> Rout+

Rin+ −> Ain−

Rin+ −> Aout−

Num. of Gates

1.66ns

1.55ns

0.57ns

0.52ns

1.87ns

Trans. Level

Sotiriou’s

(Non SI)
Method

Hollaar’s

(Non SI)

2.10ns

0.45ns

0.49ns

1.79ns

1.82ns

20

(Non SI)

Petrify

2.94ns

2.03ns

2.38ns

2.67ns

3.67ns

11

(SI)

5.33ns

2.57ns

2.59ns

4.94ns

5.4ns

17

1.45ns

0.32ns

0.35ns

1.13ns

1.28ns

7

VDC RT

(Non SI)

Table �6.1 lists the result of this comparison. The simulation was done under the

Spice3 tool [Spice3] on the Unix system, which was run on the SUN ULTRA 30.

From this Table, the VDC solution is not fast compared with the others. However it

is SI. So it is safer than the others. Especially, we can easily obtain a RT solution

from VDC one. The RT solution is the best one from the performance point of view.

w0

6

wr0

2

λ2

λ1

λ0

4

3

w1

5

rd0
wr1

λ3

rd1

µ0

1 7

8

9

10

r1

11

r0

12

µ1

Figure �6.14 The PN specification of the two-sot Signal.

6.3 Two-slot Signal ACM controller

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 203

The control circuit of the two-slot Signal, which we now introduce, is designed by

using our direct translation method. The PN specification of the two-slot Signal is

shown in Figure �6.14, which is obtained by using PN specification synthesis

[Yakovlev 2001]

In Chapter 3, we introduced hardware implementation from the optimization solution

shown in Figure 3.58. Here we explain the process from PNs to hardware circuits. In

Figure �6.14, the left side is the specification for the writer process and the right side

is the one for the reader process. Because of the three important properties of the

ACM, asynchrony, data coherence and data freshness, the writer and reader

processes should be running independently. The communication is controlled

through the control variables w and r. In other words, the control variables are sensed

by the writer and reader respectively to guarantee that the communication keeps data

coherence and data freshness properties. For example, the writer senses the control

variable r to decide whether to set/reset the control variable w.

From the hardware implementation point of view, we should design the writer and

reader separately because they are two independent processes. On the writer side,

there are four events, wr0, wr1, clrw and serw. The control variable r is an input

signal. It is sensed by the writer and then the corresponding event is started. For

example, if r=1 and place 4 has a token, clrw fires and then the token moves to place

1. Otherwise, nothing happens and the token moves to place 3. The control variable

w is an output signal which is set and reset by the events setw and clrw respectively.

We can initially ignore this output signal when we construct the control circuit for

the writer.

The specification for the writer is modified as shown in Figure �6.15.

In this specification, places 1 and 3 have the same functional proprieties. Although

there is no token in place 1, we should assume a token there. Based on this

assumption, there are four streams in this specification. They are:

1. place1, place2, and place1;

2. place1, place2, and place3 (assuming place1);

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 204

3. place3, place4, and place3;

4. place3, place4, and place1 (assuming place3)

clrw

wr0

2

λ1

4

3
wr1

setw

λ3

1

r1

11

r0

12

Figure �6.15 The specification for the writer.

wr0

clrw

2
λ1

4

3
setw

wr1
λ3

1

r1
11

r0
12

dummy
dummy

dummy
dummy

dummy

dummy

dummy
dummy

Figure �6.16 A refined specification.

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 205

Because at least three DCs are needed in each stream, PN2DCs can generate the

specification to an implementable one automatically, which is shown Figure �6.16.

Finally PN2DCs produces a VHDL description of a circuit. We construct this control

circuit schematically. It is shown in Figure �6.17.

+

+

C

C

+

+

C

C

setw

clrw

y

d
a

y

a

x

b

x

c

y

d

x

r1

wr1

wr0
dmy

b
c

r0

r1

r0

1

2

3

4
dmy

dmy

dmy

Figure �6.17 The circuit obtained based on the direct-translation method.

The obtained circuit does not yet fully correspond to the specification. The problem

is caused by the input signal r, because r is not managed directly by the writer. The

circuit samples only the value of r (r0 standing for r=0 and r1 r=1) and then decides

which stream to start. In fact, the actual value is irrelevant. So we can use sync (see

Figure 3.57) to replace the C-elements. However, if we simply replace them, the

circuit will not be safe. This is because r may be changed immediately after w

changes. To solve this problem, the solution is to separate the sampling of r and the

changing of w.

On the other hand, the obtained circuit from the direct translation method is not an

optimal circuit. In this example, DC1 and DC3 can be combined. After optimizing

the circuit by hand, the final version of the circuit is shown in Figure �6.18. This was

discussed in more detail in Chapter 3.

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 206

2dc

odc1 odc0

sync

r

sync

rbar

sdcsdcsdcsdc

wr

write_start

write_ack

r_0 r_1
rbar_0 rbar_1

odc1 odc0wr1 wr0

ck1 ck0

3 1

4 2

43 41 2321

slot1

wr1 wr0

slot0

slot1 slot0

clrw setw

Figure �6.18 The implementation of the writer.

Using the same method, we can easily generate the circuit for the reader. The

intermediate solution is shown in Figure �6.19.

C

C

y

b

x

a

setr rd1

clrr rd0

y

b

x

a
w0

w1

10 7

8 9

dmy

dmy

Figure �6.19 The circuit obtained from the direct-translation method.

The same method is subsequently used in the reader part. Finally we generate the

circuit for the reader.

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 207

This example is from a standard set of STG benchmarks. The original STG

specification is shown in Figure �6.20, which is a low level one.

ari+

pro−

pri+ aro−

ari−

pro+

pri−

breq+

bprn+

busy+

aro+breq−

bprn−

busy−

mrdc−

xack+

xack−

do+

di+

pdo−mrdc+

pack−

do−

di−

pdo+

pack+

Figure �6.20 The STG specification.

In this specification, signals ari, bprn, xack, di, and pack are inputs and signals aro,

pro, breq, mrdc, do, pdo, and busy are outputs. Because it is a low level

specification, the operations are defined as the up-going and/or down-going of these

signals.

6.4 Master-read benchmark

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 208

We first convert the original specification to an intermediate format (RS)

specification in order to remove redundant memory elements. We then obtain a pure

control part and an input part, which are connected by read-arcs. The RS

specification is shown in Figure �6.21.

mrdc− do+

xack−

di+

dmy2do−mrdc+dmy3

di−

pdo− pdo+

pack− pack+

xack+

busy+

aro+ pro− aro− pro+ dmy1

ari+ ari−

pri−pri+

breq+

breq−

bprn+ bprn−

busy−

Figure �6.21 The RS specification of the benchmark.

The PN2DCs tool can deal with this RS specification and generate a DC control

circuit. However, because there are a large number of places in the control part,

many memory elements will be generated, as well as many extra SR latches for the

output signals.

Because the resulting circuit contains so many memory elements, it is too large to

reproduce here. Its performance will be very poor.

& & &

& &&

&

& &

&

&

&

do mrdc

pdo di xack

busy

pri bprn

busy

breq pri

&

&

&

breq

mrdc

bprn

(0)

busy

aro pro

pri

ari pri breq

pdo di

pack

Figure �6.22 The refined implementation.

NCL-EECE-MSD-TR-2003-100

Chapter 6: Case studies

 209

In order to generate a circuit of reasonable size, we can produce a new solution using

VDCs which are generated using the methods introduced in Chapter 5. In this way, a

better solution has been obtained, which is shown in Figure �6.22.

We also would like to compare our solutions with the other solutions, such as

Hollaar’s and the solution obtained by using the Petrify tool.

Table �6.2 Comparison results

NOT SI

Petrify

NOT SI SI

5.06ns 5.95ns 6.93ns

1.96ns

2.53ns

5.06ns

1.65ns

2.99ns

2.60ns

5.95ns

1.77ns

7.96ns

13.15ns

21.67ns

4.91ns

4.17ns

2.22ns

6.93ns

2.82ns

Hollaar’s Method

SI

aro+ −> aro+

ari− −> aro+

ari+ −> aro−

mrdc+ −> mrdc+

xack− −> mrdc+

xack+ −> mrdc− 2.80ns 3.79ns

21.67ns

16.11ns 3.70ns

NDC VDC

Table �6.2 gives a comparison result which is obtained by comparing the circuit

obtained from the tool directly and the circuit after optimizing using VDCs, and

circuits generated by using Hollaar’s method and using the Petrify tool.

This example is quite big. From the above Table, we can find the speed of the VDC

solution is similar to Hollaar’s and Petrify’s. In addition, the circuit is still SI. Here

we did not show the RT solution. It should be the fastest one.

NCL-EECE-MSD-TR-2003-100

This chapter presents the conclusions for the contributions offered by this work. This

work is done in the following areas: 1) self-timed ACM design; 2) implementation;

3) simulation and manufacture; 4) testing; 5) development of a synthesis tool based

on self-timed ACM designs.

The first self-timed ACM design, four-slot Pool, was done by hand. Not using any

synthesis tools caused us many problems. The second self-timed ACM design, three-

slot Pool, was done using an existing synthesis tool, Petrify. However, the results

obtained from Petrify are not guaranteed to be SI using a standard library. In order to

generate SI circuits, some manual work was needed. The third ACM design, two-slot

Signal, was done based on the following design flow:

1. conceptual definition (using PNs);

2. construction of the basic protocol specification (using a state graph);

3. refining the state graph with silent actions;

4. synthesis of a PN specification (using regions);

5. translation of the PN model into a circuits using DCs;

6. entering the design into the Cadence tool and simulation.

Chapter 7: Conclusions and Future Work

Discussion

Summary

NCL-EECE-MSD-TR-2003-100

Chapter 7: Conclusions and future work discussion

 211

Steps 1 to 4 are outside the scope of this thesis. Only step 5 and step 6 are introduced

here.

After simulation and fabrication, in order to test the ACM circuit, a new testing

technique was proposed. Using this new method we tested the four-slot Pool

successfully.

As a result of our work, all basic ACM type of circuit can be implemented in

hardware, especially in the form of self-timed circuits.

While we investigated the Pool, Signal, and Message kind of ACM, we also studied

asynchronous design methodology. Based on our experience of self-timed design, we

developed a synthesis tool and defined a useful library for this tool. In addition, in

order to obtain a better circuit, some optimization methods were also proposed.

As claimed in Chapter 1 and Chapter 2, future chips will consist of several

independent systems, and future digital circuits will be asynchronous. It is necessary

to study some related topics now, such as self-timed implementation and automatic

design (synthesis) methodologies, in order to adapt future requirements.

One interesting and useful communication mechanism between systems is ACM.

The ACM is divided into four types. They are Channel, Pool, Signal and Message.

Except for the Channel type of ACM, however, the mechanisms of the other kinds of

ACMs have not been studied and implemented using self-timed circuits.

The ACM type of circuit has two independent processes which communicate by

using the ACM. It has three important properties. Self-timed implementations and

these properties introduce many difficulties with regard to testing.

7.1 Introduction

NCL-EECE-MSD-TR-2003-100

Chapter 7: Conclusions and future work discussion

 212

7.2.1 Self-timed ACM implementations

A new system of classifying asynchronous data communication mechanism has been

proposed, which is based on the blocking and waiting properties of the reader and

writer actions in ACMs. This new classification is much more meaningful than the

original one [Simpson 1994] from the viewpoint of the timing requirements to the

system. For example, communications between two independent processes are

allowed in the Message type of ACM unlike in the Constant type of ACM in the

original classification.

In this thesis, the mechanisms of the four-slot Pool, three-slot Pool, two-slot Signal,

and its dual type, the Message type of ACM, have been studied and implemented

using self-timed circuits. The simulation results show that they work as expected.

These ACM designs, within their local boundary, are not fully asynchronous (in the

sense of non-blocking) by virtue of the unpredictable waiting introduced by the

arbiters. However, unlike the original fundamental mode slot systems proposed in

[Simpson 1990b], which may forcibly ensure full asynchronism by relaxing the

requirement on data coherence when metastability occurs, the four-slot Pool

implementation can give the client (the designer of the writer and reader processes)

the choice of either sacrificing timing independence or data coherence by defining

the overall protocol between the reader and the read statement buffer and the writer

and the write statement buffer.

If a choice is made to give temporal independence priority over data coherence, then

the new ACMs would perform similarly to the original algorithms in terms of data

coherence violation rates. This is because the statistical profile of metastability is

unchanged, and the arguments of settling metastability in repeated copying inside

processors do not apply when both ACM and then client processors are not on the

same chip.

7.2 Conclusions

NCL-EECE-MSD-TR-2003-100

Chapter 7: Conclusions and future work discussion

 213

In addition, the client designer may choose not to lose data coherence when the done

signal is not forthcoming, but still be able to preserve timing integrity for the access

process. Since at this point the access process has the information that metastability

has occurred within the ACM, it may be specified not to carry out the current item of

data (for the writer) or use the item of data acquired during the last cycle (for the

reader). In this case data freshness is sacrificed. This is not a real sacrifice because

when data coherence is not maintained, data freshness becomes automatically

meaningless.

The three-slot Pool and two-slot Signal do not have this possibility. They only work

when sacrificing timing independence. This means that the ACM can run as fast as

possible.

The new option of letting the ACM run as fast as it can should produce significant

speed gains simply because metastability is such a rare event.

In essence, these designs eliminate critical sections on the data slots by using the slot

ACMs as basic components. They shift critical sections to small control variables

implemented by means of arbiters and SI statement circuits, and give clients the

choice of whether to make full use of these minimised critical sections.

In order that ACMs can run as fast as possible, as introduced in Chapter 3, handshake

interfaces are introduced for each statement in our self-timed implementations. This

means that metastability has been moved from the control variables in the original

mechanisms to the handshake interfaces in our self-timed mechanisms. Simulation

results under the Cadence tool show that no errors happened on the control variables.

From this point of view, these self-timed ACMs are safe.

Although small timing interference exists in self-timed ACM implementations,

simulation results illustrate that metastability does not propagate through the

Mutexes. It was settled down inside the Mutexes. So metastability does not affect the

functionality of the mechanisms.

NCL-EECE-MSD-TR-2003-100

Chapter 7: Conclusions and future work discussion

 214

After the four-slot Pool was built, the three-slot Pool was implemented too. This

illustrates that self-timed implementation can reduce slot memory in

implementations. This is one aim of studying self-timed ACM implementations.

In addition, in order to get fast ACM circuits, RT technology is introduced into the

implementations. Except for SI implementations, RT implementations were also

implemented. However, they should work under some reasonable timing

assumptions. The simulation results show RT implementations are as expected.

We want to mention that the two-slot Signal type of ACM was designed using a

proposed synthesis method, rather than manually and/or using existing CAD tools.

Techniques for the synthesis and implementation of ACM mechanisms, only

partially formalised and to a large extent unautomated, have been presented. The

overall design proceeded along the steps introduced above.

The model transformation steps (2 – 4), which are shown in the summary section in

this chapter, are currently only supported to a very limited extent by the Petrify

synthesis software. The refinement with silent events, to make the state graph

synthesizable into a PN of a given class, is a very challenging theoretical problem

and more research is needed here. The direct translation of PNs into DCs and

subsequent optimisation with relative timing is another problem to be tackled in the

future.

Our synthesis tool, PN2DCs, is based on the above self-timed practices and is

employed in step 6.

7.2.2 Testing ACM

After implementation, we investigate another hot topic, testing asynchronous

circuits. Although a lot of research has been done recently, testing techniques are still

not adequate. Especially, no testing methods are available for testing ACM circuits.

ACM is a fully asynchronous kind of system. It has three important properties,

asynchrony, data coherence and data freshness. It is much more difficult to test this

kind of circuit.

NCL-EECE-MSD-TR-2003-100

Chapter 7: Conclusions and future work discussion

 215

In this thesis, we proposed a method which is based on checking the sequence of data

input items, rather than individual items, whilst varying the rates of data

communication.

The testing results show that the slot ACM implemented by using self-timed circuits

performs as expected. The mini-interlock introduced by using the Mutex does not

affect the operation of the ACM appreciably. No obvious violations of the three

important properties have been observed. In addition, the testing results correspond

with the simulation results obtained by using the Cadence tool, which indicates that

the implementation did not introduce errors.

Though the testing was successful, and the on-chip testing circuits performed as

expected, there is still potential for improvement. The testing circuits should be made

nimbler and provided with more observation points. We plan to continue research on

developing “more asynchronous” techniques for testing inherently asynchronous

properties of circuits that are free from global clock.

However, owing to the limit on the area and the pin number of the chip, the scope of

the testing was necessarily limited.

7.2.3 Synthesis

An extension to the direct translation method based on Varshavsky’s direct

translation method [Varshavsky 1996] has been presented in this thesis.

This method can be used to synthesize PN specifications which consist of input and

output events at both the high level (behaviour level) and the low level (signal level).

An important property is that the solution obtained using this method is guaranteed

SI.

As mentioned in Chapter 5, compared with logic synthesis methods which depend on

the encoding of the state space using abstract variables, direct translation method

based on DCs has many advantages. It can deal with big specifications and provides

SI without resorting to assumptions about the speed of devices such as inverters, or

about the existence of large complex gate libraries. The results are easier to analyse

NCL-EECE-MSD-TR-2003-100

Chapter 7: Conclusions and future work discussion

 216

or debug because of the topographical similarity between a DC-based solution and its

PN specification. Because of the use of one-hot encoding, DC-based solutions are

also potentially faster, especially for large systems.

As Varshavsky’s direct translation methods claimed, however, the cost and

performance of its resulting circuits are not entirely satisfactory and tend to compare

poorly with those obtained with tools such as Petrify.

A number of techniques with which Varshavsky’s direct translation method can be

improved has been developed and shown to be effective with a number of

demonstrative and real-life examples and case studies. These techniques, when

employed sensibly, bring direct translation to within the same quantitative level in

cost and performance to Petrify on examples of small size.

A prototype automatic tool employing this direct translation technique has been

developed and tested. It incorporates additional refinement features compared with

Varshavsky’s method, but does not yet contain all the improvement techniques we

have developed for direct translation.

It is not possible to compare the direct translation method with such methods as

Petrify for systems of large size because Petrify has difficulty handling specifications

of large size because of the state explosion problem. In comparison, direct translation

in general and PN2DCs in particular demand a computational complexity which is

linearly related to the specification.

7.3.1 Summary

The potential for future research in the areas related to the work presented above is

enormous. In the future, we would like to concentrate on developing an

7.3 Areas of future research

NCL-EECE-MSD-TR-2003-100

Chapter 7: Conclusions and future work discussion

 217

asynchronous CAD tool and to look for fast and safe asynchronous circuit (SI and/or

RT) implementations for this tool. We expect this asynchronous CAD tool to include

the direct-translation synthesis tool based on DCs and an asynchronous testing tool.

7.3.2 Direct-translation method based on DCs

Although the direct-translation method presented in Chapter 5 can deal with input

and/or output events in PN specifications, it is not a mature synthesis tool. Mostly it

is good at coping with control circuits. From the hardware design point of view, a

system should consist of both datapath and control circuits.

We would like to develop a synthesis methodology which can synthesise both

control circuits and datapath. In this work we will introduce Colour Petri nets (CPNs)

for datapath and still use LPNs for control circuits [Burns 2002].

Although LPNs and CPNs are very popular in the asynchronous community, we

prefer VHDL as our input specification language. This is because most circuit

designers are familiar with it.

In short, in our CAD tool, VHDL specifications can be translated into LPNs and

CPNs for control circuits and datapath circuits respectively, after which the LPNs

will be mapped to asynchronous DC circuits and CPNs will be mapped to

asynchronous datapath circuits.

7.3.3 Asynchronous design for testing method

In order to meet time-to-market requirements, while designing asynchronous circuits,

some testing circuits should be considered. We would like to investigate

asynchronous design for testing methods and to develop a tool to support it.

Although the testing for ACM circuits is successful and on-chip testing circuits

performed as expected, there are still potentials for improvement. In addition, the

testing circuits should be made more reactive and provided with more observation

points. We plan to continue research on developing “more asynchronous” techniques

NCL-EECE-MSD-TR-2003-100

Chapter 7: Conclusions and future work discussion

 218

for testing inherently asynchronous properties of circuits that are free from global

clock.

7.3.4 Fast and reliable asynchronous circuits

After using our direct translation synthesis method, a DC circuit can be obtained.

However, as mentioned in Chapter 4, although it is safe, it is not fast enough. In

order to generate a fast circuit, NDC is introduced in Chapter 5. But it is not good

enough. We would like to look for new kinds of asynchronous circuits for our

synthesis tool.

RT circuits can work safely under some reasonable assumptions. We also would like

to introduce RT circuits into our synthesis tool.

7.3.5 Theory work

After studying the above synthesis method and testing method, we would like to

develop a theoretical basis for them.

Much work is needed to further formalize and codify the refinement techniques so

that they can all be incorporated into PN2DCs. Other refinement and optimization

methods will also be investigated in the future.

NCL-EECE-MSD-TR-2003-100

 219

Alur 1994 Alur, R., and Dill, D. L., A Theory of Timed Automata, The

Oretical Computer Science, 126(2), pp.18-235, 1994.

Anderson 1996 Anserson, J., and Gouda, M., A Criterion for Atomicity,

Formal Aspects of Computing Vol. 4, pp. 273-298, 1996.

Amulet http://www.cs.man.ac.uk/amulet.

Armstrong 1993 Armstrong, James R., and Gray, F. Gail, Structured Logic

Design with VHDL, ISBN 0-13-855206-1, Prentice-Hall,

Inc., 1993.

Ashenden 1996 Ashenden, Peter J., The Designer’s Guide to VHDL, ISBN

1-55860-270-4, Morgan Kaufmann Publishers, Inc., 1996.

Badouel 1998 Badouel, E, and Darondeau, Ph., Theory of Regions,

Lecture Notes in Computer Science, Vol. 1491, pp. 529-

586, Springer-Verlag, 1998.

Bainbridge 2000 Bainbridge, W. J., Asynchronous System-on-Chip

Interconnect, Ph.D thesis, Department of Computer Science,

University of Manchester, 2000.

Beerel 1991 Beerel, Peter A., and Meng Teresa H.-Y., Semi-Modularity

and Self-Diagnostic Asynchronous Control Circuits. In

Carlo H. Séquin, Editor, Advanced Research in VLSI, pp.

103-117. MIT Press, March 1991.

Beerel 1992a Beerel, Peter A., and Meng, Teresa H.-Y., Semi-Modularity

and Testability of Speed-Independent Circuits, Integration,

the VLSI Journal, 13(3), pp. 301-322, September 1992.

Beerel 1992b Beerel, P., and Meng, T. H.-Y., Automatic Gate-Level

Synthesis of Speed-Independent Circuits, In Proceedings of

International Conference on Computer Aided Design

(ICCAD), pp. 581-586, Santa Clara, California, USA,

Novermber 1992.

 References

NCL-EECE-MSD-TR-2003-100

 220

Beerel 1994 Beerel, P. A., Myers, C. J., and Meng, T. H.-Y., Automatic

Synthesis of Gate-Level Speed-Independent Circuits,

Technical Report CSL-TR-94-648, Stanford University,

Novermber 1994.

Berkel 1991 Berkel, K. van, Kessels, J., Roncken, M., Sawijs, R., and

Schalij, F., The VLSI-Programming Language Tangram and

its Translation into Handshake Circuits, In Proceedings

European Conference on Design Automation (EDAC), pp.

384-389, 1991.

Berkel 1992 Berkel, K. van, Handshake Circuits: An Intermediary

between Communicating Processes and VLSI, Ph.D thesis,

Eindhoven University of Technology, 1992.

Berkel 1994a Berkel, K. van, Burgess, R., Kessels, J., Peeters, Ad,

Roncken, M., and Schalij, F., A Fully Asynchronous Low

Power Error Corrector for the DCC Player, In International

Solid State Circuits Conference, pp 88-89, February 1994.

Berkel 1994b Berkel, K. van, Burgess, R., Kessels, J., Peeters, Ad,

Roncken, M., and Schalij, F., Asynchronous Circuits for

Low Power: A DCC Error Corrector, IEEE Design and Test

of Computer, 11(2) pp. 88-89, February 1994.

Blunno 2000a Blunno, I., Bystrov, A., Carmona, J., Cortadella, J.,

Lavagno, L., and Yakovlev, A., Direct Synthesis of Large-

Scale Asynchronous Controllers Using a Petri net Based

Approach, Handouts of Fourth ACiD WG Workshop,

Grenoble, January 2000. http://time-

cmp.imag.fr/tima/cis/cis.html

Blunno 2000b Blunno, I., and Lavagno, L., Automated Synthesis of Micro-

Pipelines From Behavioural Verilog HDL, Proceedings of

IEEE Symposium on Advanced Research In Asynchronous

Circuits and Systems (ASYNC’2000), pp. 84-92, Eilat,

Israel, April 2000.

Borriello 1987 Borriiello, G., and Katz, R. H., Synthesis and Optimization

of Interface Transducer Logic, In Proceedings IEEE 1987

ICCAD Digest of Papers, pp. 274-277, 1987.

NCL-EECE-MSD-TR-2003-100

 221

Bredeson 1972 Bredeson, J. G., and Hulina, P. T., Elimination of Static and

Dynamic Hazards for Multiple Input Changes in

Combinational Switching Circuits, Information and Control,

Vol. 20, pp. 114-224, 1972.

Brunvand 1989 Brunvand, E., and Sproull, R. F., Translating Concurrent

Programs into Delay-Insensitive Circuits, In Proceeding of

ICCAD, pp. 262-265, IEEE computer society press,

November 1989.

Brunvand 1991 Brunvand, E., Translating Concurrent Communicating

Programs into Asynchronous Circuits, Ph.D thesis, Carnegie

Mellon University, 1991.

Bryant 1992 Bryant, R., Symbolic Boolean Manipulation with Ordered

Binary-Decision Diagrams, ACM Computing Surveys,

24(3), pp. 292-318, September 1992.

Brzozowski 1989 Brzozowski, J. A., and Ebergen, J. C., Recent Developments

in The Design of Asynchronous Circuits, Technical Report

CS-89-18, University of Waterloo, Computer science

department, 1989.

Burns 2002 Burns, F., Shang, D., Koelmans, A., and Yakovlev, A.,

Synthesis of Asynchronous Data Path and Controllers using

PNs, in Proceeding of 12th UK Asynchronous Forum, South

Bank University, London, June 17-18, 2002.

Bystrov 1999 Bystrov, A., Shang, D., Xia, F., Yakovlev, A., Self-Timed

and Speed Independent Latch Circuits, 6th UK

Asynchronous Forum, University of Manchester, 12-13th

July 1999.

Bystrov 2001 Bystrov, A. and Yakovlev, A., Asynchronous Circuit

Synthesis by Direct Mapping: Interface to Environment,

Tech. Report, Dept. of CS, University of Newcastle, CT-

TR-743, Oct. 2001.

Carmona 2001 Carmona, J., Cortadella, J., and Pastor, E., A Structural

Encoding Technique for The Synthesis of Asynchronous

Circuits, Proceedings of ICACSD’01, pp. 157-166, IEEE

NCL-EECE-MSD-TR-2003-100

 222

computer society press (ISBN 0-7695-1071-X), June 2001,

Newcastle upon Tyne, U.K.

Chaney 1973 Chaney, T. J., and Molnar, C. E., Anomalous Behaviour of

Synchronizer and Arbiter Circuits, IEEE Transactions on

Computers, C-22(4), pp.42-425, April 1973.

Chen 1998a Chen, J. and Burns, A., Asynchronous Data Sharing in

Multiprocessor Real-Time Systems Using Process

Consensus, Proceedings of 10th Euromicro Workshop on

Real-Time Systems, pp. 2-9, Berlin, Germany, IEEE Comp.

Soc., June 17-19, 1998.

Chen 1998b Chen, J., and Burns, A., Asynchronous Data Sharing in

Multiprocessor Real-Time Systems Using Process

Consensus, Tech. Report YCS 295 (1998), Department of

Computer Science, University of York.

Chu 1985 Chu, T.-A., Leung, C. K. C., and Wanuga, T. S., A Design

Methodology for Concurrent VLSI Systems, In Proc.

International Conference Computer Design (ICCD), pp.

407-410, IEEE Computer Society Press, Nov. 1985.

Chu 1987 Chu, Tam-Anh, Synthesis of Self-Timed VLSI Circuits

from Graph-Theoretic Specifications, Ph.D thesis, MIT

Laboratory for Computer Science, June 1987.

Clark 1998 Clark, I., Xia, F., Yakovlev, A. and Davies, A. C., Petri net

Models of Latch Metastability, Electronics Letters, Vol. 34,

No. 7, pp. 635-636, April, 1998.

Coelho 1989 Coelho, David R., The VHDL Handbook, ISBN 0-7923-

9031-8, Kluwer Academic Publishers, 1989.

Cortadella 1997 Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno,

L. and Yakovlev, A., Petrify: A Tool for Manipulating

Concurrent Specifications and Synthesis of Asynchronous

Controllers, IEICE Trans. Information and Systems, Vol.

E80-D, No. 3, pp. 315-325, March 1997.

Cortadella 1998 Cortadella, J., Kishinevsky, M., Lavagno, L. and Yakovlev,

A., Deriving Petri nets from Finite Transition Systems,

NCL-EECE-MSD-TR-2003-100

 223

IEEE Trans. on Computers, Vol. 47, No. 8, pp. 859-882,

Aug. 1998.

Cortadella 2002 Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno,

L., and Yakovlev, A., Logic Synthesis for Asynchronous

Controllers and Interfaces, ISBN 3-540-43152-7 Springer-

Verlag Berlin Heidelberg New York, 2002.

Couvreur 1994 Ykman-Couvreur, C., Lin, B. and Man, H. D., Assassin: A

Synthesis System for Asynchronous Control Circuits,

Technical Report – User and Tutorial Manual, IMEC,

September 1994.

David 1977 David, Rene, Modular Design of Asynchronous Circuits

Defined by Graphs, IEEE Transactions on Computers,

26(8), pp. 727-737, August 1977.

Davis 1993 Davis, A., Coates, B., and Stevens, K., The Post-Office

Experience: Designing a Large Asynchronous Chip, In

Proceedings of the 26th Annual Hawaii International

Conference on Systems Sciences, Vol. I, pp. 409-418, 1993.

Davis 1998 Davis, AI and Nowick, Steven M., An Introduction to

Asynchronous Circuit Design, In A. Kent and J. G.

Williams, Editors, The Encyclopaedia of Computer Science

and Technology, Vol. 38, Marcel Dekker, New York,

February 1998.

Dean 1992 Dean, M. E., STRiP: A Self-Timed RISC Processor

Architecture, Ph.D thesis, Stanford University, 1992.

Dill 1988 Dill, D. L., Trace Theory for Automatic Hierarchical

Verification of Speed Independent Circuits, The MIT press,

Cambridge, Mass., An ACM Distinguished Dissertation,

1988.

Ebergen 1989 Ebergen, J. C., Translating Programs into Delay Insensitive

Circuits, Vol. 56 of CWI tract. CWI, Amsterdam, 1989.

Eichelberger 1965 Eichelberger, E. B., Hazard Detection in Combinational and

Sequential Switching Circuits, IBM Journal of Research and

Development, Vol. 9(2), pp. 90-99, 1965.

NCL-EECE-MSD-TR-2003-100

 224

Eles 1998 Eles, P., Kuchcinski, K., and Peng, Z., System Synthesis

with VHDL, Kluwer Academic Publishers, P.O. Box

17,3300 AA Dordrecht, The Netherlands, 1998.

Ferranti 1952 Ferranti Sales Literature, Universal High-Speed Digital

Computers: A Small Scale Experimental Machine, August

1952. http://www.computer50.org/kgill/mark1/sale/html.

Furber 1999 Furber, S. B., Garside, J. D., Riocreux, P. A., Temple, S.,

Day, P., Liu, J., and Paver, N. C., AMULET2e: An

Asynchronous Embedded Controller, Proceedings of the

IEEE 88(2), pp. 243-256, February 1999.

Gageldonk 1998 Gageldonk, H. van, Baumann, D., Berkel, K. van, Gloor, D.,

Peeters, Ad., and Stegmann, G., An Asynchronous Low-

Power 80c51 Microcontroller. In Proc. International

Symposium on Advanced Research in Asynchronous

Circuits and Systems, pages 96-107, 1998.

Hauck 1995 Hauck, S., Asynchronous Design Methodologies: An

Overview, Proceedings of the IEEE, Vol. 83, No. 1, pp. 69-

93, January 1995.

Hayes 1993 Hayes, J. P., Introduction to Digital Logic Design, Addison-

Wesley Publisher, 1993.

Hoare 1985 Hoare, C. A. R., Communicating Sequential Processes,

Prentice-Hall, 1985.

Hoke 1999 Hoke, J. M., Bond, P. W., Lo, T., Pidala, F. S., and

Steinbrueck, G., Self-Timed Interface for S/390 I/O

Subsystem Interconnection. IBM Journal of Research and

Development, 43(5/6), pp. 829-846, 1999.

Hollaar 1982 Hollaar, Lee A., Direct Implementation of Asynchronous

Control Units, IEEE Transactions on Computers, C-31(12),

pp. 1133-1141, December 1982.

Huffman 1954 Huffman, D. A., The Synthesis of Sequential Switching

Circuits, In Moor, E. F. Editor, Sequential Machines:

Selected Papers, pp. 3-62, Addison-Wesley, 1964.

Reprinted from Franklin, F. Institute, Vol. 257, No. 3, pp.

161-190, Mar. 1954, and No. 4 pp. 275-303, Apr. 1954.

NCL-EECE-MSD-TR-2003-100

 225

ITRS 2001 http://public.itrs.net/Files/2001ITRS.

Jackson 1977 Jackson, K., Language Design for Modular Software

Construction, IFIP Congress Proceedings, pp. 577-581,

1977

Josephs 1990 Josephs, M. B., and Udding, J. T., An Algebra for Delay

Insensitive Circuits, In R. P. Kurshan and E. M. Clarke,

Editors, Proc. International Workshop on Computer Aided

Verification, Vol. 531 of Lecture Notes in Computing

Science, pp. 343-352, Springer-Verlag, 1990.

Jung 1994 Jung, S. T. and John, C. S., Direct Synthesis of Efficient

Speed Independent Circuits from Deterministic Signal

Transition Graphs, Proc. of International Symposium on

Circuits and Systems, pp. 307-310, June 1994.

Jung 1999 Jung, Sung Tae and Myers, Chris J., Direct Synthesis of

Timed Asynchronous Circuits. In Proc. International Conf.

Computer-Aided Design (ICCAD), pp. 332-337, November

1999.

Keister 1951 Keister, W., Ritchie, A. E., and Washburn, S. H., The

Design of Switching Circuits, Van Nostrand, Princeton,

New Jersey, 1951.

Kessels 2001 Kessels, Joep, and Peeters, Ad, The Tangram Framework:

Asynchronous Circuits for Low Power. In Proc. of Asia and

South Pacific Design Automation Conference, pp. 255-260,

February 2001.

Kinniment 1972 Kinniment, D. J., and Edwards, D. G. B., Circuit

Technology in a Large Computer System, Based on a Paper

Presented at the Joint 1ERE-IEE-BCS Conference on

Computers Systems and Technology held in London,

October 1972, Subsequently Published in The Radio and

Electronic Engineer, Vol 43, No. 7, pp. 435-441, 1973.

Kinniment 1976 Kinniment, D. J., Woods, J. V., Synchronisation and

Arbitration Circuits in Digital Systems, Proc. Of IEE, Vol.

123, No. 10, pp. 961-966, October 1976.

NCL-EECE-MSD-TR-2003-100

 226

Kinniment 1998 Kinniment, D. J., Gao, B., Yakovlev, A. and Xia, F.,

Towards Asynchronous A-D Conversion, Proc. 4th

International Symp. on Advanced Research in

Asynchronous Circuits and Systems, San Diego, CA, pp.

206-215, IEEE computer society press, 1998.

Kinniment 1999 Kinniment, D. J., Measurements on a High Speed Arbiter,

Technical Report Series, TR 677, Department of Computing

Science, University of Newcastle, 1999.

Kirosis 1987 Kirosis, L. M., Atomic Multiread Register, Proc. 2nd Int.

workshop on Distributed Computing, Amsterdam, LNCS-

312, pp. 278-296, Springer Verlag, 1987.

Kishinevsky 1993 Kishinevsky, M., Kondratyev, A., Taubin, A., and

Varshavsky, V., Concurrent Hardware: The Theory and

Practice of Self-Times Design, John Wiley and Sons,

London, 1993.

Kol 1997 Kol, R., Ginosar, R., Future Processors will be

Asynchronous (sub-title: KIN: A High Performance

Asynchronous Processor Architecture), Technical Report

CC PUB#202 (EE PUB#1099), Department of Electrical

Engineering, Technion - Israel Institute of Technology, Jul.

1997.

Kolks 1996 Kolks, Tilman, Vercauteren, Steven and Lin, Bill, Control

Re-Synthesis for Control Dominated Asynchronous Design,

Proc. of International Symposium on Advanced Research in

Asynchronous Circuits and Systems, March 1996.

Kondratyev 1998 Kondratyev, A., Cortadella, J., Lavagno, L., Taubin, A., and

Yakovlev, A., Lazy Transition Systems: Application to

Timing Optimization of Asynchronous Circuits, Proc.

IEEE/ACM Int. conference on CAD (ICCAD’98), pp. 324-

331, San Jose, IEEE Comp Soc. Press, Nov. 1998.

Kondratyev 1999 Kondratyev, A., Cortadella, J., Kishinevsky, M., Lavagno,

L., and Yakovlev, A., Automatic Synthesis and

Optimization of Partially Specified Asynchronous Systems.

NCL-EECE-MSD-TR-2003-100

 227

In Proc. ACM/IEEE Design Automation Conference, pp.

110-115, 1999.

Kondratyev 2002 Kondratyev, A., Sorensen, Lief, and Streich, Amy, Testing

of Asynchronous Designs by “ Inappropriate” Means.

Synchronous Approach, In Proceedings of the 8th

International Symposium on Asynchronous Circuits and

Systems, IEEE Computer Society Press, April 2002.

Kopetz 1993 Kopetz, H., and Reisinger, J., The Non-Blocking Write

Protocol NBW: A Solution to a Real-Time Synchronization

Problem, In Proc. of the 14th IEEE Real-Time Systems

Symposium, pp. 131-137, 1993.

Lamport 1977 Lamport, L., Concurrent Reading and Writing,

Communication of the ACM, Vol. 20(11), pp. 806-811,

1977.

Lavagno 1991 Lavagno, L., Keutzer, K. and Sangiovanni-Vincentelli, A.,

Algorithms for Synthesis of Hazard Free Asynchronous

Circuits, Proc. of the 28th Design Automation Conference,

1991.

Lavagno 1995 Lavagno, L., Keutzer, K., and Sangiovanni-Vincentelli, A.,

Synthesis of Hazard-Free Asynchronous Circuits With

Bounded Wire Delays, IEEE Transaction on Computer-

Aided Design, Vol. 14(1), pp. 61-86, January 1995.

Liljeberg 2001 Liljeberg, P., Plosila, J., and Isoaho, J., Asynchronous

Interface for Locally Clocked Modules in ULSI Systems. In

Proc. International Symposium on Circuits and Systems,

volume 4, pp. 170-173, 2001.

Lin 1997 Lin, K. J., Kuo, C. W. and Lin, C. S., Synthesis of Hazard-

Free Asynchronous Circuits Based on Characteristic Graph,

IEEE Transactions on Computers, Vol. 46, No. 11, pp.

1246-1263, Nov. 1997.

Liu 1997 Liu, J., Arithmetic and Control Components for An

Asynchronous System, Ph.D thesis, Department of

Computer Science, University of Manchester, 1997.

NCL-EECE-MSD-TR-2003-100

 228

Marino 1981 Marino, L. R., General Theory of Metastable Operation,

IEEE Trans. Comput., C-30(2) pp. 107-115, February 1981.

Martin 1989a Martin, A. J., Burns, S. M., Lee, T. K., Borkovic, D. and

Hazewindus, P. J., The Design of An Asynchronous

Microprocessor, In Decennial Caltech Conference on VLSI,

pp. 226-234, 1989.

Martin 1989b Martin, A. J., Programming in VLSI: From Communicating

Processes to Delay Insensitive Circuits, In UT Year of

Programming Institute on Concurrent Programming, Hoare,

C. A. R., Ed. MA: Addison-Wesley, pp. 1-64, 1989.

Martin 1990a Martin, Alain J., The Limitations to Delay-Insensitivity in

Asynchronous Circuits, In Willian J. Dally Editor,

Advanced Research in VLSI, pp. 263-278, MIT press, 1990.

Martin 1990b Martin, Alain J., Programming in VLSI: From

Communicating Processes to Delay-Insensitive VLSI

Circuits, In C. A. R. Hoare, Editor, UT Year of

Programming Institute on Concurrent Programming,

Addison-Wesley, 1990.

Martin 1990c Martin, A. J., Collected Papers on Asynchronous VLSI

Design, Technical Report Caltech-CS-TR-90-09,

Department of Computer Science, California Institute of

Technology, 1990.

McCluskey 1986 McCluskey, E. J., Logic Design Principles: With Emphasis

on Testable Semicustom Circuits, Prentice-Hall, Englewood

Cliffs, NI, 1986.

McMillan 1993 McMillan, K. L., Symbolic Model Checking, Kluwer

Academic Publishers, Boston, 1993.

Mealy 1955 Mealy, G. H., A Method for Synthesizing Sequential

Circuits, Bell System Technical J., 34(5) pp. 1045-1079,

1955.

Meng 1989 Meng, T. H.-Y., Brodersen, R. W. and Messerschmit, D. G.,

Automatic Synthesis of Asynchronous Circuits from High-

Level Specifications, IEEE Transactions on Computer

NCL-EECE-MSD-TR-2003-100

 229

Aided Design, Vol. 8, No. 11, pp. 1185-1205, November

1989.

Miller 1965 Miller, R. E., Switching Theory, Vol. II: Sequential Circuits

and Machines, John Wiley and Sons, New York, NY, 1965.

Molnar 1985 Molnar, C. E., Fang, T.-P., and Rosenberger, F. U.,

Synthesis of Delay-Insensitive Modules, In Henry Fuchs,

Editor, 1985 Chapel Hill Conference of VLSI, pp. 67-86,

Computer Science press, 1985.

Moore 1956 Moore, E. F., Gedanlen Experiments on Sequential

Machines, Automata Studies, pp. 129-153, 1956.

Mukai 1974 Mukai, Yuzo and Tohma, Yoshihiro, A Method for the

Realization of Fail-Safe Asynchronous Sequential Circuits,

IEEE Transactions on Computers, C-23(7), pp. 736-739,

July 1974.

Muller 1956 Muller, D. E., and Bartky, W. S., A Theory of

Asynchronous Circuits I, Digital Computer Laboratory 75,

University of Illinois, Nov. 1956.

Muller 1957 Muller, D. E., and Bartky, W. S., A Theory of

Asynchronous Circuits II, Digital Computer Laboratory 78,

University of Illinois, Nov. 1957.

Muller 1959 Muller, D. E., and Bartky, W. S., A Theory of

Asynchronous Circuits, Proc. of International Symposium

on the Theory of Switching, Vol. 29 of the Annals of the

Computation Laboratory of Harvard University, pp. 204-

243, Harvard University press, 1959.

Murata 1989 Murata, T., Petri nets: Properties, Analysis and

Applications, Proceedings of IEEE, Vol. 77(4), pp. 541-580,

April 1989.

Myers 1993 Myers, C. J. and Meng, T. H.-Y., Synthesis of Timed

Asynchronous Circuits, IEEE Transitions on VLSI Systems,

pp. 106-119, June 1993.

Myers 1995a Myers, C. J., Rokicki, T. G., and Meng, T. H.-Y., Automatic

Synthesis and Verification of Gate-Level Timed Circuits,

NCL-EECE-MSD-TR-2003-100

 230

Technical Report CSL-TR-94-652, Stanford University,

January 1995.

Myers 1995b Myers, Chris J., Computer Aided Synthesis and Verification

of Gate-Level Timed Circuits, Ph.D Thesis, Stanford

University, October, 1995.

Nanya 1995 Nanya, T., A Quasi-Delay-Insensitive Microprocessor:

Titac-I, Proceedings of 1995 Israel Workshop on

Asynchronous VLSI, March 1995.

Nielsen 1992 Neilsen, M., Rozenberg, G. and Thiagarajan, P. S.,

Elementary Transition Systems, Theoretical Computer

Science, Vol. 96, pp. 3-33, 1992.

Nowick 1991 Nowick, Steven M., Dill, David L., Synthesis of

Asynchronous State Machines Using a Local Clock, In

International Conference on Computer Design, ICCD 1991,

pp. 192-197, IEEE Computer Society press, 1991.

Nowick 1993 Nowick, Steven M., Automatic Synthesis of Burst-Mode

Asynchronous Controllers, Ph.D thesis, Stanford University,

Department of Computer Science, 1993.

Pastor 1998 Pastor, E., Cortadella, J., Kondratyev, A. and Roig, O.,

Structural Methods for the Synthesis of Speed Independent

Circuits, IEEE Transactions on Computer Aided Design of

Integrated Circuits and Systems, Vol. 17, No. 11, pp. 1108-

1129, Nov. 1998.

Patil 1974 Patil, S. S., Cellular Arrays for Asynchronous Control, In

Proceedings of the ACM 7th Annual Workshop on

Microprogramming 1974.

Peeters 1996 Peeters, A. M. G., Single Rail Handshake Circuits, Ph.D

thesis, Technische Universiteit Eindhoven, Netherlands,

1996.

Pena 1996 Pena, M. A. and Cortadella, J., Combining Process Algebras

and Petri nets for the Specification and Synthesis of

Asynchronous Circuits. Proc. International Symposium on

Advanced Research in Asynchronous Circuits and Systems,

IEEE Computer Society press, March 1996.

NCL-EECE-MSD-TR-2003-100

 231

Peterson 1981 Peterson, James L., Petri net Theory and the Modelling of

Systems, Prentice-Hall, 1981.

Peterson 1983 Peterson, G., Concurrent Reading While Writing, ACM

Transactions on Programming Language and Systems, Vol.

5(1) pp. 46-55, 1983.

Petrify http://www.lsi.upc.es/~jordic/petrify/

Phillips 1967 Phillips, C. S. E., Networks for Real Time Programming,

Computer J., No. 10 (1), pp. 46-52, 1967.

Raynal 1986 Raynal, M., Algorithms for Mutual Exclusion, North

Oxford Academic Publishers Ltd., 1986.

Rosenblum 1985 Rosenblum, L. Y., and Yakovlev, A. V., Signal Graphs:

From Self-Timed to Timed Ones. In Proceedings of

International Workshop on Timed Petri Nets, pp. 199-207,

Torino, Italy, IEEE Computer Society Press, July 1985.

Sawin 1974 Sawin, D. H. and Maki, G. K., Asynchronous Sequential

Machines Designed for Fault Detection, IEEE Transaction

on Computers, C-32(3), pp. 239-249, March 1974.

Seitz 1980 Seitz, Ch., Ideas About Arbiter, Lambda, Vol. 1, pp. 10-14,

First Quarter 1980.

Semenov 1997a Semenov, A., Yakovlev, A., Pastor, E., Pena, M. A. and

Cortadella, J., Synthesis of Speed Independent Circuits from

STG Unfolding Segment, Proc. 34th ACM/IEEE Design

Automation Conference, pp. 16-21, June 1997.

Semenov 1997b Semenov, A., Verification and Synthesis of Asynchronous

Control Circuits Using Petri net Unfoldings, Ph.D thesis,

Department of Computing Science, University of Newcastle

upon Tyne, 1997.

Semenov 1997c Semenov, A., Koelmans, A. M., Lloyd, L., and Yakovlev,

A., Design an Asynchronous Processor Using Petri nets,

IEEE Micro, Vol. 17(2), pp. 54-64, 1997.

Sentovich 1992 Sentovich, E. M., et. al., SIS: A System for Sequential

Circuit Synthesis, Memorandum No. UCB/ERL M92/41,

University of California, Berkeley, 1992.

NCL-EECE-MSD-TR-2003-100

 232

Sgroi 2000 Sgroi, M., Lavagno, L. and Sangiovanni-Vincentelli, A.,

Formal Model for Embedded Systems Design, IEEE Design

and Test, Vol. 17(2), pp. 14-27, April-June 2000.

Shang 2000a Shang, D., Xia, F., and Yakovlev, A., A Self-Timed

Asynchronous Data Communication Mechanism, Proc. 1st

Annual Postgrad Symp. on Convergence of

Telecommunications, Networking and Broadcasting

(PGNET2000), Liverpool, John Moores University,

EPSRC, pp. 170-176.

Shang 2000b Shang, D., Xia, F., and Yakovlev, A., An Implementation of

A Three-Slot Asynchronous Communication Mechanism

Using Self-Timed Circuits, In Alex Yakovlev and Reinder

Nouta, Editors, Asynchronous Interfaces: Tools, Techniques

and Implementations, pp. 37-44, July 2000.

Shang 2000c Shang, D., Xia, F., and Yakovlev, A., Testing a Self-Timed

Asynchronous Communication Mechanism (ACM) VLSI

Chip, Proc. 9th Asynchronous UK Forum, Cambridge

University, 18-19th December 2000.

Shang 2001a Shang, D., Xia, F., and Yakovlev, A., Testing a Self-Timed

Asynchronous Communication Mechanism (ACM) VLSI

Chip, IEEE Workshop on Design and Diagnostics of

Electronic Circuits and Systems (DDECS) 2001, pp. 53-56,

Gyor, Hungary, 18-20 April 2001.

Shang 2001b Shang, D., Xia, F., and Yakovlev, A., Asynchronous Circuit

Synthesis via Direct Translation, 11th UK Asynchronous

Forum, University of Cambridge Computer Laboratory, 17-

18 December 2001.

Shang 2002a Shang, D., Xia, F., and Yakovlev, A., Asynchronous Circuit

Synthesis via Direct Translation, ISCAS 2002, IEEE

International Symposium on Circuits and Systems,

Scottsdale, Arizona, Volume 3, pp. 369-372, May 2002.

Simpson 1979 Simpson, H. R., and Jackson, K., Process Synchronisation

in MASCOT, Computer Journal, 1979, 22 (4), pp. 332-345.

NCL-EECE-MSD-TR-2003-100

 233

Simpson 1986 Simpson, H. R., The MASCOT Method, Software

Engineering Journal, 1986, 1 (3), pp. 103-120.

Simpson 1990 Simpson, H. R., Four-slot Fully Asynchronous

Communication Mechanism, IEE Proceedings, Vol. 137, Pt.

E, No.1, pp. 17-30, January 1990.

Simpson 1994 Simpson, H. R., Methodological and Notational

Conventions in DORIS Real Time Networks, Dynamics

Division, Abe, 11 February 1994.

Simpson 2000 Simpson, H. R., Campbell, E., Real Time Network

Architecture: Principles and Practices, Proc. AINT’2000,

Asynchronous Interfaces: Tools, Techniques and

Implementations, pp. 5 and Handouts, TU Delft, The

Netherlands, July 19-20, 2000.

Sotiriou 2001 Sotiriou, Christos Panagiotis, Design of an Asynchronous

Processor, Ph.D thesis, University of Edinburgh, 2001.

Sparsø 2001 Sparsø, Jens and Furber, Steve Editors, Principles of

Asynchronous Circuit Design: A Systems Perspective,

Kluwer Academic Publishers, 2001.

Spice3 http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE.

Sproull 1986 Sproull, R. F., and Sutherland, I. E., Asynchronous Systems,

Sutherland, Sproull and Associates, Palo Alto, 1986, Vol. I:

Introduction, Vol. II: Logic Effort and Asynchronous

Modules, Vol. III: Case Studies.

Sutherland 1989 Sutherland, Ivan E., Micropipelines, Communications of the

ACM, 32(6):720-738, June 1989.

Sutherland 2002 Sutherland, I. E., and Ebergen, J., Computer With Clocks,

Scientific American, July 2002.

Stevens 1999 Stevens, Ken, Ginosar, Ran and Rotem, Shai, Relative

Timing. In Proc. International Symposium on Advanced

Research in Asynchronous Circuits and Systems, pages

208-218, April 1999.

Tromp 1989 Tromp, J., How to Construct an Atomic Variable, Proc. 3rd

Int. Workshop on Distributed Algorithms, Nice, LNCS,

Springer Verlag, pp. 292-302, 1989.

NCL-EECE-MSD-TR-2003-100

 234

Unger 1969 Unger, S. H., Asynchronous Sequential Switching Circuits,

Wiley-Interscience, John Wiley & Sons, Inc., New York,

1969.

Varshavsky 1990 Varshavsky, V. I., Kishinevsky, M. A., Marakhovsky, V.

B., Peschansky, V. A., Rosenblum, L. Y., Taubin, A. R. and

Tzirlin, B. S., Self-Timed Control of Concurrent Processes,

Kluwer Academic Publisher, 1990. (Russian edition: 1986).

Varshavsky 1996 Varshavsky, V. and Marakhowsky, V., Hardware Support

for Discrete Event Coordination, Proc. of International

Workshop on Discrete Event Systems (WODES’96), pp.

332-340, August 1996, Edinburgh, U.K.

Verhoeff 1995 Verhoeff, T., Encyclopedia of Delay-Insensitive Systems,

Eindhoven University of Technology, The Netherlands,

1995-1998. http://edis.win.tue.nl/edis.html.

Versify University of Politecnica de Catalunya,

http://www.ac.upc.es/vlsi/versify/.

Vidyasankar 1990 Vidyasankar, K., Concurrent Reading While Writing

Revisited, Distributed Computing, Vol. 4(2), pp. 81-85,

1990.

Wang 1991 Wang, Francis C., Digital Circuit Testing: A Guide to DFT

and Other Techniques, Academic Press, Inc., San Diego,

California 92101.

Williams 1948 Williams, F. C., Kilburn, T., Electronic Digital Computers,

Nature 162, pp. 487, September 1948. URL:

http://www.computer50.org.

Williams 1951 Williams, F. C., Kilburn, T., and Toothill, G. C., Universal

High-Speed Digital Computer: A Small Scale Experimental

Machine, In Proceedings of the IEE, pp. 487, Febryary

1951. URL: http://www.computer50.org.

Williams 1982 Williams, Thomas W., Design for Testability – A Survey,

IEEE Transactions on Computers, Vol. C-31, No. 1, January

1982.

NCL-EECE-MSD-TR-2003-100

 235

Williams 1991 Williams, T. E., Self-Timed Rings and Their Application to

Division, Ph.D thesis, Computer Systems Laboratory,

Stanford University, 1991.

Xia 1997 Xia, F. Clark, I. G., and Davies, A. C., Petri-net Based

Investigation of Synchronisation Free Interprocess

Communication in Shared-Memory Real-Time System,

Proceedings of 2nd UK Asynchronous Forum, Newcastle

upon Tyne, UK, July 1-2, 1997.

Xia 1999a Xia, F., Shang, D., Yakovlev, A., and Koelmans, A., An

Asynchronous Communication Mechanism Using Self-

Timed Circuits, 6th UK Asynchronous Forum, University of

Manchester, 12-13th July 1999.

Xia 1999b Xia, F., Yakovlev, A. and Clark, I. G., Testing the Data

Freshness Properties of Asynchronous Communication

Mechanism, Proc. of the 7th UK Asynchronous Forum,

Newcastle upon Tyne, U.K., Dec. 20-21 1999.

Xia 2000a Xia, F., Supporting the MASCOT Method with Petri net

Techniques for Real-Time Systems Development, Ph.D.

thesis, London University, King’s College, January 2000.

(Downloadable from http://www.eee.kcl.ac.uk/~comfort/)

Xia 2000b Xia, F., Yakovlev, A., Shang, D., Bystrov, A., Koelmans,

A., and Kinniment, D. J., Asynchronous Communication

Mechanisms Using Self-Timed Circuits. In Proc.

International Symposium on Advanced Research in

Asynchronous Circuits and Systems, pp. 150-159. IEEE

Computer Society Press, April 2000.

Xia 2002 Xia, F., Yakovlev, A., Clark, I. G., and Shang, D.,

Asynchronous Communication Mechanisms: Classification

and Hardware Implementations, MPCS'02, Fourth

International Conference on Massively Parallel Computer

Systems, Sponsored by Euromicro, 10-12 April 2002,

Ischia, Italy.

NCL-EECE-MSD-TR-2003-100

 236

Xia 2002b Xia, F., Yakovlev, A., Clark, Ian G., and Shang, D., Data

Communication in System with Heterogeneous Timing,

IEEE Micro, Vol 22, Part 6, pp. 48-69, 2002.

Yakovlev 1995 Yakovlev, A., Varshavsky, V., Marakhovsky, V., and

Semenov, A., Designing an Asynchronous Pipeline Token

Ring Interface, Proc. of 2nd Working Conference on

Asynchronous Design Methodologies, pp. 32-41, IEEE

Comp. Society Press, London, May 1995.

Yakovlev 1996a Yakovlev, A., Lavagno, L., and Sangiovanni-Vincentelli,

A., A Unified Signal Transition Graph Model for

Asynchronous Control Circuit Synthesis, Formal Methods

in System Design (Kluwer), Vol. 9, No. 3, pp. 139-188,

Nov. 1996.

Yakovlev 1996b Yakovlev, A., Koelmans, A. M., Semenov, A., and

Kinnement, D. J., Modelling, Analysis and Synthesis of

Asynchronous Control Circuits Using Petri nets,

Integration, the VLSI Journal, Vol. 21(3), pp. 143-170,

December 1996.

Yakovlev 1998 Yakovlev, A. V. and Koelmans, A. M., Petri nets and

Digital Hardware Design, In Lectures on Petri nets II:

Applications, Advances in Petri nets, Vol. 1492, pp. 154-

236, 1998.

Yakovlev 2000 Yakovlev, A., Gomes, L. and Lavagno, L. Editors,

Hardware Design and Petri Nets, Kluwer Academic

Publishers, March 2000

Yakovlev 2001 Yakovlev, A., Xia, F., and Shang, D., Synthesis and

Implementation of a Signal-Type Asynchronous Data

Communication Mechanism. In Proc. International

Symposium on Advanced Research in Asynchronous

Circuits and Systems, pp. 127-136. IEEE Computer Society

Press, March 2001.

Yakovlev 2002a Yakovlev, A., Burns, F., Bystrov, A., Koelmans, A., Krenz,

R., Shang, D., Behavioural Synthesis of Asynchronous

Controllers: A Case Study With a Self-Timed

NCL-EECE-MSD-TR-2003-100

 237

Communication Channel, Second ACiD-WG Workshop of

the European Commission's Fifth Framework Programme,

Munich, Germany, 28-29 January 2002.

Young 1999 Young, F. C. D., Stevens, K. S., and Graham, R. P., Timed

Logic Conformance and its Application, in 1999

International Workshop on Timing Issues in the

Specification and Synthesis of Digital Systems (TAU 99),

ACM/IEEE, March 1999.

Yun 1992a Yun, K., and Dill, D., Automatic Synthesis of 3D

Asynchronous State Machines, In Proceedings of ICCD, pp.

576-580, 1992.

Yun 1992b Yun, K., Dill, D., and Nowick, S. M., Synthesis of 3D

Asynchronous State Machines, In Proceedings of ICCD, pp.

346-350, 1992.

NCL-EECE-MSD-TR-2003-100

 238

Some useful components for asynchronous circuit designs are listed, which can be

used as an extension to a standard library.

Specially, we present all DCs which are used in our PN2DCs tool. As for the VDCs,

they are basically the same as the DCs. The difference is that in DCs, the q and qb

are internal state signals. However, in VDCs, they are not only the internal state

signals but also the output signals. But only one, either q or qb, is used as an output

signal. We do not list them in this Appendix.

Apart form the DCs (VDCs), some other useful components are also presented, such

as Mutex, MSLatch, SRLatch with completion diction, and son on.

 Appendix A

NCL-EECE-MSD-TR-2003-100

 239

r

fw

bk

s1

qb(1)q(0)

&

+ +

&

&

qb(1)q(0)

bk

fw

r1
r2

s

bk

DCsetresetAND2_0

DC

s

r1
r2

fw

&

qb(1)q(0)

bk

DCsetresetOR2_0

+

DC

s1

r1
r2

fw

r1
r2
fws

bk

&

+

&

+

bk

s

r

fw

DCsetreset_1

r

fw

bk

s1

qb(0)q(1)

bk

s

r

fw

DCsetreset_0

DC DC

qb(0)

bk

s2

s1

q(1)

s2
s1

bk

DCsetAND2reset_1

r

fw

r

fw

DC

s2
s1

bk

DCsetOR2reset_0

DC

r

fw s2
s1

bk

DCsetOR2reset_1

DC

r

fw

bk
s1
s2

qb(1)

r
fw

bk
s1
s2

qb(0)

r
fw

q(0) q(1)

qb(1)

bk

s2

s1

q(0)

s2
s1

bk

DCsetAND2reset_0

r

fw

r

fw

DC

bk

DCsetresetAND2_1

DC

s

r1
r2

fw

qb(0)q(1)

bk

fw

r1
r2

s

qb(0)q(1)

bk

DCsetresetOR2_1

+

DC

s1

r1
r2

fw

r1
r2
fws

bk

qb(1)q(0)

s2
s1

bk

DC

DCsetAND2resetOR2_0

r1
r2

fw

r1
r2
fw

s2
s1
bk

qb(0)q(1)

s2
s1

bk

DC

DCsetAND2resetOR2_1

r1
r2

fw

r1
r2
fw

bk

s2
s1

NCL-EECE-MSD-TR-2003-100

 240

+

& bk

qb(1)q(0)

fws1
s2

r1
r2

bk

fw

DC

r1

s1
s2

r2

DCsetOR2resetAND2_0

+

&

&

&

qb(1)q(0)

fw

bk

s1
s2

r1
r2

&

&

+

+

&

bk

DCsetAND3reset_0

DC

fw

qb(1)q(0)

s1
s2
s3

r
bk

fws1s2
s3

r

&

bk

DCsetAND3reset_1

DC

fw

qb(0)q(1)

s1
s2
s3

r
bk

fws1s2
s3

r

+

+
bk

fw
s2
s1

r1
r2

q(0) qb(1)

+

bk

DCsetOR3reset_0

DC

fw
s1
s2
s3

r
qb(1)q(0)

bk

fws1s2
s3

r

+

&

qb(1)q(0)

bk

fws

r1
r2
r3

bk

DCsetresetAND3_0

fw

DC

r1
r2
r3

s

&

bk

fw

DC

r1

s1
s2

r2

DCsetOR2resetAND2_1

bk

qb(0)q(1)

fws1
s2

r1
r2

s2
s1

bk

fw

DC

DCsetAND2resetAND2_0

s2
s1

bk

fw

DC

DCsetAND2resetAND2_1

r1
r2

r1
r2

qb(0)q(1)

fw

bk

s1
s2

r1
r2

s2
s1

bk

DC

fw

DCsetOR2resetOR2_1

r1
r2

bk

fw
s2
s1

r1
r2

q(1) qb(0)

s2
s1

bk

DC

fw

DCsetOR2resetOR2_0

r1
r2

bk

DCsetOR3reset_1

DC

fw
s1
s2
s3

r
qb(0)q(1)

bk

fws1s2
s3

r

bk

DCsetresetAND3_1

fw

DC

r1
r2
r3

s

qb(0)q(0)

bk

fws

r1
r2
r3

NCL-EECE-MSD-TR-2003-100

 241

+

s1
s2

bk

fw

DC

r1
r2
r3

s

DCsetresetOR3_0

bk

qb(1)q(0)

r1
r2

fw
r3

s

+

r1

bk

fw

DC

r1
r2
r3

s

DCsetresetOR3_1

bk

qb(0)q(1)

r1
r2

fw
r3

s

&

&

+

r

s3

bk

fw

DC

DCsetAND3resetAND3_0

qb(1)q(0)

bk
s1
s2

r1
r2

fw

r1
r2

s1
s2
s3

r3

s3
r3

&

&

s2
s1
bk

s1

r

s2 s3

s3

bk

fw

DC

DCsetAND3resetAND3_1

qb(0)q(1)

bk
s1
s2

r1
r2

fw

r1
r2

s1
s2
s3

r3

s3
r3

+

+

s2
s1

+

bk

DC

fw

bk

q(0) qb(1)

s1
s2

r1
r2

s1
s2

r1
r2

fw

DCsetOR3resetOR3_0

s3

r3

s3

r3

+

+

&
& fw

&

q(1) qb(0)

DC

r1

&

+

fw

bk

fw

DC

DCsetAND3resetOR3_0

qb(1)q(0)

bk

DCsetAO21reset_1

s2 fw

r1
r2

s1

bk

s3

r3

s3

r3

r2
r3

&

s3

r3

s3

DCsetOR3resetOR3_1

fw

r2
r1

s2
s1

r2

bk

fw

DC

DCsetAND3resetOR3_1

qb(0)q(1)

bk
s1
s2 fw

r1
r2

s1

s3

r3

s2
s3

r2
r3

+

&

r1

r1

s2
s1

qb(0)

bk

fw

DC
bk

qb(0)q(1)

r1
s1
s2

r2

fws3
r3s1

s2
s3

r1
r2
r3

DCsetOR3resetAND3_1

+

q(1)

bk

fw

DC

DC

qb(1)

fw&

bk

fw

DC
bk

qb(1)q(0)

r1
s1
s2

r2

fws3
r3

& s2

r2
r3

DCsetOR3resetAND3_0

s3

r

bk

bk

DCsetAO21reset_0

fw

q(0)

+
s1
s2
s3

r
bk
s1

NCL-EECE-MSD-TR-2003-100

 242

fw

s2

+bk

fw

DC

qb(1)q(0)

fw&
&+

s1
s2
s3

bk
s1
s2
s3

r1
r2

r1
r2

DCsetAO21resetOR2_0

r3
r2
r1

+

s3

s1

&

+

bk

fw

DC

qb(1)q(0)

&
&+

s1
s2
s3

bk
s1
s2
s3

r1
r2

DCsetAO21resetAND2_0

fw

r1
r2

& r3

DC
r2

+

+bk

fw

DC

qb(0)q(1)

fw&
&+

s1
s2
s3

bk
s1
s2
s3

r1
r2

r1
r2

DCsetAO21resetOR2_1

DCsetAO21resetOA21_1

r1

s3
s2

s1

&

s1

+

bk

fw

DC

qb(0)q(1)

&
&+

s1
s2
s3

bk
s1
s2
s3

r1
r2

DCsetAO21resetAND2_1

fw

r1
r2

bk

s3
s2
s1

+bk

fw

DC

qb(1)q(0)

fw&
&+

s1
s2
s3

bk
s1
s2
s3

DCsetAO21resetOR3_0

r1
r2
r3

r1
r2
r3

+&
&

q(1)

+

qb(0)

fw

bk

r3

&

r2

bk

fw

DC

qb(1)q(0)

&
&+

s1
s2
s3

bk
s1

r1

DCsetAO21resetAND3_0

fw

r2
r3 r1

r2
r3

r1

r3
r2
r1

DCsetAO21resetOR3_1
s3
s2

&

qb(0)q(1)

&

bk

fw

DC

qb(0)q(1)

&
&

&

r1

s2
s3

bk
s1
s2
s3

r1

DCsetAO21resetAND3_1

fw

r2
r3 r1

r2
r3

bk

s3
s2
s1

r2

bk

bk

fw

qb(1)q(0)

&
&+

s1
s2
s3

bk
s1
s2
s3

r1

DCsetAO21resetAO21_0

r2
DC

&
+ & r3

r1
r2
r3

fw

&
& fw

q(1) qb(0)

bk

+

bk

fw

s1
s2
s3

+
s1
s2
s3

bk
s1
s2
s3

r1

DCsetAO21resetAO21_1

r2
DC

&
+ & r3

bkr3

r3

fw

DC

fw

&

fw

qb(1)q(0)

&
&

s1
s2
s3

r1

DCsetAO21resetOA21_0

r2
DC

+
+

r1
r2
r3

fw

NCL-EECE-MSD-TR-2003-100

 243

bk

fw
s1
s2
s3

DCsetOA21reset_0

+
+ &

DC

qb(1)q(0)

s3

s1
s2

bk
r r

fw

r3+ &
&

DC

bk

fw
s1
s2
s3

DCsetOA21reset_1

+
+ &

DC

qb(0)q(1)

s3

s1
s2

bk
r r

fw

r3
r2
r1r2

r1

r1

fw

r1

bk

fw
s1
s2
s3

DCsetOA21resetOR2_0

+
+ &

DC

qb(1)q(0)

s3

s1
s2

bk

fw

+
r1
r2

r1
r2

fw

bk

s2
s1

s3

bk

fw
s1
s2
s3

DCsetOA21resetOR2_1

+
+ &

DC

qb(0)q(1)

s3

s1
s2

bk

fw

+
r1
r2

r1
r2

q(1) qb(0)

&+

s1

+

s2

&

bk

fw
s1
s2
s3

DCsetOA21resetOR3_0

+
+ &

DC

qb(1)q(0)

s3

s1
s2

bk

fw

+
r1 r1

r2r2
r3

r3

DCsetOA21resetAO21_1

s3
s2
s1

r2

fw

bk

fw
s1
s2
s3

DCsetOA21resetOR3_1

+
+ &

DC

qb(0)q(1)

s3

s1
s2

bk

fw

+
r1 r1

r2r2
r3

r3

bk

DCsetOA21resetAND3_0

+

qb(1)q(0)

s1
s2 fw

r1

r3 r1

bk

fw
s1
s2
s3

DCsetOA21resetAND2_0

+
+ &

DC

qb(1)q(0)

s3

s1
s2

bk& r2
r2

bk

fw
s1
s2
s3

DCsetOA21resetAND2_1

+
+ &

DC

qb(0)q(1)

s3

bk
r1

fw
r2
r1

s2
s3

DCsetOA21resetAND3_1

+

qb(0)q(1)

s3

s1

bk

fw
s1
s2
s3

s2
+ &

DC

s3

bk& r2
r2
r3

bk

fw
s1

+ &

DC
bk&

fw

r1
r2
r3 r1

r2
r3

r3+ &
&

DC

r3
r2
r1r2

r1

fw

bk
bk

s2
s1

s3
fw

s1

q(0)

s2
s3

DCsetOA21resetAO21_0

+
+ &

qb(1)

NCL-EECE-MSD-TR-2003-100

 244

MSLatch

Mux

DLatch

C

fw

C

no change

bk

fw
s1
s2
s3

DCsetOA21resetOA21_0

+
+ &

qb(1)q(0)

s3

s1
s2

bk

r1
r2

DC

r3&
+
+

r1
r2
r3
fw

no change

no change

no change

1111

bk

fw
s1
s2
s3

DCsetOA21resetOA21_1

+
+ &

qb(0)q(1)

s3

s1
s2

bk

r1
r2

DC

r3&
+
+

r1
r2
r3

a b y

0 0 0

0 1

1 0

1 1 1

no change

no change

011

101

001

cba

OR

weaker

a C

Cb

a
b

a

b

y

y

y

Cele2

no change

no change

0

y

c
b
a

c
b
a

c

Cele3

y

y

b

M
ut

ex

req1

req2

gr2

gr1

gr1

gr2

req1

req2

Sync

weaker

y

a

sample

clk

OR

out1

0

0

MS

Req Done

D,Db
(dual
 rail)

Q,Qb
(dual
 rail)

D

Db

Rst

Req

Q

Qb

Done

Rst

M
ut

ex

1

1

out0

(sample = 1)

(sample = 0)

a1

r1

a2

r2

D
el

e

r1

a1

r2

a2

D element

1

0

1

0

0

0

0

DL

Req

0

D

Req

Db

Q

Qb

Done

Done

D,Db
(dual
 rail)

Q,Qb
(dual
 rail)

NCL-EECE-MSD-TR-2003-100

 245

SR latches with completion detection

SR latches with completion detection

r1

a1 r2

a2 (finish)

a2 (go on)L
oo

p

1 0

a1

r1

a2 (finish)

r2

a2 (go on)

Loop

SR latches with completion detection

SR latches with completion detection

x

xb

c

cx1

cx0

Sel circuit

Sel

x
xb
c

cx1

cx0

Sel

s3

in

r

SR latches with completion detection

SR latches with completion detection

Simple SR latches with completion detection

s2

s1

s−ack

s r s

s−ack r−ack s−ack r−ack

r

out in out

r2

r1

r−ack

out

in

s−ack

out

r−ack

s2

s1

s−ack

r2

r1

out

s−ack r−ack

rs1

s2

out in

s−ack r−ack

rs1

s2

r−ack

out

s1

s2

out in

s−ack r−ack

s1

s2

r

out

s−ack r−ack

r

out

s3

out in

s−ack r−ack

s1

out

s−ack r−ack

r

s2
s1

r

s2
s3

s−ack r−ack

r

s1
s2

s1
s2
s3

r2

r1

r−ack

s

s−ack

inout

r2

r1

r−ack

s

s−ack

out

NCL-EECE-MSD-TR-2003-100

 246

SR latches with completion detection

r2

r1

r−ack

in

s−ack

r−ack

r1

r2

out

s1
s2
s3

s−ack

r2

r1

r−ack

in

s−ack

r1

r2

s

out in

s−ack r−ack

r2

r1

r−ack

s3
s2

r1

r2

s

out

s−ack r−ack

out

s1

SR latches with completion detection

s−ack

r2

r1

r1

r2

in

r−ack

out

s1

s2

s−ack

r−ack

in

s1 s1

s2

s−ack

r2

r1

r2

r−ack

out

s1

s2

s−ack

r1

r−ack

out

s3

SR latches with completion detection

SR latches with completion detection

s2
s1

SR latches with completion detection

out

SR latches with completion detection

SR latches with completion detection

out

s2

s1

r1

r2

in

r−ack

out

s2

s1

s−ack

s−ack r−ack

r2

r1

r1

r2

r−ack

out

s2

s1

s−ack

s2

s−ack
SR latches with completion detection

out

s2
s3

r1

r2

in

r−ack

s1

out

s2
s3

s−ack

s3

s−ack

r1

r2

r−ack

s1

out

s3 s3
s2
s1

out

s−ack r−ack

in

r2

r1

out

s1
s2

NCL-EECE-MSD-TR-2003-100

 247

in

out

s−ack

r1
r2
r3

r−ack

s

r−ack

r3
r2
r1

in

r−ack

r1
r2
r3

r−ack

out

s1

s2

s−ack

r3
r2
r1

in

r−ack

r2

r3

r3

in

r1
r2
r3

r−ack

out

s2

s1

s−ack

r2
r1

SR latches with completion detection SR latches with completion detection

SR latches with completion detectionSR latches with completion detection

r1
r2
r3

r−ack

in

s1

out

s2
s3

s−ack

SR latches with completion detection

SR latches with completion detection

SR latches with completion detection

r−ack

out

SR latches with completion detection

s−ack

r1
r2
r3

r−ack

s1

out

s2
s3

s−ack

s1

r1
r2
r3

r−ack

in

s−ack

out

s1
s2
s3

r1

r1
r2
r3

r−acks−ack

out

s1
s2
s3

out

s−ack

s

r−ack

r1

s−ack

out

r−ack

out

s−ack

s

r1

s

r1
r2
r3

out

s−ack

s2

out

s1

s2

s−ack

r3
r2r2

r3

r−ack r−ack

s1

s2

s−ack

out

r2
r3

in

s1

s2

out

s−ack

s2

s1

in

r3
r2
r1

r−ack

r1

s2

s1

s−ack

out

NCL-EECE-MSD-TR-2003-100

 248

s−ack

SR latches with completion detection

s1
s2

SR latches with completion detection

out

s3

s−ackr−ack

r1
r2
r3

in

s1
s2
s3

s−ack

out

s3
s2
s1

r3
r2
r1

r−ack r−ack

r1
r2
r3

inout

s−ack

r3

in

s1
s2
s3

out

r−ack

r1
r2

NCL-EECE-MSD-TR-2003-100

