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Further discussions on the classification and high-level models of 
ACMs 

 

H. Simpson, E. Campbell 

F. Xia, I. Clark, A. Yakovlev, D. Shang 

 

The main part of this report includes two short technical articles. These articles have been submitted to 
IEEE Micro for technical review and possible publication. 

An article written by some of us (FX, AY, IC and DS) appeared in IEEE Micro towards the end of 2002 
[1]. Parts of this article touch on the subject of classification of ACMs and their high-level modelling 
using Petri nets. The incompleteness and shortcomings of this article prompted HS to respond to IEEE 
Micro outlining his considered views on these subjects. Extensive discussions between the authors of this 
report were then organized resulting in the modified final response to IEEE Micro from HS and further 
contributions from the original authors of [1]. We believe that jointly these articles represent the “state of 
the art” in our views on these subjects and here they are unified in this report for reference purposes. 
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         PB 077B 
         MBDA UK Ltd 
         Six Hills Way 
         Stevenage 
         Herts   SG1 2DA 
         UK 
 
         10 September 2003 
Group Managing Editor 
IEEE Micro 
10662 Los Vaqueros Circle 
PO Box 3014 
Los Alamitos 
CA 90720 
USA 
 
 
Dear Janet, 
 
HETS Paper : IEEE Micro, 2002, 22, (6), pp 58-69 
 
A copy of this paper has only recently come to my attention.  The paper includes a 
description of a scheme for classifying ACMs.  My comments are confined solely to this 
aspect of the paper. 
 
An important element of the paper is the description and use of a two-by-two matrix 
classification scheme which the authors claim as an original contribution (“Our new ACM 
classification system ...... p 61, lh column).  This fails to recognise that such a scheme is well 
publicised and has existed (in the public domain) for over 10 years.  There is also some 
technical incompleteness in the discussion of ACM properties in relation to this classification 
scheme. 
 
I am concerned that readers of the paper will fail to see the maturity of the idea, and that the 
incomplete technical description will mean that they cannot appreciate its importance.  Also, 
there are no suitable references which would allow a reader to see how the classification 
scheme has emerged in the context of a general system development method. 
 
The note ‘Asynchronous Communication Mechanisms’ (attached) clarifies these points.  It 
has been produced following discussions with the authors of the Micro paper. 
 
Yours sincerely, 
 
 
 
Hugo Simpson 
Research Consultant and 
Visiting Professor at the University of Newcastle 

and Kingston University 
 
email: hugo.simpson@mbda.co.uk 



ASYNCHRONOUS COMMUNICATION MECHANISMS 
 
An ACM, as defined here, is a connector between two asynchronous (heterogeneously timed) 
processes, a writer and a reader, through which a series of data items can be passed.  A recent 
paper [1] made use of a scheme for the classification of ACMs in terms of a two-by-two 
matrix of writing and reading properties, but it did not show clearly the essential similarity 
between this work and a pre-existing classification scheme [2-4], nor did it identify some 
important differences which are evident at the detailed level.  The paper did contribute a new 
set of symbols for the four basic types of ACM, and it proposed a buffered form for ACMs 
which allow re-reading (but see below). This short note summarizes the similarities and 
differences between previous results and the work reported in the paper.  Where necessary, 
points of technical detail have been clarified with the authors [1].  A comprehensive and 
formal description of the pre-existing classification scheme has since been published [5]. 
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A single diagram can be used to describe the two-by-two matrix of ACM types.  It gives 
symbols and names for each type; alternative reading properties are in the two columns, and 
alternative writing properties are in the two rows.  The symbol on the left for each ACM type 
is a ‘protocol’, as described in [2-4]; the symbol on the right is a buffered ACM, as described 
in [1].  The protocol symbol expresses the rules for an interaction in terms of whether 
intermediate items in the ACM are destroyed or not by writing and reading.  The buffered 
ACM symbol expresses whether over-writing or re-reading, or both, is permitted.  The terms 
in bold italics describe the operational purpose envisaged for each ACM type. 
 
The capacity ‘n’ of an ACM is the maximum number of items it can hold when neither 
process is engaged in an access operation.  Data items currently being written [1-4], and data 



items currently being destructively read [2-4], or read or re-read [1], are regarded as not 
present, but nevertheless space must be allowed for them in any implementation, to cover the 
assembly of an item during writing and the extraction of an item during reading.  For 
example, the physical buffer size needed for a member of the channel family is n + 2.  Where 
writing is destructive (over-writing permitted) the maintenance of coherence becomes an 
issue, and extra space may be needed for this. 
 
Writing and reading operations, within the constraint imposed by the capacity, determine the 
current contents of the ACM: 
• A non destructive write [2-4], or a write [1], increases the number of items by one, at the 

end of the write. 
• A destructive write [2-4], or an over-write [1], leaves the number of items unchanged. 
• A destructive read [2-4], or a read [1], reduces the number of items by one, at the start of 

the read. 
• A non destructive read [2-4], or a re-read [1], leaves the number of items unchanged. 
 
The protocols [2-4] and buffered ACMs [1] have slightly different conventions for 
determining the notional contents for non destructive reading (re-reading permitted).  When 
the ACM contains a single item, the non destructive read [2-4] leaves this item undisturbed, 
and the contents remain at one item.  However, a read [1] conceptually removes this item and 
reduces the contents to zero, subsequent access to this undestroyed (and still available) item 
being gained by a re-read. 
 
The protocols and buffered ACMs have identical synchronisation properties: 
• DR, NRR.  Data must exist for reading to start. 
• NDW, NOW.  Space must exist for writing to finish. 
• NDR, RR.  No constraint on reading. 
• DW, OW.  No constraint on writing. 
• RNB, WB, WNB, RB.  The blocking properties follow directly from the above. 
 
Consider first those ACMs where reading is destructive (no re-reading obligatory).  The 
Channel Family comprises: Bounded Buffer (n > 1); Channel (n = 1); Rendezvous (n = 0).  
The Signal Family comprises: Overwriting Buffer (n > 1); Signal (n = 1); Flash Data (n = 0).  
These precisely match the buffered ACM types.  Particularly interesting are the Rendezvous 
and Flash Data, which are highly synchronous from the operational viewpoint, but which can 
be implemented in a fully asynchronous execution environment. 
 
Now consider the protocol form of the ACMs where reading is non destructive.  It can be 
seen at once that, if the non destructive property is to be evident over all time, then the ACM 
must have the capacity to hold at least one item, and it must display an initial value.  
Therefore n ≥ 1 for the Pool and Constant on the right of the matrix.  When n > 1, buffering is 
provided, the semantics being modified so that, when there is more than one item in the 
buffer, a destructive read is applied to the oldest item.  The non destructive reading property, 
which always holds for a single remaining item, implies that the value to be obtained is 
acceptable even when there is no new data since the last read.  In between reads the writer 
may supply a ‘queue’ of  new values, each better (fresher) than the last.  The reader should 
not have to go through the queue of values, discarding or processing them one by one, but 
should be able to get straight to the latest (freshest) value. 
 
There is an additional problem in the case of the ‘buffered Constant’, where any change in its 
value would be motivated by the writer but would only become evident within the system 
when it is accessed by the reader.  Thus the writer could be frustrated in its role to supply new 



up-to-date values over intervals when the reader does not access the ACM.  One can conclude 
that buffering does not sit easily with the non destructive reading property.  However, the 
unbuffered n = 1 protocols with non destructive reading both provide important system 
functions.  There is no point in connecting a writer to a Constant, whose value remains stable 
over the lifetime of a system instantiation. 
 
Finally consider the buffered ACMs where re-reading is permitted.  It makes sense that n ≥ 1 
for the OW-RR-BB mechanism, as n = 0 would mean that the writer would have nowhere to 
leave the latest value whilst moving on to generate a further value.  However the RR-BB 
mechanism has a valid form of operation even when n = 0.  An n = 0 RR-BB mechanism will 
undergo an initial write and read, as do all the mechanisms [5].  Operation will start such that 
reads occurring before the first write are ‘re-reads’ of the initial value.  The first and 
subsequent writes will be held at the end of the write since they are unable to set n = 1.  The 
next read to start will pick up the new data and will free the writer.  This (pleasingly) works 
precisely like a writer for a Rendezvous.  The buffered re-reading ACMs for n > 1 (OW-RR-
BB) and n > 0 (RR-BB) are technically interesting, but they experience the same difficulties 
as the buffered non destructive reading protocols (see previous two paragraphs).  It is not 
clear, from the operational viewpoint, what purpose they would serve. 
 
The two-by-two ACM classification scheme is an important basic concept in a now mature 
system development approach [2-4] based on the use of explicit passive connectors for 
interaction between processes.  The ideas apply equally to software and hardware 
architectures.  When applied to system-on-chip applications, these ACMs can provide 
interaction mechanisms which have no need for global synchrony, and which in principle are 
free from any form of arbitration or mutual exclusion. 
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More thoughts on Asynchronous Communication Mechanisms 
F. Xia, I. Clark, A. Yakovlev, D. Shang 

First of all, our thanks go to Hugo Simpson for his keen interest in our work and the enlightening discussions in his 
article [1], which help to clarify many important points with regard to ACM classification and high-level specification. 
We would also like to thank Hugo Simpson and Eric Campbell for extensive and helpful discussions. 

It was not our intention to claim the use of a 2x2 matrix in classifying ACMs as our original contribution. We would 
like to bring to the readers’ attention paragraph 4, lh column, page 60, of our original paper [2], which partially reads: 
“Simpson proposed a more general classification system for ACMs, … Here we further develop this classification …”. 
However, we apologize for not making the relationship between our work and Simpson’s clearer, perhaps in the fashion 
of reference #10 of [2] and with better references. We hope this short note, in addition to [1], will help to redress that. 

Simpson’s classification system, using the destructive-ness of writing and reading as the differentiator, naturally results 
in four protocols (ACMs) which have distinct synchronization relationships between the writer and reader processes 
(whether the writer and reader may be required to wait). The “further development” mentioned above uses the number 
of unread data items in an ACM as the data state, and differentiates ACMs based on whether overwriting and rereading 
are permitted rather than whether writing and reading are destructive. This change preserves the important 
synchronization relationships, but allows us to obtain different ACMs in the right-hand column of the 2x2 matrix, as 
well as to extend them to other than just n=1 (cf. Figure 3, top of page 160 of reference #5 of [1], which shows that 
traditionally, non-destructive reading protocols only allow n=1). Some operational differences between the two 
approaches are highlighted below. 

We substantially agree with most of the technical details brought up by Simpson. Moreover, we would also like to make 
a few additional technical comments to further clarify our views. In order to enhance comparative readability, we use 
the terminology from [1] rather than [2]. The rest of this note should, therefore, be read in conjunction with [1]. 

We use Petri nets as the main symbolic tool in classification, specification, implementation and verification. With this 
background, we use the following Petri net descriptions of ACMs, some of which have appeared in earlier work in 
various forms (e.g. reference #10 of [2]), to clarify our views. 

Figure 1 includes Petri net models of maximally asynchronous versions of the four ACM types. These models describe 
how the data state of an ACM is modified at the start of a reader access and the completion of a writer access. The 
inhibitor arcs are used to specify clearly when rereading and overwriting may not happen. The reader and writer 
processes in these models do not share common transitions. This reflects the desire for maximal quantitative asynchrony 
once the qualitative temporal requirements for each type are satisfied. It is entirely possible for implementations to 
demonstrate reduced quantitative asynchrony while still adhering to the qualitative temporal requirements of a 
particular ACM type (cf. Figures 5 and 8 in [2] and the discussion on the many versions of the n=0 NOW-NRR-BB, 
called “rendezvous”, in reference #5 of [1]). 
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Figure 1 Petri net models of maximally asynchronous ACM types. 

The case of the n=0 OW-RR-BB in Figure 1 is particularly interesting. With the correct initialization (k=l=0), the 
reading and writing transitions will never fire and all writer accesses are overwriting and all reader accesses are 



rereading. This means that the maximally asynchronous n=0 OW-RR-BB behaves like the Constant in Simpson’s 
classification, in that no new data written by the writer can ever replace the initial value which remains permanently 
available to the reader.  

Figure 1 demonstrates that for ACMs, a larger n allows a higher degree of asynchrony (quantitatively) between the 
writer and reader processes. If the buffer is arranged to be FIFO (not specified at the level of classification in our case), 
data transit can be smoothed, which is indeed one of the primary reasons for FIFO buffering. As with all buffering 
schemes (such as in the NRR ACM types traditionally), gains in data transit smoothness are offset by necessary costs in 
latency. We do not agree that cases with n>0 for the NOW-RR-BB and n≠1 for the OW-RR-BB seem to have no 
practical value. This observation is based on the view that any new item of data generated by the writer should 
supersede all previous items generated. This desire is naturally served by OW ACMs with n≤1. We have therefore 
extended the range to include the buffered OW-RR-BB and the NOW-RR-BB types (not present in the previously 
defined protocols) as we consider it to be too early to predict the full range of ACM applications, and there may be 
trade-offs between latency and continuity which favour these types (e.g. in such applications as networking).  

An example difference resulting from modifying the classification differentiator from the destructive-ness of reading 
and writing to whether overwriting and rereading are permitted, as mentioned in [2], is the n=1 case of NOW-RR-BB 
(called “Message” in [2]), which is semantically different from Constant. For the Constant, because neither writing nor 
reading can be destructive, the initial item of data in the ACM will be available for rereading by the reader throughout 
the life of the system, so there is no practical value in connecting a writer process. For the n=1 NOW-RR-BB, because 
reading accesses update the data state to unread, subsequent writing accesses may happen. Only when a writer is not 
connected on purpose would it operate in the same way as the Constant.  

Operationally, the Pool and the n=1 OW-RR-BB can be considered equivalent, in both synchronization and data passing 
properties. However, the semantics of the destructive-ness of reading and writing deliberately does not distinguish 
rereading from reading and overwriting from writing. For the Pool, writing is always destructive and reading never 
destructive. This emphasizes that for the Pool’s envisaged application (reference data), whether a data item acquired by 
the reader was previously acquired, and whether a writer data access destroys a previous item which has not yet been 
acquired by the reader, are not of interest. Our system based on whether overwriting and rereading are permitted, 
however, obliges us to distinguish between overwriting and writing as well as rereading and reading, because they are 
predicated by the data state and update the data state in different ways.  

In [1], it is proposed that NDR protocols may be extended to n>1 by the semantic modification (obligatory NDR to 
permitted NDR) such that if there is more than one item of data in the ACM at the beginning of a reader access, the 
oldest one is destroyed. NDR, however, remains obligatory for the last item in the ACM. If all items in the ACM have 
been read, there will be one last item of already read data not destroyed. If the writer then supplies a new item, the 
reader will still need to reread (and destroy) the older item before being able to access the new one. In an RR ACM the 
older item would have already been marked as read, thus the reader is immediately directed to the new item (Figure 1, 
inhibitor arcs preventing RRS). Our “further development” allows us to extend the RR ACMs to n>0, without having to 
modify the semantics. 
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