
School of Electrical, Electronic & Computer Engineering

Further discussions on the classification

and high-level models of ACMs

H. Simpson, E. Campbell
F. Xia, I. Clark, A. Yakovlev, D. Shang

Technical Report Series

NCL-EECE-MSD-TR-2004-102

2004

Contact:
Hugo.Simpson@mbda.co.uk

ERCampbell@iee.org

Fei.Xia@ncl.ac.uk

IGClark@iee.org

Alex.Yakovlev@ncl.ac.uk

Delong.Shang@ncl.ac.uk

NCL-EECE-MSD-TR-2004-102
Copyright c© 2004 University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,
Merz Court,
University of Newcastle upon Tyne,
Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

Further discussions on the classification and high-level models of
ACMs

H. Simpson, E. Campbell

F. Xia, I. Clark, A. Yakovlev, D. Shang

The main part of this report includes two short technical articles. These articles have been submitted to
IEEE Micro for technical review and possible publication.

An article written by some of us (FX, AY, IC and DS) appeared in IEEE Micro towards the end of 2002
[1]. Parts of this article touch on the subject of classification of ACMs and their high-level modelling
using Petri nets. The incompleteness and shortcomings of this article prompted HS to respond to IEEE
Micro outlining his considered views on these subjects. Extensive discussions between the authors of this
report were then organized resulting in the modified final response to IEEE Micro from HS and further
contributions from the original authors of [1]. We believe that jointly these articles represent the “state of
the art” in our views on these subjects and here they are unified in this report for reference purposes.

References

1 Xia, F., Yakovlev, A., Clark, I., Shang, D., “Data communications in systems with heterogeneous
timing”, IEEE Micro, 2002, 22, (6), pp 58-69.

 PB 077B
 MBDA UK Ltd
 Six Hills Way
 Stevenage
 Herts SG1 2DA
 UK

 10 September 2003
Group Managing Editor
IEEE Micro
10662 Los Vaqueros Circle
PO Box 3014
Los Alamitos
CA 90720
USA

Dear Janet,

HETS Paper : IEEE Micro, 2002, 22, (6), pp 58-69

A copy of this paper has only recently come to my attention. The paper includes a
description of a scheme for classifying ACMs. My comments are confined solely to this
aspect of the paper.

An important element of the paper is the description and use of a two-by-two matrix
classification scheme which the authors claim as an original contribution (“Our new ACM
classification system p 61, lh column). This fails to recognise that such a scheme is well
publicised and has existed (in the public domain) for over 10 years. There is also some
technical incompleteness in the discussion of ACM properties in relation to this classification
scheme.

I am concerned that readers of the paper will fail to see the maturity of the idea, and that the
incomplete technical description will mean that they cannot appreciate its importance. Also,
there are no suitable references which would allow a reader to see how the classification
scheme has emerged in the context of a general system development method.

The note ‘Asynchronous Communication Mechanisms’ (attached) clarifies these points. It
has been produced following discussions with the authors of the Micro paper.

Yours sincerely,

Hugo Simpson
Research Consultant and
Visiting Professor at the University of Newcastle

and Kingston University

email: hugo.simpson@mbda.co.uk

ASYNCHRONOUS COMMUNICATION MECHANISMS

An ACM, as defined here, is a connector between two asynchronous (heterogeneously timed)
processes, a writer and a reader, through which a series of data items can be passed. A recent
paper [1] made use of a scheme for the classification of ACMs in terms of a two-by-two
matrix of writing and reading properties, but it did not show clearly the essential similarity
between this work and a pre-existing classification scheme [2-4], nor did it identify some
important differences which are evident at the detailed level. The paper did contribute a new
set of symbols for the four basic types of ACM, and it proposed a buffered form for ACMs
which allow re-reading (but see below). This short note summarizes the similarities and
differences between previous results and the work reported in the paper. Where necessary,
points of technical detail have been clarified with the authors [1]. A comprehensive and
formal description of the pre-existing classification scheme has since been published [5].

SIGNAL FAMILY POOL

CHANNEL FAMILY BB RR-BB

OW-BB OW-RR-BB

CONSTANT

Event Data Reference Data

Configuration DataMessage Data

Interaction Protocols and Buffered ACMs

DW

DR RB NRR NDR RNB RR

NDR
DW
WB
RB
NRR
NOW

NDW

WNB

WB

OW

NOW

n n

n nn

n

Legend:

n ≥ 0

n ≥ 0

n ≥ 0

n ≥ 0

n ≥ 0

n ≥ 1

n = 1

n = 1

BB
DR
NDW
RNB
WNB
RR
OW

nBounded Buffer
Destructive Reading Obligatory
Non Destructive Writing Obligatory
Reader Non Blocking
Writer Non Blocking
Re-Reading Permitted
Over-Writing Permitted

Maximum Number of Items
Non Destructive Reading Obligatory
Destructive Writing Permitted
Writer Blocking Possible
Reader Blocking Possible
No Re-Reading Obligatory
No Over-Writing Obligatory

n

n

A single diagram can be used to describe the two-by-two matrix of ACM types. It gives
symbols and names for each type; alternative reading properties are in the two columns, and
alternative writing properties are in the two rows. The symbol on the left for each ACM type
is a ‘protocol’, as described in [2-4]; the symbol on the right is a buffered ACM, as described
in [1]. The protocol symbol expresses the rules for an interaction in terms of whether
intermediate items in the ACM are destroyed or not by writing and reading. The buffered
ACM symbol expresses whether over-writing or re-reading, or both, is permitted. The terms
in bold italics describe the operational purpose envisaged for each ACM type.

The capacity ‘n’ of an ACM is the maximum number of items it can hold when neither
process is engaged in an access operation. Data items currently being written [1-4], and data

items currently being destructively read [2-4], or read or re-read [1], are regarded as not
present, but nevertheless space must be allowed for them in any implementation, to cover the
assembly of an item during writing and the extraction of an item during reading. For
example, the physical buffer size needed for a member of the channel family is n + 2. Where
writing is destructive (over-writing permitted) the maintenance of coherence becomes an
issue, and extra space may be needed for this.

Writing and reading operations, within the constraint imposed by the capacity, determine the
current contents of the ACM:
• A non destructive write [2-4], or a write [1], increases the number of items by one, at the

end of the write.
• A destructive write [2-4], or an over-write [1], leaves the number of items unchanged.
• A destructive read [2-4], or a read [1], reduces the number of items by one, at the start of

the read.
• A non destructive read [2-4], or a re-read [1], leaves the number of items unchanged.

The protocols [2-4] and buffered ACMs [1] have slightly different conventions for
determining the notional contents for non destructive reading (re-reading permitted). When
the ACM contains a single item, the non destructive read [2-4] leaves this item undisturbed,
and the contents remain at one item. However, a read [1] conceptually removes this item and
reduces the contents to zero, subsequent access to this undestroyed (and still available) item
being gained by a re-read.

The protocols and buffered ACMs have identical synchronisation properties:
• DR, NRR. Data must exist for reading to start.
• NDW, NOW. Space must exist for writing to finish.
• NDR, RR. No constraint on reading.
• DW, OW. No constraint on writing.
• RNB, WB, WNB, RB. The blocking properties follow directly from the above.

Consider first those ACMs where reading is destructive (no re-reading obligatory). The
Channel Family comprises: Bounded Buffer (n > 1); Channel (n = 1); Rendezvous (n = 0).
The Signal Family comprises: Overwriting Buffer (n > 1); Signal (n = 1); Flash Data (n = 0).
These precisely match the buffered ACM types. Particularly interesting are the Rendezvous
and Flash Data, which are highly synchronous from the operational viewpoint, but which can
be implemented in a fully asynchronous execution environment.

Now consider the protocol form of the ACMs where reading is non destructive. It can be
seen at once that, if the non destructive property is to be evident over all time, then the ACM
must have the capacity to hold at least one item, and it must display an initial value.
Therefore n ≥ 1 for the Pool and Constant on the right of the matrix. When n > 1, buffering is
provided, the semantics being modified so that, when there is more than one item in the
buffer, a destructive read is applied to the oldest item. The non destructive reading property,
which always holds for a single remaining item, implies that the value to be obtained is
acceptable even when there is no new data since the last read. In between reads the writer
may supply a ‘queue’ of new values, each better (fresher) than the last. The reader should
not have to go through the queue of values, discarding or processing them one by one, but
should be able to get straight to the latest (freshest) value.

There is an additional problem in the case of the ‘buffered Constant’, where any change in its
value would be motivated by the writer but would only become evident within the system
when it is accessed by the reader. Thus the writer could be frustrated in its role to supply new

up-to-date values over intervals when the reader does not access the ACM. One can conclude
that buffering does not sit easily with the non destructive reading property. However, the
unbuffered n = 1 protocols with non destructive reading both provide important system
functions. There is no point in connecting a writer to a Constant, whose value remains stable
over the lifetime of a system instantiation.

Finally consider the buffered ACMs where re-reading is permitted. It makes sense that n ≥ 1
for the OW-RR-BB mechanism, as n = 0 would mean that the writer would have nowhere to
leave the latest value whilst moving on to generate a further value. However the RR-BB
mechanism has a valid form of operation even when n = 0. An n = 0 RR-BB mechanism will
undergo an initial write and read, as do all the mechanisms [5]. Operation will start such that
reads occurring before the first write are ‘re-reads’ of the initial value. The first and
subsequent writes will be held at the end of the write since they are unable to set n = 1. The
next read to start will pick up the new data and will free the writer. This (pleasingly) works
precisely like a writer for a Rendezvous. The buffered re-reading ACMs for n > 1 (OW-RR-
BB) and n > 0 (RR-BB) are technically interesting, but they experience the same difficulties
as the buffered non destructive reading protocols (see previous two paragraphs). It is not
clear, from the operational viewpoint, what purpose they would serve.

The two-by-two ACM classification scheme is an important basic concept in a now mature
system development approach [2-4] based on the use of explicit passive connectors for
interaction between processes. The ideas apply equally to software and hardware
architectures. When applied to system-on-chip applications, these ACMs can provide
interaction mechanisms which have no need for global synchrony, and which in principle are
free from any form of arbitration or mutual exclusion.

References

1. Xia F, Yakovlev A V, Clark I G and Shang D. Data Communications in Systems

with Heterogeneous Timing. IEEE Micro, 2002, 22, (6), pp 58-69.

2. Simpson H R. Layered Architecture(s) : Principles and Practice in Concurrent and

Distributed Systems. IEEE Proceedings of the International Conference and
Workshop on Engineering of Computer-Based Systems, Monterey, March 1997, pp
312-320.

3. Simpson H R. Architecture for Computer Based Systems. IEEE Proceedings of

Tutorial and Workshop on Engineering of Computer-Based Systems, Stockholm, May
1994, pp 70-82.

4. Simpson H R. Real Time Networks in Configurable Distributed Systems. IEE

Proceedings of the International Workshop on Configurable Distributed Systems,
London, March 1992, pp 45-59.

5. Simpson H R. Protocols for Process Interaction. IEE Proceedings on Computers and

Digital Techniques, 2003, 150, (3), pp 157-182.

More thoughts on Asynchronous Communication Mechanisms
F. Xia, I. Clark, A. Yakovlev, D. Shang

First of all, our thanks go to Hugo Simpson for his keen interest in our work and the enlightening discussions in his
article [1], which help to clarify many important points with regard to ACM classification and high-level specification.
We would also like to thank Hugo Simpson and Eric Campbell for extensive and helpful discussions.

It was not our intention to claim the use of a 2x2 matrix in classifying ACMs as our original contribution. We would
like to bring to the readers’ attention paragraph 4, lh column, page 60, of our original paper [2], which partially reads:
“Simpson proposed a more general classification system for ACMs, … Here we further develop this classification …”.
However, we apologize for not making the relationship between our work and Simpson’s clearer, perhaps in the fashion
of reference #10 of [2] and with better references. We hope this short note, in addition to [1], will help to redress that.

Simpson’s classification system, using the destructive-ness of writing and reading as the differentiator, naturally results
in four protocols (ACMs) which have distinct synchronization relationships between the writer and reader processes
(whether the writer and reader may be required to wait). The “further development” mentioned above uses the number
of unread data items in an ACM as the data state, and differentiates ACMs based on whether overwriting and rereading
are permitted rather than whether writing and reading are destructive. This change preserves the important
synchronization relationships, but allows us to obtain different ACMs in the right-hand column of the 2x2 matrix, as
well as to extend them to other than just n=1 (cf. Figure 3, top of page 160 of reference #5 of [1], which shows that
traditionally, non-destructive reading protocols only allow n=1). Some operational differences between the two
approaches are highlighted below.

We substantially agree with most of the technical details brought up by Simpson. Moreover, we would also like to make
a few additional technical comments to further clarify our views. In order to enhance comparative readability, we use
the terminology from [1] rather than [2]. The rest of this note should, therefore, be read in conjunction with [1].

We use Petri nets as the main symbolic tool in classification, specification, implementation and verification. With this
background, we use the following Petri net descriptions of ACMs, some of which have appeared in earlier work in
various forms (e.g. reference #10 of [2]), to clarify our views.

Figure 1 includes Petri net models of maximally asynchronous versions of the four ACM types. These models describe
how the data state of an ACM is modified at the start of a reader access and the completion of a writer access. The
inhibitor arcs are used to specify clearly when rereading and overwriting may not happen. The reader and writer
processes in these models do not share common transitions. This reflects the desire for maximal quantitative asynchrony
once the qualitative temporal requirements for each type are satisfied. It is entirely possible for implementations to
demonstrate reduced quantitative asynchrony while still adhering to the qualitative temporal requirements of a
particular ACM type (cf. Figures 5 and 8 in [2] and the discussion on the many versions of the n=0 NOW-NRR-BB,
called “rendezvous”, in reference #5 of [1]).

k l

Initialize to k+l=n OW-RR-BB OW-NRR-BB

WS – writing/overwriting starts, WA – writing/overwriting, RE – reading/rereading completes, RA – reading/rereading;
WE1 – writing completion begins, OWE1 – overwriting completion begins;
WE2 – writing completion ends, OWE2 – overwriting completion ends;
RS1 – reading start begins, RRS1 – rereading start begins, RS2 – reading start ends, RRS2 – rereading start ends.

RS1 RRS1

RS2 RRS2
RA

RE

WA

WS

WE1OWE1

WE2OWE2

k l

RS1

RS2
RA

RE

WA

WS

WE1 OWE1

WE2 OWE2

k l

NOW-RR-BB

RS1 RRS1

RS2 RRS2
RE

WE1

WE2

NOW-NRR-BB

k l

RS1

RS2
RA

RE

WA

WS

WE1

WE2

WA

WS

Figure 1 Petri net models of maximally asynchronous ACM types.

The case of the n=0 OW-RR-BB in Figure 1 is particularly interesting. With the correct initialization (k=l=0), the
reading and writing transitions will never fire and all writer accesses are overwriting and all reader accesses are

rereading. This means that the maximally asynchronous n=0 OW-RR-BB behaves like the Constant in Simpson’s
classification, in that no new data written by the writer can ever replace the initial value which remains permanently
available to the reader.

Figure 1 demonstrates that for ACMs, a larger n allows a higher degree of asynchrony (quantitatively) between the
writer and reader processes. If the buffer is arranged to be FIFO (not specified at the level of classification in our case),
data transit can be smoothed, which is indeed one of the primary reasons for FIFO buffering. As with all buffering
schemes (such as in the NRR ACM types traditionally), gains in data transit smoothness are offset by necessary costs in
latency. We do not agree that cases with n>0 for the NOW-RR-BB and n≠1 for the OW-RR-BB seem to have no
practical value. This observation is based on the view that any new item of data generated by the writer should
supersede all previous items generated. This desire is naturally served by OW ACMs with n≤1. We have therefore
extended the range to include the buffered OW-RR-BB and the NOW-RR-BB types (not present in the previously
defined protocols) as we consider it to be too early to predict the full range of ACM applications, and there may be
trade-offs between latency and continuity which favour these types (e.g. in such applications as networking).

An example difference resulting from modifying the classification differentiator from the destructive-ness of reading
and writing to whether overwriting and rereading are permitted, as mentioned in [2], is the n=1 case of NOW-RR-BB
(called “Message” in [2]), which is semantically different from Constant. For the Constant, because neither writing nor
reading can be destructive, the initial item of data in the ACM will be available for rereading by the reader throughout
the life of the system, so there is no practical value in connecting a writer process. For the n=1 NOW-RR-BB, because
reading accesses update the data state to unread, subsequent writing accesses may happen. Only when a writer is not
connected on purpose would it operate in the same way as the Constant.

Operationally, the Pool and the n=1 OW-RR-BB can be considered equivalent, in both synchronization and data passing
properties. However, the semantics of the destructive-ness of reading and writing deliberately does not distinguish
rereading from reading and overwriting from writing. For the Pool, writing is always destructive and reading never
destructive. This emphasizes that for the Pool’s envisaged application (reference data), whether a data item acquired by
the reader was previously acquired, and whether a writer data access destroys a previous item which has not yet been
acquired by the reader, are not of interest. Our system based on whether overwriting and rereading are permitted,
however, obliges us to distinguish between overwriting and writing as well as rereading and reading, because they are
predicated by the data state and update the data state in different ways.

In [1], it is proposed that NDR protocols may be extended to n>1 by the semantic modification (obligatory NDR to
permitted NDR) such that if there is more than one item of data in the ACM at the beginning of a reader access, the
oldest one is destroyed. NDR, however, remains obligatory for the last item in the ACM. If all items in the ACM have
been read, there will be one last item of already read data not destroyed. If the writer then supplies a new item, the
reader will still need to reread (and destroy) the older item before being able to access the new one. In an RR ACM the
older item would have already been marked as read, thus the reader is immediately directed to the new item (Figure 1,
inhibitor arcs preventing RRS). Our “further development” allows us to extend the RR ACMs to n>0, without having to
modify the semantics.

References

1 Simpson, H.R., “Asynchronous communication mechanisms”, elsewhere in this issue.
2 Xia, F., Yakovlev, A., Clark, I., Shang, D., “Data communications in systems with heterogeneous timing”, IEEE

Micro, 2002, 22, (6), pp 58-69.

	combined.pdf
	Micro_response_TR_intro.pdf
	Further discussions on the classification and high-level mod

	Micro_response_2909.pdf
	More thoughts on Asynchronous Communication Mechanisms

