
School of Electrical, Electronic & Computer Engineering

Modeling Asynchronous ANNs for Energy
Efficient Implementation

Yuan Chen, Fei Xia, Alex Yakovlev

Technical Report Series

NCL-EECE-MSD-TR-2005-105

May 2005

Contact:
Fei.Xia@newcastle.ac.uk

NCL-EECE-MSD-TR-2005-105
Copyright c© 2005 University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,
Merz Court,
University of Newcastle upon Tyne,
Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

Modeling Asynchronous ANNs for Energy Efficient
Implementation

Yuan Chen, Fei Xia, Alex Yakovlev

Abstract − Artificial Neural Networks (ANNs) have
been widely used in embedded systems to provide
multi-point control. We use Asynchronous
communication mechanisms (ACMs) to provide a
means to enable ANN neurons to be activated only
when necessary, so that systems' energy consumption
can be greatly reduced.

1 INTRODUCTION

Artificial Neural Networks (ANNs) have been
introduced into the field of embedded systems in
order to provide an effective means of multi-point
control. Whatever differences these ANNs may have,
all neurons in these networks are activated under one
global clock, whether necessary or not. Although it
may not cause much trouble in desktop systems, the
high energy cost of data exchange and processing
may not be realistic for embedded systems. Even
worse, the high speed global clock switching all over
such ANNs at approximately the same time is the
largest source of EMI (Electromagnetic Interference)
[1]. All the problems caused by synchronous ANNs
call for new ANN models.

2 BASIC STRUCTURE OF ASYNCHRONOUS
ANNS

Biological neural networks do not have such global
clocks and their neurons are activated when new data
is ready in their input neurons. The intrinsic feature
of biological neurons' asynchrony characteristic
enlightens us to integrate Asynchronous
Communication Mechanisms (ACMs) [2] with
traditional ANN design.

2.1 Asynchronous Neuron Design

Jeff Hawkins and Dileep George's recent research
work [3,4] about human neural cortex give us fresh
ideas about ANNs design. When they explore the
Invariance Property [4] about the human retina, they
pointed out that the prediction characteristic was
essential for human neural cortex to make quick
reactions. Every neuron will make its prediction
about the new data it may receive. If the received
data agrees with its prediction, neurons do not output
its calculation result in detail, but only send signals
which mean OK or NO VARIATION outside.
Otherwise, ALARM signal will be generated and

sent out to others. Detailed data will only be
provided when ALARM signals are answered. On
the other hand, neurons stay inactive until ALARM
signals are received. By this way, neurons act
asynchronously and can focus their limited resources
to solving the key part of the entire problem and
react quickly.

If artificial neurons can be designed in the same
way, the limited energy of embedded systems can be
optimally used. To this end, we introduce ACMs into
our ANNs design. An ACM, as defined here, is a
connector between two asynchronous processes, a
writer and a reader, through which a sequence of
data items can be passed without necessitating the
writer and reader to be locked for synchronization
under a global clock [2]. In asynchronous ANNs, all
data processing happens in neurons; therefore every
neuron can play the role of a writer or a reader in
different situations, based on the usage of its
memory. When it is activated, a neuron works as a
reader to fetch data from the memory of other
connected neurons. After that, the neuron will do its
calculation and write the calculation result into its
memory, in which it plays the role as a writer.

2.2 Asynchronous Neural Regions

The entire biological neuron network can be seen as
a hierarchy which contains multiple layers. Values
used by particular neurons to make prediction are
called Basic Patterns, such as the 256 grey scales
for visual neurons. Biological networks incline to
combine their neurons’ predictions together to make
the uniform pattern recognition of the entire object
or some regions of it. The joint patterns used by
neurons of one layer are called Advanced Patterns.
Every layer contains its unique advanced patterns
and there are deterministic relationships between
advanced patterns in neighboring layers. If the new
data matches one of the advanced patterns in the
present layer, the layer will not output the advanced
pattern, but only the pattern’s number, in which way
the network can convey the same information with
very low overhead.

In order to provide the similar performance for
ANNs, we integrate the idea from asynchronous
circuits into our design. Asynchronous circuits use a
pair of handshake signals such as Req (Request) and
Ack (Acknowledge) to control a group of data wires,
which are called Bundled Data [5]. In our design, a

group of neurons with the same bundle of inputs and
outputs are called a neuron region. Neurons in the
same region are activated synchronously, and make
the entire pattern recognition of the region. They
share the same handshake signals to communicate
with neurons in other regions. The more neurons one
region contains, the lower rate the overhead of
handshake signals the region has.

Figure 1: Asynchronous Neuron Region

The entire network can be seen as a GALS
(Global Asynchronous Local Synchronous) [6]
system, since neurons within a region work
synchronously while exchange data asynchronously
outside the region. In this way, we can greatly
preserve characteristics of traditional synchronous
ANN models in our new ANN design. Furthermore,
the asynchronous neural region is a good solution for
EMI because the switching of the handshake signals
is not correlated in time [1]. Recently, the world’s
first asynchronous microprocessor made by EPSON
reduced energy consumption by 70% and
electromagnetic radiation by 20dB [7], which shown
a promising future for asynchronous ANN design.

2.3 Signal and Data Processing

Neuron regions use both signals and data to
communicate. Signals can only convey simple
information but cost far fewer energy than data
which contains plenty of information. According to
the type of information processing, each neuron
region of the type discussed in this paper consists of
three parts.

Figure 2: Data Processing vs. Signal Processing

Although every region contains more than one
neuron, it has only one trigger. The trigger receives

handshake signals from outside world to decide
whether to activate neurons in the region, or only do
pattern mapping. Every neuron in the region can be
divided into a transformer and a calculator.
Activated by the trigger, the transformer generates
all kinds of signals for data processing, which is
performed by the calculator.

The trigger is the most active part of the region
but consumes extremely little energy because it only
processes very simple signals. On the other hand, the
greater part of system energy is consumed by the
calculator, which does large amounts of data
processing every time. Since most of the time a
region only has the trigger alert to receive outside
signals, asynchronous ANNs can perform the same
tasks as but with much less energy than synchronous
ones.

3 A MATLAB MODEL OF ASYCHRONOUS
ANNS

We have developed the method to model and
simulate Asynchronous ANNs using MATLAB 7.0
for Windows. As a first example, an asynchronous
neuron with five main parts has been built using
MATLAB, which is shown in Figure 2.

Figure 3: Asynchronous Neuron Built in MATLAB

In hardware design, dual-rail protocol [5] is used,
in which two wires are used to carry a single bit of
information. In this paper, two numbers 1 and -1 are
used in the simulation to denote the binary inputs
while 0 represents the idle state.

Neural Unit is the same as the traditional
synchronous BP (Back-propagation) neuron with
three inputs and one output. This unit and the
following Prediction Unit, Pattern Unit, Slot Unit
constitute the calculator of the neuron.

Prediction Unit: In our toy example, neurons use
two basic patterns: {-1, 1} as the prediction values.
The Maximum Likelihood Rule is used to make
judgment. If the present result is close enough to one
of the basic patterns, the neuron will treat the
received data as the chosen pattern and write the
pattern value into its memory, which will avoid the
accumulation of system noise. At the same time,

Alarm signal outputs "-1" to inform that no new data
has been detected, and the Choice signal is used to
inform the trigger of the region about the basic
pattern chosen by the present neuron. However, if
the calculation result is far from both the two basic
patterns, the Choice signal keeps idle and Alarm
signal will become "1", and the new result will be
written into the memory as the new data.

Pattern Unit: Pattern Unit is highlighted because it
only appears in neurons in the highest layer. As
mentioned before, if the trigger part of the present
region receives no signal to inform new data, it will
make pattern mapping without data calculation. It
means data in the memory of neurons does not need
to be updated every time. Things are different in
neurons in the highest layer because final results will
be read from their memories. Therefore, Pattern Unit
will write the chosen pattern into the memory when
the trigger gives the indication, while let the result of
Prediction Unit access the memory when no
indication is received. In neurons which do not give
the final result, this unit is omitted.

Slot Unit: In asynchronous ANNs, every neuron
works as writer or reader in different situations. In
our design, the writer may overwrite the data in its
memory since it does not know when the data will be
read by neurons in other region, and the reader may
reread the same data because every neuron connect
with more than one neurons. Because the memory
must satisfy the write and overwrite requests from
the writer, and read and reread ones from the readers,
the POOL type of ACMs [2] is chosen. In this paper,
only one memory unit or slot is used in every neuron
and all the data actions are treated as atomic. This is
because of the relatively small size of the data items.

Signal Unit: Signal Unit is the transformer of the
neuron, and will give local signals used by the
calculator part. Since every neuron’s writing and
reading actions are atomic and mutually exclusive,
an additional local variable “K” is used as a “key” to
the slot. K=0 means the slot is locked and K=1
means unlocked. Whoever grasps the key can access
the slot in the fashion of the classical MUTEX
protection scheme. The algorithm of slot control is
given as:

 Writer Reader
w0: wait until k=1 r0: wait until k=1
 w: k:=0 write slot r: k:=0 read slot
wd: k:=1 rd: k:=1

Trigger Unit: Trigger unit belongs to the entire
region, not any particular neuron. The trigger will
activate its neurons when global Alarm signals are
received. It has two main tasks. The first one is
signal conversion. Global handshake signals such as

R_req and Ack will be turned into regional ones, or
vice versa. More complex control can be provided
here if necessary. The other task is pattern
recognition. It can be divided into three parts: pattern
encoding, pattern mapping and pattern decoding.
Pattern encoding will turn advanced patterns of the
region into corresponding codes. If any neuron in the
region sends alarm signal “1” to inform new data, a
global Alarm signal “1” will be sent. The global
alarm signal will also be created when the trigger
may not find proper code of the present pattern,
which is called pattern miss-shot. In other cases, the
trigger will generate the pattern code to feed other
regions. When no valid global alarms are received,
the trigger will only do pattern mapping to generate
its pattern codes based on the received ones from its
inputs. Pattern decoding is only available in the
regions in the highest layer, which decode pattern
codes into advanced patterns, and inform the pattern
unit of its neurons to choose the correct basic
patterns.

In our method, most parts of the neurons are
modularized so that designers can easily use them to
build their own systems. However, the trigger unit is
not fixed in order to give designers enough freedom
to realize their systems’ unique requirements and
pattern maps.

4 SIMULATIONS

In this paper, we want to simulate a one bit full-
adder (two operands A0, B0 with carryin C0 to
generate sum A1 and carryout C1). A three-input-
two-output neural network (Figure 3) has been built
using the techniques described in section 3.
MATLAB NNTOOL is used to obtain the weights
&bias of the system.

Figure 4: 3-input-2-output ANN

 ANN is fed with data evenly generated from {-1 -
1 -1} to {1 1 1} have been added with random

numbers which follow Gaussian Distribution. They
are used to simulate the noise-integrated data fed to
the network. Neurons 1, 2, 3 are fed with the same
original data from the outside world, and constitute
the first region of the network. The second region
contains neurons 4, 5.
 Although each neuron in the first region can
recognize two basic patterns: “-1” and “1”, there are
only six valid advanced patterns. In this simple toy
example, patterns {-1 1 1} and {1 -1 -1} are chosen
to be encoded since they happen most frequently.
Consequently, one wire “Pattern Code” is used to
send pattern codes (“1” for {-1 1 1} and “-1” for {1 -
1 -1}) to the second region.

Figure 5 gives the data traffic between the two
regions. In almost half of the time, one wire of
pattern code is used instead of three wires of detailed
data. Consequently, neurons in the second region are
activated to do data calculation only half of the time.
The more neurons one region contains, or the more
patterns are encoded, the fewer detailed data items
are transmitted in the network and the fewer times
neurons in the next region are activated.

Figure 5: Pattern Codes vs. Detailed Data

 Furthermore, we fed the same data into both our
asynchronous ANN and a synchronous ANN built
with the same parameters. The result of
asynchronous ANN is functionally the same as its
synchronous counterpart with some minor delay. It is
because data is fetched by the asynchronous neurons
when the alarm signals are answered while data
items are sent directly to synchronous neurons
unconditionally without delay. At the same time, the
level of switching activity in an asynchronous ANN
is significantly lower owing to the use of
asynchronous triggering mechanism and self-timing.
The result demonstrates that asynchronous ANNs
can successfully carry out tasks traditionally fulfilled
by synchronous ANNs.

5 CONCLUSIONS

New biological suppositions and ACMs have been
integrated with traditional ANNs design. Neurons

are grouped into different regions to make pattern
recognition according to their predictions, and send
pattern codes or data to communicate with others in
different situations. This may offer a more adequate
implementation technology than synchronous in
terms of using timing and power resources. Reduced
EMI is another potential advantage.

Acknowledgments

The authors would like to thank Jack Scannell,
Malcolm Young and Fei Hao for enlightening and
extensive discussions. Yuan Chen is supported by
Newcastle University’s International Research and
department scholarships.

References

[1] The University of UTAH, Asynchronous
Circuit and System Design
http://www.cs.utah.edu/research/factsheets/asyncprt.pd
f
[2] Fei Xia and Ian Clark; Algorithms for Signal
and message Asynchronous Communication
mechanisms and their Analysis; Fundamenta
Informaticae Volume 50, Issue 2 Pages: 205-222
[3] Jeff Hawkins and Sandra Blakeslee. 2004. On
Intelligence. Times Books, Henry Holt and Company,
New York, NY 10011
[4] Dileep George, Jeff Hawkins; Invariant
Pattern Recognition using Bayesian Inference on
Hierarchical Sequences
http://www.stanford.edu/~dil/RNI/DilJeffTechReport.
pdf
[5] J.Sparsø and S. Furber (eds.) 2001, Principles
of asynchronous circuit design- A systems perspective,
kluwer Academic Publishers
[6] Hemani, A.; Meincke, T.; Kumar, S.; Postula,
A.; Olsson, T.; Nilsson, P.; Oberg, J.; Ellervee, P.;
Lundqvist, D.1999,;Lowering power consumption in
clock by using globally asynchronous locally
synchronous design style Design Automation
Conference, 1999. Proceedings. 36th, Pages:873 - 878
[7] http://www.epson.co.jp/e/newsroom/2005/
news_2005_02_09.htm

