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Abstract − Artificial Neural Networks (ANNs) have 
been widely used in embedded systems to provide 
multi-point control. We use Asynchronous 
communication mechanisms (ACMs) to provide a 
means to enable ANN neurons to be activated only 
when necessary, so that systems' energy consumption 
can be greatly reduced. 

1 INTRODUCTION 

Artificial Neural Networks (ANNs) have been 
introduced into the field of embedded systems in 
order to provide an effective means of multi-point 
control. Whatever differences these ANNs may have, 
all neurons in these networks are activated under one 
global clock, whether necessary or not. Although it 
may not cause much trouble in desktop systems, the 
high energy cost of data exchange and processing 
may not be realistic for embedded systems. Even 
worse, the high speed global clock switching all over 
such ANNs at approximately the same time is the 
largest source of EMI (Electromagnetic Interference) 
[1]. All the problems caused by synchronous ANNs 
call for new ANN models. 

2 BASIC STRUCTURE OF ASYNCHRONOUS 
ANNS 

Biological neural networks do not have such global 
clocks and their neurons are activated when new data 
is ready in their input neurons. The intrinsic feature 
of biological neurons' asynchrony characteristic 
enlightens us to integrate Asynchronous 
Communication Mechanisms (ACMs) [2] with 
traditional ANN design.  

2.1 Asynchronous Neuron Design 

Jeff Hawkins and Dileep George's recent research 
work [3,4] about human neural cortex give us fresh 
ideas about ANNs design. When they explore the 
Invariance Property [4] about the human retina, they 
pointed out that the prediction characteristic was 
essential for human neural cortex to make quick 
reactions. Every neuron will make its prediction 
about the new data it may receive. If the received 
data agrees with its prediction, neurons do not output 
its calculation result in detail, but only send signals 
which mean OK or NO VARIATION outside. 
Otherwise, ALARM signal will be generated and 

sent out to others. Detailed data will only be 
provided when ALARM signals are answered. On 
the other hand, neurons stay inactive until ALARM 
signals are received. By this way, neurons act 
asynchronously and can focus their limited resources 
to solving the key part of the entire problem and 
react quickly. 

If artificial neurons can be designed in the same 
way, the limited energy of embedded systems can be 
optimally used. To this end, we introduce ACMs into 
our ANNs design. An ACM, as defined here, is a 
connector between two asynchronous processes, a 
writer and a reader, through which a sequence of 
data items can be passed without necessitating the 
writer and reader to be locked for synchronization 
under a global clock [2]. In asynchronous ANNs, all 
data processing happens in neurons; therefore every 
neuron can play the role of a writer or a reader in 
different situations, based on the usage of its 
memory. When it is activated, a neuron works as a 
reader to fetch data from the memory of other 
connected neurons. After that, the neuron will do its 
calculation and write the calculation result into its 
memory, in which it plays the role as a writer.  

2.2 Asynchronous Neural Regions 

The entire biological neuron network can be seen as 
a hierarchy which contains multiple layers. Values 
used by particular neurons to make prediction are 
called Basic Patterns, such as the 256 grey scales 
for visual neurons. Biological networks incline to 
combine their neurons’ predictions together to make 
the uniform pattern recognition of the entire object 
or some regions of it. The joint patterns used by 
neurons of one layer are called Advanced Patterns. 
Every layer contains its unique advanced patterns 
and there are deterministic relationships between 
advanced patterns in neighboring layers. If the new 
data matches one of the advanced patterns in the 
present layer, the layer will not output the advanced 
pattern, but only the pattern’s number, in which way 
the network can convey the same information with 
very low overhead. 

In order to provide the similar performance for 
ANNs, we integrate the idea from asynchronous 
circuits into our design. Asynchronous circuits use a 
pair of handshake signals such as Req (Request) and 
Ack (Acknowledge) to control a group of data wires, 
which are called Bundled Data [5]. In our design, a 



group of neurons with the same bundle of inputs and 
outputs are called a neuron region. Neurons in the 
same region are activated synchronously, and make 
the entire pattern recognition of the region. They 
share the same handshake signals to communicate 
with neurons in other regions. The more neurons one 
region contains, the lower rate the overhead of 
handshake signals the region has.  

 
Figure 1: Asynchronous Neuron Region 

The entire network can be seen as a GALS 
(Global Asynchronous Local Synchronous) [6] 
system, since neurons within a region work 
synchronously while exchange data asynchronously 
outside the region. In this way, we can greatly 
preserve characteristics of traditional synchronous 
ANN models in our new ANN design. Furthermore, 
the asynchronous neural region is a good solution for 
EMI because the switching of the handshake signals 
is not correlated in time [1]. Recently, the world’s 
first asynchronous microprocessor made by EPSON 
reduced energy consumption by 70% and 
electromagnetic radiation by 20dB [7], which shown 
a promising future for asynchronous ANN design. 

2.3 Signal and Data Processing 

Neuron regions use both signals and data to 
communicate. Signals can only convey simple 
information but cost far fewer energy than data 
which contains plenty of information. According to 
the type of information processing, each neuron 
region of the type discussed in this paper consists of 
three parts. 

 
Figure 2: Data Processing vs. Signal Processing 

Although every region contains more than one 
neuron, it has only one trigger. The trigger receives 

handshake signals from outside world to decide 
whether to activate neurons in the region, or only do 
pattern mapping. Every neuron in the region can be 
divided into a transformer and a calculator. 
Activated by the trigger, the transformer generates 
all kinds of signals for data processing, which is 
performed by the calculator.  

The trigger is the most active part of the region 
but consumes extremely little energy because it only 
processes very simple signals. On the other hand, the 
greater part of system energy is consumed by the 
calculator, which does large amounts of data 
processing every time. Since most of the time a 
region only has the trigger alert to receive outside 
signals, asynchronous ANNs can perform the same 
tasks as but with much less energy than synchronous 
ones. 

3 A MATLAB MODEL OF ASYCHRONOUS 
ANNS 

We have developed the method to model and 
simulate Asynchronous ANNs using MATLAB 7.0 
for Windows. As a first example, an asynchronous 
neuron with five main parts has been built using 
MATLAB, which is shown in Figure 2. 

 
Figure 3: Asynchronous Neuron Built in MATLAB 

In hardware design, dual-rail protocol [5] is used, 
in which two wires are used to carry a single bit of 
information. In this paper, two numbers 1 and -1 are 
used in the simulation to denote the binary inputs 
while 0 represents the idle state. 

Neural Unit is the same as the traditional 
synchronous BP (Back-propagation) neuron with 
three inputs and one output. This unit and the 
following Prediction Unit, Pattern Unit, Slot Unit 
constitute the calculator of the neuron.  

Prediction Unit: In our toy example, neurons use 
two basic patterns: {-1, 1} as the prediction values. 
The Maximum Likelihood Rule is used to make 
judgment. If the present result is close enough to one 
of the basic patterns, the neuron will treat the 
received data as the chosen pattern and write the 
pattern value into its memory, which will avoid the 
accumulation of system noise. At the same time, 



Alarm signal outputs "-1" to inform that no new data 
has been detected, and the Choice signal is used to 
inform the trigger of the region about the basic 
pattern chosen by the present neuron.  However, if 
the calculation result is far from both the two basic 
patterns, the Choice signal keeps idle and Alarm 
signal will become "1", and the new result will be 
written into the memory as the new data. 

Pattern Unit: Pattern Unit is highlighted because it 
only appears in neurons in the highest layer. As 
mentioned before, if the trigger part of the present 
region receives no signal to inform new data, it will 
make pattern mapping without data calculation. It 
means data in the memory of neurons does not need 
to be updated every time. Things are different in 
neurons in the highest layer because final results will 
be read from their memories. Therefore, Pattern Unit 
will write the chosen pattern into the memory when 
the trigger gives the indication, while let the result of 
Prediction Unit access the memory when no 
indication is received. In neurons which do not give 
the final result, this unit is omitted. 

Slot Unit: In asynchronous ANNs, every neuron 
works as writer or reader in different situations. In 
our design, the writer may overwrite the data in its 
memory since it does not know when the data will be 
read by neurons in other region, and the reader may 
reread the same data because every neuron connect 
with more than one neurons. Because the memory 
must satisfy the write and overwrite requests from 
the writer, and read and reread ones from the readers, 
the POOL type of ACMs [2] is chosen. In this paper, 
only one memory unit or slot is used in every neuron 
and all the data actions are treated as atomic. This is 
because of the relatively small size of the data items. 

Signal Unit: Signal Unit is the transformer of the 
neuron, and will give local signals used by the 
calculator part. Since every neuron’s writing and 
reading actions are atomic and mutually exclusive, 
an additional local variable “K” is used as a “key” to 
the slot. K=0 means the slot is locked and K=1 
means unlocked. Whoever grasps the key can access 
the slot in the fashion of the classical MUTEX 
protection scheme. The algorithm of slot control is 
given as: 

       Writer         Reader 
w0:     wait until k=1  r0:    wait until k=1           
  w:    k:=0    write slot       r:    k:=0    read slot 
wd:    k:=1               rd:    k:=1 

Trigger Unit: Trigger unit belongs to the entire 
region, not any particular neuron. The trigger will 
activate its neurons when global Alarm signals are 
received. It has two main tasks. The first one is 
signal conversion. Global handshake signals such as 

R_req and Ack will be turned into regional ones, or 
vice versa. More complex control can be provided 
here if necessary. The other task is pattern 
recognition. It can be divided into three parts: pattern 
encoding, pattern mapping and pattern decoding. 
Pattern encoding will turn advanced patterns of the 
region into corresponding codes. If any neuron in the 
region sends alarm signal “1” to inform new data, a 
global Alarm signal “1” will be sent. The global 
alarm signal will also be created when the trigger 
may not find proper code of the present pattern, 
which is called pattern miss-shot. In other cases, the 
trigger will generate the pattern code to feed other 
regions. When no valid global alarms are received, 
the trigger will only do pattern mapping to generate 
its pattern codes based on the received ones from its 
inputs. Pattern decoding is only available in the 
regions in the highest layer, which decode pattern 
codes into advanced patterns, and inform the pattern 
unit of its neurons to choose the correct basic 
patterns. 

In our method, most parts of the neurons are 
modularized so that designers can easily use them to 
build their own systems. However, the trigger unit is 
not fixed in order to give designers enough freedom 
to realize their systems’ unique requirements and 
pattern maps. 

4 SIMULATIONS 

In this paper, we want to simulate a one bit full-
adder (two operands A0, B0 with carryin C0 to 
generate sum A1 and carryout C1). A three-input-
two-output neural network (Figure 3) has been built 
using the techniques described in section 3. 
MATLAB NNTOOL is used to obtain the weights 
&bias of the system. 

 
Figure 4: 3-input-2-output ANN 

 ANN is fed with data evenly generated from {-1 -
1 -1} to {1 1 1} have been added with random 



numbers which follow Gaussian Distribution. They 
are used to simulate the noise-integrated data fed to 
the network. Neurons 1, 2, 3 are fed with the same 
original data from the outside world, and constitute 
the first region of the network. The second region 
contains neurons 4, 5.  
 Although each neuron in the first region can 
recognize two basic patterns: “-1” and “1”, there are 
only six valid advanced patterns. In this simple toy 
example, patterns {-1 1 1} and {1 -1 -1} are chosen 
to be encoded since they happen most frequently. 
Consequently, one wire “Pattern Code” is used to 
send pattern codes (“1” for {-1 1 1} and “-1” for {1 -
1 -1}) to the second region. 

Figure 5 gives the data traffic between the two 
regions. In almost half of the time, one wire of 
pattern code is used instead of three wires of detailed 
data. Consequently, neurons in the second region are 
activated to do data calculation only half of the time. 
The more neurons one region contains, or the more 
patterns are encoded, the fewer detailed data items 
are transmitted in the network and the fewer times 
neurons in the next region are activated. 

 
Figure 5: Pattern Codes vs. Detailed Data 

 Furthermore, we fed the same data into both our 
asynchronous ANN and a synchronous ANN built 
with the same parameters. The result of 
asynchronous ANN is functionally the same as its 
synchronous counterpart with some minor delay. It is 
because data is fetched by the asynchronous neurons 
when the alarm signals are answered while data 
items are sent directly to synchronous neurons 
unconditionally without delay. At the same time, the 
level of switching activity in an asynchronous ANN 
is significantly lower owing to the use of 
asynchronous triggering mechanism and self-timing. 
The result demonstrates that asynchronous ANNs 
can successfully carry out tasks traditionally fulfilled 
by synchronous ANNs. 

5 CONCLUSIONS 

New biological suppositions and ACMs have been 
integrated with traditional ANNs design. Neurons 

are grouped into different regions to make pattern 
recognition according to their predictions, and send 
pattern codes or data to communicate with others in 
different situations. This may offer a more adequate 
implementation technology than synchronous in 
terms of using timing and power resources. Reduced 
EMI is another potential advantage. 
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