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Abstract

A method for automated synthesis of low latency asynchronous controllers using direct mapping is presented.

The idea of direct mapping is that a graph specification of a system is translated into a circuit netlist by mapping the

graph nodes into circuit elements and the graph arcs into circuit interconnects. The key feature of this approach is

its low algorithmic complexity and direct correspondence between the elements of the initial specification and the

components of the resultant circuit. In out method the synthesis starts from an initial specification in form of a Signal

Transition Graph (STG). This STG is split into a device and an environment, which synchronise via a communication

net that models wires. The device is represented as a tracker and a bouncer. The tracker follows the state of the

environment and provides reference points to the device outputs. The bouncer interfaces to the environment and

generates output events in response to the input events according to the state of the tracker. This two-level architecture

provides an efficient interface to the environment and is convenient for subsequent mapping into a circuit netlist. A

set of optimisation heuristics are developed to reduce the latency and size of the control circuit. As a result of this

work, a software tool called OptiMist has been developed. Its low algorithmic complexity allows large specifications

to be synthesised, which is not possible in acceptable time for the tools based on state-space exploration. OptiMist

successfully interfaces conventional EDA design flow for simulation, timing analysis and place-and-route.

1 Introduction

Two main approaches to design of asynchronous controllers are logic synthesis [7] and direct mapping [15, 18].
Logic synthesis works with the low-level system specifications which capture the behaviour of the system at the

level of signal transitions. In this approach boolean equations for the output signals of the circuit are derived using
the next state functions [5]. In order to find the next state functions all possible orders of the events must be explored.
Such an exploration may result in a state space which exponentially large w.r.t. the initial specification. The circuit
optimisation often involves analysis and recalculation of the whole state space.

The logic synthesis approach is now well developed and supported by public tools (Petrify [7], Minimalist [12],
3D [4]). However, this approach suffers from excessive computation complexity and memory requirements, thus it
cannot be applied to large specifications. There is no transparent correspondence between the elements of the original
specification, the intermediate representation of the state space and the components of the resultant circuit, which
complicates the checking of circuit functionality.

The main idea of the direct mapping approach is that a graph specification of a system is translated into a cir-
cuit netlist in such a way that the graph nodes correspond to the circuit elements and graph arcs correspond to the
interconnects. Direct mapping can typically be divided into three independent operations: translation, optimisation

and mapping. Firstly, a system specification is translated into an intermediate graph representation convenient for
subsequent mapping. Then, peephole optimisation is usually applied to the intermediate representation of a system.
Finally, the optimised graph is mapped into a circuit netlist implementation. In a practical design flow, however, some
operations can be merged together or not present at all, e.g. optimisation is often performed together with mapping and
there are cases when the circuit implementation is obtained directly from the initial specification without converting it
into an intermediate form.
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The key feature of the direct mapping approach is its low algorithmic complexity. The use of heuristic-based local
optimisation (as opposed to state-space global optimisation in a logic synthesis approach) also facilitates the computa-
tional simplicity of the method. The transparent correspondence between the elements of the initial specification and
the components of the resultant circuit is advantageous for checking the functional correctness of the implementation.
Notwithstanding all advantages, this approach is insufficiently studied and existing techniques for direct mapping often
produce large circuits with inefficient interface to the environment.

The direct mapping approach originates from [16], where a method of the one-relay-per-row realisation of an
asynchronous sequential circuit is proposed. This approach is further developed in [36] where the idea of the 1-hot

state assignment is described. The 1-hot state assignment is then used in the method of concurrent circuit synthesis
presented in [15]. The underlying model in this method is an Augmented Finite State Machine (AFSM), which is an
FSM with added facilities, including timing mechanisms for the delay of state changes. These circuits have inputs that
are logic values (signal levels as opposed to signal transitions), which is advantageous for low-level interfacing. These
circuits use a separate set-reset flip-flop for every local state, which is set to 1 during a transition into the state, and
which in turn resets to 0 the flip-flops of all its predecessor’s local states. The main disadvantages of this approach
are the fundamental mode assumptions and the use of local state variables as outputs. The latter are convenient for
implementing event flows but require an additional level of flip-flops if each of those events controls just one switching
phase of an external signal (either from 0 to 1 or from 1 to 0).

Another direct mapping method proposed in [28] works for the whole class of 1-safe Petri nets. However, it
produces control circuits whose operation uses a 2-phase (no-return-to-zero) signalling protocol. This results in lower
performance than what can be achieved in 4-phase circuits.

The approach of [18] is based on distributors and also uses the 1-hot state assignment, though a different imple-
mentation of local states. In this method every place of a Petri net is associated with a David cell (DC) [9]. The circuit
diagram of a single DC is shown in Figure 1(a). The state of its output r denotes the marking of an associated Petri
net place. DCs can be coupled using a 4-phase handshake protocol, so that the interface 〈a1, r〉 of the previous stage
DC is connected to the interface 〈a, r1〉 of the next stage as shown in Figure 1(b). This DC structure corresponds to a
Petri net shown in Figure 1(c). The circuits built of DCs by this approach are speed independent [24] and do not need
fundamental mode assumptions. On the other hand, these circuits are autonomous (no inputs/outputs). The only way
of interfacing them to the environment is to represent each interface signal as a set of abstract processes, implemented
as request-acknowledgement handshakes, and to insert these handshakes into the breaks in the wires connecting DCs.
This restricts the use of DCs to high-level design.
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(a) Circuit
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next
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Figure 1: David cell

The controllers and interfaces are traditionally specified by timing diagrams and STGs. However, the majority of
direct mapping techniques work with high-level Petri nets and cannot process low-level specifications. An attempt to
apply direct mapping method at a low-level, where the circuit behaviour is captured at the level of signal events, is
made in [37]. In this approach DC structures are used to capture the state of the system and to control flip-flops which
are associated to each output signal. Inputs, however, are still represented as abstract processes and free-choice nets
are not supported.

Direct mapping from STGs and the problem of device-environment interface were addressed in [3]. This paper
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presents a method based on the idea of [3] and extends it by a set of optimisation algorithms and heuristics. In proposed
method a system specification is, firstly, split into a device STG and an environment STG. These are synchronise via
a communication net, which model wires. The device STG is considered separately. It consists of a tracker and a
bouncer. The tracker follows the state of the environment and is used as a reference point by the device outputs. The
bouncer interfaces the environment and generates output events in response to the input events according to the state
of the tracker. This two-level device architecture provides an efficient interface to the environment and is convenient
for subsequent mapping into a circuit netlist. These are implemented in a software tool called OptiMist. The speed-
independent circuits obtained by this method have a two-level architecture, which contributes to a low-latency interface
to the environment. The OptiMist tool exhibits the computation time growth linear to the specification size which
allows to apply the method to large STGs.

The rest of the paper is organised as follows. Firstly, Section 2 defines terminology and behavioural models which
are used in the paper. Secondly, the our direct mapping method and its justification are presented in Section 3. The
optimisation heuristics and algorithms implemented in OptiMist software tool are described in Section 6. The OptiMist
design flow is considered on a simple example in Section 7. The method and the optimisation heuristics are evaluated
in Section 8 using a set of benchmarks.

2 Background

This section provides an introduction to asynchronous circuits, their delay models, operation modes, classes and
common signalling protocols. A behavioural Petri nets model which is widely used for specification, verification and
synthesis of asynchronous circuits is also presented in this section.

2.1 Asynchronous circuits

A category of circuits containing no global clock is called asynchronous circuits [36]. These circuits may make use
of timing assumptions both within the circuit and in its interaction with environment. Based on these assumptions the
asynchronous circuits can be divided into several classes. This section overviews the asynchronous circuits using a
classification presented in [19, 10].

2.1.1 Delay models

An asynchronous circuit can be considered as an interconnection of two types of components, gates and delay ele-

ments, by means of wires. A gate computes a set of output variables (often a single output variable) as a discrete logical
function of its input variables. A delay element produces a single output that is a delayed version of its input. Each
wire connects an output of a single gate or delay element to inputs of one or more gates or delay elements. Primary
inputs and outputs of a circuit can be considered as gates computing the identity function.

There are two major models of a delay element: pure delay model and inertial delay model. A pure delay element
transmits each signal event on its input to its output with some delay regardless the shape of the signal’s waveform. On
the contrary, an inertial delay element alters the shape of its input waveform by attenuating short pulses, i.e. it filters
out pulses of a duration less than some threshold period.

The delay elements are also characterised by their timing models. In a fixed delay model, a delay is assumed to have
a fixed value. In a bounded delay model, a delay may have any value in a given timing interval. In an unbounded delay

model, a delay may take an arbitrary finite value.

2.1.2 Operation modes

An interaction of a device circuit with its environment can be characterised by circuit operation mode. The device

and its environment together form a close system. If the environment is allowed to respond to a device’s outputs
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without any timing constraints, the system is said to interact in input-output mode. Otherwise, environmental timing
constraints are assumed. The most common example is fundamental mode where the environment must wait for the
device to stabilise before producing new inputs.

Depending on the restrictions to the input changes, the fundamental mode is divided into several subclasses. If a
single input is allowed to change at a time, the operation mode is called Single Input Change (SIC) fundamental mode.
SIC mode forces the inputs to be sequential, which may restrict the speed of circuit operation. Another approach which
allows one or more inputs to change after the circuit stabilisation, is called Multiple Input Change (MIC) fundamental
mode. The speed of a circuit operating in this mode improves compared to SIC mode, however it may be difficult to
implement a circuit operating MIC mode.

A trade-off between SIC and MIC fundamental modes is a Burst Mode (BM) which only allows inputs to change
in groups, called bursts. Inputs in a burst may arrive in any order and at arbitrary time. A set of inputs in a burst cannot
be a subset of another burst. This restriction helps a circuit to distinguish bursts one from another. The circuit waits
until all inputs in a burst change before producing its outputs. The outputs must be allowed to settle before another
input burst starts.

2.1.3 Classes of asynchronous circuits

The most obvious model to use for asynchronous circuits is the same as for synchronous circuits. This model is
followed in Huffman circuits [16], which are designed to work correctly in the fundamental mode of operation. A
bounded delay is assumed for both gates and wires.

Delay-Insensitive (DI) circuits are designed to operate correctly in input-output mode with unbounded gate and
wire delay. These circuits are most robust with respect to manufacturing processes and environmental variations. The
concept of delay-insensitive circuits originates from [6] and is formalised in [35]. The class of DI circuits built out of
simple gates is quite limited. It has been proven that almost no useful DI circuits can be built if one is restricted to a
class of simple gates [21]. However, many practical DI circuits can be built using complex gates [11]. A complex gate
is constructed out of several simple gates. Externally a complex gate operates in a delay-insensitive manner, however
internally it may rely on some timing assumptions.

In order to build practical circuits out of simple gates a relaxation of the requirements to the DI circuits is necessary.
This can be achieved by introducing an isochronic fork, which is a forked wire where the difference in delays between
the branches is negligible [2]. Asynchronous circuits with isochronic forks are called Quasi-Delay-Insensitive (QDI)
circuits [20]. In contrast, in DI circuits, delays on the different fork branches are completely independent, and may
vary considerably.

Speed-Independent (SI) circuits are guaranteed to work correctly in input-output mode regardless of gate delays,
assuming that wire delays are negligible. This means that whenever a signal changes its value all gates it is connected
to will see that change immediately. SI circuits introduced in [24] only considered deterministic input and output
behaviour. This class has been extended to include circuits with a limited form of non-determinism in [1].

Self-timed circuits, described in [33], are built out of a group of elements. Each element may be an SI circuit, or a
circuit whose correct operation relies on local timing assumptions. However, no timing assumptions are made on the
communication between elements and the circuit operates in input/output mode. If both internal and external timing
assumptions are used to optimise the designs, then such circuits are called timed [26].

2.1.4 Signalling protocols

Asynchronous circuit signalling schemes are based on a protocol called handshake, involving requests, which are used
to initiate an action, and corresponding acknowledgements, used to signal completion of that action. These control
signals provide all of the necessary sequence controls for computational events in the system.

For example, consider an interaction of two modules, a sender A and a receiver B. A request is sent from A to
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B indicating that A is requesting some action from B. When B completes the action, it acknowledges the request by
sending an acknowledge signal from B to A. Most asynchronous signalling protocols require a strict alternation of
request and acknowledge events. These ideas can be extended to interfaces shared by more than 2 subsystems.

There are several ways of how the handshake events are encoded onto specific control wires. The most commonly
used handshake protocols are the four-phase and two-phase. In four-phase protocol, also called return-to-zero, four
signal transitions (two on the request and two on the acknowledgement) are required to complete a handshake. In
two-phase protocol, also called non-return-to-zero, every request-acknowledgement pair of transitions indicates a new
handshake.

2.2 Behavioural models

This section introduces the formal models used for the specification and verification of asynchronous circuits. First,
the basic concept of Petri nets (PNs) model is presented. PNs extend the Finite State Machines (FSMs) model with a
notion of concurrency, which makes them especially convenient for the specification and verification of asynchronous
circuits. The formal definitions and notations in this section are based on the work introduced in [8, 25, 27, 30].

2.2.1 Petri nets

A Petri nets model, first defined in [29], is a graphical and mathematical representations of discrete distributed systems.
Petri nets are used to describe and study concurrent, asynchronous, distributed, parallel and non-deterministic systems.
As a graphical tool, PNs can be used as a visual communication aid similar to flow charts, block diagrams, and
networks. In addition, tokens are used in these nets to simulate the dynamic and concurrent activities of systems. As a
mathematical tool, it is allows to set up state equations, algebraic equations, and other mathematical models governing
the behaviour of systems.

A Petri Net (PN) is formally defined as a tuple PN = 〈P, T, F, M0〉 comprising finite disjoint sets of places P

and transitions T , arcs denoting the flow relation F ⊆ (P × T ) ∪ (T × P ) and initial marking M0.
There is an arc between x ∈ P ∪ T and y ∈ P ∪ T iff (x, y) ∈ F . An arc from a place to a transition is called

consuming arc, and from a transition to a place - producing arc. The preset of a node x ∈ P ∪ T is defined as
•x = {y | (y, x) ∈ F}, and the postset as x• = {y | (x, y) ∈ F}. It is assumed that •t 6= ∅ 6= t•, ∀ t ∈ T . The
pre-preset of a node x ∈ P ∪ T is defined as • • x =

⋃

y∈•x

•y, and the post-postset as x • • =
⋃

y∈x•
y•.

A place p such that |p•| > 1 is called choice place, i.e. it has more than one transition in its postset. A choice
place p is called free choice if ∀t ∈ p• : |•t| = 1, i.e. each transition in its postset has exactly one preset place. A
choice place p is called controlled choice if ∃t ∈ p• : |•t| > 1, i.e. there is at least one transition in its postset which
has more than one preset place. Note that a controlled choice whose all postset transitions have the same preset places
can be transformed into a free choice. A place p such that |•p| > 1 is called merge place. A transition t such that
|t•| > 1 is called fork and a transition t such that |•t| > 1 is called join.

The dynamic behaviour of a PN is defined as a token game, changing markings according to the enabling and
firing rules its transitions. A marking is a mapping M : P → N denoting the number of tokens in each place,
N = {0, 1} for 1-safe PNs. A transition t is enabled iff M(p) > 0, ∀ p ∈ •t. The evolution of a PN is possible by
firing the enabled transitions. Firing of a transition t results in a new marking M ′ such that ∀p ∈ P : M ′ (p) =










M(p) − 1 if p ∈ •t,

M(p) + 1 if p ∈ t•,

M(p) otherwise

, i.e. for an enabled transition t one token is removed from each preset place and one

token is produced to each postset place.
A marking M ′ is reachable from a marking M if there exists a firing sequence σ = t0 . . . tn starting at marking

M and finishing at M ′. A set of reachable markings from M is denoted by [M〉. A set of markings reachable from
the initial marking M0 is called a reachability set of a PN.
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The set of markings reachable in a PN from its initial marking can be represented as a reachability graph, whose
nodes are labelled with PN markings and arcs are labelled with PN transitions. Formally, a Reachability Graph (RG)
of a PN = 〈P, T, F, M0〉 is a labelled directed graph RG = 〈S, A, l, s0〉, where S = [M0〉 is a reachability set,
A = S × T × S is a set of arcs between these states, l : A → T is a labelling function indicating transitions between
markings, and s0 is the initial state corresponding to the initial marking of the PN.

Graphically, places of a PN are represented as circles ( ), transitions as boxes ( ), consuming and producing arcs
are shown by arrows ( ), and tokens of the PN marking are depicted by dots in the corresponding places ( ). A
simple PN is shown using this graphical notation in Figure 2(a). This example illustrates that, unlike FSM model, PNs
model can capture concurrent actions. If two transitions are enabled in the same marking and the firing of one does not
interfere with the enabling of the other, then both transitions will eventually fire. The fact that transitions t2 and t3 are
concurrent means that both firing sequences t2, t3 and t3, t2 are possible. This is captured by the RG in Figure 2(b).
The RG nodes are labelled with the reachable PN markings, arcs are labelled with the corresponding PN transitions
and its initial state is marked with a box.

p2 p3

p4 p5

t2 t3

t1

t4

t5

t6

p6

p7

p1

(a) PN
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Figure 2: Simple examples of PN, RG, STG and SG

Transitions in a PN can be involved in different ordering relations. Two PN transitions are in direct conflict if
there exists a reachable marking in which both of them are enabled but firing of one of them disables the other.
Conflict relations can be generalised by considering the transitive successors of directly conflicting transitions. If two
transitions are enabled in some reachable marking but are not in direct conflict, they are concurrent. Transitions which
are not concurrent and are not in a transitive conflict are ordered.

Important properties of a PN are safeness, liveness and deadlock-freeness. A PN is said to be k-bounded if the
number of tokens in every place of a reachable marking does not exceed a finite number k. A 1-bounded PN is also
called 1-safe. A PN is deadlock-free if, no matter what marking has been reached, it is possible to fire at least one
transition of the net. A PN is live if for every reachable marking M and every transition t it is possible to reach a
marking M ′ that enables t.

An extension of a PN model is a contextual net [23]. It uses additional elements such as non-consuming arcs, which
only control the enabling of transitions and do not influence their firing. A PN extended with a type of non-consuming
arcs, namely read-arcs, is defined as PN = 〈P, T, F, R, M0〉. A set of read-arcs R is defined as R ⊆ (P × T ), there
is a read-arc between p and t iff (p, t) ∈ R. The read-preset of a transition t ∈ T is defined as ?t = {p | (p, t) ∈ R},
and the read-postset of a place p ∈ P as p? = {t | (p, t) ∈ R}. Place p controls transition t by means of a read-arc iff
p ∈ ?t. A transition t reads the state of a place p iff t ∈ p?. A transition t is enabled iff M (p) 6= 0, ∀ p ∈ •t ∪ ?t.
The rules for firing of the transitions are preserved. A read-arc is depicted as a line without arrows.

The following are three most common subclasses of PNs. A PN is called a Marked Graph (MG) iff ∀p ∈ P :

|•p| ≤ 1∧ |p•| ≤ 1, i.e. each place has at most one preset and one postset transition. The nets of this subclass represent
deterministic concurrent systems. Dually, a PN is called a State Machine (SM) iff ∀t ∈ T : |•t| = 1 ∧ |t•| = 1,
i.e. each transition has exactly one preset and one postset place. This subclass allows to represent non-deterministic

NCL-EECE-MSD-TR-2006-110, University of Newcastle upon Tyne 6



D.Sokolov, A.Bystrov, A.Yakovlev: Direct mapping of low-latency asynchronous controllers from STGs

sequential systems. A PN is called Free Choice (FC) net iff for any choice place p ∀t ∈ p• : |•t| = 1, i.e. each
transition in the postset of a choice place has exactly one preset place. Free choice nets model both non-determinism
and concurrency but restricts their interplay. The former is necessary for modelling choice made by the environment
whereas the latter is essential for asynchronous behaviour modelling.

The two modelling extensions of PNs are Labelled PNs and Coloured PNs. A Labelled Petri Net (LPN) is a PN
whose transitions are associated with a labelling function [38]. The extension of non-consuming arcs is also applicable
to the LPN definition. A Coloured Petri Net (CPN) is a formal high-level net where places are associated with data
types, tokens are associated with the data values and transitions denote the operations on that data [17]. This allows
the representation of data path in a compact form, where each token is equipped with an attached data value.

2.2.2 Signal transition graphs

The Signal Transition Graph (STG) model was introduced independently in [5] and [31] to formally model both the
circuit and the environment. The STG can be considered as a formalisation of the widely used timing diagrams. It
describes the causality relations between transitions on the input and output signals of a specified circuit. It also
allows the explicit description of data-dependent choices between various possible behaviours. STGs are interpreted
Petri nets, and their close relationship to Petri nets provides a powerful theoretical background for the specification
and verification of asynchronous circuits.

An STG is a 1-safe LPN whose transitions are labelled by signal events, i.e. STG = 〈P, T, F, M0, λ, Z, v0〉,
where λ is a labelling function, Z is a set of signals and v0 = {0, 1}|Z| is a vector of initial signal values.

The set of signals Z is divided into two disjoint sets of input signals ZI and output signals ZO, Z = ZI ∪ ZO,
ZI ∩ ZO = ∅. Input signals are assumed to be generated by the environment, whereas output signals are produced by
the logic gates of the circuit. Internal signals may also be included in the ZO set.

The labelling function λ : T → Z ± ∪Θ maps transitions into signal events Z± = Z × {+,−} and dummies Θ,
Z ± ∩Θ = ∅. The signal events labelled z+ and z− denote the transitions of signals z ∈ Z from 0 to 1 (rising edge),
or from 1 to 0 (falling edge), respectively. Dummy transitions are silent events that do not change the state of any
signal. The labelling function does not have to be 1-to-1, i.e. transitions with the same label may occur several times
in the net. In order to distinguish between transitions with the same label and refer to them from the text an index
i ∈ N is attached to their labels as follows: λ (t) /i, where i differs for different transitions with the same label.

In order to be implementable as a circuit an STG must satisfy the property of consistency. An STG is consistent if
for each signal z ∈ Z transitions labelled z− and z+ alternate in any firing sequence starting from M0. In this work
it is assumed that all the considered STGs are consistent.

A vector of signal change vσ =
(

v1

σ , ..., v
|Z|
σ

)

can be associated with a finite sequence of transitions σ, so that
each vi

σ is the difference between the number of rising and falling edges of signal zi in σ. The vector of signal values

v = v0 + vσ defines the states of all STG signals after some sequence of transitions σ. Note that for consistent STGs
the vectors v0, vσand v are binary.

A projection of a firing sequence σ onto a set of signals X ⊆ Z is defined as σ ↓ X = {t ∈ σ : λ (t) ∈ X±},
i.e. it only includes transitions of signals in X . A silent sequence θ is a firing sequence (possibly empty) such that
θ ↓ Z = ∅, i.e. its projection on the set of signals is empty. Similarly, a firing sequence whose the projection on
the set of output (input) signals is empty and projection on the set of input (output) signals is not empty is called
input (output) sequence.

STGs inherit the operational semantics of their underlying PNs, including the notations of transition enabling
and firing. Likewise, STGs also inherit the various structural (marked graph, free-choice, etc.) and behavioural
properties (boundedness, liveness, etc.). Note that a set of read-arcs can be included into the model of STG, which is
an enhancement w.r.t. [31].

For graphical representation of STGs a short-hand notation is often used, where a transition can be connected
to another transition if the place between those transitions has one incoming and one outgoing arc as illustrated in
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Figure 2(c).
A state of an STG without dummies is a pair 〈M, v〉, where M is a reachable marking and v is vector of signal

values corresponding to this marking. Note that the vector of signal values along does not uniquely identify the STG
state. Also in general case the same marking can correspond to different states of the STG (e.g., if it is not live or not
consistent). The extension of an STG with the notion of dummy transitions complicates the definition of its state. As
a dummy transition does not correspond to a signal event, firing of a dummy does not actually change the state of the
system described by the STG. That is why the states of an STG before and after firing a dummy are considered equal,
though the marking is different. In this work we assume that a dummy (or in a more general case a silent sequence) is
a part of preceding signal transition.

In the same way as an STG is an interpreted PN with transitions associated with binary signals, a state graph is
the corresponding binary interpretation of an RG in which the events are interpreted as signal transitions. Formally,
a State Graph (SG) of an STG = 〈P, T, F, M0, λ, Z〉 is a quadruple SG = 〈S, A, l, C, s0〉, where S is a set of
reachable states, A = S × T × S is a set of arcs between these states, l : A → T is a labelling function for the arcs,
C : S → {0, 1}|Z| is a state assignment function, which is defined as C (〈M, v〉) = v, and s0 = 〈M0, v0〉 is the
initial state. Note that dummies are

The SG of the STG in Figure 2(c) is shown in Figure 2(d). Each SG state corresponds to a marking of the STG
and is assigned a binary vector. Each SG arc corresponds to firing of a signal transition. For readability the SG arcs
are indicated by the transition labels. The signal order in the binary vectors is 〈i, o1, o2〉. The initial state (marked
with a box) corresponds to the marking {p1} with the signal values vector 000.

A property of an STG which simplifies its hardware implementation is persistency. An STG is persistent if no
transition can be disabled by another transition unless they both are events of different input signals. This means that
all non-deterministic behaviour is part of the environment and the arbitration is avoided in the device.

Properties of an STG specific for a logic synthesis approach are unique state coding and complete state coding.
The former is sufficient condition and the latter is necessary condition of a circuit implementability by logic synthesis.
Two distinct states of an SG are in a Unique State Coding (USC) conflict if they are assigned to the same code. Two
distinct states of a SG are in a Complete State Coding (CSC) conflict if they are assigned to the same code and the
set of enabled output signals is different in these states. An STG satisfies the USC (CSC) property if no two states
of its SG are in USC (CSC) conflict. Note that neither USC nor CSC is required in a direct mapping approach. The
properties of an STG which are specific for the proposed direct mapping method are considered in Section 3.1.

2.2.3 Bisimulation

Bisimulation, originally introduced in [14, 22], is an equivalence relation between STGs, associating systems which
behave in the same way, in the sense that one system simulates the other and vice-versa. Intuitively two systems are
bisimular if they match each other’s moves, i.e. each of the systems cannot be distinguished from the other by an
observer.

Two systems described by STG = 〈P, T, F, R, M0, λ, Z, v0〉 and STG′ = 〈P ′, T ′, F ′, R′, M ′
0
, λ′, Z ′, v′

0
〉

are (strongly) bisimular, notation STG ∼ STG′, iff:
(i) M0 ∼ M ′

0
;

(ii) if M ∼ M ′ and M [t〉M1 then ∃ t′ ∈ T ′ such that λ (t) = λ′ (t′), M ′ [t′〉M ′
1

and M1 ∼ M ′
1
;

(iii) as (ii) but with roles of STG and STG′ reversed.
The notion of strong bisimulation requires a system to be capable of matching each transition that an equivalent

system may perform. However, sometimes internal and external (observable) behaviour of a system are distinguished.
In this sense two systems are equivalent if they exhibit the same external behaviour, irrespective of any intermediate
internal behaviour that may occur. For example, if the system STG includes a notion of silent actions (dummies), then
bisimulation can be relaxed to ignore these dummies.

Two systems represented by STG = 〈P, T, F, R, M0, λ, Z, v0〉 and STG′ = 〈P ′, T ′, F ′, R′, M ′
0
, λ′, Z ′, v′

0
〉
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are weakly (observationally) bisimular, notation STG ≈ STG′, iff:
(i) M0 ≈ M ′

0
;

(ii) if M ≈ M ′ and M [t〉M1 then either λ (t) = τ and M1 ≈ M ′ or ∃ t′ ∈ T ′, λ (t) = λ′ (t′) and silent sequences
θ1, θ2 such that M ′ [θ1〉M ′

•t [t′〉M ′
t• [θ2〉M ′

1
and M1 ≈ M ′

1
;

(iii) as (ii) but with roles of STG and STG′ reversed.
Still, the notion of weak bisimulation cannot be regarded as the natural generalisation of strong bisimulation

for STGs with silent events. The reason for this is that an important feature of bisimulation is missing for weak
bisimulation. Namely the property that any firing sequence in one STG corresponds to a firing sequence in the other,
in such a way that all intermediate states of these STGs correspond as well. However, according to the definition of
the weak bisimulation one may fire arbitrary many silent transitions in an STG without worrying about the markings
that are passed through in the meantime. For example, the STGs in Figure 3 are weakly bisimilar, however in the
right STG there is a trace which does not enable the b+ transition, while b+ is enabled in all traces of the left STG.
Thus, the observational equivalence does not preserve the branching structure of STGs and hence lacks one of the
main characteristics of bisimulation semantics.

dummy
b+a+

a+/1

dummy

a+ b+

Figure 3: Observation bisimulation

An alternative definition of observational equivalence which preserves the branching structure of STGs was pro-
posed in [13]. This equivalence, called branching bisimulation, requires all intermediate markings in silent sequences
θ1 and θ2 of STG′ to be related with markings M and M1 of STG respectively. Note that STGs in Figure 3 are not
branching bisimilar.

Obviously, branching bisimulation is stronger than weak bisimulation. However, one can see that for the class of
persistent STGs weak bisimulation becomes equivalent to branching bisimulation.

3 Method

A distinctive characteristic of the proposed direct mapping technique is that the system STG is converted into a form
convenient for mapping into circuit netlist. It is achieved by associating groups of places and transitions to the state
holding elements and by modelling connections between circuit components with arcs.

The initial specification describes the behaviour of both device and environment as a complete system. Usually,
only the device needs to be synthesised which requires the extraction of the device model from the system STG. In
order to do this the system STG is split into a device model and an environment model, which are connected by an
intermediate net. Only the device model is subsequently optimised and mapped into a circuit netlist.

3.1 Requirements to the initial specification

There are several limitations on the class of STGs which can be synthesised using our direct mapping method. Simi-
larly to the requirements of logic synthesis methods the STG must be consistent and persistent. The STG consistency
is essential for any hardware implementation due to the nature of binary signals whose rising and falling transitions
alternate. Persistency is required to avoid arbitration in the device by letting the environment make all the choices.

Unlike logic synthesis methods in our approach neither USC nor CSC is necessary for the whole STG. The limita-
tion on the state encoding is more relaxed and is defined using the notion of bursts: a maximally connected subgraph of
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an STG which only includes transitions of an input (output) sequence and places incident to them is called input (out-

put) burst. Two bursts are said to be in conflict if there is a transition in one burst which is in a direct conflict with a
transition from another burst. A burst B1 is said to be covered by burst B2 if they are in conflict and all signal events
of B1 also exist in B2 possibly in different order. Note that in a persistent STG only input bursts can be in conflict and
covered.

The notion of bursts is illustrated in Figure 4. The STG in Figure 4(a) contains two input and two output bursts
(IB1, IB2 and OB1, OB2 respectively). Note that even though an output sequence o1+, o2+ is possible from a reachable
marking {p2, p3}, the output bursts OB1 and OB2 are separate because their graphs are not connected. The example
in Figure 4(b) shows two output bursts OB1 and OB2 (input bursts are trivial and are hidden for simplicity). These
output bursts are overlapping, however they cannot be merged into one burst because there is no output sequence
which contains both o1+ and o1-. In Figure 4(c) three input bursts are shown (trivial output bursts are hidden). Note
that conflicting input bursts IB1 and IB2 are separated in this STG even though their graphs are overlapping because
these bursts belong to different input sequences.

OB1

i+

i−

p1

o2−

p7

o1−

p6

p5

o2+

p3p2

p4

o1+

OB3

IB1

IB2

OB2

(a) Simple bursts

p2

p4

p6

p7

p1 OB1

o2−

o1−

o1+

i+

i−

OB2

p3

o2+

p5

(b) Concurrency

p6

p7

p1
p2

p4p3

IB3

IB1 IB1
i2+

i2− i3−i1−

o1− i3+

p5

i1+

o1+

(c) Choice

Figure 4: Input and output bursts

All the requirements to encoding of the system states in the proposed direct mapping method are due to the
delay-insensitive nature of the device-environment interface. Usually a designer can control the wire delays inside a
relatively small device and build it speed-independent. However, the delays of connections between the device and the
environment often cannot be guaranteed. The uncontrollable interconnect delays on the device-environment interface
may result in a situation when two signals issued in sequence by a sender reach a receiver simultaneously or even in
a reversed order. This means that while the device itself can be speed-independent, its interface to the environment
should be built under delay-insensitive timing assumptions.

One of the ways to ensure the delay-insensitive interface is to apply order relaxation [32] to the initial STG.
This approach, however, may complicate the structure of the STG, which is disadvantageous for a direct mapping
technique. In our direct mapping approach the order relaxation is not applied explicitly. Instead, a device distinguishes
the end of an input burst by catching an encoding in which all inputs comprising the burst have switched. The unique
identification of such encoding is only possible if all states corresponding to the input burst are coded uniquely. The
opposite is also true for output bursts: in order to uniquely identify the end of an output burst the encodings of its
states should be unique. For example, the STG in Figure 5(a) has an input burst IB1 which can cause problems. If due
to interconnect delays i2+ reaches the device before i1+ then the device can produce o1+ by mistake even without
waiting for i1+ and i1-.

Thus, in our method each input and output burst of the system STG must have USC. An STG is said to satisfy
burst USC property if there is no USC conflict in any input or output burst, i.e. the state encoding is unique within
each individual burst. In order to satisfy the burst USC property it is sufficient for a consistent and persistent STG to
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p2 p3 p4 p5p1

i1+ i2+ i1− o1+
IB1

(a) Non-unique burst encodding

i1+ i2+ o2+

i2+ o3+

o1+

p1
p2 p3 p4 p5

p6 p7IB2

IB1

(b) Conflicting bursts

Figure 5: Bursts in a delay insensitive interface

have no more than one transition of each signal in every input and output burst. The uniqueness of a signal transition
in each burst implies monotonic change of the code and hence no repetition of the state encoding within the burst.

Another type of ambiguity introduced by the delays in the device-environment interconnect may occur when
choosing between conflicting branches. For example, the STG in Figure 5(b) has two input bursts IB1 and IB2 which
are in conflict. The transitions in the direct conflict are different (in1+ and in2+) and the choice is unambiguous.
However, if the transitions of the burst IB1 reach the device in the reverse order (in2+ first), then the device will be
confused which conflicting branch the environment selected. The device still can recognise the branch selection if the
following condition holds: the state encodings after each input burst is different from all encodings in the bursts it
conflicts with. In order to satisfy this condition it is sufficient for a consistent and persistent STG with burst USC to
contain only non-covered bursts; such an STG is called non-covered. Indeed, the state of all STG signals is the same
before conflicting bursts and the change of encoding is monotonic within each burst. If none of the bursts is covered
by the others then the encoding after a burst is not repeated in any burst it conflicts with.

To summarise, in order to be mappable into a circuit using our direct mapping method a system STG must be con-
sistent, persistent, non-covered and must have burst USC. Checking these properties is computationally hard problem
which does not feet into a direct mapping design flow aiming at low algorithmic complexity. Instead it is assumed that
the control path STG is supplied by a high-level synthesis tool which insures the above properties by construction.
All the transformations presented in the following sections preserve the behavioural equivalence if the original STG
satisfying these properties.

3.2 Transformation

The idea of the our direct mapping method is illustrated on a basic example whose STG is partially shown in Fig-
ures 6(a). The depicted slice of the specification contains the in+ input event causing the out+ output event.

The first step in extracting the device model is the exposure of the signal states as shown in Figure 3.2(b). For this
each signal z is associated with a pair of complementary places z = 0 and z = 1 representing low and high levels of
the signal. These places are inserted as transitive places between positive and negative transitions of z, thus expressing
the property of signal consistency. Note that the transitive places do not change the behaviour of the system and weak
bisimulation is preserved on this stage of transformation.

The second step of the transformation is splitting the system specification into device and environment parts as
shown in Figure 3.2(c). For this the STG obtained in the first step is duplicated. In the first copy, corresponding to
the device, the transitive places associated to the inputs are removed. Similarly, in the second copy, corresponding
to the environment, the transitive places associated to the outputs are removed. The behaviour of the device and the
environment parts is synchronised by means of read-arcs as follows. In the environment part, each transitive place
associated to low (high) level of an input signal zI is connected by read-arcs to all negative (positive) transitions of
zI in the device. After that the transitions of input signal zI in the device part are replaced by dummies. This way
the device follows (or tracks) the behaviour of environment. Similar procedure applies to all output signals but with
the roles of device and environment changed. In the device part, each transitive place associated to low (high) level
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(e) Mapping into circuit

Figure 6: Method for the direct mapping from STGs

of an output signal zO is connected by read-arcs to all negative (positive) transitions of zO in the environment. The
transitions of zO in the environment part are replaced by dummies. Now the environment also tracks the operation of
the device. For convenience each dummy introduced in this step are labelled by the original transition name put in
parenthesis.

The transformation of the second step splits each transition of an output (input) signal into the signal transition
itself which belongs to the device (environment) and a dummy in the environment (device). The firing of these two
transitions are ordered by read-arcs, so that the interface signal transition is enabled first and only after this transition
fires the corresponding dummy is enabled. The dummy transition cannot be disabled until it fires because of the
burst USC property of the original STG. Thus the behavioural equivalence is preserved on this step of transformation.

The third step of the transformation is splitting the device into tracker and bouncer parts as shown in Figure 3.2(d).
There is no need to further transform the environment part as only the device will be subsequently implemented. The
tracker-bouncer splitting starts from representing each output signal by an elementary cycle. An elementary cycle of a
signal z consists of two places z = 0 and z = 0 (these are transitive places added in the first transformation step), and
several positive and negative transitions of z connecting these places. The positive transitions of z are inserted after
z = 0 and before z = 1. Similarly, the negative transitions of z are inserted after z = 1 and before z = 0. The number
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of positive and negative transitions of z is equal to the number of corresponding events in the device specification and
can be more than one. The set of elementary cycles for all output signals forms the device bouncer and the rest is the
device tracker. The elementary cycles of the bouncer are synchronised with the tracker part by means of read arcs as
shown in Figure 3.2(d). Each positive (negative) transition tB of signal z in the bouncer is uniquely associated to a
positive (negative) transition tT of the same signal z in the tracker. A transition tT is called a prototype of tB . All
places in the preset of tT are connected by read-arcs to tB and the only place in the postset of tB is connected by a
read-arc to tT . After that the prototype transition tT in the tracker is replaced by a dummy which is labelled by the
original transition name in parenthesis.

The transformation described in the third step basically splits each output signal transition z± into the signal
transition z± itself (in the bouncer) and a dummy (z±) (in the tracker). The transition z± is enabled only when all the
places in the preset of (z±) have tokens. These tokens cannot propagate further because the dummy is disabled by a
read-arc from the postset of z±. The only place pz in the post of z± is either z = 0 or z = 1 depending on the polarity
of z±. As soon as z± fires the dummy (z±) becomes enabled and the tokens continue their move in the tracker. It is
also necessary that the token does not leave pz until (z±) fires. This condition is ensured by the signal consistency of
the initial STG. Thus the transformation of this step preserves the behavioural equivalence of the system.

From this point the device model is considered separately and the environment is assumed to produce inputs
in response to device outputs according to the system protocol. The elementary cycles of the device bouncer are
subsequently implemented as set-reset Flip-Flops (FF) and the places of the device tracker are mapped into DCs, see
Figure 3.2(e).

3.3 Optimisation

It is often possible to control outputs by the directly preceding interface signals without using intermediate states.
Many places and preceding dummies can thus be removed, provided that the system behaviour is preserved w.r.t.
input-output interface (weak bisimulation). Such places are called redundant. Note that the notion of redundant places
in our method is different from the redundant transitive places in the structural theory of Petri nets, thus the structural
theory cannot be applied to remove them. This way p2 is redundant in the considered example, Figure 7(a). It can
be removed from the device tracker together with the preceding dummy (in+) as shown in Figure 7(b). Now the
input in = 1 controls the output out+ transition directly, which results in latency reduction when the STG is mapped
into the circuit, see Figure 7(c). Before the optimisation the output flip-flop was set by the p2_req signal, which was
generated in response to the input in, see Figure 7(e). In the optimised circuit the output flip-flop is triggered directly
by the in input and the context signal p1_req is calculated in advance, concurrently with the environment action.

4 Coding conflicts

The elimination of places is restricted by potential coding conflicts which may cause tracking errors. There are
two types of conflicts: Mark Graph-specific and State Machine-specific. The former conflicts may appear in a non-
conflicting branch of an STG, the latter may appear in the conflicting branches after a choice place.

4.1 Mark Graph-specific coding conflicts

For the idea of an Mark Graph-specific coding conflict, consider the system whose STG is depicted in Figure 8(a).
The device specification extracted from this STG by applying the above method is shown in Figure 8(b). The tracker
part of the device can be further optimised. The removal of redundant places p2 and p4 does not cause any conflicts
of the tracker, Figure 8(c). However, if the place p3 is eliminated as shown in Figure 8(d), then the tracker cannot
distinguish between the output having not yet been set and the output already reset. Note the specifics of this direct
mapping approach: only those signals whose switching directly precedes the given output are used in its support.
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Figure 7: Optimisation of the device specification
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Figure 8: Preventing coding conflicts

It is computationally simpler to detect redundant places by processing the original specification. For this the set
of all STG places P is divided into three non-intersecting subsets: PU , PR, PM such that PU ∪ PR ∪ PM = P and
PU ∩ PR ∩ PM = ∅. The set PR consists of redundant places which can be safely removed from the device STG, the
set PM holds the mandatory places which must be preserved in the device model, and the set PU contains the places
which have not been considered yet (undefined places). In the following figures the undefined places are depicted as
ordinary circles ( ), redundant places are drawn as small circles ( ), and the mandatory places are shown as bold
circles ( ). Initially all STG places belong to PU , both sets PR and PM are empty. Then, each place in PU is tested
for being redundant. If the place removal does not cause a coding conflict then the place is redundant and is moved
into PR, otherwise it is mandatory and is moved into PM .

A coding conflict for a place p is detected by intersecting two sets of signals. The first set contains the signals
whose transitions are fired in the forward neighbourhood of place p limited by places and transitions in PR ∪ T . The
second set consists of the signals whose transitions are fired in the backward neighbourhood of place p limited by
places and transitions in PR ∪ T .
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The forward neighbourhood εf (p, X) of place p limited by nodes (places and transitions) in X is defined as the
minimal (w.r.t.⊆) set such that:

εf (p, X) : p ∈ εf (p, X) ;

∀x ∈ X if ∃ y ∈ εf (p, X) : x ∈ y•, then x ∈ εf (p, X)
(1)

The set of signals Zf (p, X) whose transitions are fired in the forward neighbourhood of place p limited by the set
of nodes X are defined using labelling function λ:

Zf (p, X) = {z : ∃t ∈ εf (p, X) ∩ T : λ(t) ∈ {z+, z−}} (2)

Similarly, the backward neighbourhood εb (p, X) of place p limited by the set of nodes X is defined as the minimal
(w.r.t.⊆) set such that:

εb (p, X) : p ∈ εb (p, X) ;

∀x ∈ X if ∃ y ∈ εb (p, X) : x ∈ •y, then x ∈ εb (p, X)
(3)

Zb(p, X) = {z : ∃t ∈ εb (p, X) ∩ T : λ(t) ∈ {z+, z−}} (4)

For the detection of a coding conflict the forward and backward neighbourhoods are calculated on a set of tran-
sitions and redundant places. If Zf (p, PR ∪ T ) ∩ Zb (p, PR ∪ T ) = ∅, then the removal of the place p does not
cause coding conflicts. However, if there is a signal z whose transitions belong to both the forward and the backward
neighbourhoods of place p limited by transitions and redundant places, then the removal of this place causes a coding
conflict for signal z. The state of the signal z is the same before its transition in the backward neighbourhood and
after its transition in the forward neighbourhood of place p. As the place p is the only undefined place between these
transitions (the others are redundant) it must be preserved in order to separate the same state of the signal z in different
parts of the system specification.

Consider the detection of coding conflict on the example shown in Figure 9. The place under question is p07.
Its forward neighbourhood limited by redundant places is {p07, in2+, p08, p09, out2-, out3+} and its backward
neighbourhood is {p07, out1+/1, out2+/2, p05, p06, p04, in1+/1, out1+/2, in1+/2, p01, out2+/1}. Places p00, p02,
p03, p11, p12 are not redundant and form a border for the place p07 neighbourhoods. The signals whose transitions
are fired in the forward and backward neighbourhoods are {in2, out2, out} and {in1, out1, out2} respectively. The
intersection of these sets is {out2} which means that place p07 separates the different states of the signal out2 and
removal of this place will cause a coding conflict.

p03

p01 p04

p05

p06

p09

p08 p11

p12

p02

p00

p07
out3+

in2+

out2+/1 out1+/1

out1+/2

out2+/2

out2−

backward neighbourhood forward neighbourhood

in1+/1

in1+/2

Figure 9: Forward and backward neighbourhoods

4.2 State Machine-specific coding conflicts

The situation becomes more complex if a place under test is a direct successor of a choice transition. For example,
places p01 and p02 in Figure 10(a) are not redundant. If these places are removed, then the choice between the
conflicting branches is controlled by the same condition out1=1, which is ambiguous, see Figure 10(b). This is an
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State Machine-specific coding conflict. The forward and backward neighbourhoods do not help here because the
places whose removal cause a coding conflict are in mutually exclusive branches.

p00

p02 p04

p01 p03

in1+

in2+ out1+/2

out1+/1
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(b) An ambiguouty caused by removal of places p01 and p02

Figure 10: Mandatory places after choice

There are several strategies to avoid the ambiguity in choice branches after choice place pchoice. The first extreme
is to preserve all post-postset places of the choice place. This approach is computationally simple, however the latency
reduction might be sacrificed if there is an input signal transition in the postset of the choice place (which is the case
for a free-choice). The other extreme is to traverse each conflicting branch from pchoice and find all signals whose
transitions are present in more than one branch. At least one mandatory place must precede the first transition of such
signals in each branch. This approach helps to reduce the input-output latency, but it may be computationally hard if
loops or nested choices are found.

A trade-off between the computation speed and latency optimisation is the following. First, each undefined place
psucc in the post-postset of pchoice is checked. The removal of place psucc does not improve the input-output latency
if all preset transitions of psucc are non-input signal events. Such a place is made mandatory to help reducing the
computation complexity of the next step. After that, for each transition t ∈ pchoice• a set of transitions Tseq (t) =

{t}∪ t•• is built. It contains the transitions in a choice branch starting from t for the depth of two transitions counting
from pchoice. The joint set of transitions in choice branches of place pchoice limited by the depth of two transitions is
Tchoice (pchoice) =

⋃

t∈pchoice•
Tseq (t). If for a transition t ∈ pchoice• there is a signal whose transition belongs to both

Tseq (t) and Tchoice (pchoice) \Tseq (t) then the places in the postset of t must be preserved. Otherwise all places in
the postset of t • • transitions are made mandatory to reduce the depth of traversing. The trade-off approach benefits
from the input-output latency reduction and low computation complexity, however the size optimisation might suffer.

Consider the application of the trade-off approach to the example in Figure 10(a). For the choice place p00, which
has transitions in1+ and in2+ in its postset, Tseq (in1+) = {in1+, out1 + /1}, Tseq (in2+) = {in2+, out1 + /2}

and Tchoice (p00) = {in1+, out1 + /1, in2+, out1 + /2}. As a transition of out1 belongs to both Tseq (in1+) and
Tchoice (p00) \Tseq (in1+) = Tseq (in2+) the place p01is mandatory. Similarly, a transition of out1 belongs to both
Tseq (in2+) and Tchoice (p00) \Tseq (in2+) = Tseq (in1+), which makes place p02 mandatory.

5 Mapping into circuit

In our direct mapping method the places of the tracker are mapped into DCs and the elementary cycles of the bouncer
are mapped into set-reset FFs. Read-arcs connecting the elementary cycles to the tracker and to the environment
simulate the behaviour of wires and are directly mapped into wires between DCs and FFs.

The mapping of an elementary cycle into a set-reset FF is illustrated in Figure 11. The set and reset functions of
the FF are determined by the structure of the set and reset phases of the elementary cycle. The FF is initially set (reset)
if the place corresponding to the low (high) level of the signal is marked.
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Figure 11: Mapping of elementary cycles into FFs

The mapping of basic tracker structures into DCs is shown in Figure 12. The request and acknowledgement
functions of each DC are generated from the structure of the tracker in the preset and postset of the corresponding
place. The request function of each DC is shown in its top-left corner and the acknowledgement function in its
bottom-right conner.
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Figure 12: Mapping of tracker places into DCs

A circuit diagram of a traditional DC which was introduced in [9] is shown in Figure 13(a). The input r1 is the
request from the previous stage DC to pass the token. Output a acknowledges the receipt of the token to the previous
stage DC. Similarly, output r requests the next stage DC to accept the token and input a1 acknowledges its receipt.
Signals e and f represent the ‘empty’ and ‘full’ states of the state holding element. Similar to [18], in our method the
marking of a tracker place is associated with the state of the output r of a corresponding DC. The operation of a DC
is illustrated by the STG in Figure 13(b). The transitions of the internal signal f are skipped in this STG because this
signal is equivalent to the a output. The transitive places prev and cur represent the active levels of signals r1 (previous
stage DC holds a token) and r (this DC holds the token) respectively. Note that neither the previous stage DC nor the
current one is active while the token moves between transitions r1- and r+. In most cases this time can be considered
as negligible, because it corresponds to a single two input NOR-gate delay.

There is one timing assumption in this DC implementation which is represented by the dotted arcs in Figure 13(b).
The assumption is that a new token arrives to the input of a DC only after the token has left the next stage DC.
This assumption results in a limitation of the method to have at least three DCs in every loop [18]. For the original
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Figure 13: David cell

specification it means that any loop of the system STG must contain at least three places. Also the number of places
in the loops must be kept above two during the optimisation of the tracker STG.

Faster and more compact solutions for a DC implementation, proposed in [3], are called fast DCs. A gate-level
implementation of a fast DC and its STG are shown in Figure 14(a,b). An interesting feature of the fast DC is that it
internally contains a GasP-like interface [34], which uses a single wire to transmit a request in one direction and an
acknowledgement in the other. A fast DC has speed advantages over a traditional DC because the reset phase of its
state holding element happens concurrently with the token move into the next stage DC. However, fast DCs rely on
timing assumptions which are depicted in its STG using dotted arcs, see Figure 14(b).
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Figure 14: Gate-level fast DC

The first timing assumption is captured by the dotted arcs incident to place p0. Being the same as for traditional
DCs this assumption is satisfied if the number of DC in each loop is grater than two.

The second timing assumption is that the token leaves the DC only after the previous stage DC is empty. It is
shown by the dotted arc between transition r1- and a-. The same timing assumption for the next stage DC is shown by
the dotted arc from e+ to a1-. This assumption is easy to meet because the reset of the request r1- from the previous
stage DC is delayed by a single two-input NOR-gate. The acknowledgement a1+ from the next stage DC is set with
the delay of at least a pair of two-input NOR-gates.

Accepting the above timing assumptions and removing the transitive places the simplified STG of the fast DC is
obtained in Figure 14(c). The transitive places prev and cur represent the high level of signals r1 and r respectively.
Their state denotes the marking of places associated with the previous stage DC and current DC. One can see that both
prev and cur are marked for the time when a+ has been executed and r1- has not fired yet. This inconsistency between
the underlying PN model and fast DCs is called the token spread.

Another implementation of a fast DC and its STG are shown in Figure 15(a,b). This implementation uses a
keeper latch for the state holding element. A keeper is a logic level hold circuit which consists of two weak inverters
connected back to back. In order to increase the driving ability of the request output, the weak inverter providing
the keeper output is replaced by an ordinary inverter. The timing assumptions for the transistor-level implementation
are the same as for the gate-level. One can see that the spread of the token is also possible in the transistor-level
implementation, see Figure 15(c).

The token spread is not modelled by the underlying PN, which may cause problems in the vicinity of the choice
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place. Consider the example STG shown in Figure 16(a). The transitions that directly succeed places p01 and p02 are
different signal events, and the removal of these places does not cause any coding conflict. The optimised STG shown
in Figure 16(b) can be safely mapped into traditional DCs. However, the direct mapping into fast DCs is problematic
due to their token spread feature.
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Figure 16: Redundant places after choice

For example, if the STG shown in Figure 16(b) is implemented using fast DCs, then the following scenario is
possible: in1+→out1+/1→(out1+/1)→out2+/1 resulting in the token spread over places p00 and p03 for a short time
interval. It leads to the incorrect state when transitions (out2+/1) and (out2+/2) in conflicting branches are enabled
simultaneously. The firing of the enabled transition (out2+/1) results in the malfunction of the system: both conflicting
branches are active at the same time.

A possible solution for the token spread problem is to restrict the propagation of a token in conflicting branches
until the token leaves the choice place. It can be done by mapping the first places in the conflicting branches into
traditional DCs. Such a DC does not rise its request output until the request of the previous stage DC is low. The
application of this approach to the example shown in Figure 16(b) forces places p03 and p04 to be mapped into
traditional DCs.

The advantages and drawbacks of different DC implementations are summarised in Table 1. Only a traditional
DC is free of the token spread problem. The smallest (6 transistors) is the transistor-level fast DC. The fastest (up to
833.3MHz) is the gate-level fast DC.

The maximum frequency of DC operation is measured by SPICE analog simulations using the AMS-0.35µ design
kit. For this, traditional DC, gate-level fast DC and transistor-level fast DC have been implemented in AMS-0.35µ

library. Then the DCs of each type have been connected in loops of tree DCs and the oscillation of each loop have
been captured as shown in Figure 17.

The shortest period is exhibited by gate-level fast DCs. These DCs are the best for the synthesis of fast control
circuits. Transistor-level fast DCs are recommended when the circuit size is crucial, however they require extra effort
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DC type min period max frequency size token
(ns) (MHz) (transistor count) spread

traditional 3.6 277.8 12 no
fast gate-level 1.2 833.3 8 yes
fast transistor-level 2.1 476.2 6 yes

Table 1: Comparison of DC implementations
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Figure 17: Speed of DC implementations

for the layout of the library of custom cells. Both types of fast DCs rely on timing assumptions and have certain token
spread problems. That is why the traditional DCs should be used for the design of speed-independent circuits and to
avoid the spread of a token in the vicinity of choice places.

6 Algorithms

This section describes the algorithms employed in the STG optimisation for mapping. The algorithms are implemented
in a package of software tools called OptiMist whose design flow is presented in Figure 18.

Structural Verilog

om_library

om_verilog om_graph

STG with read−arcs

om_detect, om_expose, om_transform

Structural Verilog GraphViz DOT

STG
behavioural specification

library of DCs & FFs
visualisation

optimised specification

transformation and optimisation

circuit netlist

implementation of DCs & FFs

STG layout

direct mapping

Figure 18: OptiMist design flow
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The package consists of separate tools solving the following tasks:

• detection of redundant places;

• exposure of the outputs;

• elimination of redundant places;

• visualisation of an STG with read-arcs extension and tracker-bouncer structure;

• mapping of the optimised specification into a circuit;

• generation of a library of required DCs and FFs either at transistor- or gate-level.

The algorithms for STG optimisation (detection of redundant places, exposure of the outputs and elimination of re-
dundant places) are described in detail in the following subsections. The algorithms for the other three tools are trivial
and are not presented here.

6.1 Detection of redundant places

The order in which the redundant places are detected affects the optimisation result. The order is defined by the
heuristics presented in Algorithm 1. The detect_redundant_places procedure takes STG and optimisation_level as the
input parameters and returns the set PR of redundant places (lines 01-03). Initially, all STG places are undefined
(line 04). The optimisation_level parameter defines which optimisation heuristics to apply to the STG (lines 07-12).

Algorithm 1 Detection of redundant places
01 procedure detect_redundant_places
02 input: STG = 〈P, T, F, M0, I, O〉, optimisation_level ∈ {0, 1, 2, 3}
03 output: PR ⊆ P
04 PR:=∅; PM:=∅; PU:=P
07 if optimisation_level > 0 then
08 optimise_choice (STG, PU , PR, PM )
09 if optimisation_level > 1 then
10 optimise_latency (STG, PU , PR, PM )
11 if optimisation_level > 2 then
12 optimise_size (STG, PU , PR, PM )

6.1.1 Choice optimisation

The heuristic optimise_choice whose pseudo-code is shown in Algorithm 2 prevents the State Machine-specific coding
conflicts. The algorithm implements a trade-off between the computation speed and latency optimisation as described
in Section 4. The input of the heuristic is the system STG and initial partitioning of its places into undefined, redundant
and mandatory; its output is a new partitioning of the places (lines 01-03).

First, for each choice place p the set Tchoice containing its postset and post-postset transitions is created (lines 05-
07). Then, for each transition t in the postset of choice place p a set Tconf is computed (lines 08-09). It contains all
transitions in the conflicting branches which are in the postset or post-postset of the choice place p. For each place
psucc in the postset of transition t a set Tseq containing t and all transitions in the postset of psucc (lines 10-11). If there
is a signal whose transition belongs to both Tseq and Tconf then place psucc is mandatory (lines 12-14). Otherwise
place psucc is redundant and all places in its post-postset are made mandatory to reduce the computation complexity
(lines 15-18).

NCL-EECE-MSD-TR-2006-110, University of Newcastle upon Tyne 21



D.Sokolov, A.Bystrov, A.Yakovlev: Direct mapping of low-latency asynchronous controllers from STGs

Algorithm 2 Choice optimisation
01 procedure optimise_choice
02 input: STG = 〈P, T, F, M0, I, O〉, PU ⊆ P, PR ⊆ P, PM ⊆ P
03 output: PU ⊆ P, PR ⊆ P, PM ⊆ P
04 for_each p ∈ P : |p•| > 1 do
05 Tchoice:=∅
06 for_each t ∈ p• do
07 Tchoice:=Tchoice ∪ {t} ∪ t • •
08 for_each t ∈ p• do
09 Tconf:=Tchoice\ ({t} ∪ t • •)
10 for_each psucc ∈ t• : psucc ∈ PU do
11 Tseq:={t} ∪ psucc•
12 if ∃

`

z ∈ I ∪ O, tseq ∈ Tseq , tconf ∈ Tconf

´

:

13 (tseq ∈ {z+, z−}) ∧
`

tconf ∈ {z+, z−}
´

then
14 PM:=PM ∪ {psucc}
15 else
16 PR:=PR ∪ {psucc}
17 for_each psucc_succ ∈ psucc • • : psucc_succ ∈ PU do
18 PM:=PM ∪ {psucc_succ}, PU:=PU\ {psucc_succ}
19 PU:=PU\ {psucc}

6.1.2 Latency optimisation

The heuristic optimise_latency is aimed at latency reduction. Its basic idea is that a place is redundant if all its direct
predecessors are input transitions and all direct successors are non-input transitions. Such a place can be considered
redundant even without checking for the possibility of a coding conflict. All its surrounding places are undefined
yet which means that the backward neighbourhood includes input transitions only and the forward neighbourhood
contains non-input transitions only. Thus, the intersection of the sets of signals in these neighbourhoods is always
empty which means the place under question is redundant.

The optimise_latency pseudo-code is shown in Algorithm 3. The input of the heuristic is the system STG and initial
partitioning of its places into undefined, redundant and mandatory obtained by optimise_choice algorithm; its output
is a new partitioning of the places (lines 01-03). The algorithm finds all undefined places whose preset transitions are
input events and postset transitions are not (lines 04-05). Such places are moved from the set of undefined places into
the set of redundant places (lines 06-07).

Algorithm 3 Input-output latency optimisation
01 procedure optimise_latency
02 input: STG = 〈P, T, F, M0, I, O〉, PU ⊆ P, PR ⊆ P, PM ⊆ P
03 output: PU ⊆ P, PR ⊆ P, PM ⊆ P
04 for_each p ∈ PU do
05 if (∀t ∈ •p, λ (t) ∈ I × {+,−}) ∧ (∀t ∈ p•, λ (t) /∈ I × {+,−}) then
06 PR:=PR ∪ {p}
07 PU:=PU\ {p}

6.1.3 Size optimisation

The optimise_size heuristic, whose pseudo-code is presented in Algorithm 4, is aimed at size reduction. The input
of the heuristic is the system STG and the partitioning of places into undefined, redundant and mandatory subsets
obtained by optimise_choice and optimise_latency heuristics; its output is the new partitioning of places (lines 01-
03). The heuristic is divided into two steps: first, the redundant places are detected in the chains of undefined places
(lines 04-10); then, the undefined places left in the STG are checked for redundancy individually (lines 11-17).

At the first step, for each undefined place its backward neighbourhood limited by undefined places and forward
neighbourhood limited by non-undefined places are found. If the number of places contained in these neighbourhoods
is equal to one (the place under question itself) then this place is a boundary place between non-undefined and un-
defined places (line 05). Such a place is subject for redundancy check (line 06). If for this place there is no signal
whose transitions are fired in both forward and backward neighbourhoods limited by redundant places, then the place
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Algorithm 4 Size reduction
01 procedure optimise_size
02 input: STG = 〈P, T, F, M0, I, O〉, PU ⊆ P, PR ⊆ P, PM ⊆ P
03 output: PU⊆ P, PR ⊆ P, PM ⊆ P
04 // Process sequences of undefined places
05 while ∃p ∈ PU : (εb (p, PR ∪ PM ∪ T ) ∩ P = {p}) ∧

`

εf (p, PU ∪ T ) ∩ P = {p}
´

do
06 if Af (p, PR) ∩ Ab (p,PR) = ∅ then
07 PR:=PR ∪ {p}
08 else
09 PM:=PM ∪ {p}
10 PU:=PU\ {p}
11 // Process remaining undefined places individually
12 for_each p ∈ PU do
13 if Af (p, PR) ∩ Ab (p,PR) = ∅ then
14 PR:=PR ∪ {p}
15 else
16 PM:=PM ∪ {p}
17 PU:=PU\ {p}

is redundant (line 07). Otherwise it is mandatory (line 09). The procedure is repeated until no boundary places left in
the STG.

At the second step all undefined places which left in the STG are checked for redundancy without any specific
order (lines 11-17). The majority of redundant places are already detected in the previous heuristics. The places left
undefined in the STG are usually those preceding the input signal transitions and their removal does not improve the
latency, however the size reduction is still possible.

6.2 Exposure of outputs

The conversion of the system STG into a two-level architecture is described by Algorithm 5. The input to the algorithm
is a system STG and the initial states S of input and output signals; its output is a modified STG which consists of a
tracker and a bouncer (lines 01-03). The initially empty set of read-arcs R connecting the tracker and bouncer is added
to the STG (line 04). For each STG signal z a place representing its low level plow

z and a place representing its high
level phigh

z are created (lines 05-07). The initial marking of these places is chosen according to the initial state S of
signal z (lines 08-11). Then, each transition t of signal z is substituted by a dummy transition tdummy in the tracker
part (lines 12-18). The signal transition itself is moved into the bouncer part, thus forming the signal elementary cycle
(lines 19-23). The tracker and bouncer operation is synchronised by means of read-arcs which are inserted in such
way that signal transition t is enabled only when all direct predecessors of the dummy transition tdummy are marked,
see read-arcs inserted in lines 24-25. The dummy transition tdummy itself is only enabled when the signal transition t

is fired and the marking of signal z elementary cycle is changed, see read-arcs inserted in lines 21 and 23.

6.3 Elimination of redundant places

Algorithm 6 describes the procedure of redundant places elimination. This procedure should be used after detection
of redundant places and exposure of outputs. It consists of three steps: initial marking optimisation, trigger signals
optimisation and context signal optimisation (lines 04-06).

The procedure of initial marking optimisation is shown in Algorithm 7. It changes the initial marking in such way
that no redundant places contain tokens. For this the marking of each redundant place is traversed one transition back
assuming that all the places in its postset are marked (lines 04-15). The exception is made for merge places because
it is hard to compute which conflicting branch produced the token for the merge place (line 07). The back traversal
repeats until either only mandatory places are marked or there is no such transition preceding a marked redundant
place whose postset contains places that are all marked. If some redundant places are still marked after the marking
recalculation they are made mandatory (lines 16-18). The recalculation of the initial marking for the merge places can
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Algorithm 5 Conversion of a system STG into a tracker-bouncer architecture
01 procedure convert_tracker_bouncer
02 input: STG = 〈P, T, F, M0, I, O〉, S : I ∪ O → {0, 1}
03 output: STG = 〈P, T, F, R, M0, I, O〉
04 R:=∅
05 for_each z ∈ I ∪ O do
06 create place plow

z , create place phigh
z

07 P:=P ∪
˘

plow
z

¯

∪
n

phigh
z

o

08 if S(z) = 0 then
09 M0

`

plow
z

´

:=1, M0

“

phigh
z

”

:=0

10 else
11 M0

`

plow
z

´

:=0, M0

“

phigh
z

”

:=1

12 for_each t ∈ T : λ (t) ∈ {z+, z−} do
13 // Substitute signal z transitions by dummies (in the tracker)
14 create dummy transition tdummy, T:=T∪

˘

tdummy

¯

15 for_each p ∈ •t do
16 F:=F ∪

˘`

p, tdummy

´¯

, F:=F\ {(p, t)}
17 for_each p ∈ t• do
18 F:=F ∪

˘`

tdummy , p
´¯

, F:=F\ {(t, p)}
19 // Move signal z transitions into elementary cycle (in the bouncer)
20 if λ(t) = z+ then
21 F:=F ∪

˘`

plow
z , t

´¯

, F:=F ∪
n“

t, phigh
z

”o

, R:=R ∪
n“

phigh
z , tdummy

”o

22 else
23 F:=F ∪

n“

phigh
z , t

”o

, F:=F ∪
˘`

t, plow
z

´¯

, R:=R ∪
˘`

plow
z , tdummy

´¯

24 for_each p ∈ •tdummy do
25 R:=R ∪ {(p, t)}

Algorithm 6 Elimination of redundant places
01 procedure optimise
02 input: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P
03 output: STG = 〈P, T, F, R, M0, I, O〉
04 optimise_marking (STG, PR)
05 optimise_bouncer (STG, PR)
06 optimise_tracker (STG, PR)

be improved by employing the reachability analysis algorithms. However, they require either building a finite prefix
or a reachability graph which is computationally complex for large specifications.

Algorithm 7 Re-calculation of the initial marking from redundant places to mandatory
01 procedure optimise_marking
02 input: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P
03 output: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P
04 // Try to recalculate the initial marking to mandatory places
05 repeat
06 done:=true
07 for_each p ∈ PR : (M0 (p) 6= 0) ∧ (|•p| = 1) do
08 for_each t ∈ •p do
09 if ∀pconc ∈ t• : M0 (pconc) = 1 then
10 for_each ppred ∈ •t do
11 M

`

ppred

´

:=1
12 for_each pconc ∈ t• do
13 M (pconc):=0
14 done:=false
15 until done
16 // Make all marked places mandatory
17 for_each p ∈ PR : M (p) 6= 0 do
18 PR:=PR\ {p}, PM:=PM ∪ {p}

An auxiliary procedure removing an STG node together with its incident arcs is described by Algorithm 8. It is
moved to a separate algorithm in order to lighten the optimise_bouncer and optimise_tracker pseudo-code. The input
of the remove_node algorithm is an STG and its node which is required to remove. The removal of node x starts from
the elimination of its producing and consuming arcs (lines 04-07). If x is a place, then the read-arcs from this place to
all transitions are removed and the node is subtracted from the set of STG places (lines 08-11). If x is a transition, then
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read-arcs from all places to this transition are removed and x is removed from the set of STG transitions (lines 12-15).

Algorithm 8 Node removal together with its incident arcs
01 procedure remove_node
02 input: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P, x ∈ P ∪ T
03 output: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P
04 for_each y ∈ •x do
05 F:=F\ {(y, x)}
06 for_each y ∈ x• do
07 F:=F\ {(x, y)}
08 if x ∈ P then
09 for_each y ∈ x? do
10 R:=R\ {(x, y)}
11 P:=P\ {x}, PR:=PR\ {x}
12 else
13 for_each y ∈ ?x do
14 R:=R\ {(y, x)}
15 T:=T\ {x}

The pseudo-code for optimisation of context and trigger signals in the bouncer part is shown in Algorithm 9. It
changes the read-arcs connecting the tracker with the bouncer in such a way that only mandatory places control the
transitions of elementary cycles. In order to do this for each transition tread which is controlled by a redundant place
p its copy tdup

read is created and its consuming and producing arcs are duplicated (lines 06-09).

Algorithm 9 Optimisation of the bouncer context and trigger signals
01 procedure optimise_bouncer
02 input: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P
03 output: STG = 〈P, T, F, R, M0, I, O〉
04 Ttrig:=∅
05 for_each tread ∈ p? : p ∈ PR do
06 // Duplicate tread together with its consuming and producing arcs
07 create transition tdup

read
, T:=T ∪

n

tdup
read

o

08 for_each pread_pred ∈ •tread do F:=F ∪
n“

pread_pred, tdup
read

”o

09 for_each pread_succ ∈ tread• do F:=F ∪
n“

tdup
read

, pread_succ

”o

10 for_each t ∈ •p do
11 // Form trigger signals for tdup

read
12 if tread /∈ Ttrig then
13 for_each pread ∈ ?t do R:=R ∪

n“

pread, tdup

read

”o

14 Ttrig:=Ttrig ∪
n

tdup
read

o

15 // Form context signals for tdup
read

16 create transition tdup, T:=T ∪
˘

tdup
¯

17 F:=F ∪
˘`

tdup, p
´¯

, F:=F\{(t, p)}
18 for_each ppred ∈ •t do
19 create place pdup

pred
, P:=P ∪

n

pdup

pred

o

20 R:=R ∪
n“

pdup
pred

, tdup
read

”o

21 for_each tpred_succ ∈ ppred• : tpred_succ 6= t do F:=F ∪
n“

pdup
pred

, tpred_succ

”o

22 for_each tpred_pred ∈ •ppred do F:=F ∪
n“

tpred_pred, pdup
pred

”o

23 for_each tpred_read ∈ ppred? do R:=R ∪
n“

pdup
pred

, tpred_read

”o

24 F:=F ∪
n“

pdup
pred

, tdup
”o

25 // Remove processed transition t and its preset places
26 if |t•| = 0 then
27 for_each ppred ∈ •t do
28 remove_node

`

STG, ppred

´

29 remove_node (STG, t)
30 remove_node (STG, tread)

In our method only those signals whose transitions directly precede an output transition form the set of its triggers.
Line 12 checks if transition tread is controlled by a trigger signal yet. If it is not then trigger signals are introduced
by means of read-arcs connecting tdup

read to each place which controls a transition in the preset of place p (line 13).
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Transition tdup
read is added to the set Ttrig containing transitions which are already controlled by trigger signals (line 14).

Recalculation of the context signals involves some change in the tracker structure. Each transition t in the preset
of the redundant place p is copied to tdup (line 16). Then producing arc

(

tdup, p
)

is added and arc (t, p) is deleted,
thus removing redundant place p from the postset of t (line 17) and each place ppred in the preset of transition t is
copied to pdup

pred (lines 18-19). This place pdup
pred is used by the transition tdup

read in the elementary cycle as a new context

signal instead of place p, see read-arc
(

pdup
pred, t

dup
read

)

in line 20. All arcs incident to place ppred except consuming arc

(ppred, t) are copied to similar arcs connected to place pdup
pred (lines 21-23). The consuming arc (ppred, t) is mapped

into arc
(

pdup
pred, t

dup
)

(lines 24).
If the redundant place p was the only place in the postset of transition t then this transition is removed together

with its preset places and their incident arcs (lines 26-29). Finally the transition tread is removed together with its
consuming, producing and read-arcs. If there are other read-arcs from redundant places to tread they have been copied
into the read-arcs to tdup

read and are processed in the next iterations of the algorithm. If there are redundant places in the
pre-preset of place p these are also processed in the next iterations.

After the application of optimise_marking and optimise_bouncer algorithms to the device STG its redundant places
are not marked with tokens and do not control any transition by means of read-arcs. These places can be removed
now by the procedure whose pseudo-code is shown in Algorithm 10. Each redundant place p is removed individually
with the required change of the tracker structure. For each transition t in the preset of p a copy tdup

succ of the each
transition tsucc in the postset of p is created (lines 06-10). The copy transition tdup

succ is added to the T dup which
contains all transitions which are duplicated for t. Incident arcs of tsucc except of consuming arc (p, tsucc) are also
copied (lines 11-13). After that each place in the preset of t is connected by a consuming arc with each transition in
T dup (lines 14-17). When all transitions in the preset of p are processed, the transitions in the postset of p and the
redundant place p itself are removed (lines 18-25). If redundant place p was the only place in the postset of t then
transition t is also removed.

Algorithm 10 Optimisation of the tracker by redundant places removal
01 procedure optimise_tracker
02 input: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P
03 output: STG = 〈P, T, F, R, M0, I, O〉
04 for_each p ∈ PR do
05 // Duplicate p• transitions and their incident arcs
06 for_each t ∈ •p do
07 T dup:=∅
08 for_each tsucc ∈ p• do
09 create transition tdup

succ

10 T:=T ∪ tdup
succ, T dup:=T dup ∪ tdup

succ

11 for_each pconc ∈ •tsucc : pconc 6= p do F:=F ∪
n“

pconc, t
dup
succ

”o

12 for_each psucc ∈ tsucc• do F:=F ∪
n“

tdup
succ, psucc

”o

13 for_each pread ∈ ?tsucc do R:=R ∪
n“

pread, tdup
succ

”o

14 // Connect •t places with all T dup transitions
15 for_each ppred ∈ •t do
16 for_each tdup

succ ∈ T dup do
17 F:=F ∪

n“

p, tdup
succ

”o

18 // Remove redundant place p, p• transitions and processed •p transitions
19 for_each t ∈ •p do
20 F:=F\{(t, p)}
21 if |t•| = 0 then
22 remove_node (STG, t)
23 for_each tsucc ∈ p• do
24 remove_node (STG, tsucc)
25 remove_node (STG, p)

The procedure of redundant places removal is described using a simple example whose STG is shown in Fig-
ure 19(a). Only places p07, p08 are redundant and the initial marking does not require recalculation. Redundant
places p07 and p08 control transitions out1+ and out2+ respectively. New context and trigger signals for each transi-

NCL-EECE-MSD-TR-2006-110, University of Newcastle upon Tyne 26



D.Sokolov, A.Bystrov, A.Yakovlev: Direct mapping of low-latency asynchronous controllers from STGs

tion are found by optimise_bouncer algorithm. Its result is shown in Figure 19(b).
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Figure 19: Removal of redundant places

Dummy (in2+) is split into (in2+)a and (in2+)b because it precedes two redundant places. The place p06 which
is in the preset of (in2+) is also split into p06a and p06b, so that p06a precedes (in2+)a and p06b precedes (in2+)b.

Only the (in2+)b dummy precedes redundant place p08. The context and trigger signals of the transition out2+ are
defined by the preset of place p08. Its trigger consists of place in2=1 which controls (in2+)b and its context is formed
by place p06b which is in preset of (in2+)b. Read-arcs from in2=1 to (in2+)b and from p06 to out2+ are removed.

Two dummies (in1+) and (in2+)a precede redundant place p07 which means there are two mutually exclusive sets
of triggers/context signals for out1+. For this reason the out1+ transition is duplicated. The trigger of its first copy
out1+/1 is the place in1=1 which controls (in1+); its context is provided by places p04 and p05 which are in preset
of (in1+). The trigger of the second copy out1+/2 is place in2=1 which controls (in2+)a; its context signals places

NCL-EECE-MSD-TR-2006-110, University of Newcastle upon Tyne 27



D.Sokolov, A.Bystrov, A.Yakovlev: Direct mapping of low-latency asynchronous controllers from STGs

p06a which is in preset of (in2+)a. Read-arcs from p07 to out1+, from in1=1 to (in1+) and from in2=1 to (in2+)a

are removed.
Redundant places p07 and p08 are then removed from the STG using optimise_tracker algorithm whose result is

shown in Figure 19(c). Note that dummy (out1+) is split into (out1+)a and (out1+)b. There are two transitions in the
preset of p07, for each of them a copy of p07 postset is created.

The algorithms presented in this section are implemented in the OptiMist toolkit. The toolkit automates the
mapping of STGs into circuits. At the same time it gives a designer full control on the choice of optimisation heuristics
and allows manual adjustment of the solution to specific requirements. OptiMist can be employed in combination with
Cadence to allow simulation and technology mapping of circuits. A basic library of DCs and FFs has been created for
Cadence. It can be expanded, if necessary, using a tool from the OptiMist package which generates a Verilog netlist
for DCs and FFs at transistor-level or gate-level.

The results presented in Section 7 and Section 8 are obtained by OptiMist tools.

7 GCD controller example

Consider the use of the OptiMist tools on the example of the GCD control unit whose STG is shown in Figure 20.
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Figure 20: STG of GCD controller

The redundant places are detected in the original STG before the exposure of outputs by the om_detect tool. The
first heuristic applied to the GCD example is optimise_choice. It prevents coding conflicts from occurring in choice
conflicting branches without restricting the latency reduction. The result of this heuristic is shown in Figure 21(a). It
is obtained by the following command:

$ om_detect --level1 --output gcd_1.g gcd.g

There are three places pgt1, peq1 and plt1 which are in the post-postset of the free-choice place cmp2. All of
them are mandatory because they are preceding the transitions of the same signal cmp_req. Making these places
mandatory reduces the input-output latency for eq_ack+→cmp_req-/1, gt_ack+→cmp_req-/2 and lt_ack+→cmp_req-

/3 handshakes. However, it is the only way to avoid a coding conflict.
The second heuristic optimise_latency reduces both the size and the latency of a circuit. The redundant places

detected by this heuristic in the GCD example are px1, py1, px3, py3, px5, py5, pgt3, plt3, pgt5, plt5, peq3 and peq5,
see Figure 21(b). The preset of each of these places contains transitions of input signals only and the postset contains
transitions of non-input signals. The command executed for detecting these redundant places is:

$ om_detect --level2 --output gcd_2.g gcd.g

The last heuristic optimise_size detects redundant places cmp2, pgt2, plt2 and peq2 in the GCD example, see
Figure 21(c). Removal of place cmp1 also does not cause a coding conflict, however it is kept by the om_detect tool in
order to preserve the simplicity of the cmp_req elementary cycle. Without this place the positive phase of the cmp_req

would be controlled by two context signals from the tracker (read-arcs from px4 and py4) and two trigger signals from

NCL-EECE-MSD-TR-2006-110, University of Newcastle upon Tyne 28



D.Sokolov, A.Bystrov, A.Yakovlev: Direct mapping of low-latency asynchronous controllers from STGs

the environment (read-arcs from places x_ack=0 and y_ack=0). The trade-off between the complexity of elementary
cycles and the number of places in the tracker can be set by command line parameters of the om_detect tool:

$ om_detect --level3 --join2 --output gcd_3.g gcd.g
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Figure 21: Detection of redundant places in STG of GCD controller

After the detection of redundant places the om_expose tool partitions the STG of GCD control path into tracker
and bouncer parts:

$ om_expose --output gcd_3e.g gcd_3.g
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The resultant STG is shown in Figure 22. The bouncer consists of elementary cycles representing the outputs of
GCD controller, one cycle for each output. The elementary cycles for the inputs are not shown as they belong to the
environment. The tracker is connected to inputs and outputs of the system by means of read-arcs, as it is described in
the algorithm of outputs exposure.
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Figure 22: Exposure of outputs in STG of GCD controller

After the redundant places are detected and the outputs are exposed, the STG is optimised by removing the re-
dundant places from the tracker part. The removal of a place involves the change in the STG structure but preserves
the behaviour of the system w.r.t. input-output interface. The result of GCD control unit optimisation is presented in
Figure 23. This operation is automatically performed by the om_transform tool:

$ om_transform --level5 --output gcd_3et.g gcd_3e.g

This STG can now be used for circuit synthesis. For this each tracker place is mapped into a DC and each
elementary cycle is mapped into a FF. The request and acknowledgement functions of a DC are mapped from the
structure of the tracker in the vicinity of the corresponding place. The set and reset functions of a FF are mapped from
the structure of the set and reset phases of the corresponding elementary cycle. The GCD controller circuit obtained
by this technique is presented in Figure 24. The netlist is produced automatically by the following command:

$ om_verilog gcd_3et.g --statistics --output gcd.v

This circuit consists of 15 DCs and 6 FFs. If the DCs are implemented as transistor-level fast DCs then the
maximum number of transistor levels in pull-up and pull-down stacks is 4. This transistor stack appears in the request
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Figure 23: Elimination of redundant places in STG of GCD controller

function of the DC for cmp1 and is formed by the signals x_ack=0, y_ack=0, px4_req and py4_req.
The longest latency, which is the delay between an input change and reaction of the controller by changing some

outputs, is exhibited by cmp_req signal. The latency of its set and reset phases is equal to the delay of one DC and
one FF. The other outputs are triggered directly by input signals which means that their latencies are equal to one FF
delay plus the delay of one inverter when the trigger signal requires inversion.

8 Benchmarks

This section highlights the advantages and drawbacks of the direct mapping approach implemented in OptiMist for a
set of benchmarks. The direct mapping approach is compared against explicit logic synthesis (implemented in Petrify)
in terms of circuit size and speed. The complexity of the underlying algorithms is taken into account by measuring
the computation time of OptiMist and Petrify on Pentium 3 1GHz, 1Gb RAM computer. The effect of optimisation
heuristics on the direct mapping is also analysed. For this comparison each benchmark STG has been synthesised in
three different ways:

• Direct mapping by the OptiMist tools without detection and elimination of redundant places;
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Figure 24: GCD controller circuit obtained by the OptiMist tool

• Direct mapping by the OptiMist tools with latency and size optimisation by removing the redundant places from
the STG;

• Logic synthesis by the Petrify tool with automatic resolution of CSC conflicts (unless it is impossible) and logic
decomposition into gates with at most four literals.

The result of the experiment is summarised in Table 2.
The number of transistors is counted for the case of places being implemented as fast DCs, request-

acknowledgement logic of DCs and set-reset logic of FFs being implemented at transistor level. The condition of
having at least three DCs in a loop is met.

In all experiments, the latency is counted as the accumulative delay of negative gates switched between an input
and the next output. The following dependency of a negative gate delay on its complexity is used. The latency of
an inverter is associated with a unit delay. Gates which have maximum two transistors in their transistor stacks are
associated with 1.5 units; 3 transistors - 2.0 units; 4 transistors - 2.5 units. This approximate dependency is derived
from the analysis of the gates in AMS 0.35µm library. The method of latency estimation does not claim to be very
accurate. However, it takes into account not only the number of gates switched between an input and the next output,
but also the complexity of these gates.

All experiments show the high efficiency of direct mapping optimisation heuristics. About 50% of DCs are re-
dundant in the original STG. Their removal results in up to 35% improvement in the circuit size. The latency of the
circuits also benefits from the optimisation. In some cases (gcd, vme-bus) the worst-case latency cannot be improved
because of a potential coding conflict in the conflicting branches. However, this latency is only exhibited by the first
output signal after the choice place. The latency of the other outputs is reduced.

The comparison of the circuits obtained by OptiMist (with latency&size optimisation) and Petrify shows that the
direct mapping solutions are usually larger than logic synthesis solutions. However the circuits obtained by the direct
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benchmark DC max max transistor worst-case computation
name count fin fout count latency time

gcd
OptiMist (no optimisation) 30 2 4 255 4.5 0.11s
OptiMist (latency&size optimisation) 14 3 4 174 4.5 0.18s
Petrify 116 11.0 18s

vme-bus
OptiMist (no optimisation) 17 3 3 155 5.0 0.09s
OptiMist (latency&size optimisation) 10 3 4 121 5.0 0.11s
Petrify 58 8.5 1s

toggle
OptiMist (no optimisation) 8 2 2 68 4.5 0.06s
OptiMist (latency&size optimisation) 4 2 2 44 3.5 0.07s
Petrify 22 3.5 0.12s

imec-alloc-outbound
OptiMist (no optimisation) 17 2 2 143 5.0 0.09s
OptiMist (latency&size optimisation) 6 2 5 73 3.0 0.16s
Petrify 46 7.5 6.6s

par3
OptiMist (no optimisation) 19 3 4 160 6.5 0.07s
OptiMist (latency&size optimisation) 15 4 4 114 4.5 0.09s
Petrify 78 12.5 11s

count
OptiMist (no optimisation) 19 3 3 150 5.5 0.07s
OptiMist (latency&size optimisation) 11 3 4 98 3.0 0.11s
Petrify (manual CSC resolution) 68 3.0 1.4s

Table 2: Comparison between OptiMist and Petrify

mapping technique exhibit lower output latency.
For some benchmarks (e.g count) Petrify fails to resolve a CSC conflict even if it is reducible. Manual insertion of

additional signals is required in such cases. However, OptiMist completes the job automatically for such benchmarks.
The OptiMist tools can also process large specifications, which are not computable by Petrify in acceptable time.

This can be illustrated on the scalable benchmark whose STG is shown in Figure 25(a). Adding the concurrent
branches as shown by dashed lines one can increase the complexity of the benchmark. When the concurrency in-
creases, the Petrify computation time grows exponentially, while the OptiMist computation time grows linearly on the
same benchmark, see Figure 25(b). Note the different time scale for OptiMist (seconds) and for Petrify (minutes).

9 Summary

A method for direct mapping of STGs into circuit netlist has been presented in this chapter. The method exploits
the two-level architecture where a circuit consists of two blocks: the tracker and the block of output flip-flops. The
tracker computes context signals for outputs concurrently with the environment operation, thus achieving the latency
reduction effect. The output flip-flops generate outputs from context and trigger signals. The adopted architecture
allows the minimisation of state-holding elements and reduction of latency. The characteristic feature of the method is
that the optimisation is achieved at the specification (Petri net) level as opposed to optimisation of logic circuits after
the synthesis stage.

The method is implemented in a package of software tools called OptiMist. The package take an STG as the
initial specification of a system, converts the STG in a form convenient for mapping, performs optimisation, and
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Figure 25: Dependency of computation time on STG complexity

produces a Verilog netlist of the circuit. The optimisation of the specification relies on a set of heuristics aimed at
circuit latency and size reduction. This package can be employed in combination with Cadence for simulation and
technology mapping of circuits.

In the OptiMist tools the optimisation is performed locally and the computation time grows linearly with the size
of specification. This allows to process large specifications which are not computable by logic synthesis tools in
acceptable time.

The OptiMist tools are fully automated. At the same time a designer can significantly influence the result by
choosing one or more optimisation heuristics. In combination with computation speed OptiMist gives the designer an
opportunity to synthesise circuits with different optimisation parameters and choose the best solution.
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