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Abstract
A method for automated synthesis of asynchronous circuits using direct mapping for control

path and data path is presented. The idea of direct mapping is that a graph specification of a system

is translated into a circuit netlist by mapping the graph nodes into circuit elements and the graph

arcs into circuit interconnects. The key feature of this approach is its low algorithmic complexity

and direct correspondence between the elements of the initial specification and the components of

the resultant circuit. Unlike other direct mapping techniques, in our method the control path and

data path are synthesised separately seeking for greater performance of the circuit.

The control path synthesis starts from an initial specification in form of a Signal Transition

Graph (STG). The STG is split into a device and an environment, which synchronise via a com-

munication net that models wires. The device is represented as a tracker and a bouncer. The

tracker follows the state of the environment and provides reference points to the device outputs.

The bouncer interfaces to the environment and generates output events in response to the input

events according to the state of the tracker. This two-level architecture provides an efficient inter-

face to the environment and is convenient for subsequent mapping into a circuit netlist. A set of

optimisation heuristics are developed to reduce the latency and size of the control circuit.

The method for data path synthesis is based on a conventional RTL design flow. The data path

components are first implemented by a standard RTL synthesis tool, e.g Synopsys. The obtained

circuits are then converted into a hazard-free logic by using a dual-rail encoding with a return-to-

spacer signalling. A new protocol with two spacers alternating in time is proposed which makes

all gates switch per computation cycle. The potential applications of this protocol are security

circuits, online testing, dynamic logic.

As a result of this work, several software tools are developed, namely OptiMist for synthesis

of low-latency control path, and VeriMap for synthesis of hazard-free data path. The tools are

successfully integrated in the BESST design flow to provide a front-end to high-level HDLs and

an interface to conventional EDA tools for simulation, timing analysis and place-and-route.
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Chapter 1

Introduction

Design of asynchronous circuits has been an active research area since the early days of digital

circuit design. Until this decade asynchronous circuits have only been applied commercially as

small sub-circuits, often as peripherals to controllers. Emphasis is now shifting to asynchronous

Systems-on-Chip (SoCs), which are progressing from an academic research topic to a viable so-

lution to a number of digital VLSI design challenges.

This chapter briefly outlines the motivation of this work and overviews the approaches to

design of asynchronous circuits. The main contribution and the organisation of this thesis are also

described in this chapter.

1.1 Motivation

The continuous growth of circuit integration level creates a design gap between semiconductor

manufacturing capability and the ability of Electronic Design Automation (EDA) tools [1]. One

of the ways to deal with the increasing complexity of logic circuits is to improve the efficiency

of the design process. In particular, design automation and component reuse help to solve the

problem. SoCs have proved to be a particularly effective way to facilitate design automation and

component reuse. An important role in the synthesis of SoCs is given to the aspects of modelling

concurrency and timing. These aspects have traditionally been dividing systems into clocked and

self-timed. The division has recently become fuzzier because systems are built in a mixed timing

style: partly clocked and partly self-timed. The argument about the way how the system should
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CHAPTER 1. INTRODUCTION

be constructed, synchronously or asynchronously, is moving to another round of evolution. It is

accepted that the timing issue should only be addressed in the context of the particular design

criteria, such as speed, power, security, modularity, etc.

Most of the circuits produced by industry are synchronous. The operation of their components

is sequenced by one or more globally distributed periodic timing signals called clock. The design

flow for synchronous circuits is widely supported by EDA tools, e.g. Cadence, Mentor Graphics,

Synopsys, etc. However, trying to combine predesigned components into a globally clocked SoC,

a designer faces a timing closure problem. Each IP core is designed for a certain clock period,

assuming that the clock signal is delivered at the same time to all parts of the system. Finding a

common clocking mode for the whole system is an obstacle to component reuse, which is difficult

to overcome. A clock skew caused by variations of interconnect delay is another problem of

synchronous circuits.

A promising method of composing systems from predesigned components is a Globally Asyn-

chronous Locally Synchronous (GALS) architecture [22]. Each synchronous block in a GALS

circuit is surrounded by an asynchronous wrapper which provides the communication between the

blocks in asynchronous manner. This allows individual components to work on different clock

speed, thus eliminating the need for a global clock with all of its associated problems, and increas-

ing the modularity of a system.

An alternative for a SoC design is a self-timed architecture, where the individual components

and all communication between components are designed asynchronously. This architecture of-

fers a set of advantages which GALS approach does not have. In addition to better modularity and

avoidance of clock distribution problem, asynchronous circuits can exhibit higher robustness to

voltage, temperature and fabrication parameters, greater performance, power saving, lower elec-

tromagnetic noise, etc. [11, 35, 108, 81].

The major obstacle on the mainstream use of asynchronous design techniques is the lack of

a coherent design flow, compatible with conventional EDA tools and libraries. The compatibility

issue is essential because a large part of the design flow is mapping of the circuit netlist into

silicon. For this task the traditional place and route tools can be reused. It is also possible to

inherit the timing analysis and simulation tools. However, synthesis and verification tools intended
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for synchronous systems omit important features of asynchronous components and have to be

replaced.

The other impediment is that industry adheres to existing specification languages. The major-

ity of industry designers think in terms of high-level Hardware Description Languages (HDLs),

such as System-C, Verilog and VHDL. These languages were created with synchronous circuits

in mind and are not easily applicable for asynchronous designs. On the other hand new languages

created specially for asynchronous circuits design, e.g. Balsa [6], require significant changes in

the industry design flow and training of the engineers, which is extremely costly.

Hardware security is also becoming an important design issue. For example, such applications

as smart cards require measures to resist side channel attacks [71]. Whilst alternatives exist at the

software level to balance power [94], the need for hardware solutions is also mandatory.

There are two types of side channel attacks: timing and power. The clock signal is typically

used as a reference in timing attacks. System desynchronisation as in [76, 125] can help hide the

clock signal. Masking the operation of a complete circuit is a complex task which could demand

very expensive changes to the entire design flow.

A cheaper method is rebuilding individual blocks within the same synchronous infrastruc-

ture so, that their power signatures become independent of the mode of operation and of the data

processed. This method is used in NCL-X approach [62], where synchronous pipelines are trans-

formed into asynchronous circuits using dual-rail coding. The dual-rail coding helps balancing

power consumption for bit values 0 and 1. However, the physical implementation of the rails at

the gate level is not symmetric and the use of a standard return-to-spacer switching protocol on

such dual-rail gates may leak secret data.

Special types of CMOS logic elements which exhibit data independent power consumption

have been proposed in [112]. However, this low-level approach requires changing gate libraries

and hence is costly for a standard cell or FPGA user. It is also difficult to build a dual-rail gate

which consumes the same power regardless of processed data. Even if such a secure gate is built

for one set of fabrication parameters (output load, supply voltage, environment temperature) it still

can expose unbalanced power consumption in other conditions.

There is clear evidence that the incorporation of the asynchronous approach into the automated
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design flow can improve designs. Even though the asynchronous techniques involve significant

changes to the conventional design flow, the companies realise that this is the promising route to

cover the design productivity gap. Such industry giants as IBM, Infineon, Intel, Philips, Sun etc.

invest in synthesis and verification tools for asynchronous circuit design. They also replace parts

of their new systems by asynchronous components, gradually replenishing design libraries with

asynchronous IP cores.

1.2 Synthesis of asynchronous circuits by direct mapping

One of the ways to design circuits is the ‘design-and-validate’ approach where a circuit is assem-

bled from gates and small components in an ad-hoc manner. The correctness of the resultant circuit

mostly depends on the experience of a designer and cannot be guaranteed. The circuit validation

is performed at the level of hardware implementation which is unacceptable for large designs.

An alternative to the ‘design-and-validate’ approach is synthesis of a circuit from its math-

ematical specification. In the synthesis approach all verification and functionality checking are

performed at the level of the mathematical model. This model is subsequently synthesised by the

methods which guarantee that the hardware implementation preserves the functionality captured

by the specification. In the last two decades the design flow for clocked circuits has been signif-

icantly improved by the ubiquitous use of the synthesis methods. For example, for RTL design

flow the industry has stable CAD tools such as Cadence, Synopsys, etc. The asynchronous cir-

cuit synthesis, however, is still immature and requires a lot of investment to be used outside a

research lab.

Two main approaches to the synthesis of asynchronous circuits are logic synthesis and direct

mapping. Logic synthesis works with the low-level system specifications which capture the be-

haviour of the system at the level of signal transitions. In this approach boolean equations for the

output signals of the circuit are derived using the next state functions [26]. In order to find the next

state functions all possible orders of the events must be explored. Such an exploration may result

in a state space which exponentially large w.r.t. the initial specification. The circuit optimisation

often involves analysis and recalculation of the whole state space.

The logic synthesis approach is now well developed and supported by public tools (Pet-
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rify [28], Minimalist [44], 3D [25]). However, this approach suffers from excessive computation

complexity and memory requirements, thus it cannot be applied to large specifications. There is

no transparent correspondence between the elements of the original specification, the intermediate

representation of the state space and the components of the resultant circuit, which complicates

the checking of circuit functionality.

The main idea of the direct mapping approach is that a graph specification of a system is

translated into a circuit netlist in such a way that the graph nodes correspond to the circuit elements

and graph arcs correspond to the interconnects. Direct mapping can typically be divided into three

independent operations: translation, optimisation and mapping. Firstly, a system specification is

translated into an intermediate graph representation convenient for subsequent mapping. Then,

peephole optimisation is usually applied to the intermediate representation of a system. Finally,

the optimised graph is mapped into a circuit netlist implementation. In a practical design flow,

however, some operations can be merged together or not present at all, e.g. optimisation is often

performed together with mapping and there are cases when the circuit implementation is obtained

directly from the initial specification without converting it into an intermediate form.

The key feature of the direct mapping approach is its low algorithmic complexity. The use of

heuristic-based local optimisation (as opposed to state-space global optimisation in a logic syn-

thesis approach) also facilitates the computational simplicity of the method. The transparent cor-

respondence between the elements of the initial specification and the components of the resultant

circuit is advantageous for checking the functional correctness of the implementation. Notwith-

standing all advantages, this approach is insufficiently studied and existing techniques for direct

mapping often produce large circuits with inefficient interface to the environment.

Direct mapping can be applied at various abstraction levels resulting in different properties

of the obtained designs. For example, in a syntax-driven translation method, implemented in

Balsa [6] and Tangram [12], direct mapping starts at the very high level. The language statements

are translated into an intermediate circuit representation, called handshake components. The in-

terconnects between the components are derived from the syntax of the specification captured by

its parsing tree. Local peephole optimisation of handshake circuits can be applied to improve

size and speed of control logic. The handshake circuits are subsequently mapped into a netlist of
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technology-dependent hardware blocks. This method is attractive from the productivity point of

view, as it avoids computationally hard global optimisation of the logic. However, the translation

of the parsing tree into a circuit structure may produce very slow control circuits.

On the contrary, in a Gate Transfer Level (GTL) method [98] the direct mapping is applied at

a very low level of individual gates. In this method the fine-grain pipelining is employed, where

gates of a standard RTL netlist are replaced by pipeline stages. Each stage contains the gate itself, a

register to store the output, and a dedicated controller, which supports communication of the stage

with its neighbours. The main disadvantage of the method is the excessive size of the produced

circuits.

Both methods, syntax-driven translation and fine-grain pipelining, synthesise asynchronous

circuits without splitting the control path from the data path. The former method is applied too

early, when the control is not separated from the data path yet. The latter method is used too late,

when the control and data paths are already merged in a circuit netlist. In this work the direct

mapping is applied at the intermediate level of abstraction, where a circuit specification is split

into internal representations for control and data paths. The separation of these paths allows to

improve the desired features of each path independently of the other. For example, the control

path can be optimised for low latency and size, while the data path is improved for higher security.

The design flow proposed in this thesis is based on the VeriSyn front-end [16], which is a part

of the BESST design flow [101]. VeriSyn converts the initial system specification in a high-level

HDL (Verilog, VHDL, System-C) into an intermediate Petri net format convenient for verification

and synthesis. The Petri net specification obtained by VeriSyn is subsequently split into a Labelled

PN (LPN) modelling the control path and a Coloured PN (CPN) modelling the data path of the sys-

tem. These nets are optimised and synthesised separately, the produced netlists are subsequently

merged into the system implementation netlist.

The direct mapping method for the control path, whose diagram is shown in Figure 1.1(a),

uses a Signal Transition Graph (STG) as an initial specification. The STG is obtained by refining

the LPN specification to the low level of signal events. The STG is, firstly, split into a device

and an environment, which synchronise via a communication net that models wires. The device

is then represented as a tracker and a bouncer. The tracker follows the state of the environment
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Figure 1.1: Asynchronous circuit synthesis by direct mapping

and provides reference points to the device outputs. The bouncer interfaces to the environment

and generates output events in response to the input events according to the state of the tracker.

This two-level architecture provides an efficient interface to the environment and is convenient for

subsequent mapping into a circuit netlist. A set of optimisation heuristics is developed to reduce

the latency and size of the control circuit.

The direct mapping of the data path has two levels of granularity. At the higher level the entire

data path is obtained by mapping its CPN fragments into hardware components which implement

the corresponding mathematical functions. A library of hardware components is produced at the

lower level of data path synthesis. Such a library can either be developed by modifying the stan-

dard RTL solutions to the asynchronous style manually, or using a logic synthesis methods [114].

The former approach is restricted by the manual intervention. The latter is still in its infancy and

produces solutions that are inefficient in terms of speed and area. In this work we concentrate on

an automated synthesis of the data path components by direct mapping.

The method for synthesis of the data path components, whose diagram is depicted in Fig-

ure 1.1(b), is based on a conventional RTL design flow, similar to the NCL-X approach [62].

Each data path component is first implemented in a standard RTL design flow, e.g Synopsys. The

obtained RTL circuit is then converted into an intermediate representation convenient for logic

optimisation. Negative logic and completion detection logic optimisations can be applied at this

stage. The completion detection logic is added in order to indicate when the computation is fin-
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ished. The optimised specification is mapped into a hazard-free logic using a dual-rail encoding

with a return-to-spacer signalling.

A new alternating-spacer protocol with two spacers interchanging in time is proposed. The use

of this protocol in a dual-rail circuit makes all gates switch per computation cycle. The potential

applications of the alternating-spacer protocol are security circuits, online testing, refreshing of

dynamic logic, etc. In this thesis the security application of alternating-spacer protocol is studied

in depth. The switching of all gates in each computation cycle results in energy balancing. While

power signature may still be data-dependent (due to process variations between transistors and

interconnects), the integrated power per cycle of computation (energy) is a constant value invariant

to processed data. The energy balance can be used to resist a power analysis attack based on power

accumulation in some time interval (as opposed to instant power sampling). Power integration

methods are of great interest when the attacker does not have direct access to the circuit and

can only analyse side effects of its operation, e.g. electromagnetic emission. The effect of the

alternating-spacer protocol on energy balancing is studied at the level of the individual gates circuit

level, using AES benchmark.

1.3 Main contribution

The main contribution of this thesis is the following:

Direct mapping approach

The direct mapping approach is developed consistently throughout the synthesis of control and

data paths. The key features of direct mapping are low algorithmic complexity and transparent

correspondence between specification and implementation. These advantages are utilised in the

proposed design flow.

Direct mapping in control path

A method for the direct mapping of control circuits from STGs is presented. It is based on a

new two-level architecture, where a circuit is represented as a tracker and a bouncer. The tracker

follows the state of the environment and is used as a reference point by the device outputs. The
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bouncer interfaces the environment and generates output events in response to the input events

according to the state of the tracker. This two-level architecture provides an efficient interface to

the environment and is convenient for optimisation and subsequent mapping into a circuit netlist.

A set of peephole optimisation heuristics is developed aiming at low latency and size reduction.

Direct mapping in data path

A method for automated synthesis of data path components based on RTL design flow is devel-

oped. In this method a conventional RTL netlist is converted into a hazard-free logic by applying

a dual-rail encoding with a return-to-spacer signalling protocol. The acknowledgement of com-

putation termination is formed by a completion detection logic. Methods improving the size and

speed of a dual-rail circuit (negative logic and completion detection optimisations) are presented.

A set of converters is designed for integrating a dual-rail circuit into a single-rail environment.

A new alternating-spacer protocol with two spacers, all-ones and all-zeros, interchanging in

time is proposed. The use of this protocol in a dual-rail circuit makes all gates switch per compu-

tation cycle. The potential applications of alternating-spacer protocol are security circuits, online

testing, refreshing of dynamic logic, etc.

Synthesis of security circuits

The influence of the alternating-spacer protocol on the circuit security is studied. Two spacers

alternating in time help to balance consumed energy per operation cycle, thus making power anal-

ysis more difficult. New security metrics, energy imbalance and exposure time, are defined. These

metrics are used to measure the security of individual gates and large cryptographic designs, e.g.

AES benchmark. Secure flip-flops and latches supporting the alternating-spacer protocol are de-

signed in scope of this thesis.

Design flow supported by software tools

The methods developed in this thesis have been implemented in a set of software tools, namely

OptiMist for synthesis of low-latency control path, and VeriMap for synthesis of hazard-free data

path. These tools are successfully integrated in the BESST design flow to provide a front-end
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to high-level HDLs (Verilog, VHDL, System-C). The use of a high-level language for input of a

specification allows a hardware designer to start using the design flow even without deep knowl-

edge of the asynchronous circuit theory. The conventional HDL input and output also facilitates

an interface to industrial EDA tools, e.g. Cadence, which is required for seamless timing analysis,

simulation, place and routing and other architecture independent tasks.

Both software tools, OptiMist and VeriMap, were tested on a number of benchmarks. Several

chips designed by using the VeriMap tool kit were fabricated and evaluated by a semiconductor

company Atmel Inc. Also a secure design of AES with computable Sbox obtained by VeriMap

was implemented in a chip using the fabrication facilities of Europractice.

1.4 Organisation of thesis

This thesis is organised as follows:

Chapter 1 Introduction briefly outlines the scope and contribution of the thesis.

Chapter 2 Background describes the Petri nets modelling language, defining its basic properties,

subclasses and extensions. The Petri nets can play a pivotal role in future synthesis tools for

self-timed systems, exhibiting advanced concurrency and timing paradigms. This role can

be as important as that of a Finite State Machine (FSM) in designing clocked systems.

Chapter 3 Automated synthesis of asynchronous circuits reviews the existing methods of syn-

thesis of self-timed circuits from high-level HDLs. Two main design approaches are re-

viewed: syntax-driven translation and logic synthesis. The advantages and problems of

both approaches are pointed out. A new framework addressing those problems is proposed.

It is based on the existing logic synthesis design flow and enriches it by a method for design

of a secure, hazard-free data path, and a computationally simple technique for synthesis of

low-latency control logic.

Chapter 4 Synthesis of control path presents a method for the direct mapping of control circuits

from STGs. In this method a specification is converted into a form convenient for subsequent

mapping into a circuit netlist. The efficient interface to the environment, which is based
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on a two-level architecture, allows to achieve low and predictable latency of the circuit.

The optimisation and mapping techniques presented in this chapter have low algorithmic

complexity.

Chapter 5 Synthesis of data path presents a method for converting a conventional RTL data

path into a hazard-free circuit. The hazard-free logic is obtained by use of a dual-rail encod-

ing with a return-to-spacer signalling. A new alternating-spacer protocol with two spacers

alternating in time is presented in this chapter. This switching discipline makes all gates

switch per computation cycle, which can be used for security circuits, online testing and

refreshing of dynamic logic.

Chapter 6 Synthesis of security circuits studies the effect of the alternating-spacer protocol to

balancing the energy consumption of dual-rail circuits. Two security metrics, energy imbal-

ance and exposure time, are introduced in this chapter. These metrics are used to estimate the

ability of circuits switching in alternating-spacer protocol to resist power analysis attacks.

For this a set of cryptographic benchmarks are studied with different switching protocols.

Chapter 7 Conclusions summarises the major results achieved in this work and points the areas

for future research.

Appendix A OptiMist user manual explains how to use the OptiMist toolkit for the direct map-

ping of low-latency asynchronous controllers from STGs. The ASTG language, which is

used by OptiMist, is also described there.

Appendix B VeriMap user manual illustrates the usage of the VeriMap tool for synthesis of a

secure and hazard-free data path. It also introduces a structural Verilog language, which is

used to describe circuit netlists.

Appendix C AES designs presents a chip which was designed using the VeriMap tool kit. The

chip contains two implementations of Advanced Encryption Standard (AES) with com-

putable Sboxes. The first one is a standard RTL implementation synthesised from a be-

havioural AES specification, and the other one is a dual-rail implementation obtained from

the RTL netlist by using VeriMap.
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Background

This chapter provides an introduction to asynchronous circuits, their delay models, operation

modes, classes and common signalling protocols. A behavioural Petri nets model which is widely

used for specification, verification and synthesis of asynchronous circuits is also presented in this

chapter.

2.1 Asynchronous circuits

A category of circuits containing no global clock is called asynchronous circuits [116]. These

circuits may make use of timing assumptions both within the circuit and in its interaction with

the environment. Based on these assumptions the asynchronous circuits can be divided into sev-

eral classes. This section overviews the classes of asynchronous circuits using a classification

presented in [63, 35].

2.1.1 Delay models

An asynchronous circuit can be considered as an interconnection of two types of components,

gates and delay elements, by means of wires. A gate computes a set of output variables (often

a single output variable) as a discrete logical function of its input variables. A delay element

produces a single output that is a delayed version of its input. Each wire connects an output of a

single gate or delay element to inputs of one or more gates or delay elements. Primary inputs and

outputs of a circuit can be considered as gates computing the identity function.
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There are two major models of a delay element: pure delay model and inertial delay model. A

pure delay element transmits each signal event on its input to its output with some delay regardless

the shape of the signal’s waveform. On the contrary, an inertial delay element alters the shape of

its input waveform by attenuating short pulses, i.e. it filters out pulses of a duration less than some

threshold period.

The delay elements are also characterised by their timing models. In a fixed delay model, a

delay is assumed to have a fixed value. In a bounded delay model, a delay may have any value in

a given timing interval. In an unbounded delay model, a delay may take an arbitrary finite value.

2.1.2 Operation modes

An interaction of a device circuit with its environment can be characterised by circuit operation

mode. The device and its environment together form a close system. If the environment is allowed

to respond to a device’s outputs without any timing constraints, the system is said to interact in

input-output mode. Otherwise, environmental timing constraints are assumed. The most common

example is fundamental mode where the environment must wait for the device to stabilise before

producing new inputs.

Depending on the restrictions to the input changes, the fundamental mode is divided into

several subclasses. If a single input is allowed to change at a time, the operation mode is called

Single Input Change (SIC) fundamental mode. SIC mode forces the inputs to be sequential, which

may restrict the speed of circuit operation. Another approach which allows one or more inputs to

change after the circuit stabilisation, is called Multiple Input Change (MIC) fundamental mode.

The speed of a circuit operating in this mode improves compared to SIC mode, however it may be

difficult to implement a circuit operating MIC mode.

A trade-off between SIC and MIC fundamental modes is a Burst Mode (BM) which only

allows inputs to change in groups, called bursts. Inputs in a burst may arrive in any order and

at arbitrary time. A set of inputs in a burst cannot be a subset of another burst. This restriction

helps a circuit to distinguish bursts one from another. The circuit waits until all inputs in a burst

change before producing its outputs. The outputs must be allowed to settle before another input

burst starts.
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2.1.3 Classes of asynchronous circuits

The most obvious model to use for asynchronous circuits is the same as for synchronous circuits.

This model is followed in Huffman circuits [52], which are designed to work correctly in the

fundamental mode of operation. A bounded delay is assumed for both gates and wires.

Delay-Insensitive (DI) circuits are designed to operate correctly in input-output mode with

unbounded gate and wire delay. These circuits are most robust with respect to manufacturing pro-

cesses and environmental variations. The concept of delay-insensitive circuits originates from [27]

and is formalised in [115]. The class of DI circuits built out of simple gates is quite limited. It

has been proven that almost no useful DI circuits can be built if one is restricted to a class of

simple gates [68]. However, many practical DI circuits can be built using complex gates [38]. A

complex gate is constructed out of several simple gates. Externally a complex gate operates in a

delay-insensitive manner, however internally it may rely on some timing assumptions.

In order to build practical circuits out of simple gates a relaxation of the requirements to

the DI circuits is necessary. This can be achieved by introducing an isochronic fork, which is a

forked wire where the difference in delays between the branches is negligible [9]. Asynchronous

circuits with isochronic forks are called Quasi-Delay-Insensitive (QDI) circuits [67]. In contrast,

in DI circuits, delays on the different fork branches are completely independent, and may vary

considerably.

Speed-Independent (SI) circuits are guaranteed to work correctly in input-output mode regard-

less of gate delays, assuming that wire delays are negligible. This means that whenever a signal

changes its value all gates it is connected to will see that change immediately. SI circuits in-

troduced in [77] only considered deterministic input and output behaviour. This class has been

extended to include circuits with a limited form of non-determinism in [8].

Self-timed circuits, described in [95], are built out of a group of elements. Each element may

be an SI circuit, or a circuit whose correct operation relies on local timing assumptions. However,

no timing assumptions are made on the communication between elements and the circuit operates

in input-output mode. If both internal and external timing assumptions are used to optimise the

designs, then such circuits are called timed [82].
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Figure 2.1: Signalling protocols

2.1.4 Signalling protocols

Asynchronous circuit signalling schemes are based on a protocol called handshake, involving

requests, which are used to initiate an action, and corresponding acknowledgements, used to signal

completion of that action. These control signals provide all of the necessary sequence controls for

computational events in the system.

For example, consider an interaction of two modules, a sender A and a receiver B shown in

Figure 2.1(a). A request is sent from A to B indicating that A is requesting some action from

B. When B completes the action, it acknowledges the request by sending an acknowledge signal

from B to A. Most asynchronous signalling protocols require a strict alternation of request and

acknowledge events. These ideas can be extended to interfaces shared by more than 2 subsystems.

There are several ways of how these alternating events are encoded onto specific control wires.

The most commonly used handshake protocols are the four-phase and two-phase.

The four-phase protocol, also called return-to-zero, is shown in Figure 2.1(b). The dashed

arrows indicate the causality of the events. There are no implicit assumptions about the delay

between successive events. In this protocol there are four signal transitions (two on the request

and two on the acknowledgement) required to complete a particular event transition.

The two-phase protocol, also called non-return-to-zero, is shown in Figure 2.1(c). The wave-

forms are the same as for four-phase signalling with the exception that every transition on the

request wire, both falling and rising, indicates a new request. The same is true for transition on the

acknowledgement wire.

Typically four-phase circuits are smaller than they are for two-phase signalling. The time re-

quired for the falling transition on the request and on the acknowledge lines dos not usually cause
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performance degradation because these transitions happen in parallel with other circuit operations.

Two-phase signalling is better from both a power and a performance standpoint, since every tran-

sition represents a meaningful event and no power is consumed for resetting of the handshake link.

Whilst this is true, in principle, it is also the case that most two-phase interface implementations

require more logic than four-phase equivalents.

So far, only control signalling is addressed. There are also different ways of data encoding.

A common choice is the use of a bundled-data protocol with either two-phase or four-phase sig-

nalling. This protocol requires n + 2 wires (n bits of data, a request bit, and an acknowledge

bit), to pass an n-bit data value from a sender to a receiver. While this choice is conservative in

terms of wires, it does contain an implied timing assumption. Namely the assumption is that the

propagation of data signals is not faster than propagation of the control signals.

The common alternative to the bundled-data approach is dual-rail encoding. In this case, data

and control signals are not separated onto distinct wire paths. Instead, using the dual-rail approach,

a bit of data is encoded with its own request onto 2 wires. A typical dual-rail encoding has four

states: 00 - data is not valid, 10 - valid 0, 01 - valid 1, 11 - illegal. In this case, for an n-bit

data value, the link between sender and receiver must contain 3 · n wires (2 wires for each bit of

data and the associated request plus another bit for the acknowledge). An improvement on this

protocol is possible when n-bits of data are considered to be associated in every transaction, as is

the case when the circuit operates on bytes or words. In this case it is convenient to combine the

acknowledges into a single wire. The resulting wiring complexity is then reduced to 2 ·n+1 wires

(2 · n wires for the data and requests plus an additional acknowledge signal).

In a four-phase variant of this dual-rail protocol, sending a bit requires the transition from

the idle state to either the valid 0 or valid 1 state and then, after receiving the acknowledge, it

must transition back to the idle state. The acknowledge wire must be reset prior to a subsequent

assertion of a valid 0 or 1. The illegal state is not used.

A two-phase dual-rail protocol would signal a valid 0 by a single transition of one bit, while

a valid 1 would be signalled by a transition on another bit. Concurrent transitions on both the left

and right bits are illegal. Sending a 0 or a 1 must be followed by a transition on the acknowledge

wire before another bit can be transmitted.
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Dual-rail signalling is insensitive to the delays on any wire and therefore is more robust when

bundled-data timing assumptions cannot be guaranteed. The receiver will need to check for valid-

ity of all n-bits before using the data or asserting the acknowledge. The downside of the dual-rail

approach is often the increased complexity in both wiring and logic.

There exist other communication protocols such as 1-of-4 [2] or even 1-of-n encodings [42, 43]

used in control logic and higher-radix data encodings. If the focus is on communication rather then

computation, m-of-n encodings [3] may be of relevance.

2.2 Behavioural models

This section introduces the formal models used for the specification and verification of asyn-

chronous circuits. First, the basic concept of Petri nets (PNs) model is presented. PNs extend the

Finite State Machines (FSMs) model with a notion of concurrency, which makes them especially

convenient for the specification and verification of asynchronous circuits. The formal definitions

and notations in this section are based on the work introduced in [30, 78, 84, 90].

2.2.1 Petri nets

A Petri nets model, first defined in [88], is a graphical and mathematical representations of dis-

crete distributed systems. Petri nets are used to describe and study concurrent, asynchronous,

distributed, parallel and non-deterministic systems. As a graphical tool, PNs can be used as a vi-

sual communication aid similar to flow charts, block diagrams, and networks. In addition, tokens

are used in these nets to simulate the dynamic and concurrent activities of systems. As a math-

ematical tool, it is allows to set up state equations, algebraic equations, and other mathematical

models governing the behaviour of systems.

A Petri Net (PN) is formally defined as a tuple PN = 〈P, T, F, M0〉 comprising finite disjoint

sets of places P and transitions T , arcs denoting the flow relation F ⊆ (P × T ) ∪ (T × P ) and

initial marking M0.

There is an arc between x ∈ P ∪ T and y ∈ P ∪ T iff (x, y) ∈ F . An arc from a place to a

transition is called consuming arc, and from a transition to a place - producing arc. The preset of

a node x ∈ P ∪ T is defined as •x = {y | (y, x) ∈ F}, and the postset as x• = {y | (x, y) ∈ F}.
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It is assumed that •t 6= ∅ 6= t•, ∀ t ∈ T . The pre-preset of a node x ∈ P ∪ T is defined as

• • x =
⋃

y∈•x
•y, and the post-postset as x • • =

⋃

y∈x•
y•.

A place p such that |p•| > 1 is called choice place, i.e. it has more than one transition in

its postset. A choice place p is called free choice if ∀t ∈ p• : |•t| = 1, i.e. each transition

in its postset has exactly one preset place. A choice place p is called controlled choice if ∃t ∈

p• : |•t| > 1, i.e. there is at least one transition in its postset which has more than one preset

place. Note that a controlled choice whose all postset transitions have the same preset places can

be transformed into a free choice. A place p such that |•p| > 1 is called merge place. A transition

t such that |t•| > 1 is called fork and a transition t such that |•t| > 1 is called join.

The dynamic behaviour of a PN is defined as a token game, changing markings according to the

enabling and firing rules its transitions. A marking is a mapping M : P → N denoting the number

of tokens in each place, N = {0, 1} for 1-safe PNs. A transition t is enabled iff M(p) > 0, ∀ p ∈

•t. The evolution of a PN is possible by firing the enabled transitions. Firing of a transition t

results in a new marking M ′ such that ∀p ∈ P : M ′ (p) =























M(p)− 1 if p ∈ •t,

M(p) + 1 if p ∈ t•,

M(p) otherwise

, i.e. for

an enabled transition t one token is removed from each preset place and one token is produced to

each postset place.

A marking M ′ is reachable from a marking M if there exists a firing sequence σ = t0 . . . tn

starting at marking M and finishing at M ′. A set of reachable markings from M is denoted by

[M〉. A set of markings reachable from the initial marking M0 is called a reachability set of a PN.

The set of markings reachable in a PN from its initial marking can be represented as a reacha-

bility graph, whose nodes are labelled with PN markings and arcs are labelled with PN transitions.

Formally, a Reachability Graph (RG) of a PN = 〈P, T, F, M0〉 is a labelled directed graph

RG = 〈S, A, l, s0〉, where S = [M0〉 is a reachability set, A = S × T × S is a set of arcs

between these states, l : A → T is a labelling function indicating transitions between markings,

and s0 is the initial state corresponding to the initial marking of the PN.

Graphically, places of a PN are represented as circles ( ), transitions as boxes ( ), consuming

and producing arcs are shown by arrows ( ), and tokens of the PN marking are depicted by

dots in the corresponding places ( ). A simple PN is shown using this graphical notation in
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Figure 2.2: Simple examples of PN, RG, STG and SG

Figure 2.2(a). This example illustrates that, unlike FSM model, PNs model can capture concurrent

actions. If two transitions are enabled in the same marking and the firing of one does not interfere

with the enabling of the other, then both transitions will eventually fire. The fact that transitions

t2 and t3 are concurrent means that both firing sequences t2, t3 and t3, t2 are possible. This is

captured by the RG in Figure 2.2(b). The RG nodes are labelled with the reachable PN markings,

arcs are labelled with the corresponding PN transitions and its initial state is marked with a box.

Transitions in a PN can be involved in different ordering relations. Two PN transitions are in

direct conflict if there exists a reachable marking in which both of them are enabled but firing of

one of them disables the other. Conflict relations can be generalised by considering the transitive

successors of directly conflicting transitions. If two transitions are enabled in some reachable

marking but are not in direct conflict, they are concurrent. Transitions which are not concurrent

and are not in a transitive conflict are ordered.

Important properties of a PN are safeness, liveness and deadlock-freeness. A PN is said to

be k-bounded if the number of tokens in every place of a reachable marking does not exceed a

finite number k. A 1-bounded PN is also called 1-safe. A PN is deadlock-free if, no matter what

marking has been reached, it is possible to fire at least one transition of the net. A PN is live if

for every reachable marking M and every transition t it is possible to reach a marking M ′ that

enables t.

An extension of a PN model is a contextual net [73]. It uses additional elements such as

non-consuming arcs, which only control the enabling of transitions and do not influence their

firing. A PN extended with a type of non-consuming arcs, namely read-arcs, is defined as PN =
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〈P, T, F, R, M0〉. A set of read-arcs R is defined as R ⊆ (P × T ), there is a read-arc between

p and t iff (p, t) ∈ R. The read-preset of a transition t ∈ T is defined as ?t = {p | (p, t) ∈ R},

and the read-postset of a place p ∈ P as p? = {t | (p, t) ∈ R}. Place p controls transition t by

means of a read-arc iff p ∈ ?t. A transition t reads the state of a place p iff t ∈ p?. A transition

t is enabled iff M (p) 6= 0, ∀ p ∈ •t ∪ ?t. The rules for firing of the transitions are preserved. A

read-arc is depicted as a line without arrows.

The following are three most common subclasses of PNs. A PN is called a

Marked Graph (MG) iff ∀p ∈ P : |•p| ≤ 1 ∧ |p•| ≤ 1, i.e. each place has at most one

preset and one postset transition. The nets of this subclass represent deterministic concurrent sys-

tems. Dually, a PN is called a State Machine (SM) iff ∀t ∈ T : |•t| = 1 ∧ |t•| = 1, i.e. each

transition has exactly one preset and one postset place. This subclass allows to represent non-

deterministic sequential systems. A PN is called Free Choice (FC) net iff for any choice place p

∀t ∈ p• : |•t| = 1, i.e. each transition in the postset of a choice place has exactly one preset place.

Free choice nets model both non-determinism and concurrency but restricts their interplay. The

former is necessary for modelling choice made by the environment whereas the latter is essential

for asynchronous behaviour modelling.

The two modelling extensions of PNs are Labelled PNs and Coloured PNs. A La-

belled Petri Net (LPN) is a PN whose transitions are associated with a labelling func-

tion [123]. The extension of non-consuming arcs is also applicable to the LPN definition. A

Coloured Petri Net (CPN) is a formal high-level net where places are associated with data types,

tokens are associated with the data values and transitions denote the operations on that data [55].

This allows the representation of data path in a compact form, where each token is equipped with

an attached data value.

2.2.2 Signal transition graphs

The Signal Transition Graph (STG) model was introduced independently in [26] and [91] to for-

mally model both the circuit and the environment. The STG can be considered as a formalisation

of the widely used timing diagrams. It describes the causality relations between transitions on

the input and output signals of a specified circuit. It also allows the explicit description of data-
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dependent choices between various possible behaviours. STGs are interpreted Petri nets, and their

close relationship to Petri nets provides a powerful theoretical background for the specification

and verification of asynchronous circuits.

An STG is a 1-safe LPN whose transitions are labelled by signal events, i.e. STG =

〈P, T, F, M0, λ, Z, v0〉, where λ is a labelling function, Z is a set of signals and v0 = {0, 1}|Z|

is a vector of initial signal values.

The set of signals Z is divided into two disjoint sets of input signals ZI and output signals ZO,

Z = ZI ∪ ZO, ZI ∩ ZO = ∅. Input signals are assumed to be generated by the environment,

whereas output signals are produced by the logic gates of the circuit. Internal signals may also be

included in the ZO set.

The labelling function λ : T → Z±∪Θ maps transitions into signal events Z± = Z×{+,−}

and dummies Θ, Z ± ∩Θ = ∅. The signal events labelled z+ and z− denote the transitions of

signals z ∈ Z from 0 to 1 (rising edge), or from 1 to 0 (falling edge), respectively. Dummy

transitions are silent events that do not change the state of any signal. The labelling function does

not have to be 1-to-1, i.e. transitions with the same label may occur several times in the net. In

order to distinguish between transitions with the same label and refer to them from the text an

index i ∈ N is attached to their labels as follows: λ (t) /i, where i differs for different transitions

with the same label.

In order to be implementable as a circuit an STG must satisfy the property of consistency. An

STG is consistent if for each signal z ∈ Z transitions labelled z− and z+ alternate in any firing

sequence starting from M0. In this work it is assumed that all the considered STGs are consistent.

A vector of signal change vσ =
(

v1
σ, ..., v

|Z|
σ

)

can be associated with a finite sequence of

transitions σ, so that each vi
σ is the difference between the number of rising and falling edges of

signal zi in σ. The vector of signal values v = v0 + vσ defines the states of all STG signals after

some sequence of transitions σ. Note that for consistent STGs the vectors v0, vσand v are binary.

A projection of a firing sequence σ onto a set of signals X ⊆ Z is defined as σ ↓ X =

{t ∈ σ : λ (t) ∈ X±}, i.e. it only includes transitions of signals in X . A silent sequence θ is a fir-

ing sequence (possibly empty) such that θ ↓ Z = ∅, i.e. its projection on the set of signals is empty.

Similarly, a firing sequence whose the projection on the set of output (input) signals is empty and
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projection on the set of input (output) signals is not empty is called input (output) sequence.

STGs inherit the operational semantics of their underlying PNs, including the notations of

transition enabling and firing. Likewise, STGs also inherit the various structural (marked graph,

free-choice, etc.) and behavioural properties (boundedness, liveness, etc.). Note that a set of

read-arcs can be included into the model of STG, which is an enhancement w.r.t. [91].

For graphical representation of STGs a short-hand notation is often used, where a transition

can be connected to another transition if the place between those transitions has one incoming and

one outgoing arc as illustrated in Figure 2.2(c).

A state of an STG without dummies is a pair 〈M, v〉, where M is a reachable marking and v is

vector of signal values corresponding to this marking. Note that the vector of signal values along

does not uniquely identify the STG state. Also in general case the same marking can correspond

to different states of the STG (e.g., if it is not live or not consistent). The extension of an STG

with the notion of dummy transitions complicates the definition of its state. As a dummy transition

does not correspond to a signal event, firing of a dummy does not actually change the state of the

system described by the STG. That is why the states of an STG before and after firing a dummy

are considered equal, though the marking is different. In this work we assume that a dummy (or

in a more general case a silent sequence) is a part of preceding signal transition.

In the same way as an STG is an interpreted PN with transitions associated with binary signals,

a state graph is the corresponding binary interpretation of an RG in which the events are interpreted

as signal transitions. Formally, a State Graph (SG) of an STG = 〈P, T, F, M0, λ, Z〉 is a

quadruple SG = 〈S, A, l, C, s0〉, where S is a set of reachable states, A = S × T × S is a set

of arcs between these states, l : A → T is a labelling function for the arcs, C : S → {0, 1} |Z|

is a state assignment function, which is defined as C (〈M, v〉) = v, and s0 = 〈M0, v0〉 is the

initial state. Note that dummies are

The SG of the STG in Figure 2.2(c) is shown in Figure 2.2(d). Each SG state corresponds to a

marking of the STG and is assigned a binary vector. Each SG arc corresponds to firing of a signal

transition. For readability the SG arcs are indicated by the transition labels. The signal order in

the binary vectors is 〈i, o1, o2〉. The initial state (marked with a box) corresponds to the marking

{p1} with the signal values vector 000.
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A property of an STG which simplifies its hardware implementation is persistency. An STG

is persistent if no transition can be disabled by another transition unless they both are events of

different input signals. This means that all non-deterministic behaviour is part of the environment

and the arbitration is avoided in the device.

Properties of an STG specific for a logic synthesis approach are unique state coding and com-

plete state coding. The former is sufficient condition and the latter is necessary condition of a cir-

cuit implementability by logic synthesis. Two distinct states of an SG are in a Unique State Cod-

ing (USC) conflict if they are assigned to the same code. Two distinct states of a SG are in a

Complete State Coding (CSC) conflict if they are assigned to the same code and the set of enabled

output signals is different in these states. An STG satisfies the USC (CSC) property if no two

states of its SG are in USC (CSC) conflict. Note that neither USC nor CSC is required in a direct

mapping approach. The properties of an STG which are specific for the proposed direct mapping

method are considered in Section 4.1.1.

2.2.3 Bisimulation

Bisimulation, originally introduced in [49, 72], is an equivalence relation between STGs, associ-

ating systems which behave in the same way, in the sense that one system simulates the other and

vice-versa. Intuitively two systems are bisimular if they match each other’s moves, i.e. each of the

systems cannot be distinguished from the other by an observer.

Two systems described by STG = 〈P, T, F, R, M0, λ, Z, v0〉 and STG′ =

〈P ′, T ′, F ′, R′, M ′
0, λ′, Z ′, v′0〉 are (strongly) bisimular, notation STG ∼ STG′, iff:

(i) M0 ∼ M ′
0;

(ii) if M ∼ M ′ and M [t〉M1 then ∃ t′ ∈ T ′ such that λ (t) = λ′ (t′), M ′ [t′〉M ′
1 and M1 ∼ M ′

1;

(iii) as (ii) but with roles of STG and STG′ reversed.

The notion of strong bisimulation requires a system to be capable of matching each transition

that an equivalent system may perform. However, sometimes internal and external (observable)

behaviour of a system are distinguished. In this sense two systems are equivalent if they exhibit

the same external behaviour, irrespective of any intermediate internal behaviour that may occur.

For example, if the system STG includes a notion of silent actions (dummies), then bisimulation
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Figure 2.3: Observation bisimulation

can be relaxed to ignore these dummies.

Two systems represented by STG = 〈P, T, F, R, M0, λ, Z, v0〉 and STG′ =

〈P ′, T ′, F ′, R′, M ′
0, λ′, Z ′, v′0〉 are weakly (observationally) bisimular, notation STG ≈ STG′,

iff:

(i) M0 ≈ M ′
0;

(ii) if M ≈ M ′ and M [t〉M1 then either λ (t) = τ and M1 ≈ M ′ or ∃ t′ ∈ T ′, λ (t) = λ′ (t′) and

silent sequences θ1, θ2 such that M ′ [θ1〉M
′
•t [t′〉M ′

t• [θ2〉M
′
1 and M1 ≈ M ′

1;

(iii) as (ii) but with roles of STG and STG′ reversed.

Still, the notion of weak bisimulation cannot be regarded as the natural generalisation of strong

bisimulation for STGs with silent events. The reason for this is that an important feature of bisim-

ulation is missing for weak bisimulation. Namely the property that any firing sequence in one

STG corresponds to a firing sequence in the other, in such a way that all intermediate states of

these STGs correspond as well. However, according to the definition of the weak bisimulation one

may fire arbitrary many silent transitions in an STG without worrying about the markings that are

passed through in the meantime. For example, the STGs in Figure 2.3 are weakly bisimilar, how-

ever in the right STG there is a trace which does not enable the b+ transition, while b+ is enabled

in all traces of the left STG. Thus, the observational equivalence does not preserve the branching

structure of STGs and hence lacks one of the main characteristics of bisimulation semantics.

An alternative definition of observational equivalence which preserves the branching structure

of STGs was proposed in [45]. This equivalence, called branching bisimulation, requires all inter-

mediate markings in silent sequences θ1 and θ2 of STG′ to be related with markings M and M1

of STG respectively. Note that STGs in Figure 2.3 are not branching bisimilar.

Obviously, branching bisimulation is stronger than weak bisimulation. However, one can see

that for persistent STGs weak bisimulation becomes equivalent to branching bisimulation.
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Automated synthesis of asynchronous

circuits

In 1965 a co-founder of Intel Gordon Moore noticed that the number of transistors doubled every

year since the invention of the integrated circuit. He predicted that this trend would continue for

the foreseeable future [74]. In subsequent years the pace slowed down and now the functionality of

the chip doubles every two years [75]. However, the growth of circuit integration level is still faster

than the increase in the designers productivity. This creates a design gap between semiconductor

manufacturing capability and the ability of Electronic Design Automation (EDA) tools to deal

with the increasing complexity [39], Figure 3.1.

One of the ways to deal with the increasing complexity of logic circuits is to improve the
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Figure 3.1: Design complexity and designer productivity
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efficiency of the design process. In particular, design automation and component reuse help to

solve the problem. Systems-on-Chip (SoC) synthesis has proved to be a particularly effective

way in which design automation and component reuse can be facilitated. An important role in

the synthesis of SoCs is given to the aspects of modelling concurrency and timing [54]. These

aspects have traditionally been dividing systems into synchronous (or clocked) and asynchronous

(or self-timed). The division has recently become fuzzier because systems are built in a mixed

timing style: partly clocked and partly self-timed. The argument about the way how the system

should be constructed, synchronously or asynchronously, is moving to another round of evolution.

It is accepted that the timing issue should only be addressed in the context of the particular design

criteria, such as speed, power, security, modularity, etc. Given the complexity of the relationship

between these criteria in every single practical case, the design of an SoC is increasingly going to

be a mix of timing styles. While industrial designers have a clear and established notion of how

to synthesise circuits with a global clock using EDA tools, there is still a lot of uncertainty and

doubt about synthesis of asynchronous circuits. The latter remains a hot research field captivating

many academics and graduate students. In the last two decades there have been dozens of research

publications on asynchronous circuit synthesis, and it would be impossible to embrace them all in

a single review. Readers without prior experience are invited to study them at an introductory level

(e.g. [48] and http://www.cs.man.ac.uk/async/background/ ) while the more experienced audience

can delve into such methods in more detail by addressing monographs and papers (e.g. [31, 81]

and http://www.cs.man.ac.uk/async/pubwork/ ).

The main goal of this chapter is to review a coherent subset of synthesis methods for self-timed

circuits based primarily on a common underlying model of computation and using a relatively

simple example in which these methods can be compared. Such a model is Petri nets, used with

various interpretations. The Petri nets can play a pivotal role in future synthesis tools for self-timed

systems, exhibiting advanced concurrency and timing paradigms. This role can be as important

as that of a Finite State Machine (FSM) in designing clocked systems. To make this review more

practically attractive the use of Petri nets is considered in the context of a design flow with a

front-end based on a hardware description language.

The rest of the chapter is organised as follows. Firstly, the advantages and drawbacks of
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Figure 3.2: Synchronous system architecture

common system architectures are named in Section 3.1. An overview of syntax-driven design

flows is given in Section 3.3 and the logic synthesis methods are discussed in Section 3.4. Then,

the tools for synthesis of control and data paths are reviewed in Sections 3.5-3.8. Finally, the state

of the asynchronous circuits design automation is summarised and the ways of improvement are

pointed out in Sections 3.9-3.11 .

This chapter is based on results developed in [107]. The BEhavioural Synthesis of Self-Timed

Systems (BESST) design flow proposed as a result of this review in Section 3.24, has been pre-

sented in [101].

3.1 System architectures

3.1.1 Synchronous systems

Most of the SoCs produced by industry are synchronous. The components of a synchronous system

share a discrete notion of time determined by a global clock signal, see Figure 3.2. The traditional

design flow for synchronous systems is supported by EDA tools, e.g. Cadence, Mentor Graphics,

Synopsys, etc. However, a globally clocked SoC assembled from existing Intellectual Property

(IP) cores suffers from several drawbacks.

The first problem with the clocked SoCs is the timing closure. Each IP core is designed for a

certain clock period, assuming that the clock signal is delivered at the same time to all parts of the

system. Finding a common clocking mode for the whole system is a very complex obstacle on the

way to component reuse.

The difference in arrival times of the clock signal to IP cores is also difficult to avoid. This

phenomenon called clock skew is caused by interconnect delays. In the past the transistors were

the limiting factor of the circuit speed. The increase of the circuit integration level resulted in the
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Figure 3.3: GALS system architecture

improvement of the transistor size and speed. However, the interconnect speed is not keeping the

pace. Narrower wires have higher resistance for the same length, leading to slower signal edges

and longer interconnect delays. Being proportional to interconnect delay, the clock skew becomes

an increasing portion of the clock period. This means that eventually large circuits will need to get

rid of the global clocking in order to provide high speed.

3.1.2 Globally asynchronous locally synchronous systems

A promising method of composing systems from predesigned components is Globally Asyn-

chronous Locally Synchronous (GALS) approach [22]. In such systems the components are syn-

chronous IP cores operating at their own clock speed, which allows the proven synchronous de-

sign methodologies to be employed. The interface between the components is converted to asyn-

chronous style by putting them inside self-timed wrappers, as shown in Figure 3.3. This eliminates

the need for a global clock with all of its associated problems.

The GALS self-timed wrapper, whose basic structure is captured in Figure 3.3, is proposed

in [79]. It contains a pausible clock generator and an asynchronous controller for each port. The

data lines between two GALS modules are bundled with a pair of request-acknowledge signals.

Any data transfer is initiated by the locally synchronous island on the transmitting side by activat-

ing the RO[i] request to the output port controller. The output port controller in turn instructs the

clock generator to delay the next clock edge by using the ROC[i] request. After the clock of the

module has been frozen, the local clock generator acknowledges it by the AOC[i] signal. Then the

communication partner is notified by the request signal R[i]. Once the other GALS module has

halted its clock using RIC[i + 1] and AIC[i + 1] handshake, it sets the acknowledge port signal
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A[i] and enables the input buffer latch L[i]. At this point, both modules have halted their clocks

and can exchange data without any risk of timing violations. Once the data transfer is complete,

the local clocks are released and the locally synchronous islands continue to operate in a normal

synchronous mode.

Note an important timing assumption on the output port controller. The request ROC[i] for

clock pausing must be issued in the same clock cycle when RO[i] signal is received from the

synchronous island. This is necessary to prevent generation of an additional clock edge before the

data transfer. High-speed IP cores may have difficulty with this assumption.

The greatest advantage of the GALS system architecture is the reuse of the existing syn-

chronous IP cores and the employment of the conventional EDA tools for design and verification

of new IP cores. Being able to run SoC components at different frequencies, GALS systems also

contribute to power savings.

However, GALS systems have their own drawbacks, for example metastability problem, when

an asynchronous signal is sampled by a clock. In order to avoid metastability several methods are

used.

One of the ways to minimise the probability of metastability is to path each asynchronous

signal through a synchroniser, which is typically a pair of back-to-back connected flip-flops. Still,

in a GALS system the number of connections between its synchronous blocks is large, which

creates a non-negligible probability of system failure. The synchronisers also add extra latency to

the signals which significantly impacts the system performance.

The other strategy to avoid metastability is the dynamic alteration of the local clock

rate [126, 80]. For this, a pausible clock generator is employed in each synchronous island. The

clock generator is a ring oscillator with a control input for its stopping and starting. If some asyn-

chronous channel of the synchronous island is not ready, then the inactive phase of the local clock

is stretched until all channels are ready.

Several methods to ensure that metastability never occurs in a GALS system with pausible

clocking are proposed in [37]. However, the alteration of the local clock may cause a deadlock

when all components are waiting for the output of some other component. It is not trivial to

guarantee that the system is deadlock free. It should be also noted, that pausing the local clock
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slows down the entire synchronous island, and the slowdown may be exacerbated with multi-port

GALS modules, where the probability of pausing the clock is higher. Furthermore, the local clock

alteration may cause problems if the dynamic logic is used, as the length of the clock period

becomes important there (as opposed to static logic). Finally, the ring oscillators which are used

to form the pausible clocks (as opposed to crystal oscillators) suffer from significant jitter and

frequency variation, which may result in a performance degradation.

There also other approaches to the design of GALS systems, such as module stalling via clock

gating [19, 97] and fine-grain synchronous handshaking [83, 87, 53].

3.1.3 Asynchronous systems

The GALS approach minimises the designer work in the asynchronous domain, but does not

completely escape it. Some of the components, particularly self-timed wrappers, are still asyn-

chronous. At the same time, purely asynchronous systems whose architecture is shown in

Figure 3.4 offer a set of qualitative advantages which GALS systems do not have. In ad-

dition to better modularity and avoidance of clock distribution problem, self-timed systems

can exhibit higher robustness, greater performance, power saving, lower electromagnetic noise,

etc. [35, 48, 56, 108, 7, 69]

The major obstacle on the mainstream use of asynchronous design techniques is the lack of

a coherent design flow, compatible with conventional EDA tools and libraries. The compatibility

issue is essential because a large part of the design flow is the mapping of the circuit netlist into

silicon. For this task the traditional place and route tools can be reused. It is also possible to inherit

the timing analysis and simulation tools. However, synthesis and verification tools intended for

synchronous systems omit important features of asynchronous components. These parts of the
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traditional design flow have to be replaced.

The other impediment is that industry adheres to existing specification languages. The ma-

jority of industry designers think in terms of high-level Hardware Description Languages (HDL),

such as System-C, Verilog and VHDL, which were created for synchronous designs. These lan-

guages require much more code to be written in order to specify an asynchronous component,

compared to synchronous logic. Several new languages were developed for efficient asynchronous

design [12, 4, 36]. However, adoption of a unique language in industry involves significant changes

in the design flow and retraining the designers. These procedures are extremely costly and take

valuable time, which makes the new languages difficult to accept for commercial companies.

Finally, all existing synchronous IP cores have to be abandoned in the asynchronous world. It

will take years before all those components are replaced by asynchronous counterparts.

Even though the asynchronous techniques involve significant changes to the conventional de-

sign flow, the companies realise that this is the promising route to cover the design productivity

gap. Such industry giants as IBM, Infineon, Intel, Philips, Sun etc. invest in synthesis and ver-

ification tools for asynchronous circuit design. They also replace parts of their new systems by

asynchronous components, gradually replenishing design libraries with asynchronous IP cores.

3.2 Asynchronous circuit design flows

For a designer it is convenient to specify the circuit behaviour in a form of a high-level HDL, such

as Verilog, VHDL, SystemC, Balsa, etc. The choice of HDL is based on personal preferences,

EDA tool availability, commercial, business and marketing issues [100].

There are two main approaches to synthesis of asynchronous circuits from high-level HDLs:

syntax-driven translation and logic synthesis.

In syntax-driven translation the language statements are mapped into circuit components and

the interconnect between the components is derived from the syntax of the system specification.

This approach is adopted by Tangram [12, 86, 57] and Balsa [5, 4, 6] design flows. The initial

circuit specification for these tools is given in the languages based on the concept of processes,

variables and channels, similar to Communicating Sequential Processes (CSP) [50].

In logic synthesis the initial system specification is transformed into an intermediate be-
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havioural format convenient for subsequent verification and synthesis. This approach is used in

PipeFitter [13, 14], TAST [36], VeriSyn [16, 96, 15], where Petri nets are used for intermediate

design representation. Other examples are MOODs [92] and CASH [120]. The former starts from

VHDL and uses a hardware assembly language ICODE for intermediate code. The latter starts

from ANSI-C and uses Pegasus dataflow graph for intermediate representation, which is further

synthesised into control logic for Micropipelines [110].

Some tools do not cover the whole design, but can be combined with the other tools to support

the coherent design flow. For example, Gate Transfer Level (GTL) [98, 99], Theseus Logic NCL-

D and NCL-X [62] are developed for synthesis of asynchronous data path from Register Transfer

Level (RTL) specifications. Other tools, such as Minimalist [44], 3D [25] and Petrify [28] are

aimed at asynchronous controller synthesis from intermediate behavioural specifications. In turn,

controller synthesis tools, can be combined with decomposition techniques [121, 124] to reduce

the complexity of the specification.

3.3 Syntax-driven translation

The basic design flow diagram for the syntax-driven translation approach is shown in Figure 3.5.

The initial system specification is compiled into a parsing tree, which is subsequently mapped

into a network of handshake components. The network can be used for behavioural simulation

of the asynchronous system. The mapping of the network of handshake components into a gate

netlist is performed by a back-end tool, which may vary for different technologies. The obtained

gate netlist is mapped into silicon by conventional place and route tools. The timing information

extracted from the layout can be used together with the gate netlist for timing simulation.

The syntax-driven approach was initially used in the Tangram group at Philips Research [12,

57]. The Tangram design flow depends on a proprietary CSP-based language and private tool set.

While being successfully used in the Philips research environment, the proprietary nature of the

tools made practical widespread adoption of this methodology problematic.

The syntax-driven design flow became available for public use after the Manchester Amulet

Group developed the Balsa design kit [4, 40]. Similar to Tangram, it relies on the paradigm of

handshake components [10, 87] as an intermediate representation of an asynchronous system.
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The Balsa language is created to provide a source for compiling handshake components and is

also very similar to Tangram. In Balsa the circuits are described by procedures which contain

the specification of processes. Procedures communicate by means of handshake ports. Most

procedures consist of a body command whose behaviour is perpetually repeated using a loop.

Consider the operation of the Balsa design flow on the example of the Greatest Common

Divisor (GCD) of two integers, which is a popular benchmark in the literature about digital circuit

design. The GCD of two non-zero integers is the largest integer which divides both numbers with

no remainder. It can be found by iteratively subtracting the smaller number from the greatest and

replacing the greatest number by the result of subtraction. The procedure stops when both numbers

are equal, the GCD is equal to either of these numbers.

The description for the GCD problem in Balsa language is shown in Algorithm 1. The line

numbers in the left column are shown for reference only and do not belong to the Balsa language.

For simplicity reason the input values are assumed to be greater than zero. The first line of the

code contains an inclusion of a pre-compiled module [balsa.types.basic], which only

defines some common types, for example byte. The second line starts the procedure declaration

with 8-bit input ports x, y and an 8-bit output port z, which are declared in lines 03-05. The

local 8-bit variables a and b are declared in line 06. The procedure body is enclosed in an in-

finitely repeating loop. Inside the loop the concurrent communication on input channels x and

y is expected, line 09. The concurrent operations are separated by concurrency statement (||).
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Algorithm 1 GCD algorithm in Balsa language

01 import [balsa.types.basic]
02 procedure GCD (
03 input x : byte;
04 input y : byte;
05 output z : byte) is
06 local variable a, b : byte
07 begin
08 loop
09 x -> a || y -> b;
10 loop
11 while a /= b then
12 begin
13 if a > b then
14 a := (a - b as byte)
15 else
16 b := (b - a as byte)
17 end
18 end
19 end;
20 z <- b
21 end
22 end

The values of the input channels are saved into local variables using channel -> variable

statements. After that the while loop with a x /= y condition is started, where /= means

‘not equal’. Note that sequential operations are separated by sequence statement (;). Inside the

while loop the if...then...else...end statement is exploited, lines 13-17. In both its

branches the assignment of an expression to a variable with type casting to byte is executed.

In line 20, sequentially to the while loop, the output communication is synchronised using

channel <- variable statement. The handshake circuit obtained by compilation of this

source code is shown in Figure 3.6.

A handshake circuit consists of handshake components (circles with the operation name inside)

linked by channels (solid arcs). Each handshake component has one or more ports with which it

can be connected point-to-point to a port of another handshake circuit by means of a channel. Each

channel carries request and acknowledgement signalling as well as an optional data payload. The

requests flow from the active component ports (filled circles) towards passive component ports

(open circles). Acknowledgements flow in the opposite direction to requests. Where a channel

carries data, the direction of the data is indicated by an arrow on that channel’s arc. The direction

of data may be different from the direction of signalling to support push and pull port and channels.

A handshake component can be activated by sending request to its passive port. When ac-
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tivated, it sends requests to a subset of its active ports and waits for acknowledgements. The

subset of the ports activated by the component is determined by its function and may be data-

dependent. The order in which the component activates its ports is shown by small numbers next

to the ports. The ports of a handshake component which are marked with the same number are ac-

tivated concurrently. When all activated ports are acknowledged, the handshake component sends

an acknowledgement to the passive port from which it was activated and finishes its operation until

the next activation.

One can notice correspondence between the syntax of the Balsa program and the structure of

the GCD handshake circuit in Figure 3.6. The operation of the GCD circuit starts with the request

on the channel marked as activate. It activates the loop-component (#), which in turn sends a

request to sequence-component (;).

First, the sequence-component activates the concur-component (||). The concur-component

controls the fetching operation (->) for input channels x and y. The data from input channels x

and y is pushed through the multiplexers (|) to the variables a and b respectively. When data

is stored, the variables send acknowledgements back to the sequence-component (;), which then

activates the while-component (do).

The while-component (do) requests the guard, which is the not-equal comparison (/=) be-

tween a and b variables. If the guard returns true, the while-component sends a request to

the sequence-component, which controls the fetching of the a>b comparison result to the case-

component (@ 0;1). If the result is true, the case-component activates the a-b function. The

fetching of the subtraction result into a variable is performed using an intermediate aux:a vari-

able and two fetch-components to avoid parallel reading and writing of a. Similarly, if the com-

parison returns false, the result of the b-a is fetched into the b variable.

The while-component continues to request the guard and activate the subtraction procedure

(described in the previous paragraph) until the guard value becomes false. After that, an ac-

knowledgement is sent back to the sequence-component, which then activates the fetching (->) of

the b variable to the output channel z.

The syntax-driven translation is attractive from the productivity point of view, as it avoids

computationally hard global optimisation of the logic. Instead some local peephole optimisation
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is applied at the level of handshake circuits using burst mode synthesis tools, e.g. Minimalist [24].

However, the direct translation of the parsing tree into a circuit structure may produce very slow

control circuits. The lack of global optimisation may not meet the requirements for high-speed

circuits.

3.4 Logic synthesis

The design flow diagram for the logic synthesis approach to asynchronous system design is shown

in Figure 3.7. The initial specification in a high-level HDL (System-C, Verilog or VHDL) is first

split into two parts: the specification of control path and specification of the data path. Both

parts are synthesised separately and subsequently merged into the system implementation netlist.

The industrial EDA place and route tools can be used to map the system netlist into silicon. The

existing simulation EDA tools can be reused for the behavioural simulation of the initial system

specification. These tools can be also adopted for timing simulation of the system netlist back-

annotated with timing information from the layout.

The variations in the design flow appear in the way of:
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· extracting the specifications of control and data paths from the system specification;

· synthesis of the data path;

· synthesis of the control path either by direct mapping or by explicit logic synthesis .

The following sections consider each of these issues separately.

3.5 Splitting of control and data paths

The first step in the logic synthesis of a circuit is the extraction of control path and data path

specifications from the high-level description of the system. Often the partitioning of the system is

performed manually by the designers. However, this might be impracticable for a large system or

under a pressure of design time constraints. At the same time, the tools automating the extraction

process are still immature and require a lot of investment to be used outside a research lab.

For example, the PipeFitter tool [14], which is based on Verilog HDL and PNs as an interme-

diate format, supports only a very limited subset of Verilog constructs: module, function,

initial, always, wait, if, case, fork, join. Any high-level specification

which contains a loop or a conditional jump cannot be processed by this tool. A simple GCD

benchmark could not even be parsed because of the while loop it contains. An attempt to pro-

cess the specification where the loop behaviour is modelled by the always statement has also

been unsuccessful.

A more mature VeriSyn tool has front-ends to Verilog [16], VHDL [96] and SystemC [15]

languages. In addition to the constructs accepted by PipeFitter this tool supports loop state-

ments with the Verilog front-end: for, while, repeat, forever . The following constructs

are supported in the VHDL front-end: entity, architecture, process, procedure,

variable, wait, if, case, when, loop, while, call, block. The SystemC front-end

supports the following language constructs: sc_main, SC_MODULE, SC_METHOD, SC_CTOR,

sc_signal, sc_types, if, switch, for, while, repeat, break, class.

The primary output of the VeriSyn tool is a global net, which is a PN whose transitions are

associated with the atomic operations and whose places divide the system functioning into separate
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stages. Initially the global net transitions represent complex operations corresponding to the high-

level functional blocks (modules in Verilog, processes in VHDL, functions in SystemC). Then

the global net transitions are refined iteratively, until all transitions represent atomic operations.

This global net is used to derive a Labelled Petri net (LPN) for control path and a Coloured

Petri net (CPN) for data path. The interface between control and data paths is modelled by a

local control net, which connects the generated LPN and CPN. These PNs are subsequently passed

to the synthesis tools for optimisation and implementation.

The derivation of a global net and the extraction of an LPN for control path and a CPN for

the data path is illustrated on the GCD benchmark. For this the VeriSyn tool is applied to the

Verilog specification of GCD algorithm, see Algorithm 2. The line numbers in the left column

are shown for reference only and do not belong to the Verilog language. The first line of the

code starts the gcd module declaration. The module has two 8-bit input ports x, y and one

8-bit output port z, which are declared in lines 02-04. Two internal 8-bit variables x_reg and

y_reg are declared in line 05. The module consists of one infinitely repeating always statement

which is activated by either x or y input, see line 06. Initially the input values x and y are

saved into local variables x_reg and y_reg in lines 08,09. After that the while loop with a

x_reg != y_reg condition is started, where != means ‘not equal’. Inside the while loop

the if...else statement is exploited, lines 12-15. In both its branches the assignment of an

expression to a variable is executed. In line 17, after the while loop is finished, the z output is

generated from the value of x_reg variable.

As the GCD module contains one always statement only, the global net initially consists of

one transition as shown in Figure 3.8(a). This transition is refined by using an as-soon-as-possible

(ASAP) scheduling algorithm. The assignments of inputs x and y to registers x_reg and y_reg are

scheduled concurrently. The parallel execution of these two statements is possible because they

do not share any register, i.e. they are independent. The whole input operation, the while loop

and the output of the result are scheduled in sequence because all of them share x_reg register, see

Figure 3.8(b). The while loop is refined into x_reg!=y_reg condition and two branches for true

and false result of the comparison, see in Figure 3.8(c). The nested if statement is also refined into

condition x_reg>y_reg and two branches for true and false result of the comparison as shown in
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Algorithm 2 GCD algorithm in Verilog HDL

01 module gcd(x, y, z);
02 input [7:0] x;
03 input [7:0] y;
04 output reg [7:0] z;
05 reg [7:0] x_reg, y_reg;
06 always @(x or y)
07 begin
08 x_reg = x;
09 y_reg = y;
10 while (x_reg != y_reg)
11 begin
12 if (x_reg > y_reg)
13 x_reg = x_reg - y_reg;
14 else
15 y_reg = y_reg - x_reg;
16 end
17 z = x_reg;
18 end
19 endmodule

Figure 3.8(d). The conditions of both if and while statements are basic comparison operations

between x_reg and y_reg registers. The sequence x_reg!=y_reg and x_reg>y_reg operators is

automatically merged into a three-way comparison operation x_reg?y_reg, which gives one of the

following results greater_than, equal or less_than, see in Figure 3.8(e). The refined model of the

system is shown in Figure 3.8(f). At the final stage of refinement the transitions x_reg=x_reg-

y_reg and x_reg=x_reg-y_reg are split into the subtraction operations (sub_gt and sub_lt) and the

storage of the result (store_x and store_y). The transitions of the global net are given short and

distinctive labels convenient for further reference. The global net is ready for the extraction of the

control path LPN and the data path CPN.

The LPN for the control path is obtained by expanding each global net transition representing

an atomic operation x into a transition-place-transition sequence as shown in Figure 3.9. The first

transition x_start denotes the beginning of the operation, the place p_x represents the operation

being executed and the last transition x_end denotes the end of the operation. Transition x_start

produces the operation request x_req to the data path via local control net and transition x_end is

synchronised with the operation acknowledgement x_ack from the data path via local control net.

The LPN obtained by the transition expansion technique is shown in Figure 3.10(a) using solid

arcs, places and transitions. The dashed arcs and places represent the local control net. Each part of

the LPN highlighted with a gray box is merged into one transition, thus eliminating the redundant
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places which do not correspond to any operation in the data path. The result of this optimisation

is shown in Figure 3.10(b). This LPN can be further optimised by leaving the acknowledgement

sub_x_ack for subtraction operation and the request store_x_req for storage of the result in the

data path. The subtraction action followed by the storage operation are both acknowledged by

x_ack signal. Similarly, sub_lt_req can be acknowledged directly by y_ack leaving sub_lt_ack

and store_y_req in the data path. Finally, places p_x and p_y are merged into one place p_in,

which denotes the stage of data input. The optimised LPN is shown in Figure 3.10(c).

Signals z_ack and z_req compose the handshake interface to the environment. When set, the

z_req signal means the computation is complete and output data is ready to be consumed. The

z_ack signal is set when the output of the previous computation cycle is consumed and the new

input data is ready to be processed.

The data path CPN generated by VeriSyn is presented in Figure 3.11 using the solid arcs, places

and transitions. The dashed arcs and places represent the local control net. Transitions MUX_x_0

and MUX_x_1 are used for multiplexing the x input and the output of SUB_gt operation to REG_x

register. Similarly, MUX_y_0 and MUX_y_1 are multiplexing the y input and the output of SUB_lt

operation to REG_y register. The CMP_xy block of the net, framed by the dotted rectangle, is used

for comparing the values of REG_x and REG_y registers. Depending on the comparison result one

of the transitions x>y, x=y or x<y is fired.

In Figures 3.10, 3.11 the dashed arcs and places belong to the local control net. All the com-

munication between the control and data paths is carried out by means of this net, as shown in

Figure 3.12. For example, when the z_ack signal is received, the control generates x_req and

y_req signals which enable the MUX_x_0 and MUX_y_0 transitions in the data path. When the

multiplexing is finished the values of x and y are stored using REG_x and REG_y respectively. The

data path acknowledges this by x_ack and y_ack signals. The acknowledgement signals enable the

dum1 transition in the control path LPN. After that, the control path requests the comparison op-
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eration by means of the cmp_req signal. When the comparison is complete in the data path, one

of the signals gt_ack, eq_ack or lt_ack is returned to the control. If gt_ack is received, the control

path generates sub_gt_req request, which activates SUB_xy transition in the data path. This results

in subtracting the current value of y from x and storing the difference using REG_x transition.

The data path acknowledges this by x_ack and the comparison operation is activated again. If the

lt_ack signal is issued by the data path then the operation of the system is analogous to that of

gt_ack. However, as soon as eq_ack is generated, the control path issues the z_req signal to the

environment, indicating that the calculation of GCD is complete.

Note that the local control net x_mux between MUX_x_0 and REG_x does not leave the data

path, thereby simplifying the control path. Similarly, other signals, y_mux, x_store and y_store, in
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the local control net are kept inside the data path.

The same control path LPN, data path CPN and local control net can be obtained from VHDL

or SystemC specifications of GCD algorithm. These PNs are passed to synthesis tools for deriving

the implementation of control and data paths.

3.6 Synthesis of data path

The method of data path synthesis employed in PN2DCs is based on the mapping of CPN frag-

ments into predesigned hardware components. A part of the library of such components and

corresponding CPN fragments are shown in Figure 3.13. The solid places and arcs in the CPN

column correspond to data inputs and outputs; the dashed arcs and places denote the control sig-

nals (request and acknowledgement).

A block diagram for the GCD data path is presented in Figure 3.14. It is mapped from the

CPN specification shown in Figure 3.11. The CPN is divided into the following fragments, which

have hardware implementations in the library shown in Figure 3.13: 2 multiplexers, 2 registers,

1 comparator and 2 subtracters. These hardware components are connected according to the arcs
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between the corresponding fragments of the CPN. To save the hardware, the output z is not latched

in its own register. Instead it is taken from the register y and is valid when the controller sets the

z_req signal.

If the library of data path components does not have an appropriate block, the latter should

be either manually constructed or automatically generated from RTL, for example, using Theseus

NCL [64] or GTL [98].

3.7 Direct mapping of control path

The main idea of the direct mapping is that a graph specification of a circuit can be translated

directly (without computationally hard transformations) into the circuit netlist in such a way that

the graph nodes correspond to the circuit elements and graph arcs correspond to the interconnects.

The direct mapping approach originates from [52], where a method of the one-relay-per-row re-

alisation of an asynchronous sequential circuit is proposed. This approach is further developed

in [116] where the idea of the 1-hot state assignment is described. The 1-hot state assignment is

then used in the method of concurrent circuit synthesis presented in [51].

The underlying model for circuits described in [51] is an Augmented Finite State Machine

(AFSM), which is an FSM with added facilities, including timing mechanisms for the delay of

state changes. These circuits have inputs that are logic values (signal levels as opposed to signal

transitions), which is advantageous for low-level interfacing. These circuits use a separate set-
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reset flip-flop for every local state, which is set to 1 during a transition into the state, and which

in turn resets to 0 the flip-flops of all its predecessor’s local states. The main disadvantages of this

approach are the fundamental mode assumptions and the use of local state variables as outputs.

The latter are convenient for implementing event flows but require an additional level of flip-flops

if each of those events controls just one switching phase of an external signal (either from 0 to 1

or from 1 to 0).

The direct mapping method proposed in [85] works for the whole class of 1-safe PNs. How-

ever, it produces control circuits whose operation uses a 2-phase (no-return-to-zero) signalling

protocol. This results in lower performance than what can be achieved in 4-phase circuits.

The approach of [59] is based on distributors and also uses the 1-hot state assignment, though

a different implementation of local states. In this method every place of a Petri net is associated

with a David cell [34].

A circuit diagram of a David cell (DC) is shown in Figure 3.15(a). DCs can be coupled using

a 4-phase handshake protocol, so that the interface 〈a1, r〉 of the previous stage DC is connected

to the interface 〈a, r1〉 of the next stage as shown in Figure 3.15(b). Output r of a DC is used to

model the marking of the associated PN place. If the output r is low the corresponding place is

empty and if it is high then the corresponding place is marked with a token. The operation of a

single DC is illustrated in Figure 3.15(c). The transitive places prev and next represent the high

level of signals r1 and r respectively. Their state denotes the marking of the places associated

to the previous stage and next stage DCs, see Figure 3.15(d). The dotted rectangle depicts the

transition between prev and next places. This transition contains an internal place, where a token

‘disappears’ for the time tr1−→r+. In most cases this time can be considered as negligible, because

it corresponds to a single two input NOR-gate delay.

The circuits built of DCs are speed-independent [77] and do not need fundamental mode as-

sumptions. On the other hand, these circuits are autonomous (no inputs/outputs). The only way

of interfacing them to the environment is to represent each interface signal as a set of abstract

processes, implemented as request-acknowledgement handshakes, and to insert these handshakes

into the breaks in the wires connecting DCs. This restricts the use of DCs to high-level design.

The PN2DCs tool [96] uses the direct mapping from LPNs approach based on [59]. In this
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approach the places of the control path LPN are mapped into DCs. The request and acknowl-

edgement functions of each DC are generated from the structure of the LPN in the vicinity of

corresponding place as shown in Figure 3.16. The request function of each DC is shown in its

top-left corner and the acknowledgement function in its bottom-right conner.

The GCD control path described by the LPN in Figure 3.10(c) is mapped into the netlist of

DCs shown in Figure 3.17. Each DC in this netlist corresponds to the LPN place with the same

name. The requests to the data path (x_req, y_req, cmp_req, sub_gt_req, sub_lt_req, z_req) and

the acknowledgements from the data path (x_ack, y_ack, gt_ack, lt_ack, eq_ack, z_ack) are defined

by the local control net places with the same names.

There is a space for further optimisation of the obtained control path circuit. For example, two

DCs p_mrg and p_cmp could be merged. Also the request function of the p_mrg DC could be

simplified by introducing additional memory elements. However, the obtained circuit is already

implementable in standard libraries e.g. AMS. The circuit exhibits good size and speed charac-

teristics: it consists of 120 transistors and has the worst case latency of 4 negative gates in the

x_ack-→cmp_req+ trace.
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3.8 Explicit logic synthesis

The explicit logic synthesis methods work with the low-level system specifications which capture

the behaviour of the system at the level of signal transitions, such as STGs. These methods usually

derive boolean equations for the output signals of the controller using the next state functions

obtained from STGs [26].

An STG is a succinct representation of the behaviour of an asynchronous control circuit that

describes the causality relations among the events. In order to find the next state functions all

possible firing orders of the events must be explored. Such an exploration may result in a state

space which is much larger than the STG specification. Finding efficient representations of the

state space is a crucial aspect in building synthesis tools.

The synthesis method based on state space exploration is implemented in the Petrify tool [28].

It represents the system state space in form of a State Graph (SG), which is a binary encoded

reachability graph of the underlying PN. Then the theory of regions [29] is used to derive the

boolean equations for the output signals.

The control path STG for the GCD benchmark is shown in Figure 3.18. It is obtained from

global net shown in Figure 3.8 by expanding its transitions to a 4-phase handshake protocol. After

that, the GCD data path schematic shown in Figure 3.14 is taken into account to manually adjust

the control path STG to the data path interface. In the modified STG the request to the compara-

tor cmp_req is acknowledged in 1-hot code by one of the signals: gt_ack, eq_ack or lt_ack. The

request to the subtracter sub_gt_req is acknowledged by x_ack. This is possible because the pro-

cedure of storing the subtraction result into the register is controlled directly in the data path and

does not involve the control path. Similarly sub_lt_req is acknowledged by y_ack.

Figure 3.19 presents the SG for the GCD control path obtained from the STG in Figure 3.18.

The SG consists of vertexes and directed arcs connecting them. Each vertex corresponds to a

state of the system and is assigned a binary vector that represents the value of all signals in that

state. The sequence of the signals in the binary vector is the following: <x_req, y_req, x_ack,

y_ack, cmp_req, gt_ack, eq_ack, lt_ack, sub_gt_req, sub_lt_req, z_req, z_ack>. The initial state

is marked with a box. The directed arcs are assigned with the signal events which are enabled in

the preceding states.
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Note that all possible combinations of the events in two concurrent branches

x_req+→x_ack+→x_req-→x_ack- and y_req+→y_ack+→y_req-→y_ack- are expressed explic-

itly in the SG. The explicit representation of concurrency results in a huge SG for a highly concur-

rent STG. This is known as the state space explosion problem, which puts practical bounds on the

size of control circuits that can be synthesised using state-based techniques.

The other interesting issue is the unambiguous state encoding. The shadowed states in Fig-

ure 3.19 have the same binary code, but they enable different signal events. This means that the

binary encoding of the SG signals alone cannot determine the future behaviour of the system.

Hence, an ambiguity arises when trying to define the next-state function. Roughly speaking, this

phenomenon appears when the system does not have enough memory to ‘remember’ in which state

it is. When this occurs, the system is said to violate the Complete State Coding (CSC) property.

Enforcing CSC is one of the most difficult problems in the synthesis of asynchronous circuits.

The general idea of solving CSC conflicts is the insertion of new signals, that add more memory

to the system. The signal events should be added in such a way that the values of inserted signals

disambiguate the conflicting states.

3.8.1 Automatic CSC conflict resolution

One of the possibilities to resolve the CSC conflicts is to exploit the Petrify tool and the underlying

theory of regions. In Petrify all calculations for finding the states in conflict and inserting the new

signal events are performed at the level of SG. The tool relies on the set of optimisation heuristics

when deciding how to insert new transitions. However, the calculation of regions involves the

computationally intensive procedures which are repeated when every new signal is inserted. This

may result in long computation time.

When the system becomes conflict-free, the SG is transformed back into STG. Often the struc-

ture of the resultant STG differs significantly from the original STG, which might be inconvenient

for its further manual modification. Actually, the STG may look different even after a simple trans-

formation into SG and back to STG, because the structural information is lost at the level of SG.

The conflict-free STG for the GCD control path is shown in Figure 3.20. There are two

changes to the structure of the STG which are not due to new signal insertion. Firstly, the transition
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Figure 3.20: Resolution of CSC conflicts by Petrify

cmp_req+ is split into cmp_req+/1 and cmp_req+/2; Secondly, the concurrent input of x and y is

now synchronised on cmp_req+/1 instead of a dummy transition.

Petrify resolves the CSC conflicts in the GCD control path specification by adding five new

signals, namely csc0, csc1, csc2, csc3, csc4. The insertion of signals csc0, csc3 and csc4 is

quite predictable. They are inserted in three conflicting branches (one in each branch) in order

to distinguish between the state just before cmp_req+/1 and just after eq_ack-, gt_ack-, lt_ack-

respectively.

For example, the state of the system before and after the following sequence of transitions

is exactly the same: cmp_req+/1→eq_ack+→cmp_req-/1→eq_ack-. In order to distinguish be-

tween these states transition csc0+ is inserted inside the above sequence. As the behaviour of the

environment must be preserved, the new transition can only be inserted before the output transition

cmp_req-/1. The are two possibilities for its insertion: sequentially or concurrently. The former

type of insertion is usually (but not always) preferable for smaller size of the circuit, the latter for

lower latency. Relying on its sophisticated heuristics Petrify decides to insert csc0+ sequentially.

Signal csc0 is reset in the same branch outside the above sequence of transitions.

Similarly, signals csc1 and csc2 are inserted to distinguish the states before and after the se-

quence of transitions x_req+→x_ack+→x_req-→x_ack- and y_req+→y_ack+→y_req-→y_ack-

respectively. However the reset of csc2 is not symmetrical to the reset of csc1 (as expected) and

involves a significant change of the original STG structure, see Figure 3.20.

The synthesis of the conflict-free specification with logic decomposition into gates with at
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most four literals results in the following equations:

[x_req] = z_ack’ (csc0 csc1’ + csc2’);

[y_req] = z_ack’ csc1’;

[z_req] = csc0 eq_ack’ csc1;

[3] = csc4’ + csc3’ + csc0 + csc2’;

[cmp_req] = [3]’ x_ack’ y_ack’ csc1;

[sub_gt_req] = csc3’ gt_ack’;

[sub_lt_req] = csc4’ lt_ack’;

[csc0] = csc2 csc0 + eq_ack;

[csc1] = csc0’ y_ack + z_ack’ csc1;

[9] = csc0’ (csc2 + x_ack);

[csc2] = x_ack’ csc2 y_ack’ + [9];

[csc3] = gt_ack’ (csc3 + x_ack);

[csc4] = lt_ack’ (csc4 + y_ack);

The estimated area is 432 units and the maximum and average delay between the inputs is

4.00 and 1.75 events respectively. The worst case latency is between the input x_ack+/1 and

the output x_req-. The trace of the events is x_ack+/1→csc_2-→csc_0-→csc_2+→x_req-. Tak-

ing into account that CMOS logic is built out of negative gates these events correspond to the

following sequence of gates switching: [x_ack↑]→ [x_ack’↓]→ [csc2’↑]→ [csc2↓]→ [csc0’↑]→

[9’↓]→ [9↑]→ [csc2’↓]→ [x_req’↑]→ [x_req↓]. This gives the latency estimate equal to the delay

of 9 negative gates. Note that redundant inverters are removed during the technology mapping

optimisation and do not introduce excessive delay.

3.8.2 Semi-automatic CSC conflict resolution

A semi-automatic approach to CSC conflict resolution is adopted in the ConfRes tool [65]. The

main advantage of the tool is its interactivity with the user during CSC conflict resolution. It

visualises the cause of the conflicts and allows the designer to manipulate the model by choosing

where in the specification to insert new signals.

The ConfRes tool uses STG unfolding prefixes [58] to visualise the coding conflicts. An

unfolding prefix of an STG is a finite acyclic net which implicitly represents all the reachable
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states of the STG together with transitions enabled at those states. Intuitively, it can be obtained

by successive firings of STG transitions under the following assumptions:

· for each new firing a fresh transition (called an event) is generated;

· for each newly produced token a fresh place (called a condition) is generated.

If the STG has a finite number of reachable states then the unfolding eventually starts to repeat

itself and can be truncated (by identifying a set of cut-off events) without loss of information,

yielding a finite and complete prefix.

In order to avoid the explicit enumeration of coding conflicts, they are visualised as cores,

i.e. the sets of transitions ’causing’ one or more of conflicts. All such cores must eventually be

eliminated by adding new signals.

The process of core resolution in the GCD control path is illustrated in Figure 3.21. Actually,

there are ten overlapping conflict cores in the STG. The ConfRes tool shows them in different

colours similar to a geographical height-map. However, all ten cores would be hardly distinguish-

able on a gray-scale printout. That is the reason why only those cores whose resolution is currently

discussed are shown. The cores are depicted as gray polygons covering the sets of sequential tran-

sitions. Each core has different brightness and is labelled with a name in a rounded box to refer

from the text.

The basic rules for signal insertion are the following:

· In order to destroy a core one phase of a new signal should be inserted inside the core and

the other phase outside the core.

· A new signal should be inserted into the intersection of several cores whenever possible,

because this minimises the number of inserted signals, and thus the area and latency of the

circuit.

· A new signal transition cannot be inserted before an input signal transition, because it would

change the device-environment interface.

· Usually (but not always) the sequential insertion of a transition is preferred for smaller

circuit size and concurrent insertion is advantageous for lower circuit latency.
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Figure 3.21: Visualisation of conflict cores in ConfRes
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Figure 3.22: Resolution of CSC conflicts by ConfRes

Consider this procedure on the example of GCD controller, Figure 3.21. Two experiments are

conducted. In the first one the strategy of sequential signal insertion is exploited in order to com-

pete with automatic conflict resolution in circuit size. In the second experiment the new signals

are inserted concurrently (where possible) in order to achieve lower latency.

In the experiment with sequential signal insertion, firstly, the cores C1 and C2 shown in Fig-

ure 3.21(a) are destroyed by inserting csc_x+ transition sequentially before x_req-. The reset

phase of csc_x is inserted between eq_ack+ and cmp_req-/1 thereby destroying the core C3. Sim-

ilarly, two other cores, symmetrical to C1 and C2 (not shown in the diagram for readability), are

eliminated by inserting transition csc_y+ before y_req-. The reset phase of csc_y is inserted the

same way as csc_x- (between eq_ack+ and cmp_req-/1) and destroys the core that is symmetrical

to C3.

Secondly, cores C4 and C5 are eliminated by inserting csc_lt+ sequentially before cmp_req-

/3, see Figure 3.21(b). The reset phase of csc_lt is inserted outside C4 and C5, in sequence with

sub_lt_req-. Likewise, the core which is symmetrical to C4 (not shown for simplicity) is destroyed

by inserting csc_gt+ before cmp_req+/2 and csc_gt- before sub_gt_req-.

Finally, only one core C6 is left, see Figure 3.21(c). It is destroyed by replacing transition

dum1 by csc_eq-. The set phase of csc_eq is inserted outside the core before z_req-. The resultant

conflict-free STG of the GCD controller is shown in Figure 3.22.

Petrify synthesises this STG with logic decomposition into gates with at most four literals into
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the following equations:

[x_req] = csc_x’ z_ack’ csc_eq;

[y_req] = csc_y’ z_ack’ csc_eq;

[z_req] = csc_x’ eq_ack’ csc_eq’;

[3] = csc_y’ csc_x’ + csc_gt + csc_lt;

[cmp_req] = [3]’ y_ack’ x_ack’ csc_eq’;

[sub_gt_req] = csc_gt gt_ack’;

[sub_lt_req] = csc_lt lt_ack’;

[csc_x] = eq_ack’ (x_ack + csc_x);

[csc_y] = csc_y eq_ack’ + y_ack;

[csc_gt] = x_ack’ csc_gt + gt_ack;

[10] = csc_eq (csc_x’ + csc_y’) + z_ack;

[csc_eq] = csc_eq (x_ack + y_ack) + [10];

[csc_lt] = y_ack’ (lt_ack + csc_lt);

The estimated area is 432 units, which is the same as when the coding conflicts are resolved

automatically. However, the maximum and average delays between the inputs are significantly

improved: 2.00 and 1.59 events respectively. The worst case latency of the circuit is between

gt_ack+ and cmp_req-/2 (or between eq_ack+ and cmp_req-/1). If the circuit is implemented us-

ing CMOS negative gates then this latency corresponds to the following sequence of gates switch-

ing: [gt_ack↑]→ [csc_gt’↓]→ [csc_gt↑]→ [3’↓]→ [cmp_req’↑]→ [cmp_req↓]. This gives the

latency estimate equal to the delay of 5 negative gates, which is significantly better than in the

experiment with automatic coding conflict resolution.

The other experiment with semi-automatic CSC conflict resolution aims at lower latency of

the GCD control circuit. Now the new signal transitions are inserted as concurrently as possible.

Namely, csc_x+ is concurrent to x_ack+/1; csc_y+ is concurrent to y_ack+/1; csc_gt- is concur-

rent to x_ack+/2; and csc_lt- is concurrent to y_ack+/2. The other transitions are inserted the same

way as in the previous experiment. Synthesis of the constructed conflict-free STG produces the

following equations:

[0] = csc_x’ z_ack’ csc_eq;

[x_req] = x_req map0’ + [0];
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[2] = csc_y’ z_ack’ csc_eq;

[y_req] = y_ack’ y_req + [2];

[z_req] = csc_y’ eq_ack’ csc_eq’;

[5] = csc_y’ csc_x’ + map0 + csc_eq;

[cmp_req] = sub_lt_req’ [5]’ (map1 + eq_ack);

[sub_gt_req] = gt_ack’ (sub_gt_req map1 + csc_gt);

[sub_lt_req] = sub_lt_req map1 + csc_lt lt_ack’;

[csc_x] = eq_ack’ (csc_x + x_req);

[csc_y] = eq_ack’ (csc_y + y_req);

[csc_lt] = sub_lt_req’ csc_lt + lt_ack;

[csc_gt] = sub_gt_req’ (gt_ack + csc_gt);

[csc_eq] = map1’ (csc_eq + z_ack);

map0 = sub_gt_req + csc_gt + csc_lt + x_ack;

[15] = csc_x’ + x_req + csc_y’;

map1 = [15]’ y_ack’ y_req’ x_ack’;

Two new signals, map0 and map1, are added by Petrify in order to decompose the logic into

library gates with at most four literals. This results in larger estimated circuit size, 592 units.

The average input-to-input delay of the circuit becomes 1.34 events, which is smaller than in the

previous experiment. However, the maximum latency of the circuit is 7 negative gate delay. It oc-

curs, for example, between gt_ack+ and cmp_req- transitions. The gates switched between these

transitions together with the direction of switchings are: [gt_ack↑]→ [csc_gt’↓]→ [csc_gt↑]→

[map0’↓]→ [map0↑]→ [5’↓]→ [cmp_req’↑]→ [cmp_req↓]. The worst case latency in this imple-

mentation is greater than the latency in the previous design due to the internal map0 and map1

signals, which are used for the decomposition of non-implementable functions. Note that the

input-output latency of the Petrify solutions is estimated after the technology mapping optimisa-

tion, thus the delay of the redundant inverters is not included in the worst case latency.

The complex gate implementation of the GCD controller, where the CSC conflict is resolved

manually by inserting new signals in series with the existing ones is shown in Figure 3.23. This is

the best solution (in terms of size and latency) synthesised by Petrify with the help of the ConfRes

tool. It consists of 120 transistors and exhibits the latency of 5 negative gates delay.

Clearly, semi-automatic conflict resolution gives the designer a lot of flexibility in choosing
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Figure 3.23: Complex gates implementation of GCD controller

between the circuit size and latency. The visual representation of conflict cores distribution helps

the designer to plan how to insert each phase of a new signal optimally, thus possibly destroying

several cores by one signal. The diagram of core distribution is updated after every new signal

insertion. As all the modifications to the system are performed on its unfolding prefix, there is no

need to recalculate the state space of the system, which makes the operation of ConfRes extremely

fast.

Another approach to CSC conflict resolution, which avoids the expensive computation of the

system state space, is proposed in [21, 20]. The approach is based on structural methods, which

makes it applicable for large STG specifications. Its main idea is to insert a new set of signals in the

initial specification in a way that unique encoding is guaranteed in the transformed specification.

The main drawback of this approach is that the structural methods are approximate and can only

be exact for well-formed PNs.

3.9 Tools comparison

In this section the tools are compared using GCD benchmark in two categories: system synthesis

from high-level HDLs and synthesis of the control path from PNs.

Table 3.1 presents the characteristics of asynchronous GCD circuits synthesised by Balsa and

PN2DCs tools from high-level HDLs. Both solutions are implemented using the AMS-0.35µm

technology and dual-rail data path components. The size of each circuit is calculated using Ca-
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Tool Area Speed (ns) computation
(µm2) x=y x=12, y=16 time (s)

Balsa 119,647 21 188 < 1
PN2DCs 100,489 14 109 < 1

Improvement 16% 33% 42% 0

Table 3.1: Comparison between Balsa and PN2DCs

Tool number of latency computation
transistors (units) time (s)

PN2DCs 120 6.0 <1
automatic 116 13.0 18

Petrify sequential 120 8.0 2
concurrent 142 11.0 4

Table 3.2: Comparison between PN2DCs and Petrify

dence Ambit tool and the speed is obtained by circuit simulation in SPICE analog simulator.

The benchmark shows that the circuit generated by PN2DCs is 16% smaller and 33-42% faster

than the circuit synthesised by Balsa. The size and speed improvements in PN2DCs compared to

Balsa solution are due to different control strategies. Note that the intermediate controller specifi-

cation for the PN2DCs tool is manually optimised by removing redundant places and transitions.

This reduces the control path area by four DCs (732µm2). However, the optimisation algorithm is

straightforward, the redundant places and transitions removal can be further automated.

The time spent by Balsa and PN2DCs to generate the circuit netlists is negligible. This is

because both tools use computationally simple mapping techniques, which allow processing of

large system specifications in acceptable time.

The characteristics of the circuits synthesised from the control path specification are shown in

Table 3.2. The number of transistors for the circuits generated by Petrify is counted for complex

gate implementation. The technology mapping into the library gates with at most four literals is

applied.

In all experiments, the input-output latency is counted after technology mapping optimisation.

The latency is estimated as the cumulative delay of negative gates switched between an input and

the next output. The following dependency of a negative gate delay on its complexity is used. The

latency of an inverter is associated with a unit delay. Gates which have maximum two transistors
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in their transistor stacks are associated with 1.5 units; 3 transistors - 2.0 units; 4 transistors - 2.5

units. This approximate dependency is derived from the analysis of the gates in the AMS 0.35µm

library. The method of latency estimation does not claim to be very accurate. However, it takes

into account not only the number of gates switched between an input and the next output, but also

the complexity of these gates.

The Petrify tool was used to synthesise the circuits with three alternatives for CSC conflict

resolution. In the first circuit the coding conflict is solved by inserting new signals automatically.

In the second and the third circuits the semi-automatic method of conflict resolution is employed

by using the ConfRes tool. In the second circuit the transitions of new signals are inserted sequen-

tially, and in the third one concurrently.

The experiments show that the automatic coding conflict resolution may result in a circuit

with high output latency which is due to non-optimal insertion of the new signals. The smallest

circuit is synthesised when the coding conflicts are resolved manually by inserting the new signals

sequentially. This solution also exhibits lower latency than in the case of automatic and concurrent

signal insertion. The circuit with the new signals inserted concurrently lacks the expected low

latency because of its excessive logic complexity.

3.10 BESST design flow

Between syntax driven-translation and logic synthesis of asynchronous circuits the latter produces

smaller circuits with faster control path. The existing logic synthesis design flow, however, has

several drawbacks:

· The design flow lacks an automatic synthesis of hazard-free data path components.

· The data path synthesis is unacceptable for security applications due to dependency between

processed data and power consumption.

· Synthesis of the control path described at STG level exhibits high algorithmic complexity.

· The control path obtained from STG exhibits high input-output latency.

· Unpredictable, often high latency of the control circuits synthesised by existing techniques.

62



CHAPTER 3. AUTOMATED SYNTHESIS OF ASYNCHRONOUS CIRCUITS

functions impl.

RTL library

behavioural Verilog

manual

testbench

simulation

testbench deriviation
VeriSyn

behavioural Verilog

data/control splitting

system specification

functional
simulation simulation

timing

timing extraction
VeriSyn

Verilog netlist

data/control merging

system implementation

system timing information

conventional EDA tools

placement & routing

system layout

labelled Petri net
control path specification

logic synt. direct map.
Petrify OptiMist

Verilog netlist
control path implementation

control path synthesis

coloured Petri net mapping

data path specification
coloured Petri net

data path synthesis

data path implementation
Verilog netlist

VeriMap

Verilog netlist PN2DCs
async.hazard−free component

direct mapping from RTL

− existing methods / software tools

− new  methods / software tools

Figure 3.24: BESST design flow

These problems are addressed in the BEhavioural Synthesis of Self-Timed Systems (BESST) de-

sign flow [101] which is based on logic synthesis design flow reviewed in Section 3.4. The BESST

design flow uses PNs as an intermediate representation of circuit specification. It incorporates soft-

ware tools for high-level partitioning, scheduling, direct mapping and logic synthesis. These are

used to generate efficient speed-independent circuits with optional security features. A diagram of

the BESST design flow is shown in Figure 3.24, where the shaded boxes denote the new methods

and software tools developed in the scope of this thesis.

The conventional behavioural Verilog is used as an initial specification of the system. The

system is first partitioned into subsystems and then divided into control and data paths by the

VeriSyn software tool [16], which operates as a front-end. VeriSyn performs scheduling to produce

an LPN for the control path and a CPN for the data path, see Section 3.5. These nets are passed to

the tools, which perform synthesis of control and data paths respectively.

The data path is mapped directly from the CPN into a netlist of hardware components us-

ing the PN2DCs tool as describe in Section 3.6. In the existing design flow the library of the

data path components is either manually designed or obtained by conventional RTL tools. The
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manual development of the components is resource consuming and prone to human errors. Be-

ing optimised for the synchronous circuit architecture the RTL-based design flow does not guar-

antee hazard-free implementation of the components. The single-rail nature of the RTL-based

components also causes problems with completion detection which is necessary to support the

request-acknowledgement handshake protocol essential for the asynchronous circuit architecture.

A common solution for the completion signal is the delay element insertion between the request

input and the acknowledgement output. The properties of the delay element are chosen by care-

ful timing analysis of the component because the delay of the acknowledgement signal must be

greater than the worst case computation time of the component. This results in the worst case

performance of each data path component. The worst case performance can be partially avoided

by inserting an adjustable delay element in the request-acknowledgement line, its delay is chosen

depending on the input values of the component.

A method and a software tool (VeriMap) for automatic synthesis of hazard-free data path

components are presented in Chapter 5. Verimap tool is integrated into conventional RTL design

flow. Its input is a single-rail circuit synthesised from behavioural specification by an RTL tool.

The method employs dual-rail encoding and monotonic switching, which facilitate the hazard-free

logic. The completion detection built on dual-rail logic provides the average case performance of

data path components. The method extends the traditional single-spacer dual-rail encoding with

two spacers (all-zeros and all-ones) alternating in time. The alternating spacers provide strictly

periodic refreshing of all wires in the data path which is beneficial for testing, dynamic logic and

security applications. The VeriMap tool is compatible with the conventional EDA design flow at

the level of Verilog netlists.

The control path can be obtained by either logic synthesis or direct mapping. In the logic

synthesis approach boolean equations for the control path are derived using next-state functions,

which are obtained from its STG. A state-based synthesis tool Petrify derives equations by explor-

ing all possible orders of STG events, i.e. building its state space. The state space of a system

grows exponentially with the increase of concurrency in the specification. This might result in un-

acceptable computation time or memory usage, which is the main drawback of the explicit logic

synthesis method. The other problem of the logic synthesis approach is the resolution of CSC
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conflicts. A CSC conflict arises when semantically different states of an STG have the same bi-

nary encoding. The automatic resolution of CSC conflicts might be computationally hard or even

impossible for STGs with high concurrency, see Section 3.8.

An approach for STG synthesis which avoids high computational complexity and CSC con-

flicts is direct mapping. However, the existing logic synthesis design flow is only capable of direct

mapping from high-level LPNs, see Section 3.7. In order to fill this gap a method and software

tool (OptiMist) for the direct mapping of control path from STGs are developed, see Chapter 4.

This method avoids building the whole state space of the system, all optimisations are performed

locally by means of heuristics. The latency reduction is obtained by using a tracker-and-bouncer

architecture. The tracker computes the state of the system concurrently to the environment op-

eration. The bouncer produces the outputs based on the tracker’s state as soon as the inputs are

received from the environment. However, the circuits produced by OptiMist are usually larger

than Petrify’s solutions.

A combination of logic synthesis and direct mapping techniques in a single design flow might

prove most advantageous. For example, at first, each output signal which has a complete state cod-

ing is synthesised individually by Petrify. Then, all the remaining outputs, whose CSC resolution

is hard or impossible, are mapped into logic at once using the OptiMist direct mapping tool. Thus

the best trade-off between area and performance may be achieved.

The data path and control path implementations are finally merged into the system netlist in

the structural Verilog format. Conventional EDA tools are applied to the netlist for place-and-route

and simulation of the system.

3.11 Summary

The state of the art in the synthesis of asynchronous systems form high-level behavioural spec-

ifications has been reviewed. Two main approaches of circuit synthesis have been considered:

syntax-driven translation and logic synthesis.

Firstly, the syntax-driven approach is studied in the example of Balsa design flow. It uses

a CSP-based language for the initial system specification. Its parsing tree is translated into a

handshake circuit, which is subsequently mapped to the library of hardware components. This
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approach enables the construction of large-size asynchronous systems in a short time, due to its

low computational complexity. However, the speed and area of the circuit implementations may

not be the best possible. Therefore this approach benefits from peep-hole optimisations, which

apply logic synthesis locally, to groups of components, as was demonstrated in [24].

Secondly, the logic synthesis approach is reviewed using the VeriSyn, PN2DCs, Petrify and

ConfRes tools. The VeriSyn tool partitions the VHDL system specification on control and data

paths. Petri nets are used for their intermediate behavioural representation. The data path PN is

subsequently mapped into a netlist of data path components using the PN2DCs tool. The con-

troller PN can be either mapped into a David cell structure by PN2DCs tool or further refined to

an STG. The STG control path specification can be synthesised by one of the above mentioned

tools. Logic synthesis approach is computationally harder than the syntax-driven translation. The

direct mapping of Petri nets in PN2DCs helps to avoid state space explosion involved in the state

encoding procedures used in Petrify. At the same time, this comes at the cost of more area.

It should be clear that tools like Petrify and ConfRes can only be used for relatively small con-

trol logic, for instance in interfaces and pipeline stage controllers (see [31]), rather than complex

data processing controllers, where PN2DCs is more appropriate. The latter is however not optimal

for speed because it works at a relatively high-level of abstraction.

The GCD benchmark is then used to evaluate all of the above mentioned tools. The size and

speed of the resultant circuits are compared. They demonstrate the various possible enhancements

in the design flow, such as the use of an interactive approach to state encoding in logic synthesis.

Finally, the drawbacks of the existing design flows are pointed out and an improved version of

logic synthesis design flow is proposed. The control path synthesis is enriched by a computation-

ally simple method and software tool for direct mapping of low-latency control path from STGs.

These are described in Chapter 4. The other improvement concerns the automatic synthesis of

hazard-free data path components. The method and a software tool implementing this approach

are presented in Chapter 5.
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Chapter 4

Synthesis of control path

Two main approaches to design of asynchronous controllers are logic synthesis [28] and direct

mapping [51, 59]. The review of the state of the art in Chapter 3 exposed the weak spots of

both approaches. The logic synthesis approach is well developed and supported by tools, however

it suffers from excessive computation complexity and cannot be applied to large specifications.

The direct mapping approach is computationally simple, however it is insufficiently studied and

existing techniques for direct mapping often produce large circuits with an inefficient interface to

the environment.

The controllers and interfaces are traditionally specified by timing diagrams and STGs. How-

ever, the majority of direct mapping techniques work with high-level Petri nets and cannot process

low-level specifications. An attempt to apply direct mapping method at a low-level, where the

circuit behaviour is captured at the level of signal events, is made in [119]. In this approach DC

structures are used to capture the state of the system and to control flip-flops which are associated

to each output signal. Inputs, however, are still represented as abstract processes and free-choice

nets are not supported.

Direct mapping from STGs and the problem of device-environment interface are addressed

in [18]. In proposed method a system specification is, firstly, split into a device STG and an

environment STG. These are synchronised via a communication net, which model wires. The

device STG is considered separately. It consists of a tracker and a bouncer. The tracker follows

the state of the environment and is used as a reference point by the device outputs. The bouncer
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interfaces the environment and generates output events in response to the input events according

to the state of the tracker. This two-level device architecture provides an efficient interface to the

environment and is convenient for subsequent mapping into a circuit netlist.

The work presented in this chapter is based on the idea of [18]. The method is extended by

a set of optimisation algorithms and heuristics. These are implemented in a software tool called

OptiMist. The speed-independent circuits obtained by this method have a two-level architecture,

which contributes to a low-latency interface to the environment. The OptiMist tool exhibits the

computation time growth linear to the specification size which allows to apply the method to large

STGs. A way of combining logic synthesis and direct mapping to employ the advantages of both

approaches is also discussed.

This chapter is based on the results developed in [102, 103, 104].

4.1 Method

A distinctive characteristic of the proposed direct mapping technique is that the system STG is

converted into a form convenient for mapping into circuit netlist. It is achieved by associating

groups of places and transitions to the state holding elements and by modelling connections be-

tween circuit components with arcs.

The initial specification describes the behaviour of both device and environment as a complete

system. Usually, only the device needs to be synthesised which requires the extraction of the

device model from the system STG. In order to do this the system STG is split into a device model

and an environment model, which are connected by an intermediate net. Only the device model is

subsequently optimised and mapped into a circuit netlist.

4.1.1 Requirements to the initial specification

There are several limitations on the class of STGs which can be synthesised using our direct

mapping method. Similarly to the requirements of logic synthesis methods the STG must be

consistent and persistent. The STG consistency is essential for any hardware implementation due

to the nature of binary signals whose rising and falling transitions alternate. Persistency is required

to avoid arbitration in the device by letting the environment make all the choices.
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Figure 4.1: Input and output bursts

Unlike logic synthesis methods in our approach neither USC nor CSC is necessary for the

whole STG. The limitation on the state encoding is more relaxed and is defined using the notion

of bursts: a maximally connected subgraph of an STG which only includes transitions of an in-

put (output) sequence and places incident to them is called input (output) burst. Two bursts are

said to be in conflict if there is a transition in one burst which is in a direct conflict with a transition

from another burst. A burst B1 is said to be covered by burst B2 if they are in conflict and all signal

events of B1 also exist in B2 possibly in different order. Note that in a persistent STG only input

bursts can be in conflict and covered.

The notion of bursts is illustrated in Figure 4.1. The STG in Figure 4.1(a) contains two input

and two output bursts (IB1, IB2 and OB1, OB2 respectively). Note that even though an output

sequence o1+, o2+ is possible from a reachable marking {p2, p3}, the output bursts OB1 and

OB2 are separate because their graphs are not connected. The example in Figure 4.1(b) shows two

output bursts OB1 and OB2 (input bursts are trivial and are hidden for simplicity). These output

bursts are overlapping, however they cannot be merged into one burst because there is no output

sequence which contains both o1+ and o1-. In Figure 4.1(c) three input bursts are shown (trivial

output bursts are hidden). Note that conflicting input bursts IB1 and IB2 are separated in this STG

even though their graphs are overlapping because these bursts belong to different input sequences.

All the requirements to encoding of the system states in the proposed direct mapping method

are due to the delay-insensitive nature of the device-environment interface. Usually a designer can
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control the wire delays inside a relatively small device and build it speed-independent. However,

the delays of connections between the device and the environment often cannot be guaranteed. The

uncontrollable interconnect delays on the device-environment interface may result in a situation

when two signals issued in sequence by a sender reach a receiver simultaneously or even in a

reversed order. This means that while the device itself can be speed-independent, its interface to

the environment should be built under delay-insensitive timing assumptions.

One of the ways to ensure the delay-insensitive interface is to apply order relaxation [93] to

the initial STG. This approach, however, may complicate the structure of the STG, which is dis-

advantageous for a direct mapping technique. In our direct mapping approach the order relaxation

is not applied explicitly. Instead, a device distinguishes the end of an input burst by catching an

encoding in which all inputs comprising the burst have switched. The unique identification of

such encoding is only possible if all states corresponding to the input burst are coded uniquely.

The opposite is also true for output bursts: in order to uniquely identify the end of an output burst

the encodings of its states should be unique. For example, the STG in Figure 4.2(a) has an input

burst IB1 which can cause problems. If due to interconnect delays i2+ reaches the device before

i1+ then the device can produce o1+ by mistake even without waiting for i1+ and i1-.

Thus, in our method each input and output burst of the system STG must have USC. An STG

is said to satisfy burst USC property if there is no USC conflict in any input or output burst, i.e. the

state encoding is unique within each individual burst. In order to satisfy the burst USC property

it is sufficient for a consistent and persistent STG to have no more than one transition of each

signal in every input and output burst. The uniqueness of a signal transition in each burst implies

monotonic change of the code and hence no repetition of the state encoding within the burst.
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Another type of ambiguity introduced by the delays in the device-environment interconnect

may occur when choosing between conflicting branches. For example, the STG in Figure 4.2(b)

has two input bursts IB1 and IB2 which are in conflict. The transitions in the direct conflict are

different (in1+ and in2+) and the choice is unambiguous. However, if the transitions of the burst

IB1 reach the device in the reverse order (in2+ first), then the device will be confused which

conflicting branch the environment selected. The device still can recognise the branch selection

if the following condition holds: the state encodings after each input burst is different from all

encodings in the bursts it conflicts with. In order to satisfy this condition it is sufficient for a

consistent and persistent STG with burst USC to contain only non-covered bursts; such an STG

is called non-covered. Indeed, the state of all STG signals is the same before conflicting bursts

and the change of encoding is monotonic within each burst. If none of the bursts is covered by the

others then the encoding after a burst is not repeated in any burst it conflicts with.

To summarise, in order to be mappable into a circuit using our direct mapping method a

system STG must be consistent, persistent, non-covered and must have burst USC. Checking

these properties is computationally hard problem which does not feet into a direct mapping design

flow aiming at low algorithmic complexity. Instead it is assumed that the control path STG is

supplied by a high-level synthesis tool which insures the above properties by construction. All

the transformations presented in the following sections preserve the behavioural equivalence if the

original STG satisfying these properties.

4.1.2 Transformation

The idea of the our direct mapping method is illustrated on a basic example whose STG is partially

shown in Figures 4.3(a). The depicted slice of the specification contains the in+ input event causing

the out+ output event.

The first step in extracting the device model is the exposure of the signal states as shown in

Figure 4.3(b). For this each signal z is associated with a pair of complementary places z = 0 and

z = 1 representing low and high levels of the signal. These places are inserted as transitive places

between positive and negative transitions of z, thus expressing the property of signal consistency.

Note that the transitive places do not change the behaviour of the system and weak bisimulation is
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Figure 4.3: Method for the direct mapping from STGs
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preserved on this stage of transformation.

The second step of the transformation is splitting the system specification into device and en-

vironment parts as shown in Figure 4.3(c). For this the STG obtained in the first step is duplicated.

In the first copy, corresponding to the device, the transitive places associated to the inputs are

removed. Similarly, in the second copy, corresponding to the environment, the transitive places

associated to the outputs are removed. The behaviour of the device and the environment parts is

synchronised by means of read-arcs as follows. In the environment part, each transitive place as-

sociated to low (high) level of an input signal zI is connected by read-arcs to all negative (positive)

transitions of zI in the device. After that the transitions of input signal zI in the device part are

replaced by dummies. This way the device follows (or tracks) the behaviour of environment. Sim-

ilar procedure applies to all output signals but with the roles of device and environment changed.

In the device part, each transitive place associated to low (high) level of an output signal zO is

connected by read-arcs to all negative (positive) transitions of zO in the environment. The transi-

tions of zO in the environment part are replaced by dummies. Now the environment also tracks

the operation of the device. For convenience each dummy introduced in this step are labelled by

the original transition name put in parenthesis.

The transformation of the second step splits each transition of an output (input) signal into the

signal transition itself which belongs to the device (environment) and a dummy in the environment

(device). The firing of these two transitions are ordered by read-arcs, so that the interface signal

transition is enabled first and only after this transition fires the corresponding dummy is enabled.

The dummy transition cannot be disabled until it fires because of the burst USC property of the

original STG. Thus the behavioural equivalence is preserved on this step of transformation.

The third step of the transformation is splitting the device into tracker and bouncer parts as

shown in Figure 4.3(d). There is no need to further transform the environment part as only the

device will be subsequently implemented. The tracker-bouncer splitting starts from representing

each output signal by an elementary cycle. An elementary cycle of a signal z consists of two

places z = 0 and z = 0 (these are transitive places added in the first transformation step), and

several positive and negative transitions of z connecting these places. The positive transitions of

z are inserted after z = 0 and before z = 1. Similarly, the negative transitions of z are inserted
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after z = 1 and before z = 0. The number of positive and negative transitions of z is equal to

the number of corresponding events in the device specification and can be more than one. The

set of elementary cycles for all output signals forms the device bouncer and the rest is the device

tracker. The elementary cycles of the bouncer are synchronised with the tracker part by means

of read arcs as shown in Figure 4.3(d). Each positive (negative) transition tB of signal z in the

bouncer is uniquely associated to a positive (negative) transition tT of the same signal z in the

tracker. A transition tT is called a prototype of tB . All places in the preset of tT are connected by

read-arcs to tB and the only place in the postset of tB is connected by a read-arc to tT . After that

the prototype transition tT in the tracker is replaced by a dummy which is labelled by the original

transition name in parenthesis.

The transformation described in the third step basically splits each output signal transition

z± into the signal transition z± itself (in the bouncer) and a dummy (z±) (in the tracker). The

transition z± is enabled only when all the places in the preset of (z±) have tokens. These tokens

cannot propagate further because the dummy is disabled by a read-arc from the postset of z±.

The only place pz in the post of z± is either z = 0 or z = 1 depending on the polarity of z±.

As soon as z± fires the dummy (z±) becomes enabled and the tokens continue their move in the

tracker. It is also necessary that the token does not leave pz until (z±) fires. This condition is

ensured by the signal consistency of the initial STG. Thus the transformation of this step preserves

the behavioural equivalence of the system.

From this point the device model is considered separately and the environment is assumed to

produce inputs in response to device outputs according to the system protocol. The elementary

cycles of the device bouncer are subsequently implemented as set-reset Flip-Flops (FF) and the

places of the device tracker are mapped into DCs, see Figure 4.3(e).

4.1.3 Optimisation

It is often possible to control outputs by the directly preceding interface signals without using

intermediate states. Many places and preceding dummies can thus be removed, provided that the

system behaviour is preserved w.r.t. input-output interface (weak bisimulation). Such places are

called redundant. Note that the notion of redundant places in our method is different from the
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Figure 4.4: Optimisation of the device specification

redundant transitive places in the structural theory of Petri nets, thus the structural theory cannot

be applied to remove them. This way p2 is redundant in the considered example, Figure 4.4(a).

It can be removed from the device tracker together with the preceding dummy (in+) as shown in

Figure 4.4(b). Now the input in = 1 controls the output out+ transition directly, which results in

latency reduction when the STG is mapped into the circuit, see Figure 4.4(c). Before the optimisa-

tion the output flip-flop was set by the p2_req signal, which was generated in response to the input

in, see Figure 4.3(e). In the optimised circuit the output flip-flop is triggered directly by the in

input and the context signal p1_req is calculated in advance, concurrently with the environment

action.

4.1.4 Coding conflicts

The elimination of places is restricted by potential coding conflicts which may cause tracking

errors. There are two types of conflicts: Marked Graph-specific and State Machine-specific. The

former conflicts may appear in a non-conflicting branch of an STG, the latter may appear in the

conflicting branches after a choice place.
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Marked Graph-specific coding conflicts

For the idea of an Marked Graph-specific coding conflict, consider the system whose STG is

depicted in Figure 4.5(a). The device specification extracted from this STG by applying the above

method is shown in Figure 4.5(b). The tracker part of the device can be further optimised. The

removal of redundant places p2 and p4 does not cause any conflicts of the tracker, Figure 4.5(c).

However, if the place p3 is eliminated as shown in Figure 4.5(d), then the tracker cannot distinguish

between the output having not yet been set and the output already reset. Note the specifics of this

direct mapping approach: only those signals whose switching directly precedes the given output

are used in its support.

It is computationally simpler to detect redundant places by processing the original specifica-

tion. For this the set of all STG places P is divided into three non-intersecting subsets: PU , PR,

PM such that PU ∪ PR ∪ PM = P and PU ∩ PR ∩ PM = ∅. The set PR consists of redundant

places which can be safely removed from the device STG, the set PM holds the mandatory places

which must be preserved in the device model, and the set PU contains the places which have not

been considered yet (undefined places). In the following figures the undefined places are depicted

as ordinary circles ( ), redundant places are drawn as small circles ( ), and the mandatory places

are shown as bold circles ( ). Initially all STG places belong to PU , both sets PR and PM are
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empty. Then, each place in PU is tested for being redundant. If the place removal does not cause

a coding conflict then the place is redundant and is moved into PR, otherwise it is mandatory and

is moved into PM .

A coding conflict for a place p is detected by intersecting two sets of signals. The first set

contains the signals whose transitions are fired in the forward neighbourhood of place p limited

by places and transitions in PR ∪ T . The second set consists of the signals whose transitions are

fired in the backward neighbourhood of place p limited by places and transitions in PR ∪ T .

The forward neighbourhood εf (p, X) of place p limited by nodes (places and transitions) in

X is defined as the minimal (w.r.t.⊆) set such that:

εf (p, X) : p ∈ εf (p, X) ;

∀x ∈ X if ∃ y ∈ εf (p, X) : x ∈ y•, then x ∈ εf (p, X)
(4.1)

The set of signals Zf (p, X) whose transitions are fired in the forward neighbourhood of place

p limited by the set of nodes X are defined using labelling function λ:

Zf (p, X) = {z : ∃t ∈ εf (p, X) ∩ T : λ(t) ∈ {z+, z−}} (4.2)

Similarly, the backward neighbourhood εb (p, X) of place p limited by the set of nodes X is

defined as the minimal (w.r.t.⊆) set such that:

εb (p, X) : p ∈ εb (p, X) ;

∀x ∈ X if ∃ y ∈ εb (p, X) : x ∈ •y, then x ∈ εb (p, X)
(4.3)

Zb(p, X) = {z : ∃t ∈ εb (p, X) ∩ T : λ(t) ∈ {z+, z−}} (4.4)

For the detection of a coding conflict the forward and backward neighbourhoods are calculated

on a set of transitions and redundant places. If Zf (p, PR ∪ T ) ∩ Zb (p, PR ∪ T ) = ∅, then the

removal of the place p does not cause coding conflicts. However, if there is a signal z whose

transitions belong to both the forward and the backward neighbourhoods of place p limited by

transitions and redundant places, then the removal of this place causes a coding conflict for signal

z. The state of the signal z is the same before its transition in the backward neighbourhood and
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after its transition in the forward neighbourhood of place p. As the place p is the only undefined

place between these transitions (the others are redundant) it must be preserved in order to separate

the same state of the signal z in different parts of the system specification.

Consider the detection of coding conflict on the example shown in Figure 4.6. The place

under question is p07. Its forward neighbourhood limited by redundant places is {p07, in2+, p08,

p09, out2-, out3+} and its backward neighbourhood is {p07, out1+/1, out2+/2, p05, p06, p04,

in1+/1, out1+/2, in1+/2, p01, out2+/1}. Places p00, p02, p03, p11, p12 are not redundant and

form a border for the place p07 neighbourhoods. The signals whose transitions are fired in the

forward and backward neighbourhoods are {in2, out2, out} and {in1, out1, out2} respectively. The

intersection of these sets is {out2} which means that place p07 separates the different states of the

signal out2 and removal of this place will cause a coding conflict.

State Machine-specific coding conflicts

The situation becomes more complex if a place under test belongs to a post-postset of a free-

choice place. For example, places p01 and p02 in Figure 4.7(a) are not redundant. If these places

are removed, then the choice between the conflicting branches is controlled by the same condition

out1=1, which is ambiguous, see Figure 4.7(b). This is an State Machine-specific coding conflict.

The forward and backward neighbourhoods do not help here because the places whose removal

cause a coding conflict are in mutually exclusive branches.

There are several strategies to avoid the ambiguity in choice branches after choice place pchoice.

The first extreme is to preserve all post-postset places of the choice place. This approach is com-

putationally simple, however the latency reduction might be sacrificed if there is an input signal

transition in the postset of the choice place (which is the case for a free-choice). The other ex-
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treme is to traverse each conflicting branch from pchoice and find all signals whose transitions are

present in more than one branch. At least one mandatory place must precede the first transition of

such signals in each branch. This approach helps to reduce the input-output latency, but it may be

computationally hard if loops or nested choices are found.

A trade-off between the computation speed and latency optimisation is the following. First,

each undefined place psucc in the post-postset of pchoice is checked. The removal of place psucc

does not improve the input-output latency if all preset transitions of psucc are non-input signal

events. Such a place is made mandatory to help reducing the computation complexity of the next

step. After that, for each transition t ∈ pchoice• a set of transitions Tseq (t) = {t}∪ t • • is built. It

contains the transitions in a choice branch starting from t for the depth of two transitions counting

from pchoice. The joint set of transitions in choice branches of place pchoice limited by the depth

of two transitions is Tchoice (pchoice) =
⋃

t∈pchoice•
Tseq (t). If for a transition t ∈ pchoice• there is

a signal whose transition belongs to both Tseq (t) and Tchoice (pchoice) \Tseq (t) then the places in

the postset of t must be preserved. Otherwise all places in the postset of t • • transitions are made

mandatory to reduce the depth of traversing. The trade-off approach benefits from the input-output

latency reduction and low computation complexity, however the size optimisation might suffer.

Consider the application of the trade-off approach to the example in Figure 4.7(a).

For the choice place p00, which has transitions in1+ and in2+ in its postset,

Tseq (in1+) = {in1+, out1 + /1}, Tseq (in2+) = {in2+, out1 + /2} and Tchoice (p00) =

{in1+, out1 + /1, in2+, out1 + /2}. As a transition of out1 belongs to both Tseq (in1+) and

Tchoice (p00) \Tseq (in1+) = Tseq (in2+) the place p01is mandatory. Similarly, a transition of
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out1 belongs to both Tseq (in2+) and Tchoice (p00) \Tseq (in2+) = Tseq (in1+), which makes

place p02 mandatory.

4.1.5 Mapping into circuit

In this method the places of the tracker STG are mapped into DCs and the elementary cycles of the

bouncer are mapped into set-reset FFs. Read-arcs connecting the elementary cycles to the tracker

and to the environment model the behaviour of wires and are directly mapped into wires between

DCs and FFs. The set and reset functions of a FF are mapped from the structure of the set and

reset phases of the corresponding elementary cycle as shown in Figure 4.8.

The traditional DC circuit is described in Section 3.7, where the method of LPN place mapping

is reviewed. However, the mapping of high-level LPN places is different from the mapping of

STG places. The former approach uses a place preset transition to request for an operation in

the environment and to acknowledge the completion of the previous stage operation. The latter

approach uses the bouncer elementary cycles to interface with the environment. The tracker keeps

the state of the system only. Its marked places select the set of output signals which can switch in

the current state of the system. The preset transitions of each tracker place are used to request the

tracker to switch into the next state.

The mapping of basic tracker structures into DCs is shown in Figure 4.9. The request and

acknowledgement functions of each DC are generated from the structure of the tracker in the

preset and postset of the corresponding place. The request function of each DC is shown in its

top-left corner and the acknowledgement function in its bottom-right conner.

Faster and more compact solutions for a DC implementation, proposed in [18], are called
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fast DCs. A gate-level implementation of a fast DC and its STG are shown in Figure 4.10(a,b).

The input r1 is the request from the previous stage DC to pass the token. Output a acknowledges

the receipt of the token to the previous stage DC. Similarly, output r requests the next stage DC to

accept the token and input a1 acknowledges its receipt. Signals e and f represent the ‘empty’ and

‘full’ states of the state holding element. An interesting feature of the fast DC is that it internally

contains a GasP-like interface [111], which uses a single wire to transmit a request in one direction

and an acknowledgement in the other.

A fast DC has speed advantages over a traditional DC because the reset phase of its state

holding element happens concurrently with the token move into the next stage DC. However, fast

DCs rely on timing assumptions. The timing assumptions are depicted in the STG using dotted
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arcs, see Figure 4.10(b).

The first timing assumption is represented by the dotted arcs incident to place p0. The assump-

tion is that the new token arrives only after the token has left the next stage DC. This assumption

is common for both traditional and fast DCs. It results in a limitation of the method to have at least

three DCs in every loop [59]. For the original specification it means that any loop of the system

STG must contain at least three places. Also the number of places in the loops must be kept above

two during the optimisation of the tracker STG.

The second timing assumption is that the token leaves the DC only after the previous stage

DC is empty. It is shown by the dotted arc between transition r1- and a- in Figures 4.10(b). The

same timing assumption for the next stage DC is shown by the dotted arc from e+ to a1-. This

assumption is easy to meet because the reset of the request r1- from the previous stage DC is

delayed by a single two-input NOR-gate. The acknowledgement a1+ from the next stage DC is

set with the delay of at least a pair of two-input NOR-gates.

Accepting the above timing assumptions and removing the transitive places the simplified STG

of the fast DC is obtained in Figure 4.10(c). The transitive places prev and next represent the high

level of signals r1 and r respectively. Their state denotes the marking of places associated with

the previous stage and next stage DCs. One can see that both prev and next are marked for the time

ta+−→r1− in each cycle of DC operation. This inconsistency between the underlying PN model

and fast DCs is called the token spread.

Another implementation of a fast DC and its STG are shown in Figure 4.11(a,b). This imple-

mentation uses a keeper latch for the state holding element. A keeper is a logic level hold circuit

which consists of two weak inverters connected back to back. In order to increase the driving abil-

ity of the request output, the weak inverter providing this output is replaced by an ordinary inverter.

The timing assumptions for the transistor-level implementation are the same as for the gate-level.

One can see that the spread of the token is also possible in the transistor-level implementation, see

Figure 4.11(c).

The token spread is not modelled by the underlying PN, which may cause problems in the

vicinity of the choice place. Consider the example STG shown in Figure 4.12(a). The transitions

that directly succeed places p01 and p02 are different signal events, and the removal of these
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Figure 4.11: Transistor-level fast DC
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Figure 4.12: Redundant places after choice

places does not cause any coding conflict. The optimised STG shown in Figure 4.12(b) can be

safely mapped into traditional DCs. However, the direct mapping into fast DCs is problematic due

to their token spread feature.

For example, if the STG shown in Figure 4.12(b) is implemented using fast DCs, then the

following scenario is possible: in1+→out1+/1→(out1+/1)→out2+/1 resulting in the token spread

over places p00 and p03 for a short time interval. It leads to the incorrect state when transitions

(out2+/1) and (out2+/2) in conflicting branches are enabled simultaneously. The firing of the

enabled transition (out2+/1) results in the malfunction of the system: both conflicting branches

are active at the same time.

A possible solution for the token spread problem is to restrict the propagation of a token in

conflicting branches until the token leaves the choice place. It can be done by mapping the first

places in the conflicting branches into traditional DCs. Such a DC does not rise its request output

until the request of the previous stage DC is low. The application of this approach to the example

shown in Figure 4.12(b) forces places p03 and p04 to be mapped into traditional DCs.
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DC type min period max frequency size token
(ns) (MHz) (transistor count) spread

traditional 3.6 277.8 12 no
fast gate-level 1.2 833.3 8 yes
fast transistor-level 2.1 476.2 6 yes

Table 4.1: Comparison of DC implementations
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Figure 4.13: Speed of DC implementations

The advantages and drawbacks of different DC implementations are summarised in Table 4.1.

Only a traditional DC is free of the token spread problem. The smallest (6 transistors) is the

transistor-level fast DC. The fastest (up to 833.3MHz) is the gate-level fast DC.

The maximum frequency of DC operation is measured by SPICE analog simulations using the

AMS-0.35µ design kit. For this, traditional DC, gate-level fast DC and transistor-level fast DC

have been implemented in AMS-0.35µ library. Then the DCs of each type have been connected

in loops of tree DCs and the oscillation of each loop have been captured as shown in Figure 4.13.

The shortest period is exhibited by gate-level fast DCs. These DCs are the best for the synthesis

of fast control circuits. Transistor-level fast DCs are recommended when the circuit size is crucial,

however they require extra effort for the layout of the library of custom cells. Both types of

fast DCs rely on timing assumptions and have certain token spread problems. That is why the
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Figure 4.14: OptiMist design flow

traditional DCs should be used for the design of speed-independent circuits and to avoid the spread

of a token in the vicinity of choice places.

4.2 Algorithms

This section describes the algorithms employed in the STG optimisation for mapping. The al-

gorithms are implemented in a package of software tools called OptiMist whose design flow is

presented in Figure 4.14.

The package consists of separate tools solving the following tasks:

· detection of redundant places;

· exposure of the outputs;

· elimination of redundant places;

· visualisation of an STG with read-arcs extension and tracker-bouncer structure;

· mapping of the optimised specification into a circuit;

· generation of a library of required DCs and FFs either at transistor- or gate-level.

The algorithms for STG optimisation (detection of redundant places, exposure of the outputs and

elimination of redundant places) are described in detail in the following subsections. The algo-

rithms for the other three tools are trivial and are not presented here.
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Algorithm 3 Detection of redundant places
01 procedure detect_redundant_places
02 input: STG = 〈P, T, F, M0, I, O〉, optimisation_level ∈ {0, 1, 2, 3}
03 output: PR ⊆ P
04 PR:=∅; PM:=∅; PU:=P
07 if optimisation_level > 0 then
08 optimise_choice (STG, PU , PR, PM )
09 if optimisation_level > 1 then
10 optimise_latency (STG, PU , PR, PM )
11 if optimisation_level > 2 then
12 optimise_size (STG, PU , PR, PM )

4.2.1 Detection of redundant places

The order in which the redundant places are detected affects the optimisation result. The order is

defined by the heuristics presented in Algorithm 3. The detect_redundant_places procedure takes

STG and optimisation_level as the input parameters and returns the set PR of redundant places

(lines 01-03). Initially, all STG places are undefined (line 04). The optimisation_level parameter

defines which optimisation heuristics to apply to the STG (lines 07-12).

Choice optimisation

The heuristic optimise_choice whose pseudo-code is shown in Algorithm 4 prevents the

State Machine-specific coding conflicts. The algorithm implements a trade-off between the com-

putation speed and latency optimisation as described in Section 4.1.4. The input of the heuristic is

the system STG and initial partitioning of its places into undefined, redundant and mandatory; its

output is a new partitioning of the places (lines 01-03).

First, for each choice place p the set Tchoice containing its postset and post-postset transitions

is created (lines 05-07). Then, for each transition t in the postset of choice place p a set Tconf

is computed (lines 08-09). It contains all transitions in the conflicting branches which are in the

postset or post-postset of the choice place p. For each place psucc in the postset of transition

t a set Tseq containing t and all transitions in the postset of psucc (lines 10-11). If there is a

signal whose transition belongs to both Tseq and Tconf then place psucc is mandatory (lines 12-

14). Otherwise place psucc is redundant and all places in its post-postset are made mandatory to

reduce the computation complexity (lines 15-18).
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Algorithm 4 Choice optimisation
01 procedure optimise_choice
02 input: STG = 〈P, T, F, M0, I, O〉, PU ⊆ P, PR ⊆ P, PM ⊆ P
03 output: PU ⊆ P, PR ⊆ P, PM ⊆ P
04 for_each p ∈ P : |p•| > 1 do
05 Tchoice:=∅
06 for_each t ∈ p• do
07 Tchoice:=Tchoice ∪ {t} ∪ t • •
08 for_each t ∈ p• do
09 Tconf:=Tchoice\ ({t} ∪ t • •)
10 for_each psucc ∈ t• : psucc ∈ PU do
11 Tseq:={t} ∪ psucc•
12 if ∃ (z ∈ I ∪ O, tseq ∈ Tseq , tconf ∈ Tconf ) :
13 (tseq ∈ {z+, z−}) ∧ (tconf ∈ {z+, z−}) then
14 PM:=PM ∪ {psucc}
15 else
16 PR:=PR ∪ {psucc}
17 for_each psucc_succ ∈ psucc • • : psucc_succ ∈ PU do
18 PM:=PM ∪ {psucc_succ}, PU:=PU\ {psucc_succ}
19 PU:=PU\ {psucc}

Latency optimisation

The heuristic optimise_latency is aimed at latency reduction. Its basic idea is that a place is

redundant if all its direct predecessors are input transitions and all direct successors are non-input

transitions. Such a place can be considered redundant even without checking for the possibility

of a coding conflict. All its surrounding places are undefined yet which means that the backward

neighbourhood includes input transitions only and the forward neighbourhood contains non-input

transitions only. Thus, the intersection of the sets of signals in these neighbourhoods is always

empty which means the place under question is redundant.

The optimise_latency pseudo-code is shown in Algorithm 5. The input of the heuristic is

the system STG and initial partitioning of its places into undefined, redundant and mandatory

obtained by optimise_choice algorithm; its output is a new partitioning of the places (lines 01-

03). The algorithm finds all undefined places whose preset transitions are input events and postset

transitions are not (lines 04-05). Such places are moved from the set of undefined places into the

set of redundant places (lines 06-07).

Size optimisation

The optimise_size heuristic, whose pseudo-code is presented in Algorithm 6, is aimed at size re-

duction. The input of the heuristic is the system STG and the partitioning of places into undefined,
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Algorithm 5 Input-output latency optimisation
01 procedure optimise_latency
02 input: STG = 〈P, T, F, M0, I, O〉, PU ⊆ P, PR ⊆ P, PM ⊆ P
03 output: PU ⊆ P, PR ⊆ P, PM ⊆ P
04 for_each p ∈ PU do
05 if (∀t ∈ •p, λ (t) ∈ I × {+,−}) ∧ (∀t ∈ p•, λ (t) /∈ I × {+,−}) then
06 PR:=PR ∪ {p}
07 PU:=PU\ {p}

Algorithm 6 Size reduction
01 procedure optimise_size
02 input: STG = 〈P, T, F, M0, I, O〉, PU ⊆ P, PR ⊆ P, PM ⊆ P
03 output: PU⊆ P, PR ⊆ P, PM ⊆ P
04 // Process sequences of undefined places
05 while ∃p ∈ PU : (εb (p, PR ∪ PM ∪ T ) ∩ P = {p}) ∧ (εf (p, PU ∪ T ) ∩ P = {p}) do
06 if Af (p, PR) ∩ Ab (p, PR) = ∅ then
07 PR:=PR ∪ {p}
08 else
09 PM:=PM ∪ {p}
10 PU:=PU\ {p}
11 // Process remaining undefined places individually
12 for_each p ∈ PU do
13 if Af (p, PR) ∩ Ab (p, PR) = ∅ then
14 PR:=PR ∪ {p}
15 else
16 PM:=PM ∪ {p}
17 PU:=PU\ {p}

redundant and mandatory subsets obtained by optimise_choice and optimise_latency heuristics;

its output is the new partitioning of places (lines 01-03). The heuristic is divided into two steps:

first, the redundant places are detected in the chains of undefined places (lines 04-10); then, the

undefined places left in the STG are checked for redundancy individually (lines 11-17).

At the first step, for each undefined place its backward neighbourhood limited by undefined

places and forward neighbourhood limited by non-undefined places are found. If the number of

places contained in these neighbourhoods is equal to one (the place under question itself) then this

place is a boundary place between non-undefined and undefined places (line 05). Such a place is

subject for redundancy check (line 06). If for this place there is no signal whose transitions are

fired in both forward and backward neighbourhoods limited by redundant places, then the place

is redundant (line 07). Otherwise it is mandatory (line 09). The procedure is repeated until no

boundary places left in the STG.

At the second step all undefined places which left in the STG are checked for redundancy

without any specific order (lines 11-17). The majority of redundant places are already detected in

88



CHAPTER 4. SYNTHESIS OF CONTROL PATH

the previous heuristics. The places left undefined in the STG are usually those preceding the input

signal transitions and their removal does not improve the latency, however the size reduction is

still possible.

4.2.2 Exposure of outputs

The conversion of the system STG into a two-level architecture is described by Algorithm 7. The

input to the algorithm is a system STG and the initial states S of input and output signals; its output

is a modified STG which consists of a tracker and a bouncer (lines 01-03). The initially empty set

of read-arcs R connecting the tracker and bouncer is added to the STG (line 04). For each STG

signal z a place representing its low level plow
z and a place representing its high level phigh

z are

created (lines 05-07). The initial marking of these places is chosen according to the initial state S

of signal z (lines 08-11). Then, each transition t of signal z is substituted by a dummy transition

tdummy in the tracker part (lines 12-18). The signal transition itself is moved into the bouncer

part, thus forming the signal elementary cycle (lines 19-23). The tracker and bouncer operation

is synchronised by means of read-arcs which are inserted in such way that signal transition t is

enabled only when all direct predecessors of the dummy transition tdummy are marked, see read-

arcs inserted in lines 24-25. The dummy transition tdummy itself is only enabled when the signal

transition t is fired and the marking of signal z elementary cycle is changed, see read-arcs inserted

in lines 21 and 23.

4.2.3 Elimination of redundant places

Algorithm 8 describes the procedure of redundant places elimination. This procedure should be

used after detection of redundant places and exposure of outputs. It consists of three steps: initial

marking optimisation, trigger signals optimisation and context signal optimisation (lines 04-06).

The procedure of initial marking optimisation is shown in Algorithm 9. It changes the initial

marking in such way that no redundant places contain tokens. For this the marking of each redun-

dant place is traversed one transition back assuming that all the places in its postset are marked

(lines 04-15). The exception is made for merge places because it is hard to compute which con-

flicting branch produced the token for the merge place (line 07). The back traversal repeats until
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Algorithm 7 Conversion of a system STG into a tracker-bouncer architecture
01 procedure convert_tracker_bouncer
02 input: STG = 〈P, T, F, M0, I, O〉, S : I ∪O → {0, 1}
03 output: STG = 〈P, T, F, R, M0, I, O〉
04 R:=∅
05 for_each z ∈ I ∪O do
06 create place plow

z , create place phigh
z

07 P:=P ∪
˘

plow
z

¯

∪
˘

phigh
z

¯

08 if S(z) = 0 then
09 M0

`

plow
z

´

:=1, M0

`

phigh
z

´

:=0
10 else
11 M0

`

plow
z

´

:=0, M0

`

phigh
z

´

:=1
12 for_each t ∈ T : λ (t) ∈ {z+, z−} do
13 // Substitute signal z transitions by dummies (in the tracker)
14 create dummy transition tdummy, T:=T∪{tdummy}
15 for_each p ∈ •t do
16 F:=F ∪ {(p, tdummy)}, F:=F\ {(p, t)}
17 for_each p ∈ t• do
18 F:=F ∪ {(tdummy, p)}, F:=F\ {(t, p)}
19 // Move signal z transitions into elementary cycle (in the bouncer)
20 if λ(t) = z+ then
21 F:=F ∪

˘`

plow
z , t

´¯

, F:=F ∪
˘`

t, phigh
z

´¯

, R:=R ∪
˘`

phigh
z , tdummy

´¯

22 else
23 F:=F ∪

˘`

phigh
z , t

´¯

, F:=F ∪
˘`

t, plow
z

´¯

, R:=R ∪
˘`

plow
z , tdummy

´¯

24 for_each p ∈ •tdummy do
25 R:=R ∪ {(p, t)}

Algorithm 8 Elimination of redundant places
01 procedure optimise
02 input: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P
03 output: STG = 〈P, T, F, R, M0, I, O〉
04 optimise_marking (STG, PR)
05 optimise_bouncer (STG, PR)
06 optimise_tracker (STG, PR)
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Algorithm 9 Re-calculation of the initial marking from redundant places to mandatory
01 procedure optimise_marking
02 input: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P
03 output: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P
04 // Try to recalculate the initial marking to mandatory places
05 repeat
06 done:=true
07 for_each p ∈ PR : (M0 (p) 6= 0) ∧ (|•p| = 1) do
08 for_each t ∈ •p do
09 if ∀pconc ∈ t• : M0 (pconc) = 1 then
10 for_each ppred ∈ •t do
11 M (ppred):=1
12 for_each pconc ∈ t• do
13 M (pconc):=0
14 done:=false
15 until done
16 // Make all marked places mandatory
17 for_each p ∈ PR : M (p) 6= 0 do
18 PR:=PR\ {p}, PM:=PM ∪ {p}

either only mandatory places are marked or there is no such transition preceding a marked redun-

dant place whose postset contains places that are all marked. If some redundant places are still

marked after the marking recalculation they are made mandatory (lines 16-18). The recalculation

of the initial marking for the merge places can be improved by employing the reachability analysis

algorithms. However, they require either building a finite prefix or a reachability graph which is

computationally complex for large specifications.

An auxiliary procedure removing an STG node together with its incident arcs is described by

Algorithm 10. It is moved to a separate algorithm in order to lighten the optimise_bouncer and

optimise_tracker pseudo-code. The input of the remove_node algorithm is an STG and its node

which is required to remove. The removal of node x starts from the elimination of its producing

and consuming arcs (lines 04-07). If x is a place, then the read-arcs from this place to all transitions

are removed and the node is subtracted from the set of STG places (lines 08-11). If x is a transition,

then read-arcs from all places to this transition are removed and x is removed from the set of STG

transitions (lines 12-15).

The pseudo-code for optimisation of context and trigger signals in the bouncer part is shown

in Algorithm 11. It changes the read-arcs connecting the tracker with the bouncer in such a way

that only mandatory places control the transitions of elementary cycles. In order to do this for

each transition tread which is controlled by a redundant place p its copy tdup
read is created and its

consuming and producing arcs are duplicated (lines 06-09).
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Algorithm 10 Node removal together with its incident arcs
01 procedure remove_node
02 input: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P, x ∈ P ∪ T
03 output: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P
04 for_each y ∈ •x do
05 F:=F\ {(y, x)}
06 for_each y ∈ x• do
07 F:=F\ {(x, y)}
08 if x ∈ P then
09 for_each y ∈ x? do
10 R:=R\ {(x, y)}
11 P:=P\ {x}, PR:=PR\ {x}
12 else
13 for_each y ∈ ?x do
14 R:=R\ {(y, x)}
15 T:=T\{x}

Algorithm 11 Optimisation of the bouncer context and trigger signals
01 procedure optimise_bouncer
02 input: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P
03 output: STG = 〈P, T, F, R, M0, I, O〉
04 Ttrig:=∅
05 for_each tread ∈ p? : p ∈ PR do
06 // Duplicate tread together with its consuming and producing arcs
07 create transition tdup

read, T:=T ∪
n

tdup

read

o

08 for_each pread_pred ∈ •tread do F:=F ∪
n“

pread_pred, tdup

read

”o

09 for_each pread_succ ∈ tread• do F:=F ∪
n“

tdup

read, pread_succ

”o

10 for_each t ∈ •p do
11 // Form trigger signals for tdup

read

12 if tread /∈ Ttrig then
13 for_each pread ∈ ?t do R:=R ∪

n“

pread, tdup

read

”o

14 Ttrig:=Ttrig ∪
n

tdup

read

o

15 // Form context signals for tdup

read

16 create transition tdup, T:=T ∪
˘

tdup
¯

17 F:=F ∪
˘`

tdup, p
´¯

, F:=F\ {(t, p)}
18 for_each ppred ∈ •t do
19 create place pdup

pred, P:=P ∪
n

pdup

pred

o

20 R:=R ∪
n“

pdup

pred, t
dup

read

”o

21 for_each tpred_succ ∈ ppred• : tpred_succ 6= t do F:=F ∪
n“

pdup

pred, tpred_succ

”o

22 for_each tpred_pred ∈ •ppred do F:=F ∪
n“

tpred_pred, pdup
pred

”o

23 for_each tpred_read ∈ ppred? do R:=R ∪
n“

pdup

pred, tpred_read

”o

24 F:=F ∪
n“

pdup

pred, t
dup

”o

25 // Remove processed transition t and its preset places
26 if |t•| = 0 then
27 for_each ppred ∈ •t do
28 remove_node (STG, ppred)
29 remove_node (STG, t)
30 remove_node (STG, tread)
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In our method only those signals whose transitions directly precede an output transition form

the set of its triggers. Line 12 checks if transition tread is controlled by a trigger signal yet. If it is

not then trigger signals are introduced by means of read-arcs connecting tdup
read to each place which

controls a transition in the preset of place p (line 13). Transition tdup
read is added to the set Ttrig

containing transitions which are already controlled by trigger signals (line 14).

Recalculation of the context signals involves some change in the tracker structure. Each tran-

sition t in the preset of the redundant place p is copied to tdup (line 16). Then producing arc
(

tdup, p
)

is added and arc (t, p) is deleted, thus removing redundant place p from the postset of

t (line 17) and each place ppred in the preset of transition t is copied to pdup
pred (lines 18-19). This

place pdup
pred is used by the transition tdup

read in the elementary cycle as a new context signal instead of

place p, see read-arc
(

pdup
pred, t

dup
read

)

in line 20. All arcs incident to place ppred except consuming

arc (ppred, t) are copied to similar arcs connected to place pdup
pred (lines 21-23). The consuming arc

(ppred, t) is mapped into arc
(

pdup
pred, t

dup
)

(lines 24).

If the redundant place p was the only place in the postset of transition t then this transition is

removed together with its preset places and their incident arcs (lines 26-29). Finally the transition

tread is removed together with its consuming, producing and read-arcs. If there are other read-arcs

from redundant places to tread they have been copied into the read-arcs to tdup
read and are processed

in the next iterations of the algorithm. If there are redundant places in the pre-preset of place p

these are also processed in the next iterations.

After the application of optimise_marking and optimise_bouncer algorithms to the device STG

its redundant places are not marked with tokens and do not control any transition by means of

read-arcs. These places can be removed now by the procedure whose pseudo-code is shown in

Algorithm 12. Each redundant place p is removed individually with the required change of the

tracker structure. For each transition t in the preset of p a copy tdup
succ of the each transition tsucc

in the postset of p is created (lines 06-10). The copy transition tdup
succ is added to the T dup which

contains all transitions which are duplicated for t. Incident arcs of tsucc except of consuming arc

(p, tsucc) are also copied (lines 11-13). After that each place in the preset of t is connected by

a consuming arc with each transition in T dup (lines 14-17). When all transitions in the preset of

p are processed, the transitions in the postset of p and the redundant place p itself are removed
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Algorithm 12 Optimisation of the tracker by redundant places removal
01 procedure optimise_tracker
02 input: STG = 〈P, T, F, R, M0, I, O〉, PR ⊆ P
03 output: STG = 〈P, T, F, R, M0, I, O〉
04 for_each p ∈ PR do
05 // Duplicate p• transitions and their incident arcs
06 for_each t ∈ •p do
07 T dup:=∅
08 for_each tsucc ∈ p• do
09 create transition tdup

succ

10 T:=T ∪ tdup
succ, T dup:=T dup ∪ tdup

succ

11 for_each pconc ∈ •tsucc : pconc 6= p do F:=F ∪
˘`

pconc, t
dup
succ

´¯

12 for_each psucc ∈ tsucc• do F:=F ∪
˘`

tdup
succ, psucc

´¯

13 for_each pread ∈ ?tsucc do R:=R ∪
˘`

pread, t
dup
succ

´¯

14 // Connect •t places with all T dup transitions
15 for_each ppred ∈ •t do
16 for_each tdup

succ ∈ T dup do
17 F:=F ∪

˘`

p, tdup
succ

´¯

18 // Remove redundant place p, p• transitions and processed •p transitions
19 for_each t ∈ •p do
20 F:=F\ {(t, p)}
21 if |t•| = 0 then
22 remove_node (STG, t)
23 for_each tsucc ∈ p• do
24 remove_node (STG, tsucc)
25 remove_node (STG, p)

(lines 18-25). If redundant place p was the only place in the postset of t then transition t is also

removed.

The procedure of redundant places removal is described using a simple example whose STG

is shown in Figure 4.15(a). Only places p07, p08 are redundant and the initial marking does

not require recalculation. Redundant places p07 and p08 control transitions out1+ and out2+

respectively. New context and trigger signals for each transition are found by optimise_bouncer

algorithm. Its result is shown in Figure 4.15(b).

Dummy (in2+) is split into (in2+)a and (in2+)b because it precedes two redundant places. The

place p06 which is in the preset of (in2+) is also split into p06a and p06b, so that p06a precedes

(in2+)a and p06b precedes (in2+)b.

Only the (in2+)b dummy precedes redundant place p08. The context and trigger signals of the

transition out2+ are defined by the preset of place p08. Its trigger consists of place in2=1 which

controls (in2+)b and its context is formed by place p06b which is in preset of (in2+)b. Read-arcs

from in2=1 to (in2+)b and from p06 to out2+ are removed.

Two dummies (in1+) and (in2+)a precede redundant place p07 which means there are two
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Figure 4.15: Removal of redundant places
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mutually exclusive sets of triggers/context signals for out1+. For this reason the out1+ transition

is duplicated. The trigger of its first copy out1+/1 is the place in1=1 which controls (in1+); its

context is provided by places p04 and p05 which are in preset of (in1+). The trigger of the second

copy out1+/2 is place in2=1 which controls (in2+)a; its context signals places p06a which is in

preset of (in2+)a. Read-arcs from p07 to out1+, from in1=1 to (in1+) and from in2=1 to (in2+)a

are removed.

Redundant places p07 and p08 are then removed from the STG using optimise_tracker algo-

rithm whose result is shown in Figure 4.15(c). Note that dummy (out1+) is split into (out1+)a and

(out1+)b. There are two transitions in the preset of p07, for each of them a copy of p07 postset is

created.

The algorithms presented in this section are implemented in the OptiMist toolkit. The toolkit

automates the mapping of STGs into circuits. At the same time it gives a designer full control

on the choice of optimisation heuristics and allows manual adjustment of the solution to specific

requirements. Appendix A describes the tools comprising the OptiMist toolkit and their command-

line parameters. OptiMist can be employed in combination with Cadence to allow simulation and

technology mapping of circuits. A basic library of DCs and FFs has been created for Cadence. It

can be expanded, if necessary, using a tool from the OptiMist package which generates a Verilog

netlist for DCs and FFs at transistor-level or gate-level.

The results presented in Section 4.3 and Section 4.4 are obtained by OptiMist tools.

4.3 GCD controller example

Consider the use of the OptiMist tools on the example of the GCD control unit. Its STG is obtained

by refining the LPN generated from the HDL specification by the PN2DCs tool, see Figure 3.10(c).

In order to produce the control unit STG shown in Figure 4.16 the events of the LPN are expanded

to a 4-phase handshake protocol. After that, the GCD datapath schematic shown in Figure 3.14

is taken into account for manually adjusting the STG to the datapath interface. In the modified

STG the request to the comparator cmp_req is acknowledged, in a 1-hot code, by one of the

signals: gt_ack, eq_ack or lt_ack. The request to the subtracter sub_gt_req is acknowledged by

x_ack. This is possible because the procedure of storing the subtraction result into the register is
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Figure 4.16: STG of GCD controller

controlled directly in the datapath and does not involve the control unit. Similarly sub_lt_req is

acknowledged by ack_y. The obtained STG is stored in the gcd.g file.

The redundant places are detected in the original STG before the exposure of outputs by the

om_detect tool. The first heuristic applied to the GCD example is optimise_choice. It prevents

coding conflicts from occurring in choice conflicting branches without restricting the latency re-

duction. The result of this heuristic is shown in Figure 4.17(a). It is obtained by the following

command:

$ om_detect --level1 --output gcd_1.g gcd.g

There are three places pgt1, peq1 and plt1 which are in the post-postset of the free-choice

place cmp2. All of them are mandatory because they are preceding the transitions of the

same signal cmp_req. Making these places mandatory reduces the input-output latency for

eq_ack+→cmp_req-/1, gt_ack+→cmp_req-/2 and lt_ack+→cmp_req-/3 handshakes. However,

it is the only way to avoid a coding conflict.

The second heuristic optimise_latency reduces both the size and the latency of a circuit. The

redundant places detected by this heuristic in the GCD example are px1, py1, px3, py3, px5, py5,

pgt3, plt3, pgt5, plt5, peq3 and peq5, see Figure 4.17(b). The preset of each of these places

contains transitions of input signals only and the postset contains transitions of non-input signals.

The command executed for detecting these redundant places is:

$ om_detect --level2 --output gcd_2.g gcd.g

The last heuristic optimise_size detects redundant places cmp2, pgt2, plt2 and peq2 in the GCD

example, see Figure 4.17(c). Removal of place cmp1 also does not cause a coding conflict, how-

97



CHAPTER 4. SYNTHESIS OF CONTROL PATH

ever it is kept by the om_detect tool in order to preserve the simplicity of the cmp_req elementary

cycle. Without this place the positive phase of the cmp_req would be controlled by two context

signals from the tracker (read-arcs from px4 and py4) and two trigger signals from the environment

(read-arcs from places x_ack=0 and y_ack=0). The trade-off between the complexity of elemen-

tary cycles and the number of places in the tracker can be set by command line parameters of the

om_detect tool:

$ om_detect --level3 --join2 --output gcd_3.g gcd.g

After the detection of redundant places the om_expose tool partitions the STG of GCD control

path into tracker and bouncer parts:

$ om_expose --output gcd_3e.g gcd_3.g

The resultant STG is shown in Figure 4.18. The bouncer consists of elementary cycles repre-

senting the outputs of GCD controller, one cycle for each output. The elementary cycles for the

inputs are not shown as they belong to the environment. The tracker is connected to inputs and

outputs of the system by means of read-arcs, as it is described in the algorithm of outputs exposure.

After the redundant places are detected and the outputs are exposed, the STG is optimised by

removing the redundant places from the tracker part. The removal of a place involves the change

in the STG structure but preserves the behaviour of the system w.r.t. input-output interface. The

result of GCD control unit optimisation is presented in Figure 4.19. This operation is automatically

performed by the om_transform tool:

$ om_transform --level5 --output gcd_3et.g gcd_3e.g

This STG can now be used for circuit synthesis. For this each tracker place is mapped into a

DC and each elementary cycle is mapped into a FF. The request and acknowledgement functions

of a DC are mapped from the structure of the tracker in the vicinity of the corresponding place.

The set and reset functions of a FF are mapped from the structure of the set and reset phases of

the corresponding elementary cycle. The GCD controller circuit obtained by this technique is

presented in Figure 4.20. The netlist is produced automatically by the following command:

$ om_verilog gcd_3et.g --statistics --output gcd.v

This circuit consists of 15 DCs and 6 FFs. If the DCs are implemented as transistor-level fast

DCs then the maximum number of transistor levels in pull-up and pull-down stacks is 4. This

transistor stack appears in the request function of the DC for cmp1 and is formed by the signals
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Figure 4.17: Detection of redundant places in STG of GCD controller
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Figure 4.18: Exposure of outputs in STG of GCD controller
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Figure 4.19: Elimination of redundant places in STG of GCD controller
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Figure 4.20: GCD controller circuit obtained by the OptiMist tool

x_ack=0, y_ack=0, px4_req and py4_req.

The longest latency, which is the delay between an input change and reaction of the controller

by changing some outputs, is exhibited by cmp_req signal. The latency of its set and reset phases

is equal to the delay of one DC and one FF. The other outputs are triggered directly by input signals

which means that their latencies are equal to one FF delay plus the delay of one inverter when the

trigger signal requires inversion.

4.4 Benchmarks

This section highlights the advantages and drawbacks of the direct mapping approach implemented

in OptiMist for a set of benchmarks. The direct mapping approach is compared against explicit

logic synthesis (implemented in Petrify) in terms of circuit size and speed. The complexity of the

underlying algorithms is taken into account by measuring the computation time of OptiMist and

Petrify on Pentium 3 1GHz, 1Gb RAM computer. The effect of optimisation heuristics on the

direct mapping is also analysed. For this comparison each benchmark STG has been synthesised
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benchmark DC max max transistor worst-case computation
name count fin fout count latency time

gcd
OptiMist (no optimisation) 30 2 4 255 4.5 0.11s
OptiMist (latency&size optimisation) 14 3 4 174 4.5 0.18s
Petrify 116 11.0 18s

vme-bus
OptiMist (no optimisation) 17 3 3 155 5.0 0.09s
OptiMist (latency&size optimisation) 10 3 4 121 5.0 0.11s
Petrify 58 8.5 1s

toggle
OptiMist (no optimisation) 8 2 2 68 4.5 0.06s
OptiMist (latency&size optimisation) 4 2 2 44 3.5 0.07s
Petrify 22 3.5 0.12s

imec-alloc-outbound
OptiMist (no optimisation) 17 2 2 143 5.0 0.09s
OptiMist (latency&size optimisation) 6 2 5 73 3.0 0.16s
Petrify 46 7.5 6.6s

par3
OptiMist (no optimisation) 19 3 4 160 6.5 0.07s
OptiMist (latency&size optimisation) 15 4 4 114 4.5 0.09s
Petrify 78 12.5 11s

count
OptiMist (no optimisation) 19 3 3 150 5.5 0.07s
OptiMist (latency&size optimisation) 11 3 4 98 3.0 0.11s
Petrify (manual CSC resolution) 68 3.0 1.4s

Table 4.2: Comparison between OptiMist and Petrify

in three different ways:

· Direct mapping by the OptiMist tools without detection and elimination of redundant places;

· Direct mapping by the OptiMist tools with latency and size optimisation by removing the

redundant places from the STG;

· Logic synthesis by the Petrify tool with automatic resolution of CSC conflicts (unless it is

impossible) and logic decomposition into gates with at most four literals.

The result of the experiment is summarised in Table 4.2.

The number of transistors is counted for the case of places being implemented as fast DCs,

request-acknowledgement logic of DCs and set-reset logic of FFs being implemented at transistor
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level. The condition of having at least three DCs in a loop is met.

In all experiments, the latency is counted as the accumulative delay of negative gates switched

between an input and the next output. The following dependency of a negative gate delay on its

complexity is used. The latency of an inverter is associated with a unit delay. Gates which have

maximum two transistors in their transistor stacks are associated with 1.5 units; 3 transistors -

2.0 units; 4 transistors - 2.5 units. This approximate dependency is derived from the analysis of

the gates in AMS 0.35µm library. The method of latency estimation does not claim to be very

accurate. However, it takes into account not only the number of gates switched between an input

and the next output, but also the complexity of these gates.

All experiments show the high efficiency of direct mapping optimisation heuristics. About

50% of DCs are redundant in the original STG. Their removal results in up to 35% improvement

in the circuit size. The latency of the circuits also benefits from the optimisation. In some cases

(gcd, vme-bus) the worst-case latency cannot be improved because of a potential coding conflict

in the conflicting branches. However, this latency is only exhibited by the first output signal after

the choice place. The latency of the other outputs is reduced.

The comparison of the circuits obtained by OptiMist (with latency&size optimisation) and

Petrify shows that the direct mapping solutions are usually larger than logic synthesis solutions.

However the circuits obtained by the direct mapping technique exhibit lower output latency.

For some benchmarks (e.g count) Petrify fails to resolve a CSC conflict even if it is reducible.

Manual insertion of additional signals is required in such cases. However, OptiMist completes the

job automatically for such benchmarks.

The OptiMist tools can also process large specifications, which are not computable by Petrify

in acceptable time. This can be illustrated on the scalable benchmark whose STG is shown in

Figure 4.21(a). Adding the concurrent branches as shown by dashed lines one can increase the

complexity of the benchmark. When the concurrency increases, the Petrify computation time

grows exponentially, while the OptiMist computation time grows linearly on the same benchmark,

see Figure 4.21(b). Note the different time scale for OptiMist (seconds) and for Petrify (minutes).
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Figure 4.21: Dependency of computation time on STG complexity

4.5 Summary

A method for direct mapping of STGs into circuit netlist has been presented in this chapter. The

method exploits the two-level architecture where a circuit consists of two blocks: the tracker and

the block of output flip-flops. The tracker computes context signals for outputs concurrently with

the environment operation, thus achieving the latency reduction effect. The output flip-flops gen-

erate outputs from context and trigger signals. The adopted architecture allows the minimisation

of state-holding elements and reduction of latency. The characteristic feature of the method is

that the optimisation is achieved at the specification (Petri net) level as opposed to optimisation of

logic circuits after the synthesis stage.

The method is implemented in a package of software tools called OptiMist. The package

take an STG as the initial specification of a system, converts the STG in a form convenient for

mapping, performs optimisation, and produces a Verilog netlist of the circuit. The optimisation

of the specification relies on a set of heuristics aimed at circuit latency and size reduction. This

package can be employed in combination with Cadence for simulation and technology mapping

of circuits.

In the OptiMist tools the optimisation is performed locally and the computation time grows

linearly with the size of specification. This allows to process large specifications which are not

computable by logic synthesis tools in acceptable time.
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The OptiMist tools are fully automated. At the same time a designer can significantly influence

the result by choosing one or more optimisation heuristics. In combination with computation

speed OptiMist gives the designer an opportunity to synthesise circuits with different optimisation

parameters and choose the best solution.
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Chapter 5

Synthesis of data path

Synthesis of an asynchronous data path by a direct mapping approach has two levels of granu-

larity. At the higher level, which is reviewed in Chapter 3, the entire data path is obtained by

mapping its CPN fragments into hardware components which implement the corresponding math-

ematical functions. A library of hardware components is produced at the lower level of data path

synthesis. Such a library can either be developed by modifying the standard RTL solutions to the

asynchronous style manually, or using computationally complex logic synthesis methods [114].

The former approach is restricted by the manual intervention. The latter is still in its infancy and

produces solutions that are inefficient in terms of speed and area.

In this chapter a method for automated synthesis of the data path components by direct map-

ping is presented. It is based on a conventional RTL design flow, similar to the NCL-X ap-

proach [62]. Each data path component is first implemented using standard RTL synthesis tools,

e.g Synopsys. The obtained RTL circuit is mapped into a hazard-free (having no glitches due to

race conditions) logic using a dual-rail encoding with a return-to-spacer signalling. The hazard-

free logic facilitates low power consumption and high speed of the circuit. This return-to-spacer

signalling is convenient for detecting the completion of computation and producing an acknowl-

edgement signal for the environment.

The dual-rail encoding and the return-to-spacer protocol are also successfully used in security

circuits. With this protocol a dual-rail circuit has the same number of switchings per computation

cycle independent of processed data. For example, in [89] a secure Amulet core for smartcard
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applications is build using dual-rail logic. However, the physical implementation of the rails at the

gate level is not symmetric and the use of a standard return-to-spacer switching protocol may still

leak secrete data. A new alternating-spacer protocol is proposed in this chapter. It has two spacers

interchanging in time, which makes all gates switch per computation cycle. The full potential of

this protocol is still to be learnt. One of its applications, the energy balancing for security circuits,

is studied in Chapter 6.

The rest of the chapter is organised as follows. Section 5.1 introduces a method for synthesis of

data path components using dual-rail encoding and a new alternating-spacer signalling protocol.

Section 5.2 presents the converters between single-rail and dual-rail logic domains, converters

between single-spacer and alternating-spacer protocols and different implementations of dual-rail

flip-flops and latches. A design kit which implements the method is discussed in Section 5.4. Its

operation is studied on a 4-bit adder example in Section 5.5.

This chapter is based on results presented in [106, 101]. The whole method presented in

this chapter, the VeriMap software tool implementing this method, and individual solutions for

converters, flip-flops and latches were tested by several practical designs for our industry partner

Atmel Inc.

5.1 Method

Our method for synthesis of the data path components is based on a direct mapping approach and

has low algorithmic complexity. Its main idea is to stay as close to the standard industry design

flow as possible. The method is applied via an automated tool to netlists obtained by standard RTL

synthesis tools from a behavioural specifications (’push-button’ approach).

The method can also be applied to existing clocked architectures, dominated by synchronous

single-threaded CPU cores and their slow buses, having no pipelining or concurrency. The com-

binational logic of such data path is transformed into hazard-free dual-rail logic, the registers are

replaced by predesigned dual-rail flip-flops, the interface to the single-rail environment is pre-

served by special converters. The resultant circuit be can desynchronised by replacing the clock

signal by a completion detection signal, thus obtaining a self-timed solution.
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5.1.1 Single-spacer dual-rail

Dual-rail code uses two rails with only two valid signal combinations {01, 10}, which encode

values 0 and 1 respectively. Dual-rail code is widely used to represent data in self-timed cir-

cuits [118, 33], where a specific protocol of switching helps to avoid hazards. The protocol allows

only transitions from all-zeroes {00}, which is a non-code word, to a code word and back to all-

zeroes as shown in Figure 5.1(a); this means the switching is monotonic. The all-zeroes state is

used to indicate the absence of data, which separates one code word from another. Such a state is

often called a spacer and the switching discipline is called a single-spacer protocol.

An approach for automatic conversion of single-rail circuits to dual-rail, using the above sig-

nalling protocol, that is easy to incorporate in the standard RTL-based design flow has been de-

scribed in [62]. Within this approach, called Null-Convention Logic [41] one can follow either of

two major implementation strategies for logic: one is with full completion detection through the

dual-rail signals (NCL-D) and the other with separate completion detection (NCL-X). The former

is more conservative with respect to delay dependence while the latter is less delay-insensitive but

more area and speed efficient. For example, an AND gate is implemented in NCL-D and NCL-X

as shown in Figure 5.1(b,c) respectively. NCL methods of circuit construction exploit the fact that

the negation operation in dual-rail corresponds to swapping the rails. Such dual-rail circuits do

not have negative gates (internal negative gates, for example in XOR elements, are also converted

into positive gates), hence they are race-free under any single transition.

One can abandon the completion detection channels, relying on timing assumptions as in stan-

dard synchronous designs; thus saving a considerable amount of area and power. This approach

was followed in [17], considering the circuit in a clocked environment, where such timing assump-

tions were deemed quite reasonable to avoid any hazards in the combinational logic. Hence, in

the clocked environment the dual-rail logic for an AND gate is simply a pair of AND-gate and

OR-gate as shown in Figure 5.1(d).

The above implementation techniques help to balance switching activity at the level of dual-

rail nodes, i.e. the number of switchings is made the same for each cycle of computation. Though,

different gates are switching inside the dual-rail nodes. For example, compare the gate switching

profiles of the structure in Figure 5.1(d) when computing two different binary sequences of values
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Figure 5.1: Single-spacer dual-rail

c for corresponding input sequences on a and b. The first input sequence is a = 00, b = 00, and

the second one is a = 11, b = 11. The switching profile of these sequences at the level of gates

is different: in the first sequence there are four firings of OR gate and in the second there are four

firings of AND (note that we counted both spacer→ code word and code word→ spacer phases).

Assuming that the power consumed by one rail in a pair is the same as in the other rail, the

overall power consumption is invariant to the data bits propagating through the dual-rail circuit.

However, the physical realisation of the rails at the gate level is not symmetric, and experiments

with these dual-rail implementations show that power source current leaks the data values. While

there could be ways of balancing power consumption between individual gates in dual-rail pairs by

means of modifications at the transistor level [113], adjusting loads and changing transistor sizes,

etc., all such measures are costly. The standard logic library requires finding a more economic

solution.

5.1.2 Dual-spacer dual-rail

In this work a new protocol with two spacer states, {00} for all-zeroes spacer and {11}

for all-ones spacer is proposed. This dual-spacer protocol defines the switching as follows:
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Figure 5.2: Dual-spacer dual-rail protocols

spacer→code word→spacer→code word, where the spacer states can be arbitrary and possibly

random as shown in Figure 5.2(a).

A possible refinement for the dual-spacer protocol is the alternating-spacer protocol shown

in Figure 5.2(b). In this protocol the all-ones spacer and all-zeroes spacer alternate in time. The

advantage of this is that all bits are switched in each cycle of operation, thus opening a possibility

for perfect energy balancing between cycles of operation.

As opposed to the single-spacer protocol, where in each cycle a particular rail is switched

up and down (i.e. the same gate switches twice), in the alternating-spacer protocol both rails are

switched from all-zeroes spacer to all-ones spacer and back. The intermediate states in this switch-

ing are code words. In the scope of the entire logic circuit, this means that for every computation

cycle all gates forming the dual-rail pairs switch. This switching behaviour can be utilised for se-

curity circuits, refreshing of dynamic logic, online testing, etc. The application of the alternating-

spacer protocol to security designs is studied in depth in Chapter 6.

The alternating-spacer discipline can be directly applied to a clocked NCL-X dual-rail circuit

(without completion detection logic), see Figure 5.1(c). With some modification of the completion

detection logic (OR-gates should be replaced by XOR-gates) the alternating-spacer protocol is

also applicable to the traditional NCL-X circuits. However, this protocol cannot be applied to the

NCL-D circuits. Their dual-rail gates assume that for each pair of rails the {11} combination never

occurs. In fact the use of all-ones spacer would upset the speed-independent implementation in

Figure 5.1(b), because the outputs of the second layer elements would not be acknowledged during

code word→all-ones spacer transition. The completion detection for those gates can of course be
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ensured by using an additional three-input C-element, but this extra overhead would make this

implementation technique much less elegant because of the additional acknowledgement signal

channel. In the single-spacer structure, due to the principle of orthogonality (one-hot) between

min-terms a_0·b_0, a_0·b_1 and a_1·b_0, only one C-element in the rail c_0 fires each cycle.

5.1.3 Negative gate optimisation

In CMOS a positive gate is usually constructed out of a negative gate and an inverter. That is why

the total area overhead in a dual-rail circuit is more than twofold compared to the corresponding

single-rail circuit. Use of positive gates is not only a disadvantage for the size of dual-rail circuit,

but also for the length of the critical path. Our method for negative gate optimisation [17] is

described in this section.

If in a dual-rail circuit an all-zeroes spacer is applied to a layer of negative gates (NAND, NOR,

AND-NOR, OR-NAND), then the output will be an all-ones spacer. The opposite is also true: an

all-ones spacer is converted into an all-zeroes spacer. The polarity of signals within code words

can be preserved by swapping the output rails.

The spacer alternation between layers of a dual-rail circuit implemented using negative gates

can be used for negative gate optimisation of the circuits. The optimised circuit uses either all-

ones spacer or all-zeroes spacer in different layers. The spacer changes between the layers of logic

as captured in Figure 5.3. The inputs of each dual-rail gate should be in the same spacer.

In order to optimise a dual-rail circuit for negative gates the following transformations should

be applied. First, all gates of a positive dual-rail circuit are replaced by negative gates. Then, the

output rails of those gates are swapped. In order to ensure the same spacer polarity on all inputs

of a dual-rail gate spacer polarity inverters are used. A spacer polarity inverter is implemented as
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a pair of inverters having their outputs crossed in order to preserve the polarity of signals in the

output code words. They are placed at the wires that connect the layers of logic of the same parity

(odd-to-odd or even-to-even).

Consider negative gate optimisation using a simple example shown in Figure 5.4(a). Firstly,

a positive-logic dual-rail is built by replacing gates by their dual-rail versions as shown in Fig-

ure 5.4(b). Note, that the single-rail NAND-gate A is refined into an AND-gate and an inverter.

The operation of inversion in dual-rail is implemented by rail swapping and does not require any

logic gates. Secondly, the positive gates of the obtained dual-rail circuit are replaced by cor-

responding negative gates. The output rails of each dual-rail gate are swapped to preserve the

polarity of signals in the output code words as shown in Figure 5.4(c). Also the spacer polarity

inverter is inserted in <c_1, c_0> pair of wires. This is necessary to preserve the same polarity of

the spacer on the input of the B gate. The solid lines indicate the signals which use the all-zeroes

spacer, and the dotted lines indicate the wires with the all-ones spacer.

It is possible to combine negative gate optimisation with the use of the alternating-spacer
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protocol, Figure 5.5. It requires a careful analysis of modules interconnect in case of hierarchical

circuit design. In such circuits several instances of the same module can be found. If the inputs of

the module rely on different polarity of the spacer it might be difficult to automate the optimisation

process. The easiest way to avoid this difficulty is to keep the same spacer polarity, e.g. all-zeroes,

on all interface signals of all modules. In some cases this rule can be abandoned in favour of speed

and size optimisation, as in Section 5.5 full-adder example.

It is also possible to use conventional EDA tools for negative gate optimisation of the combina-

tional logic. However the existing synthesis tools do not consider the dual rail nature of the circuit

and can lose the balance between the rails. In contrast, our method for negative gate optimisation

keeps each dual-rail gate balanced (to some extent) by either converting both its rails into negative

logic or leaving both rails in positive logic.

5.1.4 Completion detection

A dual-rail circuit built out of traditional NCL-X gates requires a completion detection logic to

compute when the data is ready on the output and the circuit is in a stable state. The result of these

computations is a completion signal. This signal is used to latch the data in the circuit flip-flops.

Because of the early propagation effect it is not enough to put the completion detection logic

on the flip-flop inputs only. The early propagation happens when a dual-rail gate is triggered by

one of its inputs without waiting for the other inputs. If the completion signal relies on the flip-flop

inputs only, then a flip-flop might latch a code word and produce a spacer (or vice versa) before

all combinational logic gates switch. The propagation speed of a spacer and a code word might be

different in the same path of combinational logic. If a spacer propagates faster in a given path, then

it eventually might overtake a code word from the previous cycle of computation. The opposite

scenario is also possible, that a code word catches up with a spacer from the previous computation

cycle. Such clashing of a spacer and a code word leads to hazards in a single-spacer protocol, or,

to a circuit malfunction in case of an alternating-spacer protocol.

The easiest way to ensure correct computation of the completion signal is to put the completion

detection in all combinational logic wires, as shown in Figure 5.6(a). The result of completion

detection in individual dual-rail nets are fed into a C-element to produce the done signal, which
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latches the data in the flip-flops. Note that the inputs of the combinational logic do not require a

completion detection because it is already provided by the go signal.

The implementation of a completion detection block (marked with the cd label) depends on

the signalling discipline. For a traditional return-to-zeros protocol these blocks are implemented

as 2-input OR-gates. If the negative gate optimisation is applied to the dual-rail logic, then the

completion is detected by NAND gates in the layers with all-ones spacer and by OR-gates in the

layers with all-zeros spacer. Dual-rail circuits with alternating-spacer protocol use XOR-gates for

completion detection.

One of the possibilities for circuit size optimisation is to skip completion detection in some

layers of combinational logic and rely on relative timing, as shown in Figure 5.6(b). This is a

layer-wise optimisation, which is based on the following observation. A few layers just before

the flip-flops can be left without completion detection. It is possible because the multi-input C-

element producing the done signal is quite slow. If its switching from 0 to 1 (from 1 to 0) takes

longer than the propagation of a code word (a spacer) through several combinational logic layers

preceding the flip-flops, then completion detection is redundant in these layers. Similarly, after the

layer of logic with completion detection, several layers, whose cumulative delay is less then the

delay of the C-element, can be left without completion detection. The maximum number of layers

between the layers equipped by completion detection depends on the complexity of dual-rail gates

forming these layers and on the complexity of the C-element.

Another opportunity to decrease the size of a completion detection logic is a path-wise opti-

misation. In this optimisation the completion detection is only inserted in the critical paths of the

circuit as shown in Figure 5.6(c). As the longest paths are calculated on the circuit netlist, the

length of the wires is not taken into account. The actual layout of a circuit may introduce new

critical paths, thus causing errors in the completion detection computation. In order to avoid such

situation all paths within a safety margin (top 10-20% of the longest paths) should be equipped

with the completion detection logic. Note that because of early propagation effect in the com-

binational logic the set of critical paths depend on the input values. This means that the critical

paths must be calculated on all possible sets of input data which can computationally hard and

thus requires further investigation.
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Figure 5.6: Optimisation of a completion detection logic
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Figure 5.7: Multi-input C-element

A combination of both optimisation techniques has shown the best result, see Figure 5.6(d).

The nets which require a completion detection are computed by intersecting a set of nets obtained

by the layer-wise optimisation and a set of nets calculated by the path-wise optimisation.

Careful timing analysis of the dual-rail logic is required for the proposed optimisations in order

to guarantee the hazard-free switching. It can be performed by a conventional timing analysis tool,

e.g. the Cadence Pearl timing analyser.

A multi-input C-element which is used to form the done signal can be decomposed into a tree

of 2-input C-elements. It would be more convenient to built this tree using both 2-input and 3-input

C-elements, especially if the number of inputs is odd. The use of 2-input C-elements only may

result in an unbalanced tree having different length of paths from its inputs to the output. However,

C-elements are not usually included in a library of gates and need to be built out of complex gates.

While a 2-input C-element can be implemented in most technologies, a complex gate required to

built a 3-input C-element is usually not available in these libraries.

For example, a 5-input C-element can be designed using four 2-input C-elements as shown in

Figure 5.7(a). In such implementation of a multi-input C-element the paths from its inputs to the

output may be not balanced. For example, in Figure 5.7(a) the paths from inputs a, d and e are

two C-elements, and from inputs b and c - three C-elements. The difference in paths length can

be employed by optimising the connection of the completion detection blocks to the C-element

inputs: the closer a completion detection block is to the combinational logic outputs, the shorter

C-element path it is connected to. The major drawback of this implementation of a multi-input

C-element is its large size when the 2-input C-elements are built out of standard library gates.

The size of a multi-input C-element can be reduced by decomposing it into a 2-input C-element
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and two balanced trees of AND-gates and OR-gates, as shown in Figure 5.7(b). The trees are built

using both 2-input and 3-input gates, which makes it possible to keep the length of paths form

all inputs equal. In this implementation an early propagation effect can be observed. When the

inputs switch from zeroes to ones, the tree of OR-gates exhibits the effect of early propagation,

and vice versa, when the inputs switch from ones to zeroes the tree of AND-gates is subject to

early propagation.

Because of the early propagation, the 2-input C-element can trigger the done signal before all

the gates in the preceding trees switch. A rising edge of done initiates a wave of spacers on the

combinational logic inputs; its falling edge allows the next wave of code-word. While propagating

through the combinational logic these waves trigger the completion detection blocks. A change of

the outputs of the completion detection blocks before all internal gates fire in the trees of AND-

gates and OR-gates may result in hazards. These hazards are local and do not propagate through

the 2-input C-element, thus the hazards do not affect the correct computation of the done signal.

The hazards can be completely avoided if the following timing assumption is held: all gates in

the trees of AND-gates and OR-gates must fire before the inputs of these trees change. This

assumption is usually easy to meet.

A decomposed multi-input C-element can be further optimised by applying the DeMorgan’s

law to its trees of AND-gates and OR-gates. The result of such an optimisation for a 5-input

C-element is shown in Figure 5.7(c). It is 6 inverters smaller than the non-optimised C-element.

5.1.5 Clocked and self-timed architectures

The key feature of our method is its integration with conventional design flow. The method is

applied via an automated tool to a clocked single-rail netlist obtained by standard RTL synthe-

sis tools from a behavioural specification. Such circuits have an architecture depicted in Fig-

ure 5.8(a). The result is also a netlist which can be simulated and passed to the back-end design

tools. Furthermore, all DFT (Design For Testability) features incorporated at the logic synthesis

stage are preserved in our approach unchanged. The resultant dual-rail circuit can be built in ei-

ther of two well-known architectures (cf. [108, 118]): clocked dual-rail or self-timed dual-rail,

Figure 5.8(b, c) respectively.

118



CHAPTER 5. SYNTHESIS OF DATA PATH

in

clk

SR

out
SR comb. logic

flip−flops

(a) Single-rail architecture (standard RTL design)

hazard−free

no completion

DR

in out

clk

converters

SR−DR
DR comb. logic

converters

DR−SR

flip−flops

(b) Clocked dual-rail architecture

go

outconverters

DR−SRDR

done

in converters

SR−DR hazard−free

DR comb. logic

completion
detection

go−controlclk

flip−flops

(c) Self-timed dual-rail architecture

Figure 5.8: Design architectures

Clocked dual-rail circuits do not have completion detection logic and rely on the assumption

that all gates of dual-rail combinational logic switch from code-words to spacers and back to

code-words by the end of the clock cycle. There are two phases in dual-rail logic which need

to be complete each clock cycle. In the worst case it might require a twice as long clock period

as in the single-rail prototype circuit. Usually there is no need to increase the clock cycle twice

because the dual-rail logic is hazard-free and switches faster then the single-rail. The negative

logic optimisation also serves the faster switching of dual-rail combinational logic. The speed of

dual-rail circuit can be further increased by forcing the individual layers of combinational logic

into spacer concurrently.

Self-timed dual-rail circuits do not have a clock and their registers are controlled by a com-

pletion signal formed in the completion detection logic. The completion detection logic produces
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Figure 5.9: Go-controller

done- event when the whole combinational logic is in the spacer state and the go input is low;

similarly done+ event is produced when the combinational logic is in code-word state and go is

high. The high level of done signal forces the spacers on the outputs of dual-rail flip-flops and

single-rail to dual-rail converters. The low level of done allows a new set of code-words into the

combinational logic.

The go-controller helps to synchronise the completion detection of the dual-rail logic with

the data input from single-rail environment. Assuming that the single-rail inputs are stable by

the negative edge of the clock, the go signal goes low just after the clk-. This is acknowledged

by done-, followed by go+ and switching of the combinational logic into code-word state. The

propagation of the code-words through the combinational logic is acknowledged by done+ which

forces the spacers on the inputs of dual-rail combinational logic. The spacers are kept until the

next computational cycle. This asymmetrical behaviour of go-controller allows the combinational

logic to stay in the spacer state most of the time, thus making a power analysis attack more difficult

to fulfil.

The self-timed dual-rail circuits should exhibit better throughput compared to the clocked

ones. However they suffer from a significant size overhead due to additional logic from completion

detection.

The implementation of single-rail to dual-rail converters and dual-rail flip-flops is discussed in

the Sections 5.2, 5.3.
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Figure 5.10: Alternating-spacer to single-spacer converter

5.2 Converters

An essential part of the design flow for dual-rail data path is the interface to the single-rail en-

vironment. It is supported by means of converters between single-rail and dual-rail logic. The

integration of the alternating-spacer protocol into traditional dual-rail logic also requires convert-

ers between single-spacer and alternating-spacer protocols. Several solutions for data independent

converters are presented in the following subsections. They are designed by means of Petrify tool

with subsequent manual optimisation.

5.2.1 Converters between single-spacer and alternating-spacer protocols

If some parts of a dual-rail circuit operate using the single-spacer and other parts the alternating-

spacer protocol, then protocol converters should be used on the borders between these parts. The

implementation of an alternating-spacer to single-spacer converter (AS-SS) and its STG are

shown in Figure 5.10. It is transparent to code words and enforces an all-zeroes spacer on the

<q_1, q_0> output if the input <d_1, d_0> is not a code word.

The implementation of a single-spacer to alternating-spacer converter (SS-AS) and its STG

are depicted in Figure 5.11. The sp input of the converter decides which spacer to inject all-zeros

or all-ones. It is generated form the clk signal by a spacer-controller.

The spacer-controller is a toggle constructed out of two latches as shown in Figure 5.12(a).

Its operation is captured in Figure 5.12(b). Output sp changes on the negative edge of clk and the

internal signal x changes on the positive edge of clk, thus the frequency of sp is half the frequency

of clk.
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Figure 5.12: Spacer-controller

The converter operation can be described as follows. When sp input is low the converter is

transparent and copies the <d_1, d_0> input to the <q_1, q_0> output. If clk is low and sp is high

the converter is still transparent because the high level of sp means that the previous spacer on the

<q_1, q_0> output was all-zeros (due to spacer alternation). Finally, the high level of both clk and

sp forces an all-ones spacer on the <q_1, q_0> output. In order to avoid hazards on the converter

output it must hold the all-ones spacer until a code word arrives to its <d_1, d_0> input, only after

that the converter can be transparent. This is achieved by holding sp high long enough for the

input to change to code word. This timing assumption for the negative edge of sp is depicted by

the dashed arc from d=CW to sp- in Figure 5.11(b). It should be taken into account when using

the single-spacer to alternating-spacer converters.

The spacer is generated on the output of a single-spacer to alternating-spacer converter after

the positive edge of clk. The decision about which spacer to inject (all-zeros or all-ones) happens
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Figure 5.13: Single-rail to single-spacer dual-rail converter

just after the negative edge of clk, which gives the sp signal about half of the clock period to reach

the converter. This generous timing constraint allows the sp signal to be treated the same way as an

ordinary data wire, not worrying about its delay and balanced distribution (as opposed to the clock

tree). However, the buffering of sp might be necessary if it drives many converters. Buffering also

helps to satisfy the timing assumption for the negative edge of sp signal.

5.2.2 Converters between single-rail and dual-rail logic domains

For an integration of a dual-rail circuit into a single-rail environment converters between these

logic domains are required. A converter from single-rail to single-spacer dual-rail (SR-DR)

protocol and its STG are shown in Figure 5.13. The converter forces an all-zeros spacer on its

<q_1, q_0> output when clk is high. Data input d can be unstable while clk is high, however it

is assumed that d becomes stable by the time clk is low, see dashed arcs is Figure 5.13(b). This

timing assumption is easy to meet in both synchronous and asynchronous dual-rail architectures

as the go signal is high at least the first half of the operation cycle.

A converter from single-spacer dual-rail to single-rail (DR-SR) and its STG are shown in

Figure 5.14. The converter holds the previous value of the q output while the <d_1, d_0> input

is in all-zeros spacer. When a code word arrives at the <d_1, d_0> input the output is changed

to the negation of q_0. The timing assumption shown by dashed arcs in Figure 5.14(b) is that the

converter switches into a new value before the next spacer arrives at its input. This is easy to meet

as the converter’s delay is only a pair of two-input negative gates.

The converters between single-rail and dual-rail domains are adapted to the alternating-spacer
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Figure 5.15: Converters between single-rail and alternating-spacer dual-rail

protocol by combining them with converters between single-spacer and alternating-spacer proto-

cols as shown in Figure 5.15.

The timing assumption for the negative edge of sp input (see Section 5.2.1) is easy to meet

in the single-rail to alternating-spacer dual-rail converter. Both, single-rail to dual-rail converter

and the spacer-controller produce code word and sp- respectively by the negative edge of clk. The

delay of the code word on the converter output is equal to the delay of one NOR-gate, while the sp

signal is delayed by a complex AND-OR-gate and a buffering tree for distributing sp.

5.3 Dual-rail flip-flops

Synchronous flip-flops are built to be power efficient, so if they switch to the same value (data

input remains the same within several clocks) then nothing changes at the output. The absence

of the output transition saves power, but at the same time it makes the power consumption data

dependent. In order to avoid this, the dual-rail flip-flops operate in the return-to-spacer protocol.

124



CHAPTER 5. SYNTHESIS OF DATA PATH

MASTER SLAVE

sp
S

en
S

sp
M

en
M

m_0

m_1

d_1

d_0

clk

q_1

q_0

B

D

A

C

CONTROL

(a) Circuit

spS+

q=SPd=SP

m=CW

spM−

enM+

clk+

enS−

q=CW

clk−

enS+

spS−

enM−

spM+

m=SP

d=CW

(b) STG

Figure 5.16: Single-spacer dual-rail flip-flop

5.3.1 Single-spacer dual-rail flip-flop

A single-spacer dual-rail flip-flop and its STG are shown in Figure 5.16. The flip-flop consists of

two latches (MASTER and SLAVE) and their CONTROL unit. Both MASTER and SLAVE have their

respective enable (enM and enS) and reset-to-spacer (spM and spS) inputs. These signals are used

by the CONTROL to manipulate the data transfer between MASTER and SLAVE.

The flip-flop operates in two phases. In the first phase, denoted by a negative edge of clk, first

a code word is copied from MASTER into SLAVE, and then the MASTER is reset to spacer. In the

second phase initiated by a positive edge of clk, first the code word from the combinational logic

is stored into the MASTER and then the SLAVE is reset to spacer.

The first advantage of this implementation is its size. The flip-flop uses of a single cross-

coupled latch in each stage for a couple of input data signals.

The other advantage is the data independent power consumption of the flip-flop. This is

achieved by the symmetry of the flip-flop rails. The internal wires are assumed to be short and the

difference in their electrical characteristics is negligible.

However, there are two timing assumptions in this design, which are depicted as dotted arcs in

Figure 5.16(b):

1. The spacer is enforced in MASTER before the code word propagates through the combina-

tional logic (arc spM+ → d = CW ).
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2. The SLAVE is disabled before the code word propagates through MASTER (arc enS− →

m = CW ).

The first timing assumption results in a requirement that the cumulative delay of combinational

logic and SLAVE latch is greater then the delay of OR-gate A and inverter C. The second timing

assumption is satisfied if the delay of MASTER latch and inverter C is greater than the delay of

NAND-gate B. Both timing assumptions are easy to meet.

5.3.2 Alternating-spacer dual-rail flip-flop

In order to support the alternating-spacer protocol the single-spacer dual-rail flip-flop is sur-

rounded by converters between single-spacer and alternating-spacer protocols as shown in Fig-

ure 5.17.

This implementation uses sp signal to decide which spacer to inject in the positive phase of

clk. Both the dual-rail flip-flop and the spacer-controller produce code word and sp- respectively

by the negative edge of clk. The delay of the code word on the flip-flop output is equal to the delay

of the NAND-gate B and the SLAVE latch (see Figure 5.16), while the sp signal is delayed by a

complex AND-OR-gate and a buffering tree for sp distribution (see Figure 5.12). For large circuits

the buffering tree provides the necessary delay of sp, however if the buffering of sp is not required

due to the small size of the circuit, then additional delay elements may be needed for the sp signal.

The power consumption of the resultant alternating-spacer dual-rail flip-flop is data indepen-

dent due to the symmetry of logic in its rails. The internal wires must be short to maintain balance

in the electric characteristics of the rails.

Another implementation of an alternating-spacer dual-rail flip-flop is shown in Figure 5.18.

This is a speed-independent circuit. It consists of three latches LATCH_1, LATCH_2 and LATCH_3

connected in series. Its operation (at a high-level) is captured above each latch, denoting the events
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Figure 5.18: Three-stage alternating-spacer dual-rail flip-flop

on its output. The order of the events is shown by numbers above the arrows. Initially LATCH_2

is reset to a code word CWa, LATCH_1 and LATCH_3 are reset to all-zeroes spacer. When the

reset is released, first, the code word CWa is copied from LATCH_2 to LATCH_3. It is followed by

coping the spacer from LATCH_1 to LATCH_2. Then the code word CWb from the combinational

logic output is stored in LATCH_1, which allows all-ones spacer on the output of LATCH_3, and

so on. A pair of inverters with their outputs crossed between LATCH_1 and LATCH_2 provides the

alternation of the spacer, code words are unchanged. The inverters between the acknowledgements

of LATCH_2 and requests of LATCH_1 serve the same purpose of spacer alternation.

An individual dual-rail latch which is used in the above alternating-spacer dual-rail flip-flop

is shown in Figure 5.19(a). Its operation is captured by the STG in Figure 5.19(b). It has two

request inputs reqCW and reqSP. A transition on reqCW means that the code word on the input

<d_1, d_0> is ready to be latched. The latching is acknowledged by a transition on ackCW output

(the same polarity as reqCW). A positive transition of reqSP input requests the storage of all-ones

spacer and its negative transition denotes the storage of all-zeroes spacer. The latching of a spacer

is acknowledged by a transition on ackSP output (the same polarity as reqSP).

5.3.3 Complex flip-flops and transparent latches

Dual-rail flip-flops (either single-spacer or alternating-spacer) and multiplexers compose complex

memory elements, e.g. transparent latches, flip-flops with enable input, flip-flops with SCAN

inputs, etc. Building a complex dual-rail block out of existing elements is advantageous for design
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Figure 5.19: One stage of an alternating-spacer dual-rail flip-flop

productivity especially on the stage of prototyping, however the resultant circuits are not optimal

in terms of size and speed. Subsequently, the size and latency reduction can be achieved by joint

optimisation of the comprised elements.

Figure 5.20(a) shows a dual-rail implementation of a D-enabled flip-flop with active low en-

able. The logical 0 on input <en_1, en_0> opens the flip-flop for the new data, while the logical 1

forces the flip-flop to keep its value by means of the feedback from the output <q_1, q_0> to the

input <i1_1, i1_0> of the multiplexer.

Similar, the transparent latch whose dual-rail implementation is shown in Figure 5.20(b) uses

its input <en_1, en_0> to decide which value to output. If <en_1, en_0> is set to logical 1 then

the latch outputs the value previously stored in the flip-flop, otherwise the latch is transparent.

A situation when some inputs of a combinational logic gate are in all-zeros spacer and the

other inputs of the same gate are in all-ones spacer must be avoided. Different spacers on the

inputs of the same gate may produce a code word on the gate output, which violates the switching

protocol. The spacer polarity is synchronised on the circuit inputs and flip-flop outputs in the reset

phase.

5.3.4 Reset of dual-rail flip-flops

There are two types of reset in traditional single-rail circuits: synchronous and asynchronous.
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Figure 5.21: Reset types

The synchronous reset is similar to an ordinary data input. It controls a multiplexer which

selects a value to store in a flip-flop: a predefined constant or an output of combinational logic. An

active low synchronous reset schematic is depicted in Figure 5.21(a). When the reset is low the

flip-flop is set to a constant value CONST, otherwise the output of combinational logic is supplied

to the flip-flop input.

The asynchronous reset uses a dedicated flip-flop input to set its value to 1 or 0 (depending on

the construction of the flip-flop) as shown in Figure 5.21(b).

When an RTL circuit is converted into dual-rail its synchronous reset, being an ordinary data

input, is converted into a pair of rails. This dual-rail reset goes through a return-to-spacer protocol

similar to all other data wires. An asynchronous reset is preserved unchanged in a dual-rail circuit.
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It behaves exactly the same way as in the original single-rail circuit.

If a single-rail circuit has the same input rst used both as synchronous and asynchronous

reset, then such a circuit must be modified before the conversion. For this, firstly, a new input

signal rst_sync is added to the circuit. This signal replaces rst in all combinational logic gates,

i.e. in all the places where synchronous reset is required. The original rst signal is still used for

the explicit initialisation of flip-flops via dedicated set/reset inputs, i.e. as asynchronous reset.

After this transformation the circuit is converted into dual-rail in a usual manner. The purely

synchronous reset rst_sync is converted into a pair of rails <rst_sync_1, rst_sync_0>. The original

rst input, which became a purely asynchronous reset, is preserved single-rail. Finally, the dual-rail

synchronous reset <rst_sync_1, rst_sync_0> is derived from rst using a single-rail to dual-rail

converter.

5.4 VeriMap design kit

The conversion from single-rail into dual-rail circuit has been implemented in a VeriMap design

kit. It successfully interfaces to the Cadence CAD tools. It takes as input a single-rail circuit

netlist, created by Cadence Ambit or another logic synthesis tool, and converts it into a dual-rail

netlist. The language for input and output netlists is a conventional structural Verilog whose syntax

is described in Appendix B. The resulting netlist can be processed by Cadence or other EDA tools

supporting the Verilog language.

The structure of the VeriMap design kit is displayed in Figure 5.22. It consists of a Ver-

iMap software tool, a library of gate prototypes, a library of transformation rules and a library of

gate attributes.

The main function of the tool is conversion of a single-rail RTL netlist into a dual-rail netlist

for either of the two architectures: self-timed or clocked, Figure 5.8(b, c) respectively. It is done

in four stages. First, a single-rail circuit is converted into positive-logic dual-rail. Second, the

positive dual-rail gates are replaced by negative dual-rail gates and the spacer polarity inverters

are inserted. Then, the completion signal is generated (asynchronous design only). Finally, a

wrapper module connecting the dual-rail circuit to the single-rail environment is added (optional).

Apart from generating netlists, Verimap tool reports statistics for the original and resultant
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Figure 5.22: Verimap design kit

circuits: the estimated area of combinational logic and flip-flops, the number of negative gates

and transistors, and the number of wires. The tool also generates a behavioural Verilog functions

assisting the power analysis of the original and resultant circuits. Being included into simulation

testbench these functions count the number of switching events in each wire of the circuits.

The libraries define the technology parameters for which the circuit is synthesised. The Ver-

iMap toolkit includes these libraries for the AMS 0.35µ CMOS technology. After some modi-

fication they can be also used for other design technologies. Both libraries are described in the

following sections.

5.4.1 Gate prototypes

The library of gate prototypes is a set of Verilog files whose format is described in Appendix B.

This library contains three types of gates:

· single-rail gates;

· manually designed converters and controllers;

· manually designed dual-rail gates.
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The definitions of all single-rail gates which are instantiated in the circuit under conversion have

to be in the library. These definitions are used by VeriMap to determine which connections of the

gate are inputs and which are outputs. The implementation of these gates is not important and can

be skipped.

The converters between single-rail and dual-rail domains, go-controller and spacer-controller

are also defined in this library. These converters and controllers cannot be produced automatically

by the tool and must be created manually for each design technology.

The library can also contain implementations of some dual-rail gates. The predefined dual-rail

gates are used when the automatic conversion of a single-rail gate into dual-rail is impossible or

gives a poor result. Typical examples for such gates are multiplexers, flip-flops and latches.

5.4.2 Rules for gate transformation

The library of rules for gate transformation defines how to convert a single-rail gate into a dual-rail

one. If a predefined dual-rail implementation of a gate is found in the library of gate prototypes,

then the tool uses it. Otherwise a dual-rail implementation is built automatically using these rules.

Each line in this library defines one rule. A rule consist of the following space-separated fields:

· single_rail - the name of a single-rail gate to which the rule applies;

· dual_rail - the name of a corresponding dual-rail gate (usually it is the same as single_rail);

· direct_positive - the name of a positive gate which implements the function of the single-

rail gate;

· complementary_positive - the name of a positive gate which implements the function com-

plementary to the single-rail gate;

· direct_negative - the name of a negative gate which implements the function of the single-

rail gate;

· complementary_negative - the name of a negative gate which implements the function com-

plementary to the single-rail gate;
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· interface_polarity - a sequence of characters defining in a position code which ports of the

single-rail gate are inputs (encoded by small characters) and which are outputs (encoded by

capital letters). The characters also encode how the gate inputs and outputs are converted:

p - a direct (positive) input;

n - an inverted (negative) input, its rails should be crossed;

P - a direct (positive) output, its rails should be crossed when the gate is converted into

a negative dual-rail logic;

N - an inverted (negative) output, its rails should be crossed when the gate is converted

into a positive dual-rail logic;

d - a data input, which should be converted into dual-rail (by default);

s - a control input, which is not converted and stays single-rail (e.g., clock and reset

inputs);

D - a data output, which should be converted into dual-rail (by default);

S - a control output, which is not converted and stays single-rail (e.g., output of a

controller generating local clock or reset signals);

r - a dual-rail implementation of the gate requires an additional reset signal;

c - a dual-rail implementation of the gate requires an additional clock signal.

· flags - is a string of four characters answering the following sequence of questions (y for

yes, n for no):

1. Is this rule for a flip-flop or a latch?

2. Does a dual-rail gate obtained by this rule have early propagation?

3. Should the positive gates listed in direct_positive and complementary_positive be

taken into account when optimising for size and speed?

4. Should the negative gates listed in direct_negative and complementary_negative be

taken into account when optimising for size and speed?
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In order to simplify the library of transformation rules, one rule can describe several gates. A

rule is applied to a gate if the single_rail field matches the beginning of the gate name, called

prefix. The rest of the gate name, called suffix, is added to the corresponding direct_positive,

complementary_positive, direct_negative and complementary_positive fields. If there are more

than one rule matching the beginning of a gate name, then the rule with the longest single_rail

field is chosen. The association of a single rule to a set of gates helps to deal with different gate

drives, because the drive is usually encoded by the last characters of the gate name.

If the automatic generation of a positive-logic dual-rail gate for a given single-rail gate is not

possible (or a manual implementation is preferred for some reason), then underscore symbols

‘_’ should be put in place of the direct_positive and complementary_positive fields. Similarly,

the automatic generation of a negative-logic dual-rail gate can be banned by placing ‘_’ in the

direct_negative and complementary_negative fields.

Consider the gate transformation rules on the following simple example:

NA2 NA2 AND2 OR2 NA2 NO2 ppN nyyy // 2-input NAND

LOGIC0 ground _ _ _ _ pPcr ynyy // Tie-down to logic low-level

The first rule describes a 2-input NAND-gate NA2. The name of its dual-rail implementation

is the same as the original gate name. Its positive-logic dual-rail implementation consists of a

2-input AND-gate and a 2-input OR-gate. Its negative-logic dual-rail implementation combines

a 2-input NAND-gate and a 2-input NOR-gate. The list of the gate connections starts with two

inputs and finishes with an output, which requires a spacer inverter in a positive-logic dual-rail

implementation. The NA2 is a combinational logic gate (not a flip-flop), its dual-rail implementa-

tion is prone to early propagation, both the positive and negative dual-rail implementations can be

used for optimisation algorithm.

The second rule describes a ‘tie-down to 0’ gate LOGIC0. According to the rule its dual-rail

implementation should be renamed to ground. There is no rule for for automatic conversion of this

gate into a dual-rail (manual implementation is required). The manually designed dual-rail gates

require additional inputs: a clock and a reset. The LOGIC0 gate is similar to a flip-flop holding

a constant 0. It does not exhibit the early propagation. Both, positive-logic and negative-logic

dual-rail implementations are available for this gate (manually designed and placed in the library

of gate prototypes).
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5.4.3 Gate attributes

The negative gate optimisation usually improves the size and speed of a dual-rail circuit. However,

for a negative gate with high output drive it is not true, because such a gate consists of a positive

gate and a strong inverter attached to the output. A library of gate attributes is useful in such a

case. For each single-rail gate it helps to choose the optimal dual-rail gate between its negative-

logic and positive-logic implementations. If this library is missing, then the negative-logic dual-

rail implementation is preferred.

The library consists of two sections. The first section lists the names of attributes, which are

associated with each library gate. The second section assigns the values of these attributes to the

gates. The file format is explained on the following example:

[

. delay, // gate delay in "simple negative gate" number

. area // area of the module in square microns

]

AND2 2,73 // 2-input AND

OR2 2,73 // 2-input OR

NA2 1,55 // 2-input NAND

NO2 1,55 // 2-input NOR

In this example, the comma-separated list in the square brackets consists of two attribute

names: delay and area. The former attribute defines the maximum delay of a gate in some

abstract units (in our case a unit equals to a simple negative gate delay). The latter attribute defines

a gate area in square microns. The second section of the example lists 4 gates with their delay

and area attributes. These are used by VeriMap to optimise the latency and size of the resultant

dual-rail circuit. If there are two possible dual-rail implementations for a given single-rail gate, a

positive-logic and a negative-logic, the one with smaller delay and/or cumulative area attributes

is chosen. Taking into account the transformation rules for the NA2 gate, its negative-logic dual-rail

implementation is beneficial in terms of speed and size. Indeed, the negative-logic implementa-

tion, which consists of a NA2 and NO2, has a 1 unit delay and 110µm2area. The positive-logic

implementation, which consists of a AND2 and OR2, has a 2 unit delay and 146µm2area.

A user is free to extend this library by adding new gate attributes. For example, a power

consumption attribute can be used by VeriMap to optimise the dual-rail circuit for low power.
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Figure 5.23: Single-rail full-adder

Note that the optimisation preferences are defined by the order of the attributes in the list.

5.5 Full-adder example

The operation of the VeriMap toolkit is illustrated on a full-adder example shown in Figure 5.23.

Its AMS-0.35µm2technology netlist is in full_adder.v file. The libraries of gate prototypes and

transformation rules are predefined in VeriMap design kit for AMS-0.35µm2 technology. The

libraries are in the ams.v and ams.rls files respectively. The names of the library files should be

passed as the --rules and --include command-line options to the VeriMap tool (see Appendix B

for the full list of options).

The first step is building a positive-logic dual-rail circuit. It is obtained by the following

command:

$ verimap --rules ams.rls --include ams.v \

--optimisation-level0 --transformation-level3 \

--output full_adder_dr.v full_adder.v

Its --optimisation-level and --transformation-level options mean that no optimisation

should be applied and no completion detection logic is required. The tool just duplicates all

the wires and replaces all gates by corresponding positive-logic dual-rail elements as shown in

Figure 5.24. The number in parentheses, next to the gate name, is the layer count starting from the

circuit inputs.

The next step is the negative-logic optimisation. The optimised circuit is built by the following

command:

$ verimap --rules ams.rls --include ams.v,ams_dr-cl.v \

--optimisation-level1 --transformation-level3 --spacer-1 c,co \

--output full_adder_dr.v full_adder.v

The --optimisation-level option is modified to request an optimisation for negative gates.
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Figure 5.24: Positive-logic dual-rail implementation of a full-adder
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Figure 5.25: Negative-logic dual-rail implementation of a full-adder

Note the --spacer-1 option which forces the c input and co output to use the all-ones spacer (by

default the interface signals use all-zeros spacer). Figure 5.25 shows the resultant dual-rail circuit.

There is one spacer inverter inserted in the wires between and1 and or1 which connect the layers

of the same parity. Without this spacer polarity converter the or1 gate would have different spacers

on its inputs, which would introduce hazards on the <co_1, co_0> output.

The use of the all-ones spacer on the c and co interfaces allows to shorten the carry calculation
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Figure 5.26: 4-bit ripple-carry adder

path by two spacer inverters. This results in a significant size and speed improvement in an N-bit

ripple-carry adder where the carry calculation is on the critical path. Such an adder is composed

of N 2-bit full-adders with the output co of the previous bit connected to the input c of the next bit

full-adder. For example, a 4-bit ripple-carry adder with the critical path highlighted is shown in

Figure 5.26.

The completion detection logic can be added to the dual-rail circuit by following command:

$ verimap --rules ams.rls --include ams.v,ams_c.v \

--optimisation-level1 --transformation-level4 --spacer-1 c,co \

--output full_adder_dr.v full_adder.v

There are two changes in this command: the ams_c.v library containing a C-element definition

is included and the --transformation-level option is modified. The circuit obtained by this

command is shown in Figure 5.27. Note there is no completion detection on the output of xor1

and spinv1. These gates do not exhibit early propagation, which is reflected in the library of

transformation rules.

The completion detection shown in Figure 5.27 is suitable for a single-spacer protocol only.

OR-gates check the completion on the rails with all-zeros spacer and NAND-gates on the rails with

all-ones spacer. In order to support an alternating-spacer protocol the NAND-gates and OR-gates

should be replaced by XNOR-gates.

Here is some statistics for different full-adder implementations without completion detection

logic. The dual-rail full-adder optimised for negative logic uses 8 inverters less than the non-

optimised one (10 inverters are removed and 2 inverters are inserted for spacer polarity inversion).

The critical path (carry flag calculation) has been shorten by 3 inverters compared to the original
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Figure 5.27: Dual-rail full-adder with completion detection logic

single-rail circuit. CMOS implementation of the single-rail full-adder uses 38 transistors, non-

optimised dual-rail - 76 transistors. The optimised dual-rail circuit (without completion detection

logic) consists of 60 transistors, which is only 1.58 times more than in the single-rail circuit.

5.6 Summary

In this chapter a method for automated synthesis of the data path components by direct mapping is

presented. Each data path component is first implemented using standard RTL synthesis tools, e.g

Synopsys. The obtained RTL circuit is mapped into a hazard-free logic using a dual-rail encoding

with a return-to-spacer signalling and a completion detection logic is added in order to indicate

when the computation is finished, similar to the NCL-X approach [62]. Methods for negative logic

and completion detection logic optimisations are also proposed.

A new alternating-spacer protocol is proposed which has two spacers interchanging in time

within the dual-rail logic framework. It is very cheap yet effective way to make all gates in a

dual-rail circuit switch per computation cycle. The potential applications of the alternating-spacer

protocol are energy balancing in security circuits, online testing, refreshing of dynamic logic.

The idea of using two spacers is deemed particularly efficient for dual-rail logic, where the
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Hamming distance between each spacer and a valid combination is the same. While it can still

be used without too much overhead in optimally balanced k-of-n codes (e.g. 3-of-6) it would be

much less efficient in other popular codes such as 1-of-4 [2].

A set of converters for integrating a dual-rail circuit into a single-rail environment are designed

using Petrify with subsequent manual optimisation. Two implementations of a secure dual-rail

flip-flop are presented. The first solution is small (built of two latches and a simple controller) and

relies on local timing assumptions. The second solution is speed-independent and large (built of

three latches with dedicated controllers).

The VeriMap design kit presented in this chapter automatically converts a single-rail circuit

into a dual-rail circuit. It supports two design architectures: clocked and self-timed. The design kit

successfully interface to standard RTL design flow used by most ASIC designers. The tool takes

as input a single-rail circuit netlist, created by Cadence Ambit, and converts it into a dual-rail

Verilog netlist. The operation of the tool is illustrated on a 4-bit adder benchmark.
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Synthesis of security circuits

Secure applications such as smart cards require measures to resist timing and power attacks. Dual-

rail encoding provides a method to enhance the security properties of a system making power

analysis more difficult. As an example, in the design described in [94] the processor can exe-

cute special secure instructions. These instructions are implemented as dual-rail circuits, whose

switching activity is meant to be independent from data. Whilst alternatives exist at the software

level to balance power, the need for hardware solutions is also mandatory. Special types of CMOS

logic elements have been proposed in [112], but this low-level approach requires changing gate

libraries and hence is costly for a standard cell or FPGA user.

In recent work [113] a methodology for designing secure circuits was proposed. The main

advantage of the method is that it is integrated in a standard design flow. However, this approach

suffers from the following drawbacks. First, it is difficult to build a dual-rail gate which consumes

the same power regardless of data processed. Even if such a secure gate is built for one set of

fabrication parameters (output load, supply voltage, environment temperature) it still can expose

unbalanced power consumption in other conditions. Second, the use of positive logic and separa-

tion of complementary rails imply recalculation of inverted inputs of each gate to the input of the

circuit. This may cause a significant (up to four times) increase in the circuit size, for instance a

tree of XOR gates. Use of positive logic may also increase the length of the critical path because

additional inverters are inserted. Finally, the method is only applicable to netlists built of a limited

subset of the library gates.
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The clock signal is typically used as a reference in power analysis techniques. System "desyn-

chronisation" as in [76, 125] can help hide the clock signal. To mask the operation of a block

of logic is a much more complex task which could demand very expensive changes to the entire

design flow. A cheaper desynchronisation method to rebuild individual blocks within the same

synchronous infrastructure so, that their power signatures become independent of the mode of

operation and of the data processed. This method is used in [62], where synchronous pipelines

are transformed into asynchronous circuits using dual-rail coding. Dual-rail encoding was also

successfully used in [89] to built a secure Amulet core for smartcard applications.

These desynchronisation methods represent a combination of two aspects of security: hiding

the reference signal and hiding the data being processed. The major leakage of information about

the processed data is due to the data-dependent power signature. The correlation between data and

power signature can be minimised by balancing and randomising the data encoding w.r.t. power

signature. The balancing techniques aim at keeping the power signature invariant to processed

data, thus the power consumption should be at least the same as that in the worst (in terms of

power) case of computation. The randomisation techniques mask the data-dependent power sig-

nature by inserting random noise. The noise can be introduced in many different ways, ranging

from randomised masking of the secret key, to clock noise insertion, to repetition of the algo-

rithm on randomly generated secret keys, to embedding the secret key in a much larger random

key [23, 47]. The level of noise should be big enough to mask the level of power signature which

can be correlated to the processed data. Both balancing and randomisation techniques burn extra

power to increase the security, however the power consumption is a very secondary concern in

security circuits.

This chapter focuses on the balancing of data encoding only, as randomisation techniques can

be applied independently and possibly in conjunction with our method. The rest of the chapter is

organised as follows. Metrics for circuit analysis in terms of security are introduced in Section 6.1.

This section also shows the influence of single-spacer and alternating-spacer protocols on the

circuit security. The AES benchmark results and potential improvements follow and finally the

conclusions are presented.

This chapter is based on results presented in [105].
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6.1 Timing and power attacks

A side channel attack is based on information leakage from the physical implementation of a cryp-

tosystem, rather than theoretical weaknesses in the algorithms. For example, timing information,

power consumption, electromagnetic emanations or even sound can provide information which

can be exploited to break a system. Leakage of information through timing and power is typically

used in the attacks on circuits.

A timing attack is a form of side channel attack where the attacker tries to break a cryptosystem

by analysing the time taken to execute a cryptographic algorithm on different input data. Timing

attacks on synchronous circuits typically use the clock signal as a reference [60]. In asynchronous

world timing attacks can be resisted, for example, by inserting random delays in request and ac-

knowledgement lines of the circuit and by restricting the early propagation inside its combinational

logic.

A power attacks is based on analysis of variations in a circuit power consumption when pro-

cessing different data [71]. Two main approaches to the power analysis are Simple Power Anal-

ysis (SPA)[70] and Differential Power Analysis (DPA) [61]. In SPA attacks, an attacker directly

observes a system’s power consumption and tries find a correspondence between the amount of

power consumed and the secret data processed. DPA attacks use statistical analysis and error cor-

rection techniques to extract information correlated to secret data. Implementation of a DPA attack

involves two phases: data collection and data analysis. Data collection for DPA may be performed

by sampling a device’s power consumption during cryptographic operations as a function of time.

The more traces of circuit power consumption are collected the better chances that statistical data

analysis reveals the secret data.

The collection of power traces for a successful attack, however, is not easy. A device process-

ing secret data can limit the number of computations, or allow a new set of data to be computed

only after some delay. Such measures make the collection of sufficient amount of data difficult.

Also, there is usually no direct access to the device, which makes the direct sampling of power

signature impossible. The secret information can still leak through electromagnetic emission or

temperature of the circuit. If the information leakage is reduced to the noise level, then filtration

techniques should be applied. Filtering usually implies integration over time. In the following
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sections energy consumption is analysed as such an integral measure.

6.2 Energy imbalance

Energy imbalance (further referred to as imbalance) can be measured as the variation in energy

consumed by a circuit processing different data. If e1 and e2 are the energy consumptions of two

input patterns, then the numerical value of imbalance is calculated as:

d =
|e1 − e2|

e1 + e2

· 100% (6.1)

The imbalance in a single-rail circuit is mainly caused by data-dependent quantity of switching

events. In a dual-rail circuit with return-to-spacer protocol the number of switching events is

constant for every clock cycle. This reduces the data-dependency of power consumption and this

is verified in simulation results below. However, the imbalance is not eliminated completely. It still

takes place due to the different power consumption of complementary gates which form a dual-

rail gate. For example, the power signature of a 2-input dual-rail AND gate (as in Figure 5.1(d))

switching from all-zeroes spacer to code zero (the OR component is switching) is different from

the same gate switching from all-zeroes spacer to code one (the AND component is switching).

An experiment has been conducted in order to determine the worst case imbalance in a dual-

rail gate. The SPICE analog simulator and the AMS-0.35µ design kit were used obtain all the

waveforms. For the experiment a 3-input dual-rail NAND gate was chosen. Such a gate con-

sists of one standard 3-input NAND gate and one standard 3-input NOR gate. These gates have

the maximum difference between the number of transistor levels in their pull-up and pull-down

stacks. Four-input gates are not considered as they may be not implementable in future low-voltage

technologies. The current consumption of a gate consists of three components: the input generator

current, the gate current and the output load current. In the experiment we determined the gate

current, which is the source of the imbalance, by subtracting the input generator current from the

overall current and removing the load of the gate. For this the same benchmark was simulated

twice, under VCC = 0V and VCC = 3.3V . The waveform of the power supply current under

VCC = 0V was subtracted from the waveform under VCC = 3.3V . A single positive 1ns pulse
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Figure 6.1: Power signature of non-loaded gates

with rise and fall times of 150ps was applied to all the inputs of each gate.

The gate currents are shown in Figure 6.1. The imbalance is obtained by comparison of the

energy consumed during switching. The energy waveforms in Figure 6.1 are the integrated current

starting from time 0. The full cycle energy imbalance calculated by formula 6.1 is 10.7%. The en-

ergy imbalance during the falling transitions of the gates is 10.4% and during the rising transitions

it is 11.1%.

The imbalance (being a relative value) becomes smaller if an identical output load is connected

to both NAND and NOR gates. Figure 6.2 shows the gate currents when each gate output load

is simulated as a pair of capacitors connected to the ground and VCC , each capacitor is 0.016pF

(equivalent to 4 inverter inputs). The full cycle energy imbalance value in this experiment is 2.1%.

The energy imbalance during the falling transitions of the gates is 4.8% and during the rising

transitions it is 1.2%.

In order to show that the 3-input NAND and NOR gates exhibit the worst case imbalance

among simple complementary gates the same set of experiments was also conducted for 2-input

NAND and NOR gates. The full cycle energy imbalance in this experiment was 8.4% for non-

loaded gates and 1.3% for the gates loaded with 0.0032pF capacitors.

The experiments have shown that the worst case imbalance in a dual-rail circuit is 10.7%. This

imbalance only occurs if the gates are not loaded. The worst case imbalance under a realistic load
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Figure 6.2: Power signature of loaded gates

is 2.1%. Further imbalance reduction is possible by either modifying the circuit so that it uses

more symmetrical gates or by modifying the gates at the transistor level.

6.3 Exposure time

Exposure time is a period of time during which the energy imbalance is visible. The longer the

imbalance is visible the easier it is to measure. This is why the exposure time of the imbalance

should be minimised along with the energy imbalance reduction. In a dual-rail circuit the exposure

time depends on the spacer protocol. We have evaluated the lower and upper bounds for the

exposure time on the single-spacer and the alternating-spacer protocols. The clock cycle is used

as a measure of the exposure time.

In a dual-rail circuit using the single-spacer protocol the lower bound of exposure time is one

clock cycle and the upper bound is the whole time the circuit operates. These bounds can be

derived from the analysis of a dual-rail gate operation. The imbalance in a dual-rail gate is caused

by switching one of the components of a dual-rail gate. It is visible until the other complementary

single-rail gate switches up and down. The lower bound is hit if the switching of the first single-

rail gate is delayed as long as possible (until the end of the first half of the clock cycle) and the

other single-rail gate switches as early as possible (in the beginning of the second half of the next

clock cycle). In this case the exposure time is equal to 0.5 clock cycle. If the combinational logic
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delay is small comparing to the clock period, then the lower bound becomes 1 clock cycle.

The upper bound depends upon data. If the gate output switches between alternative code

words in each cycle (going through the spacer each time), then the upper bound is 1.5 clock cycles

(or 1 clock cycle under the assumption of combinational logic delay being small). In this case,

however, the entropy of information at such an output is zero. In order to make the output more

informative one can implement somehow (this is not supported by any industrial or to the best of

our knowledge by any academic tools) the Manchester serial code at that output. Then the upper

bound will be 1.5-2 clock cycle (the second value is for the small combinational logic delay).

Finally, if no ad-hoc provisions are made in order to control the sequence of switching, the upper

bound becomes undefined. Our benchmarks have shown that the average case of exposure time

can be about a dozen of clock cycles.

The exposure time can be reduced by applying the alternating-spacer protocol. For this pro-

tocol the exposure time lower boundary is 0 (actually, one gate delay) and upper boundary is one

clock cycle. Consider a dual-rail gate operating in alternating-spacer protocol. In the first half of

the clock cycle one component of the dual-rail gate fires introducing a data-dependent imbalance.

This imbalance is exposed until the second half of the clock cycle when the other complementary

component fires leading the energy consumption to a data-independent constant value. If the first

single-rail gate fires just before the positive edge of the clock and the complementary gate fires

just after the positive edge of the clock then the lower boundary of the exposure time is achieved.

The upper boundary is reached if one single-rail gate fires in the very beginning of the clock cycle

and the other gate fires in the very end of the same clock cycle. Under a relatively slow clock the

exposure time is about half the clock cycle, and gets shorter under a faster clock.

In order to show the influence of the spacer protocol on the exposure time the following exper-

iment was performed using the SPICE analog simulator and the AMS-0.35µ design kit. Single-

spacer and alternating-spacer protocols were applied to a 2-input dual-rail AND gate for one clock

cycle. In each protocol two different code words were applied to the inputs of the gate: both

logical zeroes and both logical ones. The obtained energy waveforms are shown in Figure 6.3,

the solid line for both logical zeroes and the dotted line for both logical ones code words. The

experiment shows that in the single-spacer protocol the energy imbalance is not compensated in
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Figure 6.3: Exposure time for dual-rail 2-input AND gate

the current clock cycle, but can be potentially compensated in one of the following clock cycles. In

the alternating-spacer protocol the imbalance is exposed only between the adjacent spacers, which

reduces the exposure time to less than one clock cycle.

6.4 Early propagation and memory effect

Other security-related characteristics of a circuit are early propagation [46] and memory ef-

fect [112, 46]. These characteristics have much less impact on the security features of a circuit than

imbalance and exposure time. So, it is essential to minimise the circuit imbalance and exposure

time before optimising the circuit for the early propagation and memory effect metrics.

The early propagation is the ability of a gate to fire without waiting for all its inputs. Early

propagation causes the data-dependent distribution of circuit switching events in time. The effect

of early propagation is bounded by half of the clock cycle. One way to avoid the early propagation

is to balance all paths by inserting buffers in such a way that all inputs of each gate arrive simul-

taneously. In a dual-rail circuit NCL-D gates can be used in order to restrict the early propagation

effect to limited areas only.

The memory effect is the ability of a CMOS gate to remember its previous state. It is shown by

an example of a 2-input NOR gate simulated under two input sequences: a = 00100, b = 01110

and a = 01100, b = 00110, see Figure 6.4(a,b) respectively. The sequences vary in the second

bit only. However, the power signature shows a noticeable difference in the fourth bit (marked

with dotted circles). This can be explained by the parasitic capacitor between p-transistors which
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(a) a,b: 0,0->0,1->1,1-0,1->0,0 (b) a,b: 0,0->1,0->1,1->0,1->0,0

Figure 6.4: Memory effect in OR gate

charges differently when processing the second bit of the input sequences. The capacitor voltage is

shown at the bottom of the diagrams. A possible solution is to modify the gates in such a way, that

the gates parasitic capacitors were charged independently from input data. For example, a 2-input

NOR gate can be implemented with two stacks of p-transistors controlled by the input signals in

different orders (i.e. <ab> and <ba>).

6.5 AES benchmark

The method presented in Chapter 5 and the VeriMap tool were tested by design of several cryp-

tographic circuits for our industry partner, a semiconductor company Atmel Inc. These circuits

were fabricated and evaluated in Atmel Inc laboratories. However, the results of the experiments

are subject to a non-disclosure agreement. Therefore additional experiments were conducted. In

this connection we would like to thank Julian Murphy, who tested the tool by producing several

security-enhanced AES designs.

Two AES [109, 32] designs are used: Open core AES [117] and AES with com-

putable Sboxes [66, 122], see Appendix C for details. For each design a single-rail AES circuit

was synthesised from an RTL specification by using Cadence Ambit v4.0 tool and AMS-0.35µ li-

brary. The VeriMap tool was applied to the netlist generated by Ambit and the dual-rail netlist was

produced. The dual-rail circuits were optimised for negative gates and used alternating-spacer
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dual-rail protocol. Both single-rail and dual-rail designs were analysed for static delays (SDF

delay annotation) and simulated in Verilog-XL v3.10. By adhering to the RTL design flow, the

netlists can be directly used in the back-end design tools of Cadence.

A chip implementing the AES algorithm with computable Sboxes has been produced using the

fabrication facilities of Europractice. The chip description, its floor-plan and package photos can

be found in Appendix C. Building a test-board and setting up power analysis attacks on this chip

is one of our future work topics, for now simulation results are used for evaluation of our method.

The rest of this section summarises the experiments performed to characterise the proposed

method in terms of security, size and power consumption. The statistics for some parts of AES,

namely ciphers and Sboxes, are shown in Table 6.1, Table 6.2 and Table 6.3.

The purpose of the first experiment is to evaluate the correlation between data and switching

activity of the circuits. Switching activity is the number of switching events in the circuit within

one clock cycle. Table 6.1 presents the minimum, average and maximum switching activity for the

Sboxes and ciphers. These values are obtained by simulating the circuits with a number of input

vectors. In single-rail Sbox a transition is determined by a pair of input vectors. The Cartesian

product of previous and next 8-bit input vectors includes 256x256=65,536 possible combinations.

For simulation of Sboxes 10,000 random pairs of these vectors were chosen. The ciphers were

simulated with the 284 vectors supplied with the Open core AES testbench. Note that for dual-rail

circuits the switchings of single-rail wires (e.g. reset, clock and the signal which determines the

injecting spacer) are also taken into account.

The experiment shows a significant difference between the min/average/max switching activity

values for the single-rail Sbox benchmarks. The minimum value is zero, and the maximum values

are up to 48% higher than the average values. At the same time, switching activity for the dual-rail

circuits is constant. In the single-rail switching activity varies significantly depending on data and

clearly there is no switching activity if the input data does not change. In addition many switching

events in single-rail circuits are caused by hazards and the single-rail Sbox benchmarks are no

exception. Here the hazards caused up to 80% of data-dependent switching events. The number

of switching events in dual-rail combinational logic is constant for any input data and is equal to

the number of wires (as every second wire switches twice).
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benchmark switching activity (hazards)
name min avg max

Sbox single-rail 0 (0) 162 (33) 277 (124)
(open dual-rail 1,180 1,180 1,180
core) overhead ∞ 628% 326%

Sbox single-rail 0 (0) 525 (345) 936 (746)
(comp.) dual-rail 868 868 868

overhead ∞ 65% -17%

cipher single-rail 0 9,147 13,236
(open dual-rail 41,285 41,285 41,285
core) overhead ∞ 351% 211%

cipher single-rail 0 (0) 3,810 (2,013) 6,140 (3,682)
(comp.) dual-rail 13,055 13,055 13,055

overhead ∞ 242% 112%

Table 6.1: Switching activity of single-rail and dual-rail circuits

Switching activity in the Open core dual-rail cipher is 351% higher than in the single-rail

cipher and 255% higher for the AES design with computable Sboxes. These values are greater

than the results for their corresponding combinational logic Sboxes. The bigger difference can

be explained by the nature of computations in complex circuits. They execute in bursts, which

are defined by the algorithm. Under a burst the switching is similar to our experiments with

combinational circuits. However, between the bursts the situation is significantly different: a

single-rail circuit is inactive and a dual-rail circuit continues to ‘burn power’ by switching between

code words and spacers.

A possible way to address this issue is to implement clock gating. This, however, should be

different from the conventional clock gating technique. It is important to make it data-independent.

At this stage we do not see a feasible way of implementing this at the netlist level. Most likely it

will require analysis of behavioural specifications. We view this idea as a subject of future work.

In order to compare the security features of single-spacer and alternating-spacer circuits, the

AES design with computable Sboxes was also converted into single-spacer dual-rail. Both single-

spacer and alternating-spacer dual-rail implementations were simulated with 284 input vectors

from the standard AES testbench in the encryption and decryption modes. The switching activ-

ities of “1” and “0” rails were recorded separately. Table 6.2 shows the worst case difference in

switching activity between “1” and “0” rails. The imbalance between the number of switching
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benchmark switching activity
name single-spacer alternating-spacer

cipher rail_1 8,388 6,505
(encryption) rail_0 4,622 6,505

imbalance 29% 0%

cipher rail_1 8,572 6,505
(decryption) rail_0 4,438 6,505

imbalance 32% 0%

Table 6.2: Switching activity in dual-rail wires

events in the rail_1 and rail_0 is calculated as imbalance = |rail_1−rail_0|
rail_1+rail_0 · 100%. While the total

switching activity is the same in both implementations, the single-spacer implementation exhibits

significant differences in the number of switching events on the complementary rails. As the com-

plementary gates within a dual-rail gate have different power consumptions, the power signature

of the single-spacer dual-rail circuit becomes dependent on the processed data. Alternating-spacer

dual-rail circuits do not suffer from this leakage because all gates are switching in every clock

cycle. The cost of improved security features is the increase in the number of gates, wires and

area.

Table 6.3 summarises the size of circuits in terms gates, transistors, wires and estimated area.

The benchmarks indicate only 84-88% overhead in gate numbers (a positive gate is counted as

a pair of a negative gate and an inverter) for AES design with computable Sboxes. This is less

than 100% due to the negative gate optimisation. For Open core design the overhead is more

than 100% due to the structure of its Sbox module. During the negative logic optimisation of

Open core Sbox more inverters were inserted into a non-critical path (as components of spacer

inverters) than removed from the critical path.

The number of wires is increased by 117-145%. Wires are duplicated in a dual-rail circuit and

then spacer converters are added, further increasing the number of wires.

The estimated area of the benchmarks combinational logic indicates a 102%-127% overhead.

A significant area increase for flip-flops (228%-289%) can be explained by using dual-rail flip-

flops constructed out of standard logic gates. This can be improved by transistor level optimisation

of the flip-flops.

Figure 6.5 visualises the security improvement for the AES block. These diagrams have been
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benchmark neg.gate transistor wire estimated area
name count count count CL FF

Sbox single-rail 655 3,180 482 44,593 0
(open core) dual-rail 1,523 6,672 1,180 101,364 0

overhead 133% 110% 145% 127% 0

Sbox single-rail 634 2,362 400 32,975 0
(comp.) dual-rail 1,164 4,628 868 68,603 0

overhead 84% 96% 117% 108% 0

cipher single-rail 12,752 68,184 9,980 873,175 142,370
(open core) dual-rail 26,396 139,828 24,367 1,925,190 466,870

overhead 107% 105% 144% 120% 228%

cipher single-rail 10,372 50,344 5,936 580,046 118,678
(comp.) dual-rail 19,510 95,066 13,055 1,237,260 462,021

overhead 88% 89% 120% 113% 289%

Table 6.3: Size of single-rail and dual-rail circuits

generated from the AES design versions with computable Sboxes: in single-rail and in dual-rail

using the alternating-spacer protocol. As the Open core AES design yielded similar plots they are

not shown. Figure 6.5(a) clearly shows the initial operation of the circuit and the AES computation

phases. The first peaks reveal the data being clocked into the circuit, the middle peaks show the

iterative rounds being performed and the last peaks show the data being clocked out. On the other

hand looking at Figure 6.5(b), the operation is masked, now the ’clocking in and out’ and AES

computation rounds are indistinguishable from one another. The repetitive peaks correspond to

the spacer and data alternation.

The diagrams were generated using Synopsys Nanosim mixed-signal simulation software,

which permits fast mix-signal simulation up to 100 times faster than a pure SPICE simulation.

The single-rail and dual-rail AES implementations were simulated using the same, randomly cho-

sen, key and input data. Simulations were performed with different keys and input data to ensure

fairness; similar plots for the dual-rail implementation were also spawned from each simulation,

which confirms the improvement in security.

The security improvement in combinational logic blocks is illustrated in the example given

in Figure 6.6. The Open core Sbox was simulated under 16 random data values. The diagram in

Figure 6.6(a) shows the power signature in the single-rail implementation and the four diagrams in

Figure 6.6(b) show the power consumption of the dual-rail implementation with alternating-spacer
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(a) Single-rail implementation

(b) Dual-rail implementation, alternating spacer protocol

Figure 6.5: Power signature for AES design with computable Sboxes

protocol. From these diagrams one can see a significant variation in power consumption of the

single-rail circuit computing different input data. The variation of the current is much less visible

in the dual-rail circuit. The difference of the curves is due to the effects of early propagation only,

i.e. the integrated area under the current curve in dual-rail circuit is a constant value invariant of

input data. This is a significant security improvement comparing to the single-rail implementation.
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The restriction of the early propagation effects will be addressed in our future work.

It is clear that in the AES designs there are opportunities to minimise power consumption as

not all logic is necessarily being used all the time. Industry synthesis tools can identify sleep mode

logic and use this information to annotate places in the netlist which could be committed to sleep

mode logic later in the design flow. This low power optimisation could be utilised in our dual rail

circuitry, one approach would be to put a spacer on the input to the identified sleep mode logic

and holding this there for the clock cycles whilst it is not used. By doing so the switching is now

zero, thus saving power. This technique would not reveal data as the sleep mode logic is in a

“meaningless” spacer state. By using the synthesis tool to identify the sleep mode logic we are

adhering to the RTL design flow and our conversion tool could use the annotated netlist to apply

the optimisation to dual rail circuits; note the committal stage of the sleep mode logic would need

to be different to what the synthesis tools would do (simple AND gates using a control signal).

Presently this has not been implemented in the tool but investigated using schematic entry with

simple examples which gave promising results. This needs to be investigated further together with

the clock gating idea.

6.6 Summary

Two security metrics introduced in this chapter are energy imbalance and exposure time. They

have been used for a comparative analysis of single-rail, traditional dual-rail and alternating-spacer

dual-rial circuits at level of gates. In these experiments the dual-rail circuits with alternating-spacer

protocol have shown the least dependency between the processed data and power consumption.

Two AES designs were used for benchmarks: AES with computable Sboxes and Open core

AES. The single-rail AES circuits ware synthesised using the standard RTL design flow. For

each single-rail AES implementation two dual-rail circuits were obtained by the VeriMap tool:

one with a single-spacer protocol and the other with an alternating-spacer protocol. These circuits

were compared in terms of area, security and power consumption (switching activity and hazards).

The AES benchmarks indicate that the dependency between data and switching activity, which

exists in traditional dual-rail circuits, is fully eliminated in our method with alternating-spacer

protocol. The price to pay for the improved security features is the increased average switching
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(a) Single-rail implementation

(b) Dual-rail implementation, alternating spacer protocol

Figure 6.6: Power signature for Open Core Sbox
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activity and area overheads. The ways of reducing the size and switching activity of dual-rail

circuits are outlined as topics for future work.

A chip implementing the AES algorithm with computable Sboxes has been produced using the

fabrication facilities of Europractice. Building a test-board and setting up power analysis attacks

on this chip is one of our future work topics.
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Chapter 7

Conclusions

This thesis presents a framework for automated synthesis of asynchronous circuits from high-level

specifications using a direct mapping approach. The use of high-level HDLs allows the designers

with limited asynchronous design experience to create circuits at a much lower cost. The direct

mapping approach facilitates low algorithmic complexity and transparent correspondence between

the initial specification and resultant circuit. The proposed methods were implemented in a set of

software tools which interface the conventional EDA tools and form a coherent design flow. The

tools and the underlying methods were evaluated on a number of benchmarks. Several chips

designed with these tools were fabricated and tested by a semiconductor company Atmel Inc.

7.1 Summary of contribution

The intermediate model in the proposed synthesis framework is Petri nets, used with various in-

terpretations. Expressing advanced concurrency and timing paradigms Petri nets are ideal for the

modelling of self-timed systems. Chapter 2 gave a necessary background in the asynchronous

systems and in the Petri nets modelling language.

A coherent subset of synthesis methods for self-timed circuits from high-level HDLs was

reviewed in Chapter 3 . Two main synthesis concepts were studied syntax-driven translation and

logic synthesis.

In syntax-driven translation the language statements are mapped into circuit components and

the interconnect between the components is derived from the syntax of the system specification.
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This approach is attractive from the productivity point of view, as it avoids computationally hard

global optimisation of the logic. However, the direct translation of the parsing tree into a circuit

structure may produce very slow control circuits and the lack of global optimisation may not meet

the requirements for high-speed circuits.

In logic synthesis the initial system specification is transformed into an intermediate be-

havioural format convenient for subsequent verification and synthesis. Between syntax driven-

translation and logic synthesis the latter produces smaller circuits with faster control logic. It also

offers more space for optimisation of the control path. The existing logic synthesis design flow,

however, has several drawbacks:

· The design flow lacks an automatic synthesis of hazard-free data path components.

· The data path synthesis is unacceptable for security applications due to dependency between

processed data and power consumption.

· Synthesis of the control path described at STG level exhibits high algorithmic complexity.

· The control path obtained from an STG exhibits high and unpredictable input-output latency.

These problems were addressed in the framework proposed in this thesis. The framework is based

on the existing logic synthesis design flow reviewed in Chapter 3. This design flow is enriched

by direct mapping methods for synthesis of low-latency control logic and hazard-free data path

components. The resultant design flow called BESST [101] reuses existing methods for high-level

partitioning and scheduling, splitting the system into data path and control paths, and deriving

their intermediate Petri net representations [16, 96].

The main idea of the direct mapping approach is that a graph specification of a system is trans-

lated into a circuit netlist in such a way, that the graph nodes correspond to the circuit elements

and graph arcs correspond to the interconnects. The key features of the direct mapping approach

are low algorithmic complexity and transparent correspondence between the elements of the ini-

tial specification and the components of the resultant circuit. The low computational complexity

allows processing large specifications and applying different combinations of peephole optimisa-

tions to find the best solution. The transparency of the approach is advantageous for checking the

functional correctness of the implementation.
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In Chapter 4 a method for the direct mapping of control circuits from STGs was presented.

In this method an STG is, firstly, split into a device and an environment, which synchronise via a

communication net modelling wires. The device is then represented as a tracker and a bouncer.

The tracker follows the state of the environment and is used as a reference point by the device out-

puts. The bouncer interfaces the environment and generates output events in response to the input

events according to the state of the tracker. This two-level device architecture provides an efficient

interface to the environment and is convenient for subsequent mapping into a circuit netlist. The

optimisation and mapping techniques have low algorithmic complexity, and the obtained circuits

exhibit low latency.

Chapter 5 presented a method for converting a conventional RTL data path into a hazard-free

circuit. In this method the hazard-free logic is obtained by use of a dual-rail encoding with a

return-to-spacer signalling. A new alternating-spacer protocol with two spacers interchanging in

time is proposed. This switching discipline makes all gates switch per computation cycle, which

can be used for security circuits, online testing and refreshing of dynamic logic. In scope of this

thesis a set of converters for integrating a dual-rail circuit into a single-rail environment were

designed; several implementations of a secure dual-rail flip-flop and latch were developed.

The security application of the alternating-spacer protocol is studied in depth in Chapter 6.

Two spacers alternating in time within the dual-rail logic help to balance switching activity and en-

ergy consumption per clock cycle, thus making power analysis more difficult. In order to estimate

the ability of alternating-spacer protocol to resist power analysis attacks, two security metrics, en-

ergy imbalance and exposure time, are introduced and used on a set of cryptographic benchmarks.

As a result of this work, several software tools were developed, namely the OptiMist tool for

the direct mapping of low-latency asynchronous controllers from STGs, and the VeriMap tool

for synthesis of hazard-free data path components. The tools are available for download from

http://www.async.org.uk/.

OptiMist takes an STG as the initial specification of a controller, converts it to a form conve-

nient for mapping, performs optimisation, and produces a Verilog netlist of the circuit. The STG

optimisation relies on a set of heuristics aimed at circuit latency and size reduction. As the opti-

misation is performed locally, the computation time grows linearly with the size of specification.
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This allows to process large specifications which are not computable by logic synthesis tools in ac-

ceptable time. OptiMist is fully automated, yet a designer can significantly influence the result by

choosing one or more optimisation heuristics. In combination with computation speed OptiMist

gives the designer an opportunity to synthesise circuits with different optimisation parameters and

choose the best solution. The tool can be employed in combination with Cadence for simulation

and technology mapping of circuits.

VeriMap automatically converts a single-rail circuit into a clocked or a self-timed dual-rail

circuit. The tool successfully interfaces to the Cadence CAD tools. It takes as input a single-rail

circuit netlist, created by Cadence Ambit, and converts it into a dual-rail Verilog netlist. The con-

version procedure is defined by a set of libraries specific for the technology parameters. VeriMap

is supplied with the libraries for the AMS 0.35µ CMOS technology which can be adjusted to the

other design technologies.

Several cryptographic circuits were designed in collaboration with our industry partner Atmel

Inc using the VeriMap tool kit. These circuits were fabricated and evaluated in the company’s

laboratories. However, the results of the experiments are subject to a non-disclosure agreement.

Therefore additional experiments were conducted in order to evaluate the resistance of our circuits

to the power analysis attacks. The AES algorithm was chosen for this experiment. A circuit

implementing AES was designed using the VeriMap tool and has been produced using the open

fabrication facilities of Europractice. Building a test-board and setting up power analysis attacks

on this chip is one of our future work topics.

7.2 Future work

There are two main drawbacks in using the dual-rail encoding with the return-to spacer protocol:

increased power consumption and size of the resultant circuit. The former can be improved by

clock gating and data guarding techniques. The latter can be addressed by selective conversion

into dual-rail logic and by a more sophisticated strategy for inserting completion detection logic.

Our experiments have shown a higher switching activity in dual-rail circuits compared to the

corresponding single-rail logic. It can be explained by the nature of computations in complex

circuits. They execute in bursts, which are defined by the algorithm. Under a burst the switching
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is similar in both single-rail and dual-rail circuits. However, between the bursts the situation is

significantly different: a single-rail circuit is inactive and a dual-rail circuit continues to ‘burn

power’ by switching between code words and spacers. A possible way to address this issue is to

implement clock gating. This, however, should be different from the conventional clock gating

technique. It is important to make it data-independent. At this stage we do not see a feasible

way of implementing this at the netlist level. Most likely it will require analysis of behavioural

specifications.

There is another opportunity to minimise power consumption as not all logic is necessarily

being used all the time. Industry synthesis tools can identify this parts of logic and annotate

places in the netlist which could be committed to sleep mode logic later in the design flow. This

low power optimisation can also be utilised in dual-rail circuitry. One approach would be to put a

spacer on the input to the identified sleep mode logic and hold this there for the clock cycles whilst

it is not used. By doing so the switching is brought to zero, thus saving power. This technique

would not reveal data as the sleep mode logic is in a ‘meaningless’ spacer state. By using the

synthesis tool to identify the sleep mode logic we are adhering to the RTL design flow and our

conversion tool could use the annotated netlist to apply the optimisation to dual-rail circuits; note

the committal stage of the sleep mode logic would need to be different to what the synthesis tools

would do. Presently this has not been implemented in the tool but investigated using schematic

entry with simple examples which gave promising results.

In a real circuit some parts of its data path are not secret, e.g. selection of an operating mode.

This gives a space for circuit size optimisation by converting into dual-rail only that parts of the

data path which are critical for the circuit security. Currently this is possible by semi-automatic

partitioning of a circuit into sets of secret and a non-secret modules. Only secret modules are

subsequently converted into a secure dual-rail. However, this approach is effective only for the

circuits with high granularity of the modules. Indeed, it is not practical to convert a big module

just because of a couple of secret wires. Moreover, the approach is not applicable to flat netlists,

where the whole circuit is described as one module.

From a designer perspective it would be convenient just to indicate the buses which carry the

secret data and allow the tool to calculate the logic which should be converted in order to keep the
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power consumption independent of that data. The interfaces between the dual-rail parts of the data

path and the rest of the circuit are supported by converters (single-rail to dual-rail and dual-rail to

single-rail). From the benchmarks we learnt, that sometimes a small portion of non-secure data

path, being converted into dual-rail, decreases the number of interface signals significantly, thus

decreasing the number of converters. An optimisation algorithm is required, which trades off the

number of interfaces and the number of non-secure gate to be converted.

The size of a self-timed dual-rail circuit can be decreased by further optimising its completion

detection logic. In particular, the layer-wise optimisation can be improved by increasing the num-

ber of layers without completion detection. The original layer-wise optimisation is too pessimistic.

In the phase of circuit switching from spacers into code words, it requires that the completion sig-

nal is issued only after all gates in the combinational logic have switched to code words. However,

it is possible to have some gates still switching while generating the completion signal, providing

that the flip-flop inputs hold code words and those gates finish switching by the time a spacer

arrives to their inputs. Thus, a wave of spacers can start propagating through the combinational

logic, while the gates in front of this wave finish their switching to code words. Careful timing

analysis is required to guarantee that the wave of spacers does not overtake the wave of code words.

Similar reasoning is applicable to the phase of circuit switching from code words to spacers. This

approach has shown promising results on simple benchmarks, yet it requires further research.
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OptiMist user manual

This appendix explains how to install and use the OptiMist toolkit for direst mapping of asyn-

chronous circuits from STGs. The toolkit contains the following tools:

· optimist - a wrapper script which is a front-end to the OptiMist tools;

· om_detect - a tool for detection of redundant places;

· om_expose - a tool for exposure of the outputs;

· om_transform - a tool for elimination of redundant places;

· om_verilog - a tool for mapping of the optimised specification into a circuit;

· om_lib -generation of a library of required DCs and FFs either at transistor- or gate-level;

· om_graph - a tool for visualisation of an STG with read-arcs extension and tracker-bouncer

structure.

Section A.1 explains how to install the OptiMist tools. These tools work with files in ASTG

format, which is presented in Section A.2. The usage of the tools is described in Section A.3.

A.1 Installation

The compilation of OptiMist tools from source is done by issuing the following command:

$ make
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This will compile six tools which form the OptiMist package: om_detect, om_expose,

om_transform, om_verilog, om_library and om_graph. These tools can ether be used indi-

vidually or by means of optimist script. The script is present in the source files directory.

It connects all OptiMist tools in one command-line interface. In order to start using the Opti-

Mist tools put them into a directory which is referenced from the PATH environment variable (e.g.

/usr/local/bin/). This can be done by running the following command as root:

$ make install

A.2 ASTG format

The OptiMist tools read and write system description in ASTG format. ASTG language captures

STG in a human-readable ASCII format without layout information. This format is used by such

synthesis tools as Petrify and SIS.

The ASTG format can be described using the STG of a toggle circuit shown in Figure A.1. All

the words in bold font are keywords of ASTG language. The file stars with an optional description

of the model after the .model keyword. It is followed by space-separated lists of input, output and

internal signals preceded by the .input, .output and .internal keywords respectively. If there

were dummies in the STG they would be listed after the .dummy keyword.

.model Toggle

.input in

.output out

.internal x

.initial state !in x !out

.graph # List of arcs
in+ x-

x- in-

in- out+

out+ in+/1

in+/1 x+

x+ in-/1

in-/1 out-

out- in+

.marking { < out-, in+ > }

.end

in+

in−

in+/1

in−/1

out+

out−

x−

x+

model: Toggle
input: in
output: out

internal: x

Figure A.1: Toggle STG
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The initial states of the signals are defined in a space-separated list after the .initial state

keyword. Each signal state is the signal name with or without preceding exclamation mark ’!’.

The signals whose names are preceded by the exclamation mark are initially low and all the other

signals are initially high. The explicit definition of the initial state is optional as state of each

signal can be calculated from the initial marking.

The main part of the ASTG file is a list of arcs between the STG nodes ((places and transitions)

started with the .graph keyword. Each line in this list defines one or more arc. The line starts with

a place or a transition from which the arcs originates. It is followed by a space-separated list of

places and transitions where the arcs connect to. It is easy to distinguish transitions from places

because their names contain ’+’ and ’-’ signs. A signal transitions of the same polarity can be

differentiate by their index. The index follows the transition name after a back slash ’/’. If there is

an arc from one transition to another transition it means that there is an implicit place on this arc.

The initial marking is defined as a space-separated list of places and/or arcs (in case of implicit

places) containing a token. An ASTG file is closed by .end keyword. The comments in an ASTG

file start with hash symbol ’#’ and finish by the end of the line.

OptiMist uses only a subset of ASTG language which is related to the Petri net description. It

does not handle the extensions for channels, delays and timing assumptions. The grammar of this

subset of ASTG language follows.

stg

. : model signals initial_state graph marking end

model

. : // Empty

. | ".model" NAME NL

signals

. : // Empty

. | signals signals_declaration

signals_declaration

. : ".inputs" signal_list NL

. | ".outputs" signal_list NL

. | ".internal" signal_list NL

. | ".dummy" signal_list

signal_list

. : // Empty
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. | signal_list NAME

initial_state

. : // Empty

. | ".initial state" state_list NL

state_list

. : // Empty

. | state_list state

state

. : NAME

. | ’!’ NAME

graph

. : ".graph" line_list

line_list

. : // Empty

. | line_list NL

. | line_list line NL

line

. : node arc_list

arc_list

. : // Empty

. | arc_list node

node

. : trans instance_opt

. | place_or_dummy

trans

. : NAME ’+’

. | NAME ’-’

place_or_dummy

. : NAME instance_opt

instance_opt

. : // Empty

. | ’/’ NUMBER

marking

. : ".marking" ’{’ marking_list ’}’ NL

marking_list

. : // Empty
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. | marking_list marking

marking

. : node

. | edge

edge

. : ’<’ node ’,’ node ’>’

end

. : ".end"

In this grammar the words in bold font are the keywords of the ASTG language. The parts

of the lines after the double back slash ’//’ are comments. The capitalised words have special

meaning: NL is one ore more ‘new line’ characters; NUMBER is an integer positive number; NAME

is a string which consists of alphabetic characters, digits and underscore symbols and starts with

either a character or an underscore symbol.

A.3 Usage of OptiMist tools

There are two ways of using the OptiMist tools: basic and expert. In the basic mode a the user

interacts with the optimist wrapper script, which runs necessary OptiMist tools and passes pa-

rameters to them. In the expert mode the user runs the OptiMist tools explicitly, which gives more

control on optimisation parameters.

A.3.1 OptiMist wrapper

The easiest way to process an STG file is to give it as a parameter to the optimist script:

$ optimist file.g

This script calls OptiMist tools with necessary command-line parameters and creates the fol-

lowing files:

file_3.g - STG with redundant places detected using optimise_choice, optimise_latency and

optimise_size heuristics

file_3e.g - STG with redundant places detected and outputs exposed

file_3et.g - STG from which redundant places are removed
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By default the input STG is optimised using all heuristics. The minimum number of DCs in a loop

is set to 3. The maximum join transition fanin is limited by 2. This options can be overridden by

using command-line parameters whose full list of is shown below:

USAGE:

. optimist [OPTIONS] INPUT_FILE_NAME

OPTIONS:

. -l, --level[N] - level of redundant places detection (N=0,1,2,[3])

. 0 = all places are tagged as mandatory

. 1 = optimise_choice heuristic is applied

. 2 = optimise_choice and optimise_latency heuristics are applied

. 3 = use optimise_choice, optimise_latency and optimise_size heuristics

. -r, --redundant PLACE_LIST - list of predefined redundant places []

. -s, --separator PLACE_LIST - list of predefined mandatory places []

. -n, --num-loop[N] - minimum number of DCs in a loop (N=1,2,[3])

. -j, --join-fanin[N] - maximum fanin of join transitions (N=[0],1,2,3)

. 0 = no control on the join transitions fanin

. 1-3 = restrict join transitions fanin to the given number,

. higher value for this parameter is not practical

. -v, --verilog - map STG into Verilog netlist

. -i, --info - include circuit statistics into netlist

. -t, --test - generate circuit ready for off-line testing

. -g, --graph - draw STG in PostScript format

. -d, --debug - print debug information

. -h, --help - print this help

For example, the same file can be processed with the following command-line parameters:

$ optimist -l2 -v -g file.g

or

$ optimist --level2 --verilog --graph file.g

This commands will produce the following set of files:

file_2.g - STG with redundant places detected using optimise_choice and optimise_latency

heuristics

file_2e.g - STG with redundant places detected and outputs exposed

file_2et.g - STG from which redundant places are removed
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file_2et.v - Verilog netlist obtained by mapping the STG into DCs and FFs

file_2.ps - PostScript file for the file_2.g STG

file_2e.ps - PostScript file for the file_2e.g STG

file_2et.ps - PostScript file for the file_2et.g STG

Following is the description of individual OptiMist tools and their command line parameters.

A.3.2 OptiMist tool for detection of redundant places

USAGE:

. om_detect [FLAGS] [IN_FILE_NAME]

OPTIONS:

. -o, --output OUT_FILE_NAME - the name of file to output the result [STDOUT]

. -l, --level[N] - level of redundant places detection (N=0,1,2,[3])

. 0 = all places are tagged as mandatory

. 1 = optimise_choice heuristic is applied

. 2 = optimise_choice and optimise_latency heuristics are applied

. 3 = use optimise_choice, optimise_latency and optimise_size heuristics

. -n, --num-loop[N] - minimum number of DC in a loop (N=1,2,[3])

. -f, --fork - consider places after fork as mandatory

. -j, --join - consider places after join as mandatory

. -c, --choice - consider choice places as mandatory

. -m, --merge - consider merge places as mandatory

. -t, --token - consider places marked with a token as mandatory

. -r, --redundant - PLACE_LIST list of predefined redundant places []

. -s, --separator - PLACE_LIST list of predefined mandatory places []

. -d, --debug[N] - level of debug information (N=[0],1,2,3,4)

. -v, --version - print version and copyright

. -h, --help - print this help

A.3.3 OptiMist tool for exposure of outputs

USAGE:

. om_expose [FLAGS] [IN_FILE_NAME]

OPTIONS:
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. -o, --output OUT_FILE_NAME - output file [STDOUT]

. -d, --debug[N] - level of debug information (N=[0],1,2,3,4)

. -v, --version - print version and copyright

. -h, --help - print this help

A.3.4 OptiMist tool for elimination of redundant places

USAGE:

. om_transform [FLAGS] [IN_FILE_NAME]

OPTIONS:

. -o, --output OUT_FILE_NAME - output file [STDOUT]

. -l, --level[N] - level of transformation (N=0,1,2,3,4,[5])

. 0 = remove transient arcs only

. 1 = 0 + move initial marking to mandatory places

. 2 = 1 + recalculate context signals

. 3 = 2 + eliminate redundant places

. 4 = 3 + remove transient arcs, not connected places and transitions

. 5 = 4 + simplify join transitions

. -j, --join-fanin[N] - max join transitions fanin (N=[0],1,2,3)

. 0 = no control on the join transitions fanin

. 1-3 = restrict join transitions fanin to the given number,

. higher value for this parameter is not practical

. -d, --debug[N] - level of debug information (N=[0],1,2,3,4)

. -v, --version - print version and copyright

. -h, --help - print this help

A.3.5 Optimist tool for mapping STG into Verilog netlist

USAGE:

. om_verilog [FLAGS] [IN_FILE_NAME]

OPTIONS:

. -o, --output OUT_FILE_NAME - output file [STDOUT]

. -t, --test - generate circuit ready for on-line testing

. -s, --statistics - include statistic comments into Verilog netlist

. -dc,--david_cell - provide detail DC statistics

. -ff,--flip_flop - provide detail FF statistics

. -i, --input - provide input signals statistics
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. -d, --debug[N] - level of debug information (N=[0],1,2,3,4)

. -v, --version - print version and copyright

. -h, --help - print this help

A.3.6 OptiMist tool for generation of Verilog netlist for DCs and FFs

USAGE:

. om_lib [FLAGS] [ELEMENT_NAME]

OPTIONS:

. -o, --output OUT_FILE_NAME - output file [STDOUT]

. -f, --format[N] - format of the output data (N=0,1,2,[3])

. 0 = check the validity of the element name

. 1 = pins description

. 2 = gate-level Verilog netlist

. 3 = transistor-level Verilog netlist

. -d, --debug[N] - level of debug information (N=[0],1,2,3,4)

. -v, --version - print version and copyright

. -h, --help - print this help

A.3.7 OptiMist tool for drawing STG using GraphVis DOT format

USAGE:

. om_graph [FLAGS] [IN_FILE_NAME]

OPTIONS:

. -o, --output OUT_FILE_NAME - output file [STDOUT]

. -l, --legend - show legend

. -c, --connect - connect read-arcs to places

. -i, --inputs - show elementary cycles for inputs

. -d, --debug[N] - level of debug information (N=[0],1,2,3,4)

. -v, --version - print version and copyright

. -h, --help - print this help
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This appendix explains how to install and use the VeriMap toolkit. VeriMap improves the security

of RTL circuits by balancing the power consumption of the circuit. The balancing is achieved by

means the dual-rail signalling with return-to-spacer protocol.

There are two alternatives for the return-to-spacer protocol: single-spacer or alternating-

spacer. The former is the traditional protocol for dual-rail circuits. It relies on the assumption

that the rails of the circuit are symmetrical in terms of power consumption. The latter protocol

makes each gate in a dual-rail circuit switch twice within a clock cycle brining the power con-

sumption to a constant value for each cycle. The imbalance still exists, but it is visible only for

less than a clock cycle.

There are two possibilities for the implementation of completion signal: clocked or self-timed.

In the former approach the phases of data and spacer propagation through the logic are controlled

by the clock signal. It relies on the assumption that the clock period is long enough to complete

both phases. In the latter approach the completion signal is computed by a completion detection

logic. This allows to start the spacer phase of the protocol as soon the data propagates through the

combinational logic, thus reducing the time when the imbalance is visible.

The obtained dual-rail circuit can be automatically put in a single-rail wrapper to preserve the

interface between the circuit and the environment.

The installation of VeriMap is explained in Section B.1. Both the input and output of VeriMap

are circuit netlists in Verilog language, which is described in Section B.2. The usage of the tool is
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described in Section B.3.

B.1 Installation

The compilation of VeriMap tool from source is performed by the following command:

$ make

This will compile a binary called verimap. In order to start using the tool put it into a directory

which is referenced from the PATH environment variable (e.g. /usr/local/bin/). This can be

done by running the following command as root:

$ make install

B.2 Structural Verilog

The Verilog language provides the means of describing a digital system at a wide range of levels

of abstraction. It uses the behavioural constructs at the high level and structural constructs at the

low level of abstraction. The behavioural and structural constructs can be mixed. The VeriMap

tool uses only the structural subset of Verilog language, also known as Structural Verilog.

In Verilog the system is described as a set of modules. Each of the modules has an interface to

other modules and the description of its contents. Usually a circuit is divided into modules based

on their logic function, similar to writing a program in a structural programming language. The

modules are then interconnected by means of nets connected to their interfaces.

The Structural Verilog syntax is explained on the full-adder example presented in Figure B.1.

There are two modules defined:: half_adder and full_adder. The half_adder module has two

inputs (a and b), two outputs (s and c) and consists of two library gates (instance inst_s of 2-input

XOR-gate and instance inst_c of 2-input AND-gate). The gates use the module inputs to form

the outputs. The full_adder module contains the instance library gate OR and the instances of the

previously defined half_adder module.
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module half_adder (a, b, s, c);
. input a, b;
. output s, c;
. XOR inst_s (.A(a), .B(b), .Q(s));
. AND inst_c (.A(a), .B(b), .Q(c));
endmodule
module full_adder (a, b, c, s, co);
. input a, b, c;
. output s, co;
. wire p, g, r;
. half_adder inst_1 (a, b, p, g);
. half_adder inst_2 (c, p, s, r);
. OR inst_co (.A(r), .B(g), .Q(co));
endmodule

p

g co
b

a

c

sa

b

inst_1

inst_co

r

sc

c

sa

b

inst_2

Figure B.1: Full adder in Verilog language

Note that there are two ways of connecting wires to the module interface: by order and

by name. If the former way is used then the instance connections are defined by a comma-separated

list of wire names, e.g. inst_1. Each wire in this list is connected to that port from the module

definition, which has the same position in the list of module interfaces. In the latter way each wire

is associated with a module port name explicitly, e.g. inst_co.

Note that C-style and C++-style comments are accepted in Verilog. A C-style comment is a

text between ‘/*’ and ‘*/ ’; a C++-style comment is a text between the ‘//’ sequence and the end of

the line.

The formal grammar definition for the Structural Verilog language is the following.

circuit

. : // Empty

. | circuit module

module

. : "module" NAME port_list_opt ’;’ module_item_clr "endmodule"

module_item_clr

. : // Empty

. | module_item_clr port_declaration

. | module_item_clr instance_declaration

port_declaration

. : input_declaration

. | output_declaration
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. | inout_declaration

. | reg_declaration

. | wire_declaration

input_declaration

. : "input" range_opt variable_list ’;’

output_declaration

. : "output" range_opt variable_list ’;’

inout_declaration

. : "inout" range_opt variable_list ’;’

reg_declaration

. : "reg" range_opt variable_list ’;’

wire_declaration

. : "wire" range_opt variable_list ’;’

instance_declaration

. : NAME instance_list ’;’

instance_list

. : instance

. | instance_list ’,’ instance

instance

. : instance_name_opt instance_index_opt ’(’ connection_list ’)’

instance_name_opt

. : // Empty

. | NAME

instance_index_opt

. : // Empty

. | ’[’ NUMBER ’]’

connection_list

. : ordered_connection_list

. | named_connection_list

ordered_connection_list

. : connection

. | ordered_connection_list ’,’ connection

named_connection_list

. : named_connection

. | named_connection_list ’,’ named_connection

named_connection

176



APPENDIX B. VERIMAP USER MANUAL

. : ’.’NAME ’(’ connection ’)’

connection

. : port_expression_opt

. | ’{’ port_list ’}’

port_list_opt

. : // Empty

. | ’(’ port_list ’)’

port_list

. : port

. | port_list ’,’ port

port

. : port_expression_opt

port_expression_opt

. : // Empty

. | port_expression

port_expression

. : port_reference

port_reference

. : NAME port_reference_arg

. | NUMBER

port_reference_arg

. : // Empty

. | ’[’ NUMBER ’]’

. | ’[’ NUMBER ’:’ NUMBER ’]’

variable_list

. : NAME

. | variable_list ’,’ NAME

range_opt

. : // Empty

. | range

range

. : ’[’ NUMBER ’:’ NUMBER ’]’

In this grammar the words in bold font are the keywords of the Verilog language. The parts of

the lines after the double back slash ’//’ are comments. The capitalised words have special mean-

ing: NUMBER is an integer positive number; NAME is a string which consists of alphabetic characters,
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digits and underscore symbols and starts with either a character or an underscore symbol.

B.3 Usage of the VeriMap tool

USAGE:

. verimap [OPTIONS] [INPUT_FILE_NAMES]

FILE OPTIONS:

. -o, --output OUTPUT_FILE_NAME - Verilog netlist output file [STDOUT]

. -i, --include INC_FILE_NAMES - Verilog include files [STDIN]

. -l, --library LIB_FILE_NAME - Verilog library output []

. -g, --generate GEN_FILE_NAME - Verilog generated modules [STDOUT]

. -r, --rules RULES_FILE_NAMES - rules for gate transformation files []

. -p, --params PARAMS_FILE_NAMES - parameters of modules input files []

. -a, --assignments ASSIGN_FILE_NAMES - assignments input files []

. -cn, --completion-nets NET_FILE_NAMES - completion nets input files []

. *_FILE_NAMES is a coma separated list of files for reading

TRANSFORMATION OPTIONS:

. -tl, --transformation-level[TL] - transformation level (TL=[0],1,2,3)

. 0 = no circuit transformation, the netlist is re-formatted only

. 1 = calculate the optimisation possibilities only

. 2 = convert the circuit into dual-rail

. 3 = build completion detection logic, add go input and done output

. -cd, --completion-delay[CD] - delay of completion logic (CD=[0],1...)

. -ct, --clock-toggle - build a toggle for alternating spacer

. -srw,--single-rail-wrapper - build a single-rail wrapper

OPTIMISATION OPTIONS:

. -ol, --optimisation-level[OL] - optimisation level (OL=[0],1,2)

. 0 = no optimisation (positive gates)

. 1 = optimisation for negative gates or for a parameters

. given by --optimisation-params option

. 2 = optimisation of spacer converters distribution

. -op, --optimisation-params PARAM_NAMES - optimise for parameters []

. PARAM_NAMES is a coma separated list of parameter names which are

. specified in the files provided by --params option

. -gd, --gate-delay-param PARAM_NAME - name of the cell delay parameter []

. PARAM_NAME is parameter name which is specified in the files
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. provided by --params option

STRUCTURE OPTIONS:

. -tm, --topmost-module MODULE_NAME - name of the topmost module

. -buf,--buffer - buffer SPACER and DONE signals

. -ra, --reset-active[RA] - reset active level (RA=[0],1)

. 0 = active-0 reset, 1 = active-1 reset

. -rst,--reset PORT_NAMES - names of reset ports [*.rst]

. -clk,--clock PORT_NAMES - names of clock ports [*.clk]

. -sp0,--spacer-0 PORT_NAMES - spacer-0 ports [*.*]

. -sp1,--spacer-1 PORT_NAMES - spacer-1 ports []

. PORT_NAMES is a comma-separated list of MODULE_NAME.PORT_NAME

. MODULE_NAME.* = all ports of the MODULE_NAME module

. *.PORT_NAME = port PORT_NAME of all modules

. *.* = all ports of all modules

. PORT_NAME = port PORT_NAME of the topmost module

STATISTICS OPTIONS:

. -s, --statistics STAT_FILE_NAME - statistics output file [STDOUT]

. -sl, --statistics-level[SL] - statistics output level (SL=[0],1,2,3)

. 0 = no statistics is collected

. 1 = statistics is collected for single-rail circuit only

. 2 = statistics is collected for dual-rail circuit only

. 3 = statistics is collected for both single- and dual-rail circuits

CONES OPTIONS:

. -c, --cones CONES_FILE_NAME - cones output file name [-]

. -cl, --cones-level[CL] - cones output level (CL=[0],1,2,3)

. 0 = table of cones intersection only

. 1 = output nets in each cone

. 2 = output nets and instances in each cone

. 3 = additional comments for cones layers

. -cv, --cones-vertex ITEM_NAMES - list of vertex items to build the cones

. ITEM_NAMES is a comma-separated list of MODULE_NAME.ITEM_NAME

. ITEM_NAME is either net or instance name

. MODULE_NAME.* = all nets and instances of the MODULE_NAME module

. *.ITEM_NAME = item ITEM_NAME of all modules

. *.* = all nets and instances of all modules

. ITEM_NAME = item ITEM_NAME of the topmost module
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SWITCHING ACTIVITY OPTIONS:

. -w, --wires WIRES_FILE_NAME - wires switching output file [STDOUT]

. -wl, --wires-level[WL] - level of details for wires (WL=[0],1,2,3)

. 0 = no wires switching analysis

. 1 = wires switching is analysed for single-rail circuit only

. 2 = wires switching is analysed for dual-rail circuit only

. 3 = wires switching is analysed for both single- and dual-rail circuits

. -wp, --wires-pattern PATTERN - wires output format [always @(?) c=c+1;]

. Question mark ? in the PATTERN is replaced by the wires full names

TIMING ANALYSIS OPTIONS:

. -cmd CMD_FILE_NAME - Pearl timing analysis command file

. -gcf GCF_FILE_NAME - GCF file for timing analysis

. -pp, --path-possibility[N] - consider N worst paths (N=[1],2...)

INFORMATION OPTIONS:

. -h, --help - print this help only

. -v, --version - print version only
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The symmetric block cipher Rijndael [32] was standardised by NIST as the Advanced Encryption

Standard (AES) [109] in November 2001 as the successor to DES. The algorithm is a block cipher

that encrypts/decrypts blocks of 128, 192, or 256 bits, and uses symmetric keys of 128, 192 or

256 bits. It consists of a sequence of four primitive functions, SubBytes, ShiftRows, MixColumns

and AddRoundKey called a round. A round is executed 10, 12 or 14 times depending on the key

and plain text lengths. Before the rounds are executed the AddRoundKey function is applied for

initialisation plus the last round omits the MixColumns operation. A new key is derived for each

round from the previous key.

For decryption the procedure is reversed and inverse versions of the aforementioned functions

are applied, excluding AddRoundKey, this has no inverse.

A detailed explanation of each function can be found in [32, 66]. For clarity the SubBytes

function performs a non linear transformation using byte substitution tables (Sboxes), each Sbox

is a multiplicative inversion in GF(256) followed by an affine transformation.

A brief description of the two architectures follows.

C.1 Open core AES architecture

This design operates on 128 bits and has two separate ’sub-cores’ one for encryption and the other

for decryption; they share the same type of key generation module [117] and initial permutation

module, however separate instances exist inside each sub-core. The core is shown in Figure C.1;
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Figure C.1: Open core AES

each sub core has 16 inverse/Sboxes inside the round permutation module. The initial permutation

modules simply perform the AddRoundKey function and the round permutation modules loops

internally to perform the 10 rounds and the final permutation module performs the last round.

For this yields a complete encryption in 12 clock cycles. The decryption core consists of 16

inverse Sboxes these differ from the Sboxes used for encryption. The key reversal buffer stores

keys for all the rounds and these are presented to the round permutation module each round in

reverse order. Using this principle a complete decryption can be performed in 12 clock cycles.

It must be highlighted that since the keys are used in reverse order - the initial key must be first

expanded 10 times to get the last key, taking 10 extra clock cycles. In this design the Inv/SubBytes

transformations (Sboxes) are hardwired instead of being computed on the fly or stored in a ROM.

This can be seen as simply a large decoder. The sub-cores both have 128 pins for plain/cipher text

and 128 pins for the key and miscellaneous control pins and logic.

C.2 AES with computable Sboxes architecture

This architecture combines encryption and decryption into one core working on 128 bits. The

designs’ basis is taken from [66], it was chosen due to its structure namely: it is highly regular (this

keeps the layout small), it has short balanced combinational paths, hardware reuse for encryption

and decryption which yields a small area and finally it has a 32 pin interface for the data (128 pin

for the key) and shared computable Sboxes.

The design consists of a key generation unit, control logic and a data unit incorporating 16 data

cells, 4 Sboxes (these perform the Sbox and inverse Sbox unlike the open core design) and a barrel
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Figure C.2: AES with computable Sboxes

shifter. The core is displayed in Figure C.2, since the core does both encryption and decryption

the diagram summarises both.

The data unit can perform any of the AES round functions and uses the key provided by the

key unit for the AddRoundKey function. A single data cell comprises of a register, a GF(256)

multiplier [66], a bank of XOR gates, and an input selection multiplexer. Additional multiplexers

are included to enable the required function to be selected.

The Sboxes are able to perform either the Sbox transformation or the inverse Sbox transfor-

mation taking two clock cycles to compute a result due to a two-stage pipeline. Whilst the Sboxes

are not used by the data unit (the MixColumns operation) the key generation unit takes advantage

of this to generate the next key. The Sbox is computed by reducing the computation to GF(16) and

GF(16) arithmetic and then applying the affine transformation as illustrated in [122].

Since the design has a 32 pin interface for the data, four clock cycles are required to clock the

plain text, or cipher text into the data unit, and the same number to retrieve the data. After loading,

the round functions are selected by the control logic. In total 60 clock cycles are needed for a

complete encryption or decryption. As with the other design the input key needs to be expanded

to the last key value before any rounds can take place; this takes an extra 20 clock cycles due to

the pipelined Sbox. The total number of cycles for encryption or decryption could be reduced to
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30 by using 16 Sboxes at the expense of more area.

C.3 AES chip

A circuit presented in this section is designed in collaboration with Julian Murphy, who did layouts

of all blocks and floorplaning of the chip.

Two implementations of AES with computed Sboxes are fabricated on this chip in order to

compare their resistance to power analysis attacks. The first one is a standard RTL implementation

synthesised from a behavioural AES specification, and the other one is a dual-rail implementation

obtained from the RTL netlist by using the VeriMap tool kit.

The floorplan of the chip is depicted in Figure C.3. The blocks labelled on the floorplan are

the following:

· Block 1 is a single-rail AES core with computable Sboxes capable of 128 bit encryption

and decryption. This block was synthesised using Cadence Ambit v4.0 from a behavioural

Verilog specification.

· Block 2 is a dual-rail AES core with computable Sboxes capable of secure encryption and

decryption, using an alternating-spacer signalling protocol. This dual-rail AES block was

obtained by direct mapping from an RTL netlist of the single-rail AES design using the

VeriMap tool kit. No additional synthesis was required for this block. This design is about

110% larger than the single-rail AES block.

· Block 3 is an independent design for on-chip sub-picosecond phase alignment.

· Block 4 is an interface logic which multiplexes the input and output pins and selects which

block to activate.

The chip was laid out in an AMS 0.35µ four layer process, which works on a 3.3 voltage.

The designs use standard cells, no custom transistor sizing or transistor-level implementations of

dual-rail flip-flops are used. The design time was four months from initial layout to tape out. After

initial layout, the design was simulated digitally and then simulated at the transistor level. Both

simulations produced correct results.
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Figure C.3: AES chip floorplan

The chip is produced using the Europractice fabrication facilities. The area of the complete

chip is 10.89mm2. The chip and its package are shown in Figure C.4.The blocks labelled on the

circuit floorplan are clearly visible on the chip surface.
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Figure C.4: AES chip package
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