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Abstract

We present in this report a novel method to design the asynchronous datapath circuit. The robustness
of the implementation is based on the concept of partial acknowledgement. In each of the two design flows
in this report, we introduce the method to implement the library as well as the algorithm directed by the
cost functions. The example in the case study shows the advantages of our methods compared to previous
ones.

1 Introduction
In the past few years, designers were trying to build up a bridge between synchronous and asynchronous
circuit design. Rather than synthesizing the circuits from the “truly” asynchronous specifications such as
communicating processes [8] or signal transition graph [18], the aim was to introduce the benefits of asyn-
chronous techniques at a lower cost by reusing synchronous design tools like those for logic synthesis.

The asynchronous circuits built by these methods are distinctly robust in fighting against the delay vari-
ations which were difficult to control in deep-submicron technology. However, it had severe penalties of
large overhead and high power consumption. For instance, the complex dual-rail implementations con-
sumed much more than 200% of the power of the equivalent single-rail ones. NCL-D [7] was such a design
method where each gate in the original single-rail netlist was replaced by the input-complete (IC)[4] (or
strongly-indicating (SI), [11]) module encoded using dual-rail code, a delay-insensitive (DI) code [16]. In
NCL-D implementation, all the fork wires existed in the original netlist were allowed to have arbitrary de-
lays and were therefore non-critical. Only critical fork wires within the IC functional module needed to
be verified for the timing closure, which was a relatively easy task through careful routing of the library
elements. Whilst robust, the datapath implemented this way was bulky and slow as well because of the
synchronization existed everywhere in the circuit. To reduce the overhead of NCL-D, another method was
proposed in [5] (known as NCL-X) where each gate in the netlist was replaced by the more economical
early-propagative (EP) functional module. By doing so, the previous non-critical forks in the NCL-D im-
plementation became critical whose delays had to be bounded by the critical path delay in the completion
detection (CD) circuitry. NCL-X used less area in the functional part but had the extra burden of the CD
circuitry whose implementation style decided its actual overhead compared with NCL-D.

In this paper, we also design asynchronous datapath by reusing synchronous synthesis tools. Our method
does not exclude the existence of the non-critical fork wires in the final implementation and is hence more
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conservative than NCL-X. What distinguishes our method from the previous ones is that we pursue the min-
imum cost of an implementation to maintain the robustness by guiding the design procedures by explict cost
functions. In this paper, we develop the partial acknowledgement as the key concept by which the require-
ment of robustness is guaranteed. We distribute the partial acknowledgement of every input and internal
variable of the circuit in a cost-aware way. Two design flows are proposed in this paper on the understanding
that the design objective can be transformed into different design procedures given different libraries. Our
implementations are purely made up of the functional modules without CD circuitry, diminishing the verifi-
cation task for timing closure compared with NCL-X. We observe from the case study that our design flows,
especially the second one, notably reduce the area of an implementation while keeping the robustness at a
reasonable level.

2 Background

2.1 Monotonic data flow in asynchronous circuit and the hazard-free conditions
Asynchronous circuits are free from using the clock for computation coordination. Instead, the request
and acknowledgement (handshaking) signals are used in them [14]. In this paper, we adopt the dual-rail
code, a DI code [16], where each 1-bit signal is represented using two rails: rail0and rail1. In a system
using 4-phased protocol, null (or spacer) is represented by the combination of rail0=rail1=0 whereas the
data word “1” (“0”) by rail0=0, rail1=1 (rail0=1, rail1=0), respectively. The data and null wavefronts
flow consecutively where the variables in a circuit change gradually from nulls(valid code words) to valid
code words(nulls). These monotonic transitions aim to eliminate the hazard, a dangerous phenomenon in
asynchronous circuit resulting from the lack of a global clock. Hazard is also viewed as a consequence
of insufficient acknowledgement [5], a notion describing that a change of signal a indicates that of another
signal b. If we can make sure that every transition in both phases is acknowledged by another transition, the
two consecutive data wavefronts would not interweave producing a malfunction. Equivalently, two criteria
were proposed in [4] to ensure a hazard-free, 4-phased system:

1. Completeness of Inputs, which required that the outputs of a circuit may not transition from null(data)
to data(null) until all inputs have transitioned from null(data) to data(null). It allowed the “weak
conditions” of signaling defined by Seitz [11].

2. Observability, which ruled out the propagation of an orphan passing through a gate. An orphan is
defined as a wire that transitions during the current data wavefront but is not used in the determination
of the outputs.

2.2 Timing assumptions in asynchronous datapath implementation
It is very difficult to design an asynchronous circuit without any timing assumption using standard logic
gates, i.e., the Delay-Insensitive (DI) circuit [14] where all the gate elements and fork wires are allowed to
have arbitrary delays. The category of circuits with an inferior level of robustness is known to be Quasi-
Delay-Insensitive (QDI) where there exist both critical and non-critical forks. The wires after the non-critical
forks are allowed to have arbitrary delay while those after the critical forks are required to satisfy the timing
assumption, i.e., the isochronic fork assumption [1].
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Figure 1: Timing assumptions in the NCL-D and NCL-X approaches

NCL-D is the practice in designing the dual-rail QDI circuit that reuses synchronous synthesis tools. It
replaces each gate in the netlist with the equivalent IC functional module that satisfies the Completeness
of Inputs introduced in 2.1. As an example, Figure 1 (b) implements the netlist in Figure 1(a) using NCL-
D. The suffix IC stands for the input-complete implementation of a gate. Figure 2 illustrates two different
styles to implement an IC functional module - those based on the Muller-C elements, i.e., DIMS [15] and
the threshold logic, i.e., the Null Convention Logic (NCL) [13]. Each IC functional module in Figure 1
represents an “equipotential region” [11] outside which the fork wires are allowed to have arbitrary delay
without disturbing the correct functioning. Inside an IC functional module, however, the wire delays are
required to satisfy the timing bounds. We mark those wires in Figure 2 to be verified for the timing closure
when a and b changing from nulls to the valid code words “1”.

The third category of the asynchronous circuit is known to be Speed-Independent (SI) where all the
fork wires in the circuit are critical. NCL-X is the method to implement it. It consists of two parts: the
functional parts and the completion detection circuitry. In the functional part, each gate is replaced by
the equivalent early-propagative (EP) functional module that does not satisfy the Completeness of Inputs.
Figure 2 demonstrates the different implementations of an EP module of the AND function. We can see that
either implementation will output a valid data “0” when only one of the inputs transitions from null to the
valid data “0”. The completion detection circuitry made up of OR gates and C-element tree, on the other
hand, checks the variables’ states in each wavefront. Figure 1(c) illustrates the implementation of the netlist
in Figure 1(a) using NCL-X, where the EP suffix stands for early-propagative implementation introduced
above. In the NCL-X implementation, the delays of all the fork wires fan-outing to the EP modules in the
functional part of the circuit must be bounded by the critical-path delay in the completion detection circuitry
in order to exclude the hazards. In the implementation in Figure 1(c), the fork wires to be verified for timing
closure are shown in bold.

As shown in Figure 2 there exists library-dependent implementations for both the IC and EP functional
modules of the same simple gate (AND gate in our example). [12] compared their areas and speed.

3 Partial acknowledgement
For a dual rail encoded variable n in a circuit with the 4-phased protocol, we use the notation n ↑ and n ↓

to denote the rising phase transition of n from null (nnull) to a valid code word belonging to ncw and the
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Figure 2: Different implementations of the functional modules for an AND gate

falling phase transition from a valid code word to nnull, respectively. ncw, the set of valid code words,
includes the valid code words “1” and “0”.

We define the partial acknowledgement of the rising phase transition of a variable n by the rising phase
transition of another variable m∈direct-fan-out(n) iff:

(∀n ↑∈ nnull→cw : ∃m ↑∈ mnull→cw : n ↑→ m ↑) (3.1)
Similarly, we define the partial acknowledgement of the falling phase transition of a variable n by the

falling phase transition of another variable m∈direct-fan-out(n) iff:
(∀n ↓∈ ncw→null : ∃m ↓∈ mcw→null : n ↓→ m ↓) (3.2)
From the definitions 3.1 and 3.2, it is obvious that by observing the transition of variable m from null

(valid word) to valid word (null) we can determine whether variable n has already transitioned from null
(valid data) to valid data (null), if the rising (falling) phase transition of n is partially acknowledged by that
of m. The acknowledgement is defined to be partial because variable n can have other fan-outs besides m.

We define that a variable n is partially acknowledged if both its rising and falling phase transitions
are partially acknowledged. Particularly, if they are partially acknowledged by the corresponding phase
transitions of the same variable m∈direct-fan-out(n), we say that variable n is partially acknowledged by m,
i.e. ,

(∀n ↑ ∈ nnull→cw : ∃m ↑∈ mnull→cw : n ↑→ m ↑)

∧ (∀n ↓∈ ncw→null : ∃m ↓∈ mcw→null : n ↓→ m ↓)

(3.3)
Finally we define that a variable n is acknowledged iff it is partially acknowledged by every variable

belonging to n’s direct fan-outs.
From our definitions, the output of an IC functional module partially acknowledges all its input variables.

On the contrary, the output of an EP functional module partially acknowledges none of its input variables.

NCL-EECE-MSD-TR-2006-113, University of Newcastle upon Tyne 4



Y. Zhou D.Sokolov and A. Yakovlev: Cost-aware Synthesis of Asynchronous Datapath based on Partial
Acknowledgement

Therefore, every input and internal variable in NCL-D implementation is acknowledged. In NCL-X imple-
mentation, however, each input and internal variable is only partially acknowledged.

4 Designing asynchronous datapath based on partial acknowledge-
ment

In this section, we present two design flows to implement the asynchronous datapath where every input and
internal variable of the circuit is at least partially acknowledged. Both design flows have the same objective
and work with the structural single-rail netlist that can be generated using the high-level and logic synthesis
tools. The gates in the single-rail netlist are converted to the appropriate types of dual-rail functional modules
existing in a design library, according to the specific algorithm aiming to minimize the circuit’s overhead.
No explicit completion detection circuitry, like that used in NCL-X, are adopted in our design flows. This
avoids the extra routing of the wires in the completion detection circuitry and reduces the verification task
as well. The design objective is elaborated in the following part:

Design Objective: Given the single-rail netlist of a synchronous circuit, implement its dual-rail counter-
part, i.e., a dual-rail encoded netlist with an equivalent function where every gate in the original netlist is
replaced by the appropriate type of its dual-rail encoded functional module. Find out such an implementa-
tion with minimum area under the requirement that both the rising and falling phase transitions of each input
and internal variable are partially acknowledged.

The first design flow represents a quick remedy to the previous methods. The library associated with it
contains only the IC and EP functional modules of the basic gates. In this case, IC functional modules are
the only candidates to partially acknowledge a circuit variable. We develop the algorithm in sections 4.1.1
and 4.1.2. The second design flow is more flexible in that it provides a library of the functional modules
of the basic gates with the tuned ability to partially acknowledge the input variables. Besides the EP and
IC functional modules, the design library in design flow 2 has other functional modules that can partially
acknowledge any arbitrary combination of the input variables. The flexibility in the second design flow
delivers a further reduction of the implementation that is as robust as the first one. We introduce its library
design in section 4.2.1 and the algorithm in 4.2.3.

4.1 Design flow 1
In this design flow, the responsibility for partial acknowledgement of the input and internal variables is
taken exclusively by the IC functional modules in the circuit. Section 2.2 introduced different techniques to
implement the IC and EP functional modules. Our design algorithm is independent of the implementation
techniques.

We revisit the example in Figure 1(a). We intuitively implement gate e and gate g with their IC func-
tional modules whereas the gate f the EP one in the target circuit in Figure 3(b). By our definition, the
input variables a and d are acknowledged while b and c partially acknowledged. 92 transistors (the DIMS
implementation of the IC functional modules) are used in our method compared with 102 used in NCL-X
(the C-element implementation of the CD circuitry). Our method also avoids the extra routing of the inter-
connections used in the CD circuitry in NCL-X. In terms of robustness, our design has less number of wire
forks required for timing verification compared with NCL-X, which are marked out by bold lines in Figure
3(b).
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Figure 3: Intuitive implementation of the exemplar circuit

The limitations of the design library in the first design flow are twofold. Firstly, the rising and falling
phase transitions of a circuit variable are partially acknowledged by the same functional module(s). Sec-
ondly, circuit variables can only be partially acknowledged by the IC functional module and a IC functional
module will partially acknowledge all its inputs. Thus we can transform the design objective into the prob-
lem of finding out a set of gates in the synchronous netlist, after being converted to their IC functional
modules, that can partially acknowledge all the input and internal variables with the minimum cost in area.
Partial acknowledgement matrix (PAM) is developed in 4.1.1 to facilitate the design task followed by the
specific algorithm for design flow 1 based on the PAM.

4.1.1 Defining the design problem based on PAM

A PAM is a 2-dimensional matrix constructed from the single-rail netlist. The size of a PAM is m by n,
where m is the number of input and internal variables in the netlist while n is the number of gates. Each row
in a PAM stand for an input or internal variable in the circuit whereas a column for one gate. A value “1” is
assigned to the element PAMij if variable i is a direct input to gate j and otherwise a value “0”. For example,
the PAM of the circuit in Figure 3(a) is demonstrated in Table 1. A column j is said to cover the row i iff

variable gate e gate f gate g
a 1 0 0
b 1 1 0
c 0 1 1
d 0 0 1

Table 1: PAM of the exemplar circuit in Figure 3(a)

PAMij=1.
According to the design objective in 4.1, we need to find out the set of gates in a netlist covering all the

rows in its PAM with a minimum cost of the final implementation. An exact solution to it needs to firstly
search all the possible sets of gates covering the PAM and then compare their implementation costs to find
out the most economical one. During the cost estimation, a gate is evaluated using its IC functional module’s
area if it belongs to the cover set or otherwise the EP one. However, this exact solution involves the full
exploration of the search space and requires a long computation time. In the following, we introduce a quick
search method that enables some reduction strategies. We will aim the minimum cost of all the IC functional
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modules that cover all the variables because the IC modules take the dominant place in the overall overhead
compared with the EP ones.

In this method, cost cj is associated with the j-th column in the PAM representing the area of the IC
functional module of gate j. We use the number of transistors in a functional module as an indication of its
area in this paper. In the case of the PAM in Table 1, all the columns have the same cost under the same
implementation technique. It is natural that the costs of the same type of gate can be different when using
different implementation techniques. E.g., the IC implementation of the AND2 gate by TCR method is
much more economical in area than that by DIMS [12].

We refine our design problem based on PAM: given the PAM of a circuit, find out the set of columns
that covers all the rows with a minimum total cost. Then replace the gates in this set with their IC functional
modules while others the EP ones. The problem can be formulated as a special form of the Integer Linear
Program (ILP), i.e., finding out min(

∑

cjsj) subject to the constraint PAM · s ≥ 1, where

s =









s1

...
sn









(sj = 1 if column j is selected, or sj = 0 if column j is not selected) and 1 =









1
...
1









.

After finding out the minimum cost solution s, implement the gate j with its IC functional module if
sj = 1or its EP functional module if sj = 0.

We can recognize without difficulty that gate e and gate g are the only gates in an optimal solution that
will be converted to their IC functional modules. But for the larger circuit it is necessary to develop some
formal procedures to facilitate the design process.

4.1.2 Formalization of the design procedure

In this section we will first discuss how to simplify the PAM without interfering the possibility of finding
out the optimal solution. Three different reduction techniques are proposed with their applications to the
specific circuit examples. They originated from the reduction methods to the more general problem, the
unate covering problem (UCP) [2].

0 0 0 Variable  m 1

Variable  n

0 

1

gate  g

0 

g
m

n

Figure 4: Essential gate g

• Essential Column (Gate)

If there is only one non-zero value in the row ri of a PAM, i.e., variable i has only one fanout gate, then the
column (gate) with a value 1 on row i is call the essential column (gate) and must be included in the covering
set because its IC functional module is the only one that can partially acknowledge variable i. Figure 4
shows the circuit example where m has only one fan-out gate g. In this case g must be mapped to its IC
functional module in the final implementation. After the essential column is identified, all the rows covered
by it are eliminated from the PAM because they have been partially acknowledged by the essential gate.
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• Row (Variable) Dominance

A variable i in the circuit dominates another variable j if the row corresponding to ri in the PAM has 1s in
the same columns as row rj. In terms of a circuit, this means that the set of fan-out gates of the variable j
is a subset of that of the variable i. We know that variable i will be partially acknowledged if j is partially
acknowledged but not the other way around. Consequently, we can safely remove the dominating row
(ri) from the PAM because its constraint condition is superfluous. In the example of Figure 5, variable m
dominates n and the row standing for variable m can be withdrawn from our consideration.

• Column (Gate) Dominance

A gate i dominates another gate j if the column i in the PAM has 1s in the same rows as column j. Provided
ci is no higher than cj , we can discard the dominated gate without affecting the final results purely because
the dominating gate partially acknowledges more variables than the dominated one with smaller cost. In the
example of Figure 6, gate r dominates gate s and therefore we can eliminate the column (gate) s in the PAM.

1

gate  sgate  r gate  t

1 1

1 10 

Variable  m

Variable  n

m
r

s

t

n

Figure 5: Dominance of variable m over variable n

1

gate  sgate  r

1

1Variable  n

r

s
Variable  m

Variable  l

1 0 

1

n

m
l

Figure 6: Dominance of gate r over gate s

We simplify the PAM of the target circuit using above reduction schemes until no more partially unac-
knowledged variables left. However we cannot always rely on the three rules because there are situations
where none of them can be used. It was called the “cyclic” situation as illustrated in Figure 7 where there is
no obvious reason to choose one gate rather than another as part of the optimal solution.

We could use the algorithm to find a minimum-cost solution of the cyclic PAM by searching the de-
sign space making up of all possible combinations of its columns. But its computational complexity is
exponential to the number of gates in a circuit and therefore very costly. Alternatively, we can use the
branch-and-bound algorithm to reduce the search space without sacrificing the optimal solution. In this
branch-and-bound algorithm, we trace the branches in a binary search tree where each node in the tree rep-
resents a gate that will be either chosen or not in an optimal solution. At the beginning of the algorithm, we
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Figure 7: A examplar circuit (a) with a cyclic PAM (b)

estimate the lower bound which is the lowest possible cost to cover all the variables left in the PAM (Some
quick estimation method is introduced in [2]). During the search process, we will stop at a branch whose cost
is equal to the lower bound no matter whether other optimal solutions exist or not. Besides the lower bound,
we keep the upper bound of a PAM that is equal to the lowest cost of the branch in the detected part so far.
The upper bound will be dynamically updated by the newly found lower ones. We will discard a branch if
its cost estimation is higher than the upper bound and thus reduce the computation complexity. During the
branch and bound algorithm, we can use the three reduction methods introduced above to iteratively simplify
the PAM until all the variables are crossed out, according to our design objective in 4.1. The general branch
and bound algorithm can be found in [2] and a more recent one in [3]. We summarize in algorithm 1 the
design procedures used in design flow 1.

Suppose in Figure 7 we chose f2 to be included in the optimal solution. By removing the variables it
covers and using the column (gate) dominance, we come to the optimal solution whose IC set includes {f1,
f2} or {f2, f3}. A more complex example will be studied in section 5.

4.1.3 Timing assumptions

In the final implementation, a fork is non-critical if all the gates it fans into are implemented by their IC
functional modules. For the fork wires fanning into EP functional modules, we need to ensure their timing
closure to avoid a potential hazard.

4.2 Design flow 2
One limitation of design flow 1 is its narrow spectrum of functional modules in the design library. It includes
either the IC functional modules that partially acknowledge all the inputs or the EP ones that partially ac-
knowledge none. Consequently, the partial acknowledgement of the circuit variables in an implementation
is congregated at certain IC functional modules determined by algorithm1. The first design flow, however,
may not lead to the globally optimal solution wherethe partial acknowledgement of circuit variables is freely
distributed. By free distribution, we mean, first, to allow a functional module to partially acknowledge only
a fraction of its input variables and, second, to allow separate functional modules for the partial acknowl-
edgement of the rising and falling phase transitions of a particular variable. This requires setting up of the
modules with the same function but tuned ability to partially acknowledge the designated phase transitions
of certain input(s). Martin’s adder [9] is an example to to distribute the evaluation of the nulls and valid
code words of the inputs among sum and carry-out. In [10], Nielsen proposed the general rules to build the
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Algorithm 1 Algorithm of design flow 1
Reduction of PAM (PAM)

{
IC-Set=empty-set;
// essential gate reduction
Essential_gate (PAM);
// reduction of the dominating variable
for each ri∈PAM

{
for each rj∈PAM | j6=i

{
vij=ri-rj;
if (every element ∈vij≥0)
cross out rifrom the PAM;
Essential_gate (PAM);
}

}
// reduction of the dominated gate
for each ci∈PAM

{
for each cj∈PAM | j6=i

{
vij=ci-cj;
if (every element ∈vij≥0)
cross out cjfrom the PAM;
Essential_gate (PAM);
}

}
if (cyclic PAM)

{
branch-and-bound(PAM);
}

return (PAM, IC-Set);
cost_estimation(IC-Set);
}

subroutine Essential_gate (PAM)
{
for each row ri in the PAM

if (
∑

PAMij = 1);
IC-Set=IC-Set∪Gatej|(PAMij=1);
cross out {rowk|PAMkj=1} from the PAM;

}

reduced direct logic for a similar distribution in [9]. In this paper, we use Boole’s expansion theorem in dual
rail context to synthesize the functional modules. Then we discuss the cost functions and algorithms used to
distribute the partial acknowledgement of a variable in a systematic approach.

4.2.1 Functional modules synthesis

In this section we design the dual-rail encoded modules with different functions that can partially acknowl-
edge certain phase transition(s) of the input variable(s). We name these functional modules using the con-
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vention of module name_(input name and its phase transitions)*, where the phase transitions of an input
include the rising phase transition (↑), falling phase transition (↓) and both phases transitions (?). For ex-
ample, AND3_a↑ denotes the 3-input-AND functional module that partially acknowledges the rising phase
transition of its input a whereas MAJ3_a?b? refers to a 3-input-majority-voting functional module with the
boolean function f = ((a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c)) where both the rising and falling phase transitions of a
and b are partially acknowledged by it.

The circuit style used to implement the functional modules is pseudo-static that comprises the pull-up-
network (PUN), pull-down-network (PDN), and the output inverters. PDN is made up of n-typed transistors
that will partially acknowledge all the rising phase transitions of the designated inputs to a functional module.
PUN consists of p-typed transistors that will partially acknowledge all the falling phase transitions of the
prescribed inputs. The weak feedback inverter is used to fight against charge leakage problem. Alternatively
we can use the cross-coupled p-typed transistors for this purpose. Figure 8 (a) illustrates a prototype of the
pseudo-static functional modules with f 0 and f1 its dual output rails. The PDNs of both output rails share
as many as possible n-typed transistors and thus are presented in one block.

f
0

f

a1 a0

c0c0
c1 c1

f1
f0

f1 f0

c0

c1

c0

c1

PDN

1

PUN PUN

(b)

b b01

(a)

Figure 8: (a) Prototype of the functional module (b) implementation of MUX2:1_a↑c?

We introduce the design procedures of a general functional module through the example of
MUX2:1_a↑c?.

Step 1: Derive the dual-rail functions, i.e., f 0 and f1 , from the boolean function f. f 1 is converted from f
by replacing the uncomplemented variables in f with their rail-1s whereas the complemented ones with their
rail-0s. f0 is simply the dual of f1. E.g., the boolean function of module MUX2:1_a↑c? is f = ca + c′b.
We can derive its dual-rail boolean functions of f 1 = c1a1 + c0b1 and f0 = c1a0 + c0b0.

Step 2: Apply the Boole’s Expansion Theorem to f 1 and f0 with respect to the selected inputs whose
rising phase transitions are to be partially acknowledged. If no inputs are to be partially acknowledged for
their rising phase transitions, we will keep f 1 and f0as they have been derived in the first step. In this step
we first construct the dual-rail minterms of the selected input variables whose rising phase transitions are
to be partially acknowledged. For instance, if a and c are the selected inputs as in our example, then the
dual-rail minterms would be a0c0, a0c1, a1c0 and a1c1. After this we decompose f 1 and f0 in terms of the
dual-rail minterms. The decomposition is of the general form:

f1 = m0 · f
1

m0=1
+ m1 · f

1

m1=1
+ · · · + m2n−1 · f1

m2n
−1=1
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f0 = m0 · f
0

m0=1
+ m1 · f

0

m1=1
+ · · · + m2n−1 · f0

m2n
−1=1

(4.1)
, where m0, ..., m2n−1 are the dual-rail minterms of the selected n input variables.
Such a decomposition ensures that the rising phase transitions of the selected input variables are partially

acknowledged by the rising phase transition of the module’s output. It is because the sum of the products
in (4.1) ensures there will always exist a minterm in any path from ground to the module’s output rails. A
minterm is implemented by the cascade of n-typed transistors controlled by its factors, as will be introduced
in step 3. We demonstrate the expansion of f w.r.t. its inputs a and c in the example of MUX2:1_a↑c?,
where

f1 = a0c0 · f1

a0=c0=1
+ a0c1 · f1

a0=c1=1
+ a1c0 · f1

a1=c0=1
+ a1c1 · f1

a1=c1=1

= a0c0 · (b1) + a0c1 · (0) + a1c0 · (b1) + a1c1 · (1)

f0 = a0c0 · f0

a0=c0=1
+ a0c1 · f0

a0=c1=1
+ a1c0 · f0

a1=c0=1
+ a1c1 · f0

a1=c1=1

= a0c0 · (b0) + a0c1 · (1) + a1c0 · (b0) + a1c1 · (0)

(4.2)
Step 3: Connect the n-typed transistors in PDN according to the dual-rail expansion in (4.1). The

connection rules are similar to that of the complementary static CMOS complex gates: a product term is
implemented as the cascade of the n-typed transistors controlled by its factors and then the product terms are
connected in parallel to generate a particular output rail. Figure 8(b) shows the final implementation of the
module MUX2:1_a↑c?, where the n-transistors in the PDN are shared to save the total transistors number.

Step 4: Design the PUN of a functional module. For a functional module to partially acknowledge
an input’s falling phase transition, we need cascade two p-typed transistors controlled by both rails of the
variable in the paths from VDD to both the output rails. This is similar to the requirement in [10]. Finally
according to [10], a p-typed transistor in the PUN can be removed if it is controlled by an input rail that does
not appear in any path from ground to the same output rail. This further simplification is not applicable to
our example in Figure 8(b) because both c1 and c0 are present in the PDNs. However, we must be cautious
in some scenarios where this reduction would be unsafe. For instance, the removal of a p-typed transistor
according to the above rule could be dangerous if the input variable is only partially acknowledged for its
falling phase transition but not the rising one. In this case, it may fail to acknowledge the rising phase
transitions of all the input patterns. It is always safe to apply the reduction rule in a functional module
where both the rising and falling phase transitions of an input is partially acknowledged. Figure 9 shows the
implementation of AND2_a? after the removal of a0 in the PUN of f1.

If a functional module is not responsible for the partial acknowledgement of the falling phase transitions
of any inputs, its PUNs can be implemented in either static or dynamic style. In the former case, the PUNs
are complementary to the PDNs and the feedback inverter can be removed because it’s free from the dangling
state. In the later case, only one p-typed transistor exists in each of the PUNs and it is controlled by the global
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1b

a1

b0

a0

f1 f0

a1

a0

a1

Figure 9: Implementation of AND2_a?

resetting signal. The resetting signal acts as the precharge signal used in the dynamic logic styles [6] [17]
but only controls the foregoing functional modules. Figure 10 illustrates the two ways to implement the
functional module AND2_a↑. The precharge signal only acts as parallel resetting to some part of the circuit

b0

a1

1b
a0

f1 f0

PC

a0

b01b

a1

f1
f0

(a) (b)

Figure 10: Implementation of AND2_a↑ by complementary static logic (a) and dynamic logic (b)

and we still rely on the partial acknowledgement of the falling phase transitions of the circuit variables for
the separation between two valid data wavefronts. Consequently we need not worry about the skew of the
precharge signal.

4.2.2 Determination of the design library

In theory we can design the functional modules that partially acknowledge all the possible combinations of
their input variables’ phase transitions. It provides a wide spectrum of design elements but involves great
design complexity as well. We restrict the combinations in this paper by requiring that the falling phase tran-
sition of a circuit variable can only be partially acknowledged by the functional module that acknowledging
the variable’s rising phase transition. This restriction would not degrade the final performance because we
know that the rising phase transition is acknowledged by the p-typed transistors in the PUNs whose number
is generally constant (4 p-typed transistors per input). In addition, we can safely apply the reduction rules
if the rising and falling phase transitions of a variable are acknowledged by the same module, according to
step 4 in section 4.2.1.

The fundamental modules designed according to the procedure in 4.2.1 and satisfying the above restric-
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tion are summarized in Table 2 for their costs estimation. The numbers of inputs being partially acknowl-
edged are increasing from left of the table to right. The EP_DR column represents the dual-rail encoded,
early propagative functional modules. The estimations we make for the EP_DR ones are based on the com-
plementary static implementation while we can use the dynmic implementation as well (see Figure 10 for
reference).

We can see the the biggest difference of the second design flow, compared with the first one, is that we
can have modules partially acknowledging any number, including none, of the inputs. Asymmetries exist in
some functional modules in that they use different numbers of transistors to partially acknowledge the same
number of inputs. For instance, the transistors counts are different for AO21_a?_b? and AO21_a?_c?.

4.2.3 Measuring the cost of partial acknowledgement

If an input fans into several different modules, we know from Table 2 that generally these modules have
different costs to partially acknowledge the input. However, we cannot rely on their absolute values to
determine the best candidate to partial acknowledge the input. Imagine the part of a circuit illustrated in
Figure 11. The input a is the only partially unacknowledged input of f1 and f2, whose other inputs have been
acknowledged elsewhere in the circuit. From the Table 2 we know that f1 uses less transistors (OR3_a?)

a

f2

f1

Figure 11: Different costs in partial acknowledging a

than f2 (XOR3_a?) to partially acknowledge input a. But the choice to implement f1 as OR3-a? and f2 as
the EP_DR type is much more expensive than the other way around, f1 as EP_DR type and f2 as XOR3_a?

(49 v.s. 34 transistors).
We realize that the above choice should be based on the comparison of the increased costs of a functional

module for its partial acknowledgement of a particular input. That’s why the incremental cost, 4n, is
introduced. It denotes the number of the increased transistors of a functional module for its n-th partially
acknowledged input variable. Table 3 summarizes the incremental costs of the different functional modules.
In table 3, 41 refers to the increased number of transistors of a functional module for the first partially
acknowledged input compared with its EP_DR implementation. Different incremental costs exist in 41

(42, 43) for the same type of gate because of asymmetry.
In the circuit illustrated in Figure 11, the incremental cost to partially acknowledge a by f1 is

41(f1)=41(OR3)=5 while by f2 is 41(f2)=41(XOR3)=-10. Therefore, we choose f2 as the functional
module to partially acknowledge the input a.

4.2.4 Optimal distribution of partial acknowledgement using local search algorithm

In the second design flow, we try to find the optimum solution to the design objective stated in the beginning
of this section. The library of this design flow consists of the functional modules in Table 2 and those whose
functions are not listed in Table 2 but developed according to the procedures in section 4.2.1 under the
restrictions of 4.2.2.
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Functional Module 41 42 43
a(b) c a(b)+b(a) a(b)+c c+a(b) ab+c a(b)c+b(a)

AND(OR)2 7 - 5 - - - -
XOR2 2 - 4 - - - -

AND(OR)3 5 5 5 5 5 5 5
AO21(OA21) 8 5 4 3 6 5 6

MAJ3 0 0 4 4 4 8 8
XOR3 -10 -10 4 4 4 4 4

MUX2:1 2 -2 4 2 6 8 10

Table 3: Incremental cost for an input variable to be partially acknowledged

We construct the PAM of a circuit in the same way as introduced in the first design flow. However
in this case, a gate (a column in a PAM) in the netlist is no longer an “atomic” entity where only the
entire inputs can be partially acknowledged. Instead, any number of the module’s inputs can be partially
acknowledged according to the implementation algorithm. Therefore, we cannot apply the simplification
techniques introduced in section 4.1.2 except for the essential column (gate) because they do not guarantee a
cost-non-increasing reduction. We will take the row (variable) dominance as an example. In second design
flow, variable m can not be withdrawn because it is not necessarily partially acknowledged by the functional
module acknowledging n (E.g., gate r or(and) t).

The local search algorithms, instead, are adopted in this design flow. It is directed by the costs table
in Table 3 and is locally optimal at each search step because the decision at each step is dependent on the
previous one. Therefore, the “seeds” used to initiate the searching algorithms are of great importance.

We use the modified essential gate to find out the initial seeds in a PAM. If an input (internal) variable
in the circuit has only one fanout gate, then the gate’s dual-rail implementation must partially acknowledge
this variable because there is no other gates to do this job. After all the essential gates have been identified
and their acknowledged inputs removed from the PAM, we decide to choose those unacknowledged inputs
to the foregoing located essential gates as the next-step seeds. These unacknowledged variables have high
credits in leading to an overall optimal solution because some of their fan-outs (the essential gates) have
been determined unambiguously. All we need to decide then is which fanout gates are chosen to partially
acknowledge those unacknowledged variables. The cost table in Table 3 is used for this task where we will
choose the one with the lowest incremental cost. If several gates have the same incremental cost, we shall
choose the one with the highest number of unacknowledged inputs as it will introduce more future “seeds”.
We repeat the searching procedure untill all the input and internal variables in the circuit have been partially
acknowledged. Finally we can estimate the overall cost by summing the transistors number used in each
gate according to Table 2. Figure 2 shows this local search algorithm.

4.2.5 Timing assumptions

The design flow 2 has the same level of robustness as the first one. It has both critical and non-critical
forks in the final implementation. In addition, it is very easy to locate the non-critical fork wires as they are
the wires fanning in to the functional modules that does not partially acknowledged it, i.e., to the modules
without the ? notation in their corresponding input ports.
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Algorithm 2 Local search algorithm in design flow 2
local_search (PAM)
{
({acked_vars}, {acking_gates}):=modified-essential-gate (PAM);
cross_out({acked_vars});
initial_seeds={unacked inputs ∈{acking_gates}};

while (more unacked vars in PAM)
{

while (more vars in the initial-seeds)
{
variable i∈initial-seeds;
lowest-cost-gate(i):=gate g | 4(g)=min({incremental-cost(fanout(i))});
acked_inputs(g)∪=i;
initial_seeds∪={unacked input∈g };
cross_out(i);
}

initial_seeds∪=rand_var(PAM);
}

cost(PAM):=
∑

cost(g);
return (cost(PAM), {acked_inputs(g∈column(PAM))});
}

5 Case study: a 2-bit Carry-Skip adder

5.1 2-bit Carry-Skip adder

G1

G2

G3

G5

G6

G9

G10

c0

a0
b0

G7
G8

G4

G11
a1
b1

1

0

S1

C2

S0

d

e

f

g

h
i

j
l

k

G12

Figure 12: A 2-bit Carry-Skip adder

We demonstrate the two design flows by the example of a 2-bit carry-skip adder (Figure 12) . We
construct its PAM , a 14 by 12 matrix as shown in Table 4. Each row in the PAM represents an input
(internal) variable in the circuit whereas each column a gate. PAMij is assigned a value “1” if variable i is a
direct input to the gate j.
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G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
a0 1 1
a1 1 1
b0 1 1
b1 1 1
c0 1 1 1
d 1 1 1
e 1
f 1 1 1
g 1
h 1
i 1 1
j 1
k 1
l 1

Table 4: PAM of the 2-bit Carry-Skip adder

5.2 Demonstration of design flow 1
From the Essential_gate in algorithm 1, we know that IC-Set={G7, G11, G12} should be implemented as
their IC functional modules. The input variables to the IC-Set, c0, e, g, h, j, k and l, are removed from
the PAM because they have been partially acknowledged. The row representing variable f dominates i and
therefore can be removed according to row dominance. Then we apply the column dominance which will
add G2, G4, G6 and G9 to the IC-Set because the IC implementation of AND2 is cheaper than that of XOR2,
according to Table 2. Finally we have EP-Set={G1, G3, G5, G8, G10} that will be implemented by their EP
functional modules.

We implement the gates belonging to IC-Set and EP-Set according to Table 2, where a gate’s IC func-
tional module is replaced by the one partially acknowledging all its input variables while a gate’s EP one by
its EP_DR module. The circuit uses 226 transistors in total.

5.3 Demonstration of design flow 2
According to the Algorithm 2, we apply the modified essential gate to the PAM to find out the ack-
ing_gates={G7, G11, G12} and the acked_vars={e, g, h, j, k, l}. We know that the gate G7, G11, and
G12 must be implemented by the functional modules that can partially acknowledge e and h, g and j, and
k and l, respectively. The variable c0 is chosen as the first seed for the local search because it is the only
unacknowledged input belonging to acking_gates. We will choose the gate to partially acknowledge c0
with the lowest cost, i.e., lowest_cost_gate(c0), by comparing the incremental costs of c0’s fan-outs. Ac-
cording to Table 3 we know that the incremental cost of G5, the 41(G5), equals to 41(XOR2) which is
2 because c0 would be the first input of G5 being partially acknowledged if chosen. Similarly we have
4(G6)=41(AND2)=7 and 43(G12)=43(MUX2:1)=10. Therefore we select G5 as lowest_cost_gate(c0)
that partially acknowledges c0. The variable d is the next seed and we have lowest_cost_gate(d)=G5. We
repeat this procedure until all the input and internal variables in the PAM are partially acknowledged. Table
5 lists the whole decision process.

In the final implementation, G1, G3, G5, G7, G8, G11 are replaced by the corresponding functional
modules in table 2 that partially acknowledge all their input variables. G12 is replaced by MUX2:1_b?c?.
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No. Seed Incr. cost of the seed’s fan-outs lowest_cost_gate
1 c0 41(G5)=2, 41(G6)=7, 43(G12)=10 G5
2 d 42(G5)=4, 41(G6)=7, 41(G10)=7 G5
3 a0 41(G1)=2, 41(G2)=7 G1
4 b0 42(G1)=4, 41(G2)=7 G1
5 a1 41(G3)=2, 41(G4)=7 G3
6 b1 42(G3)=4, 41(G2)=7 G3
7 f 41(G8)=2, 41(G9)=7, 41(G10)=7 G8
8 i 42(G8)=4, 41(G9)=7 G8

Table 5: Unfolding of the decision process in design flow 2

All the rest gates are implemented by their EP_DR functional modules according to Table 2. The total cost
used in design flow 2 is 192 transistors.

5.4 Results
Table 6 compares the areas used in our design flows and that in NCL-D and NCL-X. The IC functional
modules in NCL-D and the EP functional modules in NCL-X are implemented using the corresponding
functional blocks of Table 2 for a fair comparison. The C-elements trees used in the CD circuitry of NCL-X
are implemented in a similar way to that of Figure 1 (c). The percentage of the area increase of a particular
implementation is compared to the area of the 2-bit single-rail carry-skip adder which uses 84 transistors.

We can see from the table that the dual-rail implementation of the adder, without any variable being
partially acknowledged, has a 67% increase in area. The overhead penalty is not 100% as someone may
think because the inverters in a single-rail circuit are replaced by purely swapping the dual rails of its input
variable. NCL-D is the implementation with the highest level of robustness because all the inter-modules
interconncetions in it are non-critical in terms of delay. Its robustness comes at a price of 212% increase of
a single-rail netlist’s area. NCL-X increase the number of fork wires to be verified for the timing closure
(as listed in the Verification Demand column) but increases the area as well. It is a little controvertial
as it actually leads away from the optimal Area-Verification curve in our example. However, as we have
explained, the area of NCL-X is dependent on the way how the CD circuitry is implemented. If we don’t
limit the number of inputs fanning in to a C-element in the CD circuitry, we will reduce the transistor
numbers notably.

It is demonstrated in the table that our design flows reduce the area of an asynchronous implementation
compared to that of NCL-D and NCL-X while maintaining a better level of robustness compared with NCL-
X. In our two design flows, the second one is more prominent in achieving this goal by introducing the
design library with wider spectrum of ability to partially acknowledge the input variables.

2-bit CS Adder Area(transistors #) Area Increase Verification Demand
DR-static-CMOS 140 67% N/A

NCL-D 262 212% 0
NCL-X 334 298% 50

Design Flow 1 226 169% 20
Design Flow 2 192 129% 22

Table 6: Comparison of the implementations of a 2-bit Carry-Skip adder
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6 Conclusion
We propose in this paper two design flows that explore the possibility to design asynchronous datapath where
the reliability of the circuit is introduced in a cost-aware manner. In each design flow, we develop the algo-
rithms to implement the circuit given the corresponding design library. The study of a 2-bit carry-skip adder
shows our method is successful in striking a balance between the overhead reduction of an asynchronous
implementation and the maintenance of the robustness at a reasonable level.
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