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Abstract
Trandating software scheduling functions into hardware has been extensively
researched over the last decade. Different approaches and techniques like co-
processor techniques, special purpose configurable hardware scheduler and
customized hardware scheduler have been demonstrated for its improvement on
system performance. In this paper, the focus will be put on the specification and
documentation of a customized hardware scheduler design named BUTLER. The
documentation presents the BUTLER in behavioural level and describes every
function and search logic in details on top of the BUTLER design description by Eric
Campbell [3]. Verilog specification is done for verification of the newly designed
BUTLER with different scale and configuration.
As scheduling in embedded real-time multiple-processor systems being a major aspect
in computer system resource management, the BUTLER plays a important role by
handling most of the scheduling processes including interrupt control and context
switching which maybe done by software functions in other hardware scheduling
design. An important feature for the BUTLER is the flexible configuration, in which
design tiles can configure in a different approach to obtain alternative parameters for
a different design.

Keywords: hardware scheduler, interrupt control, context switching.
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1. Introduction

Various studies have demonstrated that synchronous system operates well if the
message exchange between the processors and memory modules of a multi-processor
are of fixed length. However, lengths of messages are unlikely to be the same in
reality, which makes asynchronous system becoming more efficient. As asynchronous
systems going more and more important in modern computing systems, we would like
to put our focus on the scheduling issues in embedded real-time multiple-processor
systems. In order to achieve the highest efficiency in the destination processor,
software functions tend to be replaced by some hardware solutions. Therefore,
transferring task scheduling from software into hardware has been extensively
investigated by researchers[1 — 3].

The design approaches and the level of hardware dependency on task scheduling are
being compared among researches on hardware scheduler. Discussion of systems are
categorised according to their own design approach, coarse grain, medium grain and
fine grain. Since fabrication technology keeps improving, price of silicon drops. As a
result, designs go to hardware that consumes more silicon area for higher circuit
performance. Workload of CPU has to be minimized in order to maximize speed and
performance in fast complicate multiple processes. On the other hand, the adoption of
hardware schedulers to microprocessors is another problem addressed from recent

researches.

1.1 Review of Literature
A co-processor design [1], a configurable hardware scheduler design [2] and a

customized hardware scheduler design named BUTLER [3] represent exactly the
three design approaches mentioned above. The following three sections are going to

review all these approaches in both performance and design aspects.

111 Coarsegrain
For hard systems which must provide very fast responses or support many application

tasks or use complex, dynamic scheduling policies, rea-time executive functions

having minimal overheads are absolutely essential. A way to achieve thisisto transfer
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software functions into hardware by employing co-processing techniques — a
‘software in silicon’ solution. Such systems should limited to a small number of tasks

to reduce task intercommunication time.

This type of task scheduler based on off-the-shelf hardware microcontroller. The
approach is identifying al the tasks to be performed by the software and
implementing as a set of co-operating processes. The overall system function is
divided into a set of sub-functions or tasks and finally converted into sequentia
programs. The suggested task scheduler co-processor for hard rea-time systems is

particularly for reducing target system loading and in ease of interfacing [1].

1111  Schedulingissues

All activated tasks should be lying within one of the states shown in Fig. 1. Running
is the state which a task is being executed, only one task can be in this state at any
time. Ready is the state which task is waiting for access to the processor. And
suspended is self-explanatory. For reasons, tasks are usually organised into queues as
shown in Fig. 1. And the scheduler manages all the suspended queues including time

and event management functions.

Schedule evaluation and task dispatching are the two operations involved in ready
gueue management. The former one determines how tasks should be ordered or
prioritized. The latter one selects and installs the next application task required for

execution by the processor.

1112  Performance

To achieve the best performance in processor of high utilization with minimization of
missed deadlines, dynamic schedule is one of the solutions. However, with the high
associated overhead when implemented in software, it seems to be ruled out from fast,
hard systems. With a hardware scheduler, the associated overhead can be minimized
for implementation. In return, the number of tasks should be kept to a minimum, so it

ismost suitable for single process.

In order to support different target processors, scheduler has to be language and

processor independent, which makes impossible to prioritise tasks for the use of the
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registers. All processor data must therefore be stored away during context switching,
and normally placed off chip in RAM memory. Finadly it becomes the maor
overheads in design involving co-processor.

1.1.1.3 Functions

Scheduling and task switching decisions are al done by the co-processor with a
specified scheduling policy. Besides, the target system must be able to avoid task
switching, which may result in problems (e.g. a task being in a critical section of
code). Furthermore, the co-processor was responsible for all task-timing functions like
periodicity and delays. And task-level exception handling would be the duty of the
unit as well, which centralized all error-handling decisions. It is intended to be an
overall, centralized task controller for the whole system, which function with a
selected scheduling policy. However, a certain number of scheduling policies may be

available within the co-processor as well.

1114 Interfacing

Two kinds of connection related to the co-processor, interface between co-processor
and target, and interface between co-processor and outside world. The former oneisa
single, ssimple processor independent connection. And the latter one including
interrupt signals and serial data communication. In order to maintain full scheduling
management and predictable operations, external interrupt signals are handled by the
co-processor instead of the target processor. Turns out a more reliable system of
higher security standard. The serial data communication is designed for the purposes
of testing and performance evaluation only.

All system inputs except interrupts are al routed to the target and the same as al
output signals for driving system are generated by the target processor, so the co-
processor cannot directly change the outputs and thus modify system behaviour.
Context switching is supported by interrupt signalling the target processor instead of

direct access to the target by the co-processor unit.

112 Mediumgrain
To support high-resolution time tick in fast real-time applications with minimum

overheads on the system, a configurable hardware scheduler for rea-time systems is
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proposed [2]. Its architecture reduced the time consuming in scheduling and time-tick
processing to a minimum. The hardware scheduler is provided in the format of
Intellectual Property (IP) blocks which alow designers to implement its own
configuration with a developed tool. According to the scheduler suggested in the
paper, three most common scheduling disciplines are supported, priority-based, rate
monotonic and earliest deadline first [2]. It makes the scheduler more flexible and
compatible to different target processors, where some of them might require
scheduling policy changes during operation. Instead, some designs only focus on a
specified scheduling policy which reduce the complexity on design but suffering from

those systems need scheduling discipline changes.

The essence of the introduced system is the using of advance FPGA technology to
implement part of the Real-Time Operating System (RTOS), in order to minimize
scheduling and time-tick processing [2]. As the software scheduler and the time-tick
processing are transformed into hardware component, the associated software
overheads are eliminated as well. The configurable unit also overcomes the obstacle
that hardware schedulers only supporting narrow range of applications faced by

common hardware schedulers.

1.1.21  Scheduling issues

Scheduling decisions are done by th e configurable hardware scheduler with the
micro-architecture shown in Fig. 2. The operation is based on the information stored
in Sleep queue, Priority queue, Task table, Current task registers and the control
signals from the control unit. Moreover, its operation is associated with the interrupt

signals from the interrupt controller as well.

Priority queue is a sorted queue used to store the active tasks according to its priority
(ready queue). When a task is inserted, the queue automatically re-sorts itself in a
priority order. Sleep queue is only responsible for storing the sleeping tasks (suspend
gueue). Task table is a look up table indexed by the task ID according to a specific
task table entry format. Scheduler looks for task information from that unit whenever
atask is activated. Interrupt controller is the unit responsible to handle all externa

interrupts, and pre-emption is supported as well. Finaly, control unit acts as the
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interface between the hardware scheduler and the external host, which receives and

decodes commands and generates proper control signals to the system.

1.1.2.2 Performance

For ordinary priority-based scheduler, the upper bound of the processing time is
directly proportiona to the number of tasks in the system. This overhead is large if
there are many tasks and the time tick resolution is high. As a result, the CPU
utilisation is reduced, and tasks may miss their deadlines. However, with the
configurable hardware scheduler, assembly instructions executed by the scheduler and
the background time tick processing are eliminated. Turns out the response time and

the interrupt latency are improved [2].

1.1.23  Functions

Time-tick (a periodic interrupt to keep track of time during which the scheduler
makes a decision) handling, interrupt processing and execution of chosen scheduling
algorithm are implemented in the hardware scheduler, while context switching is |eft
to be done in software. Configuration of hardware and operations are performed by
the software portion with a set of commands from the hardware scheduler. All
commands are issued through a memory mapped I/O port, which can be done in one

or two clock cycles depending on the size of the command word.

1124 Interfacing

When atask of higher priority is ready, the hardware scheduler directs the processor
to task switching by sending a corresponding interrupt signal to the CPU. Upon
receiving an interrupt signal, the CPU sends a control signal to the context switcher,
which stores the current context, and switches to the task with the ID read from the
hardware scheduler. The scheduler is designed in ease of interfacing with any
microprocessor. The unit can either be a co-processor directly connected to the target

processor or be amemory-mapped port connected to the system bus.

1.1.3 Finegrain
Eric Campbell (1996) introduced a physical device that can adapt to any
microprocessor named BUTLER in the BUTLER design description [3]. The
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BUTLER technology focused on the problems of scheduling application function
tasks in embedded real-time multiple-processor systems, instead of the single-
processor systems discussed in the previous sections. The device provides efficient
support for multi-tasking in a single or multiple processor system. It holds al the
control variables of tasks, which are going to execute in the microprocessor, and
makes the decision for next running task during execution time. The device is
particularly suitable for hard rea-time embedded systems and systems that need to
attain certain level of reliability.

1.1.31  Scheduling issues

With reference to a programmed priority level selection, the BUTLER directly
handles all asynchronous stimuli and schedules the relevant task when its turn arrives.
Typica asynchronous stimuli are interrupt lines from local peripherals or from other
connected BUTLERS. For al activities assigned to run on a processor, an associated
BUTLER holds al control variables and computes the next activity that should be
scheduled according to the current programmed priority levels and the control
variable values. And instructions from the processor or asynchronous stimuli

manipul ate the control variables for scheduling purpose.

Eric Campbell {1996) suggested a priority leveling scheme that activities are
numbered from zero to sixty-four, which named activity number. The smaller activity
numbers the higher priority level [3]. Priority levels can be allocated to individua
activities or to groups of activities. In case more than one activity is a candidate for
scheduling at the same time, the next activity selection logic will select a candidate
from the group with highest priority. Selection is made based on round robin if more
than one candidate appears in the same priority group. Control interrupts will be

generated under certain interrupt conditions.

1132  Performance

A design use asynchronous techniques throughout the whole system is presented. The
BUTLER is totaly responsible for asynchronous stimuli. It also claimed that the
design could be easily implemented in different technologies because it is not
dependent on critical timing parameters [3]. As a result, it avoids problems on clock

signal distribution, clock skew or set-up and violation holding. Selection logic for

10
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next activity is programmable. Furthermore, cooperative and pre-emptive scheduling
schemes are also supported. The asynchronous design has non-demanding power
supply requirements. However, the unit is not suitable for system environment with
unintentional memory accesses as it performs specified functions when accessed as

memory.

As mentioned before, multiple processor system is supported by the BUTLER
hardware scheduler. Every single processor is connected to an associated BUTLER
and BUTLERSs between processor are connected with each other. Any scheduling
request is done by registration with a processor's own BUTLER. BUTLERs
communicate directly and schedule a relevant task to the destination processor during
its turn if atask arrives on a different processor. This reduces the chance of interrupt
the running task on the destination processor, and serving as a temporaly

deterministic operation.

1133  Functions

BUTLER can be used in conjunction with an associated processor hosting a small
run-time software kernel. All BUTLER operations are performed in response to
memory accesses from its associated local processor. The BUTLER directly handles
all asynchronous stimuli, performs relevant task scheduling with reference to the
programmed priority level selection. When accessed as memory, the BUTLER
performs specified functions. Furthermore, the BUTLER also operates as an interrupt

controller to handle all interrupts in scheduling process.

1.1.34  Architectureand interfacing

The BUTLER has a tiling design approach — an assembly of design tiles in an array
structure. Different types of design tile are butted together to form a two dimensiona
array without any additional signal routing between tiles. Each tile is a design
building block that contains logic and structure, the array provides overall functions

of the design.

For connection between BUTLER and its local processor, there is a standard memory
interface consists of bi-directional data bus, address line inputs, memory control line

inputs, interrupt output and a counter input line.

11
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The main BUTLER array has eight different types of tiles, each built by a few ssimple
gates. The main array is constructed by sixty-four rows of tiles each stores the control
variables for an activity with a particular activity number incrementing from top row
down the array. Without additional routing, a row of tiles that abut the top row of the
main array forms interface to the processor, peripherals and other BUTLERS. Besides,

array control signals are generated from that top row of tiles aswell.

1.1.4 Conclusions

Numerous studies have demonstrated that hardware scheduler is an essentia solution
to reduce workload in CPU, improving efficiency and performance [1 — 3]. Different
approaches of hardware scheduler implementations have been discussed in the above
sections. Co-processor with microcontroller base, configurable hardware scheduler
with FPGA base and the BUTLER fully customized scheduling hardware are
compared for their performance and suitability for modern embedded real-time multi-
processor system. Furthermore, the characteristics of scheduling, function area and
interfacing problems of each design are addressed. It has been shown that
programmability of circuit is decreased from unlimited programmable in coarse grain
design to restricted programmable in medium grain design and finally no
programming allowed in fine grain design. On the other hand, the performance of
scheduling is increased from coarse grain to medium grain and achieves the highest

performancein fine grain design.

The co-processor approach is a simple solution to translate the software functions into
hardware; however, it only operates efficiently under single processor system which
lies beyond our project focus area. The configurable hardware scheduler supports a
wide range of processes and minimizes the scheduling of time-tick processing by
implementing part of the RTOS in advance FPGA technology. The BUTLER design
seems to be the best design for modern embedded real-time multiple-processor
systems. It handles most of the scheduling tasks including interrupt control and

context switching.

As a matter of fact that fine grain scheduling hardware is going to be our focus, this
review therefore puts more effort on the BUTLER system’s scheduling issues,

functions, architecture and interfacing. The design description claimed for its easy

12
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implementation in different technologies by the independence on critical timing
parameters. The asynchronous circuitry presented also shows no clocking or power
supply requirement problems. An important feature for the BUTLER is the flexible
configuration, in which design tiles can configure in a different approach to obtain
aternative parameters. The investigation of different configurations is therefore part
of the project area. Apart from those merits offered by the BUTLER system, the
design being not conventional is a main weakness of the system. Therefore, a system
documentation and a design specification including functionality are required for

academicsto follow.

1.2  Objectives

To improve microprocessor efficiency and performance, the aim of this project is to
design a hardware scheduler based on the ad-hoc design of BUTLER. Since the
original design is not conventional, a detail documentation of the BUTLER system is
prepared and serves as reference for future studies and new system design in this
project. Regarding the tiling design of the present BUTLER system, a new BUTLER

with different tile configuration is designed to realize different functionality.

The original BUTLER able to handle 64 activities with different priorities, perform 16
different functions within itself initiated by memory access from microprocessor,
handle external stimuli from local peripheral and other 4 connected BUTLERS. While
the new designed BUTLER system handles 16 activities only, perform the same
number of functions within BUTLER, number of connected BUTLER also reduced to
one. In addition, size of the ripple down counter is reduced from 32 bits to 16 bits.
Therefore, the total number of tiles in the main array may shrink from 1312 to less
than 328.

Documentation consists of functional diagrams and description of functionality of the
present ad-hoc BUTLER is produced to provide further information on top of the
design description. The new BUTLER system design is presented in Verilog
Hardware Description Language in Register Transfer Level for specification, while
other simulation and analysis of the system is performed in the Cadence design

environment. Functional block diagrams, system configuration and the final designed

13
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system will be presented in later sections. Owing to the limited project period,

implementation of the design will be atopic of future researches.

14
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2. Methodology
Documentation of the original BUTLER system was produced according to the design

description. In the following section, the documentation presents the detail of the
BUTLER system in a behavioral level together with some major signal routings.
Importance and realizations of different functionsin the system are also demonstrated.
In addition, system operations including various search logics are illustrated together

with ssimplified block diagrams.

Several design tools made used during the design and simulation process are
introduced briefly following the documentation. Procedures for the whole project are
then discussed in the last part of the methodology section.

21 BUTLER Documentation

The BUTLER is a device provides efficient support for multi-tasking in a single or
multiple processor system. It holds control variables for each task assigned to run on
the microprocessor and continually identifies the next task that should run. Some
control variables are manipulated by the instructions from the processor, some by
asynchronous stimuli from local peripherals and some by asynchronous stimuli from
other connected BUTLERS.

All BUTLER operations are carried out in response to memory accesses from its local
processor. Write and read signals to the BUTLER are used to load operational data,
return data to the processor and to initiate internal BUTLER operations. Different
operations with respect to different addresses are shown in the table below. Request
signals to initialize the operation will be sent out according to the indication of the
stored instruction.

Address Write Read
A2 |Al1 | AO
0 Load_Mask Do_Stim
Load_Activity Do Wait
0 1 0 Do_Stimx Suspend

15
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0 1 1 Clear_All Set_Suspended

1 0 0 Clear_Started Set_Started

1 0 1 Clear_Pollend Set_Pollend

1 1 0 Load_Counter Lo Nextact

1 1 1 Load_Counter_Hi Control_Interrupts

Table 1. BUTLER instruction addresses

2.1.1 Activity Priority

Activities are numbered from 0 to 64. When priority levels apply, smaler activity
numbers have the higher priorities. Activity number 64 aways has the lowest priority
and can be used to schedule an idle activity at a time when no other activities are
candidates for scheduling. Following a Clear_All BUTLER instruction activities
numbered zero to sixty-four are assigned equal priorities. Priority levels can be
allocated to individual activities or to groups of activities by inserting pollset
boundaries, which is realized by Set_Pollend instructions. Pollset boundaries may be

inserted or removed at any time.

2.1.2 System configuration

The overall system connection is shown in Fig. 3. Every BUTLER is connected with
its own processor and four other BUTLERS. Four stimuli signals are connected to
other four BUTLERS to select which BUTLER to stimulate and a six-bit address line
is used to specify the activity number of a particular activity it wants to stimulate.
Therefore, each BUTLER has 10 external stimuli output lines to other BUTLERS and
28 external stimuli input lines from other BUTLERS.

In Fig. 4, it shows the functional diagram of the present BUTLER. Decoded read,
write and select signals together with a decoded address by three input address lines
from the processor access the instruction memories to decide which instruction to
operate. And then request signals are sent out from the instruction memories to

initialize operation in other functional blocks as indicated in the figure. Most

16
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functions involved in the next activity selection are performed within the activity
memories. The next activity for scheduling is returned to the processor through the
16-hit bi-directiona data bus (D) during a Nextact BUTLER instruction.

2.1.3 Instructions
Load_Mask (Write A0OO) is a BUTLER instruction to set the mask bit of different

channels in the activity specified in the most recent Load_Activity instruction. The
mask bits to set are specified in the data word (D) of a Load Mask BUTLER
instruction, where the data word is stored in the 16-bit bi-directional data bus. All
sixteen bits of the data word are made used in this instruction to specify mask pattern
for sixteen stim-wait channels. Some operations are performed to particular channels

according to this mask hit.

Load_Activity (Write A0O01) BUTLER instruction sets the activity number that held
on the BULTER. This activity number is specified in the data word (D) of a
Load_Activity BUTLER instruction. Only the least significant six bits of the data
word are used for this instruction to indicate activity number from zero to sixty-three.
Some instructions operate on a specified activity with respect to this specified number.

Do _Stim (Read A000) is a BUTLER instruction to set the “Stimmed” channel
according to the mask pattern specified in the most recent Load_Mask instruction of a
particular activity specified in the most recent Load Activity instruction. Those
channels specified in that activity are considered to be stimmed when the “ Stimmed”
control variable is set, which is used to determine whether it is a candidate for

scheduling in the next activity selection logic.

Do_Stimx (Write A010) BUTLER instruction generates external stimulation to other
BUTLERSs. Activity number specified in the most recent Load Activity instruction is
set up in the external stimuli output (Xout), which is connected to four other
BUTLERS, in order to specify the activity to stimulate in the target BUTLER. Mask
pattern specified in the most recent Load Mask instruction is responsible for the
selection of target BUTLER. As four other BUTLERS are connected to four different

17
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channels respectively, the channel with mask bit set will generate a stimulation signal
(Stimourt) to the connected BUTLER.

Set_Started (Read A100) is a BUTLER instruction to set the “Started” variable of a
particular activity true. The activity is chosen by the activity number specified in the
most recent Load Activity instruction. An activity is considered to be started when
the “Started” control variable is set, which is used to determine whether it is a
candidate for scheduling in the next activity selection logic. As there is only one
“Started” control variable in each activity, no mask pattern is required during

operation.

Clear_Started (Write A100) operates exactly the same way as Set_Started BUTLER
instruction but to make false the “ Started” variable instead of setting it true.

Set_Pollend (Read A101) is a BUTLER instruction to set the “Pollend” variable of
the activity specified in the most recent Load Activity BUTLER instruction. An
activity with a set “Pollend” variable is served as the pollset boundaries for the next
activity selection logic. Activities between two pollends are al assigned the same

priority.

Clear_Pollend (Write A101) performs exactly the same way as Set Pollend
BUTLER instruction but to remove the pollset boundaries by resetting the “Pollend”
variable instead of making it true. Pollset boundaries can be inserted or removed at

any time by these two instructions.

Load Counter Lo (Write A110) BUTLER instruction loads the data word (D) into
the least significant 16-bits of a 32-bit number, which is used to initialize the counter.

Load_Counter Hi (Write A111) loads the data word (D) into the most significant
16-bits of the 32-bit number.

Do_Wait (Read A001) BUTLER instruction makes the “Waiting” variable true for
the channels specified in the most recent Load Mask BUTLER instruction for the

activity currently running on the processor rather than the activity specified in the

18



BUTLER Design and Analysis

Load Activity BUTLER instruction. Those channels specified in that activity are
considered to be waiting when the “Waiting” control variable is set, which is used to

determine whether it is a candidate for scheduling in the next activity selection logic.

Suspend (Read A010) BUTLER instruction sets the “ Suspended” variable true for the
activity currently running on the processor. An activity is said to be suspended when
the “ Suspended” variable is made true, which is responsible to determine whether it is
acandidate for scheduling in the next activity selection logic.

The Suspend or Do_Wait BUTLER instruction temporarily inhibits any changes to

the asynchronously stimulated variables from entering the next activity selection logic.

Set_Suspended (Read A011) BUTLER instruction also sets the “ Suspended” variable
true but for the activity specified in the most recent Load Activity BUTLER
instruction instead of the activity currently running on the processor. As thereis only
one “Suspended” control variable in each activity, no mask pattern is needed during

operation.

Nextact (Read A110) is the instruction used to return the number of the next activity
that should be scheduled. The next activity to be scheduled is continually computed
by the next activity selection logic based on the control variables held in BUTLER.
All control variables are manipulated by local processor, local peripherals and other
BUTLERs. The Nextact BUTLER instruction is also responsible to re-enable
visibility of the asynchronous stimulated variables to the next activity selection logic,
which is inhibited during context switch. The “Suspended”, “Waiting”, “Stimmed”
variables of a particular activity will be reset when it is returned to the processor as

the next activity to be scheduled.

Clear _All (Write A011) BUTLER instruction disables interrupts, removes any pollset
boundaries (reset “Pollend” variables) and make false the “ Started”, “ Suspended” and

al “ Stimmed” and “Waiting” control variables for al activities.

Asynchronous stimulations from four other BUTLERS (Stimin) are connected to
four different channels of the BUTLER. The stimulation will come along with its own

address (Xin), which isthe number of the target activity it wantsto stimulate.

19
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Asynchronous stimulations from local peripherals (Stimp) are made up of eight
separate signals. Each signal is responsible for stimulating eight activities, eight
signals for sixty-four activities. A particular channel in each activity is alocated to
that asynchronous stimulation from local peripheral. Therefore, no activity number or
mask pattern is required for the operation.

Both asynchronous stimulations are inhibited during context switch. That is invisible
after Suspend or Do_wait BUTLER instruction and re-enabled visibility by Nextact

instruction.

Control_Interrupts (Read A111) is a BUTLER instruction to enable the interrupt
controller to function. Control interrupts are realized in two formats, pre-emption
interrupt and counter interrupt. The instruction uses the least significant two bits of
the activity number specified in the most recent Load Activity BUTLER instruction
(Actbitl and ActbitO) to define its operation. All interrupts are reset during a context
switch and are re-enabled after that. Following a Clear_All BUTLER instruction, the
interrupt output line is reset to its non-active state.

2.1.4 Context Switch

A Suspend or Do_Wait instruction is used to inhibit visibility of any changes to the
asynchronously stimulated variables from the next activity selection logic. Allowing
enough time for the selection logic to stabilize before returning valid data to processor
during the executing of Nextact instruction. The time period from a Suspend or
Do _Wait instruction to a Nextact instruction is named context switch, when signal
‘dice’ will betaken high inthe BUTLER internal circuitry.

2.1.5 Operation
Decoder is responsible for turning the values on input address lines, “Read”, “Write”
and “Select” inputs into instruction request signals to initialize different instructions

in other parts of the system. Three parts of decoding are involved in the decoder.
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Read-write signal decoding simply passes the BUTLER 1/O input Read to “R” and
Write to “W” with an enabling input Select. Decoded signals “R” and “W” are then

transmitted to instruction decoding to identify the instruction to trigger.

Address decoding is basically performing 3 to 8 decoding. Three input address lines
are decoded to provide eight addresses for instruction decoding to identify

instructions.

Instruction decoding produces appropriate request signals upon receiving signals
“R”, “W” and the decoded address. Sixteen instructions are alocated as shown in
Table 1. The request signas are routed to the functional blocks that responsible for
the particular operation.

Activity Number Register stores the activity number specified in the more recent
Load_Activity BUTLER instruction. When receiving request signal Load Activity,
the register latch in the least significant six bits of the bi-directional data bus (D) and

stored as an activity number.

Interrupt Controller responses to handle two types of interrupts, pre-emption
interrupt and counter interrupt. The least significant two bits of the activity number
transmitted from the activity number register (Actbitl and ActbitO) will decide which
interrupt mode to perform. Operation of the interrupt controller is enabled by Control-
Interrupts instruction request signal (Test) from instruction memories. When Actbitl
is high, Control_Interrupts is switched to pre-emption interrupt mode. If a candidate
activity is found to have high priority than the one currently running on the processor,
pre-emption interrupt is allowed to generate. The search is realized by a search logic
that will be discussed in alater section. When Actbitl is low, the system will prevent
the generation of pre-emption interrupt.

When ActhitO is high, Control_Interrupts is switched to counter interrupt mode. The
interrupt output line will be set high upon receiving the signal from the counter to
indicate the reaching of its limit. When ActbitO is low, the system will prevent the
generation of counter interrupt. Signal “Slice”, which indicating context switch, will

inhibit any interrupts at its active state and enable further interrupts when it returns to
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the non-active state. “Expired” from BUTLER counter will allow generating interrupt
signal to the processor in the counter interrupt mode and “Maybe’ from control

memories search chain will further interrupt in the pre-emption interrupt mode.

Counter
The BUTLER has a 32-bit ripple down counter that counts low to high transitions on

the counter input line (countin). A Do Wait or a Suspend BUTLER instruction
initializes the counter to the 32-bit number that is held on the BUTLER. A Nextact
BUTLER instruction enables the counter to start counting. The 32-bit number that is
used to initialize the counter is programmable and is done by the Load Counter_Lo
and Load Counter Hi BUTLER instructions. A Load Counter Lo BUTLER
instruction loads the data word into the least significant 16-bits of the number and a
Load Counter Hi BUTLER instruction loads the data word into the most significant
16-bits of the number. When the counter receive a programmed number (plus one) of
signal transitions on its counter input line, a signal “Expired” will be generated and

sent to the interrupt controller for further interrupts.

Mask Pattern Register stores the mask pattern specified in the more recent
Load Mask BUTLER instruction. On receiving request signa Load Mask, the
register latch in data on the sixteen-bit bi-directional data bus (D) and stored as mask
pattern. As the mask pattern information is only made used within the activity
memories, the functional block is located inside the activity memoriesin the diagram.

Control Memory stores control variables for all sixty-four activities (Fig. 5) and
perform instructions according to request signals from decoder. Performing
instructions including Set Started, Clear_Started, Set Pollend, Clear_Pollend,
Suspend, Set Suspend, Do_Stim, Do_Stimx, Do Wait, Nextact and Clear All.
Load Mask BUTLER instruction is performed in the mask pattern register located
inside the control memory functional block. One “Switch” latch for whole BUTLER
generates signal “ Slice” and distribute to rest of internal circuit during context switch.
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2.1.6 Next Activity Selection

Based on the values of control variables it held, the BUTLER continually computes
the next activity that should be scheduled, respecting the currently programmed
priority levels. A Suspend or a Do_Wait BUTLER instruction temporarily inhibits
any changes to the asynchronously stimulated variables from entering the next
activity selection logic. A subsequent Nextact BUTLER instruction is used to return
the number of the next activity that should be scheduled, and then to re-enable
visibility of the asynchronously stimulated variables to the next activity selection
logic. The logic will select an activity from the highest priority pollset that contains a
candidate when more than one activity is a candidate for scheduling. Selection is
made on a Round Robin basis within the pollset if this pollset contains more than one
candidate. The search starts from the activity following the one that was last returned
for scheduling in that pollset.

21.6.1 Candidatefor Scheduling

An activity will only be included as a candidate for scheduling when it is started and
ready.

“Started”

An activity is started when its “started” control variable is true. A Set Started
BUTLER instruction will make the “started’ control variable true for the activity
specified in the most recent Load Activity BUTLER instruction. Vice versa, a Clear
Started BUTLER instruction will set it false.

“Suspended”, “ Stimmed” and “Waiting”

An activity is ready when either its “suspended” variable is true, or it has a matched
pair of true “stimmed” and “waiting” variables. A Set Suspended BUTLER
instruction will make the “suspended’ variable true for the activity specified in the
most recent Load Activity BUTLER instruction. A Suspend BUTLER instruction will
make the “ suspended” variable true for the activity currently running on the processor
(i.e. the last activity returned to the processor for scheduling). The “suspended”
variable will be made false when the activity is returned to the processor as the next
activity to be scheduled.
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Each activity has sixteen pairs of “stimmed” and “waiting” variables, each pair is
called a stim-wait channel. Some BUTLER instructions can operate on individual or
groups of stim-wait channels. The stim-wait channels to be operated on are specified
by including a one in an appropriate bit position in the data word of a Load Mask
BUTLER instruction. This mask pattern is held on the BUTLER.

A Do_Wait BUTLER instruction will make the “waiting” variable true for the stim-
wait channel(s) specified in the most recent Load Mask BUTLER instruction for the
activity currently running on the processor. The “waiting” variable will be made false

when this activity is returned to the processor as the next activity to be schedul ed.

A Do Stim BUTLER instruction will make the “stimmed” variable true for the stim-
wait channel(s) specified in the most recent Load Mask BUTLER instruction for the
activity specified in the most recent Load Activity BUTLER instruction. The
“stimmed” variable will be made false when this activity is returned to the processor
as the next activity to be scheduled.

External asynchronous “stimmed”

The “stimmed” variables on four particular stim-wat channels can also be
asynchronously made true from an external source (e.g. by another BUTLER).

The “stimmed” variable on one particular stim-wait channel can also be

asynchronously made true from alocal peripheral.

2.16.2 Polstart Search

Polstart search means the search of starting point of a Round Robin search logic
within a pollset. Basically, the Round Robin search should be starting from the
activity following the one last returned to the processor for scheduling. A “Last” latch
indicates whether this is the last activity returned to the processor for scheduling,
however, under certain circumstances more than one activity may indicate to be the
last returned activity in this pollset. The logic will accept the first “Last” it found to be
the polstart. In some cases, there will be no “Last” found for the whole pollset. The
logic will set the activity with the smallest activity number in this pollset to be the
polstart.
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The search mechanism is shown in Fig 6. With the pollset boundaries set by the
Set_Pollend BUTLER instruction, search logic chain is formed for each pollset. The
search chain running down from the top of the pollset. Signal “Lastfnd” is set high
when a*“Last” isfound in the search chain. An activity is considered as the polstart of
this pollset if no “Last” has been found in the search and the “Last” latch of this
activity is set. When the search encounters the pollend, the search is reset (i.e. reset
signal Lastfnd) and starts again in the next activity. For the case “Lastfnd” is low
when it encounters the pollend and the “Last” latch of this activity is not set (i.e. no
“Last” has been found throughout the whole pollset), a signal “Lastloop” will be sent
back to acknowledge the first activity in this pollset to be the polstart. Under this
mechanism, exactly one “Last” latch set in each pollset can be achieved.

2.1.6.3 Activitiesto beincluded in pollset of Nextact

When an activity is returned to the processor for scheduling, a latch “Here” is set.
Two search chains are involved in this search for activities to be included in pollset of
Nextact, one running up the activity array and another running down (Fig. 7). Both
chains are taken low whenever they pass the pollset boundary and taken high when
they pass the activity with “Here” set. Therefore, activities with ahigh in either search

chain will be activities in the pollset of Nextact.

2.1.6.4  Round Robin Implementation

When same priority is assigned to a group of activities, a Round Robin search is
required to determine which activity to be returned next. Starting from the activity
following the last activity returned to the processor, it runs through al activitiesin the
pollset and loops back to the top of the pollset when it encounters the pollend. The
search loop ends at the last activity returned to the processor (Fig. 8). When a
candidate for scheduling is found in a pollset, signal “Search” will be taken low to
indicate the rest of the pollset a candidate for scheduling has been found. An activity
is selected to be the next activity if “Search” is high (no candidate has yet been found)
and this activity is a candidate for scheduling. If a candidate has been found, signa
“Found” is taken high at the end of the search loop and is passed to pollsets with
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lower priority to indicate that candidate has already been found in higher priority
pollset.

2.2 Design Tools

221 Verilog Hardware Description Language

A language used to describe digital systems at different levels, low implementation
levels such as switch level and gate level; architectural or behavioral level like
Register Transfer Level (RTL). In order to facilitate future studies on the BUTLER
system, all Verilog specifications are done in register transfer level in this project.

2.2.2 Cadence Custom IC Design Tool

Cadence design system is particularly suitable for schematic generation, simulation,
circuit synthesis and result analysis of digital or analogue circuitry. To verify the
functions of different modules, all smulations are performed in the Cadence system
design environment. Signal connections between different functional blocks are done
in the schematic editor as symbol for every module is generated from the Verilog

specification automatically.

2.2.3 Procedures

With reference to the BUTLER design description by Eric Campbell [3], block
diagrams with different functional blocks are generated at early stage of the project.
Together with the functional diagrams, behavioral logic of the system is derived in
order to serve as a base of further specifications. Through understanding the origina
BUTLER design by Eric Campbell [3], documentation of the design is prepared for
future studies including the design task in later part of the project. Different
instructions, operation methodology and search logics are al introduced in the

documentation.

Based on the functional diagrams and the documentation, Verilog specifications of the
BUTLER system are firstly created in Verilog compiling software gvVim. And the

source files are then imported to the Cadence environment to test for the
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functionalities by simulation. Stimulus files are programmed for the simulation under
the Verilog XL simulator. Different functional modules are simulated independently
with its own stimulus files. Overal system is smulated in the final stage when all
functional modules are verified to function properly.
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3. Results
System operating in the same manner with same functions of the original BUTLER is
specified in the Verilog Hardware Description Language. However, compared with
the original, the newly designed BUTLER is of adifferent scale as below:

* Number of activitiesis reduced from sixty-four to sixteen

* Number of stim-wait channelsis reduced from sixteen to eight

» Counter size reduced from 32 bits to 16 bits

» Connected BUTLER reduced from four to one

* Loca periphera inputs reduced from eight to four

* Bi-directional BUTLER 1/O data bus reduced from sixteen-bit to eight-bit

3.1 Verilog Specification

The specification is divided into five cells according to the functionality, decoder,
activity number register, counter, interrupt controller and control memory. All cells
operate asynchronously in response to request signals either from BUTLER 1/O or
other part of circuit.

3.1.1 Decoder

As the number of instruction is the same as the origina BUTLER, the structure of
decoder is exactly the same as the original BUTLER. Read write signal decoding,
address decoding and instruction decoding. BUTLER I/O “R” and “W” together with
“select” trigger request signals “read” and “write” and which are transmitted to
instruction decoding. Address input lines “a0”, “al” and “a2" are decoded in the
address decoding part, which is redlized by a three to eight decoder. Sixteen
instruction request signals are generated in the instruction decoding with reference to

the decoded request signals (i.e. memory access from the local processor).

3.1.2 Activity number register

The only difference in the activity number register is the size. It reduced from six bits
for sixty-four activities to four bits for sixteen activities. Request signa
“Load_Activity” from the decoder triggers the register to latch in data in the least
significant four bits of the bi-directional BUTLER I/O data bus. This data are stored
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as activity number by the most recent Load Activity BUTLER instruction and

transmitted to other functional blocks of the system.

3.1.3 Counter

Asthe scaling factor for the system is four, the counter size should be reduced to eight
bits. However, this size may not be able to allow enough running time for all activities.
A sixteen-bit counter is therefore chosen for the system. A Load_Counter Lo
BUTLER instruction triggers the counter to latch in the bi-directional data bus as |east
significant eight bits of a stored number, which is for the initialization of the counter.
And a Load_Counter Hi BUTLER instruction triggers the latching for the most
significant eight bits. The counter is initialized by the stored sixteen-bit number on
receiving signal “slice” during context switch. And it starts to count when “slice” goes
low (i.e. after context switch). The counter counts the positive transition on the
“countin” BUTLER 1/0O from the processor and generates a timeout signal “expired”
when the count reaches the limit. The count starts from the number initialized by
Load_Counter_Lo and Load Counter Hi BUTLER instruction. The timeout signal
“expired” isreset by “slice” during context switch.

3.1.4 Interrupt controller

Two registers are used to indicate the mode of interrupt, “preemp_int” for preemption
interrupt and “counter_int” for counter interrupt. With the “Test” signal from the
decoder indicating interrupt control, the least significant two bits from the activity
number register actbitl and actbitO decide the state of the registers. During interrupt
control BUTLER instruction, “preemp_int” will be set when actbitl is equal to one
and reset when actbitl is equal to zero; “counter_int” will be set when actbitO is equal
to one and reset when acthitO is equal to zero. Signa “maybe” from control memory
will enable interrupt if preemption interrupt mode is selected and “expired” from
counter will enable interrupt if counter interrupt mode is selected. Both interrupt
modes can be selected at the same time. Signa “maybe’ and “expired” will be
removed in the start of context switch. A Clear_All BUTLER instruction will reset
both registers and disable interrupt.
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3.1.5 Control memory

The main difference between the newly designed BUTLER and the origina oneisin
the control memory. All control variables are stored in a control memory realized by
twenty-one sixteen-bit registers. As shown in Fig. 9, each “stimmed” channd is
specified by a sixteen-bit register, so as each “waiting” channel, “started”,
“suspended”, “pollend”, “candidate” and “last” variables. Request signals Set_Started
and Clear_Started set and reset the appropriate bit of the “started” variable
respectively according to the activity number stored in the activity number register.
Set_Pollend and Clear_Pollend set and reset the appropriate bit of the “pollend”
variable respectively according to the stored activity number. Set_Suspended sets the
appropriate bit of the “suspended” variables according to the stored activity nhumber.
Do_Stim sets the appropriate bit of the “stimmed” channels specified by the stored
activity number and the stored mask pattern. The mask pattern loaded by the most
recent Load Mask BUTLER instruction will select the appropriate channels to

operate.

Stimulation inputs from four local peripherals (stimp) are all connected to “stimmed”
channel seven. Stimulations are made in an even distribution that each stimulation
input is connected to four activities among sixteen. In order to alow enough time for
the next activity selection logic to become stable, stimulation from local peripheral is
disabled during context switch. Asynchronous stimulation can arrive at any time,
however, the effect of the stimulation will be valid only after the context switch.

Asynchronous stimulation input from external source (i.e. from other connected
BUTLER, stimin) is connected to “stimmed” channel six. Based on the activity
number specified in the external address input lines (Xin[3:0]), “stimmed” variable of
a particular activity is set. External asynchronous stimulation is inhibited during
context switch, which means asynchronous stimulation arrived during context switch

will be ignored.

Suspend and Do_Wait are instructions operating on the activity that currently running
in the processor. As a matter of fact that activity number sixteen may be returned to
the processor for an idle state when no candidate is found in the search, the

instructions only operate on the “suspended” and “waiting” variables when it isnot in
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idle state (i.e. activity running in the processor does not has activity number sixteen).
Suspend BUTLER instruction sets the “suspended” variable of the activity currently
running in the processor. Do_Wait BUTLER instruction sets the “waiting” variables
of the activity currently running in the processor with reference to the stored mask

pattern.

On receiving a Load Mask instruction signal from the decoder, data on the bi-
directional data bus are latched into the mask register as the stored mask pattern for

the operation of other instructions.

Overall reset of the system can be performed whenever request signal Clear_All from
decoder arrives. All “stimmed”, “waiting”, “suspended”’, “started”, “pollend” and
“candidate” control variables will be reset during a Clear_All instruction and only the

“last” variables are kept unchanged.

During Do_Stimx BUTLER instruction, the stored activity number will be transmitted
to the external asynchronous stimulation address output lines (“Xout [3:0]”). Stimulus
(“stimout”) will be set and transmitted to other connected BUTLER together with the

target activity number on “Xout”.

Signal “dlice” is passed around to indicate during context switch. It can be made true
by either Suspend or Do_Wait BUTLER instructions and reset by a Nextact.

During Nextact BUTLER instruction, activity output (“act_out”) from the next
activity selection logic will be passed to the bi-directional data bus and stored in a
register (“act_run’) as well. If the returning activity is not idle, al “stimmed”,
“waiting”, “suspended” and “candidate” control variables of the returning activity will
be reset. In this case, a search logic is used to reset the “last” variable of all other
activities within the same pollset of the returning activity and the “last” variable of it
will be set.

Fig. 10 shows a clearer picture of how the search logic runs. Firstly, the “last”
variable of the returning activity is set. Secondly, a search chain is running down

every activity from the one following the returning activity. The “last” variable of all
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activities passed by the chain is reset until a pollset boundary is found. When a set
“pollend” variable isfound, variable “pollend run” is set to indicate the end of search.
Thirdly, a search chain is running up from the activity above the returning one. The
“last” variable of al activities passed by the chain is reset until a pollset boundary is
found. When a set “pollend” variable is found, variable “polltop_run” is set to
indicate the end of search. Finally, in case of the returning activity is either zero or
fifteen, only search running down or running up will be performed respectively. The
search logic will not beinitialized if the returning activity is activity sixteen.

As the BUTLER computes the next activity to be scheduled continually, searches
related to the next activity selection logic perform continually as well. A loop running
from activity zero to activity fifteen is used to set the “candidate” variable when an
activity is ready and started. An activity is ready means either the “suspended”
variable or a matched pair of “stimmed” and “waiting” variable is set. Started means
the “started” variableis set.

3.1.6 Searches
3.1.6.1  Next activity selection

First step of the next activity search isto find out set “last” variable from activity zero
to activity fifteen. When a set “last” variable is found, a Round Robin search will be
performed. The specification of the Round Robin search is divided into three groups,
one for “last” variable of activity zero, one for “last” variable of activity fifteen and
one for other activities. As precisely one set “last” variable in each pollset is
guaranteed by another search logic in the system, each pollset will be ran by exactly
one Round Robin search. Search will be started from the pollset with highest priority.

Round Robin search for set “last” variable in between activity one and activity
fourteen

If “pollend” variable of that activity with set “last” is low, a search going down the
array is started. Starting from the activity following the one with set “last”, variable
“searchend” will be set when a set “pollend” variable is found. Down search will be
stopped and an up search will be followed. Starting from the activity with set “last”,
variable “searchtop” will be set when a set “pollend” variable is found in the up
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search. Search for this pollset will be stopped and another Round Robin for the next
pollset will be followed. When a set “candidate’ variable is found in the search,
activity number will be passed to the search output (*act_out”) and variable “found”
will be set. As amatter of priority in a Round Robin search, variable “found” can stop
the down search but not the up search. In down search, searching process finishes
when candidate is found. In up search, searching process runs until pollset boundary.
Candidates found in the later part of up search can overwrite the search output in
earlier part of the same up search. Search in other pollset will not be started if variable
“found” is set to indicate a schedulable activity has been found. If “pollend” variable
of that activity with set “last” is high, only up search will be performed in the pollset.

Round Rabin search for activity zero being “last”

If “pollend” variable is not set, a down search will be started and followed by
checking the “candidate” variable of activity zero itself. If “pollend” variable of
activity zero is set, “candidate” variable will be checked and no search is performed
within the pollset.

Round Robin search for activity fifteen being “last”

Only up search will be performed until set “pollend” variable isfound in the search.

If “found” equals to zero indicating no candidate has been found after searching
through all fifteen activities, activity sixteen will be returned to the processor for idle
state.

3.1.6.2 Precisely oneset “last” variablein each pollset guarantee

This logic involves two parts, one to remove extra set “last” variable in a pollset and
oneto set “last” variable when no “last” found in a pollset. To remove extra set “last”
variable, a search chain running down from top of array is used. Variable “lastfnd” is
set high when the chain encounters a set “last” variable and is reset when it
encounters a set “pollend” variable (i.e. “lastfnd” reset in each pollset). All “last”
variables are reset by the chain when “lastfnd” is high.

To set the activity with smallest activity number in the pollset to be “last” when no set

“last” has been found, a search chain running up from the bottom of array is used.
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Variable “lastfndup” is set high when the chain encounters a set “last” variable and
reset when it encounters a set “pollend” variable like “lastfnd” in the down running
chain. When the chain encounters a set “pollend”, activity in top of the pollset will be
set if “lastfndup” islow indicating no set “last” has been found in the pollset. In top of
the array, there is no “pollend” above activity zero to indicate a pollset boundary.
Therefore, “last” variable of activity zero is set by the chain if “lastfndup” is low. If
“pollend” variable of activity zero is set, the “last” variable will also be set as it is the
only activity in the pollset.

3.1.6.3 Maybesearch

This is the search for candidate with higher priority than the one currently running in
the processor. Basically, this search should run continuously as long as the system is
powered up. However, base on the fact that a candidate with higher priority can only
exist when there is a change in the output of the next activity selection logic
(“act_out”), this “maybe search” will only perform when the value of “act out”
changes. As interrupt is inhibited during context switch, this search is suspended

during context switch.

The search starts from the activity currently running in the processor but the checking
for “candidate” would not be started until a set “pollend” variable is found in the
search. When a “pollend” variable is found, variable “search_start” will be set high
and indicating the start of checking “candidate” variable. When a set “candidate”
variable isfound, signal “maybe’ is set high and transmitted to the interrupt controller
for the generation of interrupt. Signal “maybe” is reset by “dlice” during context

switch.

3.2 Verification

Each cell is ssimulated independently to verify it function properly and an integrated
simulation is done to verify the system operation. Decoder, activity number register,
counter, interrupt controller and control memory are simulated independently before
integration to reduce complexity on the final integrated simulation. Two versions of
control memory are simulated with similar stimulus files, where basic control variable
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setting functions are verified in the ssmple version first and then the precise search
logic is verified in the final version. As basic operations are verified in the smple
version, the simulation for the final version is much less complicated but to
concentrate on the BUTLER customized next activity search logic.

AsBUTLER is designed for asynchronous operations, the next activity selection logic
operates continuously. In the original design, the outputs from the logic are put onto
the bi-directional data bus during al BUTLER read instructions, in the new
behavioral specification, outputs are put onto the data bus during Nextact BUTLER

instruction only.

3.2.1 Decoder
Sixteen different request signals are simply simulated by reading from and writing to

all combinations of input address lines. Output signals from the decoder are
monitored. Signal waveform is shown in Fig. 11. Request signals are triggered in turn
by read, write, select signals and input address lines a0, al and a2.

3.2.2 Activity number register

This four-bit register is simulated by different values on the bi-directional data bus
together with Load Activity enable signal. Latched activity number is monitored.
Signal waveform isshownin Fig. 12.

3.2.3 Counter

Different values on the eight-bit bi-directional data bus are loaded into the sixteen-bit
internal register (“stored”) of the counter by Load Counter_Lo and Load_Counter_Hi
input. After the counter isinitialized by signal “dlice”, initial count value is monitored
to verify the Load Counter Lo and Load Counter Hi functions. Periodic signal
“countin” with period of two time units is kept feeding to the counter until the count
reaches the limit and set “expired” high. Simulation is run until “expired” is reset by
the following context switch. A test output “countout” is used to monitor the count

value throughout the whole simulation. Signal waveform is shown in Fig. 13.
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3.24 Interrupt controller

Preemption interrupt and counter interrupt are simulated with signal input “maybe”
and “expired” with “dlice” keeps low at the beginning. Output “interrupt” is
monitored. Input “slice” is then altered to check if interrupt is inhibited during context
switch. Finally, the least significant two bits of the activity number inputs are reset in
turn to check if both interrupt mode can be disabled by setting corresponding activity
bit to zero. Signal waveformis shownin Fig. 14.

3.25 Control memory (simpleversion)
As the search logic in this version is only atop down search (i.e. search from activity
zero to activity fifteen), all functionsinvolving the search logic is not smulated in this

version.

Activity number is provided at the input to simulate the connection with activity
number register. A Load_Mask instruction is performed first to provide mask pattern
for operation in later part of simulation, which is realized by a Load Mask request
signal and data in the eight-bit bi-directional data bus. Data is stored in the register
“mask” to serve as a stored mask pattern. Basic control variable setting operations
Set_Started, Clear_Started, Set Pollend, Clear Pollend and Set Suspended are
simulated with activity number input. “ Started”, “pollend” and “suspended” variable
registers are connected to the test outputs (“testout”) and the test output is monitored
to verify al the functions mentioned above. BUTLER instruction Do_Stim is then
simulated with activity number input and the stored mask pattern. *Stimmed”
channels six and seven are connected to the test output to verify function Do_Stim

and the correctness of function Load Mask.

Stimulations from local peripherals (“stimp”) are scheduled to arrive both during
context switch and between context switches. “ Stimmed” channel seven is connected
to the test output to monitor the stimulation. Effect of stimulus arrive during context
switch should be deferred till the end of context switch.

When instruction Suspend is being simulated, “suspended” variable register is
connected to the test output. “ Suspended” variable of the activity currently running in

the processor is set if the processor is not running activity sixteen (idle state). Signal
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“dlice” should be high to indicate a context switch. Instruction Nextact is followed to
complete a normal context switch, “slice” returns to low. Since there is no activity
running in the processing during start up, the above context switch process is
performed twice to obtain a correct result.

A Clear_All BUTLER instruction is performed once at the beginning to ensure al
control variables are in their non-active state and it is test after a context switch cycle.
All control variables are monitored to verify the correctness of a Clear_All instruction.

To verify the Do_Stimx function, output “Xout” is monitored to check if activity
number from input “act_no” is transmitted to output “Xout” when Do_Stimx is high.
Asynchronous stimulation from external source is simulated by specifying an activity
number in the input “Xin” and “stimmed” channel six is monitored. Signal waveform

in Fig. 15 shows al the operation mentioned above accordingly.

3.2.6 Control memory (final version)

Following a Clear_All BUTLER instruction, “last” variable register is monitored to
check if any “last” variable is set by the one “last” guarantee logic. Activities four,
five and six are then “started” and “suspended” to make them candidates for
scheduling, and the “candidate” variable register is monitored. A context switch is
performed to return activity from the search. Pollset boundaries are set up to form
priority groups. Activity two and fourteen are set to be pollset boundaries. Round
Robin search is verified by allowing three candidates in the same pollset and running
context switch several times. Activity from pollset with higher priority (activity zero)
is made to be candidate to test the “maybe search” logic. Clear_Pollend instruction is
performed to make more than one set “last” in a pollset and “last” variable register is
monitored to check the one “last” guarantee logic. Finally, a context switch is
performed after a Clear_All instruction to check if activity sixteen is returned by the

search logic when no candidate is found. Signal waveform is shown in Fig. 16.

3.2.7 Integrated smulation

A final simulation is performed to verify the operation of the whole system, which is

connected as shown in Fig. 17. Stimulus file used is of the same logic as the one used
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in the control memory, together with the stimulus of other functional modules.
Stimulus inputs become BUTLER 1/Os instead of internal signal routings. Operations
are initialized by memory access and stimulation from externa sources. BUTLER
I/Os are monitored to verify correct operation. Signal waveform is shown in Fig. 18.
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4. Analysis and discussion

To improve microprocessor efficiency and performance by replacing software-
scheduling program by a hardware solution, a hardware scheduler is designed with
reference to the ad-hoc BUTLER design. In order to facilitate future research, a
documentation of the BUTLER design is prepared on top of the BUTLER design
description by Eric Campbell [3].

4.1  Operation by memory access

The BUTLER performs specified functions when accessed as memory. It should not
therefore be used where unintentional memory accesses may occur, such as in direct-

memory-access, cache or refresh memory systems.

4.2 Round Robhin

A round robin is an arrangement of choosing all elements in a group equally in some
rational order, usually from the top to the bottom of alist and then starting again at the
top of the list and so on. A simple way to think of round robin is that it is about
"taking turns’. In computer operation, different program processes take turns using
the resources of the processor is to limit each process to a certain short time period,
then suspending that process to give another process a turn (or "time-glice"). Thisis
often described as Round Robin process scheduling. In this project, Round Robin
search is made use in next activity selection logic when more than one activity are

eligible for scheduling within the same priority group.

4.3 Counter

Arrays of flip flops which have the property of incrementing or decrementing when
pulsed are known as counter registers, or counters. Normally each bit of the binary
code is stored in aflip flop, with N flip flops giving up to 2" states. Essentially there
are two kinds of counters. Synchronous counters have all flip flops simultaneously
clocked by the count pulse. In asynchronous circuits, normally only the first flip-flop
isdirectly clocked; this change is then propagating through the remaining logic.
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The main advantage of ripple counter is its relative simplicity. However, their
asynchronous nature gives problems in some situations. Because of cumulative delays
as changes propagate along the chain, some aterations of state occur in a staggered
manner. Counter delay is not a significant problem in this system as counter is only

used for control interrupt.

44  Memory VS Registers

Control variables of all activities are stored in a control memory, which can be
accessed by different BUTLER instructions and asynchronous stimulations. In the
original BUTLER design, the memory is readlized by a tile configuration. In the
behavioral specification, a decision between memory and registers has to be made to

specify the control memory.

As memory cannot be referenced at the bit-level in Verilog HDL, data in the word
have to be first transferred to a temporary register. Therefore, temporary registers
have to be made used throughout the whole specification during specific bit range
operation. In this case, concurrent operation of same word maybe problematic, which
means asynchronous stimulation may not be supported. Therefore, control variables
should be held by twenty-one registers instead of a sixteen by twenty-one memory.
Asynchronous stimulation can arrive any time concurrently with different BUTLER

instructions.

45 Arbitration Problem

Since BUTLER deals with different asynchronous operations, set and reset of certain
control variable latches may occur during normal operation. Additional circuitries are

added to avoid any erroneous state resulted from this.

451 LastLatch

For normal operation, exactly one “last” latch should be set within each pollset.
However, none of the “last” latch will be set in the whole control variable memory

during the initial power up. As pollset boundaries can be set or removed at any time,
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no set “last” latch or more than one “last” latch in one pollset may occur during
Set_Pollend, Clear_Pollend or Clear_All BUTLER instructions. Additional circuitries
are therefore designed to maintain normal operation. Since no pollset boundary is set
during initial power up, one pollset contains all activities. “last” latch of the zeroth
activity, top of the pollset, will be set to retain normal operation. For the reset of
pollset boundaries, activity with the smallest activity number in the pollset will be set
if no “last” latch found. And the search chain will only take the first set “last” latch it
found and ignore the others if multiple set “last” latches have been found.

4.5.2 Asynchronous Stimulation
During execution of Clear All or Nextact BUTLER instruction, some or al

“stimmed” latches will be initidized (make false). However, asynchronous
stimulation from external source or local peripherals may arrive at any time, which
will make true the “stimmed” latch of some channels according to data carried.
Concurrent set and reset of the “stimmed” latch can occur when stimin from an
asynchronous external source is concurrent with reset from BUTLER instruction
Clear_All or Nextact when this activity is being returned to the processor. The
normally complementary outputs from the “stimmed” latch will both be high. This
causes no problem because this activity will be being returned to the processor as the
next activity to be scheduled at this time. If removal of concurrent set and reset are
coincident, the “stimmed” latch will, after the delay needed to resolve the
metastability effect, become either set or reset. Time is available between executing
BUTLER instructions for the latch to settle. If it becomes set, “stimin” is assumed to
have occurred after Nextact; if it becomes reset, “stimin” is assumed to have occurred
before Nextact. Either condition provides correct system operation.

To avoid arbitration problem, additional circuitry is added to defer visibility of a
“stimmed” latch that is set by asynchronous local peripheral (“stimp”) during context
switch. Extra latch is added to store value of the “stimmed” latch until after a
subsequent Nextact BUTLER instruction.
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4.6  Implicationsand Practical Applications

Base on the BUTLER documentation and the Verilog specification, BUTLER of
different functions and scale can be easily designed in the future. As two versions of
BUTLER with different search logic are specified in this project, different search
logic can also be used in the future, by simply replacing the search logic section in the
present specification. In practical, BUTLER can be used from complex system like a
computer microprocessor to simple system like processor in toy. It can improve the

efficiency and performance of the processorsin both systems.

42



BUTLER Design and Analysis

5. Conclusion

As amatter of fact that asynchronous designs are getting more important in the state-
of-art computer system designs, modern computing sSystems tend to move
synchronous design to asynchronous. To improve efficiency and performance of
processors, scheduling functions are moved from software to hardware. From the
comparison made in the literature review section, advantages of different hardware
dependency level of scheduler are presented. The BUTLER technology is focused on
the issues of scheduling application function tasks in embedded real time multiple
processor systems. In this project, a detail documentation of the original design has
been prepared to provide sufficient information for future studies and
implementations. Different functions, operations, precise search logics, signa
routings and control variables for next activity selection are al presented in details.
This documentation can support future design in a behavioral level on top of the gate

level design description by Eric Campbell [3].

The documentation described the BUTLER from general functions to detail operation
logic, from system configuration to BUTLER internal signal routings. It explained
detail of the next activity selection logic, the system configuration of the origina
design, actual function of different tasks, operation of different function blocks in the
system and all search logics help maintain correct operation of system. Functiona
diagram and search logic diagrams are included to illustrate some complicate search

logics and major signal routings.

Besides the documentation, the description of Verilog specification presented in the
result section verifies the functionality of the system and the possibility of varying the
configuration of the origina design. Although the newly designed BUTLER in this
project is specified in register transfer level, a synthesis can be performed by
following the tiling approach of the original design. Since the new design is of
different scae and configuration with the original, it verified the possibility of

different number of activities and connected BUTLERS.

Asthe Verilog specification of the BUTLER is divided into five modules according to
the functional block diagram presented in the documentation, each module is

presented independently for its function and operation logic. Functions triggered by
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different request signals from external sources or internal circuitry are explained in
full details. Search loops that run continuously throughout the whole operation of
BUTLER are presented with the aid of block diagrams to enhance understanding of
those complicate search logics.

A verification section is followed to display the precise simulation procedure carried
out in the project. Stimulus file used in the verification of each module is described
independently, followed by the description of an integrated simulation for the whole
system. Simulation results proved the correctness of the new design and therefore, the
possibility of changing scale and configuration of the origina design. Future studies
should focus on the synthesis in the tiling approach and implementation of different
configuration BUTLER. The documentation provided a channel for academics to
understand the BUTLER operation in an efficient way and the Verilog specification
provided a basic design methodology of the BUTLER for researchersto follow.
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Appendix
Appendix 1

Counter
module counter(expired, countout, Test, dlice, D, countin, Ld_cntr_lo, Ld_cntr_hi);
input Test, dlice, countin, Ld_cntr_lo, Ld_cntr_hi;

input [7:0] D;

output expired;

output [15:0] countout;

reg [15:0] stored, count;

reg time_out;
1
initial begin
stored = 16'b0;
count = 16'b0;
time_out = 0;
end
1
aways @ (posedge countin)
begin
if (~dlice)

count = count + 1;
if (count == 16'b0)

time out =1,
end
1
assign expired = time_out;
1
always @ (Ld_cntr_lo)
begin

if (Ld_cntr_lo)

stored[7:0] = D[ 7:0];

end

1
aways @ (Ld_cntr_hi)

begin
if (Ld_cntr_hi)
stored[15:8] = D[7:0];
end
1
aways @ (dlice)
begin
if (dice)
begin
time_out = 0;
count = stored;
end
end

assign countout = count;
endmodule

Interrupt controller
/I Created by ihdl

module int_cntl(interrupt, act_no, Test, expired, maybe, dice, Clrall);
input [3:0]act_no;

input Test, expired, maybe, dice, Clral;

output interrupt;

reg counter_int, preemp_int;
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1

initial begin
counter_int = 0;
preemp_int = 0;

end
1
aways @ (Test)
begin
if (Test==1& act_no[1] ==1)
preemp_int =1;
if (Test==1& act no[1] ==0)
preemp_int = 0;
if (Test==1& act no[0] ==1)
counter_int =1,
if (Test==1& act no[0] ==0)
counter_int =0;
end
1
always @ (Clral)
begin
if (Clrall == 1)
begin
preemp_int = 0;
counter_int = 0;
end
end
1
aways @ (act_no)
begin
if (Test==1& act_no[1] ==1)
preemp_int=1;
if (Test==1& act no[1] ==0)
preemp_int = 0;
if (Test==1& act no[0] ==1)
counter_int =1,
if (Test==1& act no[0] ==0)
counter_int = 0;
end

I
assign interrupt = (preemp_int & maybe & ~dlice) | (counter_int & expired & ~dice);
endmodule

Activity number register
module act_no_reg(act_no, Ld_act, D);

input [7:0]D;

input Ld_act;

output [3:0]act_no;

reg [3:0]act_reg;

initial begin
act_reg=0;
end

aways @ (Ld_act)
begin
if (Ld_act)
act_reg[3:0] <= D[3:0];
end
assign act_no[3:0] = act_reg[3:0];
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endmodule

Decoder

module add_dec(a000, a001, a010, a011, al00, a101, al10, al11, &0, al, a2);
input a0, al, a2;

output a000, a001, a010, ad11, a100, a101, a110, alll;
I

assign a000 = ~a0 & ~al & ~a2;

assign a0l =~a0 & ~al & a2;

assigna010=~a0 & al & ~a2;

assignalll=~a0 & al & a2;

assignal00=a0 & ~al & ~a2;

assignalOl=a0 & ~al & a2;

assignall0=a0 & al & ~a2;

assignalll=al0 & al & az;

1

Endmodule

module rw_decoder(read, write, R, W, select);
input R, W, select;
output read, write;

assignread = R & select;
assign write= W & select;

endmodule

module instr_memory(Do_stim, Do_wait, Suspend, Setsus, Sstart, Spollend, Nextact, Test, Ld_mask,
Ld_act, Do_stimx, Clrall, Cstart, Cpollend, Ld_cntr_lo, Ld_cntr_hi, a000, a001, a010, a011, a100,
al01, a110, al11, read, write);

input a000, a001, a010, a011, a100, a1l01, a110, alll, read, write;

output Do_stim, Do_wait, Suspend, Setsus, Sstart, Spollend, Nextact, Test, Ld_mask, Ld_act,
Do_stimx, Clrall, Cstart, Cpollend, Ld_cntr_lo, Ld_cntr_hi;

1

assign Do_stim = read & a000;

assign Do_wait = read & a001,

assign Suspend = read & a010;

assign Setsus = read & a011;

assign Sstart = read & a100;

assign Spollend = read & al101;

assign Nextact = read & al10;

assign Test =read & allil;

assign Ld_mask = write & a000;

assign Ld_act = write & a001;

assign Do_stimx = write & a010;

assign Clrall = write & a011,

assign Cstart = write & al00;

assign Cpollend = write & al01,

assign Ld_cntr_lo = write & al110;

assign Ld_cntr_hi = write & all1;

1

endmodule

Conrol Memory (simple version)
module Cntl_MemO01(Xout, Dout, stimout, maybe, slice_out, testout0, testout1, testout2, testout3,
testout4, testout5, testout6, Xin, stimin, D, Sstart, Cstart, Spollend, Cpollend, Setsus, Do_stim,
Do_stimx, Nextact, Do_wait, Suspend, Clrall, Ld_mask, act_no, stimp0, stimp1, stimp2, stimp3);
output stimout, maybe, slice_out;

output [3:0] Xout;

output [4:0] Dout;
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output [0:15] testoutO, testoutl, testout2, testout3, testout4, testout5, testout6;

input [3:0] act_no, Xin;

input [7:0] D;

/IBUTLER instructions request signals from instruction memory

input Sstart, Cstart, Spollend, Cpollend, Setsus, Do_stim, Do_stimx, Nextact, Do_wait, Suspend,
Clrall, Ld_mask, stimin;

/Istimulation from local peripherals

input stimpO, stimpl, stimp2, stimp3;

/116 activities, 8 pairs of stim-wait channels[0-7 stim, 8-15 wait]

//Suspend[16], Start[17], Pollend[18], Candidate][19], Last[20]

reg [0:15] stim_bit0, stim_bit1, stim_bit2, stim_bit3, stim_bit4, stim_bit5, stim_hit6, stim_hit7,
wait_bitO, wait_bitl, wait_bit2, wait_bit3, wait_bit4, wait_bit5, wait_bit6, wait_bit7;
reg [0:7] mask;

reg[3:0] act_x;

integer i, j, k, m, n, p, act_run, act_out;

reg slice, Lastfnd, Lastfndup, candfnd, maybe reg, pollend_run, polltop_run;

reg [0:15] suspend_bit, start_bit, pollend_bit, cand_bit, last_bit;

1

initial begin

act_x = 4'bzzzz,

dice=0;

Lastfnd = 0;

Lastfndup = 0;

candfnd = 0;

maybe_reg = 0;

pollend_run=0;

polltop_run=0;

end

1

ITTSet Start, Clear Start, Set Pollend, Clear Pollend, Set Suspend, Do Stim.////////
[N nstruction act on activity specified in last Load Activity instruction./////1]

1

aways @ (Sstart)
begin
if (Sstart) //set start
start_bit[act_no] = 1;
end
1
aways @ (Cstart)
begin
if (Cstart) /Iclear start
start_bit[act_no] =0;
end

1
aways @ (Spollend)

begin
if (Spollend) //set pollend
pollend_bit[act_no] =1,
end
1
always @ (Cpollend)
begin
if (Cpollend)
pollend_bhit[act_no] = 0;
end
1
aways @ (Setsus)
begin

if (Setsus) /et suspend
suspend_bit[act_no] = 1;
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end
1
aways @ (Do_stim)
begin
if (Do_stim) /lset stim according to mask
begin
if (mask[0] == 1)
stim_bitO[act_no] = 1;
if (mask[1] ==1)
stim_bhitl[act_no] = 1;
if (mask[2] ==1)
stim_hit2[act_no] = 1;
if (mask[3] ==1)
stim_hit3[act_no] = 1;
if (mask[4] ==1)
stim_bit4[act_no] = 1;
if (mask[5] ==1)
stim_bit5[act_no] = 1;
if (mask[6] == 1)
stim_bit6[act_no] = 1;
if (mask[7] ==1)
stim_hit7[act_no] = 1;
end
end
1
TN Sex stim by Local peripherad s/

always @ (posedge stimp0)
begin
if (stimpO0)
begin
wait (~dlice)
begin
stim_hit7[0] = 1;
stim_hit7[4] = 1;
stim_hit7[8] = 1;
stim_hit7[12] = 1;
end
end
end
1
always @ (posedge stimpl)
begin
if (stimpl)
begin
walit (~dlice)
begin
stim_hit7[1] = 1;
stim_hit7[5] = 1;
stim_hit7[9] = 1;
stim_hit7[13] = 1;
end
end
end
1
always @ (posedge stimp2)
begin
if (stimp2)
begin
walit (~dlice)
begin
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stim_hit7[2] = 1;
stim_hit7[6] = 1;
stim_hit7[10] = 1;
stim_hit7[14] = 1;

end
end
end
1
always @ (posedge stimp3)
begin
if (stimp3)
begin
wait (~dlice)
begin
stim_hit7[3] = 1;
stim_hit7[7] = 1;
stim_bit7[11] = 1;
stim_hit7[15] = 1;
end
end
end

1
1
T Suspend, Do Wait. /T
[ instruction act on activity currently running in the processor.//////111/
1
always @ (Suspend)
begin
if (Suspend)
begin
if (act_run!=16)
suspend_bit[act_run] =1,
end
end
1
aways @ (Do_wait)
begin
if (Do_wait) /Iset wait according to mask.
begin
if (act_run!=16)
begin
if (mask[0] == 1)
wait_bitO[act_no] = 1,
if (mask[1] ==1)
wait_bitl[act_no] =1,
if (mask[2] ==1)
wait_bit2[act_no] =1,
if (mask[3] ==1)
wait_bit3[act_no] =1,
if (mask[4] ==1)
wait_bit4[act_no] = 1,
if (mask[5] == 1)
wait_bit5[act_no] = 1,
if (mask[6] == 1)
wait_bit6é[act_no] = 1,
if (mask[7] ==1)
wait_bit7[act_no] =1,
end
end
end
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1
ML oad Mask (Mask pattern registen)//IHTHTTTHTTTTIITTTTTITTTTIIT
1
aways @ (Ld_mask)
begin

if (Ld_mask)

mask[0:7] = D[7:0]; //store mask pattern in mask register.

end
1

HIT1Select candidates to enter next activity search logic.
MHHNNNQ] to [7] is stimmed channel Oto 7.

18] to [15] iswaiting channel 0 to 7.

I 16] is suspended latch.

HITTTILT] is started latch.

HITTNIL9] is candidate latch.

I
always @ (Suspend) [[?7277?
begin

if (Suspend)

begin

for(i=0;i<=15;i=i+1)
begin
if (((stim_bitO[i] ==1 & wait_hit0[i] == 1) | (stim_bit1[i] == 1 &
wait_bitl[i] == 1) | (stim_bit2[i] == 1 & wait_bit2[i] == 1) | (stim_bit3[i] == 1 & wait_bhit3[i] ==1) |
(stim_hit4[i] == 1 & wait_bit4[i] == 1) | (stim_bit5[i] == 1 & wait_hit5[i] == 1) | (stim_bit6[i] == 1 &
wait_bit6[i] == 1) | (stim_bit7[i] == 1 & wait_bit7[i] == 1)) & (start_bit[i] == 1))
begin
cand_bit[i] = 1;
end
if ((suspend_bit[i] == 1) & (start_bit[i] == 1))
begin
cand_bhit[i] = 1;
end
end
oo
T seacch Logic/iiniiitiiiiininn

I
[[72777?
candfnd = 0;
for(m=0,m<=15m=m+ 1)
begin
if (candfnd ==0)
begin
if (cand_bitfm] == 1)
begin
act out=m;
candfnd = 1;
end
end
end
if (candfnd ==0)
act_out = 16;
end
end

T L T
T ]

1

e e \ws s
1

aways @ (Clral)
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begin
if (Clral)
begin
stim_bit0[0:15] = 16'b0; //reset stim
stim_bit1[0:15] = 16'h0;
stim_bit2[0:15] = 16'b0;
stim_bit3[0:15] = 16'b0;
stim_bit4[0:15] = 16'b0;
stim_bit5[0:15] = 16'b0;
stim_hit6[0:15] = 16'b0;
stim_hit7[0:15] = 16'b0;
wait_bit0[0:15] = 16'b0; //reset wait
wait_hit1[0:15] = 16'b0;
wait_bit2[0:15] = 16'b0;
wait_bit3[0:15] = 16'b0;
wait_bit4[0:15] = 16'b0;
wait_bit5[0:15] = 16'b0;
wait_bit6[0:15] = 16'b0;
wait_bit7[0:15] = 16'b0;
suspend_bit[0:15] = 16'b0;//reset suspend
start_bit[0:15] = 16'b0;  //reset start
pollend_bit[0:15] = 16'b0; //reset pollend
cand_bit[0:15] = 16'b0; /Ireset candidate
end
end
I
HHTTTHTHTTTTTNIIIDo external Stim (to other BUTLER)./HTTTTTTTHTTTITTIIIIITTTIT
1
always @ (Do_stimx)
begin
if (Do_stimx)
act_x = act_no;
end
assign stimout = Do_stimx;
assign Xout = act_x;
I
M Stim from external (from other BUTLER).//HTTTTTTHTTTTITTTTI
1

always @ (stimin)
begin
if (~dlice & stimin)
stim_hit6[Xin] = 1; [lact no specified by Xin[3:0]
end /Ichannel 6 for external stim

1
T Context switch /T
I

aways @ (Suspend)
begin
if (Suspend)
dice=1;
end
1
aways @ (Do_wait)
begin
if (Do_wait)
dlice=1;
end
1
aways @ (Nextact)
begin
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if (Nextact)
slice=0;

end
1
assign dlice_out = dlice;
1
M Ensure exactly 1 Last in every pollset//I/HTHTHTTTITHTTTTTIITTTINII
1

always @ (Suspend) [[7277?
begin
if(Suspend)
begin
Lastfnd = 0;
for(j=0;j<=15;j=j+1) /Iremove extra Last bit.
begin
if (Lastfnd == 1)
last_bit[j] =0; /lreset extra Last bit
elseif (Lastfnd == Q)
begin
if (last_bit[j] == 1) /[check Last bit.
Lastfnd = 1;
end
if (pollend_bit[j] ==1) //check pollend bit.
Lastfnd = 0;
end
if (last_bit[15] == 1)
Lastfndup = 1;
for(k=14;k>=1k=k-1) /ladd Last bit.
begin
if (pollend_bit[k] == 1) /[check Pollend bit.
begin

if (Lastfndup == 0)
begin /et first activity ina
last_bit[k+1] = 1; //pollset as Last if not found.

end
Lastfndup = 0; /Ireset Lastfndup when cross
end /Ipollset boundary.
if (last_bit[k] == 1) //check Last bit.
Lastfndup = 1;
end
if (Lastfndup == 0 | pollend_bit[0] == 1)
last_bit[O] = 1;

end
end
1
/ll/search for higher priority activity than currently running activity /111111111111
1
aways @ (act_out)
begin
if (~dlice)
begin
if (act_out < act_run)
maybe reg =1,
end
end
1
aways @ (dlice) /Ireset maybe when context switch
begin
if (dlice)
maybe_reg = 0;
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end

assign maybe = maybe reg;

1

M  return activity to processor /TN
1

always @ (Nextact)
begin
if (Nextact)
begin

act_run = act_out;
if (act_out != 16)
begin
stim_hitO[act_run]
stim_bit1[act_run]
stim_hit2[act_run]
stim_bit3[act_run]
stim_bit4[act_run]
stim_bit5[act_run]
stim_bit6[act_run]
stim_bit7[act_run]
wait_bitO[act_run]
wait_bitl[act_run]
wait_bit2[act_run]
wait_bit3[act_run]
wait_bit4[act_run] =
wait_bit5[act_run] =
wait_bit6[act_run] =
wait_bit7[act_run] =
suspend_bit[act_run] = 0;
cand_bit[act_run] = 0;
s = e s v
last_bit[act run] =
pollend_run=0;
for(n=act run+1;,n<=15n=n+1)

I nnn
eNoNeoooloNolololoNoe Nl

begin
if (pollend_run == 0)
last_bit[n] =
if (pollend_bit[n] == 1)
pollend_run =1,
end
polltop_run=0;
for(p=act_run-1,p<=0;p=p-1)
begin
if (pollend_bit[p] == 1)
polltop_run=1,
if (polltop_run == 0)
last_bit[p] =
end
end
end
end
1
assign Dout = act_run;
1

assign testoutO = stim_bit6;
assign testout1 = stim_hit7;
assign testout2 = suspend_hit;
assign testout3 = start_hit;
assign testout4 = pollend_hit;
assign testout5 = cand_bit;

/Ireset control variables

/lset Last bit

/Irunning down

[lreset Last bit
[Istop after pollend

/lrunning up

/Istop before pollend

/Ireset Last bit
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assign testout6 = last_hit;
1
Endmodule

Control memory (final version)
module Cntl_Mem(Xout, Dout, stimout, maybe, dlice_out, testoutO, testout1, testout2, testout3,
testout4, testout5, testout6, Xin, stimin, D, Sstart, Cstart, Spollend, Cpollend, Setsus, Do_stim,
Do_stimx, Nextact, Do_wait, Suspend, Clrall, Ld_mask, act_no, stimp0, stimpl, stimp2, stimp3);
output stimout, maybe, slice_out;

output [3:0] Xout;

output [4:0] Dout;

output [0:15] testoutO, testoutl, testout2, testout3, testout4, testout5, testouto;

input [3:0] act_no, Xin;

input [7:0] D;

/IBUTLER instructions request signals from instruction memory

input Sstart, Cstart, Spollend, Cpollend, Setsus, Do_stim, Do_stimx, Nextact, Do_wait, Suspend,
Clrall, Ld_mask, stimin;

/Istimulation from local peripherals

input stimpO, stimpl, stimp2, stimp3;

/116 activities, 8 pairs of stim-wait channels[0-7 stim, 8-15 wait]

/ISuspend[16], Start[17], Pollend[18], Candidate[19], Last[20]

reg [0:15] stim_bit0, stim_bitl, stim_bit2, stim_bit3, stim_bit4, stim_bit5, stim_hit6, stim_hit7,
wait_bitO, wait_bitl, wait_bit2, wait_bit3, wait_bit4, wait_bit5, wait_bit6, wait_bit7;

reg [0:7] mask;

reg[3:0] act_x;

integer i, j, k, m, n, p, act_run, act_out, a, b, ¢, d, g f, g;

reg dlice, Lastfnd, Lastfndup, found, maybe reg, pollend_run, polltop_run, searchtop, searchend,
search_dtart;

reg [0:15] suspend_bit, start_bit, pollend_bit, cand_bit, last_bit;

1

initial begin

act_x = 4'bzzzz,

dlice=0;

Lastfnd = 0;

Lastfndup = 0;

found = 0;

maybe_reg = 0;

pollend_run=0;

polltop_run=0;

searchend = 0;

searchtop = 0;

search_start = 0

last_bit = 16'b0000000000000000;

end

I

I Set Start, Clear Start, Set Pollend, Clear Pollend, Set Suspend, Do Stim.//////1/

[N nstruction act on activity specified in last Load Activity instruction.////////

I

aways @ (Sstart)
begin
if (Sstart) /lset start
start_bit[act_no] = 1;
end
1
aways @ (Cstart)
begin
if (Cstart) /Iclear start
start_bit[act_no] =0;
end

1
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aways @ (Spollend)
begin
if (Spollend) /Iset pollend
pollend_bit[act_no] = 1;
end
1
always @ (Cpollend)

begin
if (Cpollend)
pollend_bit[act_no] = 0;
end
1
aways @ (Setsus)
begin
if (Setsus) /et suspend
suspend_bit[act_no] = 1;
end

1
always @ (Do_stim)
begin
if (Do_stim) /lset stim according to mask
begin
if (mask[0] ==1)
stim_hitO[act_no] = 1;
if (mask[1] ==1)
stim_hitl[act_no] = 1;
if (mask[2] ==1)
stim_hit2[act_no] = 1;
if (mask[3] ==1)
stim_bit3[act_no] = 1;
if (mask[4] ==1)
stim_bit4[act_no] = 1;
if (mask[5] ==1)
stim_hit5[act_no] = 1;
if (mask[6] == 1)
stim_hit6[act_no] = 1;
if (mask[7] ==1)
stim_hit7[act_no] = 1;
end
end
1
TN Sex stim by Local periphera ST
always @ (stimp0)
begin
if (stimpO0)
begin
walit (~dlice)
begin
stim_hit7[0] = 1;
stim_hit7[4] = 1;
stim_hit7[8] = 1;
stim_hit7[12] = 1;
end
end
end
1
aways @ (stimpl)
begin
if (stimpl)
begin
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walit (~dlice)
begin
stim_hit7[1] = 1;
stim_hit7[5] = 1;
stim_hit7[9] = 1;
stim_hit7[13] = 1;
end
end
end
1
aways @ (stimp2)
begin
if (stimp2)
begin
walit (~dlice)
begin
stim_hit7[2] = 1;
stim_hit7[6] = 1;
stim_hit7[10] = 1;
stim_hit7[14] = 1;
end
end
end
1
aways @ (stimp3)
begin
if (stimp3)
begin
wait (~dice)
begin
stim_hit7[3] = 1;
stim_hit7[7] = 1;
stim_bit7[11] = 1;
stim_bit7[15] = 1;
end
end
end
1
1

T Suspend, Do Wait /TN
[T instruction act on activity currently running in the processor.///1111111
I

always @ (Suspend)
begin
if (Suspend)
begin

if (act_run!=16)
suspend_bit[act_run] = 1;

end
end
1
aways @ (Do_wait)
begin
if (Do_wait) /lset wait according to mask.
begin
if (act_run!=16)
begin
if (mask[0] ==1)
wait_bitO[act_no] =1,
if (mask[1] ==1)
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wait_bitl[act_no] =1,

if (mask[2] ==1)
wait_bit2[act_no] =1,
if (mask[3] == 1)
wait_bit3[act_no] = 1,
if (mask[4] ==1)
wait_bit4[act_no] = 1,
if (mask[5] == 1)
wait_bit5[act_no] = 1,
if (mask[6] == 1)
wait_bit6[act_no] = 1,
if (mask[7] ==1)
wait_bit7[act_no] =1,
end
end
end
1
HiLoad Mask (Mask pattern registen)/TTTTTHTTTTTTITTITTTTTTTIIITTT
1
aways @ (Ld_mask)
begin
if (Ld_mask)
mask[0:7] = D[7:0]; [Istore mask pattern in mask register.
end
1

H111Select candidates to enter next activity search logic.
ITTNINQ] to [7] is stimmed channel O to 7.
I 8] to [15] iswaiting channel Oto 7.
IITT11116] is suspended latch.
HITTTNILT] is started latch.
ITTNIL9] is candidate latch.
1
aways @ (Suspend) [[7277?
begin
if(~Suspend)
begin
for(i=0;i<=15;i=i+1)
begin
if (((stim_bitQ[i] ==1 & wait_bit0[i] == 1) | (stim_bit1[i] == 1 &
wait_bit1[i] == 1) | (stim_bit2[i] == 1 & wait_bit2[i] == 1) | (stim_bit3[i] == 1 & wait_bit3[i] == 1) |
(stim_bit4[i] == 1 & wait_hit4[i] == 1) | (stim_bit5[i] == 1 & wait_bit5[i] == 1) | (stim_bit6[i] == 1 &
wait_bit6[i] == 1) | (stim_bit7[i] == 1 & wait_bit7[i] == 1)) & (start_bit[i] == 1))
begin
cand_bit[i] = 1;
end
if ((suspend_hit[i] == 1) & (start_bit[i] == 1))
begin
cand_bit[i] = 1;
end
end
T T T T T
T Search Logic/HHHTHIIITTTTTTTTTTTTTTTNTTTTT

1
s == e S
found = 0; /Ireset in each pollset
if (last_bit[0] == 1) INast?
begin
M Round Robind/HHHTHTIITTTTTTTTTTTTTINITTTT
if (pollend_bit[0] == 0) /Ipollend?
begin
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searchend = 0;
for (a=1;a<=15;a=a+1)
begin
if ((searchend ==0) & (found == 0))
begin
if (cand_bit[a] == 1) /[candidate?
begin
act out =g
found =1,
end
if (pollend_bit[a] == 1) //pollend?
searchend = 1,
end
end
if (found == Q)
begin
if (cand_bit[0] == 1)
begin
act_ out =0;
found = 1,
end
end
end
elseif (pollend_bit[0] == 1) /Ipollend?
begin
if (cand_bit[0] == 1) /[candidate?
begin
act_ out =0;
found = 1,
end
end

end
T  search act[ 1] to act[ 14/
for(b=1;b<=14;b=b+1)

begin
if(found == 0)
begin
if(last_bit[b] == 1)
/Nast?
begin
/[Round Robin
if (pollend_bit[b] == 0)
/Ipollend?
begin
searchend = 0;
for(c=b+1,c<=15;c=c+1)
begin
if (searchend == 0 & found == 0)
begin
if (cand_bit[c] == 1)
/[candidate?
begin
act_out =c;
found = 1,
end
if (pollend_bit[c] == 1)
/Ipollend?
searchend = 1;
end

end
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/Ipollend?

/lcandidate?

/Ipollend?

/lcandidate?

end
end

end

if (found == 0)
begin
searchtop = 0
for(d=b;d>=0;d=d-1)
begin
if (pollend_bit[d] == 1)

searchtop = 1,
if (searchtop == 0)
begin
if (cand_bit[d] == 1)

begin
act_out=d;
found = 1,
end
end
end
end
end
elseif (pollend_bit[b] == 1)
begin
if (found == 0)
begin
searchtop = 0
for(e=b-1,e>=0;e=e-1)
begin
if (pollend_bit[e] == 1)

searchtop = 1,
if (searchtop == 0)
begin
if (cand_hit[e] == 1)

begin
act out =€
found = 1,
end
end
end
end
if (found == 0)
begin
if (cand_bit[b] == 1)
begin
act_out =b;
found =1,
end
end
end

M isearch act[AS) /T

if (found == 0)

begin

if (last_bit[15] == 1)

Nast?

begin
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if (pollend_bit[15] == 1)

if (pollend_bit[f] == 1)
searchtop = 1,

if (cand_bit[f] == 1)

act_out=f;
found = 1,

if (pollend_bit[g] == 1)
searchtop = 1;

if (cand_bit[g] == 1)

act out =g;
found = 1;

begin
searchtop = 0
for(f=14;f>=0;f=f-1)
begin
if (searchtop == 0)
begin
/lcandidate?
begin
end
end
end
end
if (found == 0)
begin
if (cand_bit[15] == 1)
begin
act_out = 15;
found = 1,
end
end
elseif (pollend_bit[15] == 0)
/Ipollend?
begin
searchtop = 0;
for(g=159>=0;9g=g-1)
begin
if (searchtop == 0)
begin
/lcandidate?
begin
end
end
end
end
end
end
i ireturn act[16] if no candidate found///HHHHHTTTTTTTTTHTITTTTITTTT
if (found == 0)
act_out = 16;
end
end
1

T e e ||
T L e |
I

M Overd Reset /TN
1

aways @ (Clral)

begin

/Ipollend?

/Ipollend?

/Ipollend?
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if (Clral)
begin
stim_bit0[0:15] = 16'00; //reset stim
stim_bit1[0:15] = 16'h0;
stim_bit2[0:15] = 16'h0;
stim_bit3[0:15] = 16'b0;
stim_bit4[0:15] = 16'b0;
stim_bit5[0:15] = 16'b0;
stim_bit6[0:15] = 16'b0;
stim_hit7[0:15] = 16'b0;
wait_bit0[0:15] = 16'b0; //reset wait
wait_bit1[0:15] = 16'b0;
wait_hit2[0:15] = 16'b0;
wait_hit3[0:15] = 16'b0;
wait_bit4[0:15] = 16'b0;
wait_bit5[0:15] = 16'b0;
wait_bit6[0:15] = 16'b0;
wait_bit7[0:15] = 16'b0;
suspend_bit[0:15] = 16'b0;//reset suspend
start_bit[0:15] = 16'b0;  //reset start
pollend_bit[0:15] = 16'b0; //reset pollend
cand_bit[0:15] = 16'b0; /Ireset candidate
end
end
I
HHTTHHTHTTTTTTIIIIDo external Stim (to other BUTLER).//HTTTTTTTIHTTTTIIIIITTTIT
1
always @ (Do_stimx)
begin
if (Do_stimx)
act_x = act_no;
end
assign stimout = Do_stimx;
assign Xout = act_x;
I
M Stim from external (from other BUTLER).//HTTTTTTTHTTTTITTTTI
1
aways @ (stimin)

begin
if (~dlice & stimin)
stim_hit6[Xin] = 1; [lact no specified by Xin[3:0]
end /Ichannel 6 for external stim
1

M Context switch /T
1

aways @ (Suspend)
begin
if (Suspend)
dice=1;
end
1
aways @ (Do_wait)
begin
if (Do_wait)
dice=1;
end
1
aways @ (Nextact)
begin
if (Nextact)
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slice=0;
end
1
assign dlice_out = dlice;
1
M Ensure exactly 1 Last in every pollset//IIHHTHTTTITHTTTTTIITTTINII
1

always @ (Suspend) [[7277?
begin
if(Suspend)
begin
Lastfnd = 0;
for(j=0;j<=15;j=j+1) /Iremove extra Last bit.
begin
if (Lastfnd == 1)
last_bit[j] =0; /lreset extra Last bit
elseif (Lastfnd == 0)
begin
if (last_bit[j] == 1) /[check Last bit.
Lastfnd = 1;
end
if (pollend_bit[j] ==1) //check pollend bit.
Lastfnd = 0;
end
Lastfndup = 0;
if (last_bit[15] == 1)
Lastfndup = 1;
for(k=14;k>=1k=k-1) /ladd Last bit.
begin
if (pollend_bit[k] == 1) /[check Pollend bit.
begin

if (Lastfndup == 0)
begin /et first activity ina
last_bit[k+1] = 1; //pollset as Last if not found.

end
Lastfndup = 0; /Ireset Lastfndup when cross
end /Ipollset boundary.
if (last_bit[k] == 1) //check Last bit.
Lastfndup = 1;
end
if ((Lastfndup == 0) | (pollend_bit[0] == 1))
last_bit[Q] = 1;

end
end
I
Ill/search for higher priority activity than currently running activity /11T not
checked!!!//11111]
1
aways @ (act_out)

begin
if(~dlice)
begin
search_start = 0;
if (act_run!=0)
begin

for(m=act_ run-1;, m>=0,m=m-1)
begin
if (pollend_bit[m] == 1)
search_start = 1;
if (search_start == 1)
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begin
if (cand_bit[m] == 1)
maybe _reg = 1;
end
end
end
end
end
1
aways @ (dlice)
begin
if (dlice)
maybe_reg = 0;
end
assign maybe = maybe reg;
1

M return activity to processor//[HTHITTHTTTTTTTTTTHTTTTTTTTITTTT
"

always @ (Nextact)
begin
if (Nextact)
begin

act_run = act_out;
if (act_out != 16)
begin
stim_hitO[act_run]
stim_bit1[act_run]
stim_bit2[act_run]
stim_bit3[act_run]
stim_bit4[act_run]
stim_bit5[act_run]
stim_bit6[act_run]
stim_hit7[act_run]
wait_bitO[act_run]
wait_bitl[act_run]
wait_bit2[act_run]
wait_bit3[act_run] =0
wait_bit4[act_run] =
wait_bit5[act_run] =
wait_bit6[act_run] =
wait_bit7[act_run] =
suspend_bit[act_run] =0;
cand_bit[act_run] = 0;
s = e s e
last_bit[act_run] =

L 1 1 1 1 A T O T O VI 1
[eleleoNoloNoloNoNolo]

O

if (act_run'!=0)
begin
polltop_run = 0;
for(p=act_run-1,p>=0;,p=p-1)
begin
if (pollend_bit[p] == 1)
polltop_run =1,
if (polltop_run==0)
last_bit[p] =
end
end
if (act_run!=15)
begin
if (pollend_bit[act_run] ==0)

/Ireset maybe when context switch

/Ireset control variables

/Iset Last bit

/lrunning up

//stop before pollend

/Ireset Last bit
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down

bit

pollend

end
end
end

end
1
assign Dout = act_run;
1
assign testoutO = stim_bit6;
assign testout1 = stim_hit7;
assign testout2 = suspend_hit;
assign testout3 = start_hit;
assign testout4 = pollend_hit;
assign testout5 = cand_bit;
assign testout6 = last_bit;
1
endmodule

begin
pollend_run=0;
for(n=act_ run+1;,n<=15n=n+1)
begin
if (pollend_run == 0)
last_bit[n] =0;
if (pollend_bit[n] == 1)
pollend_run=1;
end
end

/Irunning

/lreset Last

//stop after
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Appendix 2

Interrupt controller ssmulation

Initial begin

Clral = 0;

Test =0;

act_no = 4'bzzzz,
dice=0;

maybe = 0;

expired = 0;

#2 act_no = 4'b0011;
#1 Test = 1;

#1 Test =0;

#2 maybe =1,

#2 maybe = 0;

#2 expired =1,

#2 dice=1;

#2 expired = 0;

#2 dice=0;

#2 maybe =1,

#2 act_no = 4'b0001;
#1 Test =1,

#1 Test =0;

#2 expired =1,

#2 act_no = 4'b0000;
#1 Test = 1;

#1 Test =0;

Decoder ssmulation

initial begin
R=0;

R=0;
/Iwrite cycle
#1W =1,
#1 select = 1;
#2a2=1,
#2al =1,
#2a2=0;
#2a0=1,
#2al=0;
#2a2=1,
#2al=1,;
#2 select = 0;
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End

Counter simulation

initial begin
Test =0;
dice=0;
D[7:0] = 8h0;
countin = 0;
Ld cntr lo=0;
Ld cntr_hi =0;
//Load counter
#2 D[7:0] = 8b11111011;
#2 Ld cntr lo=1;
#2 Ld _cntr_lo=0;
D[7:0] =8b11111111;
#2 Ld _cntr_hi = 1;
#2 Ld_cntr_hi =0;
/linitialize counter
#5 dice=1;
#5 dice=0;
[Istart counting

#1 countin=1;
#1 countin=0;
#1 countin=1;
#1 countin=0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin=1;
#1 countin=0;
#1 countin=1;
#1 countin=0;
#1 countin=1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
/Ireset counter

#5 dice=1;
#5 dice=0;
End

Activity number register simulation
initial begin

Ld act=0;

D[3:0] = 4'b0;

1

#2 Ld act=1;

#2 Ld act=0;

#4 D[3:0] = 4'b1010;
#2 Ld act=1;

#2 Ld act=0;

#2 D[3:0] = 4'b1110;
#2 D[3:0] = 4'b0101;
#2 Ld act=1;

#3 Ld act=0;

End

Control memory simulation (simple version)
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initial begin

D[7:0] = 8bzzzzzzzz,
Clral = 0;

Cpollend =0;

Cstart = 0;

Do stim=0;

Do _stimx =0;

Do wait = 0;

Ld mask =0;

Nextact = 0;

Setsus = 0;

Spollend = 0;

Sstart = 0;

Suspend = 0;

Xin[3:0] = 4'bzzzz;
act_no[3:0] = 4'bzzzz;
stimin=0;

stimp0 = 0;

stimpl =0;

stimp2 = 0;

stimp3 =0;

1

#1 Clral = 1,
#1 Clral = 0;
#2 D[7:0] =8b11111111;
#1 Ld mask =1,
#1 Ld mask =0;
#2 act_no[3:0] = 4'b0100;
#2 Sstart = 1;

#1 Sstart = 0;

#2 Cstart = 1,
#1 Cstart = 0;
#2 Spollend =1,
#1 Spollend = 0;
#2 Cpollend = 1,
#1 Cpollend = 0;
#2 Setsus =1,
#1 Setsus = 0;
#2 Do stim=1;
#2 Do stim=0;
#2 stimp0 =1,
#2 stimp0 = 0;
#1 Sstart = 1;
#1 Sstart = 0;

#1 Suspend = 1,
#2 Suspend = 0;
#2 stimpl =1,
#2 stimpl =0;
#2 Nextact = 1,
#1 Nextact = 0;
#2 Suspend =1,
#2 Suspend = 0;
#1 Nextact = 1,
#2 Nextact = 0;
#2 Do wait = 1;
#2 Do_wait = 0;
#1 Nextact = 1,
#2 Nextact = 0;
#2 Clral = 1,
#2 Clral = 0;

/ltest Ld_mask

[ltest Sstart
[ltest Cstart
/ltest Sstart
/ltest Cstart
[ltest Setsus
/ltest Do_stim

[/stimp between context switch

/Istimp during context switch

/Ireturn act[0100]

/ltest Suspend

/ltest Do_wait

Iftest Clrall
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#1 act_no[3:0] = 4b1010;

#1 Do_stimx =1; /ltest Do_stimx
#1 Do_stimx =0;
#2 Xin[3:0] = 4'b0100; [ltest stimin act[Xin]

#1 stimin=1;
#2 stimin=0;
End

Control memory simulation (final version)

initial begin

D[7:0] = 8bzzzzzzzz,

Clral = 0;

Cpollend =0;

Cstart = 0;

Do_stim=0;

Do_stimx =0;

Do_wait = 0;

Ld_mask = 0;

Nextact = 0;

Setsus = 0;

Spollend = 0;

Sstart = 0;

Suspend = 0;

Xin[3:0] = 4'bzzzz;

act_no[3:0] = 4'bzzzz;

stimin = 0;

stimp0 = 0;

stimpl =0;

stimp2 = 0;

stimp3=0;

1

[T
#1 Clral =1, /[Clrall
#1 Clral = 0;
N  iest Round Robin
#1 act_no[3:0] = 4'b1110;
#2 act_no[3:0] = 4'b0100;

#2 Sstart = 1; /ISstart
#1 Sstart = 0;
#2 Setsus=1; /1Setsus

#1 Setsus = 0;
#2 act_no[3:0] =4'b0101;

#2 Sstart = 1; /[Sstart
#1 Sstart = 0;
#2 Setsus=1; /[Setsus

#1 Setsus = 0;
#2 act_no[3:0] = 4'b0110;

#2 Sstart = 1; /[Sstart
#1 Sstart = 0;
#2 Setsus=1; /1Setsus

#1 Setsus=0;

#2 Suspend = 1,

#1 Suspend = 0;

#5 Nextact = 1; /INextact
#1 Nextact = 0;

#1 act_no[3:0] = 4'b0010;

#2 Spollend = 1; //Spollend
#2 Spollend = 0;

#1 act_no[3:0] = 4'b1110;

#2 Spollend =1, /ISpollend
#2 Spollend = 0;
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#2 Suspend =1,

#1 Suspend = 0;

#5 Nextact = 1; /INextact
#1 Nextact = O;

#2 Suspend =1,

#1 Suspend = 0;

#5 Nextact = 1, /INextact
#1 Nextact = O;

#2 Suspend = 1,

#1 Suspend = 0;

#5 Nextact = 1; /INextact
#1 Nextact = 0;
T est maybe search

#2 act_no[3:0] = 4'b0000;

#2 Sstart = 1; /ISstart
#1 Sstart = 0;
#2 Setsus=1; /[Setsus

#1 Setsus = 0;
M|  ireturn act[0000]
#2 Suspend =1,

#2 Suspend = 0;

#5 Nextact = 1,

#2 Nextact = 0;

#2 Do_wait = 1;

#2 Do_wait = 0;
M iest 1 "last" logic
#1 act_no[3:0] = 4'b0010;

#2 Cpollend = 1; /ICpollend
#2 Cpollend =0;
N  iest returnidle
#2 Clral = 1;

#2 Clral = 0;

#2 Suspend = 1,

#2 Suspend = 0;

#2 Nextact = 1,

#2 Nextact = 0;

End

Integrated simulation

initial begin
D[7:0] = 8bzzzzzzzz,
a0=0;

Xin[3:0] ;4'bzzzz;

stimp3=0;

countin = 1'bz;

T nterrupt control ler
1

#2 D[3:0] = 4'b0011; /ILd_act

#1
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#1 select = 1;
#1 select = 0;
W =0;
1
#1 a0=1; /Test
al=1,;
az2=1,
R=1;
#1 select = 1;
#1 select = 0;
R=0;
1
T
/ILoad counter
#2 D[7:0] = 8b11111011;
1
#1 a0=1,; /ILd_cntr_lo
al=1,;
a2=0;
W=1,
#1 select = 1;
#1 select = 0;
W =0;
1
D[7:0] = 8b11111111;
1
#1 a0=1, //Ld_cntr_hi
al=1,;
az2=1,
W=1,
#1 select = 1;
#1 select = 0;
W =0;
1
/linitialize counter
1
#1 a0=0; /ISuspend
al=1;
a2=0;
R=1;
#1 select = 1;
#1 select = 0;
R=0;
1
#1 a=1; /INextact
al=1;
a2=0;
R=1,;
#1 select = 1;
#1 select = 0;
R=0;

Mt lexpired
/Istart counting

#1 countin=1;
#1 countin=0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
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#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin=1;
#1 countin=0;
#1 countin=1;
#1 countin=0;
#1 countin=1;
#1 countin=0;
#1 countin=1;
#1 countin = 0;
#1 countin=1;
#1 countin = 0;

M ireset by slice
1

#1 a0=0; //Suspend
al=1,;

a2=0;

R=1;

#1 select = 1;

#1 select = 0;
R=0;

1

1

#1 a=1; /INextact
al=1;

a2=0;

R=1;

#1 select = 1;
#1 select = 0;

R=0;
N lexpired
[Istart counting
#1 countin = 1;

#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin=0;
#1 countin=1;
#1 countin=0;
#1 countin=1;
#1 countin=0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin=1;
#1 countin = 0;
#1 countin=1;
#1 countin=0;
#1 countin=1;
#1 countin=0;
T  reset by actbit = 0
#2 D[3:0] = 4'b0000; /ILd_act
#1 a0 =0;

al=0;

a2=1;

W=1,

#1 select = 1;
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#1

1
#1

#1
#1

1

M expired

ng
|
o

RS TR

Py
1
~ =

88
g3

Py
1
_C?I—P

/linitialize counter

1

#1 a0 =0;
al=1,;
az2=0;
R=1;

#1 select = 1;

#1 select = 0;
R=0;

1

#1 a=1;
al=1;
a2=0;
R=1,;

#1 select = 1;

#1 select = 0;
R=0;

1

/Istart counting

#1 countin=1;

#1 countin = 0;

#1 countin = 1;

#1 countin = 0;

#1 countin = 1;

#1 countin = 0;

#1 countin = 1;

#1 countin=0;

#1 countin=1;

#1 countin=0;

#1 countin=1;

#1 countin=0;

#1 countin = 1;

#1 countin = 0;

#1 countin = 1;

#1 countin = 0;

#1 countin = 1;

#1 countin = 0;

#1 countin=1;

#1 countin=0;

M|

1

#2 D[3:0] = 4'b0000;

#1 a0 =0;
al=0;
a2=1;

W =1,

#1 select =

#1 select =0

/ITest

/ISuspend

/INextact
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W =0;
1
#1 a=1; /Test
al=1,;
az2=1,
R=1;
#1 select = 1;
#1 select = 0;
R=0;
1
i fireset counter
1
#1 a0=0; /ISuspend
al=1;
a2=0;
R=1;
#1 select = 1;
#1 select = 0;
R=0;
1
#1 a=1; /INextact
al=1;
a2=0;
R=1,;
#1 select = 1;
#1 select = 0;
R=0;
"
1
#1 a0 =0; /[Clrall
al=1,;
az2=1,
W=1,
#1 select = 1;
#1 select = 0;
W =0;
1

M Counter
//Load counter
#2 D[7:0] = 8b11111011;

i
#1 a0=1,; /ILd_cntr_lo
al=1,;
az2=0;
W=1,
#1 select = 1;
#1 select = 0;
W =0;
1
D[7:0] =8b11111111;
i
#1 a0=1, /ILd_cntr_hi
al=1,;
az2=1,
W=1,
#1 select = 1;
#1 select = 0;
W =0;
1

/linitialize counter
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1

#1 a=0; /ISuspend
al=1;
az2=0;
R=1;

#1 select = 1;

#1 select = 0;
R=0;

1

#1 a=1; /INextact
al=1;
a2=0;
R=1,;

#1 select = 1;

#1 select = 0;
R=0;

I

/Istart counting

#1 countin=1;

#1 countin=0;

#1 countin=1;

#1 countin = 0;

#1 countin=1;

#1 countin = 0;

#1 countin = 1;

#1 countin = 0;

#1 countin=1;

#1 countin=0;

#1 countin=1;

#1 countin=0;

#1 countin=1;

#1 countin=0;

#1 countin=1;

#1 countin = 0;

#1 countin = 1;

#1 countin = 0;

#1 countin = 1;

#1 countin = 0;

/Ireset counter

1

#1 a0=0; //Suspend
al=1,;
az2=0;
R=1,;

#1 select = 1;

#1 select = 0;
R=0;

1

#1 a=1; /INextact
al=1,;
az2=0;
R=1;

#1 select = 1;

#1 select = 0;
R=0;

1
T | simple version entl mem
1
#1 a0 =0; /[Clrall
al=1;
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#1
#1

1
#2
1
#1

#1
#1

1
#2
#1

#1
#1

1
#1

#1
#1

1
#1

#1
#1

1
#1

#1
#1

1
#1

#1
#1

1
#1

=88 =R
He® 1 n
oL TER

D[7:0] = 8b11111111;

a0=0; /ILd_mask

o T hReo

S8BSRP
HNeKn i

9
=)

3:0] = 4'b0100; /ILd_act

; /ISstart

REB E%&E%&%

g8 I
8340

/ICstart

T T heor

H@® 10

//Spollend

-RhOoR

f&ﬁ”%&% SBB=RRY
3390

/[Cpollend

e T hRrOoOR

IR I TR TET

/1Setsus

RRE =ZBBIRRY

RO
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#1
#1

1
#1

#1
#1

1
#2
#2
1
#1

#1
#1

1
#1

#1
#1

1
#2
#2
1
#1

#1
#1

1
#1

#1
#1

1
#1

#1
#1

1
#1

BEORRY

Py

VEBORPRB
ga L
"EPoop

<o

oRo

08 DR RS
o88 .

Py

.4
3
©
=
? =

ok k

VEBIRRE
.88 .

BL8ORRY

Py

okrr

-~ B

BBORRY

2 Q
or

Py
I
o

&

o

/[Do_stim

/Istimp between context switch

/ISstart

//Suspend

/Istimp during context switch

/INextact

/ISuspend

/INextact

/IDo_wait
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I i i Final version entl mem

al=0;
a2=1;
R=1,;

#1 select = 1;

#1 select = 0;
R=0;

1

#1 a=1,;
al=1,;
a2=0;
R=1,;

#1 select = 1;

#1 select = 0;
R=0;

1

#1 ad=0;
al=1,;
az2=1,
W=1,

#1 select = 1;

#1 select = 0;
W =0;

1

#2 D[3:0] = 4'b1010;

#1 a=0;
al=0;
az2=1,
W=1,

#1 select = 1;

#1 select = 0;
W =0;

1

#1 a=0;
al=1;
a2=0;
W=1,

#1 select = 1;

#1 select = 0;
W =0;

1

#2 Xin[3:0] = 4'b0100;

#1 stimin=1;

#2 stimin=0;

#1 a=0;
al=1;
a2=1;
W=1,

#1 select = 1;

#1 select = 0;
W =0;

/INextact

/[Clrall

/ILd_act

/IDo_stimx

[ltest stimin act[Xin]

/[Clrall

//////////////////////}///////////////////test Round Robin

1
#2
#1

#1
#1

//Ld_act
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1
#1

#1
#1

1
#1

#1
#1

1
#2
#1

#1
#1

1
#1

#1
#1

1
#1

#1
#1

"

#2
#1

#1
#1

1
#1

#1
#1

1

I
4

oo r

PEETRES =

I
=

PRO

BLORRY

Py

8 Q
ETIT
or

)

oo r

&%”%&8 SBBERRY

2

I
o

Py

PRO

~ =
I

B8ORRY
or

pu)
§:3:

g QR

/ISstart

/1Setsus

//Ld_act

/[Sstart

/1Setsus

/ILd_act

/[Sstart
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#1

#1
#1

1
#1

#1
#1

1
#1

#1
#1

1
#2
#1

#1
#1

1
#1

#1
#1

1
#2
#1

#1
#1

1
#1

#1
#1

1
#1

PR Oo

DB ORR S
288,

- oRo

TEEIREE
o888,

TR TINT!
“FPoppr

TEEIRRE
88
1

Py
I
o

9
w
K=
1l
N

R OoR

R TBBORRAE =BBIRRY
TR T RN I
po ST IS

/1Setsus

//Suspend

/INextact

/ILd_act

/ISpollend

//Ld_act

/[Spollend

/ISuspend
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a2=0;
R=1,;
#1 select = 1;
#1 select = 0;
R=0;
1
#1 a0=1,; /INextact
al=1,;
az2=0;
R=1,;
#1 select = 1;
#1 select = 0;
R=0;
1
#1 a0=0; /ISuspend
al=1,;
a2=0;
R=1;
#1 select = 1;
#1 select = 0;
R=0;
1
#1 a=1; /INextact
al=1;
a2=0;
R=1,;
#1 select = 1;
#1 select = 0;
R=0;
1
#1 a0=0; //Suspend
al=1,;
a2=0;
R=1,;
#1 select = 1;
#1 select = 0;
R=0;
1
#1 a0=1,; /INextact
al=1,;
az2=0;
R=1;
#1 select = 1;
#1 select = 0;
R=0;

1
M itest maybe search
1

#2 D[3:0] = 4'b0000; /IlLd_act
#1 a0=0;
al=0;
az2=1,
W=1,
#1 select = 1;
#1 select = 0;
W =0;
1
#1 a=1; /ISstart
al=0;
a2=0;

82



BUTLER Design and Analysis

R=1,;
#1 select = 1;
#1 select = 0;
R=0;
1
#1 a0 =0; /[Setsus
al=1,;
az2=1,
R=1;
#1 select = 1;
#1 select = 0;
R=0;
1
T  return act[ 0000]
#1 a0=0; /ISuspend
al=1;
a2=0;
R=1;
#1 select = 1;
#1 select = 0;
R=0;
1
#1 a=1; /INextact
al=1;
a2=0;
R=1,;
#1 select = 1;
#1 select = 0;
R=0;
1
#1 a0=0; /IDo_wait
al=0;
a2=1;
R=1,;
#1 select = 1;
#1 select = 0;
R=0;

I
M iest 1" ast™ logic
I

#2 D[3:0] = 4'b0010; /ILd_act
#1 a=0;
al=0;
a2=1;
W=1,
#1 select = 1;
#1 select = 0;
W =0;
1
#1 a0=1, /[Cpollend
al=0;
az2=1,
W=1,
#1 select = 1;
#1 select = 0;
W =0;

1

i itest returnidle

#1 a0 =0; /[Clrall
al=1;
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az2=1,;
W=1,

#1 select = 1;

#1 select = 0;
W =0;

1

#1 a0=0; //Suspend
al=1,;
az2=0;
R=1,;

#1 select = 1;

#1 select = 0;
R=0;

1

#1 a=1; /INextact
al=1,;
a2=0;
R=1;

#1 select = 1;

#1 select = 0;
R=0;

1

End
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Index of Figures and Tables

RUNNING l

SUSPENDED

queues |

READY <

Fig. 1 Task States

v v

Q PQ —»

'

Current Task [¢——

Task
Table

Interrupt
L4444 4 control signass Controller

Control Unit £4___ ¢
1\ T T T T_T bus signals interrupts

Fig. 2 The configurable hardware scheduler micro-architecture
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Processor Peripheras

D Add R/'W Cin Intrp Stimp

BUTLER

Processor Peripherals

D Add R/W Cin Intrp Stimp

BUTLER

Processor Peripherals

D Add R/W Cin Intrp Stimp

BUTLER

Processor Peripheras

D Add R/'W Cin Intrp Stimp

BUTLER

Processor Peripheras

D Add R/'W Cin Intrp Stimp

BUTLER

Fig. 3 BUTLER System Overal Confiquration
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caunter

act—no—reg

1
SERRERERAREEEEEE!

Fig. 4 Block Diagram of original BUTLER
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Polltop

Pollend

Polstart

Fig. 6 Polstart Search
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Pollend

Here

Pollend

Search
down

Search

Fig. 7 Search for activities to be included in pollset of Nextact
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Pollend

Polstart

Found
(from pollset with
higher priority) Search

Search

Search

Search

Pollend

Search

Candidate Here

Found
(to pollset with
lower priority)

Fig. 8 Round Robin Implementation
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Returning

activity Set *last”

Reset “last”

Fig. 10 “last” variable setting logic
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UOTE NS Jopodap JO WIOPAEM [eubiS 11 DI

Decoder

C.H.L.Koo

25, 000 .30, 000 37,000 ps

G oup: A

Cral
Cpol | end
Cstart
Do_stim
Do_sti nx
Do_wai t
Ld_act
Ld_cntr _hi
Ld_cntr_Ilo
Ld_rmask
Next act

R =

Set sus

Spol | end =

Sstart

Suspend =

Test

w

a0
al
a2
sel ect

[

[

OO0 0000000000000 O0O0O0O0ODO0OO0OO0OO0
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Activity Number Register

C.H.L.Koo
‘Cursorl = 0(0) ps
‘Cursor2 = 0 ps
FTimeA = 0(0) ps
0 5000 .10, 000 15, 000 21,000 ps
G oup: A
D = ' b xxxx0000 [fxxxx0000 ixxxx1010 ixxxx1110 ixxxx0101 ]
Ld_act = 0 q
act_no = ’'b 0000/]0000 [1010 [0101 i

Printed on Fri Aug 26 15:33:24 2005

Printed by Signalscan 6.5p1 from Cadence Design Systems, Inc.
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U0 NS JBJUN0J JO WIOPACM eUDIS &1 B

Counter

C.H.L.Koo
‘Cursorl = 0(0) ps
iCursor2 = 0 ps
}TimeA = 0(0) ps
He) .10, 000 .20, 000 .30, 000 40, 000 50, 000 ps
Group: A
D = 'h 00|00 [FB [FF
Ld_cntr_hi =0 [
Ld_cntr_lo = 0O
Test = 0
countin = 0 s N I
countout = 'h 0000||0000 [FFFB [FF* TFF* [FF* [FF* [00* [00* [00* [00* [00* [0005 [FFFB
expired = 0 J
slice =0 <

Printed on Fri Aug 26 15:30:41 2005

Printed by Signalscan 6.5p1 from Cadence Design Systems, Inc.
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U0 NS JB[[011U0J 10NIBIUT JO WORAEM [eub S 77T Big

Interrupt controller

C.H.L.Koo
‘Cursorl = 0(0) ps
Cursor2 = 0 ps
FTimeA = 0(0) ps
:0 5000 .10, 000 .15, 000 .20, 000 28, 000 ps
G oup: A
Crall =0
Test = 0 [ [ [ 4
act_no = 'b zzzz||—0011 [0001 [0000
expired = 0
interrupt =0 I I r 1 1]
maybe = 0 I [
slice =0 1

Printed on Fri Aug 26 15:26:36 2005

Printed by Signalscan 6.5p1 from Cadence Design Systems, Inc.
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(UOSBASOWS) UONENWS AJOWSLW [01U0J JO WIOPACM [BUDIS GT DI

Control memory (simple version)

C.H.L.Koo

Cursorl = 0(0) ps
Cursor2 = 0 ps
FTi mreA = 0(0) ps

Page 2 of 2

0 10, 000 20, 000 .30, 000 40, 000 ,50, 000 69, 000 ps
GeoUp: zAzzzzzz zzzzzz222 1zzzzzzzzz* 1z* i10* [1000100000000000
Crall = 0lp [ ] [
Cpollend = 0 [
Cstart = 0O [
D="'b zzzzzzzz|l——{11111111
Do_stim= 0 [
Do_stinmk = 0 [ 1
Do_wait = 0 [
Dout = 'b 10000|[10000 [00100
Ld_mask = 0 [
Nextact = O [ 1 [ 1 [ 1
Setsus = 0 [
Spollend = 0 [
Sstart = 0 [ [
Suspend = 0 [ [
Xin ="'b zzzz [o1* |
Xout = 'b zzzz {10170 ]
act_no = 'b zzzz||—0100 [1010
maybe = 0
slice_out = 0 \ \ \ [ \
stimn =0 ﬁ
stimut = 0 [
stinp0 = 0 [
stinpl = 0 [
stinmp2 = 0
stinmp3 =0
='b zzzzzzzz zzzzzzzz|}{0000000000000000 [0000100000000000 [0000000000000000 [o*
="'b zzzzzzzz zzzzzz2z|}{0000000000000000 [0000* [1000100010001000 [1100010011001100 [0000000000000*
='b zzzzzzzz 27272727z |F{0000000000000000 [0000100000000000 [00* J00* [0000000000000000
='b zzzzzzzz zzzzzzz7|}H00000000000* [00* [0000000000000000 [0000100000000000 [0000000000000*

= 'b zzzzzzzz zzzzzzzz|F{0000000000000000

[00* [0000000000000000

= 'b zzzzzzzz zzzzzz2z|H0000000000000000

[0000100000* [00* [00* [0000000000000000
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Control memory (final version)

Page 2 of 2

C.H.L.Koo
Cursorl = 0(0) ps
Cursor2 = 0 ps
FTi mreA = 0(0) ps
0 20, 000 40, 000 ,60, 000 .80, 000 112, 999 ps
@o0pO0MO00 |J0000000000000000 [1000* [00001000000* [1000* [1000010* [1000001* [1000100000000001 [1000*
Crall = o|}[] [
pollend = 0 [
Cstart = 0
b zzzzzzzz
Do_stim= 0
o_stink =0
Do_wait = 0 [
= b XXXXX [IXxXXX 100100 [00101 [00110 [00100 [00000 [*
Ld_mask = 0
Nextact = 0 [ [ [ [ [ [ d
Setsus = 0 [ [ [ [
pollend = 0 11
Sstart = 0 [ [ [ [
Suspend = 0 M [ [ [ [ [
n ="b zzzz
t ='b zzzz
o ='b zzzz|—{*[0100 [0101 [0110 [0010]1110 [0000 [0010
maybe = 0
ice_out =0 [ L \ \ \ [ L
stimn =0
stimut = 0
stinp0 = 0
stinmpl = 0
stinp2 = 0
stinmp3 = 0
XX XXXXXXXX [£10000000000000000
XX XXXXXXXX |} :0000000000000000
XX XXXXXXxX [[{0000000* [000010* [000011* [0000111* [00000110000* [0000* [0* [0000* [0* [0OOOO* [000001* [1* [10001* [00001110000* [00* [1000*
XX XXXXxxxX [{10000* [000010* [000011* [0000111000000000 [1000111000000000 [00000000*
XX XXXXXXXX [}:0000000000000000 [001* [0010000000000010 [00* T00000000*
XX XXXXxxxX |f70000000000000000 [000* [000001100000* [000* [00* [000* [00* [000* [00000110000* [100* [00001110000* [00000000*
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Fig. 17. Block diagram of newly designed BUTLER
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Integrated simulation

C.H.L.Koo
iCursorl = 0(0) ps
‘Cursor2 = 0 ps
FTimeA = 0(0) ps
10 50, 000 100, 000 150, 000 200, 000 250, 000 348, 000 ps
G oup: A
D="'b zzzzzzzz|K* 1[11111111 [11110000 [T1113137111 [11110100 [1232*72* [a* J2131*[* [12211* [1211* [11*
Dout = b 10000 (}j10000 [00100 [00101 [*[* [001* [OO0O0O0]
R=o0| [ [ i NI UL M 1 Y N
w= ot ] [ I ] o ]! N M
Xin ='b zzzz {0100
Xout = 'b zzzz {1010
ao = o|p [ U L LY UL u L Juul  JU I NI yuvyy UL
al = O|p] LI L I I O N O O [ O B O
a2z = o] Ul 1 LUl I S I I O S I O I B
cand_bit = 'b zzzzzzzz {0000000000000000 [* T TT0000000000000000 [[0000* [[ [T [TO00* [[00* [*
countin = z|F—NIMNL_JURAMN_____ v TSI
countout = b 00000000 (fooo* T IIITT TITMIo* [ THIIIITo* Taaaa* [T 11111111111111011
interrupt = 0 [ ]
last_bit = 'b zzzzzzzz ilzzzz* :1000000000000000 [0000100000000000 [000* T[*[* [10000100* ]
pollend_bit = 'b zzzzzz {0000000000000000 [[0000000000000000 [* T00100000000* [T*
select = 0 N I i
start_bit = 'b zzzzzzzz {00000000000000* [T000* [00001* [O0O000* [0* [0* [0000111000000* [1000* [*
stimbité = 'b zzzzzzzz {0000000000000000 [000* T000000* [ [0000000000000000
stimbit7 ='b zzzzzzzz {0000000000000000 [T10* J11* T0000000000000000
stimin =0 N
stinmpbut = 0O |
stinp0 = 0 Il
stinpl = 0 I
stinmp2 = 0
stimp3 = 0
suspend_bit = 'b zzzzzz {0000000000000000 [0000* TTT00000000* [0* [O0* [*[000* [[I[T[[O* [[T00* T
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