
School of Electrical, Electronic & Computer Engineering

BUTLER Design and Analysis

Livin Koo

Technical Report Series

NCL-EECE-MSD-TR-2006-116

2006

Contact:

livinkoo@gmail.com

delong.shang@ncl.ac.uk

alex.yakovlev@ncl.ac.uk

NCL-EECE-MSD-TR-2006-116

Copyright c© YYYY University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,

Merz Court,

University of Newcastle upon Tyne,

Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

BUTLER Design and Analysis

 1

CONTENTS

 Page

Abstract 2
Acknowledgements 3
1. Introduction 4

1.1 Background

1.2 Literature review

1.2.1 Coarse grain

1.2.2 Medium grain

1.2.3 Fine grain

1.3 Statement of objectives

1.4 Outline

2. Methodology 15

2.1 Overview

2.2 BUTLER documentation

2.2.1 Activity priority

2.2.2 System configuration

2.2.3 Instructions

2.2.4 Operation

2.2.5 Next activity selection

2.2.5.1 Candidate for scheduling

2.2.5.2 Polstart search

2.2.5.3 Activity to be included in pollset of Nextact

2.2.5.4 Round Robin implementation

2.3 Design tools

2.3.1 Verilog hardware design language

2.3.2 Cadence custom IC design tool

2.4 Procedure

3. Results 28

3.1 Verilog specification

3.1.1 Address decoder, read write signal decoder and instruction memory

3.1.2 Activity number register

3.1.3 Counter

3.1.4 Interrupt controller

BUTLER Design and Analysis

 2

3.1.5 Control memory

3.2 Verification

3.2.1 Address decoder, read write signal decoder and instruction memory

3.2.2 Activity number register

3.2.3 Counter

3.2.4 Interrupt controller

3.2.5 Control memory (simple version)

3.2.6 Control memory (final version)

3.3 Simulation results

3.4 System statistics

4. Analysis and discussion 39

4.1 Overview

4.2 Result analysis and discussion

4.2.1 Counter

4.2.2 Interrupt controller

4.2.3 Memory vs registers

4.3 Arbitration problem

4.3.1 “Last” latch

4.3.2 Asynchronous stimulation

4.4 Limitations of study

4.5 Implications and practical applications

4.6 Recommendation for future research

5. Conclusions 43

6. References 45

7. Appendix 46

8. Index of Figures and Tables 85

BUTLER Design and Analysis

 3

Abstract

Translating software scheduling functions into hardware has been extensively

researched over the last decade. Different approaches and techniques like co-

processor techniques, special purpose configurable hardware scheduler and

customized hardware scheduler have been demonstrated for its improvement on

system performance. In this paper, the focus will be put on the specification and

documentation of a customized hardware scheduler design named BUTLER. The

documentation presents the BUTLER in behavioural level and describes every

function and search logic in details on top of the BUTLER design description by Eric

Campbell [3]. Verilog specification is done for verification of the newly designed

BUTLER with different scale and configuration.

As scheduling in embedded real-time multiple-processor systems being a major aspect

in computer system resource management, the BUTLER plays a important role by

handling most of the scheduling processes including interrupt control and context

switching which maybe done by software functions in other hardware scheduling

design. An important feature for the BUTLER is the flexible configuration, in which

design tiles can configure in a different approach to obtain alternative parameters for

a different design.

Keywords: hardware scheduler, interrupt control, context switching.

BUTLER Design and Analysis

 4

Acknowledgement
I would like to take this opportunity to thanks my supervisor Professor Alex Yakovlev
and Dr. Delong Shang. Valuable advices are given throughout the whole project
period. Encouragement and useful suggestions on solving problems encountered
during the project are the major elements of the success of the project. The kindly
help from project topic selection to the solid work and dissertation preparation are all
appreciated.

BUTLER Design and Analysis

 5

1. Introduction

Various studies have demonstrated that synchronous system operates well if the

message exchange between the processors and memory modules of a multi-processor

are of fixed length. However, lengths of messages are unlikely to be the same in

reality, which makes asynchronous system becoming more efficient. As asynchronous

systems going more and more important in modern computing systems, we would like

to put our focus on the scheduling issues in embedded real-time multiple-processor

systems. In order to achieve the highest efficiency in the destination processor,

software functions tend to be replaced by some hardware solutions. Therefore,

transferring task scheduling from software into hardware has been extensively

investigated by researchers [1 – 3].

The design approaches and the level of hardware dependency on task scheduling are

being compared among researches on hardware scheduler. Discussion of systems are

categorised according to their own design approach, coarse grain, medium grain and

fine grain. Since fabrication technology keeps improving, price of silicon drops. As a

result, designs go to hardware that consumes more silicon area for higher circuit

performance. Workload of CPU has to be minimized in order to maximize speed and

performance in fast complicate multiple processes. On the other hand, the adoption of

hardware schedulers to microprocessors is another problem addressed from recent

researches.

1.1 Review of L iterature
A co-processor design [1], a configurable hardware scheduler design [2] and a

customized hardware scheduler design named BUTLER [3] represent exactly the

three design approaches mentioned above. The following three sections are going to

review all these approaches in both performance and design aspects.

1.1.1 Coarse grain
For hard systems which must provide very fast responses or support many application

tasks or use complex, dynamic scheduling policies, real-time executive functions

having minimal overheads are absolutely essential. A way to achieve this is to transfer

BUTLER Design and Analysis

 6

software functions into hardware by employing co-processing techniques – a

‘software in silicon’ solution. Such systems should limited to a small number of tasks

to reduce task intercommunication time.

This type of task scheduler based on off-the-shelf hardware microcontroller. The

approach is identifying all the tasks to be performed by the software and

implementing as a set of co-operating processes. The overall system function is

divided into a set of sub-functions or tasks and finally converted into sequential

programs. The suggested task scheduler co-processor for hard real-time systems is

particularly for reducing target system loading and in ease of interfacing [1].

1.1.1.1 Scheduling issues

All activated tasks should be lying within one of the states shown in Fig. 1. Running

is the state which a task is being executed, only one task can be in this state at any

time. Ready is the state which task is waiting for access to the processor. And

suspended is self-explanatory. For reasons, tasks are usually organised into queues as

shown in Fig. 1. And the scheduler manages all the suspended queues including time

and event management functions.

Schedule evaluation and task dispatching are the two operations involved in ready

queue management. The former one determines how tasks should be ordered or

prioritized. The latter one selects and installs the next application task required for

execution by the processor.

1.1.1.2 Performance

To achieve the best performance in processor of high utilization with minimization of

missed deadlines, dynamic schedule is one of the solutions. However, with the high

associated overhead when implemented in software, it seems to be ruled out from fast,

hard systems. With a hardware scheduler, the associated overhead can be minimized

for implementation. In return, the number of tasks should be kept to a minimum, so it

is most suitable for single process.

In order to support different target processors, scheduler has to be language and

processor independent, which makes impossible to prioritise tasks for the use of the

BUTLER Design and Analysis

 7

registers. All processor data must therefore be stored away during context switching,

and normally placed off chip in RAM memory. Finally it becomes the major

overheads in design involving co-processor.

1.1.1.3 Functions

Scheduling and task switching decisions are all done by the co-processor with a

specified scheduling policy. Besides, the target system must be able to avoid task

switching, which may result in problems (e.g. a task being in a critical section of

code). Furthermore, the co-processor was responsible for all task-timing functions like

periodicity and delays. And task-level exception handling would be the duty of the

unit as well, which centralized all error-handling decisions. It is intended to be an

overall, centralized task controller for the whole system, which function with a

selected scheduling policy. However, a certain number of scheduling policies may be

available within the co-processor as well.

1.1.1.4 Inter facing

Two kinds of connection related to the co-processor, interface between co-processor

and target, and interface between co-processor and outside world. The former one is a

single, simple processor independent connection. And the latter one including

interrupt signals and serial data communication. In order to maintain full scheduling

management and predictable operations, external interrupt signals are handled by the

co-processor instead of the target processor. Turns out a more reliable system of

higher security standard. The serial data communication is designed for the purposes

of testing and performance evaluation only.

All system inputs except interrupts are all routed to the target and the same as all

output signals for driving system are generated by the target processor, so the co-

processor cannot directly change the outputs and thus modify system behaviour.

Context switching is supported by interrupt signalling the target processor instead of

direct access to the target by the co-processor unit.

1.1.2 Medium grain

To support high-resolution time tick in fast real-time applications with minimum

overheads on the system, a configurable hardware scheduler for real-time systems is

BUTLER Design and Analysis

 8

proposed [2]. Its architecture reduced the time consuming in scheduling and time-tick

processing to a minimum. The hardware scheduler is provided in the format of

Intellectual Property (IP) blocks which allow designers to implement its own

configuration with a developed tool. According to the scheduler suggested in the

paper, three most common scheduling disciplines are supported, priority-based, rate

monotonic and earliest deadline first [2]. It makes the scheduler more flexible and

compatible to different target processors, where some of them might require

scheduling policy changes during operation. Instead, some designs only focus on a

specified scheduling policy which reduce the complexity on design but suffering from

those systems need scheduling discipline changes.

The essence of the introduced system is the using of advance FPGA technology to

implement part of the Real-Time Operating System (RTOS), in order to minimize

scheduling and time-tick processing [2]. As the software scheduler and the time-tick

processing are transformed into hardware component, the associated software

overheads are eliminated as well. The configurable unit also overcomes the obstacle

that hardware schedulers only supporting narrow range of applications faced by

common hardware schedulers.

1.1.2.1 Scheduling issues

Scheduling decisions are done by th e configurable hardware scheduler with the

micro-architecture shown in Fig. 2. The operation is based on the information stored

in Sleep queue, Priority queue, Task table, Current task registers and the control

signals from the control unit. Moreover, its operation is associated with the interrupt

signals from the interrupt controller as well.

Priority queue is a sorted queue used to store the active tasks according to its priority

(ready queue). When a task is inserted, the queue automatically re-sorts itself in a

priority order. Sleep queue is only responsible for storing the sleeping tasks (suspend

queue). Task table is a look up table indexed by the task ID according to a specific

task table entry format. Scheduler looks for task information from that unit whenever

a task is activated. Interrupt controller is the unit responsible to handle all external

interrupts, and pre-emption is supported as well. Finally, control unit acts as the

BUTLER Design and Analysis

 9

interface between the hardware scheduler and the external host, which receives and

decodes commands and generates proper control signals to the system.

1.1.2.2 Performance

For ordinary priority-based scheduler, the upper bound of the processing time is

directly proportional to the number of tasks in the system. This overhead is large if

there are many tasks and the time tick resolution is high. As a result, the CPU

utilisation is reduced, and tasks may miss their deadlines. However, with the

configurable hardware scheduler, assembly instructions executed by the scheduler and

the background time tick processing are eliminated. Turns out the response time and

the interrupt latency are improved [2].

1.1.2.3 Functions

Time-tick (a periodic interrupt to keep track of time during which the scheduler

makes a decision) handling, interrupt processing and execution of chosen scheduling

algorithm are implemented in the hardware scheduler, while context switching is left

to be done in software. Configuration of hardware and operations are performed by

the software portion with a set of commands from the hardware scheduler. All

commands are issued through a memory mapped I/O port, which can be done in one

or two clock cycles depending on the size of the command word.

1.1.2.4 Inter facing

When a task of higher priority is ready, the hardware scheduler directs the processor

to task switching by sending a corresponding interrupt signal to the CPU. Upon

receiving an interrupt signal, the CPU sends a control signal to the context switcher,

which stores the current context, and switches to the task with the ID read from the

hardware scheduler. The scheduler is designed in ease of interfacing with any

microprocessor. The unit can either be a co-processor directly connected to the target

processor or be a memory-mapped port connected to the system bus.

1.1.3 Fine grain

Eric Campbell (1996) introduced a physical device that can adapt to any

microprocessor named BUTLER in the BUTLER design description [3]. The

BUTLER Design and Analysis

 10

BUTLER technology focused on the problems of scheduling application function

tasks in embedded real-time multiple-processor systems, instead of the single-

processor systems discussed in the previous sections. The device provides efficient

support for multi-tasking in a single or multiple processor system. It holds all the

control variables of tasks, which are going to execute in the microprocessor, and

makes the decision for next running task during execution time. The device is

particularly suitable for hard real-time embedded systems and systems that need to

attain certain level of reliability.

1.1.3.1 Scheduling issues

With reference to a programmed priority level selection, the BUTLER directly

handles all asynchronous stimuli and schedules the relevant task when its turn arrives.

Typical asynchronous stimuli are interrupt lines from local peripherals or from other

connected BUTLERs. For all activities assigned to run on a processor, an associated

BUTLER holds all control variables and computes the next activity that should be

scheduled according to the current programmed priority levels and the control

variable values. And instructions from the processor or asynchronous stimuli

manipulate the control variables for scheduling purpose.

Eric Campbell { 1996) suggested a priority leveling scheme that activities are

numbered from zero to sixty-four, which named activity number. The smaller activity

numbers the higher priority level [3]. Priority levels can be allocated to individual

activities or to groups of activities. In case more than one activity is a candidate for

scheduling at the same time, the next activity selection logic will select a candidate

from the group with highest priority. Selection is made based on round robin if more

than one candidate appears in the same priority group. Control interrupts will be

generated under certain interrupt conditions.

1.1.3.2 Performance

A design use asynchronous techniques throughout the whole system is presented. The

BUTLER is totally responsible for asynchronous stimuli. It also claimed that the

design could be easily implemented in different technologies because it is not

dependent on critical timing parameters [3]. As a result, it avoids problems on clock

signal distribution, clock skew or set-up and violation holding. Selection logic for

BUTLER Design and Analysis

 11

next activity is programmable. Furthermore, cooperative and pre-emptive scheduling

schemes are also supported. The asynchronous design has non-demanding power

supply requirements. However, the unit is not suitable for system environment with

unintentional memory accesses as it performs specified functions when accessed as

memory.

As mentioned before, multiple processor system is supported by the BUTLER

hardware scheduler. Every single processor is connected to an associated BUTLER

and BUTLERs between processor are connected with each other. Any scheduling

request is done by registration with a processor’s own BUTLER. BUTLERs

communicate directly and schedule a relevant task to the destination processor during

its turn if a task arrives on a different processor. This reduces the chance of interrupt

the running task on the destination processor, and serving as a temporally

deterministic operation.

1.1.3.3 Functions

BUTLER can be used in conjunction with an associated processor hosting a small

run-time software kernel. All BUTLER operations are performed in response to

memory accesses from its associated local processor. The BUTLER directly handles

all asynchronous stimuli, performs relevant task scheduling with reference to the

programmed priority level selection. When accessed as memory, the BUTLER

performs specified functions. Furthermore, the BUTLER also operates as an interrupt

controller to handle all interrupts in scheduling process.

1.1.3.4 Architecture and inter facing

The BUTLER has a tiling design approach – an assembly of design tiles in an array

structure. Different types of design tile are butted together to form a two dimensional

array without any additional signal routing between tiles. Each tile is a design

building block that contains logic and structure, the array provides overall functions

of the design.

For connection between BUTLER and its local processor, there is a standard memory

interface consists of bi-directional data bus, address line inputs, memory control line

inputs, interrupt output and a counter input line.

BUTLER Design and Analysis

 12

The main BUTLER array has eight different types of tiles, each built by a few simple

gates. The main array is constructed by sixty-four rows of tiles each stores the control

variables for an activity with a particular activity number incrementing from top row

down the array. Without additional routing, a row of tiles that abut the top row of the

main array forms interface to the processor, peripherals and other BUTLERs. Besides,

array control signals are generated from that top row of tiles as well.

1.1.4 Conclusions

Numerous studies have demonstrated that hardware scheduler is an essential solution

to reduce workload in CPU, improving efficiency and performance [1 – 3]. Different

approaches of hardware scheduler implementations have been discussed in the above

sections. Co-processor with microcontroller base, configurable hardware scheduler

with FPGA base and the BUTLER fully customized scheduling hardware are

compared for their performance and suitability for modern embedded real-time multi-

processor system. Furthermore, the characteristics of scheduling, function area and

interfacing problems of each design are addressed. It has been shown that

programmability of circuit is decreased from unlimited programmable in coarse grain

design to restricted programmable in medium grain design and finally no

programming allowed in fine grain design. On the other hand, the performance of

scheduling is increased from coarse grain to medium grain and achieves the highest

performance in fine grain design.

The co-processor approach is a simple solution to translate the software functions into

hardware; however, it only operates efficiently under single processor system which

lies beyond our project focus area. The configurable hardware scheduler supports a

wide range of processes and minimizes the scheduling of time-tick processing by

implementing part of the RTOS in advance FPGA technology. The BUTLER design

seems to be the best design for modern embedded real-time multiple-processor

systems. It handles most of the scheduling tasks including interrupt control and

context switching.

As a matter of fact that fine grain scheduling hardware is going to be our focus, this

review therefore puts more effort on the BUTLER system’s scheduling issues,

functions, architecture and interfacing. The design description claimed for its easy

BUTLER Design and Analysis

 13

implementation in different technologies by the independence on critical timing

parameters. The asynchronous circuitry presented also shows no clocking or power

supply requirement problems. An important feature for the BUTLER is the flexible

configuration, in which design tiles can configure in a different approach to obtain

alternative parameters. The investigation of different configurations is therefore part

of the project area. Apart from those merits offered by the BUTLER system, the

design being not conventional is a main weakness of the system. Therefore, a system

documentation and a design specification including functionality are required for

academics to follow.

1.2 Objectives

To improve microprocessor efficiency and performance, the aim of this project is to

design a hardware scheduler based on the ad-hoc design of BUTLER. Since the

original design is not conventional, a detail documentation of the BUTLER system is

prepared and serves as reference for future studies and new system design in this

project. Regarding the tiling design of the present BUTLER system, a new BUTLER

with different tile configuration is designed to realize different functionality.

The original BUTLER able to handle 64 activities with different priorities, perform 16

different functions within itself initiated by memory access from microprocessor,

handle external stimuli from local peripheral and other 4 connected BUTLERs. While

the new designed BUTLER system handles 16 activities only, perform the same

number of functions within BUTLER, number of connected BUTLER also reduced to

one. In addition, size of the ripple down counter is reduced from 32 bits to 16 bits.

Therefore, the total number of tiles in the main array may shrink from 1312 to less

than 328.

Documentation consists of functional diagrams and description of functionality of the

present ad-hoc BUTLER is produced to provide further information on top of the

design description. The new BUTLER system design is presented in Verilog

Hardware Description Language in Register Transfer Level for specification, while

other simulation and analysis of the system is performed in the Cadence design

environment. Functional block diagrams, system configuration and the final designed

BUTLER Design and Analysis

 14

system will be presented in later sections. Owing to the limited project period,

implementation of the design will be a topic of future researches.

BUTLER Design and Analysis

 15

2. Methodology

Documentation of the original BUTLER system was produced according to the design

description. In the following section, the documentation presents the detail of the

BUTLER system in a behavioral level together with some major signal routings.

Importance and realizations of different functions in the system are also demonstrated.

In addition, system operations including various search logics are illustrated together

with simplified block diagrams.

Several design tools made used during the design and simulation process are

introduced briefly following the documentation. Procedures for the whole project are

then discussed in the last part of the methodology section.

2.1 BUTLER Documentation

The BUTLER is a device provides efficient support for multi-tasking in a single or

multiple processor system. It holds control variables for each task assigned to run on

the microprocessor and continually identifies the next task that should run. Some

control variables are manipulated by the instructions from the processor, some by

asynchronous stimuli from local peripherals and some by asynchronous stimuli from

other connected BUTLERs.

All BUTLER operations are carried out in response to memory accesses from its local

processor. Write and read signals to the BUTLER are used to load operational data,

return data to the processor and to initiate internal BUTLER operations. Different

operations with respect to different addresses are shown in the table below. Request

signals to initialize the operation will be sent out according to the indication of the

stored instruction.

Address Write Read

A2 A1 A0

0 0 0 Load_Mask Do_Stim

0 0 1 Load_Activity Do_Wait

0 1 0 Do_Stimx Suspend

BUTLER Design and Analysis

 16

0 1 1 Clear_All Set_Suspended

1 0 0 Clear_Started Set_Started

1 0 1 Clear_Pollend Set_Pollend

1 1 0 Load_Counter_Lo Nextact

1 1 1 Load_Counter_Hi Control_Interrupts

Table 1. BUTLER instruction addresses

2.1.1 Activity Pr ior ity

Activities are numbered from 0 to 64. When priority levels apply, smaller activity

numbers have the higher priorities. Activity number 64 always has the lowest priority

and can be used to schedule an idle activity at a time when no other activities are

candidates for scheduling. Following a Clear_All BUTLER instruction activities

numbered zero to sixty-four are assigned equal priorities. Priority levels can be

allocated to individual activities or to groups of activities by inserting pollset

boundaries, which is realized by Set_Pollend instructions. Pollset boundaries may be

inserted or removed at any time.

2.1.2 System configuration

The overall system connection is shown in Fig. 3. Every BUTLER is connected with

its own processor and four other BUTLERs. Four stimuli signals are connected to

other four BUTLERs to select which BUTLER to stimulate and a six-bit address line

is used to specify the activity number of a particular activity it wants to stimulate.

Therefore, each BUTLER has 10 external stimuli output lines to other BUTLERs and

28 external stimuli input lines from other BUTLERs.

In Fig. 4, it shows the functional diagram of the present BUTLER. Decoded read,

write and select signals together with a decoded address by three input address lines

from the processor access the instruction memories to decide which instruction to

operate. And then request signals are sent out from the instruction memories to

initialize operation in other functional blocks as indicated in the figure. Most

BUTLER Design and Analysis

 17

functions involved in the next activity selection are performed within the activity

memories. The next activity for scheduling is returned to the processor through the

16-bit bi-directional data bus (D) during a Nextact BUTLER instruction.

2.1.3 Instructions

Load_Mask (Write A000) is a BUTLER instruction to set the mask bit of different

channels in the activity specified in the most recent Load_Activity instruction. The

mask bits to set are specified in the data word (D) of a Load_Mask BUTLER

instruction, where the data word is stored in the 16-bit bi-directional data bus. All

sixteen bits of the data word are made used in this instruction to specify mask pattern

for sixteen stim-wait channels. Some operations are performed to particular channels

according to this mask bit.

Load_Activity (Write A001) BUTLER instruction sets the activity number that held

on the BULTER. This activity number is specified in the data word (D) of a

Load_Activity BUTLER instruction. Only the least significant six bits of the data

word are used for this instruction to indicate activity number from zero to sixty-three.

Some instructions operate on a specified activity with respect to this specified number.

Do_Stim (Read A000) is a BUTLER instruction to set the “Stimmed” channel

according to the mask pattern specified in the most recent Load_Mask instruction of a

particular activity specified in the most recent Load_Activity instruction. Those

channels specified in that activity are considered to be stimmed when the “Stimmed”

control variable is set, which is used to determine whether it is a candidate for

scheduling in the next activity selection logic.

Do_Stimx (Write A010) BUTLER instruction generates external stimulation to other

BUTLERs. Activity number specified in the most recent Load_Activity instruction is

set up in the external stimuli output (Xout), which is connected to four other

BUTLERs, in order to specify the activity to stimulate in the target BUTLER. Mask

pattern specified in the most recent Load_Mask instruction is responsible for the

selection of target BUTLER. As four other BUTLERs are connected to four different

BUTLER Design and Analysis

 18

channels respectively, the channel with mask bit set will generate a stimulation signal

(Stimout) to the connected BUTLER.

Set_Star ted (Read A100) is a BUTLER instruction to set the “Started” variable of a

particular activity true. The activity is chosen by the activity number specified in the

most recent Load_Activity instruction. An activity is considered to be started when

the “Started” control variable is set, which is used to determine whether it is a

candidate for scheduling in the next activity selection logic. As there is only one

“Started” control variable in each activity, no mask pattern is required during

operation.

Clear_Star ted (Write A100) operates exactly the same way as Set_Started BUTLER

instruction but to make false the “Started” variable instead of setting it true.

Set_Pollend (Read A101) is a BUTLER instruction to set the “Pollend” variable of

the activity specified in the most recent Load_Activity BUTLER instruction. An

activity with a set “Pollend” variable is served as the pollset boundaries for the next

activity selection logic. Activities between two pollends are all assigned the same

priority.

Clear_Pollend (Write A101) performs exactly the same way as Set_Pollend

BUTLER instruction but to remove the pollset boundaries by resetting the “Pollend”

variable instead of making it true. Pollset boundaries can be inserted or removed at

any time by these two instructions.

Load_Counter_Lo (Write A110) BUTLER instruction loads the data word (D) into

the least significant 16-bits of a 32-bit number, which is used to initialize the counter.

Load_Counter_Hi (Write A111) loads the data word (D) into the most significant

16-bits of the 32-bit number.

Do_Wait (Read A001) BUTLER instruction makes the “Waiting” variable true for

the channels specified in the most recent Load_Mask BUTLER instruction for the

activity currently running on the processor rather than the activity specified in the

BUTLER Design and Analysis

 19

Load_Activity BUTLER instruction. Those channels specified in that activity are

considered to be waiting when the “Waiting” control variable is set, which is used to

determine whether it is a candidate for scheduling in the next activity selection logic.

Suspend (Read A010) BUTLER instruction sets the “Suspended” variable true for the

activity currently running on the processor. An activity is said to be suspended when

the “Suspended” variable is made true, which is responsible to determine whether it is

a candidate for scheduling in the next activity selection logic.

The Suspend or Do_Wait BUTLER instruction temporarily inhibits any changes to

the asynchronously stimulated variables from entering the next activity selection logic.

Set_Suspended (Read A011) BUTLER instruction also sets the “Suspended” variable

true but for the activity specified in the most recent Load_Activity BUTLER

instruction instead of the activity currently running on the processor. As there is only

one “Suspended” control variable in each activity, no mask pattern is needed during

operation.

Nextact (Read A110) is the instruction used to return the number of the next activity

that should be scheduled. The next activity to be scheduled is continually computed

by the next activity selection logic based on the control variables held in BUTLER.

All control variables are manipulated by local processor, local peripherals and other

BUTLERs. The Nextact BUTLER instruction is also responsible to re-enable

visibility of the asynchronous stimulated variables to the next activity selection logic,

which is inhibited during context switch. The “Suspended”, “Waiting” , “Stimmed”

variables of a particular activity will be reset when it is returned to the processor as

the next activity to be scheduled.

Clear_All (Write A011) BUTLER instruction disables interrupts, removes any pollset

boundaries (reset “Pollend” variables) and make false the “Started” , “Suspended” and

all “Stimmed” and “Waiting” control variables for all activities.

Asynchronous stimulations from four other BUTLERs (Stimin) are connected to

four different channels of the BUTLER. The stimulation will come along with its own

address (Xin), which is the number of the target activity it wants to stimulate.

BUTLER Design and Analysis

 20

Asynchronous stimulations from local per ipherals (Stimp) are made up of eight

separate signals. Each signal is responsible for stimulating eight activities, eight

signals for sixty-four activities. A particular channel in each activity is allocated to

that asynchronous stimulation from local peripheral. Therefore, no activity number or

mask pattern is required for the operation.

Both asynchronous stimulations are inhibited during context switch. That is invisible

after Suspend or Do_wait BUTLER instruction and re-enabled visibility by Nextact

instruction.

Control_Interrupts (Read A111) is a BUTLER instruction to enable the interrupt

controller to function. Control interrupts are realized in two formats, pre-emption

interrupt and counter interrupt. The instruction uses the least significant two bits of

the activity number specified in the most recent Load_Activity BUTLER instruction

(Actbit1 and Actbit0) to define its operation. All interrupts are reset during a context

switch and are re-enabled after that. Following a Clear_All BUTLER instruction, the

interrupt output line is reset to its non-active state.

2.1.4 Context Switch

A Suspend or Do_Wait instruction is used to inhibit visibility of any changes to the

asynchronously stimulated variables from the next activity selection logic. Allowing

enough time for the selection logic to stabilize before returning valid data to processor

during the executing of Nextact instruction. The time period from a Suspend or

Do_Wait instruction to a Nextact instruction is named context switch, when signal

‘slice’ will be taken high in the BUTLER internal circuitry.

2.1.5 Operation

Decoder is responsible for turning the values on input address lines, “Read”, “Write”

and “Select” inputs into instruction request signals to initialize different instructions

in other parts of the system. Three parts of decoding are involved in the decoder.

BUTLER Design and Analysis

 21

Read-wr ite signal decoding simply passes the BUTLER I/O input Read to “R” and

Write to “W” with an enabling input Select. Decoded signals “R” and “W” are then

transmitted to instruction decoding to identify the instruction to trigger.

Address decoding is basically performing 3 to 8 decoding. Three input address lines

are decoded to provide eight addresses for instruction decoding to identify

instructions.

Instruction decoding produces appropriate request signals upon receiving signals

“R” , “W” and the decoded address. Sixteen instructions are allocated as shown in

Table 1. The request signals are routed to the functional blocks that responsible for

the particular operation.

Activity Number Register stores the activity number specified in the more recent

Load_Activity BUTLER instruction. When receiving request signal Load_Activity,

the register latch in the least significant six bits of the bi-directional data bus (D) and

stored as an activity number.

Interrupt Controller responses to handle two types of interrupts, pre-emption

interrupt and counter interrupt. The least significant two bits of the activity number

transmitted from the activity number register (Actbit1 and Actbit0) will decide which

interrupt mode to perform. Operation of the interrupt controller is enabled by Control-

Interrupts instruction request signal (Test) from instruction memories. When Actbit1

is high, Control_Interrupts is switched to pre-emption interrupt mode. If a candidate

activity is found to have high priority than the one currently running on the processor,

pre-emption interrupt is allowed to generate. The search is realized by a search logic

that will be discussed in a later section. When Actbit1 is low, the system will prevent

the generation of pre-emption interrupt.

When Actbit0 is high, Control_Interrupts is switched to counter interrupt mode. The

interrupt output line will be set high upon receiving the signal from the counter to

indicate the reaching of its limit. When Actbit0 is low, the system will prevent the

generation of counter interrupt. Signal “Slice” , which indicating context switch, will

inhibit any interrupts at its active state and enable further interrupts when it returns to

BUTLER Design and Analysis

 22

the non-active state. “Expired” from BUTLER counter will allow generating interrupt

signal to the processor in the counter interrupt mode and “Maybe” from control

memories search chain will further interrupt in the pre-emption interrupt mode.

Counter
The BUTLER has a 32-bit ripple down counter that counts low to high transitions on

the counter input line (countin). A Do Wait or a Suspend BUTLER instruction

initializes the counter to the 32-bit number that is held on the BUTLER. A Nextact

BUTLER instruction enables the counter to start counting. The 32-bit number that is

used to initialize the counter is programmable and is done by the Load_Counter_Lo

and Load_Counter_Hi BUTLER instructions. A Load Counter Lo BUTLER

instruction loads the data word into the least significant 16-bits of the number and a

Load Counter Hi BUTLER instruction loads the data word into the most significant

16-bits of the number. When the counter receive a programmed number (plus one) of

signal transitions on its counter input line, a signal “Expired” will be generated and

sent to the interrupt controller for further interrupts.

Mask Pattern Register stores the mask pattern specified in the more recent

Load_Mask BUTLER instruction. On receiving request signal Load_Mask, the

register latch in data on the sixteen-bit bi-directional data bus (D) and stored as mask

pattern. As the mask pattern information is only made used within the activity

memories, the functional block is located inside the activity memories in the diagram.

Control Memory stores control variables for all sixty-four activities (Fig. 5) and

perform instructions according to request signals from decoder. Performing

instructions including Set_Started, Clear_Started, Set_Pollend, Clear_Pollend,

Suspend, Set_Suspend, Do_Stim, Do_Stimx, Do_Wait, Nextact and Clear_All.

Load_Mask BUTLER instruction is performed in the mask pattern register located

inside the control memory functional block. One “Switch” latch for whole BUTLER

generates signal “Slice” and distribute to rest of internal circuit during context switch.

BUTLER Design and Analysis

 23

2.1.6 Next Activity Selection

Based on the values of control variables it held, the BUTLER continually computes

the next activity that should be scheduled, respecting the currently programmed

priority levels. A Suspend or a Do_Wait BUTLER instruction temporarily inhibits

any changes to the asynchronously stimulated variables from entering the next

activity selection logic. A subsequent Nextact BUTLER instruction is used to return

the number of the next activity that should be scheduled, and then to re-enable

visibility of the asynchronously stimulated variables to the next activity selection

logic. The logic will select an activity from the highest priority pollset that contains a

candidate when more than one activity is a candidate for scheduling. Selection is

made on a Round Robin basis within the pollset if this pollset contains more than one

candidate. The search starts from the activity following the one that was last returned

for scheduling in that pollset.

2.1.6.1 Candidate for Scheduling

An activity will only be included as a candidate for scheduling when it is started and

ready.

“ Star ted”

An activity is started when its “started” control variable is true. A Set Started

BUTLER instruction will make the “started’ control variable true for the activity

specified in the most recent Load Activity BUTLER instruction. Vice versa, a Clear

Started BUTLER instruction will set it false.

“ Suspended” , “ Stimmed” and “ Waiting”

An activity is ready when either its “suspended” variable is true, or it has a matched

pair of true “stimmed” and “waiting” variables. A Set Suspended BUTLER

instruction will make the “suspended’ variable true for the activity specified in the

most recent Load Activity BUTLER instruction. A Suspend BUTLER instruction will

make the “suspended” variable true for the activity currently running on the processor

(i.e. the last activity returned to the processor for scheduling). The “suspended”

variable will be made false when the activity is returned to the processor as the next

activity to be scheduled.

BUTLER Design and Analysis

 24

Each activity has sixteen pairs of “stimmed” and “waiting” variables, each pair is

called a stim-wait channel. Some BUTLER instructions can operate on individual or

groups of stim-wait channels. The stim-wait channels to be operated on are specified

by including a one in an appropriate bit position in the data word of a Load_Mask

BUTLER instruction. This mask pattern is held on the BUTLER.

A Do_Wait BUTLER instruction will make the “waiting” variable true for the stim-

wait channel(s) specified in the most recent Load Mask BUTLER instruction for the

activity currently running on the processor. The “waiting” variable will be made false

when this activity is returned to the processor as the next activity to be scheduled.

A Do Stim BUTLER instruction will make the “stimmed” variable true for the stim-

wait channel(s) specified in the most recent Load Mask BUTLER instruction for the

activity specified in the most recent Load Activity BUTLER instruction. The

“stimmed” variable will be made false when this activity is returned to the processor

as the next activity to be scheduled.

External asynchronous “stimmed”

The “stimmed” variables on four particular stim-wait channels can also be

asynchronously made true from an external source (e.g. by another BUTLER).

The “stimmed” variable on one particular stim-wait channel can also be

asynchronously made true from a local peripheral.

2.1.6.2 Polstar t Search

Polstart search means the search of starting point of a Round Robin search logic

within a pollset. Basically, the Round Robin search should be starting from the

activity following the one last returned to the processor for scheduling. A “Last” latch

indicates whether this is the last activity returned to the processor for scheduling,

however, under certain circumstances more than one activity may indicate to be the

last returned activity in this pollset. The logic will accept the first “Last” it found to be

the polstart. In some cases, there will be no “Last” found for the whole pollset. The

logic will set the activity with the smallest activity number in this pollset to be the

polstart.

BUTLER Design and Analysis

 25

The search mechanism is shown in Fig 6. With the pollset boundaries set by the

Set_Pollend BUTLER instruction, search logic chain is formed for each pollset. The

search chain running down from the top of the pollset. Signal “Lastfnd” is set high

when a “Last” is found in the search chain. An activity is considered as the polstart of

this pollset if no “Last” has been found in the search and the “Last” latch of this

activity is set. When the search encounters the pollend, the search is reset (i.e. reset

signal Lastfnd) and starts again in the next activity. For the case “Lastfnd” is low

when it encounters the pollend and the “Last” latch of this activity is not set (i.e. no

“Last” has been found throughout the whole pollset), a signal “Lastloop” will be sent

back to acknowledge the first activity in this pollset to be the polstart. Under this

mechanism, exactly one “Last” latch set in each pollset can be achieved.

2.1.6.3 Activities to be included in pollset of Nextact

When an activity is returned to the processor for scheduling, a latch “Here” is set.

Two search chains are involved in this search for activities to be included in pollset of

Nextact, one running up the activity array and another running down (Fig. 7). Both

chains are taken low whenever they pass the pollset boundary and taken high when

they pass the activity with “Here” set. Therefore, activities with a high in either search

chain will be activities in the pollset of Nextact.

2.1.6.4 Round Robin Implementation

When same priority is assigned to a group of activities, a Round Robin search is

required to determine which activity to be returned next. Starting from the activity

following the last activity returned to the processor, it runs through all activities in the

pollset and loops back to the top of the pollset when it encounters the pollend. The

search loop ends at the last activity returned to the processor (Fig. 8). When a

candidate for scheduling is found in a pollset, signal “Search” will be taken low to

indicate the rest of the pollset a candidate for scheduling has been found. An activity

is selected to be the next activity if “Search” is high (no candidate has yet been found)

and this activity is a candidate for scheduling. If a candidate has been found, signal

“Found” is taken high at the end of the search loop and is passed to pollsets with

BUTLER Design and Analysis

 26

lower priority to indicate that candidate has already been found in higher priority

pollset.

2.2 Design Tools

2.2.1 Ver ilog Hardware Descr iption Language

A language used to describe digital systems at different levels, low implementation

levels such as switch level and gate level; architectural or behavioral level like

Register Transfer Level (RTL). In order to facilitate future studies on the BUTLER

system, all Verilog specifications are done in register transfer level in this project.

2.2.2 Cadence Custom IC Design Tool

Cadence design system is particularly suitable for schematic generation, simulation,

circuit synthesis and result analysis of digital or analogue circuitry. To verify the

functions of different modules, all simulations are performed in the Cadence system

design environment. Signal connections between different functional blocks are done

in the schematic editor as symbol for every module is generated from the Verilog

specification automatically.

2.2.3 Procedures

With reference to the BUTLER design description by Eric Campbell [3], block

diagrams with different functional blocks are generated at early stage of the project.

Together with the functional diagrams, behavioral logic of the system is derived in

order to serve as a base of further specifications. Through understanding the original

BUTLER design by Eric Campbell [3], documentation of the design is prepared for

future studies including the design task in later part of the project. Different

instructions, operation methodology and search logics are all introduced in the

documentation.

Based on the functional diagrams and the documentation, Verilog specifications of the

BUTLER system are firstly created in Verilog compiling software gVim. And the

source files are then imported to the Cadence environment to test for the

BUTLER Design and Analysis

 27

functionalities by simulation. Stimulus files are programmed for the simulation under

the Verilog XL simulator. Different functional modules are simulated independently

with its own stimulus files. Overall system is simulated in the final stage when all

functional modules are verified to function properly.

BUTLER Design and Analysis

 28

3. Results

System operating in the same manner with same functions of the original BUTLER is

specified in the Verilog Hardware Description Language. However, compared with

the original, the newly designed BUTLER is of a different scale as below:

• Number of activities is reduced from sixty-four to sixteen

• Number of stim-wait channels is reduced from sixteen to eight

• Counter size reduced from 32 bits to 16 bits

• Connected BUTLER reduced from four to one

• Local peripheral inputs reduced from eight to four

• Bi-directional BUTLER I/O data bus reduced from sixteen-bit to eight-bit

3.1 Ver ilog Specification

The specification is divided into five cells according to the functionality, decoder,

activity number register, counter, interrupt controller and control memory. All cells

operate asynchronously in response to request signals either from BUTLER I/O or

other part of circuit.

3.1.1 Decoder

As the number of instruction is the same as the original BUTLER, the structure of

decoder is exactly the same as the original BUTLER. Read write signal decoding,

address decoding and instruction decoding. BUTLER I/O “R” and “W” together with

“select” trigger request signals “ read” and “write” and which are transmitted to

instruction decoding. Address input lines “a0” , “a1” and “a2” are decoded in the

address decoding part, which is realized by a three to eight decoder. Sixteen

instruction request signals are generated in the instruction decoding with reference to

the decoded request signals (i.e. memory access from the local processor).

3.1.2 Activity number register

The only difference in the activity number register is the size. It reduced from six bits

for sixty-four activities to four bits for sixteen activities. Request signal

“Load_Activity” from the decoder triggers the register to latch in data in the least

significant four bits of the bi-directional BUTLER I/O data bus. This data are stored

BUTLER Design and Analysis

 29

as activity number by the most recent Load_Activity BUTLER instruction and

transmitted to other functional blocks of the system.

3.1.3 Counter

As the scaling factor for the system is four, the counter size should be reduced to eight

bits. However, this size may not be able to allow enough running time for all activities.

A sixteen-bit counter is therefore chosen for the system. A Load_Counter_Lo

BUTLER instruction triggers the counter to latch in the bi-directional data bus as least

significant eight bits of a stored number, which is for the initialization of the counter.

And a Load_Counter_Hi BUTLER instruction triggers the latching for the most

significant eight bits. The counter is initialized by the stored sixteen-bit number on

receiving signal “slice” during context switch. And it starts to count when “slice” goes

low (i.e. after context switch). The counter counts the positive transition on the

“countin” BUTLER I/O from the processor and generates a timeout signal “expired”

when the count reaches the limit. The count starts from the number initialized by

Load_Counter_Lo and Load_Counter_Hi BUTLER instruction. The timeout signal

“expired” is reset by “slice” during context switch.

3.1.4 Interrupt controller

Two registers are used to indicate the mode of interrupt, “preemp_int” for preemption

interrupt and “counter_int” for counter interrupt. With the “Test” signal from the

decoder indicating interrupt control, the least significant two bits from the activity

number register actbit1 and actbit0 decide the state of the registers. During interrupt

control BUTLER instruction, “preemp_int” will be set when actbit1 is equal to one

and reset when actbit1 is equal to zero; “counter_int” will be set when actbit0 is equal

to one and reset when actbit0 is equal to zero. Signal “maybe” from control memory

will enable interrupt if preemption interrupt mode is selected and “expired” from

counter will enable interrupt if counter interrupt mode is selected. Both interrupt

modes can be selected at the same time. Signal “maybe” and “expired” will be

removed in the start of context switch. A Clear_All BUTLER instruction will reset

both registers and disable interrupt.

BUTLER Design and Analysis

 30

3.1.5 Control memory

The main difference between the newly designed BUTLER and the original one is in

the control memory. All control variables are stored in a control memory realized by

twenty-one sixteen-bit registers. As shown in Fig. 9, each “stimmed” channel is

specified by a sixteen-bit register, so as each “waiting” channel, “started” ,

“suspended”, “pollend” , “candidate” and “ last” variables. Request signals Set_Started

and Clear_Started set and reset the appropriate bit of the “started” variable

respectively according to the activity number stored in the activity number register.

Set_Pollend and Clear_Pollend set and reset the appropriate bit of the “pollend”

variable respectively according to the stored activity number. Set_Suspended sets the

appropriate bit of the “suspended” variables according to the stored activity number.

Do_Stim sets the appropriate bit of the “stimmed” channels specified by the stored

activity number and the stored mask pattern. The mask pattern loaded by the most

recent Load_Mask BUTLER instruction will select the appropriate channels to

operate.

Stimulation inputs from four local peripherals (stimp) are all connected to “stimmed”

channel seven. Stimulations are made in an even distribution that each stimulation

input is connected to four activities among sixteen. In order to allow enough time for

the next activity selection logic to become stable, stimulation from local peripheral is

disabled during context switch. Asynchronous stimulation can arrive at any time,

however, the effect of the stimulation will be valid only after the context switch.

Asynchronous stimulation input from external source (i.e. from other connected

BUTLER, stimin) is connected to “stimmed” channel six. Based on the activity

number specified in the external address input lines (Xin[3:0]), “stimmed” variable of

a particular activity is set. External asynchronous stimulation is inhibited during

context switch, which means asynchronous stimulation arrived during context switch

will be ignored.

Suspend and Do_Wait are instructions operating on the activity that currently running

in the processor. As a matter of fact that activity number sixteen may be returned to

the processor for an idle state when no candidate is found in the search, the

instructions only operate on the “suspended” and “waiting” variables when it is not in

BUTLER Design and Analysis

 31

idle state (i.e. activity running in the processor does not has activity number sixteen).

Suspend BUTLER instruction sets the “suspended” variable of the activity currently

running in the processor. Do_Wait BUTLER instruction sets the “waiting” variables

of the activity currently running in the processor with reference to the stored mask

pattern.

On receiving a Load_Mask instruction signal from the decoder, data on the bi-

directional data bus are latched into the mask register as the stored mask pattern for

the operation of other instructions.

Overall reset of the system can be performed whenever request signal Clear_All from

decoder arrives. All “stimmed”, “waiting” , “suspended”, “started” , “pollend” and

“candidate” control variables will be reset during a Clear_All instruction and only the

“ last” variables are kept unchanged.

During Do_Stimx BUTLER instruction, the stored activity number will be transmitted

to the external asynchronous stimulation address output lines (“Xout [3:0]”). Stimulus

(“stimout”) will be set and transmitted to other connected BUTLER together with the

target activity number on “Xout” .

Signal “slice” is passed around to indicate during context switch. It can be made true

by either Suspend or Do_Wait BUTLER instructions and reset by a Nextact.

During Nextact BUTLER instruction, activity output (“act_out”) from the next

activity selection logic will be passed to the bi-directional data bus and stored in a

register (“act_run”) as well. If the returning activity is not idle, all “stimmed”,

“waiting” , “suspended” and “candidate” control variables of the returning activity will

be reset. In this case, a search logic is used to reset the “ last” variable of all other

activities within the same pollset of the returning activity and the “ last” variable of it

will be set.

Fig. 10 shows a clearer picture of how the search logic runs. Firstly, the “ last”

variable of the returning activity is set. Secondly, a search chain is running down

every activity from the one following the returning activity. The “ last” variable of all

BUTLER Design and Analysis

 32

activities passed by the chain is reset until a pollset boundary is found. When a set

“pollend” variable is found, variable “pollend_run” is set to indicate the end of search.

Thirdly, a search chain is running up from the activity above the returning one. The

“ last” variable of all activities passed by the chain is reset until a pollset boundary is

found. When a set “pollend” variable is found, variable “polltop_run” is set to

indicate the end of search. Finally, in case of the returning activity is either zero or

fifteen, only search running down or running up will be performed respectively. The

search logic will not be initialized if the returning activity is activity sixteen.

As the BUTLER computes the next activity to be scheduled continually, searches

related to the next activity selection logic perform continually as well. A loop running

from activity zero to activity fifteen is used to set the “candidate” variable when an

activity is ready and started. An activity is ready means either the “suspended”

variable or a matched pair of “stimmed” and “waiting” variable is set. Started means

the “started” variable is set.

3.1.6 Searches

3.1.6.1 Next activity selection

First step of the next activity search is to find out set “ last” variable from activity zero

to activity fifteen. When a set “ last” variable is found, a Round Robin search will be

performed. The specification of the Round Robin search is divided into three groups,

one for “ last” variable of activity zero, one for “ last” variable of activity fifteen and

one for other activities. As precisely one set “ last” variable in each pollset is

guaranteed by another search logic in the system, each pollset will be ran by exactly

one Round Robin search. Search will be started from the pollset with highest priority.

Round Robin search for set “ last” var iable in between activity one and activity

four teen

If “pollend” variable of that activity with set “ last” is low, a search going down the

array is started. Starting from the activity following the one with set “ last” , variable

“searchend” will be set when a set “pollend” variable is found. Down search will be

stopped and an up search will be followed. Starting from the activity with set “ last” ,

variable “searchtop” will be set when a set “pollend” variable is found in the up

BUTLER Design and Analysis

 33

search. Search for this pollset will be stopped and another Round Robin for the next

pollset will be followed. When a set “candidate” variable is found in the search,

activity number will be passed to the search output (“act_out”) and variable “ found”

will be set. As a matter of priority in a Round Robin search, variable “ found” can stop

the down search but not the up search. In down search, searching process finishes

when candidate is found. In up search, searching process runs until pollset boundary.

Candidates found in the later part of up search can overwrite the search output in

earlier part of the same up search. Search in other pollset will not be started if variable

“ found” is set to indicate a schedulable activity has been found. If “pollend” variable

of that activity with set “ last” is high, only up search will be performed in the pollset.

Round Robin search for activity zero being “ last”

If “pollend” variable is not set, a down search will be started and followed by

checking the “candidate” variable of activity zero itself. If “pollend” variable of

activity zero is set, “candidate” variable will be checked and no search is performed

within the pollset.

Round Robin search for activity fifteen being “ last”

Only up search will be performed until set “pollend” variable is found in the search.

If “ found” equals to zero indicating no candidate has been found after searching

through all fifteen activities, activity sixteen will be returned to the processor for idle

state.

3.1.6.2 Precisely one set “ last” var iable in each pollset guarantee

This logic involves two parts, one to remove extra set “ last” variable in a pollset and

one to set “ last” variable when no “ last” found in a pollset. To remove extra set “ last”

variable, a search chain running down from top of array is used. Variable “ lastfnd” is

set high when the chain encounters a set “ last” variable and is reset when it

encounters a set “pollend” variable (i.e. “ lastfnd” reset in each pollset). All “ last”

variables are reset by the chain when “ lastfnd” is high.

To set the activity with smallest activity number in the pollset to be “ last” when no set

“ last” has been found, a search chain running up from the bottom of array is used.

BUTLER Design and Analysis

 34

Variable “ lastfndup” is set high when the chain encounters a set “ last” variable and

reset when it encounters a set “pollend” variable like “ lastfnd” in the down running

chain. When the chain encounters a set “pollend” , activity in top of the pollset will be

set if “ lastfndup” is low indicating no set “ last” has been found in the pollset. In top of

the array, there is no “pollend” above activity zero to indicate a pollset boundary.

Therefore, “ last” variable of activity zero is set by the chain if “ lastfndup” is low. If

“pollend” variable of activity zero is set, the “ last” variable will also be set as it is the

only activity in the pollset.

3.1.6.3 Maybe search

This is the search for candidate with higher priority than the one currently running in

the processor. Basically, this search should run continuously as long as the system is

powered up. However, base on the fact that a candidate with higher priority can only

exist when there is a change in the output of the next activity selection logic

(“act_out”), this “maybe search” will only perform when the value of “act_out”

changes. As interrupt is inhibited during context switch, this search is suspended

during context switch.

The search starts from the activity currently running in the processor but the checking

for “candidate” would not be started until a set “pollend” variable is found in the

search. When a “pollend” variable is found, variable “search_start” will be set high

and indicating the start of checking “candidate” variable. When a set “candidate”

variable is found, signal “maybe” is set high and transmitted to the interrupt controller

for the generation of interrupt. Signal “maybe” is reset by “slice” during context

switch.

3.2 Ver ification

Each cell is simulated independently to verify it function properly and an integrated

simulation is done to verify the system operation. Decoder, activity number register,

counter, interrupt controller and control memory are simulated independently before

integration to reduce complexity on the final integrated simulation. Two versions of

control memory are simulated with similar stimulus files, where basic control variable

BUTLER Design and Analysis

 35

setting functions are verified in the simple version first and then the precise search

logic is verified in the final version. As basic operations are verified in the simple

version, the simulation for the final version is much less complicated but to

concentrate on the BUTLER customized next activity search logic.

As BUTLER is designed for asynchronous operations, the next activity selection logic

operates continuously. In the original design, the outputs from the logic are put onto

the bi-directional data bus during all BUTLER read instructions; in the new

behavioral specification, outputs are put onto the data bus during Nextact BUTLER

instruction only.

3.2.1 Decoder
Sixteen different request signals are simply simulated by reading from and writing to

all combinations of input address lines. Output signals from the decoder are

monitored. Signal waveform is shown in Fig. 11. Request signals are triggered in turn

by read, write, select signals and input address lines a0, a1 and a2.

3.2.2 Activity number register

This four-bit register is simulated by different values on the bi-directional data bus

together with Load_Activity enable signal. Latched activity number is monitored.

Signal waveform is shown in Fig. 12.

3.2.3 Counter

Different values on the eight-bit bi-directional data bus are loaded into the sixteen-bit

internal register (“stored”) of the counter by Load_Counter_Lo and Load_Counter_Hi

input. After the counter is initialized by signal “slice” , initial count value is monitored

to verify the Load_Counter_Lo and Load_Counter_Hi functions. Periodic signal

“countin” with period of two time units is kept feeding to the counter until the count

reaches the limit and set “expired” high. Simulation is run until “expired” is reset by

the following context switch. A test output “countout” is used to monitor the count

value throughout the whole simulation. Signal waveform is shown in Fig. 13.

BUTLER Design and Analysis

 36

3.2.4 Interrupt controller

Preemption interrupt and counter interrupt are simulated with signal input “maybe”

and “expired” with “slice” keeps low at the beginning. Output “ interrupt” is

monitored. Input “slice” is then altered to check if interrupt is inhibited during context

switch. Finally, the least significant two bits of the activity number inputs are reset in

turn to check if both interrupt mode can be disabled by setting corresponding activity

bit to zero. Signal waveform is shown in Fig. 14.

3.2.5 Control memory (simple version)

As the search logic in this version is only a top down search (i.e. search from activity

zero to activity fifteen), all functions involving the search logic is not simulated in this

version.

Activity number is provided at the input to simulate the connection with activity

number register. A Load_Mask instruction is performed first to provide mask pattern

for operation in later part of simulation, which is realized by a Load_Mask request

signal and data in the eight-bit bi-directional data bus. Data is stored in the register

“mask” to serve as a stored mask pattern. Basic control variable setting operations

Set_Started, Clear_Started, Set_Pollend, Clear_Pollend and Set_Suspended are

simulated with activity number input. “Started” , “pollend” and “suspended” variable

registers are connected to the test outputs (“ testout”) and the test output is monitored

to verify all the functions mentioned above. BUTLER instruction Do_Stim is then

simulated with activity number input and the stored mask pattern. “Stimmed”

channels six and seven are connected to the test output to verify function Do_Stim

and the correctness of function Load_Mask.

Stimulations from local peripherals (“stimp”) are scheduled to arrive both during

context switch and between context switches. “Stimmed” channel seven is connected

to the test output to monitor the stimulation. Effect of stimulus arrive during context

switch should be deferred till the end of context switch.

When instruction Suspend is being simulated, “suspended” variable register is

connected to the test output. “Suspended” variable of the activity currently running in

the processor is set if the processor is not running activity sixteen (idle state). Signal

BUTLER Design and Analysis

 37

“slice” should be high to indicate a context switch. Instruction Nextact is followed to

complete a normal context switch, “slice” returns to low. Since there is no activity

running in the processing during start up, the above context switch process is

performed twice to obtain a correct result.

A Clear_All BUTLER instruction is performed once at the beginning to ensure all

control variables are in their non-active state and it is test after a context switch cycle.

All control variables are monitored to verify the correctness of a Clear_All instruction.

To verify the Do_Stimx function, output “Xout” is monitored to check if activity

number from input “act_no” is transmitted to output “Xout” when Do_Stimx is high.

Asynchronous stimulation from external source is simulated by specifying an activity

number in the input “Xin” and “stimmed” channel six is monitored. Signal waveform

in Fig. 15 shows all the operation mentioned above accordingly.

3.2.6 Control memory (final version)

Following a Clear_All BUTLER instruction, “ last” variable register is monitored to

check if any “ last” variable is set by the one “ last” guarantee logic. Activities four,

five and six are then “started” and “suspended” to make them candidates for

scheduling, and the “candidate” variable register is monitored. A context switch is

performed to return activity from the search. Pollset boundaries are set up to form

priority groups. Activity two and fourteen are set to be pollset boundaries. Round

Robin search is verified by allowing three candidates in the same pollset and running

context switch several times. Activity from pollset with higher priority (activity zero)

is made to be candidate to test the “maybe search” logic. Clear_Pollend instruction is

performed to make more than one set “ last” in a pollset and “ last” variable register is

monitored to check the one “ last” guarantee logic. Finally, a context switch is

performed after a Clear_All instruction to check if activity sixteen is returned by the

search logic when no candidate is found. Signal waveform is shown in Fig. 16.

3.2.7 Integrated simulation

A final simulation is performed to verify the operation of the whole system, which is

connected as shown in Fig. 17. Stimulus file used is of the same logic as the one used

BUTLER Design and Analysis

 38

in the control memory, together with the stimulus of other functional modules.

Stimulus inputs become BUTLER I/Os instead of internal signal routings. Operations

are initialized by memory access and stimulation from external sources. BUTLER

I/Os are monitored to verify correct operation. Signal waveform is shown in Fig. 18.

BUTLER Design and Analysis

 39

4. Analysis and discussion

To improve microprocessor efficiency and performance by replacing software-

scheduling program by a hardware solution, a hardware scheduler is designed with

reference to the ad-hoc BUTLER design. In order to facilitate future research, a

documentation of the BUTLER design is prepared on top of the BUTLER design

description by Eric Campbell [3].

4.1 Operation by memory access

The BUTLER performs specified functions when accessed as memory. It should not

therefore be used where unintentional memory accesses may occur, such as in direct-

memory-access, cache or refresh memory systems.

4.2 Round Robin

A round robin is an arrangement of choosing all elements in a group equally in some

rational order, usually from the top to the bottom of a list and then starting again at the

top of the list and so on. A simple way to think of round robin is that it is about

"taking turns” . In computer operation, different program processes take turns using

the resources of the processor is to limit each process to a certain short time period,

then suspending that process to give another process a turn (or "time-slice"). This is

often described as Round Robin process scheduling. In this project, Round Robin

search is made use in next activity selection logic when more than one activity are

eligible for scheduling within the same priority group.

4.3 Counter

Arrays of flip flops which have the property of incrementing or decrementing when

pulsed are known as counter registers, or counters. Normally each bit of the binary

code is stored in a flip flop, with N flip flops giving up to 2N states. Essentially there

are two kinds of counters. Synchronous counters have all flip flops simultaneously

clocked by the count pulse. In asynchronous circuits, normally only the first flip-flop

is directly clocked; this change is then propagating through the remaining logic.

BUTLER Design and Analysis

 40

The main advantage of ripple counter is its relative simplicity. However, their

asynchronous nature gives problems in some situations. Because of cumulative delays

as changes propagate along the chain, some alterations of state occur in a staggered

manner. Counter delay is not a significant problem in this system as counter is only

used for control interrupt.

4.4 Memory VS Registers

Control variables of all activities are stored in a control memory, which can be

accessed by different BUTLER instructions and asynchronous stimulations. In the

original BUTLER design, the memory is realized by a tile configuration. In the

behavioral specification, a decision between memory and registers has to be made to

specify the control memory.

As memory cannot be referenced at the bit-level in Verilog HDL, data in the word

have to be first transferred to a temporary register. Therefore, temporary registers

have to be made used throughout the whole specification during specific bit range

operation. In this case, concurrent operation of same word maybe problematic, which

means asynchronous stimulation may not be supported. Therefore, control variables

should be held by twenty-one registers instead of a sixteen by twenty-one memory.

Asynchronous stimulation can arrive any time concurrently with different BUTLER

instructions.

4.5 Arbitration Problem

Since BUTLER deals with different asynchronous operations, set and reset of certain

control variable latches may occur during normal operation. Additional circuitries are

added to avoid any erroneous state resulted from this.

4.5.1 Last Latch

For normal operation, exactly one “ last” latch should be set within each pollset.

However, none of the “ last” latch will be set in the whole control variable memory

during the initial power up. As pollset boundaries can be set or removed at any time,

BUTLER Design and Analysis

 41

no set “ last” latch or more than one “ last” latch in one pollset may occur during

Set_Pollend, Clear_Pollend or Clear_All BUTLER instructions. Additional circuitries

are therefore designed to maintain normal operation. Since no pollset boundary is set

during initial power up, one pollset contains all activities. “ last” latch of the zeroth

activity, top of the pollset, will be set to retain normal operation. For the reset of

pollset boundaries, activity with the smallest activity number in the pollset will be set

if no “ last” latch found. And the search chain will only take the first set “ last” latch it

found and ignore the others if multiple set “ last” latches have been found.

4.5.2 Asynchronous Stimulation
During execution of Clear_All or Nextact BUTLER instruction, some or all

“stimmed” latches will be initialized (make false). However, asynchronous

stimulation from external source or local peripherals may arrive at any time, which

will make true the “stimmed” latch of some channels according to data carried.

Concurrent set and reset of the “stimmed” latch can occur when stimin from an

asynchronous external source is concurrent with reset from BUTLER instruction

Clear_All or Nextact when this activity is being returned to the processor. The

normally complementary outputs from the “stimmed” latch will both be high. This

causes no problem because this activity will be being returned to the processor as the

next activity to be scheduled at this time. If removal of concurrent set and reset are

coincident, the “stimmed” latch will, after the delay needed to resolve the

metastability effect, become either set or reset. Time is available between executing

BUTLER instructions for the latch to settle. If it becomes set, “stimin” is assumed to

have occurred after Nextact; if it becomes reset, “stimin” is assumed to have occurred

before Nextact. Either condition provides correct system operation.

To avoid arbitration problem, additional circuitry is added to defer visibility of a

“stimmed” latch that is set by asynchronous local peripheral (“stimp”) during context

switch. Extra latch is added to store value of the “stimmed” latch until after a

subsequent Nextact BUTLER instruction.

BUTLER Design and Analysis

 42

4.6 Implications and Practical Applications

Base on the BUTLER documentation and the Verilog specification, BUTLER of

different functions and scale can be easily designed in the future. As two versions of

BUTLER with different search logic are specified in this project, different search

logic can also be used in the future, by simply replacing the search logic section in the

present specification. In practical, BUTLER can be used from complex system like a

computer microprocessor to simple system like processor in toy. It can improve the

efficiency and performance of the processors in both systems.

BUTLER Design and Analysis

 43

5. Conclusion

As a matter of fact that asynchronous designs are getting more important in the state-

of-art computer system designs, modern computing systems tend to move

synchronous design to asynchronous. To improve efficiency and performance of

processors, scheduling functions are moved from software to hardware. From the

comparison made in the literature review section, advantages of different hardware

dependency level of scheduler are presented. The BUTLER technology is focused on

the issues of scheduling application function tasks in embedded real time multiple

processor systems. In this project, a detail documentation of the original design has

been prepared to provide sufficient information for future studies and

implementations. Different functions, operations, precise search logics, signal

routings and control variables for next activity selection are all presented in details.

This documentation can support future design in a behavioral level on top of the gate

level design description by Eric Campbell [3].

The documentation described the BUTLER from general functions to detail operation

logic, from system configuration to BUTLER internal signal routings. It explained

detail of the next activity selection logic, the system configuration of the original

design, actual function of different tasks, operation of different function blocks in the

system and all search logics help maintain correct operation of system. Functional

diagram and search logic diagrams are included to illustrate some complicate search

logics and major signal routings.

Besides the documentation, the description of Verilog specification presented in the

result section verifies the functionality of the system and the possibility of varying the

configuration of the original design. Although the newly designed BUTLER in this

project is specified in register transfer level, a synthesis can be performed by

following the tiling approach of the original design. Since the new design is of

different scale and configuration with the original, it verified the possibility of

different number of activities and connected BUTLERs.

As the Verilog specification of the BUTLER is divided into five modules according to

the functional block diagram presented in the documentation, each module is

presented independently for its function and operation logic. Functions triggered by

BUTLER Design and Analysis

 44

different request signals from external sources or internal circuitry are explained in

full details. Search loops that run continuously throughout the whole operation of

BUTLER are presented with the aid of block diagrams to enhance understanding of

those complicate search logics.

A verification section is followed to display the precise simulation procedure carried

out in the project. Stimulus file used in the verification of each module is described

independently, followed by the description of an integrated simulation for the whole

system. Simulation results proved the correctness of the new design and therefore, the

possibility of changing scale and configuration of the original design. Future studies

should focus on the synthesis in the tiling approach and implementation of different

configuration BUTLER. The documentation provided a channel for academics to

understand the BUTLER operation in an efficient way and the Verilog specification

provided a basic design methodology of the BUTLER for researchers to follow.

BUTLER Design and Analysis

 45

Reference

1. J. E. COOLING, P. TWEEDALE, “Task scheduler co-processor for hard real-

time systems”, Department of Electronic and Electrical Engineering,

Loughborough University of Technology, Loughborough, Leicestershire, UK.

20 December 1996.

2. PRAMOTE KUACHAROEN, MOHAMED A. SHALAN and VINCENT J.

MOONEY III, “A Configurable Hardware Scheduler for Real-Time

Systems”, Centre for Research on Embedded Systems and

Technology, School of Electrical and Computer Engineering, Georgia

Institute of Technology, Atlanta, Georgia 30332, USA.

3. ERIC CAMPBELL, “BUTLER design description” , Computing Systems

Technology Department, British Aerospace Defence Ltd (Dynamics Division),

DR11481, Issue 1, April 1996.

BUTLER Design and Analysis

 46

Appendix

Appendix 1

---Counter ---
module counter(expired, countout, Test, slice, D, countin, Ld_cntr_lo, Ld_cntr_hi);
input Test, slice, countin, Ld_cntr_lo, Ld_cntr_hi;
input [7:0] D;
output expired;
output [15:0] countout;
reg [15:0] stored, count;
reg time_out;
//
initial begin
 stored = 16'b0;
 count = 16'b0;
 time_out = 0;
end
//
always @ (posedge countin)
begin
 if (~slice)
 count = count + 1;
 if (count == 16'b0)
 time_out = 1;
end
//
assign expired = time_out;
//
always @ (Ld_cntr_lo)
begin
 if (Ld_cntr_lo)
 stored[7:0] = D[7:0];
end
//
always @ (Ld_cntr_hi)
begin
 if (Ld_cntr_hi)
 stored[15:8] = D[7:0];
end
//
always @ (slice)
begin
 if (slice)
 begin
 time_out = 0;
 count = stored;
 end
end

assign countout = count;
endmodule

---Inter rupt controller ------------------------------------
// Created by ihdl
module int_cntl(interrupt, act_no, Test, expired, maybe, slice, Clrall);
input [3:0]act_no;
input Test, expired, maybe, slice, Clrall;
output interrupt;
reg counter_int, preemp_int;

BUTLER Design and Analysis

 47

//
initial begin
 counter_int = 0;
 preemp_int = 0;
end
//
always @ (Test)
begin
 if (Test == 1 & act_no[1] == 1)
 preemp_int = 1;
 if (Test == 1 & act_no[1] == 0)
 preemp_int = 0;
 if (Test == 1 & act_no[0] == 1)
 counter_int = 1;
 if (Test == 1 & act_no[0] == 0)
 counter_int = 0;
end
//
always @ (Clrall)
begin
 if (Clrall == 1)
 begin
 preemp_int = 0;
 counter_int = 0;
 end
end
//
always @ (act_no)
begin
 if (Test == 1 & act_no[1] == 1)
 preemp_int = 1;
 if (Test == 1 & act_no[1] == 0)
 preemp_int = 0;
 if (Test == 1 & act_no[0] == 1)
 counter_int = 1;
 if (Test == 1 & act_no[0] == 0)
 counter_int = 0;
end
//
assign interrupt = (preemp_int & maybe & ~slice) | (counter_int & expired & ~slice);
endmodule

-------------------------------------Activity number register ----------------------------------
module act_no_reg(act_no, Ld_act, D);
input [7:0]D;
input Ld_act;
output [3:0]act_no;
reg [3:0]act_reg;

initial begin
 act_reg = 0;
end

always @ (Ld_act)
begin
 if (Ld_act)
 act_reg[3:0] <= D[3:0];
end
 assign act_no[3:0] = act_reg[3:0];

BUTLER Design and Analysis

 48

endmodule

Decoder
module add_dec(a000, a001, a010, a011, a100, a101, a110, a111, a0, a1, a2);
input a0, a1, a2;
output a000, a001, a010, a011, a100, a101, a110, a111;
//
assign a000 = ~a0 & ~a1 & ~a2;
assign a001 = ~a0 & ~a1 & a2;
assign a010 = ~a0 & a1 & ~a2;
assign a011 = ~a0 & a1 & a2;
assign a100 = a0 & ~a1 & ~a2;
assign a101 = a0 & ~a1 & a2;
assign a110 = a0 & a1 & ~a2;
assign a111 = a0 & a1 & a2;
//
Endmodule

module rw_decoder(read, write, R, W, select);
input R, W, select;
output read, write;

assign read = R & select;
assign write = W & select;

endmodule

module instr_memory(Do_stim, Do_wait, Suspend, Setsus, Sstart, Spollend, Nextact, Test, Ld_mask,
Ld_act, Do_stimx, Clrall, Cstart, Cpollend, Ld_cntr_lo, Ld_cntr_hi, a000, a001, a010, a011, a100,
a101, a110, a111, read, write);
input a000, a001, a010, a011, a100, a101, a110, a111, read, write;
output Do_stim, Do_wait, Suspend, Setsus, Sstart, Spollend, Nextact, Test, Ld_mask, Ld_act,
Do_stimx, Clrall, Cstart, Cpollend, Ld_cntr_lo, Ld_cntr_hi;
//
assign Do_stim = read & a000;
assign Do_wait = read & a001;
assign Suspend = read & a010;
assign Setsus = read & a011;
assign Sstart = read & a100;
assign Spollend = read & a101;
assign Nextact = read & a110;
assign Test = read & a111;
assign Ld_mask = write & a000;
assign Ld_act = write & a001;
assign Do_stimx = write & a010;
assign Clrall = write & a011;
assign Cstart = write & a100;
assign Cpollend = write & a101;
assign Ld_cntr_lo = write & a110;
assign Ld_cntr_hi = write & a111;
//
endmodule

--------------------------Conrol Memory (simple version) -----------------------------------
module Cntl_Mem01(Xout, Dout, stimout, maybe, slice_out, testout0, testout1, testout2, testout3,
testout4, testout5, testout6, Xin, stimin, D, Sstart, Cstart, Spollend, Cpollend, Setsus, Do_stim,
Do_stimx, Nextact, Do_wait, Suspend, Clrall, Ld_mask, act_no, stimp0, stimp1, stimp2, stimp3);
output stimout, maybe, slice_out;
output [3:0] Xout;
output [4:0] Dout;

BUTLER Design and Analysis

 49

output [0:15] testout0, testout1, testout2, testout3, testout4, testout5, testout6;
input [3:0] act_no, Xin;
input [7:0] D;
//BUTLER instructions request signals from instruction memory
input Sstart, Cstart, Spollend, Cpollend, Setsus, Do_stim, Do_stimx, Nextact, Do_wait, Suspend,
Clrall, Ld_mask, stimin;
//stimulation from local peripherals
input stimp0, stimp1, stimp2, stimp3;
//16 activities, 8 pairs of stim-wait channels [0-7 stim, 8-15 wait]
//Suspend[16], Start[17], Pollend[18], Candidate[19], Last[20]
reg [0:15] stim_bit0, stim_bit1, stim_bit2, stim_bit3, stim_bit4, stim_bit5, stim_bit6, stim_bit7,
wait_bit0, wait_bit1, wait_bit2, wait_bit3, wait_bit4, wait_bit5, wait_bit6, wait_bit7;
reg [0:7] mask;
reg [3:0] act_x;
integer i, j, k, m, n, p, act_run, act_out;
reg slice, Lastfnd, Lastfndup, candfnd, maybe_reg, pollend_run, polltop_run;
reg [0:15] suspend_bit, start_bit, pollend_bit, cand_bit, last_bit;
//
initial begin
act_x = 4'bzzzz;
slice = 0;
Lastfnd = 0;
Lastfndup = 0;
candfnd = 0;
maybe_reg = 0;
pollend_run = 0;
polltop_run = 0;
end
//
/////////Set Start, Clear Start, Set Pollend, Clear Pollend, Set Suspend, Do Stim.////////
//////////Instruction act on activity specified in last Load Activity instruction.////////
//
always @ (Sstart)
begin
 if (Sstart) //set start
 start_bit[act_no] = 1;
end
//
always @ (Cstart)
begin
 if (Cstart) //clear start
 start_bit[act_no] = 0;
end
//
always @ (Spollend)
begin
 if (Spollend) //set pollend
 pollend_bit[act_no] = 1;
end
//
always @ (Cpollend)
begin
 if (Cpollend)
 pollend_bit[act_no] = 0;
end
//
always @ (Setsus)
begin
 if (Setsus) //set suspend
 suspend_bit[act_no] = 1;

BUTLER Design and Analysis

 50

end
//
always @ (Do_stim)
begin
 if (Do_stim) //set stim according to mask
 begin
 if (mask[0] == 1)
 stim_bit0[act_no] = 1;
 if (mask[1] == 1)
 stim_bit1[act_no] = 1;
 if (mask[2] == 1)
 stim_bit2[act_no] = 1;
 if (mask[3] == 1)
 stim_bit3[act_no] = 1;
 if (mask[4] == 1)
 stim_bit4[act_no] = 1;
 if (mask[5] == 1)
 stim_bit5[act_no] = 1;
 if (mask[6] == 1)
 stim_bit6[act_no] = 1;
 if (mask[7] == 1)
 stim_bit7[act_no] = 1;
 end
end
//
/////////////////////////////Set stim by local peripherals/////////////////////////////////
always @ (posedge stimp0)
begin
 if (stimp0)
 begin
 wait (~slice)
 begin
 stim_bit7[0] = 1;
 stim_bit7[4] = 1;
 stim_bit7[8] = 1;
 stim_bit7[12] = 1;
 end
 end
end
//
always @ (posedge stimp1)
begin
 if (stimp1)
 begin
 wait (~slice)
 begin
 stim_bit7[1] = 1;
 stim_bit7[5] = 1;
 stim_bit7[9] = 1;
 stim_bit7[13] = 1;
 end
 end
end
//
always @ (posedge stimp2)
begin
 if (stimp2)
 begin
 wait (~slice)
 begin

BUTLER Design and Analysis

 51

 stim_bit7[2] = 1;
 stim_bit7[6] = 1;
 stim_bit7[10] = 1;
 stim_bit7[14] = 1;
 end
 end
end
//
always @ (posedge stimp3)
begin
 if (stimp3)
 begin
 wait (~slice)
 begin
 stim_bit7[3] = 1;
 stim_bit7[7] = 1;
 stim_bit7[11] = 1;
 stim_bit7[15] = 1;
 end
 end
end
//
//
//////////////////////////////Suspend, Do Wait./////////////////////////////////////
///////////instruction act on activity currently running in the processor.//////////
//
always @ (Suspend)
begin
 if (Suspend)
 begin
 if (act_run != 16)
 suspend_bit[act_run] = 1;
 end
end
//
always @ (Do_wait)
begin
 if (Do_wait) //set wait according to mask.
 begin
 if (act_run != 16)
 begin
 if (mask[0] == 1)
 wait_bit0[act_no] = 1;
 if (mask[1] == 1)
 wait_bit1[act_no] = 1;
 if (mask[2] == 1)
 wait_bit2[act_no] = 1;
 if (mask[3] == 1)
 wait_bit3[act_no] = 1;
 if (mask[4] == 1)
 wait_bit4[act_no] = 1;
 if (mask[5] == 1)
 wait_bit5[act_no] = 1;
 if (mask[6] == 1)
 wait_bit6[act_no] = 1;
 if (mask[7] == 1)
 wait_bit7[act_no] = 1;
 end
 end
end

BUTLER Design and Analysis

 52

//
/////////////////////Load Mask (Mask pattern register)///////////////////////////////
//
always @ (Ld_mask)
begin
 if (Ld_mask)
 mask[0:7] = D[7:0]; //store mask pattern in mask register.
end
//
//////////Select candidates to enter next activity search logic.
//////////[0] to [7] is stimmed channel 0 to 7.
//////////[8] to [15] is waiting channel 0 to 7.
//////////[16] is suspended latch.
//////////[17] is started latch.
//////////[19] is candidate latch.
//
always @ (Suspend) //?????
begin
 if(Suspend)
 begin
 for (i = 0; i <= 15; i = i + 1)
 begin
 if (((stim_bit0[i] == 1 & wait_bit0[i] == 1) | (stim_bit1[i] == 1 &
wait_bit1[i] == 1) | (stim_bit2[i] == 1 & wait_bit2[i] == 1) | (stim_bit3[i] == 1 & wait_bit3[i] == 1) |
(stim_bit4[i] == 1 & wait_bit4[i] == 1) | (stim_bit5[i] == 1 & wait_bit5[i] == 1) | (stim_bit6[i] == 1 &
wait_bit6[i] == 1) | (stim_bit7[i] == 1 & wait_bit7[i] == 1)) & (start_bit[i] == 1))
 begin
 cand_bit[i] = 1;
 end
 if ((suspend_bit[i] == 1) & (start_bit[i] == 1))
 begin
 cand_bit[i] = 1;
 end
 end
//
////////////////////////////////Search logic//
//
 //?????
 candfnd = 0;
 for (m = 0; m <= 15; m = m + 1)
 begin
 if (candfnd == 0)
 begin
 if (cand_bit[m] == 1)
 begin
 act_out = m;
 candfnd = 1;
 end
 end
 end
 if (candfnd == 0)
 act_out = 16;
 end
end
///
///
//
////////////////////////////////Overall Reset.//////////////////////////////////////
//
always @ (Clrall)

BUTLER Design and Analysis

 53

begin
 if (Clrall)
 begin
 stim_bit0[0:15] = 16'b0; //reset stim
 stim_bit1[0:15] = 16'b0;
 stim_bit2[0:15] = 16'b0;
 stim_bit3[0:15] = 16'b0;
 stim_bit4[0:15] = 16'b0;
 stim_bit5[0:15] = 16'b0;
 stim_bit6[0:15] = 16'b0;
 stim_bit7[0:15] = 16'b0;
 wait_bit0[0:15] = 16'b0; //reset wait
 wait_bit1[0:15] = 16'b0;
 wait_bit2[0:15] = 16'b0;
 wait_bit3[0:15] = 16'b0;
 wait_bit4[0:15] = 16'b0;
 wait_bit5[0:15] = 16'b0;
 wait_bit6[0:15] = 16'b0;
 wait_bit7[0:15] = 16'b0;
 suspend_bit[0:15] = 16'b0; //reset suspend
 start_bit[0:15] = 16'b0; //reset start
 pollend_bit[0:15] = 16'b0; //reset pollend
 cand_bit[0:15] = 16'b0; //reset candidate
 end
end
//
///////////////////////Do external Stim (to other BUTLER)./////////////////////////////
//
always @ (Do_stimx)
begin
 if (Do_stimx)
 act_x = act_no;
end
assign stimout = Do_stimx;
assign Xout = act_x;
//
///////////////////Stim from external (from other BUTLER)./////////////////////////////
//
always @ (stimin)
begin
 if (~slice & stimin)
 stim_bit6[Xin] = 1; //act no specified by Xin[3:0]
end //channel 6 for external stim
//
////////////////////////////////Context switch.///
//
always @ (Suspend)
begin
 if (Suspend)
 slice = 1;
end
//
always @ (Do_wait)
begin
 if (Do_wait)
 slice = 1;
end
//
always @ (Nextact)
begin

BUTLER Design and Analysis

 54

 if (Nextact)
 slice = 0;
end
//
assign slice_out = slice;
//
/////////////////////Ensure exactly 1 Last in every pollset//////////////////////////////////
//
always @ (Suspend) //?????
begin
 if(Suspend)
 begin
 Lastfnd = 0;
 for (j = 0; j <= 15; j = j + 1) //remove extra Last bit.
 begin
 if (Lastfnd == 1)
 last_bit[j] = 0; //reset extra Last bit
 else if (Lastfnd == 0)
 begin
 if (last_bit[j] == 1) //check Last bit.
 Lastfnd = 1;
 end
 if (pollend_bit[j] == 1) //check pollend bit.
 Lastfnd = 0;
 end
 if (last_bit[15] == 1)
 Lastfndup = 1;
 for (k = 14; k >= 1; k = k - 1) //add Last bit.
 begin
 if (pollend_bit[k] == 1) //check Pollend bit.
 begin
 if (Lastfndup == 0)
 begin //set first activity in a
 last_bit[k+1] = 1; //pollset as Last if not found.
 end
 Lastfndup = 0; //reset Lastfndup when cross
 end //pollset boundary.
 if (last_bit[k] == 1) //check Last bit.
 Lastfndup = 1;
 end
 if (Lastfndup == 0 | pollend_bit[0] == 1)
 last_bit[0] = 1;
 end
end
//
///////search for higher priority activity than currently running activity ///////////////
//
always @ (act_out)
begin
 if (~slice)
 begin
 if (act_out < act_run)
 maybe_reg = 1;
 end
end
//
always @ (slice) //reset maybe when context switch
begin
 if (slice)
 maybe_reg = 0;

BUTLER Design and Analysis

 55

end
assign maybe = maybe_reg;
//
///////////////////////return activity to processor///////////////////////////////////////
//
always @ (Nextact)
begin
 if (Nextact)
 begin
 act_run = act_out;
 if (act_out != 16)
 begin
 stim_bit0[act_run] = 0; //reset control variables
 stim_bit1[act_run] = 0;
 stim_bit2[act_run] = 0;
 stim_bit3[act_run] = 0;
 stim_bit4[act_run] = 0;
 stim_bit5[act_run] = 0;
 stim_bit6[act_run] = 0;
 stim_bit7[act_run] = 0;
 wait_bit0[act_run] = 0;
 wait_bit1[act_run] = 0;
 wait_bit2[act_run] = 0;
 wait_bit3[act_run] = 0;
 wait_bit4[act_run] = 0;
 wait_bit5[act_run] = 0;
 wait_bit6[act_run] = 0;
 wait_bit7[act_run] = 0;
 suspend_bit[act_run] = 0;
 cand_bit[act_run] = 0;
/////////////////////////////////set Last//
 last_bit[act_run] = 1; //set Last bit
 pollend_run = 0;
 for (n = act_run + 1; n <= 15; n = n + 1) //running down
 begin
 if (pollend_run == 0)
 last_bit[n] = 0; //reset Last bit
 if (pollend_bit[n] == 1) //stop after pollend
 pollend_run = 1;
 end
 polltop_run = 0;
 for (p = act_run - 1; p <= 0; p = p - 1) //running up
 begin
 if (pollend_bit[p] == 1) //stop before pollend
 polltop_run = 1;
 if (polltop_run == 0)
 last_bit[p] = 0; //reset Last bit
 end
 end
 end
end
//
assign Dout = act_run;
//
assign testout0 = stim_bit6;
assign testout1 = stim_bit7;
assign testout2 = suspend_bit;
assign testout3 = start_bit;
assign testout4 = pollend_bit;
assign testout5 = cand_bit;

BUTLER Design and Analysis

 56

assign testout6 = last_bit;
//
Endmodule

----------------------------------Control memory (final version) -----------------------------
module Cntl_Mem(Xout, Dout, stimout, maybe, slice_out, testout0, testout1, testout2, testout3,
testout4, testout5, testout6, Xin, stimin, D, Sstart, Cstart, Spollend, Cpollend, Setsus, Do_stim,
Do_stimx, Nextact, Do_wait, Suspend, Clrall, Ld_mask, act_no, stimp0, stimp1, stimp2, stimp3);
output stimout, maybe, slice_out;
output [3:0] Xout;
output [4:0] Dout;
output [0:15] testout0, testout1, testout2, testout3, testout4, testout5, testout6;
input [3:0] act_no, Xin;
input [7:0] D;
//BUTLER instructions request signals from instruction memory
input Sstart, Cstart, Spollend, Cpollend, Setsus, Do_stim, Do_stimx, Nextact, Do_wait, Suspend,
Clrall, Ld_mask, stimin;
//stimulation from local peripherals
input stimp0, stimp1, stimp2, stimp3;
//16 activities, 8 pairs of stim-wait channels [0-7 stim, 8-15 wait]
//Suspend[16], Start[17], Pollend[18], Candidate[19], Last[20]
reg [0:15] stim_bit0, stim_bit1, stim_bit2, stim_bit3, stim_bit4, stim_bit5, stim_bit6, stim_bit7,
wait_bit0, wait_bit1, wait_bit2, wait_bit3, wait_bit4, wait_bit5, wait_bit6, wait_bit7;
reg [0:7] mask;
reg [3:0] act_x;
integer i, j, k, m, n, p, act_run, act_out, a, b, c, d, e, f, g;
reg slice, Lastfnd, Lastfndup, found, maybe_reg, pollend_run, polltop_run, searchtop, searchend,
search_start;
reg [0:15] suspend_bit, start_bit, pollend_bit, cand_bit, last_bit;
//
initial begin
act_x = 4'bzzzz;
slice = 0;
Lastfnd = 0;
Lastfndup = 0;
found = 0;
maybe_reg = 0;
pollend_run = 0;
polltop_run = 0;
searchend = 0;
searchtop = 0;
search_start = 0;
last_bit = 16'b0000000000000000;
end
//
/////////Set Start, Clear Start, Set Pollend, Clear Pollend, Set Suspend, Do Stim.////////
//////////Instruction act on activity specified in last Load Activity instruction.////////
//
always @ (Sstart)
begin
 if (Sstart) //set start
 start_bit[act_no] = 1;
end
//
always @ (Cstart)
begin
 if (Cstart) //clear start
 start_bit[act_no] = 0;
end
//

BUTLER Design and Analysis

 57

always @ (Spollend)
begin
 if (Spollend) //set pollend
 pollend_bit[act_no] = 1;
end
//
always @ (Cpollend)
begin
 if (Cpollend)
 pollend_bit[act_no] = 0;
end
//
always @ (Setsus)
begin
 if (Setsus) //set suspend
 suspend_bit[act_no] = 1;
end
//
always @ (Do_stim)
begin
 if (Do_stim) //set stim according to mask
 begin
 if (mask[0] == 1)
 stim_bit0[act_no] = 1;
 if (mask[1] == 1)
 stim_bit1[act_no] = 1;
 if (mask[2] == 1)
 stim_bit2[act_no] = 1;
 if (mask[3] == 1)
 stim_bit3[act_no] = 1;
 if (mask[4] == 1)
 stim_bit4[act_no] = 1;
 if (mask[5] == 1)
 stim_bit5[act_no] = 1;
 if (mask[6] == 1)
 stim_bit6[act_no] = 1;
 if (mask[7] == 1)
 stim_bit7[act_no] = 1;
 end
end
//
/////////////////////////////Set stim by local peripherals//////////////////////////////
always @ (stimp0)
begin
 if (stimp0)
 begin
 wait (~slice)
 begin
 stim_bit7[0] = 1;
 stim_bit7[4] = 1;
 stim_bit7[8] = 1;
 stim_bit7[12] = 1;
 end
 end
end
//
always @ (stimp1)
begin
 if (stimp1)
 begin

BUTLER Design and Analysis

 58

 wait (~slice)
 begin
 stim_bit7[1] = 1;
 stim_bit7[5] = 1;
 stim_bit7[9] = 1;
 stim_bit7[13] = 1;
 end
 end
end
//
always @ (stimp2)
begin
 if (stimp2)
 begin
 wait (~slice)
 begin
 stim_bit7[2] = 1;
 stim_bit7[6] = 1;
 stim_bit7[10] = 1;
 stim_bit7[14] = 1;
 end
 end
end
//
always @ (stimp3)
begin
 if (stimp3)
 begin
 wait (~slice)
 begin
 stim_bit7[3] = 1;
 stim_bit7[7] = 1;
 stim_bit7[11] = 1;
 stim_bit7[15] = 1;
 end
 end
end
//
//
//////////////////////////////Suspend, Do Wait./////////////////////////////////////
///////////instruction act on activity currently running in the processor.//////////
//
always @ (Suspend)
begin
 if (Suspend)
 begin
 if (act_run != 16)
 suspend_bit[act_run] = 1;
 end
end
//
always @ (Do_wait)
begin
 if (Do_wait) //set wait according to mask.
 begin
 if (act_run != 16)
 begin
 if (mask[0] == 1)
 wait_bit0[act_no] = 1;
 if (mask[1] == 1)

BUTLER Design and Analysis

 59

 wait_bit1[act_no] = 1;
 if (mask[2] == 1)
 wait_bit2[act_no] = 1;
 if (mask[3] == 1)
 wait_bit3[act_no] = 1;
 if (mask[4] == 1)
 wait_bit4[act_no] = 1;
 if (mask[5] == 1)
 wait_bit5[act_no] = 1;
 if (mask[6] == 1)
 wait_bit6[act_no] = 1;
 if (mask[7] == 1)
 wait_bit7[act_no] = 1;
 end
 end
end
//
/////////////////////Load Mask (Mask pattern register)///////////////////////////////////
//
always @ (Ld_mask)
begin
 if (Ld_mask)
 mask[0:7] = D[7:0]; //store mask pattern in mask register.
end
//
//////////Select candidates to enter next activity search logic.
//////////[0] to [7] is stimmed channel 0 to 7.
//////////[8] to [15] is waiting channel 0 to 7.
//////////[16] is suspended latch.
//////////[17] is started latch.
//////////[19] is candidate latch.
//
always @ (Suspend) //?????
begin
 if(~Suspend)
 begin
 for (i = 0; i <= 15; i = i + 1)
 begin
 if (((stim_bit0[i] == 1 & wait_bit0[i] == 1) | (stim_bit1[i] == 1 &
wait_bit1[i] == 1) | (stim_bit2[i] == 1 & wait_bit2[i] == 1) | (stim_bit3[i] == 1 & wait_bit3[i] == 1) |
(stim_bit4[i] == 1 & wait_bit4[i] == 1) | (stim_bit5[i] == 1 & wait_bit5[i] == 1) | (stim_bit6[i] == 1 &
wait_bit6[i] == 1) | (stim_bit7[i] == 1 & wait_bit7[i] == 1)) & (start_bit[i] == 1))
 begin
 cand_bit[i] = 1;
 end
 if ((suspend_bit[i] == 1) & (start_bit[i] == 1))
 begin
 cand_bit[i] = 1;
 end
 end
//
//////////////////////////////////Search logic//////////////////////////////////////
//
/////////////////////////////////search act[0]//////////////////////////////////////
 found = 0; //reset in each pollset
 if (last_bit[0] == 1) //last?
 begin
///////////////////////////////Round Robin///
 if (pollend_bit[0] == 0) //pollend?
 begin

BUTLER Design and Analysis

 60

 searchend = 0;
 for (a = 1; a <= 15; a = a + 1)
 begin
 if ((searchend == 0) & (found == 0))
 begin
 if (cand_bit[a] == 1) //candidate?
 begin
 act_out = a;
 found = 1;
 end
 if (pollend_bit[a] == 1) //pollend?
 searchend = 1;
 end
 end
 if (found == 0)
 begin
 if (cand_bit[0] == 1)
 begin
 act_out = 0;
 found = 1;
 end
 end
 end
 else if (pollend_bit[0] == 1) //pollend?
 begin
 if (cand_bit[0] == 1) //candidate?
 begin
 act_out = 0;
 found = 1;
 end
 end
 end
/////////////////////////////search act[1] to act[14]//
 for (b = 1; b <= 14; b = b + 1)
 begin
 if(found == 0)
 begin
 if(last_bit[b] == 1)
 //last?
 begin
//Round Robin
 if (pollend_bit[b] == 0)
 //pollend?
 begin
 searchend = 0;
 for (c = b + 1; c <= 15; c = c + 1)
 begin
 if (searchend == 0 & found == 0)
 begin
 if (cand_bit[c] == 1)
 //candidate?
 begin
 act_out = c;
 found = 1;
 end
 if (pollend_bit[c] == 1)
 //pollend?
 searchend = 1;
 end
 end

BUTLER Design and Analysis

 61

 if (found == 0)
 begin
 searchtop = 0;
 for (d = b; d >= 0; d = d - 1)
 begin
 if (pollend_bit[d] == 1)
 //pollend?
 searchtop = 1;
 if (searchtop == 0)
 begin
 if (cand_bit[d] == 1)
 //candidate?
 begin
 act_out = d;
 found = 1;
 end
 end
 end
 end
 end
 else if (pollend_bit[b] == 1)
 begin
 if (found == 0)
 begin
 searchtop = 0;
 for (e = b - 1; e >= 0; e = e - 1)
 begin
 if (pollend_bit[e] == 1)
 //pollend?
 searchtop = 1;
 if (searchtop == 0)
 begin
 if (cand_bit[e] == 1)
 //candidate?
 begin
 act_out = e;
 found = 1;
 end
 end
 end
 end
 if (found == 0)
 begin
 if (cand_bit[b] == 1)
 begin
 act_out = b;
 found = 1;
 end
 end
 end

 end
 end
 end
///////////////////////////////////////search act[15]//
 if (found == 0)
 begin
 if (last_bit[15] == 1)
 //last?
 begin

BUTLER Design and Analysis

 62

 if (pollend_bit[15] == 1) //pollend?
 begin
 searchtop = 0;
 for (f = 14; f >= 0; f = f - 1)
 begin
 if (pollend_bit[f] == 1) //pollend?
 searchtop = 1;
 if (searchtop == 0)
 begin
 if (cand_bit[f] == 1)
 //candidate?
 begin
 act_out = f;
 found = 1;
 end
 end
 end
 end
 if (found == 0)
 begin
 if (cand_bit[15] == 1)
 begin
 act_out = 15;
 found = 1;
 end
 end
 else if (pollend_bit[15] == 0)
 //pollend?
 begin
 searchtop = 0;
 for(g = 15; g >= 0; g = g - 1)
 begin
 if (pollend_bit[g] == 1) //pollend?
 searchtop = 1;
 if (searchtop == 0)
 begin
 if (cand_bit[g] == 1)
 //candidate?
 begin
 act_out = g;
 found = 1;
 end
 end
 end
 end
 end
 end
/////////////////////////return act[16] if no candidate found///////////////////////////////
 if (found == 0)
 act_out = 16;
 end
end
//
///
///
//
////////////////////////////////Overall Reset.//////////////////////////////////////
//
always @ (Clrall)
begin

BUTLER Design and Analysis

 63

 if (Clrall)
 begin
 stim_bit0[0:15] = 16'b0; //reset stim
 stim_bit1[0:15] = 16'b0;
 stim_bit2[0:15] = 16'b0;
 stim_bit3[0:15] = 16'b0;
 stim_bit4[0:15] = 16'b0;
 stim_bit5[0:15] = 16'b0;
 stim_bit6[0:15] = 16'b0;
 stim_bit7[0:15] = 16'b0;
 wait_bit0[0:15] = 16'b0; //reset wait
 wait_bit1[0:15] = 16'b0;
 wait_bit2[0:15] = 16'b0;
 wait_bit3[0:15] = 16'b0;
 wait_bit4[0:15] = 16'b0;
 wait_bit5[0:15] = 16'b0;
 wait_bit6[0:15] = 16'b0;
 wait_bit7[0:15] = 16'b0;
 suspend_bit[0:15] = 16'b0; //reset suspend
 start_bit[0:15] = 16'b0; //reset start
 pollend_bit[0:15] = 16'b0; //reset pollend
 cand_bit[0:15] = 16'b0; //reset candidate
 end
end
//
///////////////////////Do external Stim (to other BUTLER)./////////////////////////////
//
always @ (Do_stimx)
begin
 if (Do_stimx)
 act_x = act_no;
end
assign stimout = Do_stimx;
assign Xout = act_x;
//
///////////////////Stim from external (from other BUTLER)./////////////////////////////
//
always @ (stimin)
begin
 if (~slice & stimin)
 stim_bit6[Xin] = 1; //act no specified by Xin[3:0]
end //channel 6 for external stim
//
////////////////////////////////Context switch.///
//
always @ (Suspend)
begin
 if (Suspend)
 slice = 1;
end
//
always @ (Do_wait)
begin
 if (Do_wait)
 slice = 1;
end
//
always @ (Nextact)
begin
 if (Nextact)

BUTLER Design and Analysis

 64

 slice = 0;
end
//
assign slice_out = slice;
//
/////////////////////Ensure exactly 1 Last in every pollset//////////////////////////////////
//
always @ (Suspend) //?????
begin
 if(Suspend)
 begin
 Lastfnd = 0;
 for (j = 0; j <= 15; j = j + 1) //remove extra Last bit.
 begin
 if (Lastfnd == 1)
 last_bit[j] = 0; //reset extra Last bit
 else if (Lastfnd == 0)
 begin
 if (last_bit[j] == 1) //check Last bit.
 Lastfnd = 1;
 end
 if (pollend_bit[j] == 1) //check pollend bit.
 Lastfnd = 0;
 end
 Lastfndup = 0;
 if (last_bit[15] == 1)
 Lastfndup = 1;
 for (k = 14; k >= 1; k = k - 1) //add Last bit.
 begin
 if (pollend_bit[k] == 1) //check Pollend bit.
 begin
 if (Lastfndup == 0)
 begin //set first activity in a
 last_bit[k+1] = 1; //pollset as Last if not found.
 end
 Lastfndup = 0; //reset Lastfndup when cross
 end //pollset boundary.
 if (last_bit[k] == 1) //check Last bit.
 Lastfndup = 1;
 end
 if ((Lastfndup == 0) | (pollend_bit[0] == 1))
 last_bit[0] = 1;
 end
end
//
///////search for higher priority activity than currently running activity ///////////////////////////////not
checked!!!////////
//
always @ (act_out)
begin
 if(~slice)
 begin
 search_start = 0;
 if (act_run != 0)
 begin
 for (m = act_run - 1; m >= 0; m = m - 1)
 begin
 if (pollend_bit[m] == 1)
 search_start = 1;
 if (search_start == 1)

BUTLER Design and Analysis

 65

 begin
 if (cand_bit[m] == 1)
 maybe_reg = 1;
 end
 end
 end
 end
end
//
always @ (slice) //reset maybe when context switch
begin
 if (slice)
 maybe_reg = 0;
end
assign maybe = maybe_reg;
//
///////////////////////return activity to processor///////////////////////////////////////
//
always @ (Nextact)
begin
 if (Nextact)
 begin
 act_run = act_out;
 if (act_out != 16)
 begin
 stim_bit0[act_run] = 0; //reset control variables
 stim_bit1[act_run] = 0;
 stim_bit2[act_run] = 0;
 stim_bit3[act_run] = 0;
 stim_bit4[act_run] = 0;
 stim_bit5[act_run] = 0;
 stim_bit6[act_run] = 0;
 stim_bit7[act_run] = 0;
 wait_bit0[act_run] = 0;
 wait_bit1[act_run] = 0;
 wait_bit2[act_run] = 0;
 wait_bit3[act_run] = 0;
 wait_bit4[act_run] = 0;
 wait_bit5[act_run] = 0;
 wait_bit6[act_run] = 0;
 wait_bit7[act_run] = 0;
 suspend_bit[act_run] = 0;
 cand_bit[act_run] = 0;
/////////////////////////////////set Last//
 last_bit[act_run] = 1; //set Last bit

 if (act_run != 0)
 begin
 polltop_run = 0;
 for (p = act_run - 1; p >= 0; p = p - 1) //running up
 begin
 if (pollend_bit[p] == 1) //stop before pollend
 polltop_run = 1;
 if (polltop_run == 0)
 last_bit[p] = 0; //reset Last bit
 end
 end
 if (act_run != 15)
 begin
 if (pollend_bit[act_run] == 0)

BUTLER Design and Analysis

 66

 begin
 pollend_run = 0;
 for (n = act_run + 1; n <= 15; n = n + 1) //running
down
 begin
 if (pollend_run == 0)
 last_bit[n] = 0; //reset Last
bit
 if (pollend_bit[n] == 1) //stop after
pollend
 pollend_run = 1;
 end
 end
 end
 end
 end
end
//
assign Dout = act_run;
//
assign testout0 = stim_bit6;
assign testout1 = stim_bit7;
assign testout2 = suspend_bit;
assign testout3 = start_bit;
assign testout4 = pollend_bit;
assign testout5 = cand_bit;
assign testout6 = last_bit;
//
endmodule

BUTLER Design and Analysis

 67

Appendix 2
----------------------------- Interrupt controller simulation -------------------------------------
Initial begin
Clrall = 0;
Test = 0;
act_no = 4'bzzzz;
slice = 0;
maybe = 0;
expired = 0;
#2 act_no = 4'b0011;
#1 Test = 1;
#1 Test = 0;
#2 maybe = 1;
#2 maybe = 0;
#2 expired = 1;
#2 slice = 1;
#2 expired = 0;
#2 slice = 0;
#2 maybe = 1;
#2 act_no = 4'b0001;
#1 Test = 1;
#1 Test = 0;
#2 expired = 1;
#2 act_no = 4'b0000;
#1 Test = 1;
#1 Test = 0;
End
---------------------------------- Decoder simulation --
initial begin
R = 0;
W = 0;
select = 0;
a0 = 0;
a1 = 0;
a2 = 0;
//read cycle
#2 R = 1;
#1 select = 1;
#2 a2 = 1;
#2 a1 = 1;
#2 a2 = 0;
#2 a0 = 1;
#2 a1 = 0;
#2 a2 = 1;
#2 a1 = 1;
#2 a0 = 0;
 a1 = 0;
 a2 = 0;
 R = 0;
//write cycle
#1 W = 1;
#1 select = 1;
#2 a2 = 1;
#2 a1 = 1;
#2 a2 = 0;
#2 a0 = 1;
#2 a1 = 0;
#2 a2 = 1;
#2 a1 = 1;
#2 select = 0;

BUTLER Design and Analysis

 68

End
--------------------------------------- Counter simulation --
initial begin
Test = 0;
slice = 0;
D[7:0] = 8'b0;
countin = 0;
Ld_cntr_lo = 0;
Ld_cntr_hi = 0;
//Load counter
#2 D[7:0] = 8'b11111011;
#2 Ld_cntr_lo = 1;
#2 Ld_cntr_lo = 0;
 D[7:0] = 8'b11111111;
#2 Ld_cntr_hi = 1;
#2 Ld_cntr_hi = 0;
//initialize counter
#5 slice = 1;
#5 slice = 0;
//start counting
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
//reset counter
#5 slice = 1;
#5 slice = 0;
End
----------------------- Activity number register simulation ------------------------------------
initial begin
Ld_act = 0;
D[3:0] = 4'b0;
//
#2 Ld_act = 1;
#2 Ld_act = 0;
#4 D[3:0] = 4'b1010;
#2 Ld_act = 1;
#2 Ld_act = 0;
#2 D[3:0] = 4'b1110;
#2 D[3:0] = 4'b0101;
#2 Ld_act = 1;
#3 Ld_act = 0;
End
------------------------- Control memory simulation (simple version) -----------------------

BUTLER Design and Analysis

 69

initial begin
D[7:0] = 8'bzzzzzzzz;
Clrall = 0;
Cpollend = 0;
Cstart = 0;
Do_stim = 0;
Do_stimx = 0;
Do_wait = 0;
Ld_mask = 0;
Nextact = 0;
Setsus = 0;
Spollend = 0;
Sstart = 0;
Suspend = 0;
Xin[3:0] = 4'bzzzz;
act_no[3:0] = 4'bzzzz;
stimin = 0;
stimp0 = 0;
stimp1 = 0;
stimp2 = 0;
stimp3 = 0;
//
#1 Clrall = 1;
#1 Clrall = 0;
#2 D[7:0] = 8'b11111111;
#1 Ld_mask = 1; //test Ld_mask
#1 Ld_mask = 0;
#2 act_no[3:0] = 4'b0100;
#2 Sstart = 1; //test Sstart
#1 Sstart = 0;
#2 Cstart = 1; //test Cstart
#1 Cstart = 0;
#2 Spollend = 1; //test Sstart
#1 Spollend = 0;
#2 Cpollend = 1; //test Cstart
#1 Cpollend = 0;
#2 Setsus = 1; //test Setsus
#1 Setsus = 0;
#2 Do_stim = 1; //test Do_stim
#2 Do_stim = 0;
#2 stimp0 = 1; //stimp between context switch
#2 stimp0 = 0;
#1 Sstart = 1;
#1 Sstart = 0;
#1 Suspend = 1;
#2 Suspend = 0;
#2 stimp1 = 1; //stimp during context switch
#2 stimp1 = 0;
#2 Nextact = 1; //return act[0100]
#1 Nextact = 0;
#2 Suspend = 1; //test Suspend
#2 Suspend = 0;
#1 Nextact = 1;
#2 Nextact = 0;
#2 Do_wait = 1; //test Do_wait
#2 Do_wait = 0;
#1 Nextact = 1;
#2 Nextact = 0;
#2 Clrall = 1; //test Clrall
#2 Clrall = 0;

BUTLER Design and Analysis

 70

#1 act_no[3:0] = 4'b1010;
#1 Do_stimx = 1; //test Do_stimx
#1 Do_stimx = 0;
#2 Xin[3:0] = 4'b0100; //test stimin act[Xin]
#1 stimin = 1;
#2 stimin = 0;
End
---------------------- Control memory simulation (final version) -----------------------------
initial begin
D[7:0] = 8'bzzzzzzzz;
Clrall = 0;
Cpollend = 0;
Cstart = 0;
Do_stim = 0;
Do_stimx = 0;
Do_wait = 0;
Ld_mask = 0;
Nextact = 0;
Setsus = 0;
Spollend = 0;
Sstart = 0;
Suspend = 0;
Xin[3:0] = 4'bzzzz;
act_no[3:0] = 4'bzzzz;
stimin = 0;
stimp0 = 0;
stimp1 = 0;
stimp2 = 0;
stimp3 = 0;
//
//
#1 Clrall = 1; //Clrall
#1 Clrall = 0;
//test Round Robin
#1 act_no[3:0] = 4'b1110;
#2 act_no[3:0] = 4'b0100;
#2 Sstart = 1; //Sstart
#1 Sstart = 0;
#2 Setsus = 1; //Setsus
#1 Setsus = 0;
#2 act_no[3:0] = 4'b0101;
#2 Sstart = 1; //Sstart
#1 Sstart = 0;
#2 Setsus = 1; //Setsus
#1 Setsus = 0;
#2 act_no[3:0] = 4'b0110;
#2 Sstart = 1; //Sstart
#1 Sstart = 0;
#2 Setsus = 1; //Setsus
#1 Setsus = 0;
#2 Suspend = 1;
#1 Suspend = 0;
#5 Nextact = 1; //Nextact
#1 Nextact = 0;
#1 act_no[3:0] = 4'b0010;
#2 Spollend = 1; //Spollend
#2 Spollend = 0;
#1 act_no[3:0] = 4'b1110;
#2 Spollend = 1; //Spollend
#2 Spollend = 0;

BUTLER Design and Analysis

 71

#2 Suspend = 1;
#1 Suspend = 0;
#5 Nextact = 1; //Nextact
#1 Nextact = 0;
#2 Suspend = 1;
#1 Suspend = 0;
#5 Nextact = 1; //Nextact
#1 Nextact = 0;
#2 Suspend = 1;
#1 Suspend = 0;
#5 Nextact = 1; //Nextact
#1 Nextact = 0;
//test maybe search
#2 act_no[3:0] = 4'b0000;
#2 Sstart = 1; //Sstart
#1 Sstart = 0;
#2 Setsus = 1; //Setsus
#1 Setsus = 0;
//return act[0000]
#2 Suspend = 1;
#2 Suspend = 0;
#5 Nextact = 1;
#2 Nextact = 0;
#2 Do_wait = 1;
#2 Do_wait = 0;
//test 1 "last" logic
#1 act_no[3:0] = 4'b0010;
#2 Cpollend = 1; //Cpollend
#2 Cpollend = 0;
//test return idle
#2 Clrall = 1;
#2 Clrall = 0;
#2 Suspend = 1;
#2 Suspend = 0;
#2 Nextact = 1;
#2 Nextact = 0;
End
---------------------------------- Integrated simulation --
initial begin
D[7:0] = 8'bzzzzzzzz;
a0 = 0;
a1 = 0;
a2 = 0;
R = 0;
W = 0;
select = 0;
Xin[3:0] = 4'bzzzz;
stimin = 0;
stimp0 = 0;
stimp1 = 0;
stimp2 = 0;
stimp3 = 0;
countin = 1'bz;
//Interrupt controller
//
#2 D[3:0] = 4'b0011; //Ld_act
#1 a0 = 0;
 a1 = 0;
 a2 = 1;
 W = 1;

BUTLER Design and Analysis

 72

#1 select = 1;
#1 select = 0;
 W = 0;
//
#1 a0 = 1; //Test
 a1 = 1;
 a2 = 1;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
///
//Load counter
#2 D[7:0] = 8'b11111011;
//
#1 a0 = 1; //Ld_cntr_lo
 a1 = 1;
 a2 = 0;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
 D[7:0] = 8'b11111111;
//
#1 a0 = 1; //Ld_cntr_hi
 a1 = 1;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
//initialize counter
//
#1 a0 = 0; //Suspend
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//expired
//start counting
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;

BUTLER Design and Analysis

 73

#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
///reset by slice
//
#1 a0 = 0; //Suspend
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//expired
//start counting
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
///reset by actbit = 0
#2 D[3:0] = 4'b0000; //Ld_act
#1 a0 = 0;
 a1 = 0;
 a2 = 1;
 W = 1;
#1 select = 1;

BUTLER Design and Analysis

 74

#1 select = 0;
 W = 0;
//
#1 a0 = 1; //Test
 a1 = 1;
 a2 = 1;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
//expired
//initialize counter
//
#1 a0 = 0; //Suspend
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
//start counting
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
///
//
#2 D[3:0] = 4'b0000; //Ld_act
#1 a0 = 0;
 a1 = 0;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;

BUTLER Design and Analysis

 75

 W = 0;
//
#1 a0 = 1; //Test
 a1 = 1;
 a2 = 1;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
//reset counter
//
#1 a0 = 0; //Suspend
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
//
#1 a0 = 0; //Clrall
 a1 = 1;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
//Counter
//Load counter
#2 D[7:0] = 8'b11111011;
//
#1 a0 = 1; //Ld_cntr_lo
 a1 = 1;
 a2 = 0;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
 D[7:0] = 8'b11111111;
//
#1 a0 = 1; //Ld_cntr_hi
 a1 = 1;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
//initialize counter

BUTLER Design and Analysis

 76

//
#1 a0 = 0; //Suspend
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
//start counting
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
#1 countin = 1;
#1 countin = 0;
//reset counter
//
#1 a0 = 0; //Suspend
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
///simple version cntl mem
//
#1 a0 = 0; //Clrall
 a1 = 1;

BUTLER Design and Analysis

 77

 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#2 D[7:0] = 8'b11111111;
//
#1 a0 = 0; //Ld_mask
 a1 = 0;
 a2 = 0;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#2 D[3:0] = 4'b0100; //Ld_act
#1 a0 = 0;
 a1 = 0;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#1 a0 = 1; //Sstart
 a1 = 0;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Cstart
 a1 = 0;
 a2 = 0;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#1 a0 = 1; //Spollend
 a1 = 0;
 a2 = 1;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Cpollend
 a1 = 0;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#1 a0 = 0; //Setsus
 a1 = 1;
 a2 = 1;

BUTLER Design and Analysis

 78

 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 0; //Do_stim
 a1 = 0;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#2 stimp0 = 1; //stimp between context switch
#2 stimp0 = 0;
//
#1 a0 = 1; //Sstart
 a1 = 0;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 0; //Suspend
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#2 stimp1 = 1; //stimp during context switch
#2 stimp1 = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 0; //Suspend
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 0; //Do_wait

BUTLER Design and Analysis

 79

 a1 = 0;
 a2 = 1;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 0; //Clrall
 a1 = 1;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#2 D[3:0] = 4'b1010; //Ld_act
#1 a0 = 0;
 a1 = 0;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#1 a0 = 0; //Do_stimx
 a1 = 1;
 a2 = 0;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#2 Xin[3:0] = 4'b0100; //test stimin act[Xin]
#1 stimin = 1;
#2 stimin = 0;
///Final version cntl mem
#1 a0 = 0; //Clrall
 a1 = 1;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//test Round Robin
//
#2 D[3:0] = 4'b0100; //Ld_act
#1 a0 = 0;
 a1 = 0;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;

BUTLER Design and Analysis

 80

 W = 0;
//
#1 a0 = 1; //Sstart
 a1 = 0;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 0; //Setsus
 a1 = 1;
 a2 = 1;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#2 D[3:0] = 4'b0101; //Ld_act
#1 a0 = 0;
 a1 = 0;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#1 a0 = 1; //Sstart
 a1 = 0;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 0; //Setsus
 a1 = 1;
 a2 = 1;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#2 D[3:0] = 4'b0110; //Ld_act
#1 a0 = 0;
 a1 = 0;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#1 a0 = 1; //Sstart
 a1 = 0;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//

BUTLER Design and Analysis

 81

#1 a0 = 0; //Setsus
 a1 = 1;
 a2 = 1;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 0; //Suspend
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#2 D[3:0] = 4'b0010; //Ld_act
#1 a0 = 0;
 a1 = 0;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#1 a0 = 1; //Spollend
 a1 = 0;
 a2 = 1;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#2 D[3:0] = 4'b1110; //Ld_act
#1 a0 = 0;
 a1 = 0;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#1 a0 = 1; //Spollend
 a1 = 0;
 a2 = 1;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 0; //Suspend
 a1 = 1;

BUTLER Design and Analysis

 82

 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 0; //Suspend
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 0; //Suspend
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
//test maybe search
//
#2 D[3:0] = 4'b0000; //Ld_act
#1 a0 = 0;
 a1 = 0;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#1 a0 = 1; //Sstart
 a1 = 0;
 a2 = 0;

BUTLER Design and Analysis

 83

 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 0; //Setsus
 a1 = 1;
 a2 = 1;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
//return act[0000]
#1 a0 = 0; //Suspend
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 0; //Do_wait
 a1 = 0;
 a2 = 1;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
//test 1 "last" logic
//
#2 D[3:0] = 4'b0010; //Ld_act
#1 a0 = 0;
 a1 = 0;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#1 a0 = 1; //Cpollend
 a1 = 0;
 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
//test return idle
#1 a0 = 0; //Clrall
 a1 = 1;

BUTLER Design and Analysis

 84

 a2 = 1;
 W = 1;
#1 select = 1;
#1 select = 0;
 W = 0;
//
#1 a0 = 0; //Suspend
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
#1 a0 = 1; //Nextact
 a1 = 1;
 a2 = 0;
 R = 1;
#1 select = 1;
#1 select = 0;
 R = 0;
//
End

BUTLER Design and Analysis

 85

Index of Figures and Tables

RUNNING

SUSPENDED

READY

Fig. 1 Task States

queues

queue

task

SQ PQ Task
Table

Current Task

Interrupt
Control ler

Control Unit

bus signals

control signals

Fig. 2 The configurable hardware scheduler micro-architecture

interrupts

 BUTLER Design and Analysis

 86

Fig. 3 BUTLER System Overall Configuration

Processor Peripherals

D Add R/W Cin Intrp Stimp

BUTLER

Processor Peripherals

D Add R/W Cin Intrp Stimp

BUTLER

Processor Peripherals

D Add R/W Cin Intrp Stimp

BUTLER

Processor Peripherals

D Add R/W Cin Intrp Stimp

BUTLER

Processor Peripherals

D Add R/W Cin Intrp Stimp

BUTLER

 BUTLER Design and Analysis

 87

Fig. 4 Block Diagram of original BUTLER

 BUTLER Design and Analysis

 88

Fig. 5 Control Memory

 BUTLER Design and Analysis

 89

Last

Polstart

Found

Found

Found

Pollend

Polltop

Fig. 6 Polstart Search

 BUTLER Design and Analysis

 90

Here

Search
down

Search
up

Pollend

Pollend

High

High

Low

Low

Low

Low

Low

High

High

Fig. 7 Search for activities to be included in pollset of Nextact

 BUTLER Design and Analysis

 91

Candidate Here

Search

Search

Search

Search

Search

Found
(from pollset with
higher priority)

Found
(to pollset with
lower priority)

Pollend

Pollend

Fig. 8 Round Robin Implementation

Polstart

 BUTLER Design and Analysis

 92

Fig. 9 Control Memory

 BUTLER Design and Analysis

 93

Fig. 10 “ last” variable setting logic

Pollend?

No

Yes
Exit

Reset “ last”

Pollend?

No

Yes
Exit

Reset “ last”

Pollend?

No

Yes
Exit

Reset “ last”

Pollend?

No

Yes
Exit

Reset “ last”

Returning
activity Set “ last”

B

U
T

L
E

R
 D

esign and A
nalysis

94

Decoder
C.H.L.Koo

Printed on Fri Aug 26 15:22:28 2005 Printed by Signalscan 6.5p1 from Cadence Design Systems, Inc.

Group: A

Clrall = 0

Cpollend = 0

Cstart = 0

Do_stim = 0

Do_stimx = 0

Do_wait = 0

Ld_act = 0

Ld_cntr_hi = 0

Ld_cntr_lo = 0

Ld_mask = 0

Nextact = 0

R = 0

Setsus = 0

Spollend = 0

Sstart = 0

Suspend = 0

Test = 0

W = 0

a0 = 0

a1 = 0

a2 = 0

select = 0

37,000 ps0 5000 10,000 15,000 20,000 25,000 30,000
TimeA = 0(0) ps

Cursor1 = 0(0) ps
Cursor2 = 0 ps

Fig. 11 S
ignal w

aveform
 of decoder sim

ulation

B

U
T

L
E

R
 D

esign and A
nalysis

95

Activity Number Register
C.H.L.Koo

Printed on Fri Aug 26 15:33:24 2005 Printed by Signalscan 6.5p1 from Cadence Design Systems, Inc.

Group: A

D = ’b xxxx0000

Ld_act = 0

act_no = ’b 0000

xxxx0000 xxxx1010 xxxx1110 xxxx0101

0000 1010 0101

21,000 ps0 5000 10,000 15,000
TimeA = 0(0) ps

Cursor1 = 0(0) ps
Cursor2 = 0 ps

Fig. 12 S
ignal w

aveform
 of activity num

ber register sim
ulation

B

U
T

L
E

R
 D

esign and A
nalysis

96

Counter
C.H.L.Koo

Printed on Fri Aug 26 15:30:41 2005 Printed by Signalscan 6.5p1 from Cadence Design Systems, Inc.

Group: A

D = ’h 00

Ld_cntr_hi = 0

Ld_cntr_lo = 0

Test = 0

countin = 0

countout = ’h 0000

expired = 0

slice = 0

00 FB FF

0000 FFFB FF* FF* FF* FF* 00* 00* 00* 00* 00* 0005 FFFB

50,000 ps0 10,000 20,000 30,000 40,000
TimeA = 0(0) ps

Cursor1 = 0(0) ps
Cursor2 = 0 ps

Fig. 13 S

ignal w
aveform

 of counter sim
ulation

B

U
T

L
E

R
 D

esign and A
nalysis

97

Interrupt controller
C.H.L.Koo

Printed on Fri Aug 26 15:26:36 2005 Printed by Signalscan 6.5p1 from Cadence Design Systems, Inc.

Group: A

Clrall = 0

Test = 0

act_no = ’b zzzz

expired = 0

interrupt = 0

maybe = 0

slice = 0

0011 0001 0000

28,000 ps0 5000 10,000 15,000 20,000
TimeA = 0(0) ps

Cursor1 = 0(0) ps
Cursor2 = 0 ps

Fig. 14 S
ignal w

aveform
 of interrupt controller sim

ulation

B

U
T

L
E

R
 D

esign and A
nalysis

98

Control memory (simple version)
C.H.L.Koo

Page 1 of 2

Printed on Tue Aug 30 11:43:25 2005 Printed by Signalscan 6.5p1 from Cadence Design Systems, Inc.

Group: A

Clrall = 0

Cpollend = 0

Cstart = 0

D = ’b zzzzzzzz

Do_stim = 0

Do_stimx = 0

Do_wait = 0

Dout = ’b 10000

Ld_mask = 0

Nextact = 0

Setsus = 0

Spollend = 0

Sstart = 0

Suspend = 0

Xin = ’b zzzz

Xout = ’b zzzz

act_no = ’b zzzz

maybe = 0

slice_out = 0

stimin = 0

stimout = 0

stimp0 = 0

stimp1 = 0

stimp2 = 0

stimp3 = 0

 = ’b zzzzzzzz zzzzzzzz

 = ’b zzzzzzzz zzzzzzzz

 = ’b zzzzzzzz zzzzzzzz

 = ’b zzzzzzzz zzzzzzzz

 = ’b zzzzzzzz zzzzzzzz

 = ’b zzzzzzzz zzzzzzzz

11111111

10000 00100

01*

1010

0100 1010

0000000000000000 0000100000000000 0000000000000000 0*

0000000000000000 0000* 1000100010001000 1100010011001100 0000000000000*

0000000000000000 0000100000000000 00* 00* 0000000000000000

00000000000* 00* 0000000000000000 0000100000000000 0000000000000*

0000000000000000 00* 0000000000000000

0000000000000000 0000100000* 00* 00* 0000000000000000

69,000 ps0 10,000 20,000 30,000 40,000 50,000
TimeA = 0(0) ps

Cursor1 = 0(0) ps
Cursor2 = 0 ps

Control memory (simple version)
C.H.L.Koo

Page 2 of 2

Printed on Tue Aug 30 11:43:25 2005 Printed by Signalscan 6.5p1 from Cadence Design Systems, Inc.

 = ’b zzzzzzzz zzzzzzzz 1zzzzzzzzz* 1z* 10* 1000100000000000

69,000 ps0 10,000 20,000 30,000 40,000 50,000
TimeA = 0(0) ps

Cursor1 = 0(0) ps
Cursor2 = 0 ps

Fig. 15 S

ignal w
aveform

 of control m
em

ory sim
ulation (sim

ple version)

B

U
T

L
E

R
 D

esign and A
nalysis

99

Control memory (final version)
C.H.L.Koo

Page 1 of 2

Printed on Fri Aug 26 15:41:31 2005 Printed by Signalscan 6.5p1 from Cadence Design Systems, Inc.

Group: A

Clrall = 0

pollend = 0

Cstart = 0

’b zzzzzzzz

Do_stim = 0

o_stimx = 0

Do_wait = 0

 = ’b xxxxx

Ld_mask = 0

Nextact = 0

Setsus = 0

pollend = 0

Sstart = 0

Suspend = 0

n = ’b zzzz

t = ’b zzzz

o = ’b zzzz

maybe = 0

ice_out = 0

stimin = 0

stimout = 0

stimp0 = 0

stimp1 = 0

stimp2 = 0

stimp3 = 0

xx xxxxxxxx

xx xxxxxxxx

xx xxxxxxxx

xx xxxxxxxx

xx xxxxxxxx

xx xxxxxxxx

xxxxx 00100 00101 00110 00100 00000 *

* 0100 0101 0110 0010 1110 0000 0010

0000000000000000

0000000000000000

0000000* 000010* 000011* 0000111* 00000110000* 0000* 0* 0000* 0* 0000* 000001* 1* 10001* 00001110000* 00* 1000*

0000* 000010* 000011* 0000111000000000 1000111000000000 00000000*

0000000000000000 001* 0010000000000010 00* 00000000*

0000000000000000 000* 000001100000* 000* 00* 000* 00* 000* 00000110000* 100* 00001110000* 00000000*

112,999 ps0 20,000 40,000 60,000 80,000
TimeA = 0(0) ps

Cursor1 = 0(0) ps
Cursor2 = 0 ps

Control memory (final version)
C.H.L.Koo

Page 2 of 2

Printed on Fri Aug 26 15:41:31 2005 Printed by Signalscan 6.5p1 from Cadence Design Systems, Inc.

00 00000000 0000000000000000 1000* 00001000000* 1000* 1000010* 1000001* 1000100000000001 1000*

112,999 ps0 20,000 40,000 60,000 80,000
TimeA = 0(0) ps

Cursor1 = 0(0) ps
Cursor2 = 0 ps

Fig. 16 S

ignal w
aveform

 of control m
em

ory sim
ulation (final version)

 BUTLER Design and Analysis

 100

Fig. 17. Block diagram of newly designed BUTLER

B

U
T

L
E

R
 D

esign and A
nalysis

101

Integrated simulation
C.H.L.Koo

Printed on Tue Aug 30 12:12:43 2005 Printed by Signalscan 6.5p1 from Cadence Design Systems, Inc.

Group: A

D = ’b zzzzzzzz

Dout = ’b 10000

R = 0

W = 0

Xin = ’b zzzz

Xout = ’b zzzz

a0 = 0

a1 = 0

a2 = 0

cand_bit = ’b zzzzzzzz

countin = z

countout = ’b 00000000

interrupt = 0

last_bit = ’b zzzzzzzz

pollend_bit = ’b zzzzzz

select = 0

start_bit = ’b zzzzzzzz

stim_bit6 = ’b zzzzzzzz

stim_bit7 = ’b zzzzzzzz

stimin = 0

stimout = 0

stimp0 = 0

stimp1 = 0

stimp2 = 0

stimp3 = 0

suspend_bit = ’b zzzzzz

* 11111111 11110000 11111111 11110100 111* 1* 1* 111* * 11111* 1111* 11*

10000 00100 00101 * * 001* 00000

0100

1010

0000000000000000 * 0000000000000000 0000* 00* 00* *

000* 0* 0* 1111* 1111111111111011

1zzzz* 1000000000000000 0000100000000000 000* * * 10000100*

0000000000000000 0000000000000000 * 00100000000* *

00000000000000* 000* 00001* 00000* 0* 0* 0000111000000* 1000* *

0000000000000000 000* 000000* 0000000000000000

0000000000000000 10* 11* 0000000000000000

0000000000000000 0000* 00000000* 0* 0* * 000* 0* 00*

348,000 ps0 50,000 100,000 150,000 200,000 250,000
TimeA = 0(0) ps

Cursor1 = 0(0) ps
Cursor2 = 0 ps

Fig. 18 S
ignal w

aveform
 of integrated sim

ulation

 BUTLER Design and Analysis

 102

