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Abstract 

Translating software scheduling functions into hardware has been extensively 

researched over the last decade. Different approaches and techniques like co-

processor techniques, special purpose configurable hardware scheduler and 

customized hardware scheduler have been demonstrated for its improvement on 

system performance. In this paper, the focus will be put on the specification and 

documentation of a customized hardware scheduler design named BUTLER. The 

documentation presents the BUTLER in behavioural level and describes every 

function and search logic in details on top of the BUTLER design description by Eric 

Campbell [3]. Verilog specification is done for verification of the newly designed 

BUTLER with different scale and configuration. 

As scheduling in embedded real-time multiple-processor systems being a major aspect 

in computer system resource management, the BUTLER plays a important role by 

handling most of the scheduling processes including interrupt control and context 

switching which maybe done by software functions in other hardware scheduling 

design. An important feature for the BUTLER is the flexible configuration, in which 

design tiles can configure in a different approach to obtain alternative parameters for 

a different design. 

Keywords: hardware scheduler, interrupt control, context switching. 
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1. Introduction 

Various studies have demonstrated that synchronous system operates well if the 

message exchange between the processors and memory modules of a multi-processor 

are of fixed length. However, lengths of messages are unlikely to be the same in 

reality, which makes asynchronous system becoming more efficient. As asynchronous 

systems going more and more important in modern computing systems, we would like 

to put our focus on the scheduling issues in embedded real-time multiple-processor 

systems. In order to achieve the highest efficiency in the destination processor, 

software functions tend to be replaced by some hardware solutions. Therefore, 

transferring task scheduling from software into hardware has been extensively 

investigated by researchers [1 – 3]. 

 

The design approaches and the level of hardware dependency on task scheduling are 

being compared among researches on hardware scheduler. Discussion of systems are 

categorised according to their own design approach, coarse grain, medium grain and 

fine grain. Since fabrication technology keeps improving, price of silicon drops. As a 

result, designs go to hardware that consumes more silicon area for higher circuit 

performance. Workload of CPU has to be minimized in order to maximize speed and 

performance in fast complicate multiple processes. On the other hand, the adoption of 

hardware schedulers to microprocessors is another problem addressed from recent 

researches. 

 

1.1 Review of L iterature 
A co-processor design [1], a configurable hardware scheduler design [2] and a 

customized hardware scheduler design named BUTLER [3] represent exactly the 

three design approaches mentioned above. The following three sections are going to 

review all these approaches in both performance and design aspects. 

 

1.1.1 Coarse grain 
For hard systems which must provide very fast responses or support many application 

tasks or use complex, dynamic scheduling policies, real-time executive functions 

having minimal overheads are absolutely essential. A way to achieve this is to transfer 
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software functions into hardware by employing co-processing techniques – a 

‘software in silicon’  solution. Such systems should limited to a small number of tasks 

to reduce task intercommunication time. 

 

This type of task scheduler based on off-the-shelf hardware microcontroller. The 

approach is identifying all the tasks to be performed by the software and 

implementing as a set of co-operating processes. The overall system function is 

divided into a set of sub-functions or tasks and finally converted into sequential 

programs. The suggested task scheduler co-processor for hard real-time systems is 

particularly for reducing target system loading and in ease of interfacing [1]. 

 

1.1.1.1 Scheduling issues 

All activated tasks should be lying within one of the states shown in Fig. 1. Running 

is the state which a task is being executed, only one task can be in this state at any 

time. Ready is the state which task is waiting for access to the processor. And 

suspended is self-explanatory. For reasons, tasks are usually organised into queues as 

shown in Fig. 1. And the scheduler manages all the suspended queues including time 

and event management functions. 

 

Schedule evaluation and task dispatching are the two operations involved in ready 

queue management. The former one determines how tasks should be ordered or 

prioritized. The latter one selects and installs the next application task required for 

execution by the processor. 

 

1.1.1.2 Performance 

To achieve the best performance in processor of high utilization with minimization of 

missed deadlines, dynamic schedule is one of the solutions. However, with the high 

associated overhead when implemented in software, it seems to be ruled out from fast, 

hard systems. With a hardware scheduler, the associated overhead can be minimized 

for implementation. In return, the number of tasks should be kept to a minimum, so it 

is most suitable for single process. 

 

In order to support different target processors, scheduler has to be language and 

processor independent, which makes impossible to prioritise tasks for the use of the 
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registers. All processor data must therefore be stored away during context switching, 

and normally placed off chip in RAM memory. Finally it becomes the major 

overheads in design involving co-processor. 

 

1.1.1.3 Functions 

Scheduling and task switching decisions are all done by the co-processor with a 

specified scheduling policy. Besides, the target system must be able to avoid task 

switching, which may result in problems (e.g. a task being in a critical section of 

code). Furthermore, the co-processor was responsible for all task-timing functions like 

periodicity and delays. And task-level exception handling would be the duty of the 

unit as well, which centralized all error-handling decisions. It is intended to be an 

overall, centralized task controller for the whole system, which function with a 

selected scheduling policy. However, a certain number of scheduling policies may be 

available within the co-processor as well. 

 

1.1.1.4 Inter facing 

Two kinds of connection related to the co-processor, interface between co-processor 

and target, and interface between co-processor and outside world. The former one is a 

single, simple processor independent connection. And the latter one including 

interrupt signals and serial data communication. In order to maintain full scheduling 

management and predictable operations, external interrupt signals are handled by the 

co-processor instead of the target processor. Turns out a more reliable system of 

higher security standard. The serial data communication is designed for the purposes 

of testing and performance evaluation only. 

 

All system inputs except interrupts are all routed to the target and the same as all 

output signals for driving system are generated by the target processor, so the co-

processor cannot directly change the outputs and thus modify system behaviour. 

Context switching is supported by interrupt signalling the target processor instead of 

direct access to the target by the co-processor unit. 

 

1.1.2 Medium grain 

To support high-resolution time tick in fast real-time applications with minimum 

overheads on the system, a configurable hardware scheduler for real-time systems is 
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proposed [2]. Its architecture reduced the time consuming in scheduling and time-tick 

processing to a minimum. The hardware scheduler is provided in the format of 

Intellectual Property (IP) blocks which allow designers to implement its own 

configuration with a developed tool. According to the scheduler suggested in the 

paper, three most common scheduling disciplines are supported, priority-based, rate 

monotonic and earliest deadline first [2]. It makes the scheduler more flexible and 

compatible to different target processors, where some of them might require 

scheduling policy changes during operation. Instead, some designs only focus on a 

specified scheduling policy which reduce the complexity on design but suffering from 

those systems need scheduling discipline changes. 

 

The essence of the introduced system is the using of advance FPGA technology to 

implement part of the Real-Time Operating System (RTOS), in order to minimize 

scheduling and time-tick processing [2]. As the software scheduler and the time-tick 

processing are transformed into hardware component, the associated software 

overheads are eliminated as well. The configurable unit also overcomes the obstacle 

that hardware schedulers only supporting narrow range of applications faced by 

common hardware schedulers. 

1.1.2.1 Scheduling issues 

Scheduling decisions are done by th e configurable hardware scheduler with the 

micro-architecture shown in Fig. 2. The operation is based on the information stored 

in Sleep queue, Priority queue, Task table, Current task registers and the control 

signals from the control unit. Moreover, its operation is associated with the interrupt 

signals from the interrupt controller as well. 

 

Priority queue is a sorted queue used to store the active tasks according to its priority 

(ready queue). When a task is inserted, the queue automatically re-sorts itself in a 

priority order. Sleep queue is only responsible for storing the sleeping tasks (suspend 

queue). Task table is a look up table indexed by the task ID according to a specific 

task table entry format. Scheduler looks for task information from that unit whenever 

a task is activated. Interrupt controller is the unit responsible to handle all external 

interrupts, and pre-emption is supported as well. Finally, control unit acts as the 
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interface between the hardware scheduler and the external host, which receives and 

decodes commands and generates proper control signals to the system. 

 

1.1.2.2 Performance 

For ordinary priority-based scheduler, the upper bound of the processing time is 

directly proportional to the number of tasks in the system. This overhead is large if 

there are many tasks and the time tick resolution is high. As a result, the CPU 

utilisation is reduced, and tasks may miss their deadlines. However, with the 

configurable hardware scheduler, assembly instructions executed by the scheduler and 

the background time tick processing are eliminated. Turns out the response time and 

the interrupt latency are improved [2]. 

 

1.1.2.3 Functions 

Time-tick (a periodic interrupt to keep track of time during which the scheduler 

makes a decision) handling, interrupt processing and execution of chosen scheduling 

algorithm are implemented in the hardware scheduler, while context switching is left 

to be done in software. Configuration of hardware and operations are performed by 

the software portion with a set of commands from the hardware scheduler. All 

commands are issued through a memory mapped I/O port, which can be done in one 

or two clock cycles depending on the size of the command word. 

 

1.1.2.4 Inter facing 

When a task of higher priority is ready, the hardware scheduler directs the processor 

to task switching by sending a corresponding interrupt signal to the CPU. Upon 

receiving an interrupt signal, the CPU sends a control signal to the context switcher, 

which stores the current context, and switches to the task with the ID read from the 

hardware scheduler. The scheduler is designed in ease of interfacing with any 

microprocessor. The unit can either be a co-processor directly connected to the target 

processor or be a memory-mapped port connected to the system bus. 

 

1.1.3 Fine grain 

Eric Campbell (1996) introduced a physical device that can adapt to any 

microprocessor named BUTLER in the BUTLER design description [3]. The 
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BUTLER technology focused on the problems of scheduling application function 

tasks in embedded real-time multiple-processor systems, instead of the single-

processor systems discussed in the previous sections. The device provides efficient 

support for multi-tasking in a single or multiple processor system. It holds all the 

control variables of tasks, which are going to execute in the microprocessor, and 

makes the decision for next running task during execution time. The device is 

particularly suitable for hard real-time embedded systems and systems that need to 

attain certain level of reliability. 

 

1.1.3.1 Scheduling issues 

With reference to a programmed priority level selection, the BUTLER directly 

handles all asynchronous stimuli and schedules the relevant task when its turn arrives. 

Typical asynchronous stimuli are interrupt lines from local peripherals or from other 

connected BUTLERs. For all activities assigned to run on a processor, an associated 

BUTLER holds all control variables and computes the next activity that should be 

scheduled according to the current programmed priority levels and the control 

variable values. And instructions from the processor or asynchronous stimuli 

manipulate the control variables for scheduling purpose. 

 

Eric Campbell { 1996) suggested a priority leveling scheme that activities are 

numbered from zero to sixty-four, which named activity number. The smaller activity 

numbers the higher priority level [3]. Priority levels can be allocated to individual 

activities or to groups of activities. In case more than one activity is a candidate for 

scheduling at the same time, the next activity selection logic will select a candidate 

from the group with highest priority. Selection is made based on round robin if more 

than one candidate appears in the same priority group. Control interrupts will be 

generated under certain interrupt conditions. 

 

1.1.3.2 Performance 

A design use asynchronous techniques throughout the whole system is presented. The 

BUTLER is totally responsible for asynchronous stimuli. It also claimed that the 

design could be easily implemented in different technologies because it is not 

dependent on critical timing parameters [3]. As a result, it avoids problems on clock 

signal distribution, clock skew or set-up and violation holding. Selection logic for 
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next activity is programmable. Furthermore, cooperative and pre-emptive scheduling 

schemes are also supported. The asynchronous design has non-demanding power 

supply requirements. However, the unit is not suitable for system environment with 

unintentional memory accesses as it performs specified functions when accessed as 

memory. 

 

As mentioned before, multiple processor system is supported by the BUTLER 

hardware scheduler. Every single processor is connected to an associated BUTLER 

and BUTLERs between processor are connected with each other. Any scheduling 

request is done by registration with a processor’s own BUTLER. BUTLERs 

communicate directly and schedule a relevant task to the destination processor during 

its turn if a task arrives on a different processor. This reduces the chance of interrupt 

the running task on the destination processor, and serving as a temporally 

deterministic operation. 

 

1.1.3.3 Functions 

BUTLER can be used in conjunction with an associated processor hosting a small 

run-time software kernel. All BUTLER operations are performed in response to 

memory accesses from its associated local processor. The BUTLER directly handles 

all asynchronous stimuli, performs relevant task scheduling with reference to the 

programmed priority level selection. When accessed as memory, the BUTLER 

performs specified functions. Furthermore, the BUTLER also operates as an interrupt 

controller to handle all interrupts in scheduling process. 

 

1.1.3.4 Architecture and inter facing 

The BUTLER has a tiling design approach – an assembly of design tiles in an array 

structure. Different types of design tile are butted together to form a two dimensional 

array without any additional signal routing between tiles. Each tile is a design 

building block that contains logic and structure, the array provides overall functions 

of the design. 

 

For connection between BUTLER and its local processor, there is a standard memory 

interface consists of bi-directional data bus, address line inputs, memory control line 

inputs, interrupt output and a counter input line. 
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The main BUTLER array has eight different types of tiles, each built by a few simple 

gates. The main array is constructed by sixty-four rows of tiles each stores the control 

variables for an activity with a particular activity number incrementing from top row 

down the array. Without additional routing, a row of tiles that abut the top row of the 

main array forms interface to the processor, peripherals and other BUTLERs. Besides, 

array control signals are generated from that top row of tiles as well. 

 

1.1.4 Conclusions 

Numerous studies have demonstrated that hardware scheduler is an essential solution 

to reduce workload in CPU, improving efficiency and performance [1 – 3]. Different 

approaches of hardware scheduler implementations have been discussed in the above 

sections. Co-processor with microcontroller base, configurable hardware scheduler 

with FPGA base and the BUTLER fully customized scheduling hardware are 

compared for their performance and suitability for modern embedded real-time multi-

processor system. Furthermore, the characteristics of scheduling, function area and 

interfacing problems of each design are addressed. It has been shown that 

programmability of circuit is decreased from unlimited programmable in coarse grain 

design to restricted programmable in medium grain design and finally no 

programming allowed in fine grain design. On the other hand, the performance of 

scheduling is increased from coarse grain to medium grain and achieves the highest 

performance in fine grain design. 

 

The co-processor approach is a simple solution to translate the software functions into 

hardware; however, it only operates efficiently under single processor system which 

lies beyond our project focus area. The configurable hardware scheduler supports a 

wide range of processes and minimizes the scheduling of time-tick processing by 

implementing part of the RTOS in advance FPGA technology. The BUTLER design 

seems to be the best design for modern embedded real-time multiple-processor 

systems. It handles most of the scheduling tasks including interrupt control and 

context switching. 

 

As a matter of fact that fine grain scheduling hardware is going to be our focus, this 

review therefore puts more effort on the BUTLER system’s scheduling issues, 

functions, architecture and interfacing. The design description claimed for its easy 
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implementation in different technologies by the independence on critical timing 

parameters. The asynchronous circuitry presented also shows no clocking or power 

supply requirement problems. An important feature for the BUTLER is the flexible 

configuration, in which design tiles can configure in a different approach to obtain 

alternative parameters. The investigation of different configurations is therefore part 

of the project area. Apart from those merits offered by the BUTLER system, the 

design being not conventional is a main weakness of the system. Therefore, a system 

documentation and a design specification including functionality are required for 

academics to follow. 

 

1.2 Objectives 

To improve microprocessor efficiency and performance, the aim of this project is to 

design a hardware scheduler based on the ad-hoc design of BUTLER. Since the 

original design is not conventional, a detail documentation of the BUTLER system is 

prepared and serves as reference for future studies and new system design in this 

project. Regarding the tiling design of the present BUTLER system, a new BUTLER 

with different tile configuration is designed to realize different functionality. 

 

The original BUTLER able to handle 64 activities with different priorities, perform 16 

different functions within itself initiated by memory access from microprocessor, 

handle external stimuli from local peripheral and other 4 connected BUTLERs. While 

the new designed BUTLER system handles 16 activities only, perform the same 

number of functions within BUTLER, number of connected BUTLER also reduced to 

one. In addition, size of the ripple down counter is reduced from 32 bits to 16 bits. 

Therefore, the total number of tiles in the main array may shrink from 1312 to less 

than 328. 

 

Documentation consists of functional diagrams and description of functionality of the 

present ad-hoc BUTLER is produced to provide further information on top of the 

design description. The new BUTLER system design is presented in Verilog 

Hardware Description Language in Register Transfer Level for specification, while 

other simulation and analysis of the system is performed in the Cadence design 

environment. Functional block diagrams, system configuration and the final designed 
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system will be presented in later sections. Owing to the limited project period, 

implementation of the design will be a topic of future researches. 
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2. Methodology 

Documentation of the original BUTLER system was produced according to the design 

description. In the following section, the documentation presents the detail of the 

BUTLER system in a behavioral level together with some major signal routings. 

Importance and realizations of different functions in the system are also demonstrated. 

In addition, system operations including various search logics are illustrated together 

with simplified block diagrams. 

 

Several design tools made used during the design and simulation process are 

introduced briefly following the documentation. Procedures for the whole project are 

then discussed in the last part of the methodology section. 

 

2.1 BUTLER Documentation 

The BUTLER is a device provides efficient support for multi-tasking in a single or 

multiple processor system. It holds control variables for each task assigned to run on 

the microprocessor and continually identifies the next task that should run. Some 

control variables are manipulated by the instructions from the processor, some by 

asynchronous stimuli from local peripherals and some by asynchronous stimuli from 

other connected BUTLERs. 

 

All BUTLER operations are carried out in response to memory accesses from its local 

processor. Write and read signals to the BUTLER are used to load operational data, 

return data to the processor and to initiate internal BUTLER operations. Different 

operations with respect to different addresses are shown in the table below. Request 

signals to initialize the operation will be sent out according to the indication of the 

stored instruction. 

 

Address Write Read 

A2 A1 A0   

0 0 0 Load_Mask Do_Stim 

0 0 1 Load_Activity Do_Wait 

0 1 0 Do_Stimx Suspend 
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0 1 1 Clear_All Set_Suspended 

1 0 0 Clear_Started Set_Started 

1 0 1 Clear_Pollend Set_Pollend 

1 1 0 Load_Counter_Lo Nextact 

1 1 1 Load_Counter_Hi Control_Interrupts 

 

Table 1. BUTLER instruction addresses 

 

2.1.1 Activity Pr ior ity 

Activities are numbered from 0 to 64. When priority levels apply, smaller activity 

numbers have the higher priorities. Activity number 64 always has the lowest priority 

and can be used to schedule an idle activity at a time when no other activities are 

candidates for scheduling. Following a Clear_All BUTLER instruction activities 

numbered zero to sixty-four are assigned equal priorities. Priority levels can be 

allocated to individual activities or to groups of activities by inserting pollset 

boundaries, which is realized by Set_Pollend instructions. Pollset boundaries may be 

inserted or removed at any time. 

 

2.1.2 System configuration 

The overall system connection is shown in Fig. 3. Every BUTLER is connected with 

its own processor and four other BUTLERs. Four stimuli signals are connected to 

other four BUTLERs to select which BUTLER to stimulate and a six-bit address line 

is used to specify the activity number of a particular activity it wants to stimulate. 

Therefore, each BUTLER has 10 external stimuli output lines to other BUTLERs and 

28 external stimuli input lines from other BUTLERs. 

 

In Fig. 4, it shows the functional diagram of the present BUTLER. Decoded read, 

write and select signals together with a decoded address by three input address lines 

from the processor access the instruction memories to decide which instruction to 

operate. And then request signals are sent out from the instruction memories to 

initialize operation in other functional blocks as indicated in the figure. Most 
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functions involved in the next activity selection are performed within the activity 

memories. The next activity for scheduling is returned to the processor through the 

16-bit bi-directional data bus (D) during a Nextact BUTLER instruction. 

 

2.1.3 Instructions 

Load_Mask (Write A000) is a BUTLER instruction to set the mask bit of different 

channels in the activity specified in the most recent Load_Activity instruction. The 

mask bits to set are specified in the data word (D) of a Load_Mask BUTLER 

instruction, where the data word is stored in the 16-bit bi-directional data bus. All 

sixteen bits of the data word are made used in this instruction to specify mask pattern 

for sixteen stim-wait channels. Some operations are performed to particular channels 

according to this mask bit. 

 

Load_Activity (Write A001) BUTLER instruction sets the activity number that held 

on the BULTER. This activity number is specified in the data word (D) of a 

Load_Activity BUTLER instruction. Only the least significant six bits of the data 

word are used for this instruction to indicate activity number from zero to sixty-three. 

Some instructions operate on a specified activity with respect to this specified number. 

 

Do_Stim (Read A000) is a BUTLER instruction to set the “Stimmed” channel 

according to the mask pattern specified in the most recent Load_Mask instruction of a 

particular activity specified in the most recent Load_Activity instruction. Those 

channels specified in that activity are considered to be stimmed when the “Stimmed” 

control variable is set, which is used to determine whether it is a candidate for 

scheduling in the next activity selection logic. 

 

Do_Stimx (Write A010) BUTLER instruction generates external stimulation to other 

BUTLERs. Activity number specified in the most recent Load_Activity instruction is 

set up in the external stimuli output (Xout), which is connected to four other 

BUTLERs, in order to specify the activity to stimulate in the target BUTLER. Mask 

pattern specified in the most recent Load_Mask instruction is responsible for the 

selection of target BUTLER. As four other BUTLERs are connected to four different 
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channels respectively, the channel with mask bit set will generate a stimulation signal 

(Stimout) to the connected BUTLER. 

 

Set_Star ted (Read A100) is a BUTLER instruction to set the “Started”  variable of a 

particular activity true. The activity is chosen by the activity number specified in the 

most recent Load_Activity instruction. An activity is considered to be started when 

the “Started”  control variable is set, which is used to determine whether it is a 

candidate for scheduling in the next activity selection logic. As there is only one 

“Started”  control variable in each activity, no mask pattern is required during 

operation. 

 

Clear_Star ted (Write A100) operates exactly the same way as Set_Started BUTLER 

instruction but to make false the “Started”  variable instead of setting it true. 

 

Set_Pollend (Read A101) is a BUTLER instruction to set the “Pollend”  variable of 

the activity specified in the most recent Load_Activity BUTLER instruction. An 

activity with a set “Pollend”  variable is served as the pollset boundaries for the next 

activity selection logic. Activities between two pollends are all assigned the same 

priority. 

 

Clear_Pollend (Write A101) performs exactly the same way as Set_Pollend 

BUTLER instruction but to remove the pollset boundaries by resetting the “Pollend”  

variable instead of making it true. Pollset boundaries can be inserted or removed at 

any time by these two instructions. 

 

Load_Counter_Lo (Write A110) BUTLER instruction loads the data word (D) into 

the least significant 16-bits of a 32-bit number, which is used to initialize the counter. 

 

Load_Counter_Hi (Write A111) loads the data word (D) into the most significant 

16-bits of the 32-bit number. 

 

Do_Wait (Read A001) BUTLER instruction makes the “Waiting”  variable true for 

the channels specified in the most recent Load_Mask BUTLER instruction for the 

activity currently running on the processor rather than the activity specified in the 
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Load_Activity BUTLER instruction. Those channels specified in that activity are 

considered to be waiting when the “Waiting”  control variable is set, which is used to 

determine whether it is a candidate for scheduling in the next activity selection logic. 

 

Suspend (Read A010) BUTLER instruction sets the “Suspended” variable true for the 

activity currently running on the processor. An activity is said to be suspended when 

the “Suspended” variable is made true, which is responsible to determine whether it is 

a candidate for scheduling in the next activity selection logic. 

The Suspend or Do_Wait BUTLER instruction temporarily inhibits any changes to 

the asynchronously stimulated variables from entering the next activity selection logic. 

 

Set_Suspended (Read A011) BUTLER instruction also sets the “Suspended” variable 

true but for the activity specified in the most recent Load_Activity BUTLER 

instruction instead of the activity currently running on the processor. As there is only 

one “Suspended” control variable in each activity, no mask pattern is needed during 

operation. 

 

Nextact (Read A110) is the instruction used to return the number of the next activity 

that should be scheduled. The next activity to be scheduled is continually computed 

by the next activity selection logic based on the control variables held in BUTLER. 

All control variables are manipulated by local processor, local peripherals and other 

BUTLERs. The Nextact BUTLER instruction is also responsible to re-enable 

visibility of the asynchronous stimulated variables to the next activity selection logic, 

which is inhibited during context switch. The “Suspended”, “Waiting” , “Stimmed” 

variables of a particular activity will be reset when it is returned to the processor as 

the next activity to be scheduled. 

 

Clear_All (Write A011) BUTLER instruction disables interrupts, removes any pollset 

boundaries (reset “Pollend”  variables) and make false the “Started” , “Suspended” and 

all “Stimmed” and “Waiting”  control variables for all activities. 

 

Asynchronous stimulations from four  other  BUTLERs (Stimin) are connected to 

four different channels of the BUTLER. The stimulation will come along with its own 

address (Xin), which is the number of the target activity it wants to stimulate. 
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Asynchronous stimulations from local per ipherals (Stimp) are made up of eight 

separate signals. Each signal is responsible for stimulating eight activities, eight 

signals for sixty-four activities. A particular channel in each activity is allocated to 

that asynchronous stimulation from local peripheral. Therefore, no activity number or 

mask pattern is required for the operation.  

Both asynchronous stimulations are inhibited during context switch. That is invisible 

after Suspend or Do_wait BUTLER instruction and re-enabled visibility by Nextact 

instruction. 

 

Control_Interrupts (Read A111) is a BUTLER instruction to enable the interrupt 

controller to function. Control interrupts are realized in two formats, pre-emption 

interrupt and counter interrupt. The instruction uses the least significant two bits of 

the activity number specified in the most recent Load_Activity BUTLER instruction 

(Actbit1 and Actbit0) to define its operation. All interrupts are reset during a context 

switch and are re-enabled after that. Following a Clear_All BUTLER instruction, the 

interrupt output line is reset to its non-active state. 

 

2.1.4 Context Switch 

A Suspend or Do_Wait instruction is used to inhibit visibility of any changes to the 

asynchronously stimulated variables from the next activity selection logic. Allowing 

enough time for the selection logic to stabilize before returning valid data to processor 

during the executing of Nextact instruction. The time period from a Suspend or 

Do_Wait instruction to a Nextact instruction is named context switch, when signal 

‘slice’  will be taken high in the BUTLER internal circuitry. 

 

2.1.5 Operation 

Decoder  is responsible for turning the values on input address lines, “Read”, “Write”  

and “Select”  inputs into instruction request signals to initialize different instructions 

in other parts of the system. Three parts of decoding are involved in the decoder. 
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Read-wr ite signal decoding simply passes the BUTLER I/O input Read to “R”  and 

Write to “W” with an enabling input Select. Decoded signals “R”  and “W” are then 

transmitted to instruction decoding to identify the instruction to trigger. 

 

Address decoding is basically performing 3 to 8 decoding. Three input address lines 

are decoded to provide eight addresses for instruction decoding to identify 

instructions. 

 

Instruction decoding produces appropriate request signals upon receiving signals 

“R” , “W” and the decoded address. Sixteen instructions are allocated as shown in 

Table 1. The request signals are routed to the functional blocks that responsible for 

the particular operation. 

 

Activity Number Register  stores the activity number specified in the more recent 

Load_Activity BUTLER instruction. When receiving request signal Load_Activity, 

the register latch in the least significant six bits of the bi-directional data bus (D) and 

stored as an activity number. 

 

Interrupt Controller  responses to handle two types of interrupts, pre-emption 

interrupt and counter interrupt. The least significant two bits of the activity number 

transmitted from the activity number register (Actbit1 and Actbit0) will decide which 

interrupt mode to perform. Operation of the interrupt controller is enabled by Control-

Interrupts instruction request signal (Test) from instruction memories. When Actbit1 

is high, Control_Interrupts is switched to pre-emption interrupt mode. If a candidate 

activity is found to have high priority than the one currently running on the processor, 

pre-emption interrupt is allowed to generate. The search is realized by a search logic 

that will be discussed in a later section. When Actbit1 is low, the system will prevent 

the generation of pre-emption interrupt. 

 

When Actbit0 is high, Control_Interrupts is switched to counter interrupt mode. The 

interrupt output line will be set high upon receiving the signal from the counter to 

indicate the reaching of its limit. When Actbit0 is low, the system will prevent the 

generation of counter interrupt. Signal “Slice” , which indicating context switch, will 

inhibit any interrupts at its active state and enable further interrupts when it returns to 
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the non-active state. “Expired”  from BUTLER counter will allow generating interrupt 

signal to the processor in the counter interrupt mode and “Maybe” from control 

memories search chain will further interrupt in the pre-emption interrupt mode. 

Counter  
The BUTLER has a 32-bit ripple down counter that counts low to high transitions on 

the counter input line (countin). A Do Wait or a Suspend BUTLER instruction 

initializes the counter to the 32-bit number that is held on the BUTLER. A Nextact 

BUTLER instruction enables the counter to start counting. The 32-bit number that is 

used to initialize the counter is programmable and is done by the Load_Counter_Lo 

and Load_Counter_Hi BUTLER instructions. A Load Counter Lo BUTLER 

instruction loads the data word into the least significant 16-bits of the number and a 

Load Counter Hi BUTLER instruction loads the data word into the most significant 

16-bits of the number. When the counter receive a programmed number (plus one) of 

signal transitions on its counter input line, a signal “Expired”  will be generated and 

sent to the interrupt controller for further interrupts. 

 

Mask Pattern Register  stores the mask pattern specified in the more recent 

Load_Mask BUTLER instruction. On receiving request signal Load_Mask, the 

register latch in data on the sixteen-bit bi-directional data bus (D) and stored as mask 

pattern. As the mask pattern information is only made used within the activity 

memories, the functional block is located inside the activity memories in the diagram. 

 

Control Memory stores control variables for all sixty-four activities (Fig. 5) and 

perform instructions according to request signals from decoder. Performing 

instructions including Set_Started, Clear_Started, Set_Pollend, Clear_Pollend, 

Suspend, Set_Suspend, Do_Stim, Do_Stimx, Do_Wait, Nextact and Clear_All. 

Load_Mask BUTLER instruction is performed in the mask pattern register located 

inside the control memory functional block. One “Switch”  latch for whole BUTLER 

generates signal “Slice”  and distribute to rest of internal circuit during context switch. 
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2.1.6 Next Activity Selection 

Based on the values of control variables it held, the BUTLER continually computes 

the next activity that should be scheduled, respecting the currently programmed 

priority levels. A Suspend or a Do_Wait BUTLER instruction temporarily inhibits 

any changes to the asynchronously stimulated variables from entering the next 

activity selection logic. A subsequent Nextact BUTLER instruction is used to return 

the number of the next activity that should be scheduled, and then to re-enable 

visibility of the asynchronously stimulated variables to the next activity selection 

logic. The logic will select an activity from the highest priority pollset that contains a 

candidate when more than one activity is a candidate for scheduling. Selection is 

made on a Round Robin basis within the pollset if this pollset contains more than one 

candidate. The search starts from the activity following the one that was last returned 

for scheduling in that pollset. 

 

2.1.6.1 Candidate for  Scheduling 

An activity will only be included as a candidate for scheduling when it is started and 

ready. 

“ Star ted”  

An activity is started when its “started”  control variable is true. A Set Started 

BUTLER instruction will make the “started’  control variable true for the activity 

specified in the most recent Load Activity BUTLER instruction. Vice versa, a Clear 

Started BUTLER instruction will set it false. 

 

“ Suspended” , “ Stimmed”  and “ Waiting”  

An activity is ready when either its “suspended” variable is true, or it has a matched 

pair of true “stimmed” and “waiting”  variables. A Set Suspended BUTLER 

instruction will make the “suspended’  variable true for the activity specified in the 

most recent Load Activity BUTLER instruction. A Suspend BUTLER instruction will 

make the “suspended” variable true for the activity currently running on the processor 

(i.e. the last activity returned to the processor for scheduling). The “suspended” 

variable will be made false when the activity is returned to the processor as the next 

activity to be scheduled. 
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Each activity has sixteen pairs of “stimmed” and “waiting”  variables, each pair is 

called a stim-wait channel. Some BUTLER instructions can operate on individual or 

groups of stim-wait channels. The stim-wait channels to be operated on are specified 

by including a one in an appropriate bit position in the data word of a Load_Mask 

BUTLER instruction. This mask pattern is held on the BUTLER. 

 

A Do_Wait BUTLER instruction will make the “waiting”  variable true for the stim-

wait channel(s) specified in the most recent Load Mask BUTLER instruction for the 

activity currently running on the processor. The “waiting”  variable will be made false 

when this activity is returned to the processor as the next activity to be scheduled. 

 

A Do Stim BUTLER instruction will make the “stimmed” variable true for the stim-

wait channel(s) specified in the most recent Load Mask BUTLER instruction for the 

activity specified in the most recent Load Activity BUTLER instruction. The 

“stimmed” variable will be made false when this activity is returned to the processor 

as the next activity to be scheduled. 

 

External asynchronous “stimmed” 

The “stimmed” variables on four particular stim-wait channels can also be 

asynchronously made true from an external source (e.g. by another BUTLER). 

The “stimmed” variable on one particular stim-wait channel can also be 

asynchronously made true from a local peripheral. 

 

2.1.6.2 Polstar t Search 

Polstart search means the search of starting point of a Round Robin search logic 

within a pollset. Basically, the Round Robin search should be starting from the 

activity following the one last returned to the processor for scheduling. A “Last”  latch 

indicates whether this is the last activity returned to the processor for scheduling, 

however, under certain circumstances more than one activity may indicate to be the 

last returned activity in this pollset. The logic will accept the first “Last”  it found to be 

the polstart. In some cases, there will be no “Last”  found for the whole pollset. The 

logic will set the activity with the smallest activity number in this pollset to be the 

polstart. 
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The search mechanism is shown in Fig 6. With the pollset boundaries set by the 

Set_Pollend BUTLER instruction, search logic chain is formed for each pollset. The 

search chain running down from the top of the pollset. Signal “Lastfnd”  is set high 

when a “Last”  is found in the search chain. An activity is considered as the polstart of 

this pollset if no “Last”  has been found in the search and the “Last”  latch of this 

activity is set. When the search encounters the pollend, the search is reset (i.e. reset 

signal Lastfnd) and starts again in the next activity. For the case “Lastfnd”  is low 

when it encounters the pollend and the “Last”  latch of this activity is not set (i.e. no 

“Last”  has been found throughout the whole pollset), a signal “Lastloop”  will be sent 

back to acknowledge the first activity in this pollset to be the polstart. Under this 

mechanism, exactly one “Last”  latch set in each pollset can be achieved. 

 

2.1.6.3 Activities to be included in pollset of Nextact 

When an activity is returned to the processor for scheduling, a latch “Here”  is set. 

Two search chains are involved in this search for activities to be included in pollset of 

Nextact, one running up the activity array and another running down (Fig. 7). Both 

chains are taken low whenever they pass the pollset boundary and taken high when 

they pass the activity with “Here”  set. Therefore, activities with a high in either search 

chain will be activities in the pollset of Nextact. 

 

2.1.6.4 Round Robin Implementation 

When same priority is assigned to a group of activities, a Round Robin search is 

required to determine which activity to be returned next. Starting from the activity 

following the last activity returned to the processor, it runs through all activities in the 

pollset and loops back to the top of the pollset when it encounters the pollend. The 

search loop ends at the last activity returned to the processor (Fig. 8). When a 

candidate for scheduling is found in a pollset, signal “Search”  will be taken low to 

indicate the rest of the pollset a candidate for scheduling has been found. An activity 

is selected to be the next activity if “Search”  is high (no candidate has yet been found) 

and this activity is a candidate for scheduling. If a candidate has been found, signal 

“Found” is taken high at the end of the search loop and is passed to pollsets with 
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lower priority to indicate that candidate has already been found in higher priority 

pollset. 

 

2.2 Design Tools 

2.2.1 Ver ilog Hardware Descr iption Language 

A language used to describe digital systems at different levels, low implementation 

levels such as switch level and gate level; architectural or behavioral level like 

Register Transfer Level (RTL). In order to facilitate future studies on the BUTLER 

system, all Verilog specifications are done in register transfer level in this project. 

 

2.2.2 Cadence Custom IC Design Tool 

Cadence design system is particularly suitable for schematic generation, simulation, 

circuit synthesis and result analysis of digital or analogue circuitry. To verify the 

functions of different modules, all simulations are performed in the Cadence system 

design environment. Signal connections between different functional blocks are done 

in the schematic editor as symbol for every module is generated from the Verilog 

specification automatically. 

 

2.2.3 Procedures 

With reference to the BUTLER design description by Eric Campbell [3], block 

diagrams with different functional blocks are generated at early stage of the project. 

Together with the functional diagrams, behavioral logic of the system is derived in 

order to serve as a base of further specifications. Through understanding the original 

BUTLER design by Eric Campbell [3], documentation of the design is prepared for 

future studies including the design task in later part of the project. Different 

instructions, operation methodology and search logics are all introduced in the 

documentation. 

 

Based on the functional diagrams and the documentation, Verilog specifications of the 

BUTLER system are firstly created in Verilog compiling software gVim. And the 

source files are then imported to the Cadence environment to test for the 
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functionalities by simulation. Stimulus files are programmed for the simulation under 

the Verilog XL simulator. Different functional modules are simulated independently 

with its own stimulus files. Overall system is simulated in the final stage when all 

functional modules are verified to function properly. 
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3. Results 

System operating in the same manner with same functions of the original BUTLER is 

specified in the Verilog Hardware Description Language. However, compared with 

the original, the newly designed BUTLER is of a different scale as below: 

• Number of activities is reduced from sixty-four to sixteen 

• Number of stim-wait channels is reduced from sixteen to eight 

• Counter size reduced from 32 bits to 16 bits 

• Connected BUTLER reduced from four to one 

• Local peripheral inputs reduced from eight to four 

• Bi-directional BUTLER I/O data bus reduced from sixteen-bit to eight-bit 

 

3.1 Ver ilog Specification 

The specification is divided into five cells according to the functionality, decoder, 

activity number register, counter, interrupt controller and control memory. All cells 

operate asynchronously in response to request signals either from BUTLER I/O or 

other part of circuit. 

 

3.1.1 Decoder 

As the number of instruction is the same as the original BUTLER, the structure of 

decoder is exactly the same as the original BUTLER. Read write signal decoding, 

address decoding and instruction decoding. BUTLER I/O “R” and “W” together with 

“select”  trigger request signals “ read”  and “write”  and which are transmitted to 

instruction decoding. Address input lines “a0” , “a1”  and “a2”  are decoded in the 

address decoding part, which is realized by a three to eight decoder. Sixteen 

instruction request signals are generated in the instruction decoding with reference to 

the decoded request signals (i.e. memory access from the local processor). 

 

3.1.2 Activity number register  

The only difference in the activity number register is the size. It reduced from six bits 

for sixty-four activities to four bits for sixteen activities. Request signal 

“Load_Activity”  from the decoder triggers the register to latch in data in the least 

significant four bits of the bi-directional BUTLER I/O data bus. This data are stored 
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as activity number by the most recent Load_Activity BUTLER instruction and 

transmitted to other functional blocks of the system. 

 

3.1.3 Counter  

As the scaling factor for the system is four, the counter size should be reduced to eight 

bits. However, this size may not be able to allow enough running time for all activities. 

A sixteen-bit counter is therefore chosen for the system. A Load_Counter_Lo 

BUTLER instruction triggers the counter to latch in the bi-directional data bus as least 

significant eight bits of a stored number, which is for the initialization of the counter. 

And a Load_Counter_Hi BUTLER instruction triggers the latching for the most 

significant eight bits. The counter is initialized by the stored sixteen-bit number on 

receiving signal “slice”  during context switch. And it starts to count when “slice”  goes 

low (i.e. after context switch). The counter counts the positive transition on the 

“countin”  BUTLER I/O from the processor and generates a timeout signal “expired”  

when the count reaches the limit. The count starts from the number initialized by 

Load_Counter_Lo and Load_Counter_Hi BUTLER instruction. The timeout signal 

“expired”  is reset by “slice”  during context switch. 

 

3.1.4 Interrupt controller  

Two registers are used to indicate the mode of interrupt, “preemp_int”  for preemption 

interrupt and “counter_int”  for counter interrupt. With the “Test”  signal from the 

decoder indicating interrupt control, the least significant two bits from the activity 

number register actbit1 and actbit0 decide the state of the registers. During interrupt 

control BUTLER instruction, “preemp_int”  will be set when actbit1 is equal to one 

and reset when actbit1 is equal to zero; “counter_int”  will be set when actbit0 is equal 

to one and reset when actbit0 is equal to zero. Signal “maybe” from control memory 

will enable interrupt if preemption interrupt mode is selected and “expired”  from 

counter will enable interrupt if counter interrupt mode is selected. Both interrupt 

modes can be selected at the same time. Signal “maybe” and “expired”  will be 

removed in the start of context switch. A Clear_All BUTLER instruction will reset 

both registers and disable interrupt. 
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3.1.5 Control memory 

The main difference between the newly designed BUTLER and the original one is in 

the control memory. All control variables are stored in a control memory realized by 

twenty-one sixteen-bit registers. As shown in Fig. 9, each “stimmed”  channel is 

specified by a sixteen-bit register, so as each “waiting”  channel, “started” , 

“suspended”, “pollend” , “candidate”  and “ last”  variables. Request signals Set_Started 

and Clear_Started set and reset the appropriate bit of the “started”  variable 

respectively according to the activity number stored in the activity number register. 

Set_Pollend and Clear_Pollend set and reset the appropriate bit of the “pollend”  

variable respectively according to the stored activity number. Set_Suspended sets the 

appropriate bit of the “suspended” variables according to the stored activity number. 

Do_Stim sets the appropriate bit of the “stimmed” channels specified by the stored 

activity number and the stored mask pattern. The mask pattern loaded by the most 

recent Load_Mask BUTLER instruction will select the appropriate channels to 

operate. 

 

Stimulation inputs from four local peripherals (stimp) are all connected to “stimmed” 

channel seven. Stimulations are made in an even distribution that each stimulation 

input is connected to four activities among sixteen. In order to allow enough time for 

the next activity selection logic to become stable, stimulation from local peripheral is 

disabled during context switch. Asynchronous stimulation can arrive at any time, 

however, the effect of the stimulation will be valid only after the context switch. 

Asynchronous stimulation input from external source (i.e. from other connected 

BUTLER, stimin) is connected to “stimmed” channel six. Based on the activity 

number specified in the external address input lines (Xin[3:0]), “stimmed” variable of 

a particular activity is set. External asynchronous stimulation is inhibited during 

context switch, which means asynchronous stimulation arrived during context switch 

will be ignored. 

 

Suspend and Do_Wait are instructions operating on the activity that currently running 

in the processor. As a matter of fact that activity number sixteen may be returned to 

the processor for an idle state when no candidate is found in the search, the 

instructions only operate on the “suspended” and “waiting”  variables when it is not in 
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idle state (i.e. activity running in the processor does not has activity number sixteen). 

Suspend BUTLER instruction sets the “suspended” variable of the activity currently 

running in the processor. Do_Wait BUTLER instruction sets the “waiting”  variables 

of the activity currently running in the processor with reference to the stored mask 

pattern. 

 

On receiving a Load_Mask instruction signal from the decoder, data on the bi-

directional data bus are latched into the mask register as the stored mask pattern for 

the operation of other instructions. 

 

Overall reset of the system can be performed whenever request signal Clear_All from 

decoder arrives. All “stimmed”, “waiting” , “suspended”, “started” , “pollend”  and 

“candidate”  control variables will be reset during a Clear_All instruction and only the 

“ last”  variables are kept unchanged. 

 

During Do_Stimx BUTLER instruction, the stored activity number will be transmitted 

to the external asynchronous stimulation address output lines (“Xout [3:0]” ). Stimulus 

(“stimout” ) will be set and transmitted to other connected BUTLER together with the 

target activity number on “Xout” . 

 

Signal “slice”  is passed around to indicate during context switch. It can be made true 

by either Suspend or Do_Wait BUTLER instructions and reset by a Nextact. 

 

During Nextact BUTLER instruction, activity output (“act_out” ) from the next 

activity selection logic will be passed to the bi-directional data bus and stored in a 

register (“act_run” ) as well. If the returning activity is not idle, all “stimmed”, 

“waiting” , “suspended” and “candidate”  control variables of the returning activity will 

be reset. In this case, a search logic is used to reset the “ last”  variable of all other 

activities within the same pollset of the returning activity and the “ last”  variable of it 

will be set. 

 

Fig. 10 shows a clearer picture of how the search logic runs. Firstly, the “ last”  

variable of the returning activity is set. Secondly, a search chain is running down 

every activity from the one following the returning activity. The “ last”  variable of all 



BUTLER Design and Analysis 

 32 

activities passed by the chain is reset until a pollset boundary is found. When a set 

“pollend”  variable is found, variable “pollend_run”  is set to indicate the end of search. 

Thirdly, a search chain is running up from the activity above the returning one. The 

“ last”  variable of all activities passed by the chain is reset until a pollset boundary is 

found. When a set “pollend”  variable is found, variable “polltop_run”  is set to 

indicate the end of search. Finally, in case of the returning activity is either zero or 

fifteen, only search running down or running up will be performed respectively. The 

search logic will not be initialized if the returning activity is activity sixteen. 

 

As the BUTLER computes the next activity to be scheduled continually, searches 

related to the next activity selection logic perform continually as well. A loop running 

from activity zero to activity fifteen is used to set the “candidate”  variable when an 

activity is ready and started. An activity is ready means either the “suspended”  

variable or a matched pair of “stimmed” and “waiting”  variable is set. Started means 

the “started”  variable is set. 

 

3.1.6 Searches 

3.1.6.1 Next activity selection 

First step of the next activity search is to find out set “ last”  variable from activity zero 

to activity fifteen. When a set “ last”  variable is found, a Round Robin search will be 

performed. The specification of the Round Robin search is divided into three groups, 

one for “ last”  variable of activity zero, one for “ last”  variable of activity fifteen and 

one for other activities. As precisely one set “ last”  variable in each pollset is 

guaranteed by another search logic in the system, each pollset will be ran by exactly 

one Round Robin search. Search will be started from the pollset with highest priority. 

 

Round Robin search for  set “ last”  var iable in between activity one and activity 

four teen 

If “pollend”  variable of that activity with set “ last”  is low, a search going down the 

array is started. Starting from the activity following the one with set “ last” , variable 

“searchend” will be set when a set “pollend”  variable is found. Down search will be 

stopped and an up search will be followed. Starting from the activity with set “ last” , 

variable “searchtop”  will be set when a set “pollend”  variable is found in the up 
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search. Search for this pollset will be stopped and another Round Robin for the next 

pollset will be followed. When a set “candidate”  variable is found in the search, 

activity number will be passed to the search output (“act_out” ) and variable “ found” 

will be set. As a matter of priority in a Round Robin search, variable “ found” can stop 

the down search but not the up search. In down search, searching process finishes 

when candidate is found. In up search, searching process runs until pollset boundary. 

Candidates found in the later part of up search can overwrite the search output in 

earlier part of the same up search. Search in other pollset will not be started if variable 

“ found” is set to indicate a schedulable activity has been found. If “pollend”  variable 

of that activity with set “ last”  is high, only up search will be performed in the pollset. 

 

Round Robin search for  activity zero being “ last”  

If “pollend”  variable is not set, a down search will be started and followed by 

checking the “candidate”  variable of activity zero itself. If “pollend”  variable of 

activity zero is set, “candidate”  variable will be checked and no search is performed 

within the pollset. 

 

Round Robin search for  activity fifteen being “ last”  

Only up search will be performed until set “pollend”  variable is found in the search. 

 

If “ found” equals to zero indicating no candidate has been found after searching 

through all fifteen activities, activity sixteen will be returned to the processor for idle 

state. 

 

3.1.6.2 Precisely one set “ last”  var iable in each pollset guarantee 

This logic involves two parts, one to remove extra set “ last”  variable in a pollset and 

one to set “ last”  variable when no “ last”  found in a pollset. To remove extra set “ last”  

variable, a search chain running down from top of array is used. Variable “ lastfnd”  is 

set high when the chain encounters a set “ last”  variable and is reset when it 

encounters a set “pollend”  variable (i.e. “ lastfnd”  reset in each pollset). All “ last”  

variables are reset by the chain when “ lastfnd”  is high. 

 

To set the activity with smallest activity number in the pollset to be “ last”  when no set 

“ last”  has been found, a search chain running up from the bottom of array is used. 
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Variable “ lastfndup” is set high when the chain encounters a set “ last”  variable and 

reset when it encounters a set “pollend”  variable like “ lastfnd”  in the down running 

chain. When the chain encounters a set “pollend” , activity in top of the pollset will be 

set if “ lastfndup” is low indicating no set “ last”  has been found in the pollset. In top of 

the array, there is no “pollend”  above activity zero to indicate a pollset boundary. 

Therefore, “ last”  variable of activity zero is set by the chain if “ lastfndup” is low. If 

“pollend”  variable of activity zero is set, the “ last”  variable will also be set as it is the 

only activity in the pollset. 

 

3.1.6.3 Maybe search 

This is the search for candidate with higher priority than the one currently running in 

the processor. Basically, this search should run continuously as long as the system is 

powered up. However, base on the fact that a candidate with higher priority can only 

exist when there is a change in the output of the next activity selection logic 

(“act_out” ), this “maybe search”  will only perform when the value of “act_out”  

changes. As interrupt is inhibited during context switch, this search is suspended 

during context switch. 

 

The search starts from the activity currently running in the processor but the checking 

for “candidate”  would not be started until a set “pollend”  variable is found in the 

search. When a “pollend”  variable is found, variable “search_start”  will be set high 

and indicating the start of checking “candidate”  variable. When a set “candidate”  

variable is found, signal “maybe” is set high and transmitted to the interrupt controller 

for the generation of interrupt. Signal “maybe”  is reset by “slice”  during context 

switch. 

 

3.2 Ver ification 

Each cell is simulated independently to verify it function properly and an integrated 

simulation is done to verify the system operation. Decoder, activity number register, 

counter, interrupt controller and control memory are simulated independently before 

integration to reduce complexity on the final integrated simulation. Two versions of 

control memory are simulated with similar stimulus files, where basic control variable 
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setting functions are verified in the simple version first and then the precise search 

logic is verified in the final version. As basic operations are verified in the simple 

version, the simulation for the final version is much less complicated but to 

concentrate on the BUTLER customized next activity search logic. 

 

As BUTLER is designed for asynchronous operations, the next activity selection logic 

operates continuously. In the original design, the outputs from the logic are put onto 

the bi-directional data bus during all BUTLER read instructions; in the new 

behavioral specification, outputs are put onto the data bus during Nextact BUTLER 

instruction only. 

 

3.2.1 Decoder 
Sixteen different request signals are simply simulated by reading from and writing to 

all combinations of input address lines. Output signals from the decoder are 

monitored. Signal waveform is shown in Fig. 11. Request signals are triggered in turn 

by read, write, select signals and input address lines a0, a1 and a2. 

 

3.2.2 Activity number register  

This four-bit register is simulated by different values on the bi-directional data bus 

together with Load_Activity enable signal. Latched activity number is monitored. 

Signal waveform is shown in Fig. 12. 

 

3.2.3 Counter  

Different values on the eight-bit bi-directional data bus are loaded into the sixteen-bit 

internal register (“stored”) of the counter by Load_Counter_Lo and Load_Counter_Hi 

input. After the counter is initialized by signal “slice” , initial count value is monitored 

to verify the Load_Counter_Lo and Load_Counter_Hi functions. Periodic signal 

“countin”  with period of two time units is kept feeding to the counter until the count 

reaches the limit and set “expired”  high. Simulation is run until “expired”  is reset by 

the following context switch. A test output “countout”  is used to monitor the count 

value throughout the whole simulation. Signal waveform is shown in Fig. 13. 
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3.2.4 Interrupt controller  

Preemption interrupt and counter interrupt are simulated with signal input “maybe”  

and “expired”  with “slice”  keeps low at the beginning. Output “ interrupt”  is 

monitored. Input “slice”  is then altered to check if interrupt is inhibited during context 

switch. Finally, the least significant two bits of the activity number inputs are reset in 

turn to check if both interrupt mode can be disabled by setting corresponding activity 

bit to zero. Signal waveform is shown in Fig. 14. 

 

3.2.5 Control memory (simple version) 

As the search logic in this version is only a top down search (i.e. search from activity 

zero to activity fifteen), all functions involving the search logic is not simulated in this 

version. 

 

Activity number is provided at the input to simulate the connection with activity 

number register. A Load_Mask instruction is performed first to provide mask pattern 

for operation in later part of simulation, which is realized by a Load_Mask request 

signal and data in the eight-bit bi-directional data bus. Data is stored in the register 

“mask”  to serve as a stored mask pattern. Basic control variable setting operations 

Set_Started, Clear_Started, Set_Pollend, Clear_Pollend and Set_Suspended are 

simulated with activity number input. “Started” , “pollend”  and “suspended” variable 

registers are connected to the test outputs (“ testout” ) and the test output is monitored 

to verify all the functions mentioned above. BUTLER instruction Do_Stim is then 

simulated with activity number input and the stored mask pattern. “Stimmed” 

channels six and seven are connected to the test output to verify function Do_Stim 

and the correctness of function Load_Mask. 

 

Stimulations from local peripherals (“stimp”) are scheduled to arrive both during 

context switch and between context switches. “Stimmed” channel seven is connected 

to the test output to monitor the stimulation. Effect of stimulus arrive during context 

switch should be deferred till the end of context switch. 

 

When instruction Suspend is being simulated, “suspended” variable register is 

connected to the test output. “Suspended” variable of the activity currently running in 

the processor is set if the processor is not running activity sixteen (idle state). Signal 
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“slice”  should be high to indicate a context switch. Instruction Nextact is followed to 

complete a normal context switch, “slice”  returns to low. Since there is no activity 

running in the processing during start up, the above context switch process is 

performed twice to obtain a correct result. 

 

A Clear_All BUTLER instruction is performed once at the beginning to ensure all 

control variables are in their non-active state and it is test after a context switch cycle. 

All control variables are monitored to verify the correctness of a Clear_All instruction. 

 

To verify the Do_Stimx function, output “Xout”  is monitored to check if activity 

number from input “act_no”  is transmitted to output “Xout”  when Do_Stimx is high. 

Asynchronous stimulation from external source is simulated by specifying an activity 

number in the input “Xin”  and “stimmed” channel six is monitored. Signal waveform 

in Fig. 15 shows all the operation mentioned above accordingly. 

 

3.2.6 Control memory (final version) 

Following a Clear_All BUTLER instruction, “ last”  variable register is monitored to 

check if any “ last”  variable is set by the one “ last”  guarantee logic. Activities four, 

five and six are then “started”  and “suspended” to make them candidates for 

scheduling, and the “candidate”  variable register is monitored. A context switch is 

performed to return activity from the search. Pollset boundaries are set up to form 

priority groups. Activity two and fourteen are set to be pollset boundaries. Round 

Robin search is verified by allowing three candidates in the same pollset and running 

context switch several times. Activity from pollset with higher priority (activity zero) 

is made to be candidate to test the “maybe search”  logic. Clear_Pollend instruction is 

performed to make more than one set “ last”  in a pollset and “ last”  variable register is 

monitored to check the one “ last”  guarantee logic. Finally, a context switch is 

performed after a Clear_All instruction to check if activity sixteen is returned by the 

search logic when no candidate is found. Signal waveform is shown in Fig. 16. 

 

3.2.7 Integrated simulation 

A final simulation is performed to verify the operation of the whole system, which is 

connected as shown in Fig. 17. Stimulus file used is of the same logic as the one used 
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in the control memory, together with the stimulus of other functional modules. 

Stimulus inputs become BUTLER I/Os instead of internal signal routings. Operations 

are initialized by memory access and stimulation from external sources. BUTLER 

I/Os are monitored to verify correct operation. Signal waveform is shown in Fig. 18. 
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4. Analysis and discussion 

To improve microprocessor efficiency and performance by replacing software-

scheduling program by a hardware solution, a hardware scheduler is designed with 

reference to the ad-hoc BUTLER design. In order to facilitate future research, a 

documentation of the BUTLER design is prepared on top of the BUTLER design 

description by Eric Campbell [3]. 

 

4.1 Operation by memory access 

The BUTLER performs specified functions when accessed as memory. It should not 

therefore be used where unintentional memory accesses may occur, such as in direct-

memory-access, cache or refresh memory systems. 

 

4.2 Round Robin 

A round robin is an arrangement of choosing all elements in a group equally in some 

rational order, usually from the top to the bottom of a list and then starting again at the 

top of the list and so on. A simple way to think of round robin is that it is about 

"taking turns” . In computer operation, different program processes take turns using 

the resources of the processor is to limit each process to a certain short time period, 

then suspending that process to give another process a turn (or "time-slice"). This is 

often described as Round Robin process scheduling. In this project, Round Robin 

search is made use in next activity selection logic when more than one activity are 

eligible for scheduling within the same priority group. 

 

4.3 Counter  

Arrays of flip flops which have the property of incrementing or decrementing when 

pulsed are known as counter registers, or counters. Normally each bit of the binary 

code is stored in a flip flop, with N flip flops giving up to 2N states. Essentially there 

are two kinds of counters. Synchronous counters have all flip flops simultaneously 

clocked by the count pulse. In asynchronous circuits, normally only the first flip-flop 

is directly clocked; this change is then propagating through the remaining logic. 
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The main advantage of ripple counter is its relative simplicity. However, their 

asynchronous nature gives problems in some situations. Because of cumulative delays 

as changes propagate along the chain, some alterations of state occur in a staggered 

manner. Counter delay is not a significant problem in this system as counter is only 

used for control interrupt. 

 

4.4 Memory VS Registers 

Control variables of all activities are stored in a control memory, which can be 

accessed by different BUTLER instructions and asynchronous stimulations. In the 

original BUTLER design, the memory is realized by a tile configuration. In the 

behavioral specification, a decision between memory and registers has to be made to 

specify the control memory. 

 

As memory cannot be referenced at the bit-level in Verilog HDL, data in the word 

have to be first transferred to a temporary register. Therefore, temporary registers 

have to be made used throughout the whole specification during specific bit range 

operation. In this case, concurrent operation of same word maybe problematic, which 

means asynchronous stimulation may not be supported. Therefore, control variables 

should be held by twenty-one registers instead of a sixteen by twenty-one memory. 

Asynchronous stimulation can arrive any time concurrently with different BUTLER 

instructions. 

 

4.5 Arbitration Problem 

Since BUTLER deals with different asynchronous operations, set and reset of certain 

control variable latches may occur during normal operation. Additional circuitries are 

added to avoid any erroneous state resulted from this. 

 

4.5.1 Last Latch 

For normal operation, exactly one “ last”  latch should be set within each pollset. 

However, none of the “ last”  latch will be set in the whole control variable memory 

during the initial power up. As pollset boundaries can be set or removed at any time, 
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no set “ last”  latch or more than one “ last”  latch in one pollset may occur during 

Set_Pollend, Clear_Pollend or Clear_All BUTLER instructions. Additional circuitries 

are therefore designed to maintain normal operation. Since no pollset boundary is set 

during initial power up, one pollset contains all activities. “ last”  latch of the zeroth 

activity, top of the pollset, will be set to retain normal operation. For the reset of 

pollset boundaries, activity with the smallest activity number in the pollset will be set 

if no “ last”  latch found. And the search chain will only take the first set “ last”  latch it 

found and ignore the others if multiple set “ last”  latches have been found. 

 

4.5.2 Asynchronous Stimulation 
During execution of Clear_All or Nextact BUTLER instruction, some or all 

“stimmed” latches will be initialized (make false). However, asynchronous 

stimulation from external source or local peripherals may arrive at any time, which 

will make true the “stimmed” latch of some channels according to data carried. 

Concurrent set and reset of the “stimmed” latch can occur when stimin from an 

asynchronous external source is concurrent with reset from BUTLER instruction 

Clear_All or Nextact when this activity is being returned to the processor. The 

normally complementary outputs from the “stimmed” latch will both be high. This 

causes no problem because this activity will be being returned to the processor as the 

next activity to be scheduled at this time. If removal of concurrent set and reset are 

coincident, the “stimmed” latch will, after the delay needed to resolve the 

metastability effect, become either set or reset. Time is available between executing 

BUTLER instructions for the latch to settle. If it becomes set, “stimin”  is assumed to 

have occurred after Nextact; if it becomes reset, “stimin”  is assumed to have occurred 

before Nextact. Either condition provides correct system operation. 

 

To avoid arbitration problem, additional circuitry is added to defer visibility of a 

“stimmed” latch that is set by asynchronous local peripheral (“stimp”) during context 

switch. Extra latch is added to store value of the “stimmed” latch until after a 

subsequent Nextact BUTLER instruction. 
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4.6 Implications and Practical Applications 

Base on the BUTLER documentation and the Verilog specification, BUTLER of 

different functions and scale can be easily designed in the future. As two versions of 

BUTLER with different search logic are specified in this project, different search 

logic can also be used in the future, by simply replacing the search logic section in the 

present specification. In practical, BUTLER can be used from complex system like a 

computer microprocessor to simple system like processor in toy. It can improve the 

efficiency and performance of the processors in both systems. 
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5. Conclusion 

As a matter of fact that asynchronous designs are getting more important in the state-

of-art computer system designs, modern computing systems tend to move 

synchronous design to asynchronous. To improve efficiency and performance of 

processors, scheduling functions are moved from software to hardware. From the 

comparison made in the literature review section, advantages of different hardware 

dependency level of scheduler are presented. The BUTLER technology is focused on 

the issues of scheduling application function tasks in embedded real time multiple 

processor systems. In this project, a detail documentation of the original design has 

been prepared to provide sufficient information for future studies and 

implementations. Different functions, operations, precise search logics, signal 

routings and control variables for next activity selection are all presented in details. 

This documentation can support future design in a behavioral level on top of the gate 

level design description by Eric Campbell [3]. 

 

The documentation described the BUTLER from general functions to detail operation 

logic, from system configuration to BUTLER internal signal routings. It explained 

detail of the next activity selection logic, the system configuration of the original 

design, actual function of different tasks, operation of different function blocks in the 

system and all search logics help maintain correct operation of system. Functional 

diagram and search logic diagrams are included to illustrate some complicate search 

logics and major signal routings. 

 

Besides the documentation, the description of Verilog specification presented in the 

result section verifies the functionality of the system and the possibility of varying the 

configuration of the original design. Although the newly designed BUTLER in this 

project is specified in register transfer level, a synthesis can be performed by 

following the tiling approach of the original design. Since the new design is of 

different scale and configuration with the original, it verified the possibility of 

different number of activities and connected BUTLERs. 

 

As the Verilog specification of the BUTLER is divided into five modules according to 

the functional block diagram presented in the documentation, each module is 

presented independently for its function and operation logic. Functions triggered by 
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different request signals from external sources or internal circuitry are explained in 

full details. Search loops that run continuously throughout the whole operation of 

BUTLER are presented with the aid of block diagrams to enhance understanding of 

those complicate search logics. 

 

A verification section is followed to display the precise simulation procedure carried 

out in the project. Stimulus file used in the verification of each module is described 

independently, followed by the description of an integrated simulation for the whole 

system. Simulation results proved the correctness of the new design and therefore, the 

possibility of changing scale and configuration of the original design. Future studies 

should focus on the synthesis in the tiling approach and implementation of different 

configuration BUTLER. The documentation provided a channel for academics to 

understand the BUTLER operation in an efficient way and the Verilog specification 

provided a basic design methodology of the BUTLER for researchers to follow. 
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Appendix 

Appendix 1 

-----------------------------------------------Counter  --------------------------------------------- 
module counter(expired, countout, Test, slice, D, countin, Ld_cntr_lo, Ld_cntr_hi); 
input Test, slice, countin, Ld_cntr_lo, Ld_cntr_hi; 
input [7:0] D; 
output expired; 
output [15:0] countout; 
reg [15:0] stored, count; 
reg time_out; 
// 
initial begin 
 stored = 16'b0; 
 count = 16'b0; 
 time_out = 0; 
end 
// 
always @ (posedge countin) 
begin 
 if (~slice) 
  count = count + 1; 
 if (count == 16'b0) 
  time_out = 1; 
end 
// 
assign expired = time_out; 
// 
always @ (Ld_cntr_lo) 
begin 
 if (Ld_cntr_lo) 
  stored[7:0] = D[7:0]; 
end 
// 
always @ (Ld_cntr_hi) 
begin 
 if (Ld_cntr_hi) 
  stored[15:8] = D[7:0]; 
end 
// 
always @ (slice) 
begin 
 if (slice) 
 begin 
  time_out = 0; 
  count = stored; 
 end 
end 
 
assign countout = count; 
endmodule 
 
 
-----------------------------------------Inter rupt controller  ------------------------------------ 
// Created by ihdl 
module int_cntl(interrupt, act_no, Test, expired, maybe, slice, Clrall); 
input [3:0]act_no; 
input Test, expired, maybe, slice, Clrall; 
output interrupt; 
reg counter_int, preemp_int; 
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// 
initial begin 
 counter_int = 0; 
 preemp_int = 0; 
end 
// 
always @ (Test) 
begin 
 if (Test == 1 & act_no[1] == 1) 
  preemp_int = 1; 
 if (Test == 1 & act_no[1] == 0) 
  preemp_int = 0; 
 if (Test == 1 & act_no[0] == 1) 
  counter_int = 1; 
 if (Test == 1 & act_no[0] == 0) 
  counter_int = 0; 
end 
// 
always @ (Clrall) 
begin 
 if (Clrall == 1) 
 begin 
  preemp_int = 0; 
  counter_int = 0; 
 end 
end 
// 
always @ (act_no) 
begin 
 if (Test == 1 & act_no[1] == 1) 
  preemp_int = 1; 
 if (Test == 1 & act_no[1] == 0) 
  preemp_int = 0; 
 if (Test == 1 & act_no[0] == 1) 
  counter_int = 1; 
 if (Test == 1 & act_no[0] == 0) 
  counter_int = 0; 
end 
// 
assign interrupt = (preemp_int & maybe & ~slice) | (counter_int & expired & ~slice); 
endmodule 
 
 
-------------------------------------Activity number  register  ---------------------------------- 
module act_no_reg(act_no, Ld_act, D); 
input [7:0]D; 
input Ld_act; 
output [3:0]act_no; 
reg [3:0]act_reg; 
 
initial begin 
 act_reg = 0; 
end 
 
always @ (Ld_act) 
begin 
 if (Ld_act) 
  act_reg[3:0] <= D[3:0]; 
end 
 assign act_no[3:0] = act_reg[3:0]; 
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endmodule 
 
Decoder  
module add_dec(a000, a001, a010, a011, a100, a101, a110, a111, a0, a1, a2); 
input a0, a1, a2; 
output a000, a001, a010, a011, a100, a101, a110, a111; 
// 
assign a000 = ~a0 & ~a1 & ~a2; 
assign a001 = ~a0 & ~a1 & a2; 
assign a010 = ~a0 & a1 & ~a2; 
assign a011 = ~a0 & a1 & a2; 
assign a100 = a0 & ~a1 & ~a2; 
assign a101 = a0 & ~a1 & a2; 
assign a110 = a0 & a1 & ~a2; 
assign a111 = a0 & a1 & a2; 
// 
Endmodule 
 
module rw_decoder(read, write, R, W, select); 
input R, W, select; 
output read, write; 
 
assign read = R & select; 
assign write = W & select; 
 
endmodule 
 
module instr_memory(Do_stim, Do_wait, Suspend, Setsus, Sstart, Spollend, Nextact, Test, Ld_mask, 
Ld_act, Do_stimx, Clrall, Cstart, Cpollend, Ld_cntr_lo, Ld_cntr_hi, a000, a001, a010, a011, a100, 
a101, a110, a111, read, write); 
input a000, a001, a010, a011, a100, a101, a110, a111, read, write; 
output Do_stim, Do_wait, Suspend, Setsus, Sstart, Spollend, Nextact, Test, Ld_mask, Ld_act, 
Do_stimx, Clrall, Cstart, Cpollend, Ld_cntr_lo, Ld_cntr_hi; 
// 
assign Do_stim = read & a000; 
assign Do_wait = read & a001; 
assign Suspend = read & a010; 
assign Setsus = read & a011; 
assign Sstart = read & a100; 
assign Spollend = read & a101; 
assign Nextact = read & a110; 
assign Test = read & a111; 
assign Ld_mask = write & a000; 
assign Ld_act = write & a001; 
assign Do_stimx = write & a010; 
assign Clrall = write & a011; 
assign Cstart = write & a100; 
assign Cpollend = write & a101; 
assign Ld_cntr_lo = write & a110; 
assign Ld_cntr_hi = write & a111; 
// 
endmodule 
 
--------------------------Conrol Memory (simple version) ----------------------------------- 
module Cntl_Mem01(Xout, Dout, stimout, maybe, slice_out, testout0, testout1, testout2, testout3, 
testout4, testout5, testout6, Xin, stimin, D, Sstart, Cstart, Spollend, Cpollend, Setsus, Do_stim, 
Do_stimx, Nextact, Do_wait, Suspend, Clrall, Ld_mask, act_no, stimp0, stimp1, stimp2, stimp3); 
output stimout, maybe, slice_out; 
output [3:0] Xout; 
output [4:0] Dout; 
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output [0:15] testout0, testout1, testout2, testout3, testout4, testout5, testout6; 
input [3:0] act_no, Xin; 
input [7:0] D; 
//BUTLER instructions request signals from instruction memory 
input Sstart, Cstart, Spollend, Cpollend, Setsus, Do_stim, Do_stimx, Nextact, Do_wait, Suspend, 
Clrall, Ld_mask, stimin; 
//stimulation from local peripherals 
input stimp0, stimp1, stimp2, stimp3; 
//16 activities, 8 pairs of stim-wait channels [0-7 stim, 8-15 wait] 
//Suspend[16], Start[17], Pollend[18], Candidate[19], Last[20] 
reg [0:15] stim_bit0, stim_bit1, stim_bit2, stim_bit3, stim_bit4, stim_bit5, stim_bit6, stim_bit7, 
wait_bit0, wait_bit1, wait_bit2, wait_bit3, wait_bit4, wait_bit5, wait_bit6, wait_bit7; 
reg [0:7] mask; 
reg [3:0] act_x; 
integer i, j, k, m, n, p, act_run, act_out; 
reg slice, Lastfnd, Lastfndup, candfnd, maybe_reg, pollend_run, polltop_run; 
reg [0:15] suspend_bit, start_bit, pollend_bit, cand_bit, last_bit; 
// 
initial begin 
act_x = 4'bzzzz; 
slice = 0; 
Lastfnd = 0; 
Lastfndup = 0; 
candfnd = 0; 
maybe_reg = 0; 
pollend_run = 0; 
polltop_run = 0; 
end 
// 
/////////Set Start, Clear Start, Set Pollend, Clear Pollend, Set Suspend, Do Stim.//////// 
//////////Instruction act on activity specified in last Load Activity instruction.//////// 
// 
always @ (Sstart) 
begin 
 if (Sstart)    //set start 
  start_bit[act_no] = 1; 
end 
// 
always @ (Cstart) 
begin 
 if (Cstart)    //clear start 
  start_bit[act_no] = 0; 
end 
// 
always @ (Spollend) 
begin 
 if (Spollend)    //set pollend 
  pollend_bit[act_no] = 1; 
end 
// 
always @ (Cpollend) 
begin 
 if (Cpollend) 
  pollend_bit[act_no] = 0; 
end 
// 
always @ (Setsus) 
begin 
 if (Setsus)    //set suspend 
  suspend_bit[act_no] = 1; 
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end 
// 
always @ (Do_stim) 
begin 
 if (Do_stim)    //set stim according to mask 
 begin 
  if (mask[0] == 1) 
   stim_bit0[act_no] = 1; 
  if (mask[1] == 1) 
   stim_bit1[act_no] = 1; 
  if (mask[2] == 1) 
   stim_bit2[act_no] = 1; 
  if (mask[3] == 1) 
   stim_bit3[act_no] = 1; 
  if (mask[4] == 1) 
   stim_bit4[act_no] = 1; 
  if (mask[5] == 1) 
   stim_bit5[act_no] = 1; 
  if (mask[6] == 1) 
   stim_bit6[act_no] = 1; 
  if (mask[7] == 1) 
   stim_bit7[act_no] = 1; 
 end 
end 
// 
/////////////////////////////Set stim by local peripherals///////////////////////////////// 
always @ (posedge stimp0) 
begin 
 if (stimp0) 
 begin 
  wait (~slice) 
  begin 
   stim_bit7[0] = 1; 
   stim_bit7[4] = 1; 
   stim_bit7[8] = 1; 
   stim_bit7[12] = 1; 
  end 
 end 
end 
// 
always @ (posedge stimp1) 
begin 
 if (stimp1) 
 begin 
  wait (~slice) 
  begin 
   stim_bit7[1] = 1; 
   stim_bit7[5] = 1; 
   stim_bit7[9] = 1; 
   stim_bit7[13] = 1; 
  end 
 end 
end 
// 
always @ (posedge stimp2) 
begin 
 if (stimp2) 
 begin 
  wait (~slice) 
  begin 
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   stim_bit7[2] = 1; 
   stim_bit7[6] = 1; 
   stim_bit7[10] = 1; 
   stim_bit7[14] = 1; 
  end 
 end 
end 
// 
always @ (posedge stimp3) 
begin 
 if (stimp3) 
 begin 
  wait (~slice) 
  begin 
   stim_bit7[3] = 1; 
   stim_bit7[7] = 1; 
   stim_bit7[11] = 1; 
   stim_bit7[15] = 1; 
  end 
 end 
end 
// 
// 
//////////////////////////////Suspend, Do Wait.///////////////////////////////////// 
///////////instruction act on activity currently running in the processor.////////// 
// 
always @ (Suspend) 
begin 
 if (Suspend) 
 begin 
  if (act_run != 16) 
   suspend_bit[act_run] = 1; 
 end 
end 
// 
always @ (Do_wait) 
begin 
 if (Do_wait)     //set wait according to mask. 
 begin 
  if (act_run != 16) 
  begin 
   if (mask[0] == 1) 
    wait_bit0[act_no] = 1; 
   if (mask[1] == 1) 
    wait_bit1[act_no] = 1; 
   if (mask[2] == 1) 
    wait_bit2[act_no] = 1; 
   if (mask[3] == 1) 
    wait_bit3[act_no] = 1; 
   if (mask[4] == 1) 
    wait_bit4[act_no] = 1; 
   if (mask[5] == 1) 
    wait_bit5[act_no] = 1; 
   if (mask[6] == 1) 
    wait_bit6[act_no] = 1; 
   if (mask[7] == 1) 
    wait_bit7[act_no] = 1; 
  end 
 end 
end 
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// 
/////////////////////Load Mask (Mask pattern register)/////////////////////////////// 
// 
always @ (Ld_mask) 
begin 
 if (Ld_mask) 
  mask[0:7] = D[7:0];  //store mask pattern in mask register. 
end 
// 
//////////Select candidates to enter next activity search logic. 
//////////[0] to [7] is stimmed channel 0 to 7. 
//////////[8] to [15] is waiting channel 0 to 7. 
//////////[16] is suspended latch. 
//////////[17] is started latch. 
//////////[19] is candidate latch. 
// 
always @ (Suspend)      //????? 
begin 
 if(Suspend) 
 begin 
  for (i = 0; i <= 15; i = i + 1) 
  begin 
   if (((stim_bit0[i] == 1 & wait_bit0[i] == 1) | (stim_bit1[i] == 1 & 
wait_bit1[i] == 1) | (stim_bit2[i] == 1 & wait_bit2[i] == 1) | (stim_bit3[i] == 1 & wait_bit3[i] == 1) | 
(stim_bit4[i] == 1 & wait_bit4[i] == 1) | (stim_bit5[i] == 1 & wait_bit5[i] == 1) | (stim_bit6[i] == 1 & 
wait_bit6[i] == 1) | (stim_bit7[i] == 1 & wait_bit7[i] == 1)) & (start_bit[i] == 1)) 
   begin 
    cand_bit[i] = 1; 
   end 
   if ((suspend_bit[i] == 1) & (start_bit[i] == 1)) 
   begin 
    cand_bit[i] = 1; 
   end 
  end 
//////////////////////////////////////////////////////////////////////////////////// 
////////////////////////////////Search logic//////////////////////////////////////// 
// 
      //????? 
  candfnd = 0; 
  for (m = 0; m <= 15; m = m + 1) 
  begin 
   if (candfnd == 0) 
   begin 
    if (cand_bit[m] == 1) 
    begin 
     act_out = m; 
     candfnd = 1; 
    end 
   end 
  end 
  if (candfnd == 0) 
   act_out = 16; 
 end 
end 
///////////////////////////////////////////////////////////////////////////////////// 
///////////////////////////////////////////////////////////////////////////////////// 
// 
////////////////////////////////Overall Reset.////////////////////////////////////// 
// 
always @ (Clrall) 
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begin 
 if (Clrall) 
 begin 
  stim_bit0[0:15] = 16'b0; //reset stim 
  stim_bit1[0:15] = 16'b0; 
  stim_bit2[0:15] = 16'b0; 
  stim_bit3[0:15] = 16'b0; 
  stim_bit4[0:15] = 16'b0; 
  stim_bit5[0:15] = 16'b0; 
  stim_bit6[0:15] = 16'b0; 
  stim_bit7[0:15] = 16'b0; 
  wait_bit0[0:15] = 16'b0; //reset wait 
  wait_bit1[0:15] = 16'b0; 
  wait_bit2[0:15] = 16'b0; 
  wait_bit3[0:15] = 16'b0; 
  wait_bit4[0:15] = 16'b0; 
  wait_bit5[0:15] = 16'b0; 
  wait_bit6[0:15] = 16'b0; 
  wait_bit7[0:15] = 16'b0; 
  suspend_bit[0:15] = 16'b0; //reset suspend 
  start_bit[0:15] = 16'b0; //reset start 
  pollend_bit[0:15] = 16'b0; //reset pollend 
  cand_bit[0:15] = 16'b0;  //reset candidate 
 end 
end 
// 
///////////////////////Do external Stim (to other BUTLER).///////////////////////////// 
// 
always @ (Do_stimx) 
begin 
 if (Do_stimx) 
  act_x = act_no; 
end 
assign stimout = Do_stimx; 
assign Xout = act_x; 
// 
///////////////////Stim from external (from other BUTLER).///////////////////////////// 
// 
always @ (stimin) 
begin 
 if (~slice & stimin) 
  stim_bit6[Xin] = 1;  //act no specified by Xin[3:0] 
end      //channel 6 for external stim 
// 
////////////////////////////////Context switch.///////////////////////////////////////// 
// 
always @ (Suspend) 
begin 
 if (Suspend) 
  slice = 1; 
end 
// 
always @ (Do_wait) 
begin 
 if (Do_wait) 
  slice = 1; 
end 
// 
always @ (Nextact) 
begin 
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 if (Nextact) 
  slice = 0; 
end 
// 
assign slice_out = slice; 
// 
/////////////////////Ensure exactly 1 Last in every pollset////////////////////////////////// 
// 
always @ (Suspend)      //????? 
begin 
 if(Suspend) 
 begin 
  Lastfnd = 0; 
  for (j = 0; j <= 15; j = j + 1)   //remove extra Last bit. 
  begin 
   if (Lastfnd == 1) 
    last_bit[j] = 0;  //reset extra Last bit 
   else if (Lastfnd == 0) 
   begin 
    if (last_bit[j] == 1)  //check Last bit. 
     Lastfnd = 1; 
   end 
   if (pollend_bit[j] == 1)  //check pollend bit. 
    Lastfnd = 0; 
  end 
  if (last_bit[15] == 1) 
   Lastfndup = 1; 
  for (k = 14; k >= 1; k = k - 1)   //add Last bit. 
  begin 
   if (pollend_bit[k] == 1)  //check Pollend bit. 
   begin 
    if (Lastfndup == 0) 
    begin    //set first activity in a 
     last_bit[k+1] = 1; //pollset as Last if not found. 
    end 
    Lastfndup = 0;   //reset Lastfndup when cross 
   end     //pollset boundary. 
   if (last_bit[k] == 1)   //check Last bit. 
    Lastfndup = 1; 
  end 
  if (Lastfndup == 0 | pollend_bit[0] == 1) 
   last_bit[0] = 1; 
 end 
end 
// 
///////search for higher priority activity than currently running activity /////////////// 
// 
always @ (act_out) 
begin 
 if (~slice) 
 begin 
  if (act_out < act_run) 
   maybe_reg = 1; 
 end 
end 
// 
always @ (slice)    //reset maybe when context switch 
begin 
 if (slice) 
  maybe_reg = 0; 
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end 
assign maybe = maybe_reg; 
// 
///////////////////////return activity to processor/////////////////////////////////////// 
// 
always @ (Nextact) 
begin 
 if (Nextact) 
 begin 
  act_run = act_out; 
  if (act_out != 16) 
  begin 
   stim_bit0[act_run] = 0;   //reset control variables 
   stim_bit1[act_run] = 0; 
   stim_bit2[act_run] = 0; 
   stim_bit3[act_run] = 0; 
   stim_bit4[act_run] = 0; 
   stim_bit5[act_run] = 0; 
   stim_bit6[act_run] = 0; 
   stim_bit7[act_run] = 0; 
   wait_bit0[act_run] = 0; 
   wait_bit1[act_run] = 0; 
   wait_bit2[act_run] = 0; 
   wait_bit3[act_run] = 0; 
   wait_bit4[act_run] = 0; 
   wait_bit5[act_run] = 0; 
   wait_bit6[act_run] = 0; 
   wait_bit7[act_run] = 0; 
   suspend_bit[act_run] = 0; 
   cand_bit[act_run] = 0; 
/////////////////////////////////set Last//////////////////////////////////////////////// 
   last_bit[act_run] = 1;    //set Last bit 
   pollend_run = 0; 
   for (n = act_run + 1; n <= 15; n = n + 1) //running down 
   begin 
    if (pollend_run == 0) 
     last_bit[n] = 0;  //reset Last bit 
    if (pollend_bit[n] == 1)  //stop after pollend 
     pollend_run = 1; 
   end   
   polltop_run = 0; 
   for (p = act_run - 1; p <= 0; p = p - 1) //running up 
   begin 
    if (pollend_bit[p] == 1)  //stop before pollend 
     polltop_run = 1; 
    if (polltop_run == 0) 
     last_bit[p] = 0;  //reset Last bit 
   end 
  end 
 end 
end 
// 
assign Dout = act_run; 
// 
assign testout0 = stim_bit6; 
assign testout1 = stim_bit7; 
assign testout2 = suspend_bit; 
assign testout3 = start_bit; 
assign testout4 = pollend_bit; 
assign testout5 = cand_bit; 
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assign testout6 = last_bit; 
// 
Endmodule 
 
----------------------------------Control memory (final version) ----------------------------- 
module Cntl_Mem(Xout, Dout, stimout, maybe, slice_out, testout0, testout1, testout2, testout3, 
testout4, testout5, testout6, Xin, stimin, D, Sstart, Cstart, Spollend, Cpollend, Setsus, Do_stim, 
Do_stimx, Nextact, Do_wait, Suspend, Clrall, Ld_mask, act_no, stimp0, stimp1, stimp2, stimp3); 
output stimout, maybe, slice_out; 
output [3:0] Xout; 
output [4:0] Dout; 
output [0:15] testout0, testout1, testout2, testout3, testout4, testout5, testout6; 
input [3:0] act_no, Xin; 
input [7:0] D; 
//BUTLER instructions request signals from instruction memory 
input Sstart, Cstart, Spollend, Cpollend, Setsus, Do_stim, Do_stimx, Nextact, Do_wait, Suspend, 
Clrall, Ld_mask, stimin; 
//stimulation from local peripherals 
input stimp0, stimp1, stimp2, stimp3; 
//16 activities, 8 pairs of stim-wait channels [0-7 stim, 8-15 wait] 
//Suspend[16], Start[17], Pollend[18], Candidate[19], Last[20] 
reg [0:15] stim_bit0, stim_bit1, stim_bit2, stim_bit3, stim_bit4, stim_bit5, stim_bit6, stim_bit7, 
wait_bit0, wait_bit1, wait_bit2, wait_bit3, wait_bit4, wait_bit5, wait_bit6, wait_bit7; 
reg [0:7] mask; 
reg [3:0] act_x; 
integer i, j, k, m, n, p, act_run, act_out, a, b, c, d, e, f, g; 
reg slice, Lastfnd, Lastfndup, found, maybe_reg, pollend_run, polltop_run, searchtop, searchend, 
search_start; 
reg [0:15] suspend_bit, start_bit, pollend_bit, cand_bit, last_bit; 
// 
initial begin 
act_x = 4'bzzzz; 
slice = 0; 
Lastfnd = 0; 
Lastfndup = 0; 
found = 0; 
maybe_reg = 0; 
pollend_run = 0; 
polltop_run = 0; 
searchend = 0; 
searchtop = 0; 
search_start = 0; 
last_bit = 16'b0000000000000000; 
end 
// 
/////////Set Start, Clear Start, Set Pollend, Clear Pollend, Set Suspend, Do Stim.//////// 
//////////Instruction act on activity specified in last Load Activity instruction.//////// 
// 
always @ (Sstart) 
begin 
 if (Sstart)    //set start 
  start_bit[act_no] = 1; 
end 
// 
always @ (Cstart) 
begin 
 if (Cstart)    //clear start 
  start_bit[act_no] = 0; 
end 
// 
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always @ (Spollend) 
begin 
 if (Spollend)    //set pollend 
  pollend_bit[act_no] = 1; 
end 
// 
always @ (Cpollend) 
begin 
 if (Cpollend) 
  pollend_bit[act_no] = 0; 
end 
// 
always @ (Setsus) 
begin 
 if (Setsus)    //set suspend 
  suspend_bit[act_no] = 1; 
end 
// 
always @ (Do_stim) 
begin 
 if (Do_stim)    //set stim according to mask 
 begin 
  if (mask[0] == 1) 
   stim_bit0[act_no] = 1; 
  if (mask[1] == 1) 
   stim_bit1[act_no] = 1; 
  if (mask[2] == 1) 
   stim_bit2[act_no] = 1; 
  if (mask[3] == 1) 
   stim_bit3[act_no] = 1; 
  if (mask[4] == 1) 
   stim_bit4[act_no] = 1; 
  if (mask[5] == 1) 
   stim_bit5[act_no] = 1; 
  if (mask[6] == 1) 
   stim_bit6[act_no] = 1; 
  if (mask[7] == 1) 
   stim_bit7[act_no] = 1; 
 end 
end 
// 
/////////////////////////////Set stim by local peripherals////////////////////////////// 
always @ (stimp0) 
begin 
 if (stimp0) 
 begin 
  wait (~slice) 
  begin 
   stim_bit7[0] = 1; 
   stim_bit7[4] = 1; 
   stim_bit7[8] = 1; 
   stim_bit7[12] = 1; 
  end 
 end 
end 
// 
always @ (stimp1) 
begin 
 if (stimp1) 
 begin 



BUTLER Design and Analysis 

 58 

  wait (~slice) 
  begin 
   stim_bit7[1] = 1; 
   stim_bit7[5] = 1; 
   stim_bit7[9] = 1; 
   stim_bit7[13] = 1; 
  end 
 end 
end 
// 
always @ (stimp2) 
begin 
 if (stimp2) 
 begin 
  wait (~slice) 
  begin 
   stim_bit7[2] = 1; 
   stim_bit7[6] = 1; 
   stim_bit7[10] = 1; 
   stim_bit7[14] = 1; 
  end 
 end 
end 
// 
always @ (stimp3) 
begin 
 if (stimp3) 
 begin 
  wait (~slice) 
  begin 
   stim_bit7[3] = 1; 
   stim_bit7[7] = 1; 
   stim_bit7[11] = 1; 
   stim_bit7[15] = 1; 
  end 
 end 
end 
// 
// 
//////////////////////////////Suspend, Do Wait.///////////////////////////////////// 
///////////instruction act on activity currently running in the processor.////////// 
// 
always @ (Suspend) 
begin 
 if (Suspend) 
 begin 
  if (act_run != 16) 
   suspend_bit[act_run] = 1; 
 end 
end 
// 
always @ (Do_wait) 
begin 
 if (Do_wait)     //set wait according to mask. 
 begin 
  if (act_run != 16) 
  begin 
   if (mask[0] == 1) 
    wait_bit0[act_no] = 1; 
   if (mask[1] == 1) 
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    wait_bit1[act_no] = 1; 
   if (mask[2] == 1) 
    wait_bit2[act_no] = 1; 
   if (mask[3] == 1) 
    wait_bit3[act_no] = 1; 
   if (mask[4] == 1) 
    wait_bit4[act_no] = 1; 
   if (mask[5] == 1) 
    wait_bit5[act_no] = 1; 
   if (mask[6] == 1) 
    wait_bit6[act_no] = 1; 
   if (mask[7] == 1) 
    wait_bit7[act_no] = 1; 
  end 
 end 
end 
// 
/////////////////////Load Mask (Mask pattern register)/////////////////////////////////// 
// 
always @ (Ld_mask) 
begin 
 if (Ld_mask) 
  mask[0:7] = D[7:0];  //store mask pattern in mask register. 
end 
// 
//////////Select candidates to enter next activity search logic. 
//////////[0] to [7] is stimmed channel 0 to 7. 
//////////[8] to [15] is waiting channel 0 to 7. 
//////////[16] is suspended latch. 
//////////[17] is started latch. 
//////////[19] is candidate latch. 
// 
always @ (Suspend)      //????? 
begin 
 if(~Suspend) 
 begin 
  for (i = 0; i <= 15; i = i + 1) 
  begin 
   if (((stim_bit0[i] == 1 & wait_bit0[i] == 1) | (stim_bit1[i] == 1 & 
wait_bit1[i] == 1) | (stim_bit2[i] == 1 & wait_bit2[i] == 1) | (stim_bit3[i] == 1 & wait_bit3[i] == 1) | 
(stim_bit4[i] == 1 & wait_bit4[i] == 1) | (stim_bit5[i] == 1 & wait_bit5[i] == 1) | (stim_bit6[i] == 1 & 
wait_bit6[i] == 1) | (stim_bit7[i] == 1 & wait_bit7[i] == 1)) & (start_bit[i] == 1)) 
   begin 
    cand_bit[i] = 1; 
   end 
   if ((suspend_bit[i] == 1) & (start_bit[i] == 1)) 
   begin 
    cand_bit[i] = 1; 
   end 
  end 
//////////////////////////////////////////////////////////////////////////////////// 
//////////////////////////////////Search logic////////////////////////////////////// 
// 
/////////////////////////////////search act[0]////////////////////////////////////// 
  found = 0;     //reset in each pollset 
  if (last_bit[0] == 1)    //last? 
  begin 
///////////////////////////////Round Robin///////////////////////////////////////// 
   if (pollend_bit[0] == 0)   //pollend? 
   begin 
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    searchend = 0; 
    for (a = 1; a <= 15; a = a + 1) 
    begin 
     if ((searchend == 0) & (found == 0)) 
     begin 
      if (cand_bit[a] == 1) //candidate? 
      begin 
       act_out = a; 
       found = 1; 
      end 
      if (pollend_bit[a] == 1) //pollend? 
       searchend = 1; 
     end 
    end 
    if (found == 0) 
    begin 
     if (cand_bit[0] == 1) 
     begin 
      act_out = 0; 
      found = 1; 
     end 
    end 
   end 
   else if (pollend_bit[0] == 1)   //pollend? 
   begin 
    if (cand_bit[0] == 1)   //candidate? 
    begin 
     act_out = 0; 
     found = 1; 
    end 
   end 
  end 
/////////////////////////////search act[1] to act[14]////////////////////////////////////////// 
  for (b = 1; b <= 14; b = b + 1) 
  begin 
   if(found == 0) 
   begin 
    if(last_bit[b] == 1)     
 //last? 
    begin 
//Round Robin 
     if (pollend_bit[b] == 0)   
 //pollend? 
     begin 
      searchend = 0; 
      for (c = b + 1; c <= 15; c = c + 1) 
      begin 
       if (searchend == 0 & found == 0) 
       begin 
        if (cand_bit[c] == 1) 
 //candidate? 
        begin 
         act_out = c; 
         found = 1; 
        end 
        if (pollend_bit[c] == 1)
 //pollend? 
         searchend = 1; 
       end 
      end 
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      if (found == 0) 
      begin 
       searchtop = 0; 
       for (d = b; d >= 0; d = d - 1) 
       begin 
        if (pollend_bit[d] == 1) 
 //pollend? 
         searchtop = 1; 
        if (searchtop == 0) 
        begin 
         if (cand_bit[d] == 1)
 //candidate? 
         begin 
          act_out = d; 
          found = 1; 
         end 
        end 
       end 
      end 
     end 
     else if (pollend_bit[b] == 1) 
     begin 
      if (found == 0) 
      begin 
       searchtop = 0; 
       for (e = b - 1; e >= 0; e = e - 1) 
       begin 
        if (pollend_bit[e] == 1) 
 //pollend? 
         searchtop = 1; 
        if (searchtop == 0) 
        begin 
         if (cand_bit[e] == 1)
  //candidate? 
         begin 
          act_out = e; 
          found = 1; 
         end 
        end 
       end 
      end 
      if (found == 0) 
      begin 
       if (cand_bit[b] == 1) 
       begin 
        act_out = b; 
        found = 1; 
       end 
      end 
     end 
  
    end 
   end 
  end 
///////////////////////////////////////search act[15]////////////////////////////////////////// 
  if (found == 0) 
  begin 
   if (last_bit[15] == 1)     
 //last? 
   begin 
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    if (pollend_bit[15] == 1)    //pollend? 
    begin 
     searchtop = 0; 
     for (f = 14; f >= 0; f = f - 1) 
     begin 
      if (pollend_bit[f] == 1)  //pollend? 
       searchtop = 1; 
      if (searchtop == 0) 
      begin 
       if (cand_bit[f] == 1) 
 //candidate? 
       begin  
        act_out = f; 
        found = 1; 
       end 
      end 
     end 
    end 
    if (found == 0) 
    begin 
     if (cand_bit[15] == 1) 
     begin 
      act_out = 15; 
      found = 1; 
     end 
    end 
    else if (pollend_bit[15] == 0)   
 //pollend? 
    begin 
     searchtop = 0; 
     for(g = 15; g >= 0; g = g - 1) 
     begin 
      if (pollend_bit[g] == 1)  //pollend? 
       searchtop = 1; 
      if (searchtop == 0) 
      begin 
       if (cand_bit[g] == 1) 
 //candidate? 
       begin 
        act_out = g; 
        found = 1; 
       end 
      end 
     end 
    end 
   end 
  end 
/////////////////////////return act[16] if no candidate found/////////////////////////////// 
  if (found == 0) 
   act_out = 16; 
 end 
end 
// 
/////////////////////////////////////////////////////////////////////////////////////////// 
/////////////////////////////////////////////////////////////////////////////////////////// 
// 
////////////////////////////////Overall Reset.////////////////////////////////////// 
// 
always @ (Clrall) 
begin 
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 if (Clrall) 
 begin 
  stim_bit0[0:15] = 16'b0; //reset stim 
  stim_bit1[0:15] = 16'b0; 
  stim_bit2[0:15] = 16'b0; 
  stim_bit3[0:15] = 16'b0; 
  stim_bit4[0:15] = 16'b0; 
  stim_bit5[0:15] = 16'b0; 
  stim_bit6[0:15] = 16'b0; 
  stim_bit7[0:15] = 16'b0; 
  wait_bit0[0:15] = 16'b0; //reset wait 
  wait_bit1[0:15] = 16'b0; 
  wait_bit2[0:15] = 16'b0; 
  wait_bit3[0:15] = 16'b0; 
  wait_bit4[0:15] = 16'b0; 
  wait_bit5[0:15] = 16'b0; 
  wait_bit6[0:15] = 16'b0; 
  wait_bit7[0:15] = 16'b0; 
  suspend_bit[0:15] = 16'b0; //reset suspend 
  start_bit[0:15] = 16'b0; //reset start 
  pollend_bit[0:15] = 16'b0; //reset pollend 
  cand_bit[0:15] = 16'b0;  //reset candidate 
 end 
end 
// 
///////////////////////Do external Stim (to other BUTLER).///////////////////////////// 
// 
always @ (Do_stimx) 
begin 
 if (Do_stimx) 
  act_x = act_no; 
end 
assign stimout = Do_stimx; 
assign Xout = act_x; 
// 
///////////////////Stim from external (from other BUTLER).///////////////////////////// 
// 
always @ (stimin) 
begin 
 if (~slice & stimin) 
  stim_bit6[Xin] = 1;  //act no specified by Xin[3:0] 
end      //channel 6 for external stim 
// 
////////////////////////////////Context switch.///////////////////////////////////////// 
// 
always @ (Suspend) 
begin 
 if (Suspend) 
  slice = 1; 
end 
// 
always @ (Do_wait) 
begin 
 if (Do_wait) 
  slice = 1; 
end 
// 
always @ (Nextact) 
begin 
 if (Nextact) 
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  slice = 0; 
end 
// 
assign slice_out = slice; 
// 
/////////////////////Ensure exactly 1 Last in every pollset////////////////////////////////// 
// 
always @ (Suspend)      //????? 
begin 
 if(Suspend) 
 begin 
  Lastfnd = 0; 
  for (j = 0; j <= 15; j = j + 1)   //remove extra Last bit. 
  begin 
   if (Lastfnd == 1) 
    last_bit[j] = 0;  //reset extra Last bit 
   else if (Lastfnd == 0) 
   begin 
    if (last_bit[j] == 1)  //check Last bit. 
     Lastfnd = 1; 
   end 
   if (pollend_bit[j] == 1)  //check pollend bit. 
    Lastfnd = 0; 
  end 
  Lastfndup = 0; 
  if (last_bit[15] == 1) 
   Lastfndup = 1; 
  for (k = 14; k >= 1; k = k - 1)   //add Last bit. 
  begin 
   if (pollend_bit[k] == 1)  //check Pollend bit. 
   begin 
    if (Lastfndup == 0) 
    begin    //set first activity in a 
     last_bit[k+1] = 1; //pollset as Last if not found. 
    end 
    Lastfndup = 0;   //reset Lastfndup when cross 
   end     //pollset boundary. 
   if (last_bit[k] == 1)   //check Last bit. 
    Lastfndup = 1; 
  end 
  if ((Lastfndup == 0) | (pollend_bit[0] == 1)) 
   last_bit[0] = 1; 
 end 
end 
// 
///////search for higher priority activity than currently running activity ///////////////////////////////not 
checked!!!//////// 
// 
always @ (act_out) 
begin 
 if(~slice) 
 begin 
  search_start = 0; 
  if (act_run != 0) 
  begin 
   for (m = act_run - 1; m >= 0; m = m - 1) 
   begin 
    if (pollend_bit[m] == 1) 
     search_start = 1; 
    if (search_start == 1) 
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    begin 
     if (cand_bit[m] == 1) 
      maybe_reg = 1; 
    end 
   end 
  end 
 end 
end 
// 
always @ (slice)     //reset maybe when context switch 
begin 
 if (slice) 
  maybe_reg = 0; 
end 
assign maybe = maybe_reg; 
// 
///////////////////////return activity to processor/////////////////////////////////////// 
// 
always @ (Nextact) 
begin 
 if (Nextact) 
 begin 
  act_run = act_out; 
  if (act_out != 16) 
  begin 
   stim_bit0[act_run] = 0;   //reset control variables 
   stim_bit1[act_run] = 0; 
   stim_bit2[act_run] = 0; 
   stim_bit3[act_run] = 0; 
   stim_bit4[act_run] = 0; 
   stim_bit5[act_run] = 0; 
   stim_bit6[act_run] = 0; 
   stim_bit7[act_run] = 0; 
   wait_bit0[act_run] = 0; 
   wait_bit1[act_run] = 0; 
   wait_bit2[act_run] = 0; 
   wait_bit3[act_run] = 0; 
   wait_bit4[act_run] = 0; 
   wait_bit5[act_run] = 0; 
   wait_bit6[act_run] = 0; 
   wait_bit7[act_run] = 0; 
   suspend_bit[act_run] = 0; 
   cand_bit[act_run] = 0; 
/////////////////////////////////set Last//////////////////////////////////////////////// 
   last_bit[act_run] = 1;    //set Last bit 
    
   if (act_run != 0) 
   begin 
    polltop_run = 0; 
    for (p = act_run - 1; p >= 0; p = p - 1) //running up 
    begin 
     if (pollend_bit[p] == 1)  //stop before pollend 
      polltop_run = 1; 
     if (polltop_run == 0) 
      last_bit[p] = 0;  //reset Last bit 
    end 
   end 
   if (act_run != 15) 
   begin 
    if (pollend_bit[act_run] == 0) 
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    begin 
     pollend_run = 0; 
     for (n = act_run + 1; n <= 15; n = n + 1) //running 
down 
     begin 
      if (pollend_run == 0) 
       last_bit[n] = 0;  //reset Last 
bit 
      if (pollend_bit[n] == 1)  //stop after 
pollend 
       pollend_run = 1; 
     end 
    end 
   end 
  end 
 end 
end 
// 
assign Dout = act_run; 
// 
assign testout0 = stim_bit6; 
assign testout1 = stim_bit7; 
assign testout2 = suspend_bit; 
assign testout3 = start_bit; 
assign testout4 = pollend_bit; 
assign testout5 = cand_bit; 
assign testout6 = last_bit; 
// 
endmodule 
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Appendix 2 
----------------------------- Interrupt controller simulation ------------------------------------- 
Initial begin 
Clrall = 0; 
Test = 0; 
act_no = 4'bzzzz; 
slice = 0; 
maybe = 0; 
expired = 0; 
#2 act_no = 4'b0011; 
#1 Test = 1; 
#1 Test = 0; 
#2 maybe = 1; 
#2 maybe = 0; 
#2 expired = 1; 
#2 slice = 1; 
#2 expired = 0; 
#2 slice = 0; 
#2 maybe = 1; 
#2 act_no = 4'b0001; 
#1 Test = 1; 
#1 Test = 0; 
#2 expired = 1; 
#2 act_no = 4'b0000; 
#1 Test = 1; 
#1 Test = 0; 
End 
---------------------------------- Decoder simulation -------------------------------------------- 
initial begin 
R = 0; 
W = 0; 
select = 0; 
a0 = 0; 
a1 = 0; 
a2 = 0; 
//read cycle 
#2 R = 1; 
#1 select = 1; 
#2 a2 = 1; 
#2 a1 = 1; 
#2 a2 = 0; 
#2 a0 = 1; 
#2 a1 = 0; 
#2 a2 = 1; 
#2 a1 = 1; 
#2 a0 = 0; 
   a1 = 0; 
   a2 = 0; 
   R = 0; 
//write cycle 
#1 W = 1; 
#1 select = 1; 
#2 a2 = 1; 
#2 a1 = 1; 
#2 a2 = 0; 
#2 a0 = 1; 
#2 a1 = 0; 
#2 a2 = 1; 
#2 a1 = 1; 
#2 select = 0; 
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End 
--------------------------------------- Counter simulation ---------------------------------------- 
initial begin 
Test = 0; 
slice = 0; 
D[7:0] = 8'b0; 
countin = 0; 
Ld_cntr_lo = 0; 
Ld_cntr_hi = 0; 
//Load counter 
#2 D[7:0] = 8'b11111011; 
#2 Ld_cntr_lo = 1; 
#2 Ld_cntr_lo = 0; 
 D[7:0] = 8'b11111111; 
#2 Ld_cntr_hi = 1; 
#2 Ld_cntr_hi = 0; 
//initialize counter 
#5 slice = 1; 
#5 slice = 0; 
//start counting 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
//reset counter 
#5 slice = 1; 
#5 slice = 0; 
End 
----------------------- Activity number register simulation ------------------------------------ 
initial begin 
Ld_act = 0; 
D[3:0] = 4'b0; 
// 
#2 Ld_act = 1; 
#2 Ld_act = 0; 
#4 D[3:0] = 4'b1010; 
#2 Ld_act = 1; 
#2 Ld_act = 0; 
#2 D[3:0] = 4'b1110; 
#2 D[3:0] = 4'b0101; 
#2 Ld_act = 1; 
#3 Ld_act = 0; 
End 
------------------------- Control memory simulation (simple version) ----------------------- 
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initial begin 
D[7:0] = 8'bzzzzzzzz; 
Clrall = 0; 
Cpollend = 0; 
Cstart = 0; 
Do_stim = 0; 
Do_stimx = 0; 
Do_wait = 0; 
Ld_mask = 0; 
Nextact = 0; 
Setsus = 0; 
Spollend = 0; 
Sstart = 0; 
Suspend = 0; 
Xin[3:0] = 4'bzzzz; 
act_no[3:0] = 4'bzzzz; 
stimin = 0; 
stimp0 = 0; 
stimp1 = 0; 
stimp2 = 0; 
stimp3 = 0; 
// 
#1 Clrall = 1; 
#1 Clrall = 0; 
#2 D[7:0] = 8'b11111111; 
#1 Ld_mask = 1;   //test Ld_mask 
#1 Ld_mask = 0; 
#2 act_no[3:0] = 4'b0100; 
#2 Sstart = 1;   //test Sstart 
#1 Sstart = 0; 
#2 Cstart = 1;   //test Cstart 
#1 Cstart = 0; 
#2 Spollend = 1;   //test Sstart 
#1 Spollend = 0; 
#2 Cpollend = 1;   //test Cstart 
#1 Cpollend = 0; 
#2 Setsus = 1;   //test Setsus 
#1 Setsus = 0; 
#2 Do_stim = 1;   //test Do_stim 
#2 Do_stim = 0; 
#2 stimp0 = 1;   //stimp between context switch 
#2 stimp0 = 0; 
#1 Sstart = 1; 
#1 Sstart = 0; 
#1 Suspend = 1; 
#2 Suspend = 0; 
#2 stimp1 = 1;   //stimp during context switch 
#2 stimp1 = 0; 
#2 Nextact = 1;   //return act[0100] 
#1 Nextact = 0; 
#2 Suspend = 1;   //test Suspend 
#2 Suspend = 0; 
#1 Nextact = 1; 
#2 Nextact = 0; 
#2 Do_wait = 1;   //test Do_wait 
#2 Do_wait = 0; 
#1 Nextact = 1; 
#2 Nextact = 0; 
#2 Clrall = 1;   //test Clrall 
#2 Clrall = 0; 
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#1 act_no[3:0] = 4'b1010; 
#1 Do_stimx = 1;   //test Do_stimx 
#1 Do_stimx = 0; 
#2 Xin[3:0] = 4'b0100;  //test stimin act[Xin] 
#1 stimin = 1; 
#2 stimin = 0; 
End 
---------------------- Control memory simulation (final version) ----------------------------- 
initial begin 
D[7:0] = 8'bzzzzzzzz; 
Clrall = 0; 
Cpollend = 0; 
Cstart = 0; 
Do_stim = 0; 
Do_stimx = 0; 
Do_wait = 0; 
Ld_mask = 0; 
Nextact = 0; 
Setsus = 0; 
Spollend = 0; 
Sstart = 0; 
Suspend = 0; 
Xin[3:0] = 4'bzzzz; 
act_no[3:0] = 4'bzzzz; 
stimin = 0; 
stimp0 = 0; 
stimp1 = 0; 
stimp2 = 0; 
stimp3 = 0; 
// 
////////////////////////////////////////// 
#1 Clrall = 1;   //Clrall 
#1 Clrall = 0; 
//////////////////////////////////////////test Round Robin 
#1 act_no[3:0] = 4'b1110; 
#2 act_no[3:0] = 4'b0100; 
#2 Sstart = 1;   //Sstart 
#1 Sstart = 0; 
#2 Setsus = 1;   //Setsus 
#1 Setsus = 0; 
#2 act_no[3:0] = 4'b0101; 
#2 Sstart = 1;   //Sstart 
#1 Sstart = 0; 
#2 Setsus = 1;   //Setsus 
#1 Setsus = 0; 
#2 act_no[3:0] = 4'b0110; 
#2 Sstart = 1;   //Sstart 
#1 Sstart = 0; 
#2 Setsus = 1;   //Setsus 
#1 Setsus = 0; 
#2 Suspend = 1; 
#1 Suspend = 0; 
#5 Nextact = 1;   //Nextact 
#1 Nextact = 0; 
#1 act_no[3:0] = 4'b0010; 
#2 Spollend = 1;   //Spollend 
#2 Spollend = 0; 
#1 act_no[3:0] = 4'b1110; 
#2 Spollend = 1;   //Spollend 
#2 Spollend = 0; 
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#2 Suspend = 1; 
#1 Suspend = 0; 
#5 Nextact = 1;   //Nextact 
#1 Nextact = 0; 
#2 Suspend = 1; 
#1 Suspend = 0; 
#5 Nextact = 1;   //Nextact 
#1 Nextact = 0; 
#2 Suspend = 1; 
#1 Suspend = 0; 
#5 Nextact = 1;   //Nextact 
#1 Nextact = 0; 
//////////////////////////////////////////test maybe search 
#2 act_no[3:0] = 4'b0000; 
#2 Sstart = 1;   //Sstart 
#1 Sstart = 0; 
#2 Setsus = 1;   //Setsus 
#1 Setsus = 0; 
//////////////////////////////////////////return act[0000] 
#2 Suspend = 1; 
#2 Suspend = 0; 
#5 Nextact = 1; 
#2 Nextact = 0; 
#2 Do_wait = 1; 
#2 Do_wait = 0; 
//////////////////////////////////////////test 1 "last" logic 
#1 act_no[3:0] = 4'b0010; 
#2 Cpollend = 1;   //Cpollend 
#2 Cpollend = 0; 
//////////////////////////////////////////test return idle 
#2  Clrall = 1; 
#2 Clrall = 0; 
#2 Suspend = 1; 
#2 Suspend = 0; 
#2 Nextact = 1; 
#2 Nextact = 0; 
End 
---------------------------------- Integrated simulation ------------------------------------------ 
initial begin 
D[7:0] = 8'bzzzzzzzz; 
a0 = 0; 
a1 = 0; 
a2 = 0; 
R = 0; 
W = 0; 
select = 0; 
Xin[3:0] = 4'bzzzz; 
stimin = 0; 
stimp0 = 0; 
stimp1 = 0; 
stimp2 = 0; 
stimp3 = 0; 
countin = 1'bz; 
//////////////////////////////////////////////////////////////////Interrupt controller 
// 
#2 D[3:0] = 4'b0011;  //Ld_act 
#1 a0 = 0; 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
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#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#1 a0 = 1;    //Test 
 a1 = 1; 
 a2 = 1; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
//   
///////////////////////////////////////// 
//Load counter 
#2 D[7:0] = 8'b11111011; 
// 
#1 a0 = 1;    //Ld_cntr_lo 
 a1 = 1; 
 a2 = 0; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
 D[7:0] = 8'b11111111; 
// 
#1 a0 = 1;    //Ld_cntr_hi 
 a1 = 1; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
//initialize counter 
// 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
//////////////////////////////////////////expired 
//start counting 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
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#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
/////////////////////////////////////////////reset by slice 
// 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
//////////////////////////////////////////expired 
//start counting 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
///////////////////////////////////////////reset by actbit = 0 
#2 D[3:0] = 4'b0000;  //Ld_act 
#1 a0 = 0; 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
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#1 select = 0; 
 W = 0; 
// 
#1 a0 = 1;    //Test 
 a1 = 1; 
 a2 = 1; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
//////////////////////////////////////////expired 
//initialize counter 
// 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
//start counting 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
///////////////////////////////////////////// 
// 
#2 D[3:0] = 4'b0000;  //Ld_act 
#1 a0 = 0; 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
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 W = 0; 
// 
#1 a0 = 1;    //Test 
 a1 = 1; 
 a2 = 1; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
//////////////////////////////////////////reset counter 
// 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
////////////////////////////////////////////////// 
// 
#1 a0 = 0;    //Clrall 
 a1 = 1; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
//////////////////////////////////////////////////////////////////////////////Counter 
//Load counter 
#2 D[7:0] = 8'b11111011; 
// 
#1 a0 = 1;    //Ld_cntr_lo 
 a1 = 1; 
 a2 = 0; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
 D[7:0] = 8'b11111111; 
// 
#1 a0 = 1;    //Ld_cntr_hi 
 a1 = 1; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
//initialize counter 
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// 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
//start counting 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
#1 countin = 1; 
#1 countin = 0; 
//reset counter 
// 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
/////////////////////////////////////////////////////////////////////////simple version cntl mem 
// 
#1 a0 = 0;    //Clrall 
 a1 = 1; 
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 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#2 D[7:0] = 8'b11111111; 
// 
#1 a0 = 0;    //Ld_mask 
 a1 = 0; 
 a2 = 0; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#2 D[3:0] = 4'b0100;  //Ld_act 
#1 a0 = 0; 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#1 a0 = 1;    //Sstart 
 a1 = 0; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Cstart 
 a1 = 0; 
 a2 = 0; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#1 a0 = 1;    //Spollend 
 a1 = 0; 
 a2 = 1; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Cpollend 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#1 a0 = 0;    //Setsus 
 a1 = 1; 
 a2 = 1; 
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 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 0;    //Do_stim 
 a1 = 0; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#2 stimp0 = 1;   //stimp between context switch 
#2 stimp0 = 0; 
// 
#1 a0 = 1;    //Sstart 
 a1 = 0; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#2 stimp1 = 1;   //stimp during context switch 
#2 stimp1 = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 0;    //Do_wait 
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 a1 = 0; 
 a2 = 1; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 0;    //Clrall 
 a1 = 1; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#2 D[3:0] = 4'b1010;  //Ld_act 
#1 a0 = 0; 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#1 a0 = 0;    //Do_stimx 
 a1 = 1; 
 a2 = 0; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#2 Xin[3:0] = 4'b0100;  //test stimin act[Xin] 
#1 stimin = 1; 
#2 stimin = 0; 
/////////////////////////////////////////////////////////////////////////Final version cntl mem 
#1 a0 = 0;    //Clrall 
 a1 = 1; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
//////////////////////////////////////////test Round Robin 
// 
#2 D[3:0] = 4'b0100;  //Ld_act 
#1 a0 = 0; 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
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 W = 0; 
// 
#1 a0 = 1;    //Sstart 
 a1 = 0; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 0;    //Setsus 
 a1 = 1; 
 a2 = 1; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#2 D[3:0] = 4'b0101;  //Ld_act 
#1 a0 = 0; 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#1 a0 = 1;    //Sstart 
 a1 = 0; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 0;    //Setsus 
 a1 = 1; 
 a2 = 1; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#2 D[3:0] = 4'b0110;  //Ld_act 
#1 a0 = 0; 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#1 a0 = 1;    //Sstart 
 a1 = 0; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
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#1 a0 = 0;    //Setsus 
 a1 = 1; 
 a2 = 1; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#2 D[3:0] = 4'b0010;  //Ld_act 
#1 a0 = 0; 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#1 a0 = 1;    //Spollend 
 a1 = 0; 
 a2 = 1; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#2 D[3:0] = 4'b1110;  //Ld_act 
#1 a0 = 0; 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#1 a0 = 1;    //Spollend 
 a1 = 0; 
 a2 = 1; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
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 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
//////////////////////////////////////////test maybe search 
// 
#2 D[3:0] = 4'b0000;  //Ld_act 
#1 a0 = 0; 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#1 a0 = 1;    //Sstart 
 a1 = 0; 
 a2 = 0; 
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 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 0;    //Setsus 
 a1 = 1; 
 a2 = 1; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
//////////////////////////////////////////return act[0000] 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 0;    //Do_wait 
 a1 = 0; 
 a2 = 1; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
//////////////////////////////////////////test 1 "last" logic 
// 
#2 D[3:0] = 4'b0010;  //Ld_act 
#1 a0 = 0; 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#1 a0 = 1;    //Cpollend 
 a1 = 0; 
 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
//////////////////////////////////////////test return idle 
#1 a0 = 0;    //Clrall 
 a1 = 1; 
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 a2 = 1; 
 W = 1; 
#1 select = 1; 
#1 select = 0; 
 W = 0; 
// 
#1 a0 = 0;    //Suspend 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
#1 a0 = 1;    //Nextact 
 a1 = 1; 
 a2 = 0; 
 R = 1; 
#1 select = 1; 
#1 select = 0; 
 R = 0; 
// 
End 
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Fig. 3 BUTLER System Overall Configuration 
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Fig. 4 Block Diagram of original BUTLER 
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Fig. 5 Control Memory 
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Fig. 10 “ last”  variable setting logic 
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Decoder
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Activity Number Register
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Counter
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Interrupt controller
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Control memory (simple version)
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Control memory (final version)
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Fig. 17. Block diagram of newly designed BUTLER 
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Integrated simulation
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