School of Electrical, Electronic & Computer Engineering

UNIVERSITY OF
NEWCASTLE UPON TYNE

Transition Sequence Encoder

A. Mokhov and A. Yakovlev

Technical Report Series

NCL-EECE-MSD-TR-2006-117

September 2006

Contact:

Andrey.Mokhov@ncl.ac.uk

Alex.Yakovlev@ncl.ac.uk

Supported by EPSRC grant EP/C512812

NCL-EECE-MSD-TR-2006-117
Copyright(© 2006 University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,
Merz Court,

University of Newcastle upon Tyne,

Newcastle upon Tyne, NE1 7RU, UK

http://async. org. uk/

A. Mokhov and A. Yakovlev: Transition Sequence Encoder

Transition Sequence Encoder

A. Mokhov and A. Yakovlev

September 2006

Abstract

This paper introduces concept of a programmable event astedraable to dynamically schedule a set of events
given their order specification and presents Transitioru8ece Encoder as a possible solution for a simplified
event scheduling problem. The solution is derived in formamdlytical Boolean equation and is translated futher
to gate-level implementation.

1 Introduction

The problem of event scheduling is usually solved durindalgé& synthesis phase of design flow as the order of
events is known from system specification. The approactvaléynthesis tools like Petrify [2] or Optimist [4] to be
used to generate circuits that will schedule the eventsriresareset order. Typical design flow of such an approach
is shown in Figure 1. The system specification is given @igisal Transition Graph (STG). It describes the circuit
behavior and all the event order constraints are definedigtvithout a possibility of real-time reordering. STG
can be directly mapped into a Verilog netlist by tools liketi@yst. Another way is to generate logic equations
using Petrify and to map them into netlist using a particgkte library. The obtained implementation is static in
sense that it is impossible to introduce new or change tretiegiorder relations within the system without the its
complete redesign and resynthesis.

[System specification }

Sgnal Transition Graph

Logic synthesis Gate
Petrify library
Direct mapping
Set of logic equations Optimist

Technology mapping

Verilog Netlist

[Implementation }

Figure 1: Design flow

But sometimes the order of events is not known beforehandsacmhstantly changing throughout the circuit
lifetime. This calls for a dynamically programmable evechedulers. The paper presents a family of circuits
able to schedule an arbitrary number of events given theierospecification. The behaviour of such circuits

NCL-EECE-MSD-TR-2006-117, University of Newcastle upgm& 1

A. Mokhov and A. Yakovlev: Transition Sequence Encoder

is described in Figure 2: given an event order specificatimhsiarting signagjo the circuit initiates a series of
request-acknowledgementhandshakes in the specified dtteecompletion of the series is flagged by sigiaxle.
Note, that some of the handshakes can occur concurrerttly drider specification does not restrict so. In such case
the events are scheduled usemgsoon-as-possible (ASAP) scheduling strategy i.e. an event is generated as soo
as all of its order requirements are satisfied without waifior the other, not important events for completion.
This strategy minimises the overall execution time of alf #vents under the given constraints and maximises
concurrency.

. req[l]
event order ~— ack[1]
specification TS E

go .| . req[n]
done___| < ack[n]

Figure 2: Transition Sequence Encoder

The general event scheduling problem can involve multigieucences of the same event and cyclic order
dependencies. In the paper we concentrate on a simpler ¢ese an event can occur only once and event order
specification does not contain cyclic dependencies.

2 Events order specification

2.1 Partial order graph and matrix

Let E = {1,...,n} be a set of events. Their order can be specified with a directed géagh (F, R) whereE is

a set of vertices (which represent the events) Arigl the set of ordered pairs of verticesascs (which represent
the order relations between pairs of events). An exampledi a graph is shown in Figure 3. Evéntan occur
only after eventl has occured what is stated with an arc between them; &veart occur only when both of its
precedeing eventst(@nd7) have occured and so on. If two events are not connected bycathen they can
occur independently of each other. However there can exdstact dependency between events like, for example,
between event3 and6. They are not directly dependent but clearly evoan occur only after eveist

Op0O
(O~ Op0O

Figure 3: Partial order graph

A partial order graph can be represented with a booleanxn@tri £ x E — {1, 0} such thatR[i, j] = 1 if
there is an arc in the graph directed frono j i.e. if eventi should occur before eveyit otherwiseR|:, j] = 0.
Let R+ denote transitive closure [1] of matrik, i.e. it should satisfy the following two conditions:

1. ¥i,j € E, Rli,j] = R [i, jl;
2. Vi,j,k € E, R« [i,j] A\ Rx [j, k] = Rx [i, k] - transitivity condition.

In other wordsR x [i, j] = 1 if there is a direct and/or indirect dependency betweentevesndj and event
should occur before evejit Note, thatR itself is not a proper partial order relation as it does nassary satisfy
the transitivity condition whileRx is a partial order relation [3].

NCL-EECE-MSD-TR-2006-117, University of Newcastle upgm& 2

A. Mokhov and A. Yakovlev: Transition Sequence Encoder

A partial order matrixR is consistent if it satisfies the following two conditions:
1. Vi € E, RJi,i] = 0 - no event can precede itself;
2. Vi € E, Rx[i,i] = 0 - there are no cyclic dependencies in the partial order matri

Partial order matrix for the graph in Figure 3 and its tramsitlosure are shown below:

01 00 00O 01 000 O0O0
00 00O O0O0TO O 00 0O0O0O0O
00 01 00O 0001 110
R=1000O010UO0], Rx={0000110
0 000O0T1FPO 0000 O0T1O0
00 00O 0 OO O 00 0O0O0O0O
00001 0O 0000110

The consistency conditions ensure that there is a possibiet schedule that satisfies the the order require-
ments.

2.2 Total order

Total order is such a partial order that the followtotality condition is held¥i, j € E,i # j, R[i, j]®R][j,] = 1.
In other words there is a direct order dependecy between ainppevents. Total order naturally arises in some
applications and knowing the fact that a given partial oisiéotal can simplify the TSE logic.

So a total order matriR is consistent if it satisfies the following three conditions

1. Vi € E, RJi,i] = 0 - no event can precede itself;
2. Vi € E, Rx[i,i] = 0 - there are no cyclic dependencies in the partial order matri

3. Vi,j € E,i # j, R[i,j| = R][j,1] - totality condition.

3 Transition Sequence Encoder

Given a consistent partial order mati: E x E — {1, 0} specifying the events order, tAeansition Sequence
Encoder (TSE) circuit is to generate request signalg|k], k € E in the specified order as shown in Figure 2. The
following two chapters derive TSE analytically in form of @@ean equation and then translate it to gate-level
implementation.

3.1 TSE for partial order

Request signaleq|[k] can only be generated when the acknowledgement signkl$| have been received for all
the preceding evengs(such thatR[j, k] = 1). This leads to the following equation for signal[k] generation:

reglk] = \/ | N\ BUK- N\ RLH-)\ acklj]

PCE \jeP jJEE\P JjEP

Here setP C FE is the set of preceding events for evénithis is guaranteed by ternﬁjep R[j, k] -
Njer\p Rl k). Term A, p ack[j] guarantees that the acknowledgment signals for evenftstiave been re-
ceived.

To simplify the above equation it is possible to fold it intengunction of simple clauses:

reqlk] = [\ (RUj. K- ack[j] + B H])

NCL-EECE-MSD-TR-2006-117, University of Newcastle upgm& 3

A. Mokhov and A. Yakovlev: Transition Sequence Encoder

This can be further simplified using Boolean algebra to:

reqlk] = /\ (acklj] + B[}, k)
JEE
Note that this equation contains a redundant term whegqualsk: ack[k] + R[k, k] that is equal td because
R[k, k] = 1. It doesn't affect the correctness of the equation but ofs®in physical circuit implementation it
will be omitted.
The obtained solution can be mapped to gate-level implestient An example of TSE circuit for 3 events
is shown in Figure 4(a). Signagb was added which is a general “ready” signal that prompts ifoeit to start

generating requests.
R[3,1 R[1,3
R[2,1] % R[1,2] %
req[1]
R[3,2] R[2,3])
R[1,2] R[2,1] %
req([2]
R[3,2])
R[3,1] %
req(3] .

req(1]

req(2]

YT

YT

R[2,3] g

R[1,3]
! req(3]
*——— *———
ack[1] ack[1]
9o ack[2] go ack[2]
T ackl31 o ackl3l
(a) Partial order (b) Total order

Figure 4: TSE gate-level implementation

3.2 TSE for total order

The final equation obtained for the strict partial order caslightly modified taking into account totality condition

(Vi,j € E,i # j, Rli,j] = R[j,4]) and removing the redundant term wheequalsk:

reqlk] = J\ (acklj] + R[iH) = /\ (acklj] + Ik, j))

JEE JEE, j#k

Using this modification it is possible to get rid of invertarsd come up with a circuit shown in Figure 4(b).

4 Conclusions

The paper introduced the concept of a programmable eveatlalér able to dynamically schedule a set of events
given their order specification. Transition Sequence Eacapresented as a solution for a simplified version of

a programmable event scheduler which can handle only acyadier dependencies and single occurrences of a
particular event. Analytical solution in Boolean equati@s well as gate-level implementations are derived. The
solution of the general event scheduling problem is thetpdithe future research.

Acknowledgement
This work is supported by EPSRC project NEGUS at the UnitieiNewcastle upon Tyne.

NCL-EECE-MSD-TR-2006-117, University of Newcastle upgm& 4

A. Mokhov and A. Yakovlev: Transition Sequence Encoder

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stémroduction to Algorithms. MIT Press, 2001.

[2] Jordi Cortadella, Michael Kishinevsky, Alex Kondraty&uciano Lavagno, and Alex Yakovlev. Petrify: a tool
for manipulating concurrent specifications and synthefsaésgnchronous controllers. IEICE Trans. Inf. &
Syst., volume E80-D, pages 315-325, March 1997.

[3] Art Lew. Computer Science: A Mathematical Introduction. Prentice-Hall, 1985.

[4] Danil Sokolov.Automated synthesis of asynchronous circuits using direct mapping for control and data paths.
PhD thesis, University of Newcastle upon Tyne, 2005.

NCL-EECE-MSD-TR-2006-117, University of Newcastle upgm& 5

