
School of Electrical, Electronic & Computer Engineering

Transition Sequence Encoder

A. Mokhov and A. Yakovlev

Technical Report Series

NCL-EECE-MSD-TR-2006-117

September 2006



Contact:

Andrey.Mokhov@ncl.ac.uk

Alex.Yakovlev@ncl.ac.uk

Supported by EPSRC grant EP/C512812

NCL-EECE-MSD-TR-2006-117

Copyright c© 2006 University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,

Merz Court,

University of Newcastle upon Tyne,

Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/



A. Mokhov and A. Yakovlev: Transition Sequence Encoder

Transition Sequence Encoder

A. Mokhov and A. Yakovlev

September 2006

Abstract

This paper introduces concept of a programmable event scheduler able to dynamically schedule a set of events

given their order specification and presents Transition Sequence Encoder as a possible solution for a simplified

event scheduling problem. The solution is derived in form ofanalytical Boolean equation and is translated futher

to gate-level implementation.

1 Introduction

The problem of event scheduling is usually solved during thelogic synthesis phase of design flow as the order of

events is known from system specification. The approach allows synthesis tools like Petrify [2] or Optimist [4] to be

used to generate circuits that will schedule the events in some preset order. Typical design flow of such an approach

is shown in Figure 1. The system specification is given as aSignal Transition Graph (STG). It describes the circuit

behavior and all the event order constraints are defined strictly without a possibility of real-time reordering. STG

can be directly mapped into a Verilog netlist by tools like Optimist. Another way is to generate logic equations

using Petrify and to map them into netlist using a particulargate library. The obtained implementation is static in

sense that it is impossible to introduce new or change the existing order relations within the system without the its

complete redesign and resynthesis.

System specification

Logic synthesis
Petrify

Optimist
Direct mapping

Gate
library

Technology mapping

Signal Transition Graph

Implementation

Set of logic equations

Verilog Netlist

Figure 1: Design flow

But sometimes the order of events is not known beforehand andis constantly changing throughout the circuit

lifetime. This calls for a dynamically programmable event schedulers. The paper presents a family of circuits

able to schedule an arbitrary number of events given their order specification. The behaviour of such circuits

NCL-EECE-MSD-TR-2006-117, University of Newcastle upon Tyne 1



A. Mokhov and A. Yakovlev: Transition Sequence Encoder

is described in Figure 2: given an event order specification and starting signalgo the circuit initiates a series of

request-acknowledgementhandshakes in the specified order. The completion of the series is flagged by signaldone.

Note, that some of the handshakes can occur concurrently if the order specification does not restrict so. In such case

the events are scheduled usingas-soon-as-possible (ASAP) scheduling strategy i.e. an event is generated as soon

as all of its order requirements are satisfied without waiting for the other, not important events for completion.

This strategy minimises the overall execution time of all the events under the given constraints and maximises

concurrency.

req[1]

ack[1]

req[n]

ack[n]

. . .TSE

done

go

event order

specification

Figure 2: Transition Sequence Encoder

The general event scheduling problem can involve multiple occurences of the same event and cyclic order

dependencies. In the paper we concentrate on a simpler case where an event can occur only once and event order

specification does not contain cyclic dependencies.

2 Events order specification

2.1 Partial order graph and matrix

Let E = {1, ..., n} be a set ofn events. Their order can be specified with a directed graphG = (E, R) whereE is

a set of vertices (which represent the events) andR is the set of ordered pairs of vertices orarcs (which represent

the order relations between pairs of events). An example of such a graph is shown in Figure 3. Event2 can occur

only after event1 has occured what is stated with an arc between them; event5 can occur only when both of its

precedeing events (4 and7) have occured and so on. If two events are not connected by an arc then they can

occur independently of each other. However there can exist indirect dependency between events like, for example,

between events3 and6. They are not directly dependent but clearly event6 can occur only after event3.

1 2

3 4

7

5 6

Figure 3: Partial order graph

A partial order graph can be represented with a boolean matrix R : E × E → {1, 0} such thatR[i, j] = 1 if

there is an arc in the graph directed fromi to j i.e. if eventi should occur before eventj; otherwiseR[i, j] = 0.

Let R∗ denote transitive closure [1] of matrixR, i.e. it should satisfy the following two conditions:

1. ∀i, j ∈ E, R[i, j] ⇒ R∗ [i, j];

2. ∀i, j, k ∈ E, R∗ [i, j] ∧ R∗ [j, k] ⇒ R∗ [i, k] - transitivity condition.

In other wordsR ∗ [i, j] = 1 if there is a direct and/or indirect dependency between events i andj and eventi

should occur before eventj. Note, thatR itself is not a proper partial order relation as it does not necessary satisfy

the transitivity condition whileR∗ is a partial order relation [3].

NCL-EECE-MSD-TR-2006-117, University of Newcastle upon Tyne 2



A. Mokhov and A. Yakovlev: Transition Sequence Encoder

A partial order matrixR is consistent if it satisfies the following two conditions:

1. ∀i ∈ E, R[i, i] = 0 - no event can precede itself;

2. ∀i ∈ E, R∗ [i, i] = 0 - there are no cyclic dependencies in the partial order matrix.

Partial order matrix for the graph in Figure 3 and its transitive closure are shown below:

R =



























0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0



























, R∗ =



























0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 1 1 0

0 0 0 0 1 1 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 1 1 0



























The consistency conditions ensure that there is a possible event schedule that satisfies the the order require-

ments.

2.2 Total order

Total order is such a partial order that the followingtotality condition is held:∀i, j ∈ E, i 6= j, R[i, j]⊕R[j, i] = 1.

In other words there is a direct order dependecy between any pair of events. Total order naturally arises in some

applications and knowing the fact that a given partial orderis total can simplify the TSE logic.

So a total order matrixR is consistent if it satisfies the following three conditions:

1. ∀i ∈ E, R[i, i] = 0 - no event can precede itself;

2. ∀i ∈ E, R∗ [i, i] = 0 - there are no cyclic dependencies in the partial order matrix;

3. ∀i, j ∈ E, i 6= j, R[i, j] = R[j, i] - totality condition.

3 Transition Sequence Encoder

Given a consistent partial order matrixR : E × E → {1, 0} specifying the events order, theTransition Sequence

Encoder (TSE) circuit is to generate request signalsreq[k], k ∈ E in the specified order as shown in Figure 2. The

following two chapters derive TSE analytically in form of a Boolean equation and then translate it to gate-level

implementation.

3.1 TSE for partial order

Request signalreq[k] can only be generated when the acknowledgement signalsack[j] have been received for all

the preceding eventsj (such thatR[j, k] = 1). This leads to the following equation for signalreq[k] generation:

req[k] =
∨

P⊆E





∧

j∈P

R[j, k] ·
∧

j∈E\P

R[j, k] ·
∧

j∈P

ack[j]





Here setP ⊆ E is the set of preceding events for eventk (this is guaranteed by terms
∧

j∈P R[j, k] ·
∧

j∈E\P R[j, k]). Term
∧

j∈P ack[j] guarantees that the acknowledgment signals for events inP have been re-

ceived.

To simplify the above equation it is possible to fold it into conjunction of simple clauses:

req[k] =
∧

j∈E

(

R[j, k] · ack[j] + R[j, k]
)

NCL-EECE-MSD-TR-2006-117, University of Newcastle upon Tyne 3



A. Mokhov and A. Yakovlev: Transition Sequence Encoder

This can be further simplified using Boolean algebra to:

req[k] =
∧

j∈E

(

ack[j] + R[j, k]
)

Note that this equation contains a redundant term whenj equalsk: ack[k] + R[k, k] that is equal to1 because

R[k, k] = 1. It doesn’t affect the correctness of the equation but of course in physical circuit implementation it

will be omitted.

The obtained solution can be mapped to gate-level implementation. An example of TSE circuit for 3 events

is shown in Figure 4(a). Signalgo was added which is a general “ready” signal that prompts the circuit to start

generating requests.

req[1]

req[2]

req[3]

ack[1]
ack[2]
ack[3]

go

R[3,1]

R[2,1]

R[3,2]

R[1,2]

R[2,3]

R[1,3]

(a) Partial order

req[1]

req[2]

req[3]

ack[1]
ack[2]
ack[3]

go

R[1,3]

R[1,2]

R[2,3]

R[2,1]

R[3,2]

R[3,1]

(b) Total order

Figure 4: TSE gate-level implementation

3.2 TSE for total order

The final equation obtained for the strict partial order can be slightly modified taking into account totality condition

(∀i, j ∈ E, i 6= j, R[i, j] = R[j, i]) and removing the redundant term whenj equalsk:

req[k] =
∧

j∈E

(

ack[j] + R[j, k]
)

=
∧

j∈E, j 6=k

(ack[j] + R[k, j])

Using this modification it is possible to get rid of invertersand come up with a circuit shown in Figure 4(b).

4 Conclusions

The paper introduced the concept of a programmable event scheduler able to dynamically schedule a set of events

given their order specification. Transition Sequence Encoder is presented as a solution for a simplified version of

a programmable event scheduler which can handle only acyclic order dependencies and single occurrences of a

particular event. Analytical solution in Boolean equations as well as gate-level implementations are derived. The

solution of the general event scheduling problem is the point of the future research.

Acknowledgement

This work is supported by EPSRC project NEGUS at the University of Newcastle upon Tyne.

NCL-EECE-MSD-TR-2006-117, University of Newcastle upon Tyne 4



A. Mokhov and A. Yakovlev: Transition Sequence Encoder

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms. MIT Press, 2001.

[2] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and Alex Yakovlev. Petrify: a tool

for manipulating concurrent specifications and synthesis of asynchronous controllers. InIEICE Trans. Inf. &

Syst., volume E80-D, pages 315–325, March 1997.

[3] Art Lew. Computer Science: A Mathematical Introduction. Prentice-Hall, 1985.

[4] Danil Sokolov.Automated synthesis of asynchronous circuits using direct mapping for control and data paths.

PhD thesis, University of Newcastle upon Tyne, 2005.

NCL-EECE-MSD-TR-2006-117, University of Newcastle upon Tyne 5


