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Abstract

The paper introduces a new formal model for specifying control paths in the context of asyn-

chronous system design. The model, called Conditional Partial Order Graph (CPOG), is capable of

capturing concurrency and choice in a system's behaviour in a compact and e�cient way. A problem

of synthesis of a CPOG composition from a set of given CPOGs is formulated and solved in this

paper in respect of a subclass of CPOGs that are partial orders. This problem can be extended to a

more general class of CPOGs, which is subject to future research.

The presented model can be used for the speci�cation of system behaviour and for synthesis

of area-e�cient dynamically recon�gurable controllers. The synthesis of a controller is based on a

novel generic architecture, called Transition Sequence Encoder (TSE). The synthesized controllers are

delay insensitive and thus very robust to parametric variations. The ideas presented in the paper can

be applied for CPU control synthesis as well as for synthesis of di�erent kinds of event-coordination

circuits often used in data coding and communication in digital systems. A software tool for synthesis

of self-timed circuits from CPOGs is implemented and tested on a set of benchmarks.

1 Introduction

Speci�cation and synthesis of control circuits for systems of large complexity, such as CPU cores or on-

chip routers to name but a few, remains to be a challenging problem due to ine�ciency of the existing

design process. Typically designers of systems of such a complexity, rely on the use of hardware descrip-

tion languages, such as Verilog and VHDL, and the use of RTL-based synthesis �ow [6]. Within this

conventional methodology, designers use �nite state machines to capture control speci�cations. Since

standard RTL �ow supports a synchronous (i.e. globally clocked) design paradigm these techniques lead

to synchronous FSMs for control logic. In asynchronous design there is a need for generic models which

are able to capture concurrency and choice in systems with many similar patterns in behaviour. To date

there are several design methodologies for asynchronous control logic, e.g. [12] and [10]. Some methods

such as Tangram (or Haste) [13] and Balsa [2] use CSP-like HDL languages for system speci�cation and

syntax-direct translation for synthesis. They are not particularly suited well for control logic speci�cation

because they capture the entire design as a collection of processes and channels. Control is implicit in

them. Other methods such as Burst-Mode FSMs [8], as well as Petri nets (PN) and STGs [11], are

more suitable for control logic design because they capture concurrency at a very �ne level of granularity.

The latter produce circuits that are more compact and faster (e.g. in terms of latency) [10] compared

to those derived from syntax-direct translations from HDLs. However, the synthesis methods for Burst

Mode machines and PNs (or STGs) are typically targeted at controllers with a small number of choice

options, where each option is rather unique. In many applications such as a CPU controller, the designer

is often faced with a problem of modelling many di�erent behavioural patterns, or event orders, de�ned

on the same domain of operational units. For example, in designing a CPU core, such behavioral patterns

can be constructed for instructions or groups of instructions (see Section 4.1). The control �ow in the
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execution of instructions is determined by the values of signals produced by the instruction operation

decoder and hence is available to steer the control through a certain partial order of events associated

with the activations of operational units. Applying Burst Mode machines or Petri nets to such systems

would lead to the circuits that are area and performance ine�cient due to their explicit notion of control

state transitions. Such models perform explicit state tracking which requires signi�cant amount of logic

and internal memory resources.

In this work we tried to come up with a new model that would retain the advantages of the existing

behavioural models Petri nets (or STGs) and FSMs. The former are advantageous for modelling a high

degree of concurrency while the latter for choice. This model, called Conditional Partial Order Graph

(CPOG), builds on the order relation between actions or events from a certain set, which is determined

by the combination of logical conditions presented to the controller by the environment. To this end, the

controller can be seen as an entity which communicates with two parts of the environment, one part is the

source of logical condition signals (in the case of a CPU, an instruction operation decoder) and the other

part is the a set of controlled objects with request-acknowledgement interface (operational units) (see

Figure 1). Thus the condition signals dynamically recon�gure our controller according to the instruction

being executed.
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Figure 1: Dynamically recon�gurable controller

Bearing in mind the practical aspect of using such a model in designing real-life controllers, we believe

that the model itself presents a source of interesting formalisation and automation problems, and to the

best of our knowledge it is original and worth independent investigation.

2 Theoretical Background

The section introduces the basic notations, de�nitions and models that are used throughout the paper.

2.1 Partial order

A partial order PO(S,R) is a binary relation R over a set of elements S which satis�es the following

three conditions [3, 7]:

1. Irre�exivity : ∀a ∈ S,¬(aRa);

2. Asymmetry : ∀a, b ∈ S, (aRb) ⇒ ¬(bRa);

3. Transitivity : ∀a, b, c ∈ S, (aRb) ∧ (bRc) ⇒ (aRc).

Note that in some cases the partial order de�ned above is called a strict (or irre�exive) partial order. In

these cases a weak (or re�exive) partial order is de�ned as a binary relation that is re�exive i.e. every

element in S is R-related to itself: ∀a ∈ S, aRa. In the paper we focus only on strict partial orders and

the quali�er strict will be omitted for clarity.

Partial orders are very natural for speci�cation of order of events in a system when some of the events

are constrained to happen before others. These constraints can be speci�ed with partial order PO(S,R)
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such that if aRb for some events a, b ∈ S then event a must happen strictly before event b. If neither aRb

nor bRa holds then the events a and b can happen in any order, possibly simultaneously.

2.2 Directed acyclic graphs

A directed graph is an ordered pair G(V,E) where V is a set of vertices (or nodes) and E ⊆ V × V is the

set of ordered pairs of vertices, called arcs [4, 7].

A sequence of vertices (v0, v1, ..., vn), vk ∈ V, k = 0...n such that (vk−1, vk) ∈ E, k = 1...n and n ≥ 0 is

called a path from v0 (start vertex) to vn (end vertex) and is denoted as 〈v0, vn〉. The set of all paths of
a graph G is denoted as P(G). A cycle is a path 〈v0, vn〉 whose start and end vertices coincide: v0 = vn.

Directed acyclic graph (DAG) is a graph that does not contain any cycles.

An arc (a, b) ∈ E of a graph G(V,E) is called transitive i� ∃v ∈ V \{a, b}, 〈a, v〉 ∈ P(G)∧〈v, b〉 ∈ P(G).
Transitive closure of a graph G(V,E) is a graph G ∗ (V,E∗) such that:

• ∀a, b ∈ V, (a, b) ∈ E ⇒ (a, b) ∈ E∗;

• ∀a, b, c ∈ V, (a, b) ∈ E ∗ ∧(b, c) ∈ E∗ ⇒ (a, c) ∈ E∗ (transitivity condition).

Figure 2 shows a DAG and its transitive closure. Transitive arcs are drawn dotted.

(a) initial DAG (b) transitive closure

Figure 2: DAG and its transitive closure

Note that there is a strong correspondence between partial orders and DAGs: every partial order is

a DAG, and the transitive closure of a DAG is both a partial order and a DAG itself. The graph in

Figure 2(b) directly de�nes a partial order relation E over the set of vertices V = {a...g} while the graph
in Figure 2(a) does not because it violates the transitivity condition. For instance, it contains arcs (d, f)
and (f, g) while the corresponding transitive arc (d, g) is not present.

This correspondence between partial orders and DAGs provides an intuitive way of partial order

speci�cation. A DAG G(V,E) de�nes a corresponding partial order PO(V,E∗). Note that there can

be more than one DAG with the same corresponding partial order, for example, both of the DAGs in

Figure 2 de�ne the same partial order because they have the same transitive closure. The graph on

Sub�gure (a) is simpler, however, and is more preferable in some cases. Hasse diagrams [3] are widely

used as a compact way of partial order speci�cation.

3 Conditional Partial Order Graphs

Conditional partial order graph (CPOG) is a tuple CPOG(V,E,A, λ,X, φ) where V is the set of vertices,

E ⊆ V × V is the set of arcs, A is the set of actions (or events), λ : V → A is a labelling function which

establishes correspondence between vertices of the graph and actions happening in the modelled system.

X is the set of Boolean variables and function φ : E → F(X) assigns a condition to every arc in the

graph. A condition on an arc e ∈ E is a Boolean function φ(e) ∈ F(X) where F(X) is the set of all

Boolean functions over variables in X.

A projection of a CPOG on a variable x ∈ X having value x = α is denoted as CPOG|x=a and is

equal to CPOG(V,E,A, λ,X \ {x}, φ|x=a) where notation φ|x=α means that variable x is substituted

with constant Boolean value α in all the functions φ(e), e ∈ E. Projection is a commutative operation i.e.
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(CPOG|x=α)|y=β = (CPOG|y=β)|x=α

A complete projection of a CPOG is a projection on all the variables in X. It is denoted as CPOG|ψ
where ψ : X → {0, 1} is an assignment function that assigns Boolean values to all the variables in X.

Complete projection is a CPOG whose arc conditions are only Boolean constants φ|ψ (either 0 or 1).
Let CPOG(V,E,A, λ, φ) be a complete projection. We can construct a labelled graph G(V,EG, A, λ)

such that

EG = {e ∈ E|φ(e) = 1}

In other words G contains only the arcs whose conditions are constant 1.
A complete projection CPOG|ψ is valid i� its corresponding graph G is DAG.

The obtained DAG can be further converted into a corresponding labelled partial order

PO(V,E∗, A, λ). Let this operation of partial order construction from a CPOG projection be shortly

denoted as po(CPOG|ψ). There are 2|X| di�erent assignment functions (because each of the |X| vari-
ables can be assigned two di�erent values) and therefore each CPOG can potentially represent 2|X|

di�erent partial orders in a compressed form.

Let assignment set Ψ = {ψ1, ψ2, ..., ψm} be the set of m assignment functions ψk : X → {0, 1}. Two
Boolean functions f, g ∈ F(X) are Ψ-equivalent i� they evaluate to the same values over the assignment

set Ψ:

∀ψk ∈ Ψ, f |ψk
= g|ψk

Two CPOGs CPOG1(V1, E1, A, λ1, X, φ1) and CPOG2(V2, E2, A, λ2, X, φ2) are Ψ-equivalent i� the

assignment functions in Ψ produce the same partial orders:

∀ψk ∈ Ψ,po(CPOG1|ψk
) = po(CPOG2|ψk

)

A CPOG is Ψ-well-formed i� every complete projection CPOG|ψ, ψ ∈ Ψ is valid.

(a) Conditional partial order graph

(b) Projection (x=1) (c) Projection (x=0)

Figure 3: CPOG and its projections

An example of a CPOG and its projections is shown in Figure 3. Sub�gure (a) shows the initial

graph. The conditional functions are indicated over the arcs: arcs (b, c), (c, d) and (d, e) have conditional
function f = x; the function on arcs (a, c) and (b, d) is f = x; and arc (a, b) is unconditional i.e. its

function is constant Boolean 1. Such functions are not shown on diagrams for simplicity.

Figure 3(b) shows the complete projection under x = 1. The dotted arcs are those that turn to have

constant 0 conditions after the projection and therefore will be excluded from the resultant partial order.

The solid arcs have constant 1 conditions. The partial order generated with the projection is a simple

series of events: a→ b→ c→ d→ e.

Complete projection under x = 0 (Figure 3(c)) results in the following partial order. Events b and c

can happen only after a. There is no constraint between them, thus they can be concurrent. Event d can
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happen only after event b. Event e has no order constraints. This mean it can happen at any time. But

the important fact is that there is no implication here that it must happen. Apparently every event can

either happen or not but if it does happen it must satisfy the partial order constraints.

4 CPOG Synthesis

The previous section explained how to extract di�erent CPOGs from a CPOG using projections. The

inverse problem is much more complex: synthesize an optimal CPOG that contains all of the given

CPOGs among its projections.

The CPOG optimality criteria may vary depending on the context but in this paper the main opti-

misation factors will be (in the order of importance):

1. minimise the number of vertices;

2. minimise the size of the control variable set X;

3. minimise the number of arcs;

4. maximise the number of unconditional arcs.

These optimisation factors follow the aim of minimisation of the size of physical implementation of

CPOG-based recon�gurable controllers. The implementation details are presented in Section 6.

4.1 Synthesis from partial orders

In this paper we solve the stated synthesis problem for a subclass of CPOGs that are partial orders.

Formally, let PO = {PO1, PO2, ..., POn} be the set of n given partial orders over the same set

of actions A. The objective is to synthesize a CPOG(V,E,A, λ,X, φ) and the assignment set Ψ =
{ψ1, ψ2, ..., ψn} such that the CPOG is Ψ-well-formed and

po(CPOG|ψk
) = POk, k = 1...n (1)

To understand the process of CPOG synthesis in details let's study the following example. Consider a

processing unit that has two registers p and q and can perform three operations: addition of two variables,

multiplication of a variable by 2 (or doubling), and exchange of values of two variables. Instruction

execution of the processing unit breaks up into six actions:

a) Instruction decoding;

b) Loading register p from memory;

c) Loading register q from memory;

d) Addition of values loaded in registers and storing the result in register p;

e) Saving register p into memory;

f) Saving register q into memory;

The three partial orders corresponding to the operations are speci�ed with DAGs in Figure 4. Sub�g-

ure (a) shows DAG for the operation of doubling. Four events have to be ordered sequentially: instruction

decoding, loading p, addition p = p + p, saving p. The graph for addition of two variables is shown in

Sub�gure (b): instruction decoding, concurrent loading of registers p and q, addition p = p + q, saving

p. Sub�gure (c) corresponds to the operation of exchange: instruction decoding, concurrent loading of

registers p and q followed by their concurrent saving into swapped memory locations. Note, that event e

(saving p) must happen after both the registers p and q have been loaded (events b and c) to ensure that

the value of q is not overwritten too early. The same reasoning applies to constrain the event f .
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(a) doubling (b) addition (c) exchange

Figure 4: Initial partial orders

Figure 5: Naive CPOG construction

4.2 Naive approach

A naive way to construct a CPOG with the required properties is shown in Figure 5. The idea is to merge

all the initial partial orders using two additional auxiliary events go and done. The labelling function

λ is such that it maps vertices corresponding to the di�erent occurrences of the same action a into the

same element a ∈ A e.g. λ(a/1) = λ(a/2) = λ(a/3) = a. In general λ(a/k) = a, a ∈ A, k ∈ N.
Three variables x, y, z ∈ A are used for selection of a particular partial order using one of the three

orthogonal assignment functions ψ1 = (1, 0, 0), ψ2 = (0, 1, 0) and ψ3 = (0, 0, 1). This naive approach

guarantees (1) by construction. It is equivalent to direct mapping control synthesis [9] and has all its

advantages: correctness by construction, low algorithmic complexity, one-to-one correspondence between

initial partial orders and parts of the obtained CPOG etc. But it is very unoptimal in terms of the

optimisation criteria stated in the beginning of the section.

The assignment functions ψ1, ψ2 and ψ3 can be considered as operation codes that are provided by

the environment to dynamically recon�gure the system.

Note that such an orthogonal CPOG construction is only possible for unconditional CPOGs (partial

orders) and will fail on general CPOGs because they can share control variables. The solution of the

general problem is more complicated and is a subject of future work.

4.3 Composition

The main disadvantage of the naive approach presented in Subsection 4.2 is that the synthesized CPOG

has multiple occurrences of the same actions. This implies that the size of the synthesized controller will

be proportional to the sum of the sizes of controllers for individual partial orders.

Fortunately, it turns out that CPOG model is capable to capture all the given partial orders even if

it contains only single occurrences of each action a ∈ A.
Ψ-composition of CPOG(V,E,A, λ,X, φ) is a Ψ-equivalent CPOG′(A,E′, A, λ′, X, φ′) where the set

NCL-EECE-MSD-TR-2007-119, University of Newcastle upon Tyne 6
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(a) composition (b) Projection (x=1, y=z=0)

(c) Projection (y=1, x=z=0) (d) Projection (z=1, x=y=0)

Figure 6: CPOG composition and its projections

of vertices equals the set of actions A (so every action occurs only once in composition) and the labelling

function λ′ is degraded to a trivial one-to-one mapping λ′(a) = a, a ∈ A. Thus Ψ-composition is a special

case of CPOG and we will denote it as a tuple CΨ(A,E,X, φ).
Figure 6(a) shows the composition CΨ of the CPOG obtained by naive approach (Figure 5). Fig-

ures 6(b,c,d) show the three projections generated by the functions ψk ∈ Ψ. It is clear that the projections

correspond to the three given partial orders in Figure 4. Note that arc (b, e) is unconditional. It can be

assigned condition φ((b, e)) = z but this is not optimal according to the optimality criterion (4). So the

condition is relaxed and this does not a�ect the correctness of the composition because arc (b, e) appears
as transitive in projections when φ((b, e)) = z = 0 and does not a�ect the resultant partial orders.

4.4 Algorithm

This subsection presents the algorithm for synthesis of an optimal CPOG based on the idea of Ψ-

composition. The algorithm is shown in Algorithm 1. It synthesizes a CPOG CΨ and assignment

set Ψ such that CΨ is the Ψ-composition of a naively constructed CPOG. The algorithm is polynomial

and based on orthogonality of assignment functions in Ψ. It cannot be easily generalised for the case of

CPOGs composition.

Method RemoveTransitiveConditions(CΨ, xk) removes xk from all the arc conditions φ in CΨ where

xk is transitive. And method RemoveTransitiveUnconditionalArcs(CΨ) removes from CΨ all the uncon-

ditional arcs that are transitive. The execution of the algorithm is explained below on the example of

composition synthesis in Figure 6.

At �rst the algorithm constructs the initial composition CΨ using equations (2) and (3). The obtained

set of arc functions is shown in Table 1. For clarity we keep the variable names from the �gure {x, y, z}
instead of {x1, x2, x3} as denoted in the algorithm.
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Algorithm 1 Synthesis of an optimal CPOG

Given: set of partial orders PO = {PO1, PO2, ..., POn}
Result: CPOG CΨ and assignment set Ψ satisfying (1)

Let POk = (A,Rk) and A = {a1, a2, ..., a|A|}
Let X = {x1, x2,, ..., xn} and Ψ = {ψ1, ψ2, ..., ψn}

Construct assignment set Ψ such that:

ψk(xj) =
{1, k = j

0, k 6= j
(k, j = 1...n)

Construct CΨ(A,E,X, φ) such that:

φ((a, b)) =
∨

aRkb
k=1...n

xk (a, b ∈ A) (2)

E = {(a, b)|a, b ∈ A ∧ φ((a, b)) 6= 0} (3)

Forall xk ∈ X do
CΨ = RemoveTransitiveConditions(CΨ, xk);

CΨ = RemoveTransitiveUnconditionalArcs(CΨ);

Return (CΨ,Ψ) as a result;

φ go a b c d e f done

go 1 1 y + z x+ y 1 z 1
a 1 y + z x+ y 1 z 1
b x+ y 1 z 1
c y y + z z y + z
d x+ y x+ y
e 1
f z

done

Table 1: Initial set of arc functions

Then the algorithm performs removal of transitive conditions from arc functions φ. The result of this

is shown in Table 2.

φ go a b c d e f done

go 1 1 1 1
a 1 y + z 1 1
b x+ y 1 z 1
c y z z
d x+ y
e 1
f z

done

Table 2: Removal of transitive conditions

The last optimisational step is to remove the transitive unconditional arcs from both φ and E. The

result is shown in Table 3.
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φ go a b c d e f done

go 1
a 1 y + z
b x+ y 1 z
c y z z
d x+ y
e 1
f z

done

Table 3: Removal of transitive unconditional arcs

As a result we obtain an optimal CPOG CΨ and assignment set Ψ satisfying (1). Following opti-

misations of arc functions φ in CΨ are possible, for instance, in Figure 6 we use simpler arc functions

taking into account Ψ-equivalence: φ((a, c)) = x because function f(x, y, z) = y + z is Ψ-equivalent to

f(x, y, z) = x.

4.5 Control set size optimisation

Another optimisation issue is the size of the control variable set X (optimisation criterion (2)).

In our sample case it is |X| = 3. However, to select one of the three partial orders we need only⌈
log2 3

⌉
= 2 bits of information. So a set of two control variables is clearly enough and it can be easily

constructed.

Let Y = {s, t}. Then we can encode variables X = {x, y, z} such that x = s · t, y = s · t and
z = s ⊕ t. A possible corresponding assignment set is ΨY = {(0, 0), (1, 1), (0, 1)}. The equivalence of

these two control variables sets is visually explained in Table 4. The ideas of the control set optimisation

are further developed in Section 5.

Ψ x y z

(1, 0, 0) 1 0 0 (0, 0)
(0, 1, 0) 0 1 0 (1, 1)
(0, 0, 1) 0 0 1 (0, 1)

s · t s · t s⊕ t ΨY

Table 4: Control variables set equivalence

5 Logic Optimisation

The section de�nes optimality criterion for control set size |X| of a CPOG(V,E,A, λ,X, φ).
The control variable set X of CPOG is Ψ-optimal i�⌈

log2 |Ψ|
⌉

= |X| (4)

The idea behind 4 is that we need at least
⌈
log2 |Ψ|

⌉
bits to select one of the |Ψ| available partial

orders encoded in CPOG. So if we use this minimum number of control bits then X is optimal in terms

of the amount of information it gives.

It is always possible to construct a Ψ-optimal control set Y = {y1, y2, ..., ym},m =
⌈
log2 |Ψ|

⌉
for a

given CPOG in a way similar to the one presented in 4.5. The following example explains it in details.

Figure 7 shows the naive and compositional speci�cation of a 3-wire phase-encoding sender. Phase-

encoding circuits and their existing implementations are thoroughly studied in [removed]. The sender is

used to transmit one of the six possible permutations of the three signals a, b, c ∈ A. Clearly the control

NCL-EECE-MSD-TR-2007-119, University of Newcastle upon Tyne 9



A. Mokhov and A. Yakovlev: Conditional Partial Order Graphs and Dynamically Recon�gurable
Control Synthesis

(a) naive speci�cation (b) composition

Figure 7: CPOGs for 3-wire phase-encoding sender

set X is not optimal here as we use 6 bits to encode one of the 6 possible scenarios instead of the required

3 bits. Let's construct a Ψ-optimal control set Y = {r, s, t}. The control variables in X can be substituted

with the following functions over Y : x1 = r · s · t, x2 = r · s · t, x3 = r · s · t, x4 = r · s · t, x5 = r · s · t and
x6 = r ·s · t. Now we can use any logic optimisation tool to minimise conditions φ(e), e ∈ E. For instance,
condition φ((a, b)) = x1 + x5 = r · s · t+ r · s · t can be minimised into φ((a, b)) = (r+ r) · s · t = s · t. The
other �ve arc conditions are minimised in the same way: φ((b, a)) = r · s · t+ r · s · t, φ((a, c)) = r · (s⊕ t),
φ((c, a)) = r · s · t+ r · s · t, φ((b, c)) = r · s⊕ t, φ((c, b)) = s · t.

As a result we obtained an optimal encoding of the partial orders in the CPOG. As a side e�ect we

synthesized a phase-encoding sender able to send binary encoded signals {r, s, t}.

6 Control Gate-level Implementation

CPOG model is useful for control synthesis because it has a very area-e�cient and robust gate-level

implementation based on a generic circuit architecture, called Transition Sequence Encoder (TSE), which

is introduced in the section.

6.1 Transition Sequence Encoder

This subsection describes the TSE, a circuit able to schedule a set of events according to the partial

order speci�ed as a DAG incidence matrix. The main feature of the circuit is that it can be dynamically

reprogrammed during runtime to alter the order of the generated events. This particular feature allows

the circuit to be used as a basis for the method of control structure synthesis presented in the paper.

Given a partial order PO(A,R) over a set of n events A = {a1, a2, ..., an} the TSE circuit generates

a series of request-acknowledgement handshakes req[k]/ack[k], ak ∈ A in the speci�ed order as shown in

Figure 8. The partial order is speci�ed as a DAG G(A,E). The �order matrix� in the �gure stands for

the incidence matrix of G:

R[i, j] =
{

1, (ai, aj) ∈ E
0, (ai, aj) /∈ E

(ai, aj ∈ A)

Figure 8: Transition Sequence Encoder
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The initial equation for signal req[k] generation contains 2|A| complex clauses:

req[k] =
∨
P⊆A

 ∧
aj∈P

R[j, k] ·
∧

aj∈A\P

R[j, k] ·
∧
aj∈P

ack[j]


The idea is that the request signal req[k] can be generated only when the acknowledgement signals

ack[j] have been received for all the preceding events aj ∈ P (terms
∧
aj∈P R[j, k] and

∧
aj∈P ack[j]) and

no other event aj ∈ A \P precedes event ak (term
∧
aj∈A\P R[j, k]). To simplify the above equation it is

possible to fold it into conjunction of only |A| simple clauses:

req[k] =
∧

1≤j≤n

(
R[j, k] · ack[j] +R[j, k]

)
This can be further simpli�ed using the Boolean algebra to:

req[k] =
∧

1≤j≤n

(
ack[j] +R[j, k]

)
(5)

Note that the above equation contains a redundant term when j equals k: ack[k] + R[k, k] that is
equal to 1 because R[k, k] = 1 because graph G is acyclic. The term does not a�ect the correctness of

the equation but of course in physical circuit implementation it will be omitted.

req[1]

req[2]

req[3]

ack[1]
ack[2]
ack[3]

go

R[3,1]

R[2,1]

R[3,2]

R[1,2]

R[2,3]

R[1,3]

Figure 9: TSE gate-level implementation

The obtained solution can be mapped to gate-level implementation as shown in Figure 9 for the case

of |A| = 3. Signal go was added which is a general �ready� signal that prompts the circuit to start

generating requests. The output signal done can be generated as a conjunction of acknowledgement

signals: done =
∧
ak∈A ack[k].

6.2 TSE customised for a CPOG

A general TSE is able to generate control signals for every possible partial order over an event set A.

However, we need only those encoded in our CPOG as complete projections. Therefore we need to build

a wrapper using arc functions φ of the given CPOG: R[i, j] = φ((aj , ak)), j, k = 1...n. Optimal CPOG

normally has many unconditional arcs and the corresponding signals R[i, j] are substituted with constant

values. Boolean logic optimisation is then applied to further reduce the size of TSE circuit.

Another customisation issue is that the standard TSE generates request signals for all the events in A.

But sometimes we might want a certain event not to happen at all. For simplicity we will assume that the

only events happeningH ⊆ A are those that precondition the auxiliary event done: H = {a ∈ A|aRdone}.
These ideas are implemented in a software tool for dynamically recon�gurable control synthesis. The

result of application of the tool to the compositional CPOG from Figure 6(a) is shown in Figure 10.

Signals {x, y, z} are the control signals that select one of the three available partial orders for execution.
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The execution starts when the environment issues signal go and as soon as all the needed handshakes

have been conducted the signal done is generated.

reqa

ack a

ackd

reqb

reqc
ackb

ackc

ack c

ack b
reqd

reqf

reqe

ack f

ack e

x

go

z

z
z

y done

Figure 10: CPOG-customised controller

6.3 Decomposition and technology mapping

The presented gate-level control implementation is Delay Insensitive (DI) [11] w.r.t. handshake signals

(req[k], ack[k]) and thus very robust under process and environmental (parametric) variations. This is

possible because the synthesized circuits do not contain any memory elements or arbitration. It makes

the circuits fast and reliable because no timing assumptions or safety margins are introduced.

The synthesized circuits may contain large complex gates which are not present in the gate library,

so certain decomposition and technology mapping issues have to be addressed in order to stay within DI

class after technology mapping [5].

A very important feature of the TSE-based controllers is that both the request (req[k]) and acknowl-

edgement (ack[k]) signals are generated in a monotonic way: once a signal goes high it will remain high

until all the other signals become high. The same behaviour is observed during the reset phase. This

allows a simple structural decomposition to be used. Suppose that we use a gate library that only con-

tains two-input positive gates and inverters and we need a 4-input complex gate shown in Figure 11(a).

We can safely decompose the complex gate into several library gates as shown in Sub�gure (b). The

decomposition is structural in the sense that every large gate can be decomposed independently of the

others. This will introduce no hazards into the circuit because of the monotonic signals behaviour.

It may be observed that the circuit is not DI w.r.t. inverters on control variables. However, we assume

that these control signals are issued before signal go arrives that guarantees appropriate timing relations.

These signals remain constant during the operation of the handshakes.

ack c

ack b
reqd

z

y

(a) complex gate

ack b

ack c

reqd

y

z

(b) decomposition

Figure 11: Structural decomposition

7 Benchmarks

The algorithm was implemented in a software tool and its performance and optimisation abilities were

checked against a set of benchmarks.

7.1 MSP430 CPU controller synthesis

MSP430 processor [1] was selected as one of the real-life benchmarks to test how the introduced CPOG

model can describe such complicated systems as a general purpose microprocessors. The processor has

NCL-EECE-MSD-TR-2007-119, University of Newcastle upon Tyne 12



A. Mokhov and A. Yakovlev: Conditional Partial Order Graphs and Dynamically Recon�gurable
Control Synthesis

16 registers, 7 addressing modes and 27 core instructions.

26 partial orders PO were extracted from the synchronous speci�cation of instructions provided in [re-

moved]. The set of actions A contains 18 actions (including dummy actions go and done). Two control

circuits were synthesized and compared: the �rst one used a naively constructed CPOG composition

while the second one was constructed using the presented CPOG optimisation algorithm. The results of

comparison are shown in Table 5.

Parameter Naive CPOG Optimised CPOG

Number of vertices 170 18
Number of arcs 241 62

Number of gates 652 118
Average gate complexity 1.48 3.25
Circuit size estimation 964.0 309.5
(inverter area units)

Table 5: Comparison of naive and optimised compositional CPOG

The table shows that the number of arcs in the optimised CPOG composition is signi�cantly reduced.

The number of gates is also reduced because each arc and the conditional function on it corresponds

to a gate in the physical circuit implementation . However the average gate size increased as the arc

conditions became more complicated. Estimation of the control circuit size measured in inverter area

units shows that the optimised composition is approximately three times more area-e�cient.

We can compare these results with the synchronous control for MSP430 processor synthesized using

Synopsys toolkit (DC compiler) from Verilog speci�cation in RTL level. The control area is approximately

1900 inverter area units. It should be mentioned however that the comparison of this result with ours is

not fair enough because our approach delegates some of the control functions to the controlled blocks e.g.

ALU block has its own TSE-based controller to decide which of the 16 registers to add in a particular

instruction.

7.2 Phase-encoding senders

This set of benchmark circuits was used as a stress test for the tool. Phase-encoding senders are a class

of systems with highly variable behaviour that match CPOG model perfectly. One of the examples �

3-wire phase-encoding sender was presented in Section 5.

The tool performance results on several phase-encoding senders are presented in Table 6. Note that

the size of naive system speci�cation grows exponentially w.r.t. the number of data wires of the sender.

However the size of the composition generated by the tool remains polynomial (the number of vertices

grows linearly, the number of arcs � quadratically). Consequently, the size of the optimised control circuit

grows quadratically and the gap between naive and optimal solutions increases dramatically.

Benchmark Number Number Circuit
of vertices of arcs size

3-wire sender (naive/opt) 20 / 5 24 / 12 96 / 32
4-wire sender (naive/opt) 98 / 6 120 / 20 480 / 84
6-wire sender (naive/opt) 4322 / 8 5040 / 42 20160 / 1913

Table 6: Tool performance on phase-encoding senders

8 Conclusions

A novel Conditional Partial Order Graph model is introduced. It is able to capture concurrency and choice

in systems with many similar patterns in behaviour in a compact and e�cient way. The problem of CPOG
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composition synthesis is solved for a subclass of CPOGs that are partial orders. The generalisation of

composition and further study of the model properties is the subject of future research.

A TSE-based method for dynamically recon�gurable control synthesis for systems described with

CPOGs is proposed. The method is implemented in a software tool and tested on a set of benchmarks.

The obtained results show that the proposed method is very robust and area-e�cient. The method

mainly targets large systems such as CPU microcontrollers, data encoding and transfer circuits etc.

A combination of the presented model and synthesis method o�ers a new way to providing a consistent

design �ow for control circuits speci�cation and synthesis.
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