School of Electrical, Electronic & Computer Engineering

Newcastle
+ University

Asynchronous Data Communication M echanism
Modelsin Matlab and Ther Applications

Fel Hao

Technical Report Series
NCL-EECE-MSD-TR-2007-120

July 2007

Contact:
Fei.Hao@newcastle.ac.uk

Supported by EPSRC grants GR/R32666 and GR/R32895

NCL-EECE-MSD-TR-2007-120
Copyright (© 2007 Newcastle University

School of Electrical, Electronic & Computer Engineering,
Merz Court,

Newcastle UniversityNewcastle upon Tyne,

NE1 7RU, UK

http://async. org. uk/

School of Electrical, Electronic and Computer Engineering

University of Newcastle upon Tyne

Asynchronous Data Communication
Mechanism Models in MATLAB and Their

Applications

A thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

Fei1 Hao
May 2007

Contents

List of Figures viii
List of Tables xiii
List of Algorithms xiv
Acknowledgement XV
Abstract xvii
Abbreviations xix
1 Introduction 1
1.1 Motivation L e 2
1.1.1 Demand for Asynchronous Communication 2

1.1.2 ACM - a Solution for Asynchronous Communications 3

1.1.3 Application to Control Systems 5

1.2 Publications and Contribution 6
1.2.1 Petri Net to Stateflow Conversion 7

1.2.2 Building ACM Models in MATLAB Environment 7

1.2.3 Investigations on Buffered ACM 8

1.2.4 ACM Applications in Control Systems 8

1.3 Organisation of Thesis 8

ii

CONTENTS

2 Background 10
2.1 Introduction 10
2.2 Asynchronous Designs 10

2.2.1 A Brief History of Asynchronous Designs 10
2.2.2 C(lassification of Asynchronous Circuits 12
2.2.3 Handshake Protocols 13
2.2.4 Data representation L. 15
2.2.5 Asynchronous Components 16

2.3 Asynchronous Communication 21
2.3.1 ACMs and Their Properties 22
2.3.2 Taxonomies of ACMs 24
2.3.3 Slot-Type Mechanisms 28
2.3.4 Some ACM Algorithms 29
2.3.4.1 2-Slot Channel 29

2.3.4.2 3-Slot Signal 30

2343 4-Slot Pool 31

2.4 Control Systems L 33
2.4.1 Feedback Control System 34
2.4.2 Dynamic Response 0oL 35
2.4.3 Stability Analysiso 37
2.4.3.1 Neutral Stability 37

2.4.3.2 Routh’s Stability Criterion. 38

2.4.3.3 Nyquist Stability Criterion. 38

2.4.3.4 Stability Margins o000 39

244 PID Control 39
2.4.5 Brushless DC Motor Control System 40

2.5 Model and Implementation Tools 41
2.5.1 Petri Net (PN) 41

iii

CONTENTS

2.5.1.1 Definition of Petri Nets 41

2.5.1.2 Basic Connections in Petrinets 43

252 MATLAB 45
2521 Simulink. 46

2.5.2.2 Stateflowo 48

2.5.2.3 Notation of Stateflow 49

2.5.2.4 Semantics of Stateflowo 56

2.6 Conclusions 57
Petri Net to Stateflow Conversion 58
3.1 Introduction L 58
3.2 Conversion for the Basic Connections 59
3.3 One Active State Rule o o 0o 64
3.4 An Example for Conversion 67
3.5 Conversion of a Pipeline 71
3.6 Conclusions 74
ACM Models in MATLAB 77
4.1 Introduction 7
4.2 Handshake Model 0oL 78
4.3 MATLAB Model for a 3-Slot Signal 80
4.3.1 Petrinets Model 0oL 80
4.3.2 Reader and Writer Lo 85
4.3.3 Mutexo 87
4.3.4 Datapatho 88
4.3.5 Test Environment L0 89
4.3.6 Simulation Results 0000 94

4.4 ACM Models in MATLAB 95
4.4.1 2-Slot Channel L. 95

iv

CONTENTS

4.4.1.1 Controller Model 95

4.4.1.2 2-Slot Datapath Model 97

4.4.2 3-Slot Signal L 99
4.42.1 Controller Model 99

4.4.2.2 Generic Datapath Model 101

4.43 4-Slot Pool 103
4.43.1 Controller Model 103

4.4.4 Simulation Results and Discussions 106
4.4.4.1 Simulation Results for 2-slot Channel 106

4.4.4.2 Simulation Results for 3-slot Signal 108

4.4.4.3 Simulation Results for 4-slot Pool 109

4.4.5 General Procedure for Modelling 110
4.45.1 General ACM Scheme 110

4.4.5.2 Controller Modelling 111

4.45.3 Model of 1-Slot Datapath 115

4.5 Buffered ACMs 117
4.5.1 Classification for Buffered ACM 117
4.5.2 Global Model for an RR-BB ACM 119
4.5.2.1 Ringstructure oL 119

4.5.2.2 Algorithm 120

4523 Modelling oo 121

4.5.2.4 Simulation Results and Discussions 124

4.5.3 Modular Design Model for an RR-BB ACM 126
4.5.3.1 Algorithm for Modular Design RR-BB 126

4532 Modelling Lo 127

4.5.3.3 Simulation Results 132

4.5.4 Discussions oo e 133
4.6 Hardware Implementation for a 3-Slot Signal 137

CONTENTS

4.6.1 Block Diagram 0oL 138
4.6.2 Implementation of Control Circuits 139
4.6.3 Implementation of the Datapath 144
4.6.4 Resulting Waveforms and Discussions 145

4.7 Conclusiono 147
5 Application in Control Systems 149
5.1 Introduction 149
5.2 Brushless DC control system 149
5.2.1 Introduction o 149
5.2.2 System Model L. 150
5.22.1 Motor 150

5222 PWM 151

5.2.2.3 Complete Model 152

5.2.3 System Analysis. 153

5.3 Asynchronous Solutions, 156
5.3.1 Introduction 156
5.3.2 Buffer solution o0 0oL 156
5.3.3 DAC-ADC solution 157
5.3.4 Solution with ACMs 158

5.4 Asynchronous Model 158
5.4.1 Introduction oL o 158
5.4.2 Asynchronous PI Controllers 159
5.4.2.1 Speed Controller 161

5.4.2.2 Torque Controller 162

5.4.3 Asynchronous ADC 163
544 Whole System Lo 165

5.5 Results with Different ACMs 167

vi

CONTENTS

5.5.1 Introduction

5.5.2 Simulation Results for the Fault-Free Case

5.5.3 A Fault within the Outer Loop
5.6 Further Discussions

5.7 Conclusions

6 Conclusions and Future Work

6.1 Conclusions

6.2 Future Work

A Testbench for the Cadence Simulation

Bibliography

vii

189

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

2.19

3.1

A Circuit Fragment with Gate and Wire Delays 13
2-Phase Handshake Protocol 14
4-Phase Handshake Protocol 14
Basic David Cell 16
Mutex o e 18
SYNC . . . e 18
Asynchronous D Latch 00000 19
Asynchronous Multiplexer 20
ACM with Shared Memory and Control Variables 22
Block Diagram of an Elementary Feedback Control System 35
Time Response L 36
Schematic of Motor Control System 40
Basic Connections in Petrinet 43
Read Arc 45
Memory Block 46
Normal Switch Block 0oL 47
Parameter Box for Switch 00000 47
Multi-Port Switch Block 000, 48
Graphical Function Example 54
Basic Conversions: linear and Exclusive Connections 59

viil

LIST OF FIGURES

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

4.1
4.2
4.3
4.4

Basic Conversions: Fork Connection 61
Basic Conversions: Join Connection 61
An Example of a Transition Not Consuming All the Tokens 62
Basic Conversions: Join Connection Refinement 63
Join Connection According to Eshuis 63
Reachabilities for the Join 0oL 63
Stateflow Model for Figure 3.4, 64
Reachabilities for Figure 3.4 and Figure 3.8 64
Basic Conversions: Read Arc. 64
A Fork Followed by a Merge 65
A Choice Followed by a Join 65
An Choice Followed by a Fork 66
A Fork Followed by a Choice 66
Petri net Example.o o Lo 67
Petri net Conversion - Stepl L. 68
Petri net Conversion - Step2 L. 69
Petri net Conversion - Step3 69
If p9 is marked initially 000000 70
PN Model of a Pipeline 71
Conversion of a Single Stage oL, 72
Combining Two Stages 73
Stages with Refined Transition 74
Stateflow Model of a 4-Stage Pipeline 76

Handshake Protocol in Stateflow (a: Sender Side, b:Receiver Side) . . 79

Petri nets for Writer oo oL 82
Complete Petri nets Model for Writer of 3-slot Signal 82
Petri nets for Reader 84

X

LIST OF FIGURES

4.5

4.6

4.7

4.8

4.9

4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32

Petri net Model for the Reader of 3-slot Signal 84
Stateflow Model for the Writer of a 3-slot Signal 85
Stateflow Model for the Reader of a 3-slot Signal 86
Stateflow Model for Mutex 0. 87
Writing into Slots L 89
Reading from Slots o oL 90
Simulink Model for Datapath 90
Test Environment Block 000000 91
Simulink Model for Test Environment 92
Trigger Subsystem Lo 93
Date Item Generator 93
Waveforms for the 3-slot Signal 95
Stateflow Model for 2-slot Channel 96
Datapath Block with more than One Slot 97
2 Slots Memory 98
Stateflow Model for a 3-slot Signal 100
3-Slot Datapath, 102
Stateflow Model for 4-slot Pool 104
4-slot Datapath 105
A 2-slot Channel in the Test Environment 106
Waveforms for 2-slot Channel 107
Waveforms for 3-slot Signal 108
Waveforms for 4-slot Pool 110
General ACM Scheme 111
A Cyclefora Process 112
Inside the processingo 113
A Cycle with Two Handshakes 114
Controller Model of a General ACM 115

LIST OF FIGURES

4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50

5.1
5.2
9.3
5.4
9.9
2.6
5.7
5.8
2.9

Control Block 115
1 Slot Memory 116
Ring Organisation of ACM Buffer 119
Basic State Graph of 3-Cell RR-BB 120
State Graph of 3-Cell RR-BB with Silent Actions 121
Stateflow Model for a General RR-BB 123
Simulation Result for 3-Cell RR-BB 125
Connection Between Two Cells. 127
Stateflow Model for RR-BB Modular Design 129
Simulink Model for a 3-Cell RR-BB 131
Waveforms for 3-Cell Modular Design RR-BB Model 133
Block Diagram for 3-slot Signal 138
L-Latch 140
Signal Flow for the Writer 141
R-Latch 143
Signal Flow for the Reader 144
Signal Flow for Datapath 144
Result Waveformso oo 145
Model of a Motor 151
PWM Block 152
Complete Modal for a Brushless DC Motor 153
Waveforms for the Brushless DC Motor 154

Bode Plot for the Open Loop of the Brushless DC Motor System . . 155

PID Controller 159
Asynchronous PI Controller Model 160
Stateflow Model of a Speed Controller 162
Stateflow Model of a Torque Controller 163

xi

LIST OF FIGURES

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
2.20
0.21

Stateflow Model of an Asynchronous ADC 165
Model of the Whole System 166
Simulation Results for the Pool-Channel Case 169
Simulation Results for the Signal-Channel Case 170
Simulation Results for the Signal-Channel Case - Refined 171
Bar Graph for Rising Times for the System for a Step Input 172
Bar Graph for Peak Times for the System for a Step Input 172
Bar Graph for Peak Values for the System for a Step Input 173
Simulation Results for the Channel-Pool Case 174
Simulation Results for the Pool-Pool Case 175
Simulation Results for the Channel-Pool Case with a Fault 177
Simulation Results for the Pool-Pool Case with a Fault 179

xii

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1

4.2
4.3
4.4
4.5

4.6

Dual-Rail Encoding oo o000 15
Simpson’s Classification of ACMs 25
New Classification of ACMs 27
Table for neither Function 31
The Truth Table for w1 33
Basic Elements in Petri Nets 42
Notation of Graphical Objects in Stateflow 50
Basic Components in Petri net and Stateflow 58
neither Function oo oo oo 80
The Order of 4 Slots 103
Buffered ACM Classification 117

The Properties for RR-BB ACMs When Increasing the Number of
Cells, (a) Rmu=1.035, Wmu=1.113; (b) Rmu=1.035, Wmu=10.13;
(¢) Rmu=10.35, Wmu=1.113 135
The Properties for RR-BB ACMs When Changing Delivery Speeds . 137

xiii

List of Algorithms

1 Algorithm for a 2-slot Channel 30
2 Algorithm for a 3-Slot Signal 30
3 Algorithm for 4-slot Pool 32
4 n-Cell RR-BB ACM Algorithm 121
5 Algorithm for Modular Design RR-BB ACM 126

Xiv

Acknowledgement

I would like to give my sincere thanks to all the persons who have helped me during
my PhD research.

I express my complete gratitude to my supervisors, Dr. Graeme Chester and
Professor Alex Yakovlev. Because of their enlightened guidance and open minds, I
have been able to enter this exciting field of asynchronous system designs. Their
advice encouraged me to complete this study.

I express my gratitude to Dr. Fei Xia whose wholehearted support was contin-
uous during the past 5 years. His advice has led me out of difficulties on many
occasions. The help from him was not only in academic research but also in many
other aspects.

I am also grateful to Dr. Delong Shang for introducing Cadence to me and for
many discussions on asynchronous circuits. Without these discussions, the hardware
implementation in Chapter 4 would not be completed.

I thank Professor Hugo Simpson, Professor Anthony Davies and all the members
involved in the COHERENT project. I benefitted very much from the presentations
and discussions at the meetings.

My appreciation also goes to Dr. Danil Sokolov, Dr. Agnes A. Madalinski and
Miss Deepali Koppad who helped me in solving several problems on thesis editing
in Lyx. Thanks go to Danil and Mr. Xuebo Zhao for sharing their experience of the
writing up stage. Mrs. Miao Wang who provided me a link for scientific writing is

also thanked.

XV

ACKNOWLEDGEMENT

Many thanks to all the colleagues in the VLSI group for their constant encour-
agement, and to all my friends for their support and making my life interesting.

I would also like to express my thanks to the EPSRC, School of EECE and
Newcastle University for their financial support during my research.

My special thanks go to Mrs. Rong Li and Dr. Xiaojun Meng. It was Rong who
recommended and encouraged me to study at Newcastle University. Without the
information from Rong and Xiaojun, I would not have had the opportunity to enter
this fantastic group.

My great appreciation belongs to my family. They provided me with patience,
encouragement and love constantly. Particularly during the writing up stage, my
parents and wife took over most of the housework and tried their best to offer me a

comfortable working environment.

xXvi

Abstract

This thesis presents the approaches for creating and testing different asynchronous
communication mechanism (ACM) models in MATLAB and investigations on ACM
applications in control systems.

To build the control path models of ACMs in MATLAB, two approaches are
used. The first one is according to their Petri net specifications. The second one is
according to their algorithms.

The first approach is based on the transformation from Petri net to Stateflow -
a software package in MATLAB. This transformation is achieved by observing the
similarities between the Petri net and Stateflow, and is suitable for all the well-
formed Petri nets by which ACMs are mainly described.

The second approach is based on analysing the information exchanges in the
algorithms. Each information exchange is represented by a handshake model. ACM
control path models are built by connecting these handshake models together.

Complete ACM models are obtained by connecting the control paths and the
datapaths which are made up of memory and switch blocks. These models were
successfully tested in a test bench which generates reading and writing requests
randomly.

A brushless DC motor system was used to investigate the application of ACMs in
control systems. Two ACMs were included into the system: one was in the feedback
to deal with the asynchrony between the speed sensor and the speed controller, the

other was between two controllers to deal with their speed differences. The result

xvii

ABSTRACT

shows that the system with ACMs not only works, but also avoids the blocks, which
slow down the system response and worsen the overall performance, caused by a

traditional buffer solution.

xviil

Abbreviations

A/D
ACM
ADC
ASIC
BB
D/A
DAC
DC
DCS
DI
DSP
e.m.f.
EMI
FM

GALS

Analog to Digital Conversion

Asynchronous data Communication Mechanism

Analog to Digital Converter

Application Specific Integrated Circuit

Bounded Buffer

Digital to Analog Conversion

Digital to Analog Converter

David Cell

Distributed Control System

Delay Insensitive

Digital Signal Processor

Electromotive Force

Electro-Magnetic Interference

Fundamental Mode

Globally Asynchronous Locally Synchronous

Xix

ABBREVIATIONS

GUI Graphical User Interface

ITRS International Technology Roadmap for Semiconductors

MATLAB Matrix Laboratory

Mutex Mutual Exclusion

NOW Non Over-write

NRR Non Re-read

NRZ Non Return to Zero

oW Over-write

PID Proportional, Integral, Derivative
PLC Programmable Logic Controller
PN Petri nets

PWM Pulse Width Modulation

QDI Quasi Delay Insensitive
RPM Round per Minute

RR Re-read

RZ Return to Zero

SI Speed Independent
STG Signal Transition Graph

XX

Chapter 1

Introduction

The real world is asynchronous in nature. Logically, digital systems should be de-
signed in an asynchronous way. However, in the past decades, synchronous systems
were dominant because of their easy implementation method.

With the development of modern technology, several inherent problems with
synchronous systems became more notable. It is becoming more and more difficult
to build a global clock of today’s systems. The use of a global clock always leads
to high power consumption, which is unacceptable, especially for power-sensitive
applications where short battery life is the bane of the users. The EMI (Electro-
Magnetic Interference) is a concern in mobile communication applications. Dean
[Dea92| proved that systems operated asynchronously have a potential to generate
better results. Consequently, asynchronous designs returned to researchers’ sight.

Asynchronous data Communication Mechanisms (ACMs) are inter-process com-
munication devices that support the communication of data between writing and
reading processes which are unconstrained in, when, and at what rate they can

access the mechanism [HP02].

CHAPTER 1. INTRODUCTION

1.1 Motivation

The aim of this thesis is to propose a method of building ACM models at the
application level, and to investigate the effect of including ACMs in engineering

application systems, particularly in feedback control systems.

1.1.1 Demand for Asynchronous Communication

Inter-process asynchrony is inevitable for computation networks in the future, firstly,
because different and diverse functional elements, especially those connecting to ana-
logue domains, tend to have different timing requirements [KEMO03, Sim03] and, sec-
ondly, because concurrent and distributed system implementations lead to greater
asynchrony between components as semiconductor technology advances and the de-
gree of integration increases (the ITRS 2005 "Design" document emphasises multiple
clock domains and source-synchronous signalling and predicts networks of self-timed
blocks [ITR05]). The size of computation networks is becoming larger, and traffic
between the processing elements is increasing. Handling data communication deter-
mines performance and other characteristics of such systems.

In truly distributed systems such as sensor networks [KEMO03|, there is often a
desire to have temporal decoupling between digital processes. For instance, parts
of a distributed control system may consist of control laws mapped onto hardware
embedded into parts of the plant environment, whilst the upper hierarchies of the
system may be implemented with software running in general purpose processors
which are shared multitasking units. It can be very important to have temporal
decoupling between the hardware and the software parts of the control algorithm at

the hardware level because of such reasons as:

e avoiding deadlock propagation through the system,

e the desire to have low power characteristics in battery powered units,

CHAPTER 1. INTRODUCTION

e the physical impossibility of keeping everything synchronised in distributed

systems,

o different parts of a system requiring radically different processing speeds.

1.1.2 ACM - a Solution for Asynchronous Communications

As a solution for asynchronous communications, ACMs were proposed by Hugo
Simpson [Sim90, Sim94| in 1990 and have by now developed into a coherent field
including classification, specification, and techniques for implementation, analysis
and verification [Sim03, XYCS02|.

In ACMs, two independent processes are considered. The one supplying data is
called a writer. The one requesting data is called a reader. The memory element
between the reader and the writer is known as the datapath. Simpson classified the
ACMs into 4 types: Channel, Pool, Signal and Constant based on the properties of
the reader and the writer, such as “destructive” and “non-destructive”. According
to the number of memory storage elements, or slots, in the datapath, ACMs can be
classified into 2-slot, 3-slot and 4-slot mechanisms. The definitions can be found in
Chapter 2. Because the Constant type ACM does not perform any communications
between the reader and the writer, a new classification based on whether “re-reading
(RR)” and (or) “over-writing (OW)” are permitted in the reader and (or) the writer
was proposed in [XC02, YXS01]|. In this classification, a mechanism called Message
took the place of the Constant. ACM classification was successfully expanded to
include types providing more qualitative asynchrony and richer data properties than
a traditional FIFO buffer.

The Channel type ACM, especially in its FIFO buffer form, has been studied for
many years, and its hardware implementations were proposed in [Sut89, HBL99,
LPIO01]. Simpson described a fundamental mode (FM) implementation for the Pool

type ACM [Sim94]. Furthermore, self-timed ACM implementations proposed in

CHAPTER 1. INTRODUCTION

[Sha03, XYST00, YXS01] were based on their Petri nets specifications [XC00] using
a direct translation method [SXY00al.

ACMs are potentially useful in systems with heterogeneous timing as data con-
nectors between processes belonging to different timing domains, which may exist
out of necessity. They can also be useful as digital mimics for various types of
data connections in analogue systems, with different types of ACMs suiting differ-
ent data requirements. [XHC04] This makes it clear that these applications should
be investigated.

The study of ACMs so far, though extensive, has not extended to their direct
modelling in application-level tools. Previous proposals for modelling ACMs at a
higher level, treating them as components in larger systems, employed Petri nets
[XC00]. This was suitable for the case where systems containing ACMs were re-
garded and analysed as general discrete event digital systems. However, in order
to study the effect of including ACMs in such engineering application systems as
control systems, especially when analogue parts are present, ACM models need to
be integrated into popular application-level tools such as MATLAB (Matrix Labora-
tory) [MATa] and MATRIXx [MATc]. MATLAB was chosen because it was widely
used and had more support. In addition, the MATRIXx models could be trans-
lated to MATLAB ones [MATb]. MATLAB direct to hardware fast prototyping
tools are becoming available [Xil|, potentially making it possible to save the step of
implementing DSP hardware through the traditional VLSI process. Future develop-
ments in this direction could potentially lead to the direct hardware implementation
of application systems containing ACMs designed and verified in MATLAB. This

provides another motivation for this kind of work.

CHAPTER 1. INTRODUCTION

1.1.3 Application to Control Systems

The control systems nowadays tend to be distributed. This trend may be found in
the applications from robotic machining to autonomous vehicle control, etc [YTSO00].
The changes are based on the considerations of wiring, flexibility and diagnostics.
Considering the wiring, instead of connecting to the central controller, measurement
and actuation devices can be connected to a local controller which is connected to
other controllers via a communication link. This may reduce the overall wiring
cost and complexity with increased reliability [Bur04|. Considering the flexibility,
a distributed control system is more scalable, resulting in a more modular system
in which additional devices can be added to the system directly. Considering the
diagnostic, a distributed control system can take better advantage of the additional
information due to the existence of the communication interface. Diagnosing this
information makes the preventive maintenance easier or helps to troubleshoot prob-
lems more efficiently.

Communication delay has a major effect on system performance and can be a
major problem in a system with many nodes and a high frequency. According to
Yook [YDS00], an approach to solving this problem is reducing the communications
between the distributed processors. That is, the processors should communicate
only when necessary instead of as fast as possible. Yook proposed a State Estimator
Framework [YDS00] to deal with the problem. In this approach, an estimated value
is used instead of the real sampled one. The communication only occurs when
the difference between the estimated value and the actual value exceeds the preset
threshold. As a trade-off, the computation load at each node is increased due to
the additional computation related to the estimator. This approach was based on
synchronous design. The computation has to be carried out in each clock cycle.
The computational load will be extremely high at high frequency. An asynchronous

approach could be an alternative to reduce both the computation load at each node

CHAPTER 1. INTRODUCTION

and the communications, and consequently, reduce power consumption.

ACMs are well positioned for delivering data between the asynchronous pro-
cesses in control systems. When an analogue value is presented, it is converted into
a digital one through an analogue to digital converter (ADC). A class of ADCs,
named as “asynchronous”, has been described in [KYG00]. With the level-crossing
scheme [SSV96] and an asynchronous design, a new class of asynchronous A /D con-
verters based on time quantisation is proposed in [ASFR03|. An asynchronous A/D
converter combined with an asynchronous controller will decrease both the commu-
nications and the computational load. For overall performance, information may
need to be passed among the controllers in different time domains. The communi-
cations among the controllers will have synchronisation problems. To deal with the
synchronisation problem, ACMs can be added.

For example, in a brushless DC motor control system, the speed controller works
out a desired current according to the error between the reference and the actual
speeds. The torque controller generates the amount of drive based on the error
between the desired and the actual currents. The torque controller requires consid-
erably faster control actions than the speed controller. However, the desired current
has to be passed from the slow speed controller to the fast torque one. A direct
digital link between the two controllers could potentially propagate hazards from
one to the other. As a safety-critical process, the torque controller cannot tolerate
such hazards, because they may burn out the motor or power electronics. With an
ACM inserted between them, the two controllers could be executed independently

of each other. The hazard propagation is avoided.

1.2 Publications and Contribution

The main contributions of this thesis include: implementation of a 3-slot Signal

[HYCT03], Petri net to Stateflow conversion, building ACM models in the MAT-

CHAPTER 1. INTRODUCTION

LAB environment [HCO03|, investigations on buffered ACM [HXC*04b, XHC*06]
and ACM applications in control systems [HXCY04, HXC*04a].

1.2.1 Petri Net to Statelow Conversion

ACMs are often described as Petri nets. Looking for an approach for conversion
from Petri net to Stateflow, whose models could be embedded into the MATLAB
environment, is a straightforward way to build such kinds of ACM models in MAT-
LAB. The basic connections in Petri net, such as linear connection, fork, join, merge
and choice, were successfully converted. Based on this, a step by step conversion

approach is proposed.

1.2.2 Building ACM Models in MATLAB Environment

To investigate applications, the MATLAB models of ACMs were built. The control
paths were modelled by two approaches. One is to translate from their Petri net
specifications [HCO03] using their Petri net to Stateflow conversion, the other is to
use 4-phase handshake models to build models according to the ACMs algorithms.

The former one is closer to hardware implementations, which concern the internal
structures more. A 3-slot Signal is used as an example showing the similarities
between the MATLAB model and the hardware circuits.

The models built by the latter approach are used in the investigation of ACM
applications. There are two reasons for doing this: first, they are simpler and easier
to be understood compared to the ones by the former approach, but they indicate
the same properties. And second, the internal structures are not important in the

application level models.

CHAPTER 1. INTRODUCTION

1.2.3 Investigations on Buffered ACM

Buffered ACM refers to an ACM containing a buffer, which is used to transfer the
data which consists of a stream of items of the same type. Because of the existence
of the buffers, the latency becomes an important property to be investigated. After
modelling an RR-BB ACM, the relationship among the number of cells, the speed of

the reader and the writer, the properties of the freshness and latency are discussed.

1.2.4 ACM Applications in Control Systems

The controllers execute at their own speeds. To pass data among the different time
domains, ACMs have been used. A brushless DC motor system is used as an example
to investigate the effect when different type ACMs are included. Two ACMs were
inserted into the system. One was in the feedback path and the other was between

the two controllers. The system performed differently when varying the two ACMs.

1.3 Organisation of Thesis
The thesis is organised as follows:

Chapter 1 Introduction briefly outlines the aims, the contributions and the

organisation of this thesis.

Chapter 2 Background presents the background information of this thesis.
Firstly, fundamental knowledge on asynchronous designs such as cir-
cuit signalling protocols and data representations is introduced. Then
ACMs, their properties and classifications are presented. After the brief
introduction on control systems, the modelling tools, especially Stateflow

[Sta], software embedded in MATLAB, are described.

CHAPTER 1. INTRODUCTION

Chapter

Chapter

Chapter

Chapter

3 Petri Net to Stateflow Conversion presents a direct translation

approach from a well-formed Petri net to a Stateflow model.

4 Model ACMs in MATLAB first presents the MATLAB model of a
3-slot Signal directly translated from its Petri net specification. Second,
3 ACM function blocks are modelled, a 2-slot Channel, a 3-slot Signal
and a 4-slot Pool, in MATLAB. With these models, an approach of
building ACMs directly from their algorithms is presented. Compared
to the models built from the Petri net, these function blocks described
in this chapter are much easier to build and understand. Third, this
chapter presents the investigations on buffered ACMs. RR-BB is used
as example to illustrate how the global view and the modular design
blocks are modelled. The properties of RR-BB ACM are also discussed.
Finally, hardware implementation of a 3-slot Signal is presented to show

the similarities between the MATLAB model and the hardware circuits.

5 Applications in Control Systems investigates the performance
of control systems when ACMs are plugged in. An ACM is included
in between the speed controller and the torque controller and another
in the feedback path in a brushless DC motor system. The system
performance varies when changing the two ACMs. Detailed discussions

on the performance were carried out.

6 Conclusions and Future Work summarises the contributions of

this thesis and the future work.

Chapter 2

Background

2.1 Introduction

This chapter provides background knowledge, including the introduction of asyn-
chronous designs, especially the Asynchronous data Communication Mechanisms,
control systems, including feedback control systems, stability criterion, PID con-
troller and brushless DC motor control system, and the tools for modelling and
implementations, such as Petri net and MATLAB for the readers so that they are

prepared for understanding the subsequent chapters.

2.2 Asynchronous Designs

2.2.1 A Brief History of Asynchronous Designs

Asynchronous circuits were first studied by analysing the nature of input restrictions
on sequential circuits fifty years ago. A brief histroy of asynchronous designs could
be found in [DN95].

Huffman [Huf64| postulated that there must be a minimum time between input

changes in order for a sequential circuit to be able to recognise them as being distinct.

10

CHAPTER 2. BACKGROUND

This work was extended by the fundamental contributions of Unger [Ung69, Ung70,
Ung71| and McCluskey [McC65|. This led to a class of circuits known as Huffman
circuits, also known as fundamental mode circuits.

Muller [MB59, Mul62, Mul67| proposed a different class of circuits by using a
ready signal, which is more closely related to modern asynchronous circuits. In
Muller circuits, input signals were only permitted when the ready signal was as-
serted. When the circuit is not ready to accept additional inputs, it holds its ac-
knowledge to indicate that no further requests can be tolerated.

The seminal work by Stephen Unger [Ung69| provided a detailed method for
synthesising single-input change asynchronous sequential switching circuits in 1969.
Much practical work which followed in the next decade was significantly influenced
by him.

The Macromodule project was another noteworthy effort which was conducted
at Washington University in St. Louis in 1967. This project provided an early
demonstration of the compositional benefits of asynchronous circuit modules. It
provided a sound foundation for the numerous macromodular synthesis approaches
being investigated today [BS88, BS89, Ebe91|.

Charles Seitz was another notable pioneer, who introduced a Petri net like formal-
ism in his Ph.D. thesis [Sei71] which was extremely useful in asynchronous circuits
design and analysis. His influence directly resulted in the asynchronous implemen-
tation of the first operational dataflow computer [Dav78| and the first commercial
graphics system.

Another significant pioneer in the asynchronous world is Victor Varshavsky. He
found that the conceptual part of the problems associated with the class of live
and safe Petri nets was very close to problems in self-timing and showed a way of
translating a Petri net to an asynchronous circuit avoiding complex state-encoding
procedures [Var73|. The direct mapping technique [BY02| is based on his work.

Most of the circuits produced by industry are synchronous. An idea of building

11

CHAPTER 2. BACKGROUND

systems is to compose systems from these predesigned components. A promising
method called Globally Asynchronous Locally Synchronous (GALS) architecture is
proposed by Chapiro in his PhD thesis [Cha84].

To make the asynchronous design automatically, many synthesis tools were pro-
duced, such as Petrify [CKK196], Balsa [BE00O|, Tangram [BKR"91], Minimalist
[FNT*99], 3D [YDN92], etc.

2.2.2 Classification of Asynchronous Circuits

At the gate level, asynchronous circuits are classified into self-timed, delay-
insensitive and speed-independent, depending on the delay assumptions [SFO01].

Speed-independent (SI) circuits are the circuits which operate correctly assum-
ing positive, bounded but unknown delays in gates and ideal zero-delay wires, i.e.
arbitrary d4, dg and dg, but d; = dy = d3 =0 in Figure 2.1 [SF01|. SI definitions
based on the different purposes that can be found in [YLSV96|. Its theoretical def-
inition was made by [BM91] in 1991. SI circuits are one of the most broadly used
asynchronous design styles.

Delay-insensitive (DI) circuits are the circuits that operate correctly with pos-
itive, bounded but unknown delays in wires as well as in gates, i.e. arbitrary dg,
dg, d¢, dy, ds and dy =0 in Figure 2.1. In other words, DI circuits’ operations are
independent of the delays in both the gates and the wires. In fact, the class of DI
circuits is rather small. [Mar90a| showed that only circuits composed of C-elements
and inverters can be delay-insensitive.

Circuits that are delay-insensitive with the exception of some carefully identified
wire forks where d, = d3 in Figure 2.1 are called quasi-delay-insensitive (QDI). Such
wire forks, where signal transitions occur at the same time at all end-points, are
called isochronic [Mar90b].

The correct operations of the self-timed circuits rely on more elaborate and

12

CHAPTER 2. BACKGROUND

an e dt D

Figure 2.1: A Circuit Fragment with Gate and Wire Delays

engineering timing assumptions.

2.2.3 Handshake Protocols

As stated in [Bai00|: in asynchronous designs, the information is transferred between
the sender and the receivers using handshake protocols. The sender generates a
request when it is ready to transfer, and the receiver sends an acknowledgement
when it is ready to receive. These may occur on dedicated signalling wires, or may
be implicit in the data encoding [Mye01]. In either case, the first event indicates
information validity, and the second one indicates the acceptance and readiness on
receiving information.

The request and acknowledgement may be passed using one of the following
two handshake protocols: 2-phase handshake protocol, also called non return to

zero scheme (NRZ), and 4-phase handshake protocol, also known as return to zero

scheme (RZ).
e 2-Phase Handshake

In the 2-phase handshake protocol, as shown in Figure 2.2, the polarity of a tran-
sition is not important. The two transitions are regarded as signalling events. If
information is ready, the sender changes the level of the request signal (1 to 0, or 0 to
1). On finishing receiving the information, the receiver performs a transition of the
acknowledgement signal. The information is kept valid during the period between

request and acknowledgement to ensure it can be obtained correctly by the receiver.

13

CHAPTER 2. BACKGROUND

Figure 2.2: 2-Phase Handshake Protocol

Proponents of the 2-phase handshake protocol try to use the lack of a return to

zero phase to achieve higher performance and lower power circuits.
e 4-Phase Handshake Protocol

Signal levels are important in the 4-phase handshake protocol because they are used
to indicate the validation and the acceptance of data. Therefore, this protocol is also
called level signalling. In this protocol, the request and acknowledgement signals
have to be returned to zero so that they can stay in the same state after information
has been delivered. When information is ready for delivery, the sender generates a
request signal (which can be either high or low, depending on the designer). After
obtaining the information, the receiver sends an acknowledgement to the sender.
On receiving the acknowledgement, the request is reset by the sender. Finally, the

receiver withdraws the acknowledgement. This is illustrated in Figure 2.3.

Figure 2.3: 4-Phase Handshake Protocol

4-phase protocol and 2-phase protocol can be converted to each other. The
conversions are well documented in Liu’s Ph.D. thesis [Liu97].

4-phase control circuits are often simpler than 2-phase ones because the sig-
nalling lines can be used to drive level-controlled latches. Therefore, the handshake

protocols mentioned in this thesis use the 4-phase protocols.

14

CHAPTER 2. BACKGROUND

2.2.4 Data representation

In asynchronous designs, the data representation includes single-rail, dual-rail, 1-hot
(1-of-n) and m-of-n schemes.

The single-rail [Pee96] data uses normal Boolean levels to encode the data, and
the timing signals are passed from separate request and acknowledge wires. It is the
same encoding method as that in conventional synchronous designs. Single-rail is
also known as bundled-data protocol. The term “bundled-data” hints at the timing
relationship between the data signals and the handshake signals, while the term
“single-rail” hints at the use of one wire to carry one bit of data.

The dual-rail [Ver88| data use two wires to encode the information for one bit.
Table 2.1 illustrates the dual-rail encoding scheme. d.t and d.f represent the two
wires. In the transfer, only one wire has activity, that is, only one of the two wires
can be 1, the other is 0. An n bits dual-rail data item is encoded by 2*n signal wires.
The request signal of a dual-rail data item is also implicit in the code, by which it

is possible to determine when the entire data word is valid or withdrawn.

| [t [df]
Empty(“E”) | 0 | 0
Valid “0” 0 1
Valid “1” 1 0
Not in use 1 1

Table 2.1: Dual-Rail Encoding

Dual-rail encoding can be seen as a 1-hot encoding of that bit and often it is
useful to extend to 1-of-n encodings in control logic and higher-radix data encodings.
In 1-hot encoding, each state s; is represent by a vector y, where y;=1 and y;=0 for
i#j. Examples can be found in [YVMS95].

If the focus is on communication rather than computation, then m-of-n encodings
may be of relevance. In m-of-n encodings, activities occur on more than one wire

to indicate one possible code. 1-of-n and dual-rail are both special cases of m-of-n

15

CHAPTER 2. BACKGROUND

encodings.

2.2.5 Asynchronous Components

In the past decade, researchers proposed many useful components for asynchronous
designs. A brief introduction is given below for the components used in this the-
sis. These components include a David Cell (DC), a mutual exclusion (Mutex), an

SYNC, a dual-rail D latch and a dual-rail multiplexer.
e David Cell

DC was firstly introduced by Rene David. He proposed the simplest DC in his work
[Dav77]. This kind of DC is built essentially around SR flip-flops as shown in Figure
2.4.

outa

na S
. outr
inr

inr— - x+—exb— —e ina— —e inr+

$ '

ina+ «——xb+ <— outa— -— outr—

'

X— — e OUlr+ —e outa+
Figure 2.4: Basic David Cell

Each DC has a pair of complementary stable states, which are used for repre-
senting the presence and absence of a token in a corresponding 1-safe PN place. As
shown in Figure 2.4, the internal state (1, 0) in the flip flop (z, zb) is associated

with the presence of a token in the place. The opposite state (0, 1) in the flip flop

16

CHAPTER 2. BACKGROUND

represents the absence of a token in the place. This DC is a negative active com-
ponent, as a result, all the four signals, ina, inr, outa and outr, stay at a high level
normally, and the active level is low.

A DC works as follows: the internal state is (0, 1), absence of a token, initially,
therefore, ina and outr are both 1. Once inr is activated, z is set to 1 and because of
outa remaining inactive, 1, zb changes to 0. The internal state has now changed to
(1, 0), which means that the token has been transferred to the current place. When
zb becomes 1, the preceding DC withdraws the request signal ¢nr, which enables the
current DC to control a further event. Because both z and inr are high, the outr
is activated to give occasion to fire the events controlled by this DC, and then send
a request to the subsequent DC. Once the outa signal is received from a succeeding
DC, the internal state becomes (0, 1) again, and then the outr changes to 1. More
details can be found in [VM96b, YK98|.

e Mutex

Mutex [Sei80| is the abbreviation for the Mutual exclusion element. It was first
introduced as a programming technique that ensures that only one program or rou-
tine at a time can access some resource, such as a memory location, an I/O port,
or a file, often through the use of semaphores, which are flags used in programs to
coordinate the activities of more than one program or routine.

The Mutex controls the exclusive access of two or more independent processes

to a shared resource. The required behaviour is:
1. processes should be granted access in the order of their requests,
2. simultaneous requests are served nondeterministically [WB00|, and
3. only one process is granted at a time

In hardware design, the Mutex is a circuit used to provide a delay for a signal when

metastability occurs. A Mutex has the same number of inputs and outputs. It

17

CHAPTER 2. BACKGROUND

grants the earlier request and holds the other request until the resource is released.
The Mutex is composed of a flip-flop and a metastability resolver, as shown in Figure
2.5. If two requests come to the Mutex very close in time, the output of the flip-flop
could become metastable. When metastability occurs, the metastability resolver
will not change its outputs until the metastability is settled. The Mutex in this
thesis is high level active.

grant2

reql

req2

grantl

Figure 2.5: Mutex

e SYNC

A SYNC [YXS01, XC02|, also known as a sampler, is a synchroniser for two or
more signals. It is always used in handling self-timed to synchronous interfaces and

vice-versa. It is shown in Figure 2.6.

r_not MUTEX —_DD* r
Do— 1

ckO

Figure 2.6: SYNC

This circuit is made up of a Mutex, a NAND gate and an inverter. Initially,
r_not and ck0 are both inactive (in low level). Once the ck0 is activated, the
output 7 is reset as active. On releasing the ck0, 7 becomes inactive again. When
r_not is activated first, it will not affect the output until ck0 arrives to reset r.

Once the ck0 is withdrawn, r is set accordingly.

18

CHAPTER 2. BACKGROUND

e Asynchronous D Latch

Asynchronous D latches are often used in the datapath to store data items when
a request comes. One asynchronous D latch is able to store one bit with dual rail

outputs. Figure 2.7 shows the circuit of an asynchronous D latch [VMS95].

14

d —JP Cik_dn

AN22

ck Pp—

Rst P

Figure 2.7: Asynchronous D Latch

The first stage of the asynchronous D latch is a clocked RS latch with an Rst
input to initialise) to 0. The inputs Din and Din_ are dual rail bits, i.e., they
are always complementary. They can only be stored in the latch when the Clk
becomes high. The Clk input is connected to the request signal. The second stage
is a complex gate to generate a completion signal. When the bits are stored into
the latch, the inputs A and B of the complex gate are complementary, so are the
inputs C and D. Consequently, the output shows a high. Once the Cik is released,
the outputs of both 10 and I1 become high. This will not affect the outputs of 72
and I3, in other words, they are still complementary. Because only one input of 14
is low, it outputs a low level.

One D latch is able to store only one bit with dual rail outputs. One byte of data
requires an asynchronous D latch set, including 8 asynchronous D latches connected

together. The completion signal will not be sent until all the 8 bits are successfully

19

CHAPTER 2. BACKGROUND

stored. One asynchronous D latch set represents one slot in the datapath.
e Asynchronous Multiplexer

An asynchronous multiplexer is a device that selects one signal among a number
of input signals according to the control inputs. The asynchronous multiplexer set
in this design is to select one data byte out of three. Similar to the asynchronous
D latch, each byte must be dealt with bit by bit. Therefore, an asynchronous
multiplexer set is made up of 8 identical asynchronous multiplexers. Figure 2.8
shows the circuit for the asynchronous multiplexer, which is modified from the dual-

rail asynchronous multiplexer shown in [PFF96).

18
éNO‘L
o :
A

=
o
2
g
a3 119 »
; No2)yol .done
nd1 P 3
= D
C
19

no2 :) o C_ﬂ—‘ 4:@04
15 =0
nds I :) o O@—‘
ct Pp—
2 Pp—

set .

Figure 2.8: Asynchronous Multiplexer

The inputs include 3 pairs of dual rail bits, 3 control bits and a set bit. The
asynchronous multiplexer has three stages. The first stage chooses a pair of dual
rail bits according to the valid control port. The second stage is an extended NOR
RS flip-flop which is used to hold the chosen dual rail bits. The third stage is to

generate a completion signal after the flip-flop is set or reset.

20

CHAPTER 2. BACKGROUND

The set signal is active high. It sets output ¢ and resets ng. The control inputs
c1-3 are one-hot active low signals. When none of them are active, the outputs of
the first stage are all low. The flip-flop will maintain the current outputs. Once one
of them is activated, the selected input pair feeds to the second stage after inversion.
They will be stored in the flip-flop and delivered to the outputs. For both I8 and
19, one high input, from either the first stage output or that of the second stage,
changes its output to low, and then forces output done to high until the control

signal is released.

2.3 Asynchronous Communication

Asynchronous communication refers to digital communication (such as between com-
puters) in which there is no timing requirement for transmission.

As stated in [XYCS02|, in heterogeneously timed systems, data interfaces may
need to be maintained between subsystems not belonging to the same timing domain.
The minimal form of this problem is unidirectional data transmission between two
single-thread processes.

When the two communicating processes are not synchronised, it is often neces-
sary to pass the data through some intermediate data repository, such as an ACM.

Since Hugo Simpson proposed the concept of Asynchronous data Communica-
tion Mechanisms (ACM) [Sim90], it has been studied for decades and has by now
developed into a coherent field including classification, specification, and techniques
for implementation, analysis and verification. ACMs are potentially useful in sys-
tems with heterogeneous timing as data connectors between processes belonging to
different timing domains, which may exist either out of necessity or desirability.
They can also be useful as digital mimics for various types of data connections in
analogue systems, with different types of ACMs suiting different data requirements.

The expansion of ACM classification to include several types of ACMs providing

21

CHAPTER 2. BACKGROUND

more qualitative asynchrony and richer data properties than the traditional FIFO
buffer made clear that these applications can be envisaged, and the successful work

in synthesis and verification of implementations made them practical.

2.3.1 ACMs and Their Properties

An ACM is used to deliver data items between two processes executing in different
timing domains. The provider of the data is called the writer, while the data receiver
is known as the reader.

The general scheme of these kinds of data communication mechanisms is shown

in Figure 2.9.

ACM !
[Y

Control

\

variables

Shared

Memory !

Figure 2.9: ACM with Shared Memory and Control Variables

Most ACM implementations tend to include shared memory, accessible to both
writer and reader, for the data being transferred, and control variables, which may
be set by one side and read by the other.

A data area capable of holding a single item within shared memory is known as
a slot. The different memory designs are named according to the number of slots
they contain. This kind of memory mechanism is known as slot-type mechanism.

The most significant properties of ACMs are listed below [XYS*00]:

1. Asynchrony: An ACM should not require the reader and writer processes to

be synchronised to each other permanently. If an ACM provides a complete

22

CHAPTER 2. BACKGROUND

temporal divide between the reader and writer processes, so that the reader
and writer processes are entirely temporally independent from each other, it

is said to be fully asynchronous or synchronisation free.

2. Data coherence: Data, in the form of a record with several fields, must always
be passed as a coherent set, i.e. interleaved access to any data record by any
process is not permitted. Data coherence is violated if at any time both writer
and reader access the same data storage location in the shared memory. In
the slot-type mechanisms, this means that the writer and the reader should
not access the same slot simultaneously. A writer cycle may include a data co-
herence violation if the writer access conflicts with a reader access at the same
slot. The same may be said of a reader cycle. Data coherence is completely
maintained if the writer and reader do not access the same slot simultaneously

at all.

3. Data freshness: Data freshness describes how up to date any item of data
that the reader obtains from the ACM is. In slot-type mechanisms, the latest
data item is always found in the slot which the writer accessed during its last
cycle. Data freshness is normally checked just before a reader access or at the
beginning of a reader cycle. Data freshness is violated if the latest data item
written by the writer during its last cycle is not read when the reader accesses

the memory.

4. Data sequencing: The reader should obtain data items in the same order to
that in which they were written into the ACM by the writer. This property
is known as data sequencing. Data sequencing may be violated if the reader
obtains the data items in an order other than that written by the writer. This

could happen when the reader or the writer accesses the wrong slot.

5. Data loss: Data loss occurs when some items written into the ACM by the

23

CHAPTER 2. BACKGROUND

writer are not eventually obtained by the reader. When the writer writes often

and the reader reads only occasionally, data loss may happen.

2.3.2 Taxonomies of ACMs

e Lamport’s Classification

Lamport [Lam86| classified ACMs into Safe, Regular and Atomic registers.

Safe registers return the value most recently written when a read is not con-
current with a write; when a read is concurrent with a write, they can return any
value.

Regular registers return the value most recently written when a read is not
concurrent with a write; when a read is concurrent with a write, or series of writes,
the read may return the value prior to the writes, the final value written, or any of
the values written by the intermediate writes.

Atomic registers return the value most recently written when a read is not con-
current with a write; when a read is concurrent with a write, or series of writes, the
behaviour is consistent with them occurring in some serial order.

Lamport also tried to assemble the more useful Regular and Atomic registers out
of directly realisable Safe types. Exploiting the fact that the registers transmitting
bit type data items can implement to Atomic type directly, many ACM protocols
have been proposed.|Tro89, KKV87, Sim90|

e Simpson’s Classification

Simpson proposed a more general classification system according to the qualitative
asynchrony specifications. He divided all ACMs into four types [Sim94]: Channel,

Pool, Signal and Constant.

1. The Destructive Writing mentioned in Table 2.2 means that the writing process

can never be held up. The data item in a Pool is always destroyed by the

24

CHAPTER 2. BACKGROUND

| | Destructive Reading | Non-destructive Reading |

Destructive Writing Signal Pool
Non-destructive Writing Channel Constant

Table 2.2: Simpson’s Classification of ACMs

writer, however, it is not generally the case for a Signal where the data item

may have already been destroyed by the reader.

2. A Non Destructive Writing means that the writing process may be held up if

there is no space for putting new data items.

3. A Destructive Reading means that the reading process may be held up if there

is no data in the route waiting to be read.

4. A Non Destructive Reading means that the reading process can never be held

up.

The names in Table 2.2 are given by Simpson for demonstrating the reading and
writing rules. They are defined as follows [Sim94]:

A Pool is characterised by non destructive reading and destructive writing. It
allows reference data to be passed from one process to another. The reference data
(a single coherent record in conventional programming terms) is retained within the
Pool where it can be consulted at any time by the reader and refreshed at any time
by the writer. Special techniques can be used to maintain the coherence of the data
whilst ensuring that there is no temporal interference between writer and reader
when the Pool is implemented in shared memory. An initial (valid) value, such as
valid ”0” or valid ”1” (refer to Table 2.1), should be loaded in a Pool at build time
to cater for the situation where the Pool is first accessed by the reader before any
value has been inserted by the writer. Data-loss property is generally unimportant

and cannot be assured in a Pool, because of the existence of the destructive writing.

25

CHAPTER 2. BACKGROUND

A Signal is characterised by destructive reading and destructive writing. It allows
event data to be passed from one process to another. Event data (a single coherent
record) can be overwritten at any time by the writer, but the data can only be
accessed once by the reader. It follows that the data may not be accessed at all if
the reader is too slow or if the writer “changes its mind” before the event data has
been read. A Signal should be initialised to empty (refer to Table 2.1) at build time.
The Stgnal is an important communication mechanism in real time systems, as it
avoids back propagation of temporal interaction effects (i.e. the actions or inactions
of the reader have no direct effect on the timing of the writer). Because of the same
reason as a Pool, data-loss property is unimportant in a Signal either.

A Channel is characterised by destructive reading and non destructive writing.
It allows message data to be passed from one process to another. Whereas the Pool
and the Signal notionally hold a single coherent record value (from the functional
point view), the Channel has a capacity and can be used to retain a number of values
between processes. Thus complete characterisation must include the capacity of the
Channel. It is now possible that, at the time of a destructive read, several items
will be available for removal. Thus an additional constraint is needed which defines
that items are removed from a Channel in the order in which they are inserted. A
Channel should be initialised to empty at build time. Data-loss is a serious failure
in a Channel.

A Constant can be regarded as configuration data. It essentially provides a
“write once” capability. Generally the value of a Constant is established (written)
at build time, and we would not expect to see any real time networks which show
a process writing to a Constant; hence the use of a restricted form of symbol which

indicates no means of connection for a writer.
e New Classification

Simpson’s classification has its limitations. For example, there is symmetry between

26

CHAPTER 2. BACKGROUND

Pool and Channel but no symmetry between Signal and Constant, and there is not
any communication between reader and writer if a Constant is used.

To overcome these limitations, a new classification [YXS01, XYCS02]| was pro-
posed based on whether Re-reading and Over-writing are permitted or not.

Here, Over-writing means a new data item superseding a previous one when no
item in an ACM has been read, while Re-reading means reading a previously read
item when no newer one is available. If Re-reading is permitted, the reader will
not be held up and if Over-writing is permitted, there will not be holding up in the
writer. In contrast, if Re-reading is not allowed, the reader must wait until a newer
data item is available. If Over-writing is not allowed, the writer will not proceed

until the reader has read the old data item.

‘ ‘ NRR ‘ RR ‘
NOW | Channel | Message
oW Signal Pool

Table 2.3: New Classification of ACMs

In Table 2.3 RR and NRR stand for Re-reading and Non Re-reading, OW and
NOW mean Over-writing and Non Over-writing. Also the names of Channel, Signal
and Pool are inherited from Simpson’s Classification in the previous subsection. In
this new classification, Message is the dual of Signal which is defined as follows:

A Message is characterised by re-reading and non-overwriting. It allows event
data to be passed from one process to another. Event data can be re-read at any
time by the reader, but the data is not allowed to be overwritten before it is read.

!

However, rather than the "write once" capability in Constant, rewriting is allowed

in Message when the data has been read by the reader.

27

CHAPTER 2. BACKGROUND

2.3.3 Slot-Type Mechanisms

Reader and writer should not access the same slot simultaneously. One, two and
three slot mechanisms are developed for conditionally asynchronous communication
within a single processor, and the four slot mechanism is for fully asynchronous

communication.

e 1-Slot Mechanism: Only one data item is held within the memory. The reader
and the writer execute asynchronously until one process receives a request for

reading or writing while the other one is accessing the slot.

e 2-Slot Mechanism: Two slots are used so that the writer/reader alternates
between the two slots, and the reader/writer accesses whichever of them is
not the target of the current write/read (or of the next write/read, if there
is none currently active). When re-reading / over-writing are permitted, the
problem is that if a read/write overlaps multiple writes/reads, the second
write/read will use the slot already being used by the reader/writer. It seems
that additional slots are necessary. This problem will not have an effect on a

Channel because in Channel, neither re-reading nor over-writing is permitted.

e 3-Slot Mechanism: If one read overlaps multiple writes, the reader uses one
slot, and the writer alternates between the remaining two slots. On the other
hand, if one write overlaps multiple reads, the writer occupies one slot, and the
reader will wait or re-read the newer data item in the two slots. The problem
is that if the statement of updating control variables in the reader cannot be
regarded as atomic relative to the combination of the statements of updating
control variables in the writer, the read index and the write index may be the
same value, which will lead to the reader and the writer accessing the same
slot simultaneously, in other words, it violates the coherent property [XC99|.

In this case, a Mutex could be used in implementations.

28

CHAPTER 2. BACKGROUND

e 4-Slot Mechanism: The 4-slot mechanism arranges the slots as two pairs; the
pairs can be called left and right, and within each pair referred to as the top
and bottom slots. The writer operates on one pair, alternating between the
top and bottom slot. A control bit latest indicates to which pair the writer
most recently wrote, and another bit index associated with the pair indicates
which slot of the pair was most recently written; both these control bits are
written only by the writer. The reader uses a control bit reading to indicate
from which pair it is reading; it sets this equal to latest when it begins a
read; conversely the writer chooses the opposite pair when it starts a write
operation. A 4-slot mechanism guarantees the fully asynchronous property
even if the access of control variables is not regarded as atomic. For more

details please refer to [Sim90].

2.3.4 Some ACM Algorithms

In this subsection, algorithms of 3 type ACMs are introduced. All the three types

will be modelled in the following chapters.

2.3.4.1 2-Slot Channel

A 2-slot Channel is defined as a data buffer which can be used to retain two values
between processes. A Channel can be empty (with no new item in the memory),
half-full (with one new item in the memory) and full (with two new items in the
memory). It allows neither re-reading nor overwriting. When the Channel is full
the writer can not access it and the writer is held up until the Channel status is
changed. The reader can not perform an access to it when the Channel is empty.
Only when the Channel is half-full may both the reader and the writer access it,
but not the same slot simultaneously. At system start-up time, a Channel should

be initialised to empty.

29

CHAPTER 2. BACKGROUND

The algorithm for a 2-slot Channel can be synthesised from a Petri nets specifi-

cation as demonstrated in [YXO01], as shown below:

Algorithm 1 Algorithm for a 2-slot Channel

Writer Reader
wr: wait until w!=r then write slot w; r0: wait until w==r then r=Ir;
w0: w=!w rd: read slot r

The statements of wr and rd are the data accesses, and the others are control
variable statements used to determine which slot is to be accessed by the reader and

the writer.

2.3.4.2 3-Slot Signal

A 3-slot Signal is a Signal with the capability of holding 3 data items in the memory
at a time. The writer points to the slot which is the one neither occupied last by the
reader nor accessed by the previous write access. As a result, if the reader occupies
one slot for a long time, the writer will access the remaining two slots alternately.
This guarantees that the reader always reads the latest available data item in the
memory.

The algorithm for a 3-slot Signal is also synthesised from a Petri nets specification

which is demonstrated in [YXO01| as shown below:

Algorithm 2 Algorithm for a 3-Slot Signal

Writer: Reader:
wr: write slot w; r0: wait until (r!=1) r:=lI;
w0: l:=w; rd: read slot r;

wl: w=neither (1, r);

From the definition of Signal, it does not allow re-reading, that is, when there
are no new data items in the shared memory, the reader will keep waiting until a
new one is available. The r(0 statement plays this role. For the writer, once the new

data is stored, [is updated in statement w0, and w is assigned with the index of the

30

CHAPTER 2. BACKGROUND

slot which is neither being read (r) nor just written (/). This is performed by the
‘neither’ function in statement wi.

If the statements are considered non-atomic, the 3-slot Signal fails in the data
coherence and data freshness properties only when at least a consecutive pair of
statements w0 and wl are executed between the start and the finish of statement
r0 |[XC99]. One way to solve it is to ensure that the w0 and wl pair does not
execute simultaneously with r0.

Where w is the writer index; r is the reader index; [is the index for the most
recent written slot. All these three control variables have the same definition domain
with three values. In this case, it can be {0, 1, 2}. The neither in w1 is a function
to choose a value from the definition domain other than the two arguments. The

function follows the Table 2.4.

[(Ar]Of1[2]
0 1]2]1
1 [2]2]0
2 [1]0]0

Table 2.4: Table for neither Function

2.3.4.3 4-Slot Pool

Both the 2-slot and the 3-slot mechanisms have failure modes so far as data coher-
ence is concerned. However, a 4-slot has not under fundamental mode assumptions
[Sim90, Cla00]|. A 4-slot ACM has 2 pairs of slots in the memory. The pairs can be
called left and right, and within each pair referred to as the top and bottom slots.
The writer operates on one pair, alternating between the top and bottom slot. A
control bit latest indicates to which pair the writer most recently wrote, and another
bit index associated with the pair indicates which slot of the pair was most recently
written; both these control bits are written only by the writer. The reader uses a

control bit reading to indicate from which pair it is reading; it sets this equal to

31

CHAPTER 2. BACKGROUND

latest when it begins a read; conversely the writer chooses the opposite pair when
it starts a write operation. A 4-slot Pool is also known as a fully asynchronous
communication mechanism because it maintains the coherence of the data whilst
ensuring that there is no temporal interference between writer and reader when the
Pool is implemented in shared memory.

One algorithm for the 4-slot Pool has been developed by Simpson [Sim90] nearly

20 years ago. It is shown in Algorithm 3.

Algorithm 3 Algorithm for 4-slot Pool

Writer: Reader:
wr: write slot d[n,!s[n]] r0: r:=1
w0: s[n| :=!s[n] rl: v:i=s
wl: l:=n| n:=r rd: read slot d[r, v|r]]
In this algorithm, all the variables are binary; the use of ”||” is for concurrent

assignments. The array d indicates two pairs of data storage elements, they are the
left pair d[0, 0|, d|0, 1] and the right pair d[1, 0], d[Z, 1]. Variable n is used to
choose which pair is to be written and r is used to choose the pair for reading. I
indicates the most recently written pair. s is an array with two members, s|0] and
s[1]. Similarly to s, v also has two members v|0| and v|1|. Variable s|n| is used to
indicate the most recently written slot in the pair (top or bottom), and v|r| is the
slot in the pair to be read.

The first writer statement wr is the slot access statement. In this statement, the
data is written into the slot !s[n] in pair n. The second writer statement w0 updates
s|n], not the whole array s, to its complement which means the row which has been
written in wr. In the last statement for writer w1, the most recently written pair [
is updated to n, and then n is assigned a value complement to r. Table 2.5 is the
truth table for the control variables before and after statement w1I.

In the first reader statement, the reader obtains the information about which

pair the latest data is in. The second statement tells the reader which slot in the

32

CHAPTER 2. BACKGROUND

Before w1 ‘ After w1 ‘
n| r |l|n

= === OO O O o~
e Ek=l = el k==
=l olr|lol~lol—~lo
= = olo~=lolo
ol —|lo|lr|lo|r|o|—
ol ol —lol—|c| s

Table 2.5: The Truth Table for w!

pair was most recently updated. Combining the information, the reader reads the
latest data item.

In this algorithm, the w1 statement guarantees that the next data item will be
written to a different pair from the one which is currently occupied by reader. The
w0 and r1 statements ensure that even if both the reader and the writer access the

same pair, they will occupy different slots.

2.4 Control Systems

A control system is a device or set of devices that manages the behaviour of other
devices. It is an interconnection of components connected or related in such a
manner as to command, direct, or regulate itself or another system [FPEN06].

The control systems can be classified in different ways. Based on whether per-
sons are involved or not, they can be classified into manual control systems and
automatic control systems. According to whether the system tracks a reference
signal, they can be tracking systems (or servos) or regulators. According to
the information used in the controlling action, the system can be open-loop con-
trol (which does not use measures of the system output in the control action), and

close-loop control, also called feedback control (whose output is fed back for

33

CHAPTER 2. BACKGROUND

use in the control computation). According to other system properties, they can
also be classified into continuous (the controller is in the continuous time domain)
vs. discrete (the controller is in the discrete time domain), linear (subject to the
principle of superposition) vs. nonlinear (not subject to the principle of superposi-
tion), time invariant (whose output does not depend explicitly on time) vs. time
variant (whose output does depend explicitly on time), and causal (depends only
on the current and previous inputs) vs. noncausal (does not only depend on the
current and previous inputs) [FPENO06].

The discrete timed systems include the systems with a single sampling rate and
those with multi sampling rates. There is also a distinction for the latter between
the systems for which the multi-rate are synchronised and those for which there is
no simple relationship between the rates. The first case can be simply implemented
with the traditional synchronous manner. Therefore, the communications between
processes are managed synchronously. Because there is not synchronisation in it,
the second case has to be dealt with by an asynchronous approach - and this is the

category to which this thesis is concerned.

2.4.1 Feedback Control System

The block diagram of a feedback control system is shown in Figure 2.10. The pro-
cess, whose output is to be controlled, is the central component of the system. The
actuator is the device that can influence the controlled variable of the process. The
central issue with the actuator is its ability to move the process output with adequate
speed and range. Generally, the actuator and the process are intimately connected,
and this combination is called the plant. The controller is the component that actu-
ally computes the desired control signal. Because the controller works on electrical
signals, the input reference and the output must be in electrical forms. The input

filter plays the role for converting of the reference signal, while the sensor measures

34

CHAPTER 2. BACKGROUND

and converts the output into electrical forms. The Comparator is to compute the
difference between the reference signal and the sensor output to give the controller

a measure of the system error.

Disturbance

Reference | Input Control:
—e - .®_’ _ - -
o filter Controller signal Actuator Process

Sensor [*

I

Sensor
noise

Figure 2.10: Block Diagram of an Elementary Feedback Control System

2.4.2 Dynamic Response

Dynamic response illustrates the performance of a system. It can be studied within
the frequency and the time domains.

In the frequency domain, the response (called frequency response) is the measure
of any system’s response at the output to a signal of varying frequency (but constant
amplitude) at its input. The frequency response is typically characterised by the
magnitude of the plots of the system’s response, measured in dB, and the phase,
measured in radians, versus frequency. With taking the logarithm of the radian
frequency as abscissa, together these two plots, constitutes a Bode Plot [FPENOG|.

Time response, as shown in Figure 2.11, the dynamic response in time domain,
includes transient response and steady state response.

Transient response is the time response to an initial condition or sudden applied

signal, normally a step signal or an impulse signal. If the input signal is a step,

35

CHAPTER 2. BACKGROUND

Step Response

Amplitude

0 1 1 1 1 1 1 1

Time (sec)

Figure 2.11: Time Response

the system response is called step response. If the input signal is an impulse the
response is called impulse response.

The step response is characterised by the rise time ¢, (the time it takes the system
to reach the vicinity of its new set point), the settling time t; (the time it takes the
system transients to decay), the overshoot M, (the maximum amount the system
overshoots its final value divided by its final value) and the peak time ¢, (the time
it takes the system to reach the maximum overshoot point).

The steady-state response is the response of a system at equilibrium. The steady-
state response does not necessarily mean the response is a fixed value. Steady-state
error e (the difference between the desired value and output of the system) is the

steady-state response for a step input signal.

36

CHAPTER 2. BACKGROUND

2.4.3 Stability Analysis

The study of stability of nonlinear and time-varying systems is complex and often dif-
ficult. This section will only introduce the stability analysis of linear time-invariant
systems.

A linear time-invariant system is stable if all the roots of the transfer func-
tion denominator polynomial have negative real parts and it is unstable otherwise

[FPENOG].

2.4.3.1 Neutral Stability

The closed-loop stability can be determined by evaluating the frequency response of
the open-loop transfer function and then performing a test on that response.

Suppose the transfer function of a system is:

His) = KG(s)

- T R (2.4.1)

KG(s) is the open-loop transfer function.

A Bode plot of a system that is neutrally stable will satisfy the conditions:

IKG(jw)| = 1 (2.4.2)

and

£G(jw) = 180°, (2.4.3)

The most common situation is: increasing gain leads to instability and |K G (jw)|
crosses the magnitude = 1 once. Therefore, the stability criterion for this case is:
|IKG(jw)| < 1 at LG(jw) = —180°.

However, there are systems for which an increasing gain can lead from instability

to stability; in this case, the stability condition is: |KG(jw)| > 1 at £ZG(jw) =

37

CHAPTER 2. BACKGROUND

—180°.

2.4.3.2 Routh’s Stability Criterion

To avoid the complex computation of the high order polynomial roots, E. J. Routh
proposed a criterion for testing the stability of a system, known as Routh’s Sta-
bility Criterion, in his essay. In this criterion, a Routh array is created from the
characteristic equation of the system.

A system is stable if and only if all the elements in the first column of the Routh

array are positive.

2.4.3.3 Nyquist Stability Criterion

The Nyquist Stability Criterion is another method for determining stability of a
closed loop system. A closed loop system is stable if all of the closed loop poles are
in the left half of the s-plane. That is a basic fact about a system. Harry Nyquist
showed that it is possible to get information about closed loop pole location by
plotting open loop frequency response data.

In order to understand the Nyquist stability criterion it is necessary to under-
stand what a Nyquist plot is. A Nyquist plot is a graph (in complex plane) in which
the magnitude and phase of a frequency response are plotted. Where the phase is
the angle and the magnitude is the distance from the origin. This plot combines the
two types of Bode plot - magnitude and phase - on a single graph, with frequency
as a parameter along the curve.

The Nyquist Stability Criterion can be stated as:

e If the open-loop transfer function F(s) is stable, the closed-loop system is

unstable for any encirclement of the point -1 in its Nyquist plot.

e If the open-loop transfer function F(s) is unstable, in its Nyquist plot, there

must be one clock-wise counter encirclement of -1 for each pole of F(s) in the

38

CHAPTER 2. BACKGROUND

right-half of the complex plane.

e The number of surplus encirclements (greater than N+P) is exactly the number

of unstable poles of the closed-loop system.

2.4.3.4 Stability Margins

There are two commonly used quantities that measure the stability margin: gain
margin and phase margin.

The gain margin is the factor by which the gain can be raised before instability
results, while the phase margin is the amount by which the phase of G(jw) exceeds

—180° when |[KG(jw)| = 1.

2.4.4 PID Control

PID controller is widely used in the process and robotics industries as the control of
steady-state error. A classical PID controller contains three terms: proportional (P

term), integral (I term) and differential (D term) control. The control equation is:

u(t) = Ke(t) + K, / PVt + Ky d(tt) (2.4.4)

where e(t) is the system error.

The P term means that the feedback control signal is linearly proportional to the
system error. It can be used to control the constant term and the natural frequency.
The increase of the gain K, will reduce the rise time and steady state error, but the
damping is also reduced which may be too low for satisfactory transient response
and may result in oscillation.

The I term is proportional to the integral of the error, which has a major influence
on the steady state error. The integral term will not stop changing until its input
is zero, and therefore if the system reaches a stable steady state, the input signal to

the integrator will of necessity be zero.

39

CHAPTER 2. BACKGROUND

The D term is proportional to the derivative of the system error, which affects
suddenly changing signals and compensates the reduction of the damping caused by

the P term.

2.4.5 Brushless DC Motor Control System

Brushes are used to conduct current between stationary wires and moving parts,
most commonly in a rotating shaft in a DC motor. As the brushes are slowly
abraded the life of a DC motor using brushes could be significantly shorter than one
without brushes. A brushless DC Motor is a DC motor that does not contain brushes
|Bru02|. Figure 2.12 shows the basic structure of this kind of control system found
in [KKAJ90]. This system consists of a mechanical part (the motor), an electrical
part (the motor’s drive sub-system) and an electronic part (the integrated circuit
controller) Cascade control is usually used for this drive, with an inner loop con-
trolling motor current or torque and an outer loop controlling motor speed [Bla96|.
Both the speed and current/torque controllers were integrated into the same ASIC

in [KKAJ90]. The speed and current control laws are implemented digitally as PID

controllers.
Referece @ Speed Torque
speed Controller Controller Motor

Sampled Current

Sampled Speed

Figure 2.12: Schematic of Motor Control System

This is how a brushless DC motor works. A set of sensors on the motor’s shaft
sense the position when the motor is rotating. According to the position information,

the actual speed is calculated. By comparing to the reference speed, a speed error

40

CHAPTER 2. BACKGROUND

is worked out, which feeds to the speed controller. A reference current is produced
by the speed controller based on the speed error. According to the error between
the actual and the reference current, the amount of drive required is calculated by
the torque controller. Applying the calculated amount to a Pulse Width Modulator
(PWM), the drive voltage is worked out [KAJ91|. Pulse Width Modulation is a
technique employed to regulate the output power by changing the pulse width. In
a digital system, the integral number of steps related to the clock frequency is used

as the pulse width.

2.5 Model and Implementation Tools

2.5.1 Petri Net (PN)

Petri nets could be used to describe asynchronous systems [VM96a. According to
the Petri net specifications, hardware could be directly implemented by translation
[VMO96b, YK98, YKKL94, WB99, SBY03, Sha03]. As a useful modelling tool for
asynchronous systems, Petri nets will be briefly introduced in this section.

The Petri nets were firstly introduced by Carl Petri in the 1960s [Pet62, Pet73].
They provide a simple graphical description of a state-transition system with an easy
representation of concurrent events or a choice between alternative events. Further-
more, the set of reachable states can be obtained from a PN using a straightforward

algorithm.

2.5.1.1 Definition of Petri Nets

The basic elements of a classical Petri net include places, transitions, tokens (or
markings) and arcs. The graphical representations for these elements are illustrated
in Table 2.6.

Place here refers to a container that one could put data into. Transition refers to

41

CHAPTER 2. BACKGROUND

| Elements | Representations |

Place O

Transition I
Token .

Arc ™~

Table 2.6: Basic Elements in Petri Nets

an entity that modifies the system’s state. Token is a virtual object that is passed
between places to communicate. Only the device with the token may communicate,
to avoid clashing with other devices. Arc is assigned a direction which shows the
way the tokens pass.

The formal definition can be found in [DJ01, Pet81, Sok06]:

Definition 2.1. A Petri net (PN) is formally defined as a tuple PN = <P, T, F,
My>, where

P is a set of places.

T is a set of transitions.

F is a set of arcs known as a flow relation. It is subject to the constraint that no
arc connects two places or two transitions, or more formally: F' C (P xT)U(T x P).

My : S —N known as an initial marking, where for each place s € S, there are

n € N tokens.

There is an arc between x € PUT and y € PUT iff (z,y) € F. An arc
from a place to a transition is called consuming arc, and that from a transition to
a place is known as producing arc. The preset of a node x € P U T is defined as
or = {y| (y,x) € F}, and the postset as ze = {y | (z,y) € F'}.

The dynamic behaviour of a PN is defined as a token game. It changes markings
according to the enabling and firing rules of its transitions. A marking is a mapping
M : P — N denoting the number of tokens in each place, N={0,1} for 1-safe PNs.

A transition t is enabled iff M(p) > 0, Vp € ot. The evolution of a PN is possible

42

CHAPTER 2. BACKGROUND

by firing the enabled transitions. Firing of a transition ¢ results in a new marking
M(p) —1 if p E o,
M’ such that Vp € P : M'(p) = ¢ M(p) + 1 if p € te, , that is, for an

M(p) otherwise
enabled transition ¢ one token is removed from each preset place and one token is

produced to each postset place.

There are three important properties of a PN: safeness, liveness and deadlock-
freeness. A PN is said to be k-bounded if the number of tokens in every place of a
reachable marking does not exceed a finite number k. A 1-bounded PN is also called
1-safe. A PN is deadlock-free if, no matter what marking has been reached, it is
possible to fire at least one transition of the net. A PN is live if for every reachable
marking M and every transition ¢ it is possible to reach a marking M’ that enables

t.

2.5.1.2 Basic Connections in Petri nets

There are five basic connections in Petri nets. They are linear, join, fork, merge

(also called exclusive join) and choice (exclusive fork) shown in Figure 2.13.

©—=t+—=0O

(a) Linear Connection

o

(b) Fork (c) Join
(d) Choice (e) Merge

Figure 2.13: Basic Connections in Petri net

A linear connection, case (a) in Figure 2.13, means that a place has only one

43

CHAPTER 2. BACKGROUND

output transition whose only input place is this place, or a transition has only one
output place whose only input transition is this transition. Linear connection is the
most commonly used connection in a Petri net. It indicates that a satisfied condition
triggers an action, or an event leads to one state. All other connections can be called
non-linear connections.

A fork connection, (b) in Figure 2.13, is when a transition has two or more output
places and one input place. Once the transition in the fork is fired, it puts tokens
in all of its output places. This implies that the event leads to two or more places.

A join connection, (c) in Figure 2.13, is when a transition has two or more input
places and one output place. Only when all the input places hold a token does the
transition fire. A join connection implies that it needs to satisfy several conditions
to trigger one action.

A choice connection, (d) in Figure 2.13, is when a place has two or more output
transitions and one input transition. When the place in the choice holds a token,
only one of its output transitions can be fired. Sometimes the output transitions of
a choice may have read arcs (will be defined later) or other input places attached.
The choice represents the fact that one condition is able to trigger several actions,
but only one is triggered according to other conditions.

A merge connection, (e) in Figure 2.13, is when a place has two or more input
transitions and one output transition. Firing any of the input transitions can add a
token in the place. It follows a first come first served rule. However, in a 1-safe net,
it must ensure that only one transition fires at a time.

Fork and join imply that at least two branches are executed at the same time.
Choice and merge imply the existence of choice because only one branch is executed
at a time.

Besides the five basic connections stated in Figure 2.13, there is another useful
connection called "read arc". A read arc is the arc between a transition and one

of its input places, the token in which will not be consumed when the transition is

44

CHAPTER 2. BACKGROUND

jg—»o o
(@)

(b)

Figure 2.14: Read Arc

fired. It has two different notations. It can be a line without arrows, as shown in
Figure 2.14 (a). It can also be a line with arrows in both sides, as shown in Figure
2.14 (b), which means firing the transition will consume the token in the place, but

a token will be put back to the place afterwards.

2.5.2 MATLAB

MATLAB is a highly versatile language for technical computing. The name stands
for Matrix Laboratory. It integrates computation, visualisation, and programming in
an easy-to-use environment where problems and solutions are expressed in familiar
mathematical notation. It is an interactive system whose basic data element is
an array that does not require dimensioning. This allows the user to solve many
technical computing problems, especially those with matrix and vector formulations,
in a fraction of the time it would take to write a program in a scalar non-interactive
language such as C or FORTRAN.

MATLAB, as software in a synchronous platform, is not able to represent and
simulate the truly asynchronous behaviours. However, as the effective sampling
intervals are short enough, it is assumed that the events can happen at any time. It
will only fail to represent the real world when events happen near simultaneously,
which will cause metastability in real life. However, on one hand, the possibility of
the occurrence of this occasion is very low, so the simulation results from MATLAB
are reliable most of the time. On the other hand, the reason for using MATLAB is

to study the asynchronous behaviour in an application system level instead of trying

45

CHAPTER 2. BACKGROUND

to see what happens if there is metastability in the ACMs at this level of analysis.

2.5.2.1 Simulink

Simulink is a software package for modelling, simulating, and analysing dynamic
systems. It supports linear and nonlinear systems, modelled in continuous time,
sampled time, or a hybrid of the two. Systems can also be multirate, i.e., have
different parts that are sampled or updated at different rates.

For modelling, Simulink provides a graphical user interface (GUI) for building
models as block diagrams, using click-and-drag mouse operations. Simulink includes
a comprehensive block library of sinks, sources, linear and nonlinear components,
and connectors.

After a model is defined, it can be simulated, using a choice of integration meth-
ods, either from the Simulink menus or by entering commands in the MATLAB
Command Window. Using scopes and other display blocks, the simulation results
can be seen while the simulation is running. The simulation results can be also put
in the MATLAB workspace for postprocessing and visualisation.

Useful Simulink Blocks in Simulink

A memory block, Figure 2.15, outputs its input from the previous time step,

applying a one integration step sample-and-hold to its input signal.

1]

Figure 2.15: Memory Block

In the modelling, the memory block also plays a role of preventing ambiguous
execution order in a loop.

A switch block, shown in Figure 2.16, passes through the first (top) input or
the third (bottom) input based on the value of the second (middle) input. The first

and third inputs are called data inputs. The second input is called the control input.

46

CHAPTER 2. BACKGROUND

>:\

—

A4

Figure 2.16: Normal Switch Block

Block Parameters: Switch " |

— Switch

Pass through input 1 when input 2 satisfies the selected crterion;
athepwize, pazs through input 3. The'inputs are numbered top to bothom
[or left to-right], The input 1 pass-through criteria are input 2 areater than
ar equal. greater than, or nob equal tothe threshhold. The first and third
infput ports: are data ports, and the secand inplt port iz the conkral pork.

— Paranmeters
Criteria for passing first input: | 42 »= Threshald _j
Threshald;
fo
[s Show additional parameters -

] 4 I Cancel Help Spply

Figure 2.17: Parameter Box for Switch

The conditions are defined under which the first input is passed with the Criteria
for passing first input parameter. The block can be made to check whether the
control input is greater than or equal to the threshold value, purely greater than
the threshold value, or nonzero. If the control input meets the condition set in
the Criteria for passing first input parameter, then the first input is passed.
Otherwise, the third input is passed. (See Figure 2.17) The threshold value is fed
into the control input.

A normal switch block only contains two data inputs. In many cases, there
is a need for providing a data link among more than two data inputs. A multi-port
switch block is designed for these models. Figure 2.18 shows a Multi-Port Switch
block. It chooses from a number of inputs. The first (top) input is called the control
input, while the rest of the inputs are called data inputs. The value of the control

input determines which data input is passed through to the output port. If the

47

CHAPTER 2. BACKGROUND

control input is an integer value, then the specified data input is passed through to
the output. If the control input is 1, then the first data input is passed through to
the output. If the control input is 2, then the second data input is passed through
to the output, and so on. If the control input is not an integer value, the block first
truncates the value to an integer by rounding down. If the truncated control input
is less than 1 or greater than the number of input ports, an out-of-bounds error is
returned.

_|

>

>
(N
St
>

Figure 2.18: Multi-Port Switch Block

The number of data inputs can be specified with the Number of Input Ports
parameter.

In modelling the data path, the switches are used to choose routes or hold data
items. The switches are atomic so the memories are used to simulate the delays
within the data path.

The normal switch can be used with binary control input, and the multi-port

switch block may accept a natural number control input.

2.5.2.2 Stateflow

Stateflow is a software package in MATLAB. It is a graphical design and development
tool for control and supervisory logic used in conjunction with Simulink. It supports
statecharts formalism which was introduced in 1987 by Harel [Har87|. It can be used

to:

1. Visually model and simulate complex reactive systems based on finite state

machine theory

48

CHAPTER 2. BACKGROUND

2. Design and develop deterministic, supervisory control systems

3. Easily modify the design, evaluate the results, and verify the system’s be-

haviour at any stage of the design

4. Automatically generate integer, floating-point, or fixed-point code directly

from the design

5. Take advantage of the integration with the MATLAB and Simulink environ-

ments to model, simulate, and analyse the system

Stateflow provides clear, concise descriptions of complex system behaviour using
finite state machine theory, flow diagram notations, and state-transition diagrams
all in the same Stateflow diagram. Stateflow brings system specification and design
closer together. It is easy to create designs, consider various scenarios, and iterate
until the Stateflow diagram models the desired behaviour.

Flow diagram notation creates decision-making logic such as for loops and if-
then-else constructs without the use of states. In some cases, using flow diagram
notation provides a closer representation of the required system logic that avoids

the use of unnecessary states.

2.5.2.3 Notation of Stateflow

A Stateflow diagram is composed with the symbolic objects of Stateflow notation.
There are 3 different types of available Stateflow objects: graphical objects, non-
graphical objects and data dictionary.

Graphical objects, drawn in the Stateflow diagram editor, are shown in Table
2.7

Nongraphical objects, including event and data objects, do not have graphical
representations in the Stateflow diagram editor. However, they can be seen in the

Stateflow Explorer.

49

CHAPTER 2. BACKGROUND

Name ‘ Notation ‘

State u

Transition \

Default transition

Connective junction O

function()

Graphical function

Table 2.7: Notation of Graphical Objects in Stateflow

Data dictionary is a database containing all the information about the graphical
and nongraphical objects. Data dictionary entries for graphical objects are created
automatically as the objects are added and labelled. Nongraphical objects are ex-
plicitly defined in the data dictionary by using the Explorer. The parser evaluates
entries and relationships between entries in the data dictionary to verify that the

notation is correct.

1. State

State describes a mode of a reactive Stateflow chart. When a state is active,
the chart takes on that mode. When a state is inactive, the chart is not in
that mode. The activity or inactivity of a chart’s states dynamically changes
based on events and conditions. The occurrence of events drives the
execution of the Stateflow diagram by making states become active or
inactive. At any point in the execution of a Stateflow diagram, there is a

combination of active and inactive states.

The label for a state appears on the top left corner of the state rectangle

with the following general format:

a0

CHAPTER 2. BACKGROUND

name/

entry(en) :entry action

during(du) :during action
exit(ex):exit action

on event_name:on event_name action

A state label starts with the name of the state followed by optional / character
and additional lines with keyword prefixes. Each keyword prefix identifies a
different type of action associated with the state, and is optional and position-

ally independent.

Every state (and chart) has a decomposition that indicates what kind of sub-
states it can contain. All substates of a superstate must be of the same type

as the superstate’s decomposition. Decomposition for a state can be exclusive

(OR) or parallel (AND).

Exclusive (OR) state decomposition for a superstate (or chart) is indicated
when its substates have solid borders. Exclusive (OR) decomposition is used
to describe system modes that are mutually exclusive. When a state has
exclusive (OR) decomposition, only one substate can be active at a time. The

children of exclusive (OR) decomposition parents are OR states.

The children of parallel (AND) decomposition parents are parallel (AND)
states. Parallel (AND) state decomposition for a superstate (or chart) is indi-
cated when its substates have dashed borders. This representation is appro-
priate if all states at that same level in the hierarchy are always active at the

same time.

. Transition

Transition is a curved line with an arrowhead that links one graphical object

to another. In most cases, a transition represents the passage of the system

ol

CHAPTER 2. BACKGROUND

from one mode (state) object to another. A transition is attached to a source
and a destination object. The source object is where the transition begins and

the destination object is where the transition ends.

A transition is characterised by its label. The label can consist of an event,
a condition, a condition action, and/or a transition action. Transition labels

have the following general format:
event[condition]{condition_action}/transition_action

Event: the specified event is what causes the transition to be taken, provided
the condition, if specified, is true. Specifying an event is optional. Absence
of an event indicates that the transition is taken upon the occurrence of any

event.

Condition: a condition is a Boolean expression to specify that a transition
occurs given that the specified expression is true. The condition is enclosed in

square brackets ([]).

Condition Action: a condition action follows the condition for a transition
and is enclosed in curly braces ({}). It is executed as soon as the condition is
evaluated as true and before the transition destination has been determined
to be valid. If no condition is specified, an implied condition evaluates to true

and the condition action is executed.

Transition Action: the transition action is executed after the transition des-
tination has been determined to be valid provided the condition, if specified,
is true. If the transition consists of multiple segments, the transition action is
only executed when the entire transition path to the final destination is deter-

mined to be valid. The transition action is preceded with a forward slash.

. Default Transition

Default transitions are primarily used to specify which exclusive (OR) state

52

CHAPTER 2. BACKGROUND

is to be entered when there is ambiguity among two or more neighbouring

exclusive (OR) states. They have a destination but no source object.

In some circumstances, a label can be marked on default transitions as other
transitions. For example, it can be specified that one state or another should
become active depending upon the event that has occurred. In another situa-
tion, specific actions take place depending upon the destination of the transi-

tion.

4. Connective Junction

A connective junction represents a decision point between alternate transition
paths taken for a single transition. Connective junctions are used to help

represent the following:

Variations of an if-then-else decision construct, by specifying conditions

on some or all of the outgoing transitions from the connective junction

e A self-loop transition back to the source state if none of the outgoing

transitions is valid

e Variations of a for loop construct, by having a self-loop transition from

the connective junction back to itself
e Transitions from a common source to multiple destinations
e Transitions from multiple sources to a common destination

e Transitions from a source to a destination based on common events

5. Graphical Functions

A graphical function is a function defined graphically by a flow graph that
provides convenience and power to Stateflow action language. The following
example in Figure 2.19 shows a graphical function side by side in a Stateflow

diagram with the transition that calls it:

93

CHAPTER 2. BACKGROUND

function z=f(x,
{C:f(a,b)} . @:24-;,\2)/)
O

Figure 2.19: Graphical Function Example

In this example the function z = f(x,y) is called in the condition action of
the transition from state A to state B. The function is defined using symbols
that are valid only within the function itself. The function is called using data

objects available to states A and B.

Graphical functions are similar to textual functions such as MATLAB and
C functions. Like C and MATLAB functions, graphical functions can accept
arguments and return results. Like C and MATLAB functions, graphical func-
tions can be invoked in transition and state actions. Unlike C and MATLAB
functions, however, graphical functions are full-fledged Stateflow graphical ob-

jects.

. Event

An event is a Stateflow object that can trigger a whole Stateflow chart or
individual actions in a chart. Because Stateflow charts execute by reacting to
events, events are specified and programmed into the charts to control their
execution. Events can be broadcast to every object in the scope of the object

sending the event, or can be sent to a specific object.

. Data

A Stateflow chart stores and retrieves data that it uses to control its execution.
Stateflow data resides in its own workspace, but data residing externally in
the Simulink model or application that embeds the Stateflow machine can be
also accessed. When creating a Stateflow model, any internal or external data

used in the action language of a Stateflow chart must be defined.

o4

CHAPTER 2. BACKGROUND

A data object has the following properties:
Name: The name of the data item.

Scope: Scope specifies where it resides in memory relative to its parent. It can

be:

e Local: it resides and is accessible only in a machine, chart, or state.

e Input from Simulink: it is accessible in a Simulink Chart block but resides
in another Simulink block that might or might not be a Chart block. The
receiving Chart block reads the value of the data item from an input port

associated with the data item.

e Output to Simulink: it resides in a Chart block and is accessible in an-
other block that might or might not be a Chart block. The Chart block
outputs the value of the data to an output port associated with the data

item.

Type: Data type of the data, including double, single, int32, boolean etc.

Port: Index of the port associated with the data item. This control applies

only to input and output data.

Limit Range: This control group specifies values used by a Stateflow machine

to check the validity of this data item. It includes the next two controls.

e Min. Minimum value that this data item can have during execution or

simulation of the Stateflow machine it belongs to.

e Max. Maximum value that this data item can have during execution or
simulation of the Stateflow machine it belongs to.
8. Stateflow Explorer

The Stateflow Explorer displays any defined event or data objects within an

object hierarchy where machines, charts, states, boxes, and graphic functions

%)

CHAPTER 2. BACKGROUND

are potential parents. The Stateflow Explorer can be used to create, modify,

and delete event and data objects.

2.5.2.4 Semantics of Stateflow

1. Executing a Chart

A Stateflow chart executes when it is triggered by an event from Simulink. A
chart is inactive when it is first triggered by an event from the Simulink model
and has no active states within it. After the chart executes and completely
processes its initial trigger event from the Simulink model, it exits to the model
and goes to sleep, but still remains active. A sleeping chart has active states
within it, but no events to process. When Simulink triggers the chart the next

time, it is an active but sleeping chart.

2. Executing a State

A state is entered (becomes active) in one of the following ways:

(a) Its boundaries are crossed by an incoming executed transition.
(b) Its boundary terminates the arrow end of an incoming transition.

(c) Tt is the parallel state child of an activated state.

State entry action, if specified, is performed when it becomes active. The state

is marked active before its entry action is executed and completed.

Active states that receive an event that does not result in an exit from that
state, execute a during action to completion if a during action is specified
for that state. An on event name action executes to completion when the
event specified, event _name, occurs and that state is active. An active state
executes its during action and on event name action before processing any
of its children’s valid transitions. During and on event name actions are

processed based on their order of appearance in the state label.

96

CHAPTER 2. BACKGROUND

A state is exited (becomes inactive) in one of the following ways:

(a) Its boundary is the origin of an outgoing executed transition.
(b) Its boundary is crossed by an outgoing executed transition.

(c) It is a parallel state child of an activated state.

A state performs its exit action, if specified, before it becomes inactive. The

state is marked inactive after the exit action has executed and completed.

3. Executing a Transition

Transitions have sources and destinations. A transition is only triggered when

all the following conditions are satisfied:

(a) The source state is active;
(b) The transition events, if specified, have happened;

(c) The specified conditions are true.

The transition action is executed after the transition destination has been

determined to be valid.

2.6 Conclusions

In this chapter, a brief introduction was given on asynchronous designs, asyn-
chronous communications, especially ACMs, control systems and some modelling
tools, such as Petri nets and Stateflow in MATLAB.

In this thesis, asynchronous communications are the core, Stateflow is the major
tool, and control systems are the applications. The knowledge of asynchronous
designs is the fundamental requirement of a 3-slot Signal implementation in Chapter
3. Some ACMs are specified in Petri nets. With the knowledge of Petri nets, the

reader will understand how an ACM works.

o7

Chapter 3

Petri Net to Stateflow Conversion

3.1 Introduction

As stated before, according to the Petri net specifications, hardware could be di-
rectly implemented by translation [VM96b, YK98, YKKL94, WB99, SBY03, Sha03].
To model the asynchronous systems specified in Petri nets in the MATLAB envi-
ronment, a technique similar to direct translation can be studied. Fortunately, the
software package Stateflow in MATLAB works quite similarly to Petri nets. It is
the straightforward way to convert a Petri net model to a Stateflow one. It should
be notice that a similar work was proposed in [Esh05] about transforming a Petri
net model to Statechart. In this work, every place is simply converted into a basic

state. This may cause problems when joins exist (will be discussed in next section).

Petri net | Stateflow

State O u

Transition I \

Table 3.1: Basic Components in Petri net and Stateflow

Petri nets and Stateflow models have many similarities. Both models represent

98

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

transitions between states. They have similar basic components as seen in Table

3.1.

3.2 Conversion for the Basic Connections

Converting a complex Petri net to a Stateflow model is based on the conversions for
PN connections stated above. The basic idea of the conversion is to replace the places
and transitions in a Petri net with the states and transitions in Stateflow. This idea
works perfectly with the linear and exclusive connection as illustrated in Figure 3.1.
As stated before, the choice may not exist alone, other places may be attached in
the output transitions. The dashed lines pointing to dashed circles in merge are two
other places which represent the conditions for firing the corresponding transitions.

The conditions are transferred to the transition conditions in the Stateflow diagram.

o0 = [o

(a) Linear Connection

condil
®r-- -0 condj
s : O condi2
condi2
(b) Choice Connection
oo =
D
(c) Merge Connection

Figure 3.1: Basic Conversions: linear and Exclusive Connections

Here, the states and transitions in the Stateflow are equivalent to the places and
the transitions in the PN. A place holding a token can be represented by an active

state, it appears as a rounded rectangle with thicker border. The token moving

99

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

from one place to the other is represented by the active state being transferred from
one state to the other. Executing a transition in Stateflow can represent firing a
transition in PN.

Figure 3.1 (a) shows the translation of the linear connection. The first place
holds a token, which enables the transition. After the transition is fired, the token
is transferred into the second place. The corresponding Stateflow model represents
that the first state is active initially, which leads the execution of the transition.
After the transition is executed, the active state moves from the first state to the
second one. Here, an active state represents a place holding a token.

Figure 3.1 (b) shows the translation of a conditional choice connection, that is,
the choice depending on the tokens in other places in the system. If the place condi!
(condi2) holds a token, in other words, if the condition condil (condi2) is satisfied,
the upper (lower) transition will be fired. Therefore, condition transitions of State-
flow are used to represent the transitions in PN choice. It has to be mentioned that
if the place condil and cond:i2 hold a token at the same time or do not exist, it leads
to a conflict. Both of the transitions are enabled, but only one can be fired. The
resulting conflict may be resolved in a purely non-deterministic way or in a proba-
bilistic way, by assigning appropriate probabilities to the conflicting transitions. All
these could be programmed in the transition conditions.

Figure 3.1 (c) shows the translation of a merge connection. In the PN model,
when the upper (lower) place holds a token, the upper (lower) transition is fired.
As a 1-safe net, upper and lower places could not hold token at the same time. The
Stateflow model works in the same way. When the upper (lower) state is active, the
upper (lower) transition is executed. Because of the One active state rule (discussed
in next section), upper and lower states could not be active at the same time.

Forks and Joins cannot be converted by direct replacement. The reasons are
explained as follow. The default setting for the Stateflow is Exclusive (OR). Ac-

cording to the One Active State Rule (will be explained in next section), only

60

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

one state can be active in an Exclusive chart or state. Forks and Joins always imply
that there are more than one places holding token, which means that more than
one states are active in Stateflow models. Obviously, this breaks the One Active
State Rule. To dealing with this problem, a state with parallel decomposition is
added. Figure 3.2 shows a Fork model in Stateflow. The transition activates the
AND state which contains two or more parallel states. The composition setting for
these parallel states is Exclusive, because the states inside are still active in series.
The default transitions point to the first states, and would be activated at once

when the parallel states are activated.

@»(2@@* _____________________

—_—— e e — =~

Figure 3.2: Basic Conversions: Fork Connection

A join model in Stateflow is illustrated in Figure 3.3. The places in the join are
converted to one state in each parallel state. The transition starts from one of these
states (for example a in the Figure) and ends at a state outside the parallel states,
and the transition condition is that all the other states are active. Whether one

state is active (or not) can be checked by a flag variable which is set in the entry

action and reset in the exit action.

z)—ooc>

Figure 3.3: Basic Conversions: Join Connection

61

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

According to the One Active State Rule, Figure 3.3 implies that once the
transition is executed, both a and b are inactive. As a result, all the tokens in
current marking should be consumed and one token should be put in the successive
place. However, in many models, this is not always the case. Such as in Figure 3.4,
firing t2 only consumes the tokens in pl and p2, but not that in p&. That is, firing
t2 dose not result in consuming all the tokens in the marking. Therefore, Figure 3.3
cannot handle this case. It must be refined.

pl Q p4

0y O

Figure 3.4: An Example of a Transition Not Consuming All the Tokens

The simplest way is to move state ¢ in Figure 3.2 into the parallel state where
state a resides. According to the Petri net principle, once a transition is fired, the
tokens in all its input places are removed, that is, all the input states are deactivated.
However, the active state ¢ in the parallel state is not able to deactivate state b in
the other parallel state. To deactivate state b, a complementary state c_ comp is
added, as shown in Figure 3.5. A flag variable is also added in state ¢. When c is
active, the transition between b and ¢_ comp is executed, and state b is deactivated.
In |Esh05], as shown in Figure 3.6, because no complementary states are added, the
state b remains active after the transition from state a to c is executed. Reflecting
back to the Petri net model, this means that the token in one place has not been
consumed after the transition was fired. If this place is referenced by any other nets,
it will produce a fault.

Figure 3.7 is the reachabilities for the Petri nets model, Eshuis’ method and the
method in this thesis. The three or four digits represent state (place) a, b, ¢ (,
c_comp). It can be seen that Eshuis’ join is not equivalent to the Petri nets model.

Leaving the redundant state c¢_ comp out of consideration, the model in the thesis

62

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

e e e = = ===

| [bis active] c |
| I
| I

Figure 3.6: Join Connection According to Eshuis

is equivalent to the PN model.

Petri nets 110 — 001
Eshuis’ Method 110 —= 011

Method in this Thesis 1100 — 0011

Figure 3.7: Reachabilities for the Join

Based on Figure 3.5, the net in Figure 3.4 is modelled in Figure 3.8. Figure 3.9
shows the reachabilities for Figure 3.4 and Figure 3.8. The digits represent p0 to
p4 and p4_ comp. Leaving the redundant state p4 comp out of consideration, the
Stateflow model is equivalent to the PN model.

Figure 3.3 is suitable for the case that a join transition consumes all the tokens
in the marking, and Figure 3.5 is appropriate for the case that a join transition
consumes some of the tokens in the marking.

The transformation of a read arc is similar to that of a join. The only difference
is that after firing, the token in the place will not be consumed. In the Stateflow

model, the state keeps active. Because concurrency is still maintained and the read

63

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

- ________--_---—-—-—-—_¢ N
| pl [vp2==1](p4 !
| & en:vpd=1]
! ex:vp4=0; 1!
l]
T T " |
| p2 __11[p4_comp
| o envp2=1MPAE=] !
: ex:vp2=0 I
]
l’_ T |
| o—e P3 |
I
. |
l]
N J

Figure 3.8: Stateflow Model for Figure 3.4

Petrinets 10000 —* 01110 —* 00011

Stateflow 100000 —* 011100 —* 000111

Figure 3.9: Reachabilities for Figure 3.4 and Figure 3.8

state is still active, the model of the read arc can be modified from Figure 3.3 by

moving state ¢ into the parallel state, as illustrated in Figure 3.10.

§>¢_.5 => ::b::::::::::::::_-j

]

I
I

b : en:vb=1 E
1

Figure 3.10: Basic Conversions: Read Arc

3.3 One Active State Rule

The basic connections can be modelled perfectly. However, some complex connec-
tions may not be modelled correctly. This section will show such kinds of examples.
Case 1: A fork followed by a merge as shown in the left of Figure 3.11 can not

be modelled as the Stateflow diagram shown in the right in the figure. A token in

64

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

place a will lead two tokens in place d. This is not a 1-safe net any more. In the
Stateflow diagram, any exit from descendant states in P to state d will result in an
exit from state P, which will deactivate all the descendant states in state P. This is

not equivalent to the Petri nets shown in the figure.

Figure 3.11: A Fork Followed by a Merge

Case 2: A choice followed by a join as shown in the left of Figure 3.12 can not
be modelled as the diagram shown in the right of the figure either. Only when both
places b and ¢ hold tokens, transition t1 is enabled. Referring to the Stateflow dia-
gram, only when both states b and c are active, will state d be activated. However,
it is not allowed for two or more states to be active at the same time in the sequential

domain. Consequently, the diagram in the figure is not a valid Stateflow chart.

Figure 3.12: A Choice Followed by a Join

Case 3: The net shown in Figure 3.13 cannot be modelled into Stateflow either.
To enable t1, both places a and ¢ should hold a token. This means that in the
Stateflow model, state d will not be activated until both state a and c are active.
Because state ¢ is a descendant of state P, an active ¢ will lead to an active P. As a
result, both the states a and P are active simultaneously in the sequential domain,

which is not allowed. Therefore, the Stateflow chart in this figure is also invalid.

65

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

Figure 3.13: An Choice Followed by a Fork

Case 4: The Stateflow can not model the net shown in Figure 3.14 either. In
this net, if {2 is fired, it may lead to one token in place ¢ and one in place d. This
will map to the Stateflow case that both the states ¢ and d are active, which is
not allowed in Stateflow. In the diagram itself, the arc from state a to state ¢ will
deactivate the state P and all its descendants. Therefore, this Stateflow diagram is

neither equivalent nor valid.

tl b
2 ¢ d ; :
-0

Figure 3.14: A Fork Followed by a Choice

In an active Stateflow chart, there is one and only one active state within each
sequential domain. This can be called a One Active State Rule. These four
cases are non-safe nets. All the non-safe nets will result in a place holding more
than one token. In Stateflow charts, it means an active state is activated by other
states in the same sequential domain or several active states in the same sequential
domain are trying to active one state simultaneously. Both of the scenarios break
the One Active State Rule. Therefore, non-safe nets are not suitable for this

kind of conversion.

66

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

3.4 An Example for Conversion

In this section, Figure 3.15 will be taken as an example to illustrate the conversion
from well-formed Petri nets [DE95| model to a Stateflow. In this example, all the

basic connections are included.

conditionl
tl

condition2

Figure 3.15: Petri net Example

The first step of converting a Petri net is to select a suitable starting place. This
place must be the only place holding a token in a reachable marking. This implies
a limitation that the Petri net model must have at least one reachable marking in
which only one place holds a token. Due to this limitation, a pipeline model has to
be converted with other approaches, which will be proposed in next section. In the
example in Figure 3.15, pI was chosen as the starting place.

Starting from the chosen place, all the linear connections, choices and merges
are converted by replacing them with the corresponding models in Figure 3.1. The
part, which starts with forks and all their branches end at joins, are treated as single
states firstly. Figure 3.15 was converted to Figure 3.16 following these statements.
State C1 represented the part starting from ¢3 and ending at ¢9 in the net. At this
stage, the Stateflow graph does not contain any concurrency.

The branches of the fork are modelled as parallel states within state C1. If there

are more forks in the branches, they can be modelled in the same way. In the ex-

67

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

Cc1
[condition1]
-p15

p1 p12
[condition2] o

Figure 3.16: Petri net Conversion - Stepl

ample, after the fork from t¢3, there are two concurrent branches. Each branch is
modelled within one of two parallel states. The forks from ¢/ and t5 can also be
modelled in the same way. Because ¢4 and t5 belong to parallel states themselves,
they have to be converted as parallel substates within their parents’ ones as illus-
trated in Figure 3.17. In this figure, state C11 and C12 contained the two branches
after transition t3. As place p8 and p4 were marked after t3 was fired, state p3 and
p4 would be the first active states in their branches. Thus, the default transitions in
the branches were directed to them. States C2 and C8§ contain the concurrent parts
after transitions ¢4 and t5. Their concurrent branches were in states C21, C22, C31
and C32. If any state within its parent state is active, the parent state is also active;
if any state within its parent state transits to an outside state, all the states in its
parent are deactivated. For example, if state p9 is active, state C21, C2, C11 and
C1 are all active. If any of the states inside C1 transits to state p14, C1 and all
the states inside are deactivated.

In the Stateflow, only the states which are able to be active concurrently may be
joined. If after the join, the concurrency still exists, the join is converted as Figure
3.5, that is, the joined states are put into one of the concurrent branches, and a
compensating state is added in all the other branches leading to the join. If there

is no concurrency after the join, it is modelled as a transition with conditions as

68

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

Figure 3.17: Petri net Conversion - Step2

Figure 3.3. Figure 3.18 illustrates the conversion that p6 and p7 were joined at
t7 and output to p10 in Figure 3.15. t7 was modelled as a transition between the
states p6 and p10. Because the states in C21 and C32 were still concurrent with
p10, p10 was put into C22 and a compensating state was added in C31. As after
the join t9, there was no more concurrency, the join was modelled as a transition

from p9 to p14 with the condition that p10 and p11 were active.

vp10==1&8&vp11==1]

7
B wvp7=1; [lvP10:
ex:vp7=0;

Figure 3.18: Petri net Conversion - Step3

69

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

The final step is modelling initial markings. They can be modelled as a state
with a default transition attached. One and only one state in the sequence domain
is active at a time, therefore, there must be one and only one unconditional default
transition in each sequential domain. Consequently only the initial markings which
maintain the One Active State Rule can be modelled in Stateflow. In addition,
if a state in the parallel state is initially active, all its compensating states and
parent states must be marked as active states as well. If the initial active states
in the parallel branches are not the same as the ones which the default transitions
point to, they have to be attached with conditional default transitions. In this
example, the initial marked place p! maintained the rule. However, if one of the
initial markings is p9, it makes C2 active, and to maintain the rule, one of the states
in C22 must be active initially. For the same reason, one of the states in C'72 must
be active initially. Figure 3.19 illustrates an example for the case that p9 is marked

initially.

T 2 —If;;;;;;:::::::iiiiiiégiiiiiiiﬁ;\\

1 v 1> — T Jvp10==18&8&vp11==1
F h: s 1IN
! o) !

i i =en: oo b

Figure 3.19: If p9 is marked initially

The Petri nets shown in Figure 3.15 are typical well-formed nets containing

most of the possible connections that may appear in well-formed nets. A successful

70

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

transformation of the nets shown in Figure 3.15 implies that this method could be

used in the transformation of well-formed nets.

3.5 Conversion of a Pipeline

In the previous section, the way of conversion of a simple case of well-formed PN
models is introduced. However, the method is not suitable for a pipeline conversion.
The reason could be discovered by analysing a PN model of a pipeline as shown in
Figure 3.20. Figure 3.20 is a PN model of a four-stage pipeline. Each stage contains
two places, which represent "full" and "empty" states, and two transitions, the input
(left hand) and the output (right hand). The adjacent stages share one transition.
The two places on the left hand side of the pipeline represent the input handshake
with the environment, and the two places on the right indicate the output handshake
with the environment. Obviously, there must be one and only one place holding a
token in each stage, that is, at any time, the marking of a four-stage pipeline model
contains four places that hold tokens. It is impossible to find such a starting place
as stated in previous section. Therefore, a new method should be investigated for

converting a pipeline model.

————————————————————————————————————

| reql E E "full" states | E req2 E
@ O O O Ol w®
...... - * ¢ * * o N

: ack2

Figure 3.20: PN Model of a Pipeline

It is necessary to fully understand how the PN model works before starting the

conversion. This is how it works. If the first stage of the pipeline is empty and there

71

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

is an input request, the input transition is fired. As a result, this stage becomes full
and sends an acknowledgement back to finish the handshake. If the last stage of
the pipeline is full and there is an output acknowledgement, the output transition
is fired. As a result, this stage becomes empty and sends a request back to finish
the handshake. The stages in the middle work in the same manner with treating
the previous stage as the input and the following as the output.

As each stage of a pipeline holds one and only one token, an n-stage pipeline
contains n places which hold tokens. Because of the One Active State Rule, the
n stages are converted into n concurrent states. The conversion is started with a
single stage.

According to the basic conversions, a single stage of the pipeline is converted in

Figure 3.21.

sO1 sl1

s12

Figure 3.21: Conversion of a Single Stage

If only one stage is considered, anything outside that stage is treated as the envi-
ronment. The discussions here only focus on how the environment affects the stage.
The effect on the environment can be regarded as that within other stages. There-
fore, Figure 3.21 only contains the input request s and output acknowledgement
s21. Places s12 and s01 join at s11, and places s11 and s22 join at s12. These two
joins are converted using the basic join conversion. Because the initial place in the
PN model is s12, the default transition in the Stateflow model points to the state
s12.

The basic idea of building an n-stage pipeline is putting n stages together. Figure

72

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

3.22 shows the scenario of combining two stages. If we name the right hand transition
of the first stage as t12, and the left hand transition of the second stage as t21, it
could be seen that ¢12 and t21 represent the same transition in the PN model. They
should be executed simultaneously. However, in Figure 3.22, t12 and ¢21 will never
be executed at the same time. Furthermore, one of them could not be executed,

because the execution of the other one will fail the transition condition.

Figure 3.22: Combining Two Stages

Coming back to the PN model, it can be seen that: to fire a transition, it must be
enabled: the two input places hold tokens. After the transition is fired, it becomes
disabled: the two output places hold tokens. That is, firing occurs between the
times when the transition is enabled and disabled.

Enabled and disabled could be treated as two states of the transition in the PN
model. If it can be ensured that both 712 and 721 are completed between these two
states, and the intermediate states would not affect other executions, the executions
of t12 and t21 could be treated as being simultaneous. Although some internal
behaviour was added to the Stateflow model, it is still observation-equivalent (or
weakly bisimilar) [Mil89] to the PN one.

Figure 3.23 gives a solution of stages with a refined transition. The initial state of
the transition is disabled. Only when both the states s11 and s22 are active, transi
becomes enabled, and only when both the states s12 and s21 are active, transi

becomes disabled. The transition condition of ¢12 and ¢21 changed to [utl1==1]

73

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

s11 s21
trans1

—

s12 s22

Figure 3.23: Stages with Refined Transition

which means that ¢rans! only fires when it is enabled. This guarantees both t12
and t21 occur between enabled and disabled states. The transition conditions of ¢11
and t22 become [vt1==0] which means that the stages would not respond until the
transl is disabled. This ensures that the intermediate states will not affect other
executions.

The 4-stage pipeline in Figure 3.20 is converted into the Stateflow model as
shown in Figure 3.24 by combining the model in Figure 3.23 together. In the figure,
the transitions in the stage states have two conditions rather than one. The reason
for this is that a stage is not only adjacent with one side but also with the other

side. The effects from both sides should be counted at the same time.

3.6 Conclusions

ACMs are normally described by Petri nets. The successful conversion from Petri
nets to Stateflow makes it possible to build ACM models in MATLAB. The conver-

sion is based on the similarities between Petri nets and Stateflow, such as places and

74

CHAPTER 3. PETRI NET TO STATEFLOW CONVERSION

states, transitions, place holding a token and active state. With these similarities,
the well-formed Petri net models can be easily translated into Stateflow.

There are also differences between Well-formed Petri nets and Stateflow, such
as in PNs several places may hold a token but in Stateflow there is a One Active
State Rule. Because of this, the conversion of a pipeline becomes difficult. In
this case, the transitions in PN have to be modelled as two states, one of which
represents the transitions which are enabled and the other indicates when they are
disabled.

Although the conversion was still manual, the success of converting linear con-

nection automatically in [Zho03| gives us hope of fully automatic conversions.

()

9L
ourpadi J 98e)G-F © JO [POJN MOPeIRIS g ¢ oInJ1]

[vsOl==1&&Yaki==1]

disabled

[vs02==1&&ys11==1]

disabled0

[vs12==1&&v§21==1]

disabled1

[vs21=#1&&vs32==1]
[vs22==1&&v¢§31=1]
disabled2

[vs32==1&&vgco==1]

disabled3

NOISHHANOD MOTAALVLS OL LAN THILAd € HHILdVHO

Chapter 4

ACM Models in MATLAB

4.1 Introduction

In this chapter, MATLAB models of ACMs will be investigated. As one of the most
important protocols in asynchronous designs, a handshake model is firstly built so
that it could be used in ACM modelling.

Behaviour of ACMs can be specified by Petri nets. Because there is a method,
described in the previous chapter, to translate Petri nets models into Stateflow
charts, it is a straightforward idea to build ACM from its Petri nets specification.
A 3-slot Signal will be used as an example to show how an ACM is modelled from
its Petri nets specification.

The Stateflow model of ACM translated from Petri nets representation is more
like a structure model, which is not necessary when investigating the applications.
Function blocks showing ACM properties can be used instead. These blocks can
be modelled directly from their algorithms, which make the models much simpler
and easier to be understood. 2-slot Channel, 3-slot Signal and 4-slot Pool are used
as examples to show how the different types of control paths (Channel, Signal and
Pool) and data paths (2-slot, 3 or more slots) are modelled. As a Message is regarded

as the duel of a Signal, it is not discussed in this chapter.

7

CHAPTER 4. ACM MODELS IN MATLAB

In general, the data being transferred consists of a stream of items, instead of
only one, of the same type, hence sometimes buffering in the ACM is useful. This
chapter also describes an investigation of ACMs which contain buffers. The writer
and the reader processes are also assumed to be single-thread loops, during each
cycle of which a single item of data is transferred to or from the ACM.

Hardware implementation of a 3-slot Signal is carried out to show that the models

have corresponding circuits, which have the same properties.

4.2 Handshake Model

As mentioned in Section 2.2.3, handshake protocols are important protocols in asyn-
chronous designs, and so are they in ACM modelling. Therefore, handshake models
in MATLAB need to be investigated. In this section, a 4-phase handshake protocol
is modelled so that it could be applied to ACM modelling.

A handshake is the interface protocol between two processes. As a result, it is
modelled in both the sender and the receiver. The sender is the active component
in the handshake, because it is sending the requests, and, therefore, the receiver
response to the request is the passive component. Taking the four phase handshake
as an example, in the sender, when a piece of information is ready, the protocol
follows this order: sending a request, waiting for the acknowledgement sent from
the other side, releasing the request. The sender is active during the period from
the information being ready till the request being released. When triggered by
the completion signal of the receiving process, the receiver becomes active. The
handshake protocol on this side follows this order: sending an acknowledgement
when receiving is completed, waiting for the release of the request, resetting the
acknowledgement. After this cycle, the receiver becomes inactive.

No matter whether it is sender or receiver, the order of the process is: triggered

by an event, performing the protocol, becoming inactive. The order of the protocol

78

CHAPTER 4. ACM MODELS IN MATLAB

is: sending a signal, waiting for the response from the other side, releasing the signal.
A handshake can be well represented in Stateflow by a state which will become
active when triggered by an event, and the protocol can be perfectly modelled by

actions and conditions.

receiver
en:ack=1;

[ready==1] [ack==0] [done==1] [req==0]

ex:ack=0;

Figure 4.1: Handshake Protocol in Stateflow (a: Sender Side, b:Receiver Side)

Figure 4.1 shows the handshake protocol in Stateflow. Here, req and ack stand
for request and acknowledgement.

One handshake cycle in the sender is represented in the following way: when
transition condition ready is satisfied (information is ready for delivery), the sender
state becomes active; at the same time, a request is generated in the state entry
actions; the state itself represents waiting for the acknowledgement in the transition
conditions, which lead to the exit from the state (end of waiting) and execution of
the transitions; on exiting a state, the request is released; the state comes back to
inactive.

One handshake cycle on the receiver side is represented as: when the transition
condition done is satisfied, i.e. the requested operation has been done, the receiver
state becomes active; at the same time, an acknowledgement is generated in the
state entry action; the state itself represents waiting for the release of the request in
the transition conditions, which leads to the exit from the state (end of waiting) and
execution of the transitions; on exiting a state, the acknowledgement is released; the
state comes back to inactive.

Please note that the request is not delivered to the receiver state directly but to

the receiving process instead.

79

CHAPTER 4. ACM MODELS IN MATLAB

4.3 MATLAB Model for a 3-Slot Signal

ACM can be specified with Petri nets. The MATLAB model of ACM in MATLAB
could be translated from the Petri nets specifications by using the transformation
method stated in Chapter 3. The Petri nets representation of a 3-slot Signal is

generated below.

4.3.1 Petri nets Model

The algorithm of the 3-slot Signal is using variables to abstract the slot indices.
However, in the real implementation all the slots need to be considered. Conse-
quently, the Petri nets representing the behaviour of the reader and the writer need
to be generated with the slot indices applied in.

There are three write cycles in the writer. Each one deals with a write process
for a particular slot. The algorithm for the writer is applied to each cycle. To make

the neither function in w1 statement realisable, it is defined as shown in Table 4.2.

I——1 I——2 I——3

r==1lor2 (r!=3) | r==3 | r==2o0r 3 (r!=1) | r==1 | r==1or 3 (r!=2) | r==2

w=3 w=2 w=1 w=3 w=2 w=1

Table 4.2: neither Function

Assume that the writer points to the first slot and the reader points the second
one initially.

In the writer, it is idle in the first slot. A place named "idle!”, as shown in Figure
4.2, holding a token is able to represent this initial state. A write_ start signal could
trigger the writer to execute according to the Algorithm 2 in Chapter 2. This can be
represented by a write start place joining with the idlel place. The output place
can be called startl. Because the trigger does not change the write_ start signal,

the write_ start place is a reference. A read arc is sufficient to play this role. The

80

CHAPTER 4. ACM MODELS IN MATLAB

first step of the algorithm is to write (statement wr). Since it is writing the first
slot, a transition wrl could represent this event. When writing is completed, which
is represented by moving the token to a place called "wrl done”, the next event
according to the algorithm is updating [(statement w0) and w (statement w1). To
maintain the data coherence and the data freshness properties when the statements
are considered as non-atomic, w0 and wl need to be treated as a consecutive pair,
and it does not execute simultaneously with 70 [XC99]. Therefore, a transition can
be used for updating both [and w. Since the new w partially depends on r, and
various r may result in two different w, a choice with two branches follows place
wrl_done. According to Table 4.2, when r=3, w is updated to 2, otherwise, it is
updated to 3. In the Petri nets, the transition called "w12” with a read arc from
the place r=3 represents the first case, where w12 means updating w from 1 to 2,
which implies [is updated to 1. The output place is called "w=2" indicating that
current w is 2. Another event informs the environment, the completion of the write
cycle and sends the writer back to the idle state. In the Petri nets, this event is
modelled as a fork following the place w=2 with two output places, one of which is
in the environment and the other is idle2. The other branch of the choice following
place wrl_done could be modelled in the same way.

The small net at the top right corner in Figure 4.3 indicates an environment.
The dashed line is a read arc pointing to the main net. The dotted arcs are from the
last transition in the write cycle in the main net. The initial marking for this net is
in the fwrite_start state. When a write_ start signal comes, the start transition is
fired, and the token goes to the write_ start state, which triggers the process in the
main net. Once the write process is complete, a token is obtained from the place
w=2. The done transition is fired, and the token goes back to the /write_start state.

The remaining part of the Petri nets, including the cases that the writer points
to the second and the third slot, can be generated in the same way, as shown in

Figure 4.3.

81

CHAPTER 4. ACM MODELS IN MATLAB

write_start

gy

done

Iwrite_start

Figure 4.2: Petri nets for Writer

w=2 SR - _ write_start

‘b\(z}

Iwrite_start

/(/startl

- wrl

wrl done wr3_done

Figure 4.3: Complete Petri nets Model for Writer of 3-slot Signal

In the reader, it is idle in the second slot. A place called "idle2"”, as show
in Figure 4.4, is marked initially to represent this state. Similar to the writer,

a read_ start signal could trigger the reader to execute according to Algorithm 2.

82

CHAPTER 4. ACM MODELS IN MATLAB

This is represented by a read arc from a read_ start place joining with the idle2
place in a transition. The output place is named "start2”. The first step of the
reader is updating r to [(statement r0). According to the algorithm, the reader
only performs an action when [and r are not the same. And r would be updated
to two possible values: 1 and 3, according to the value of /. In other words, there
would be two different updating procedures due to the value of [, which result in two
possible states of r: r=1 and r=3. Therefore, a choice with two branches follows
start2 place. The transitions, r21 and r23, in these two branches represent the
updating actions. 721 means updating r from 2 to 1, and 728 means updating r
from 2 to 3. Because the update requires [to be involved, a read arc is attached to
each transition. When r is determined, a read action is performed according to the
algorithm (statement rd). In the first branch of the choice starting from place r=1,
the read action is modelled as a transition called "rd1". The output place is named
"rd1_done" After finishing the read action, the read cycle is completed. An event
informs the environment of the completion of the read cycle and sends the reader
back to the idle state. In the Petri nets, this event is modelled as a fork following
the place rd1 done with two output places, one of which is in the environment and
the other is idlel. The other branch of the choice following place start2 could be
modelled in the same way.

The small net on top right corner in Figure 4.4 is similar to that in Figure 4.2
indicating an environment. The dashed line are read arcs pointing to the main net.
The dotted arc is from the last transition in the read cycle in the main net. The
initial marking for this net is in the /read_start state. When a read_start signal
comes, the start transition is fired, and the token goes to the read_start state, which
triggers the process in the main net. Once one of the processes is completed, a token
is obtained from the rd1 done place. The done transition is fired, and the token
goes back to the /read_ start state.

The remaining part of the Petri nets, including the cases that the reader points

83

CHAPTER 4. ACM MODELS IN MATLAB

@ idle2
Q}‘ ~ _read_start
M} start
start2 \@
'read_start
r23
21— \
é) O r=3
rdl done(; P,
idlel O

Figure 4.4: Petri nets for Reader

to the first and the third slot, can be generated in the same way, as shown in Figure

- _read_start

%{Z} start

Iread_start

4.5.

rd1_done O

._.
1l
—_

stanl

1
1=3 / \ rd3
\ 23 rd3 done

r32

-
[\e)
—

r:2

d2
Ord2_done

start3

start2

Figure 4.5: Petri net Model for the Reader of 3-slot Signal

84

CHAPTER 4. ACM MODELS IN MATLAB

4.3.2 Reader and Writer

With the Petri net specifications of the reader and the writer, the control circuit
model is created in Stateflow. Because there is no concurrency in the models, the
reader and the writer are translated directly from the Petri net with the basic
connection models in Figure 3.1. Adding the handshakes with the environment,

the Mutex and the datapath, the models are completed.

w_1 _
en:wr_done=1; en:wr_done=1
ex:wr_done=0; ex:wr_done=0j|

Figure 4.6: Stateflow Model for the Writer of a 3-slot Signal

Figure 4.6 illustrates the Stateflow model for the writer, where req is the request
signal from the environment, and wr_done is the completion signal for the write
cycle. wra_ s is the request for writing to slot a, and wra_ d is the corresponding
completion signal. RWa is the request to the Mutex after writing data into slot a,
and GWa is the corresponding grant signal. /[and r are the control variables. In

the environment-ACM handshake, the writer acts as the passive component. Once

85

CHAPTER 4. ACM MODELS IN MATLAB

it received the request, it started to perform its process: firstly handshaking with
the datapath for requesting a write access (wr statement); when the data item
has been written, handshaking with the Mutex; once the grant has been given,
assigning a value to [(w0 statement) and then choosing a branch for the next write
cycle according to the value of r (w! statement). After the branch was chosen, a
completion signal would be sent as an acknowledgement back to the environment.
When req has been released, a write cycle is completed, and one of the idle states

becomes active waiting for the new request.

rd1_done
en:read_done=1;
ex:read_done=0;

[l==1)/r=1;

start3
[I==3)/r=3; |en:r3_s=1;
ex:r3_s=0;

N

[I==2)/r=2;

rd2_done rd3_done
en:read_done=1; en:read_done=1
ex:read_done=0; ex:read_done=0]

[GR2==1] [l==2)/r=2;

Figure 4.7: Stateflow Model for the Reader of a 3-slot Signal

The reader was built in the same way as shown in Figure 4.7. Figure 4.6 and

86

CHAPTER 4. ACM MODELS IN MATLAB

Figure 4.7 have the same structure with the Petri net models in Figure 4.3 and

Figure 4.5.

4.3.3 Mutex

A Mutex could be regarded as a control unit handshaking with two or more con-
current processes in order. In the 3-slot Signal, the processes are the reader and the
writer. The Mutex grants the process that requests first. If the requests from both
the reader and the writer arrive simultaneously, the Mutex grants to one of them
randomly. Thus, there are three cases for the order of the requests: writer comes

first; reader comes first; and reader and writer come at the same time.

[r2==1&&r1!=1]
[r1==1&&r2!=1]

[M1==1&&r2==1]
/g=ml(’round(rand)’);

A [g==0]
v

Figure 4.8: Stateflow Model for Mutex

Figure 4.8 illustrates the Mutex model in Stateflow where r1 and r2 indi-
cate the requests from two process, al and a2 represent the grant signals, and
g is a flag generated randomly. The three cases mentioned in the previous para-
graph are translated into three conditions: [rI1==18&r2!=1]|, [r2==166r1!=1]
and [r1==166r2==1|. For the first two cases, the Mutex grants the corresponding
process directly. For the third case, the Mutex consults the random flag g first.

According to its value, the Mutex chooses one process, and the other one has to

87

CHAPTER 4. ACM MODELS IN MATLAB

wait until the chosen one has released its request. To generate g, two MATLAB
functions were used. Function “rand” generates random numbers between 0 and 1,

[

and function “round” rounds the value to the nearest integer. “mil” is the keyword

for calling a MATLAB function.

4.3.4 Datapath

A datapath is used to store data items from the writer temporarily into certain slots
from which they may be picked up by the reader according to the control variables.
It is modelled as a subsystem block in the Simulink instead of the Stateflow chart.
A subsystem block represents a system within another system. For the datapath
block, the inputs include a data input, access requests from both the reader cycle
and the writer cycle and, in most cases, two slot indices, one for reading and the
other for writing; the outputs include a data output and access acknowledgements.
However, in this 3-slot Signal model, the datapath would not have any slot indices,
because the indices have been bundled with the request signals.

The 3-slot datapath contains two parts. The first part is used for the writer to
write a data item into a data slot indicated by the access requests. The second part
is used to provide a data link from the requested slot to the reader. The subsystem in
Figure 4.9 illustrates the first part for the writing. The switches operate as memory
slots. The input data items are fed in the first data inputs, the second data inputs
are connected to their outputs. When the request arrives, the corresponding switch
provides a link from its first input to the output. When the request is released, the
output will switch to the second data input, which has maintained the latest value.
That it can be modelled like this to hold the final value, is based on the assumption
that there is a unit delay in the switch, which is true in its MATLAB model.

The triggered subsystem in Figure 4.10 shows the part for reading. A triggered

subsystem only executes when the trigger event occurs. The trigger event for this

88

CHAPTER 4. ACM MODELS IN MATLAB

?

Datain
(2 r— Eﬂ \
wri — Out1
Switch1
Co—F—F0
wr2 — Out2
Switch2
(4) Eﬂ \
wr3 — Out3
Switch3

Figure 4.9: Writing into Slots

subsystem is that any of the 3 read access requests come. In the Simulink model,
it is modelled as a logic OR in Figure 4.11. In Figure 4.10, the data items are
multiplied by the corresponding read access requests. Because two of the requests
remain at 0, only the requested slot delivers its value. Adding all the outputs from
the Products, the result was the item desired. The data in the Dataout port would
not change until the next read access came.

The whole datapath model, in Figure 4.11, connected the models in Figure 4.9
and Figure 4.10. Since all the blocks in the models in Figure 4.9 and Figure 4.10
are treated as atomic, the memory blocks are added to simulate the latency in the
reading and writing operations. The completion signals, or the acknowledgement

signals, are the delayed requests.

4.3.5 Test Environment

A test environment block is used to test whether an ACM works according to the
specification. The test environment generates input data items and requests with

random intervals. The interval here means the period between the previous acknowl-

89

CHAPTER 4. ACM MODELS IN MATLAB

Trigger
(1) >
Data1]
rd1
3 P +
Data2 {E : —»(1)
Dataout
rd2
(5) >
Data3 —P S
rd3
Figure 4.10: Reading from Slots
.
P OR
>
A 4
P Datat £
Datain Saial ([
e Outt P Data2
@ : wri out2 B! rd2 Dataout —J» D —
:J » e Out3 P Data3 Dataout
wr3
Datapath P rd3
w3_s [D] ’-2
wi_d
[1)
w2_d
o
w3_d
B [—r
ri_s 1 d
) [-
r2_s 2 d
o O
d

Figure 4.11: Simulink Model for Datapath

r3

edgement and the next request. The reason for choosing the random interval is that

it gives enough variation for the reader and the writer to be asynchronous. The

90

CHAPTER 4. ACM MODELS IN MATLAB

duration of the random intervals has exponential distribution.

The random numbers are generated according to the following formula:

randezxp() = —p X log(rand());

where randezp() is the random number conforming to the exponential distribu-
tion; p is the mean of the random numbers; rand() is a function used to generate
uniformly distributed random numbers which are between 0 and 1. Because the
intervals are always positive, the mean p must be a positive number.

This formula is taken from a MATLAB function called ezprnd() which generates

exponential distribution random numbers. For the detail of this formula, please refer

to |L.86].
>l Wack Wreq
>l W_Mu
Data
>l Rack
5| R_Mu Rreq

Figure 4.12: Test Environment Block

Figure 4.12 illustrates the inputs and outputs of the test environment block.
W_Mu and R_ Mu refer to the two means of the two random number sequences.
Wack and Rack are the acknowledgements from the writer and the reader, which
are used to trigger the blocks for generating random numbers. Wreq and Rreq are
the requests sending to the writer and the reader. Data is the source of data items
for the ACM’s data inputs.

Figure 4.13 shows the Simulink model under the mask of the block shown in
Figure 4.12. The block with a rising edge mark at the top is called a triggered
subsystem, which only executes when the trigger event happens. The two triggered
subsystems are identical. The subsystem plays the role of generating random inter-
vals according to the input parameters Mu and Rand. A digital block is used as a
time reference.

When an acknowledgement signal triggers the subsystem, it captures the time

91

CHAPTER 4. ACM MODELS IN MATLAB

(2)
W_Mu L» A
Mu A

Interval 1
N e i e
Unif Rand P> Time in Time out 71 < { m-:wida\la[@I Data
niform Ranaom '
Number req
0 Wreq

Write Access
12:34

Cs)
Rack
1
Ca y— 4 ||
R_Mu P Timein £ +) ‘
Interval - { > 3
P Mu »4‘,
Rreq
/\/\// P> Rand Time out 0

Uniform Random
Number1

Figure 4.13: Simulink Model for Test Environment

as a reference and delivers to the output. At the same time a random number is
worked out according to the inputs Mu and Rand. The captured time t¢c indicates
the time when the acknowledgement arrives, while the random number is regarded
as the interval #i. As a result, tc + t is the time for sending the next request, that
is, when the digital clock reaches tc + ti, a request is generated. In the Simulink
model, it is implemented as a sum block with two negative inputs connected to the
interval and the captured time, and a positive input connected to the time reference.
The output of the sum block is connected to the control input of a switch. The first
data input of the switch is connected to a constant block whose value is 1, while
the second data input is connected to 0. The criteria for passing the first input of
the switch is that the value of the control input is not less than 0. The output of
the switch is sent to either the read cycle as a read request, or a chart called Write
Access to generate data items and deliver the write requests to the write cycle.
Figure 4.14 shows the trigger subsystem for generating a random number. The
trigger mark on the top refers to the trigger mode. In this case, it is a rising edge
trigger system. The time input is connected to the output directly to capture the

time when the trigger signal comes. The input Mu, the same asy in the formula, is

92

CHAPTER 4. ACM MODELS IN MATLAB

Trigger
) >
Mu ———»(1)
Interval
Product
Hog(u)
Rand
Fent
(3)
Time in Time out

Figure 4.14: Trigger Subsystem

the mean of the random numbers. The input Rand obtains random numbers from

the uniform random number generator. The time interval is the product of Mu and

-log (Rand) according to the formula.

a/

en:req=1;data=data+1;

ex:req=0;

[new_data==1]

[new_data==0]

Figure 4.15: Date Item Generator

Figure 4.15 illustrates the Write Access chart. The default state is the idle

state. If the input is 1 (/new_ data==1]), the active state moves to state a. In the

entry action of the state a, a request (reg=1) and a data item (data=data+1) are

generated. Once the input changes to 0 (/new_ data==0]), the request is released

(reqg=0) in the exit action, and the active state goes back to the idle one. In the

chart, the initial value of data is 0 so that an increasing natural number sequence,

which is easy to monitor, can be sent in the write cycle. To start the whole system,

the initial value of req is set to 1.

93

CHAPTER 4. ACM MODELS IN MATLAB

Here is how the whole model works: when an acknowledgement (a rising edge)
arrives, a time tc is captured and a interval ¢ is calculated. The output of the sum
block becomes a negative value. As a result, the switch sends the value in the second
data input, which is 0, to the output. This is regarded as clearing or withdrawing
the previous request. Once the output of the sum block changes to a positive value
when the time reference reaches tc + ti, the switch delivers the value 1 to the output.
This signal is treated as the request to the read cycle or the trigger for the Write

Access chart for sending the write request and the input data items.

4.3.6 Simulation Results

After manually checking the correctness for the 3-slot Signal model, it is plugged
into the test environment. The means of the writing (Mu) and the reading (Mul)
intervals are set to two values close to each other. This gives enough variation
for the writer over-writing and the reader waiting to appear during relatively short
simulation runs. The waveforms in Figure 4.16 are a part of the simulation results
which indicate the correctness of the OW and NRR properties.

In the Figure 4.16, after data item 5 was read, the writer delivered faster than
the reader required so the items from 6 to 8 were overwritten. After that, the
read requests came before the write requests. Because there were no new data
items available, the reader would not process until a data item was written, and the
read request stayed high. It preserves data freshness property because the reader
always reads the latest item available in the slots. The reader and the writer indices
were never the same value simultaneously, which implies the reader and the writer
never accessed the same slot simultaneously therefore, the data coherence property

is preserved.

94

CHAPTER 4. ACM MODELS IN MATLAB

data items 6—8 were overwritten

2

!

|

1k I
Write Req ‘ H l H

O .

A
0

20

R [Y S R —
—_
o
-
N
-
—_
[}
—_
[ee]
N
o

Input Data 10

R S

Read Req

Reader waitting happened

Figure 4.16: Waveforms for the 3-slot Signal

4.4 ACM Models in MATLAB

4.4.1 2-Slot Channel
4.4.1.1 Controller Model

The controller of a 2-slot Channel is modelled based on the Algorithm 1. It repre-
sents the actions which the writer and the reader perform when they receive requests.
This implies that there are handshakes between the environment, the writer and the
reader. The environment is active, and the controller is passive. This fact also
applies to the controller of the 3-slot Signal and the 4-slot Pool which will be men-

tioned later. The algorithm itself also has one handshake pair in each side. It is the

95

CHAPTER 4. ACM MODELS IN MATLAB

handshake with the datapath. In this case, the controller is active because it sends
requests, and the datapath is passive.
writing

en:wr_start=1;
ex:wr_start=0;

[wr_done==1]/w=Iw;

reading

en:rd_start=1; [rd_done==1]
ex:rd_start=0;

Figure 4.17: Stateflow Model for 2-slot Channel

The model is shown in Figure 4.17. The wait until statements combined with the
requests are added as the transition conditions between idle and accessing (reading
and writing) states. Because the write index is updated after a writing operation,
it is put in the transition after the writing state as the transition action. The read
index is updated in the transition action before the reading state since it is executes
before the read operation.

There are ten variables in the chart. The ones assigned with new values, such as
wr_start, rd_ start, w_ack, r_ack, r and w are output parameters. The referenced
ones, such as w_req, r_req, wr_done and rd_ done, are input parameters.

It works as follows.

For the write side, the initial state is the idle one. When a write request comes
and the write index is not the same as the read index, the active state moves to the
writing state. At the same time, it sends a wr_start signal to the memory in its

entry action. Once the wr_ done signal is received from memory, which indicates the

96

CHAPTER 4. ACM MODELS IN MATLAB

data item has been written in to the corresponding slot, it withdraws the wr_start
signal in the state exit action, and the write index is updated to its complement value
in the transition action. The active state comes to the done state with sending a
w_ ack to inform the environment about the completion of the writing operation in
the entry action. When the w_req is withdrawn, the w_ ack is withdrawn in the
state exit action. Then the active state moves back to idle.

The read side is similar to the write side, the initial state is also the idle one.
When an r_req comes with the condition r==w satisfied, the index r updates its
value to /r. The active state moves to the reading state with the entry action, sending
rd_ start signal to the memory, being executed. When a rd_ done is received from
the memory, which means the data item has been read by the reader, rd_ start is
withdrawn in the state exit action. After that, the active state comes to the done
state, and the entry action is executed for sending r ack to the environment. When
the r _req is released, the w_ack is withdrawn, and the active state comes back to

the idle one.

4.4.1.2 2-Slot Datapath Model

Figure 4.18 is a block of a datapath containing more than one slot. It has 5 input
ports, including 1 data input: Datain, two requests: Write start and Read start
and two slot indices: w and r. Because there are only two slots in the memory, r

and w are set to be binary.

> Datain
Dataout
>l Write_start

>l Read_start Write_done

JIW
Read_done

AR

Figure 4.18: Datapath Block with more than One Slot

97

CHAPTER 4. ACM MODELS IN MATLAB

The datapath in this case is also divided into two stages, as shown in Figure

4.19. The first stage is for the writer and the second is for the reader.

B
Read_start Read_done
—»
G >
r
(43—] > AND
W —»
(1)
Datain \ 4 EZ\ :\
NOT - PN
— DataOut
L »
AND AN
[]
Write start Write done

Figure 4.19: 2 Slots Memory

The first stage contains two switches in parallel representing two slots. Both the
first data inputs of the two switches are connected to the input port Datain; the
second ones are connected to the output ports to hold the data item when the slot
is not selected. Index w conjugated with write start is used to choose which slot is
used for writing. Therefore, after the AND logic, they are connected to the control
ports of the switches. When w is 0 the data is delivered to the output of the second
switch, otherwise, it is sent to that of the first one.

The second stage is made up of two switches in series. The two data inputs of
the first switch connect to the two outputs from the previous stage. The result of
r Logic AND with read_ start is connected to the control port to select a slot for
reading. It is easy to see that this switch always passes the value in the second slot
when the read_ start is off. But this is not what is desired, because the older item
might be delivered after the latest one. In order to keep the output stable, another
switch is used. It passes the output value of the previous switch when the read_ start

is on, or holds the final value (or is set to zero, depending on the requirement) when

98

CHAPTER 4. ACM MODELS IN MATLAB

it is off.

It works as follows. When a write request comes, the data item from port Datain
is sent to the output of one of the first state switches according to the write index
w. The data item is held in the switch for the next read when the write start is
withdrawn. When a read request arrives, the first switch in the second state passes
the data item in the slot referred by r. The second switch holds the data until
another data item is read.

With connecting the controller and the datapath, the 2-slot Channel is com-

pletely modelled.

4.4.2 3-Slot Signal
4.4.2.1 Controller Model

Using the same technique as with the 2-slot Channel, the Stateflow model of a 3-slot
Signal is created as shown in Figure 4.20 according to Algorithm 2. The neither
function is implemented as a graphic function. It is easy to see from the Table 2.4
that the result of the neither function obeys the following rules which can be easily
programmed:

1) If the two parameters ([and r) are equal, the result w is the modulus of the
value of the parameter plus one and 3, i.e. if |[l[==r]|, then w=mod (41, 3);

2) If the difference between the two parameters is 1, the result is the modulus of
the value of the larger parameter plus one and 3, i.e. if [abs(l-r)==1], then w=mod
(max (4, r)+1, 3);

3) If the difference between the two parameters is 2, that is, the two parameters
are 0 and 2, the result is 1, i.e. if [abs({-r)==2|, then w=1.

The syntax of the graphic function statements is very similar to C. ml in the
function denotes to call a MATLAB function. The three branches between two

junctions illustrate the three connection cases between [and r, as stated in the

99

CHAPTER 4. ACM MODELS IN MATLAB

previous section. Because this function is only called by the writer, it is a local

function. As a result, it is put into the writer’s round rectangle.

AT 1w Wenoi .
| en:wr_start=1:[erdone“1]{I‘W’W_ne'ther(l’r)’} g%r:]v? act:a_;

functionz=neither(x,y)
! ex:wr_start=0; ex:w_acl

[abs(x-y)==1{z=ml(’mod(max(%d,%d)+1,3)’,x,y);}
[x==yl{z=mI(’mod((%d+1),3)’,x);}
[abs(x-y)==2[{z=1;

rd
en:rd_start=1
ex:rd_start=0

[r_req==1&&r!=1]/r=l;

Figure 4.20: Stateflow Model for a 3-slot Signal

There are eleven variables used in this chart. Ten of them have the same names
as the 2-slot Channel, and the difference is that the read index and the write index
are integer types instead of binary. The variable not appearing in the 2-slot Channel
is 1. [is only used inside the chart, so it is classified as a local parameter.

Connecting this chart with a 3 slot memory which will be introduced in the next
subsection, the 3-slot Signal is modelled completely.

The model works as follows:

For the writer, the active state moves from its initial state idle to wr when the
condition [w_req==1] is satisfied, i.e. a write request comes. A wr_start signal
is triggered when entering the wr state. The active state will stay at wr until the
condition [wr done==1] is satisfied which implies that the writing operation is
completed. Before the two control variables [and w are updated in the transition
action, the wr_ start is withdrawn when leaving the wr state. A w_ ack is generated
in the entry action of state done to acknowledge to the environment the completion

of the write cycle. With the condition /w_ req==0/ being satisfied, the write request

100

CHAPTER 4. ACM MODELS IN MATLAB

being withdrawn, the w_ ack is released in the exit action of done state, and active
state goes back to idle.

For the reader, the active state will stay at idle and r will not be updated to [
until a read request comes and the read index is not the same as the most recently
written index, that is, [r_req==166r!/=l] is true. When the condition is true, the rd
state becomes active and rd_ start is generated in the entry action. After receiving
the rd_ done signal from the memory (/rd_done==1] is satisfied), the active state
leaves rd with the execution of the exit action for releasing the rd_ start, and comes
to done with generating r ack in its entry action. When [r req==0] is true, the
reader releases the r_ack in the exit action within the done state, and the active

state moves back to idle.

4.4.2.2 Generic Datapath Model

The three or more slot memory structures are more complex compared to the 2-slot
structure, although they have the same number of inputs and outputs. They are
more complex because the slot indices r and w because integer numbers instead of
binary. Figure 4.21 illustrates a 3-slot datapath.

The input data is stored into the corresponding slot when write_ start arrives.
As stated before, a slot can be modelled as a switch and a memory block. In order
to store an input data item into a certain slot, a "0" is sent to the control port of
the slot, and the input data has to be fed to the second data ports. The reason for
doing it this way is that the criterion for passing the first data port is preset so that
the value of the control port is non-zero in MATLAB and can not be inverted.

Another switch is used for passing w to the control port of each slot only when
a write_ start signal comes. As explained in the previous paragraph, a "0", instead
of the actual w, is sent to the control input of the chosen slot. Therefore, the value
of w has to be decreased to 0 before it is connected to the corresponding slot. This

is achieved by adding a sum block before each slot except the first one, as shown in

101

CHAPTER 4. ACM MODELS IN MATLAB

(=) > | L&D
Read_start VI\IIIWIS Read_done
Cs J—(-
R y 4,_;;,
4 Switchs
Constant1
1
Ci) N i<
Datain {
<o g [ML
4{"\—‘ Switch1 Memory i< Memorya DataOut
w ; ! Multiport
" Switch
Switch4 y - I > D
Write_start Jﬁ y Memory1
Ll
Switch2
++ > | | D
Switch3 Memory2
-1 |Constant
> [] > 2)

Write_done
Memory4

Figure 4.21: 3-Slot Datapath

Figure 4.21, since the indices start from 0.

It is a good idea to use a Multiport switch block to model the reader part because
the index of r is a natural number. A Multiport switch allows the data from more
than two inputs to be delivered to the output corresponding to the truncated value
of the control port, as shown in Figure 2.18. The number of data input ports (Ndin)
of the Multiport switch is determined by the number of slots (Nsit) in the ACM to
be modelled. Ndin—=Nslt+1, so here Ndin is 4. The first data input ports of the
Multiport switch are linked to the outputs from the writer part; while the last one
is connected to its own output to keep the output data stable.

In the control path modelled before, the indices are counted starting from 0.
However, the control port value of the Multiport switch is a natural number counted
from 1, which states the port in which data is to be delivered. To amend this
difference, r+1, which appears as r-(-1) in the Simulink model, is fed to the control
port instead of r when the read_ start signal arrives. In order to keep the output
stable after read_ start is withdrawn, a constant value from the 4th port needs to be

passed through. Therefore the constant 4 is fed to the control port of the Multiport

102

CHAPTER 4. ACM MODELS IN MATLAB

switch through a switch controlled by read start.

Figure 4.21 can be extended to a 4 slot datapath by adding one more branch
in the first stage, modifying the value in the constant 1 block to 5 and adding one
more data input to the Multiport switch.

The binary ”0” and ”1” can be treated as integer ”0” and ”1”, so this modelling
technique can also be extended to model a 2 slot datapath by removing one branch
in the first stage, modifying the value in the constant 1 block to 3 and removing one

data input from the Multiport switch.

4.4.3 4-Slot Pool
4.4.3.1 Controller Model

4-slot Pool is modelled according to Algorithm 3. The read index and the write
index of a 4-slot Pool in the algorithm stated are determined by two binary variable
pairs. The former one depends on n and s|n|, while the latter one hinges on r and
v[r]. However, the indices for a 4-slot datapath, which can be extended from the
3-slot one, are single natural numbers. Thus, the indices in the model have to be
converted from two binary digits to a single number. It is possible to use binary
indices as well. However, it will have two outputs for each index, which requires a
redesigned datapath.

In order to do the conversion, the slots must be ordered correspondingly as shown

in Table 4.3.
| | Left (0) | Right (1) |
Top (0) 0 2
Bottom (1) 1 3

Table 4.3: The Order of 4 Slots

The left slot pair, pair 0, is defined as the first two slots (slot 0 and slot 1), and

the right pair (pair 1) is defined as slot 2 and slot 3. The conversion is binary to

103

CHAPTER 4. ACM MODELS IN MATLAB

decimal conversion.

The Stateflow model of the control part for a 4-slot Pool is shown in Figure 4.22.
The techniques used here are the same as those in the 2-slot Channel. The graphic
function b2d plays the role of binary to decimal conversion. Since the conversion is
used by both the writer and the reader, it is placed outside of both the reader and

the writer rectangles as a global function.

writer

r
en:wr_start=1;
ex:wr_start=0;

[w_req==1]

[rd_done==1]

en:rd_start=1;
ex:rd_start=0;

function z=b2d(x,y)

|
| S {z=x*2+y;} 0

Figure 4.22: Stateflow Model for 4-slot Pool

There are altogether 15 variables in the chart. Eleven of them inherit their names
from the 3-slot Signal. However [referring to the most recent written pair rather
than slot, is a binary variable. Two of the rest, m and n, are also binary variables.
Because r is used as the reader index in this model, another name, m, is assigned
to the variable r in the algorithm. The other two, s and v are also binary arrays
with two elements. All these four variables are only used by the chart itself, hence,
they are set as local ones.

By adding a 4 slot datapath as shown in Figure 4.23, the whole model is built

completely.

104

CHAPTER 4. ACM MODELS IN MATLAB

(3 > | | »(3)
Read_start Memory5 Read_done
- “E
R A
5 Switch5
Constant1
- i
Datain »
1
(4) Switch1 Memory glN Dut
W | § gt Memory3
< Multiport
Switch
Write_start
> |] » 2
Write_done

Figure 4.23: 4-slot Datapath

The following paragraphs illustrate how the model works.

When a write request comes from the environment, the active state moves from
the initial state idle to wr. At the same time, a wr_start is transmitted to the
datapath in the entry action. The data item will be stored in the slot according to
the variable w. Once the writing operation is completed, a wr_done is sent back to
the control part. On receiving this signal, the writer releases the wr_start in the
exit action in wr, updates the control variables stated in the w1 and w2 statements
in the algorithm in the transition actions, and then enters the done state. In the
state entry action, a w_ ack is delivered to acknowledge to the environment the
completion of writing. The writer will not leave this state until the environment
releases the request. The w_ack is withdrawn before done becomes inactive and
idle is active again.

The reader is in the idle state at the system start-up time. When receiving a

read request from the environment, the reader updates the control variables m and

105

CHAPTER 4. ACM MODELS IN MATLAB

v, and calls the d2d function to work out the read index r in the transition action.
After the transition action is completed, the rd state becomes active and the entry
action is executed to send an rd_ start signal to the datapath. Once the data item
stored in slot r is read, an rd_ done is transmitted back to the reader. The reader
leaves the rd state with the exit action being executed (releasing the rd_ start) and
enters the done state with the entry action being executed (acknowledging to the
environment the completion of reading). When the request is withdrawn from the
outside, the reader releases the acknowledgement signal and leaves the done state

for the idle state.

4.4.4 Simulation Results and Discussions

4.4.4.1 Simulation Results for 2-slot Channel

Figure 4.24 shows the Simulink model for applying the modelled Channel in the test

environment,.
>
a
>
P Wack
1 32 Wreq L—P» Wreq Dataout ———— P
.3251 +——PpW_Mu Scope
Data P data Wack
Mu —P» Rack
g Rreq —=——P» Rreq Rack
R_Mu
1.144 — 2 Slot Channel
Test Environment
Muf Exponential Distri
[] -
[] -

Figure 4.24: A 2-slot Channel in the Test Environment

The result waveforms for the 2-slot Channel are shown in Figure 4.25. The four
waveforms in Figure 4.25 are: write requests, input data items, read requests and

output data items.

106

CHAPTER 4. ACM MODELS IN MATLAB

Whenever a new data item arrives, a write request is generated. The rising edge
of a write request refers to the arrival of a new data item, and the falling edge
indicates that the new data item has been written successfully into the data slot.
The rising edge of a read request indicates that there is a demand for a data item
in the read process, and the falling edge means that the data item has been read
successfully from the data slot. As the durations for the read and write operations
are quite short, the normal requests appear as a single impulse in the waveforms.
As a result, a continuous high level of a request in the waveform indicates the reader

or the writer was waiting.

2

1
Write regs

0

Input data

Read regs

Output data

Figure 4.25: Waveforms for 2-slot Channel

In this figure, the writer was waiting when data items 7, 8 and 10 arrived because
the Channel was full. After data items 1, 2 and 10 were written, the write requests
were delivered slower than the read requests. The reader would not respond to the

requests until a new data item was written into a slot because the Channel was

107

CHAPTER 4. ACM MODELS IN MATLAB

empty.
It is obvious that the output data items kept the same order as the input ones
and there is no data loss in the Channel. However, the asynchrony property is not

preserved because the reader and the writer are dependent on each other.

4.4.4.2 Simulation Results for 3-slot Signal

Data items 6—9 and 11-14 were over—written

2

1
Write regs

0

-

20

Input data L e S Y

Read regs

-1

20

Output data 10 [-—-—-—mimmm s m sk

Reader waiting happened

Figure 4.26: Waveforms for 3-slot Signal

Figure 4.26 shows the resulting waveforms for applying a 3-slot Signal into the
test environment. The four waveforms are: write requests, input data items, read
requests and output data items. In the waveforms, after data items 1, 2, 14, 15 and

16 were read from the slots, another read request arrived. However, the new data

108

CHAPTER 4. ACM MODELS IN MATLAB

item is not available. The reader did not respond to the requests (waited) until the
new data item was written into the memory. During this period, the read request
stayed at a high level, as shown in Figure 4.26. If the write requests are delivered
faster than the reader ones, such as in the period between data items 5 and 15,
the writer will over-write the old data items to keep executing without blocking. It
appears in the output waveform as jumps from 5 to 10 and then to 16. It can be
seen that this 3-slot Signal model keeps the same order as the input data, but may
have data loss in its output. It preserves the data freshness property as the reader
always reads the latest data items available in the Signal. The coherence property
was observed by monitoring whether the reader and the writer indices were the same
value at the same time. No violation was detected. The writer is independent from
the reader, but the reader may be blocked by the execution of the writer. This fact

shows that the 3-slot Signal does not preserve the asynchrony property.

4.4.4.3 Simulation Results for 4-slot Pool

Inserting the modelled Pool into the test environment, the model was ready for
simulation. The resulting waveforms for the test are shown in Figure 4.27. The
four waveforms are: write requests, input data items, read requests and output data
items. The read requests and the write requests in the waveforms all appear as
impulses, which is because there is no waiting in either the reader or the writer.
When the data items were delivered faster than the reader requested them, the
data items were overwritten by the writer. The overwritten items would not be
transmitted to the reader, therefore, it showed higher steps in the output data
waveform, such as after data item 2 was read. If the reader requested more data
items than the writer could provide, the reader read the latest data item again to
keep it running. This appears such that the multiple read requests came without
any changes in the output data waveform, such as after data item 16 was read.

It can be seen from the result that the 4-slot Pool model has an independent

109

CHAPTER 4. ACM MODELS IN MATLAB

Data items 3, 4,, 7, 9, 10 etc were over—written

T T T T T T T
| AN T |
1k T s T AN : /N T 7 T g
Write regs 1 I 1 N \ i RN i i i
i \i I 1 \ li \ ! I \ i 1 1l 1
0 1 < 1 IS 1 N 1 v7 1
i i i i i i i i i
4 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
20 T T T T T T T T ‘
i i i i i i i i i
i i i i i ‘ i i i
i i i i : w i i i
Input data 10?777"7"7'777"}"777"7:'777777 "7777‘77"7'7';7"777?'7777:7777*
I I
| | |
0 L i
4
2 T
I
1 i
Read reqgs ‘\’
;

Outputdata 10 ===

Data items 2, 16 and 19 were re-read

Figure 4.27: Waveforms for 4-slot Pool

reader and writer who will not block each other. It always delivers the most recent
data items to the reader. In other words, a 4-slot Pool is fully asynchronous and

preserves the data freshness property. As a trade-off, it cannot avoid data losses.

4.4.5 General Procedure for Modelling
4.4.5.1 General ACM Scheme

According to the 3 models described above, the general ACM scheme [Xia00|, shown
in Figure 4.28, includes two sequential processes, the reader and the writer cycles.
These two processes are concurrent, and assumed not to be temporally related to
each other.

In the writer, there is an access to a data slot at some part of the cycle; there

may be accesses (including setting and reading) to control variables at some part

110

CHAPTER 4. ACM MODELS IN MATLAB

Writer Cycle Reader Cycle
possible
control variable .
reqaccess | o control variable
- " 777 Control laccess req

v Variables

possible -
control variahlé| .
access -

s

I, i

4 Writing Reading
|
L

ack - Slots ack

s

Figure 4.28: General ACM Scheme

of the cycle before or after the access to the data slot. In the reader, the access
to control variables is always before access to the data slot. The reason is that the
reader must read the latest data item to maintain the freshness property, and the
information about which data slot contains the latest data item is indicated by one
of the control variables.

As can be seen from Figure 4.28, there are three pairs of data (information) ex-
changes in each cycle: requesting from and acknowledging to environment, acquiring
and updating control variables and accessing slots. A request from the environment
indicates the start of a cycle, and an acknowledgement to the environment indicates
the end of the cycle. The accessing of the control variables and of the memory slots
are within the first request and acknowledgement pair. These three pairs appar-
ently can be modelled with three handshakes. However, since a bit is the smallest
granularity possible in a digital system, it is not necessary to use handshakes for the
second pair, of control variables. Therefore, only two handshakes in each cycle are

enough for modelling, and one is embedded within the other.

4.4.5.2 Controller Modelling

To model ACMs in Stateflow, the states in the general ACM scheme must be iden-

tified. The process of a cycle is simplified into two states: idle, and accessing (either

111

CHAPTER 4. ACM MODELS IN MATLAB

reading or writing) slots. Accessing control variables is regarded as an atomic event
which takes no time.

A process (reader or writer) stays in an idle state until a request comes
(|[reg==1]) from the environment. The request leads to the process going into the
processing state. When reading/writing is finished, an acknowledgement (ack=1)
is sent back. When the request is withdrawn ([reg==0]) from the environment, the
processing state clears the acknowledgement (ack=0). The process goes back to
the idle state accordingly. This indicates the first handshake pair (shown in Figure
4.29).

[req==0]

Processing
en:ack=1;
ex:ack=0;

Figure 4.29: A Cycle for a Process

The processing contains a set of operations including referencing or setting con-
trol variables and accessing memory slots. Access operations on control variables
are modelled in transitions. References are put in transition conditions, and settings
are put in transition actions. From the environment point of view, the processing is
a passive part which would be triggered by a request. On the other hand, from the
memory point of view, the processing is an active part which would trigger an access
by sending a request. Here the active part is treated as the information sender in a
handshake, while the passive part is regarded as the receiver of information. There-
fore, the processing has a receiver side of a handshake with the environment and
a sender side of a handshake with the memory as shown in Figure 4.30. The con-

dition [access ack==1] is an acknowledgement for releasing the access req, while

112

CHAPTER 4. ACM MODELS IN MATLAB

at the same time, it is also a trigger for generating the acknowledgement to the
environment.

[req==1]

Accessing
en:access_req=1;
ex:access_req=0;

[access_ack==1]
|4

done
en:ack=1;
ex:ack=0;

Figure 4.30: Inside the processing

Including Figure 4.30 into the processing state in Figure 4.29, this gives Figure
4.31, a full view of a cycle for a process with two handshakes. The default transition
points to the idle state, which indicates that the idle state is the initial state. When
the process receives a request, it moves from the idle state to the accessing one.
Once the accessing state is entered, an entry action is executed, which sends an
access request (access_req) to the memory. As soon as an access acknowledgement
is received (access_ ack), the active state moves out from the accessing state, while
producing the exit action to withdraw the access req, into the done state, executing
the entry action to acknowledge the completion of the process to the environment.
When the environment withdraws the request (/reg==0/), the done state executes
the exit action which clears the acknowledgement, and then becomes inactive. The
active state goes back to the idle one.

Accessing control variables may be done in any of the three transitions according
to the specific algorithm.

An ACM algorithm has two cycles, a reader and a writer, running concurrently.
It is modelled as two AND states, each of which contains a group of OR states. The

contents of the AND states are the model of a cycle shown in Figure 4.31. This is

113

CHAPTER 4. ACM MODELS IN MATLAB

done
en:ack=1;

Accessing
en:access_req=1;
ex:access_req=0; ex:ack=0;

[access_ack==1]

Figure 4.31: A Cycle with Two Handshakes

demonstrated in Figure 4.32. The rd_ start and wr_ start in this figure are equivalent
to the access req in Figure 4.31, and rd_ done and wr_done are equivalent to the
access__ack.

After modelling control actions with the graphic objects, the data objects have to
be decided. Any of the variables appearing in the chart must be represented as a data
object with corresponding data properties. The scope of a data object is determined
by where the data comes from. The scope of the data coming from the outside of the
controller is set to Input from Simulink. If a data item is generated internally and
referenced externally, its scope is set to Output to Simulink. Others, which are
only used internally, are set with a Local scope. The inputs of the controller include
the reading and the writing requests from the environment (r_req and w_req in
Figure 4.32) and the acknowledgements from the memory (rd_done and wr_done);
the outputs include the acknowledgements to the environment (r_ack and w_ ack),
the requests to the memory (rd_ start and wr_ start) and the slot indices for reading
and writing (r and w) which are control variables not shown in the figure. The block

appears as shown Figure 4.33.

114

CHAPTER 4. ACM MODELS IN MATLAB

en:rd_start=1; [rd_done==1]
ex:rd_start=0; ex:r_ack=0;

[wr_done==1]

en:wr_start=1;
ex:wr_start=0; ex:w_ack=0;

Figure 4.32: Controller Model of a General ACM

slwr_done wr_startp
rd_startp
>lrd_done wb
r>

Jlw_req
w_ackp
Ar_req r_ackp>

Figure 4.33: Control Block

4.4.5.3 Model of 1-Slot Datapath

The general technique for datapath modelling stated in Section 4.4.2.2 is only for

the datapath containing 2 or more slots. However, a one slot datapath is also very

115

CHAPTER 4. ACM MODELS IN MATLAB

useful in some extended ACMs which will be introduced in the following sections.
Basically, a one slot datapath is made up of two connected switches as illustrated

in Figure 4.34.

(1) N

Datain - L AN
Switch — DataOut
Switch1
0

[]
Write_start

Write_done
[
Read start Read done

Figure 4.34: 1 Slot Memory

The first switch is used for the writer: data is sent to the first data input of the
switch; the second data input is connected back to the output of the switch itself
to keep the output stable, in other words, to hold the data item, when the request
w_ start is withdrawn. The w_ start signal is fed to the control port of the switch.

The second switch is used for the reader: the output of the first switch is sent to
the first data input of this switch. The second data input is connected back to the
output of the switch for holding the final value or connected to zero depending on
the requirement. The read_ start variable is fed to the control port of this switch.

In the switches, the criteria for passing the first data input is that the control
input does not equal to 0. This also applies to all the normal switches in this chapter.

The two memory blocks are used to simulate the process delay in the data path.

This is how it works: when a w_start comes (w_start==1), the first switch
passes the first data input, the data item, to its output. When the w_start is
withdrawn, the switch holds the data item. With the r_start arriving, the second

switch delivers the data from the first switch to the output.

116

CHAPTER 4. ACM MODELS IN MATLAB

There are only three pairs of inputs and outputs in the one slot datapath: Datain
& Dataout pair, w_start & w_ done pair coming from and sending to the write cycle
and r_start & r_done pair coming from and sending to the read cycle. Because
there is only one slot in the memory, the slot indices are not needed any more.

The design of datapath only relies on the number of slots in memory. No matter
what types they are, the ACMs with the same number of slots share the same
memory structure. Therefore, the datapath models described in this section could

be regarded as standard components in a library for reuse.

4.5 Buffered ACMs

The ACMs modelled in the previous section were based on the assumption that only
one data item was transferred within the ACM. However, since, in general, the data
being transferred consists of a stream of items of the same type, sometimes buffering
in the ACM is useful. This section describes an investigation of ACMs which contain
buffers. The writer and the reader processes are also assumed to be single-thread

loops, during each cycle of which a single item of data is transferred to or from the

ACM.

4.5.1 Classification for Buffered ACM

Following the template of 2*2 matrix classification schemes found in Chapter 2, the

buffered ACMs are also classified into 4 types as shown in Table 4.4.

NRR RR
NOW BB RR-BB
OW | OW-BB | OW-RR-BB

Table 4.4: Buffered ACM Classification

A BB or bounded buffer without overwriting and rereading provisions, which

includes most traditional inter-process data buffering schemes, may require either

117

CHAPTER 4. ACM MODELS IN MATLAB

process to wait under certain circumstances. An RR-BB may require the writer to
wait when previous data items have not been read. An OW-BB may require the
reader to wait when no newer data has been made available by the writer after the
previous read. An OW-RR-BB, however, does not require either side to wait under
any circumstances.

Within each type, the size of the buffering in an ACM determines the quantitative
inter-process asynchrony between the writer and the reader. Intuitively, the larger
the buffer size, the more inter-process asynchrony there will be (i.e. the longer it
will take before either one of the processes may be required to wait). Larger buffer
sizes, however, increase latency. It can therefore be said that buffer size is a tool
with which quantitative asynchrony may be traded off with data freshness [Sim03|.

In addition, for those types where overwriting and/or rereading are permit-
ted, larger buffer sizes reduce the frequency of overwriting and/or rereading. This
smoothes the data flow when the relative speeds of the writer and reader fluctuate,
and ensures that more of the items out of the writer eventually reach the reader.
For example, A Pool is an example of when data freshness always seems much more
important than data continuity. However, if some degree of non-fresh is permit-
ted, a buffered Pool (OW-RR-BB) could be used to reduce the rates of re-reading
or over-writing or both, and, therefore, increase data continuity. The qualitative
non-blocking still exists on both sides.

In general, ACMs, by focusing on inter-process data communication asynchrony,
provide the system designer of the future with a tool to satisfy difficult time-domain
requirements across the system qualitatively. Adding practical methods of develop-
ing arbitrary buffer sizes for ACMs further enhances their attraction and provides
users with a measure to quantitatively refine inter-process asynchrony in system and
network design.

In this section, an RR-BB ACM is taken as an example to investigate the model

and the properties of a buffered ACM.

118

CHAPTER 4. ACM MODELS IN MATLAB

4.5.2 Global Model for an RR-BB ACM
4.5.2.1 Ring structure

A Bounded Buffer (BB) ACM can be implemented with a ring structure formed by
identical memory cells, as shown in Figure 4.35. One cell stores one data item at a
time. The cells can be added or removed to change the size of the buffer. The two
arrows in the figure indicate the reader pointer and the writer pointer. Each pointer
points to the cell which is being accessed by its corresponding process. After the
completion of a data access, the reader and the writer pointers are moved forward

according to the specific algorithm.

Cell

Reader ::> Cell Cell <::| Writer

Cell Cell

T []

Cell Cell
Cell —

Figure 4.35: Ring Organisation of ACM Buffer

If the writer cycle is much longer than that of the reader, its pointer may point
to the cell immediately ahead of the reader pointer. In this case the buffer is empty,
i.e. all the data items in the buffer have already been read by the reader. Conversely,
if the writer cycle is much shorter than the reader cycle, its pointer will likely point
to the cell just behind the reader pointer. The buffer is full in this case and none of
the data items in the buffer have been read by the reader.

Rereading, if permitted, only occurs when the buffer is empty with a new read
request arriving. Overwriting, if permitted, only happens when the buffer is full with

a new write request coming. The RR-BB ACM allows rereading but not overwriting.

119

CHAPTER 4. ACM MODELS IN MATLAB

4.5.2.2 Algorithm

Derivation of the algorithm can also be found in one of my papers [XHC*06].
Figure 4.36 shows the basic state graph specification considering only the reading

and writing accesses.

SOg W12 slg wi0 | o (wr waif)

= = =
lﬁ Jﬁ JQ‘
—_ —_ —
— > @ —

Figure 4.36: Basic State Graph of 3-Cell RR-BB

In Figure 4.36, rds, 1=0,1,2, indicates reading access of cell i, and wryj, j=0,1,2,
indicates writing access of cell 7. The two s0 nodes denote the same state. This
is also true for the s1 nodes. The entire graph is therefore cyclic. It can be seen
that the reader is never forced to wait whilst the writer will wait when the reader
is accessing the cell it is scheduled to access. The 3 cells permit each process a
maximum of three data accesses before needing to reread or wait. This is greater
inter-process quantitative asynchrony than provided by a 2-cell RR-BB. This state
graph assumes that rereading accesses the latest data item in the ACM.

With adding the “silent actions” indicating the decision making about whether
to wait in the writer or to re-read in the reader, Figure 4.36 is extended to Figure
4.37.

In Figure 4.37, \;; indicates the silent action which advances the writer from cell
1 to cell 7, and puy; indicates the silent action which advances the reader from cell &
to cell [or prepares for the rereading of cell & if k=L

Based on Figure 4.37 which can be extended to the n-cell case, an algorithm for

the n-cell RR-BB ACM was derived as shown in Algorithm 4 [XHC*06]. This is

120

CHAPTER 4. ACM MODELS IN MATLAB

® 50 ®sl
= =
S 5
A2 wr(
o V2,90 o °
EQ& ?Q& 2 z
wr2 A2 wr(
e——e
E:l =
S Sua 1
o W0 | gl g Wil Lo
"F<B. =(a = 2
SIS)) [§)
}\‘ A
.er .m.wrl °
58
5 5
8 2 5
12
.er P4 oI °
§<a |z Jﬂ la
3 (=} S [=} (=) c
A
o Wil gl g W12 o
s0 sl

Figure 4.37: State Graph of 3-Cell RR-BB with Silent Actions

based on the synthesis method purposed in [YXO01].

Algorithm 4 n-Cell RR-BB ACM Algorithm

Writer Reader
wr: write cell w; r0: if (r+1 mod n)7#w then
w0: w:=(w+1 mod n); r:=(r+1 mod n);
ww: wait until r#£w rd: read cell r;
Here w, r € {0, 1, 2, ..., n-1}, and n is the total number of the memory cells in

the ring. Statements w0 and ww together constitute A\, and statement r0 is . “mod”

in the algorithm is an operator to find out the remainder of the two arguments.

4.5.2.3 Modelling

With the algorithm, the MATLAB model can be built by using the method described
in the previous section. It can be seen from the algorithm that 3 information ex-
change pairs are in both the reader and the writer. The first one is the exchange
between the controller and the external processes, i.e. the environment. In this
pair, the external environment is the active side and the controller is passive; the
second one is the exchange between the controller and the datapath. In this pair,

the controller is active and the datapath is passive; the third is the exchange of

121

CHAPTER 4. ACM MODELS IN MATLAB

control variables. They are between the reader and the writer. The variables are
assigned by one side and referenced by the other.

Previous studies [XC00] have shown that when all the actions, including the data
access actions and the silent actions, are regarded as non-atomic, none of the ACM
implementations work according to specifications if fundamental mode assumptions
do not apply. However, some ultra-safe implementations have been found that work
correctly, under fundamental mode assumptions, even when atomicity is assumed
at a lower level, such as the beginning and the end of a control variable set or read
[XC02, Cla00]. The exchange pairs of control variable actions are regarded as atomic
here. The other two exchange pairs are modelled with handshakes.

Figure 4.38 shows the Stateflow model for Algorithm 4. As the active side in the
information exchange with the datapath, a handshake sender model, writing state
in the writer and reading state in the reader, is used to send the access request to
the datapath. As the passive side in the information exchange with the external
processes, a handshake receiver model, done state in both the reader and the writer,
is used to acknowledge to the environment the completion of the data access. The
1dle state represents waiting for the next cycle request from the external processes.
The ww statement is merged into the w_idle state because it is also conditional
waiting. The two wait conditions are AND-ed to produce the equivalent result.

From the algorithm, w is updated after write access. It is then implemented in
the transition action after the writing state. The if expression in r0 is modelled as
two transitions from a junction to the reading state. One of the transitions has the
transition action for updating r attached. A graphic function is used to define the
“mod” function in the transition actions.

The writer will not become active until the write request comes and w is not
the same as . When the writer becomes active, a write_ start signal is sent to the
buffer, in order to write the new data item to the corresponding cell. When the

writer receives a write_ done signal from the buffer, indicating the completion of wr,

122

CHAPTER 4. ACM MODELS IN MATLAB

" writer '

writing
en:write_start=1;
ex:write_start=0;

done
en:write_ack=1;
ex:write_ack=0;

[write_req==0]

[read_req==1]

[wl=mod(r+1,n)]
/r=mod(r+1,n);

[w==mod(r+1,n)]
[read_req==0]

g(r:hrzeead ack=1: [read_done==1] (reading
' - Len:read_start=1;

ex:read_ack=0; ex:read_start=0;

function z = mod(x,y)

- {z=mI(’mod(%f,%f)’, X,y);} =)

Figure 4.38: Stateflow Model for a General RR-BB

it will move the writer pointer to the next cell. To finish this operation, the writer
needs to check if the current cell is the one with the highest index. If it is, the writer
pointer will be moved to the cell number 0 (set w to 0), which is the cell with the
lowest index. Otherwise, it will increment the value of w. After that, a write_ack
is sent back to the environment. Then the writer will wait for the releasing of the
write_ req before going back to the w_idle state.

The reader is similar to the writer. When a read request comes from the en-
vironment, the reader will check if the next cell is occupied by the writer or not.

The same 7-+1 mod n exercise is carried out to determine the index of the next

123

CHAPTER 4. ACM MODELS IN MATLAB

cell (either i+1 or 0). If the next cell is occupied by the writer, the reader pointer
will remain at the current cell. If not, the reader pointer will be moved forward
according to the :+1 mod n rule. Then the reader sends a read_ start signal to the
buffer in order to read the data item in the corresponding cell. On completion of
reading, the reader will receive a read_ done signal from the buffer. A read_ ack is
sent to the environment, and then the active state moves to the r_idle state waiting
for the next read_ req signal.

The variables which appear in the model include:

n: the number of slots in the ACM. It is an integer entered by the designer;

write_req and read_ req: the requests for the writer and the reader to start a
cycle. They are inputs from the environment;

write_ack and read_ ack: the acknowledgements from the writer and the reader
indicating the completion of a cycle. They are outputs to the environment;

write_start and read_ start: the data access requests. They are outputs to the
buffer;

write_ done and read_ done: the completion signals of data access. They are
inputs from the buffer;

w and r: the indices for the writer and the reader. They are local variables and
initialised to the different integers within 0 and n-1, normally, w=1 and r=n-1. In
the start-up time, the buffer should be empty. To satisfy this condition, these two
variables must be initialised to adjacent slots, and w=mod(r+1,n).

The buffer of an n-cell RR-BB ACM is the same as the n-slot memory which

can be extended from the 3-slot one modelled in Section 4.4.2.2.

4.5.2.4 Simulation Results and Discussions

Plugging a 3-cell RR-BB ACM into the test environment model, its resulting wave-
forms are shown in Figure 4.39. Rereading occurred when read requests came with-

out new data items being available, as in the case after the data items 4, 7, 9 and

124

CHAPTER 4. ACM MODELS IN MATLAB

10 were read. In this simulation, n was set to 3, therefore, the writer waited if two

consecutive data items had not been read, as in the case after items 12 and 13 were

written.
Writer waiting happened
wrtie req
Input data
read req
Output data 10|
0

Data items 4, 7, 9 and 10 were re—read

Figure 4.39: Simulation Result for 3-Cell RR-BB

Algorithm 4, though neat and easily understandable, is not suitable for hardware
implementation. In particular, the integer control variables w and r will need many
protections in order to be considered atomic. The global view nature of the index-
ing also means that the actual setting and reading of these variables will include
multiplexing and de-multiplexing on a scale depending on the number n. The fork
and join operations needed mean that an implementation of n cells, for instance,

cannot be easily built upon one of n-1 cells.

125

CHAPTER 4. ACM MODELS IN MATLAB

4.5.3 Modular Design Model for an RR-BB ACM

The cellular structure of these kind of buffered ACMs suggests that it may be possi-
ble to construct a standard individual cell, including its own controller and datapath,
complete with its own local control variables, and then use n of these for an n-cell
solution. This modular design approach is much better suited for hardware imple-

mentations.

4.5.3.1 Algorithm for Modular Design RR-BB

Considering a single cell within the ring structure of Figure 4.35 and Algorithm 4
and observing the part of the state graph in Figure 4.37 pertaining to a particular
cell, it can be seen that a single cell element in an n-cell ACM needs to have two
local index control variables, w and r. Both these variables will take binary values
and the value 1 would indicate that the pertinent process is pointed at this cell.
A cell, particularly its control variables, will be visible to its immediate preceding
neighbour but not any other cell.

A localised algorithm for a single cell is described in Algorithm 5.

Algorithm 5 Algorithm for Modular Design RR-BB ACM

Writer: Reader:

wr: write; r0: if wnext=0 then
w0: w:=0; wnext:=1; begin r:=0; rnext:=1;
ww: wait until rnezt=0; advance to next rd; end
wa: advance to next rd: read;

The action of advancing to the next cell in the writer causes the end of execution
of the current cell’s writer algorithm and the beginning of the next cell’s one from
wr. The action of advancing to the next rd in the reader causes the end of execution
of the current cell’s reader algorithm and the beginning of the next cell’s one from
rd. The reader algorithm loops at the same cell until the condition wnext=0 is met.

The writer will wait at a cell until the condition rnezrt=0 is met. Note that the

126

CHAPTER 4. ACM MODELS IN MATLAB

writer algorithm sets both w and wnezt and reads rnezt, and the reader algorithm
sets both r and rnext and reads wnezt.

It is then a straightforward process to construct a single cell template for hard-
ware, a number of which can then be connected into a ring of the desired number

of cells. Figure 4.40 shows how two adjacent cells were connected.

! ACM cell i
Writer : wand r Reader
|
> cell memory
data | / data

advance \--c-cmemeeeof i advance
ACM cell i+1 ¢ :

wand r

Figure 4.40: Connection Between Two Cells

4.5.3.2 Modelling

Two more information exchange pairs are in the writer/reader in addition to the
three mentioned in the previous algorithm because of the existence of the action
“advance to next”. One is the action itself; the other is the response for the action
from the previous cell. Furthermore, w and r are also exchanged between two
adjacent cells. Besides being cleared and referenced in the current cell, they are also
set and referenced by the previous cell. Therefore, there are 6 information exchange
pairs altogether in each cycle of the algorithm.

Obviously, the information exchanges between the ACM and the environment,
between the controller and the datapath, and between two cells should be imple-
mented by handshakes. The operations on local variables are treated as atomic and
can be modelled in the condition actions.

The handshakes for the first two types of information exchanged have already

127

CHAPTER 4. ACM MODELS IN MATLAB

been discussed in the previous chapter. Here, only the handshakes between cells are
considered. In the handshake for the “advance to next” action, the current cell is
active, and the next cell is passive. In the handshake for the response to the advance
action, the current cell is passive, and the previous cell is active. In the handshake
for the action of setting a variable in the next cell, the current cell is active, and
the next cell is passive. The setting action is atomic so the passive part in this
handshake is implemented in the condition actions. Figure 4.41 shows the Stateflow
model of a RR-BB modular design cell.

The reset states in Figure 4.41 are used to initialise the position of the pointers.
If the pointer moves to the current cell, the system is in the ready state, otherwise,
it is in the idle state.

In the writer, once a write request comes, it sends an access signal (write_ start)
to the datapath. After the write operation is completed, a completion signal is sent
back to the writer. On receiving the completion signal, the writer updates variable
w to 0 and sends the request to set w in the next cell. Once the next w is set,
the writer delivers the acknowledgement to the environment. The writer will not
advance to the next cell until r in the next cell is 0. Then the current writer goes to
the idle state. Although the writing process is completed, the writer still needs to
respond to the request for setting w (implemented in the transition after the w_ idle
state) and the advance action (in the w_ ready state) from the previous writer before
it is active for writing again.

In the reader, if it is in the r_ready state at the beginning, when a read request
comes, it checks whether the next cell is occupied by the writer ([w_nzt==1]). If
the next cell is free from the writer, the reader clears its r, sets the next r, and
advances to next cell, then the current reader goes to the r idle state. Otherwise,
the reader sends the access request to the memory. On receiving the completion
signal from the datapath, the reader acknowledges the environment, and then goes

to the r_ready state. If the reader is in the r_1idle state at the beginning, it sets

128

CHAPTER 4. ACM MODELS IN MATLAB

¢ writer " . nxt_w
writing | [write_done==1]/w=0; en:wn_set=1;
en:write_start=1; ’ ex:wn_set=0;

ex:write_start=0;

[write_req==1] V

w_done
en:write_ack=1;
ex:write_ack=0;

w_ready

en:w_pre_ack=1; [wrst==1]/w=1;
ex:w_pre_ack=0;

[write_req==0]

[w_pre_req==1]

w_adv
en:w_nxt_req=1;
ex:w_nxt_req=0;

[wp_set==1]/w=1; w_nxt_ack==

/

read_req==1 [w_nxt!=0] \
read_req==T} reading

en:read_start=1;
ex:read_start=0;

reader |r_ready

[w_nxt==0]/r=0;
V

nxt_r
en:rn_set=1;
ex:rn_set=0;

adv_ack
[r_nxt==1] en:r_pre_ack=1;
ex:r_pre_ack=0;

r_adv

en:xr_nxt_req=1;

[rrst==1)/r=1; exir_nxi_req=0; [r_pre_req=21]

[rrst==0]

[read_req==0]
done
en:read_ack=1; [read_done==1]
ex:read_ack=0;
\ !
\ /

Figure 4.41: Stateflow Model for RR-BB Modular Design

the current r when it receives a request from the previous cell, and comes to the
r_set state. At the same time, the advance request comes to the reader from the

current cell. The reader acknowledges the request, and then reads the data item in

129

CHAPTER 4. ACM MODELS IN MATLAB

the current datapath.

The advance action in the writer is at the end of each cycle when the cell has
already been deactivated. That action in the reader is within each cycle which
switches off the current reader and turns on the next one within the same read
request period.

In this model, the variables include:

write_req and read_req: the requests for the writer and the reader to start a
cycle. They are the inputs from the environment;

write_ ack and read_ ack: the acknowledgements from the writer and the reader
indicating the completion of a cycle. They are the outputs to the environment;

write_start and read_ start: the data access requests. They are the outputs to
the buffer;

write_ done and read_ done: the completion signals of data access. They are the
inputs from the buffer;

w and r: the indices for the current writer and reader. They are the outputs to
the previous cell;

wn__set and rn_ set: the requests for the indices for the next cell. They are the
outputs to the next cell;

w_nzt and r_nzt: the indices for the writer and the reader in the next cell.
They are the inputs from the next cell;

w_nxt_req and r_naxt_req: the advance requests to the next cell. They are the
outputs to the next cell;

w_nzt_ack and r_nzt_ack: the acknowledgements for the advance. They are
the inputs from the next cell;

wp_set and rp_set: the setting indices requests from the previous cell. They
are the inputs from the previous cell;

w_pre_req and r_pre_req: the advance requests from the previous cell. They

are the inputs from the previous cell;

130

I€T

oIe A9y], "90URADR S} I0J SIUSWISPI[MOUNIR) 49D oud 4 pue Y00 oud m

dd-9Y [[°D-¢ © 10] [PPOIN YUINWIG :ZFF 9In31g

Scope

P+
»
P

RR BB Single2

RR BB Single1

RR BB Single0

t
&
T &8 o
¢ 5 ¢ E 3 [o|3
-
WDRO 7] w
L
S
=]
x « 3| €
“M_“M_E
ST ocroalp
L 4 2
+Ar

<][4]

dVILVIN NI STHQOIN WOV ¥ H4LdVHD

CHAPTER 4. ACM MODELS IN MATLAB

the outputs to the next cell;

wrst and rrst: the initialising signals to the writer and the reader. They are the
inputs from the environment.

The datapath for the cell is the same as the one-slot one illustrated in Figure
4.34.

A 3-cell model is made up by connecting 3 identical modular design models
together as shown in Figure 4.42.

In this model, the first cell (RR BB Single0) is initialised for writing and the last
cell (RR BB Single2) is initialised for reading. To distinguish the connections easily,
different colours are used for the connection wires. The wires from the environment
are in black, those from the first cell are in red; those from the second one are in blue;
and those from the last one are in green. The data items, the write requests and
the read request are fed in all the three cells. There would be a possible problem
in hardware design if the number of cells is quite large because the global input
signals could lead to distribution delays. However, in real applications, there would
not be a large number of cells in the buffer. All the three data outputs, the write
acknowledgements and the read acknowledgements from cells are added to feed back
to the test environment or to the Scope. They can be added to represent the overall

results because at least two of them are 0 at any time.

4.5.3.3 Simulation Results

When the ACM model is inserted into the test environment described in Section
4.3.4, the resulting waveform for Figure 4.42 is shown in Figure 4.43. Rereading
occurred after data items 1, 2, 7 and 12 were read, and writer waiting happened after
data items 10, 14 and 15 were written. These maintained the properties specified
for the RR-BB ACM.

For both simulations for the global view and the modular design, the time taken

by the reader and writer processes outside the ACM was controlled by two inde-

132

CHAPTER 4. ACM MODELS IN MATLAB

Writer waiting happened

-

Write req

Input Data

Read req

T T T
i i i
i‘ - i i
‘ ‘ ‘ | ! H ‘ ‘

i i i
i i i
i i i
i i i
! f
i :
: :
i
; ;
i :
! I
i :
: :
i :

N : :

1 i
i :
! f
i :
: :

1 1 |
0 ‘ l l l ‘ ‘ ‘ ‘
0 \ 2\ 4/ 6 8 10 12 14 16 18 20

Data items 1, 2 and 7 were re—read

Figure 4.43: Waveforms for 3-Cell Modular Design RR-BB Model

pendent random number generators with normal distribution. This gave enough
variation for writer waiting and reader rereading to appear during relatively short
simulation runs. As shown in the simulation results, the reader does not always
obtain the most up to date data item in the ACM. This is to be expected because
of the buffering. However, the order of the sequence is preserved. The simulations

do not turn up results contrary to the specifications of the RR-BB ACM.

4.5.4 Discussions

To investigate the other properties, such as data latency and data continuity, the

method adopted was to simulate the models several times while changing one pa-

133

CHAPTER 4. ACM MODELS IN MATLAB

rameter out of three each time. The three parameters were: the number of cells,
the delivery speed of the reader, and that of the writer. The delivery speeds were
controlled by the mean values of the exponential distributions.

During the simulation, the following parameters were monitored:

Nw: the number of items being written;

Nr: the number items being read;

Nww: the number of items being forced to wait for writing;

Nrr: the number of items being re-read;

MLatency: the mean value of data latency (re-read items were not counted).
The data latency refers to the time between each data item being ready for writing
and it being read by the reader.

W%: writer waiting rate; Nww/Nw*100%.

R%: re-reading rate; Nrr/(Nr+Nrr)*100%.

Mdi: the mean of the numbers of items behind the input ones when items are
read. Mdi represents the freshness.

Table 4.5 was obtained by increasing the number of cells while keeping the same
deliver speeds.

In the table, Rmu and Wmu are the mean of the random intervals for the reader
and the writer; Global represents that the model used in the simulation was a global
view model and Modular represents the modular design model; N is the number of
cells.

Table 4.5 (a) describes the scenario that the delivery speeds for the reader and
the writer were close to each other. The results shows that with increasing the
number of cells, Nw, Nr, MLatency and Mdi are increased, and Nww, Nrr, W% and
R% are decreased. Although the results from the global view model and that from
the modular design one were not exactly the same because of the different internal
structures, they still showed the same properties. Apparently, additional cells in the

buffer gave more chances to the writer and the reader to write data items to and

134

CHAPTER 4. ACM MODELS IN MATLAB

Rmu=1.035, Wmu=1.113, Length=1000

N | Nw| Nr [Nww | Nrr |MLatency | W% | R% |Mdi
3 737 736 218 287 1.329] 29.58| 28.05| 0.9118
829 825 98 198 2.313] 11.82] 19.35] 2.083
10| 853 845 53 178 3.54| 6.21| 174 3.42
Global
20| 896 893 5 130 5.352| 0.56| 12.71 5.422
25| 915 915 0 108 6.194 0] 10.56] 6.268
26| 915 915 0 108 6.194 0| 10.56] 6.268
3 741 741 219 264 1.404| 29.55(26.27| 0.919
Modular
841| 840 113 140 2.817| 13.44| 14.29| 2.263
(a)
Rmu=1.035, Wmu=10.13, Length=1000
N | Nw| Nr [Nww | Nrr |MLatency |W% | R% |Mdi
3] 96 96 0 927 0.096 0]90.62(0.0521
Global
6] 96 96 0 927 0.096 0]90.62(0.0521
3] 94 94 1 865 0.145] 1.06[90.2| 0.1277
Modular
6] 82 81 0 828 0.12 0]91.09(0.1235
(b)
Rmu=10.35, Wmu=1.113, Length=1000
N [Nw | Nr | Nww | Nrr [MLatency| W% | R% |Mdi
3 97 94 88 0 29.883| 90.72 0| 1.875
Global
6| 100 94 87 0 58.479 87 0] 4.616
3 102 99 90 3 26.961| 88.24| 2.94| 1.842
Modular
6] 106 100 86 0 55| 81.13 0] 4.524
()

Table 4.5: The Properties for RR-BB ACMs When Increasing the Number of
Cells, (a) Rmu=1.035, Wmu=1.113; (b) Rmu=1.035, Wmu=10.13; (¢) Rmu=10.35,
Wmu=1.113

read new items from the buffer. Consequently, the occurrences of the writer waiting
and re-reading were decreased, and so did the writer waiting rate and the re-reading
rate which indicated better data continuity. With more cells adding to the buffer,
each item may stay in the buffer longer. This led to the increase of the data latency
and Mdi (worse freshness).

From the table, it also could be seen that when N increased to 25, the writer

waiting rate dropped to 0. After that, more cells would not improve the performance

135

CHAPTER 4. ACM MODELS IN MATLAB

any more. A conclusion could be drawn from this: if the average speed of the reader
is faster than that of the writer, even when the difference is small, when the number
of cells reaches a certain number N, additional cells will not affect the performance.

Table 4.5 (b) describes the scenario that the delivery speed for the reader was far
faster than that for the writer. There was almost no difference for all the variables
monitored, especially the global view case. The tiny difference in the modular design
case still showed the same tendency to that in scenario (a). Nw was the same as
Nr, which implied that all the data items that had been written were read, i.e.
the ACM was empty. This is straightforward, because whenever a data item was
written, it was read by the fast reader immediately. As a result, writer waiting
seldom happened (Nww=0); writer waiting rate was 0%; data latency is relatively
short (no more than 0.01). The reader re-read the most recent item again and again
until the new one came. This led to a high re-reading rate (over 90%) and a good
freshness performance (Mdi were near to 0). In this scenario, the additional cells
did not improve the performance significantly.

Table 4.5 (c) describes the scenario that the delivery speed for the reader was
far slower than that for the writer. With increasing N, there were tiny differences
in Nr, Nrr and R%. However, the MLatency and Mdi were significantly increased.
The result of Nw-Nr was N. This could be explained by the fact that the writer was
fast enough to write the data items in all the buffers and wait for more cells being
released from the reader. Therefore, the ACM was full almost all of the time, and
re-reading seldom happened (Nrr=0 and R%=0). For the same reason, when N was
increased, more data items could be written into the buffers, but all of them had
to wait for longer to be read by the reader. This led to an increase of data latency
(MLatency) and a decrease of freshness (Mdi). In this scenario, the additional cells
did not improve the data continuity (W% and R%) significantly, but performed even
worse in data latency.

Table 4.6 illustrates the performance of a 3-cell buffered RR-BB ACM at different

136

CHAPTER 4. ACM MODELS IN MATLAB

N=3, Length=1000

Rum [Wmu | Nw | Nr [Nww| Nrr |MLatency |[W%| R% |Mdi

10.35| 1.113] 97| 94| 88 0 29.883| 91 0 1.875
2.035| 1.113]| 451| 448| 262| 35 4747 58 7.25 1.456
1.035| 1.113] 737| 736| 218| 287 1.329| 30| 28.05 09118
1.035] 2.113| 461 461| 62| 562 0.73| 13| 54.94 0.5315
1.035| 10.13] 96| 96 0| 927 0.096 0| 90.62 0.05208

Table 4.6: The Properties for RR-BB ACMs When Changing Delivery Speeds

speeds. The table showed that the simulation results for these two models had
exactly the same properties. It showed that with increasing the speed of the reader
or decreasing that of the writer, MLatency, W% and Mdi were decreasing, and R%
was increasing. It could also be seen from the table that both Nw and Nr were
the largest when the speed of the reader and the writer were closest. This could be
explained as follows. When the speed of the writer was higher, it had to wait while
the buffer was full. Therefore, the data latency and Md: were relatively long and the
total number of items written in the buffer was restricted by the reader. When the
reader was faster, the faster the reader was, the more times re-reading happened.
As a result, R% was high and Nr was restricted by the writer. Although W% was
decreasing while R% was increasing in these cases, if the average values were taken,

it could be found that the closer the speed, the better the data continuity.

4.6 Hardware Implementation for a 3-Slot Signal

As claimed before, ACM can be represented by Petri nets. A technique called direct
translation [XYST00, Sha03], also known as direct mapping [SBY03| can be used
to create circuits according to the Petri nets. This technique uses a ”"David cell”
|[Dav77], a kind of memory element, representing each Petri net place, therefore
it produces a straightforward implementation of the PN model in hardware. The

transitions were implemented as certain processes between adjacent David cells.

137

CHAPTER 4. ACM MODELS IN MATLAB

The idea of implementing a 3-slot Signal into hardware is to find out its Petri nets

representation first and then translate it into circuits by direct translation.

4.6.1 Block Diagram

An ACM is made up of control circuits and a data path. The control circuits are
used to determine the value of each control variable according to the Petri net
specifications described in the previous section. For a 3-slot Signal type ACM, as
mentioned before, to maintain the data freshness and data coherence, the w0 and
wl pair must not be executed with r0 simultaneously. A Mutex, which will be
introduced in the following section, plays this role. It connects with both the reader
and the writer to hold one request until the other one is completed if the two requests
come very close. The datapath has 3 data storage elements which can be accessed

by both the reader and the writer according to the control variables.

Shared :ll>output data
Memory
Datapath

input data

i \
I write_start 1 read_start !
| ———————& - -~
! Writer r Reader |
| - - &
rwriter_done \—?_;>/—\ ‘j—/ read_done |
|

| Mutex :
. Control circuits - |

Figure 4.44: Block Diagram for 3-slot Signal

Figure 4.44 shows the block diagram for a 3-slot Signal. When the writer receives
a write_ start signal from the environment, it requests to access the shared memory

for writing the input data item into the chosen slot. After the write operation

138

CHAPTER 4. ACM MODELS IN MATLAB

is completed, the writer sends a request to the Mutex in order to check if the r0
statement is executing. When the Mutex gives it the grant, it updates [and then
according to r determines a new value of w. When all these processes are completed,
a write_done is sent back. When the read start signal comes to the reader, the
reader sends a request to the Mutex. Once it receives the grant, it decides to wait
or update the control variable r according to the current value of /, and then reads
the data item in slot 7.

The core components used within the 3-slot Signal implementation include David
cell (DC), Mutual Exclusion element (Mutex), SYNC Arbiter, Multiplexer and some
latches etc. It also needs to be mentioned that this design is based on a dual rail

and low level active mode.

4.6.2 Implementation of Control Circuits

The control circuits are split into a reader and a writer. Each of them is connected
to the Mutex.

The statement of w1 is implemented by an L-Latch. The function of the L-latch
is to determine and hold the variable [according to the current value of w. As
stated before, to maintain the data freshness and the data coherence, the w0 and
wl statements are put together as a consecutive pair. Therefore, after [is set, a
completion signal is sent to the subsequent component. Figure 4.45 shows the L-
latch for this design. The inputs of this latch are active low, while the outputs are
active high.

The inputs are one-hot signals, that is, only one of the three inputs is active at
a time. The clear input, connected to the second complex gate, is used to reset
the circuit when the system starts up. The input named with set n means setting
[to n. The output named with / 7 indicates that the current value of [is n, and

setn_ done is the completion signal.

139

CHAPTER 4. ACM MODELS IN MATLAB

13
b e a ool seti_done
set] . (m

P

14
°) I "—Eﬁ@“@—. set?2_done

ON211—|—D
set2 P ‘ P

—®

5
NO3 09—. set3_done

set3 Hﬂ—t——LD D

clear p——

;,'H

Figure 4.45: L-Latch

Initially, all the set inputs are high. A clear pulse sets the output of the second
complex gate (/1) to 1. Consequently, I 2 becomes high, which indicates that [is
initialised to 2. At the same time, it is fed to the input A of both the other two
complex gates (10 and I2), which makes their outputs set to low. These two low
signals are connected back to inputs A and B of I1, which keeps its output low
regardless of the clear signal.

The inputs are one hot signals, so there will only be one input out of three active.
Once a set signal arrives, it sets the correspondent [n and setn_ done. The output
of the complex gate is fed to one of the first two inputs of the other two complex
gates, which resets their outputs. These outputs also fed back to its inputs A and
B to hold its output regardless of whether the set is withdrawn. The release for the
set signal only leads to a reset of output set_done.

The signal flow for the writer is illustrated in Figure 4.46. It is translated from the
Petri net in Figure 4.3. The figure only shows one branch for the Petri net. However,

the other two branches are exactly the same. In the Petri net, each branch starts

140

CHAPTER 4. ACM MODELS IN MATLAB

output data

o request _ _ _ _ _ _ -
<,=1 Shared) > |
| ! |
o Memo ry) grant Mutex !
inputdata 3~~~ | | ¢ o777
wrl ack] 1
I latch >
wrl req
T
o SYNC write done

Figure 4.46: Signal Flow for the Writer

from the startn state, ends at the i¢dlem state, and contains 4 states. Consequently,
one branch in Figure 4.46 contains 4 DCs. They are translated from the states
startn, wrn_ done, w—=m and idlem. The transition wrn is the write access for slot
n. It is implemented by sending an access request from the first DC to the shared
memory and receiving the completion signal at the second DC. Transition wnm is
implemented by the circuits between the second and the third DC. The second DC
sends a request to the Mutex. The grant from the Mutex is regarded as the set
signal to the L latch. When the value of / is stored, the completion signal is fed
to the SYNC as the clock. According to the current value of r, the SYNC chooses
one branch to deliver a request to the third DC that determines the slot to store
the next new data item. As the third DC receives the request, it acknowledges the
second one and then sends a write done signal to inform the environment of the
completion of the write cycle. Once the environment releases the write request, the
fourth DC will be informed and then acknowledge the third DC to withdraw the
completion signal.

The R latch is used in the reader for determining and holding the control variable

141

CHAPTER 4. ACM MODELS IN MATLAB

r. Figure 4.47 shows the circuit for the r latch. It has a clear input and six smn
inputs where m, n =1, 2, 3, which indicates set r from m to n. The outputs include
three pairs of dual rail signals and six completion signals. The inputs except the
clear are active high and the outputs are active low. To convert the inputs into
active low, six inverters are added.

The main part of the circuit is made up of three modified RS flip-flops. The
clear signal sets the first and the third flip-flops and resets the second one, that is, r
is initialised to 2. Once an smn signal arrives, it resets the corresponding flip-flop n.
The output rn (low) conjugating with input snm (low) and output nrk (low), where
k is neither m nor n, sets the flip-flop m, and conjugating with input snk (low) and
output nrm (low) keeps the flip-flop k£ set. With the complete resetting of flip-flop
n and setting of flip-flop m, a completion signal dmn is generated.

For one flip-flop, say n, both the signals smn and skn are able to reset it. There-
fore, each flip-flop has two reset inputs, which are implemented with multi-input
NAND gates. Because resetting for either of the other two flip-flops will cause set-
ting for the current one, there have to be two set inputs for each flip-flop as well.
As the set signal is a conjugation of three low signals, two OR gates are used as the
first stage of the complex gate in each flip-flop.

The signal flow for the reader is illustrated in Figure 4.48. The four DCs in
this Figure are translated from one branch in the Petri net specification for the
reader. The Comp is a component to compare if two inputs are the same. Here, it
is used to compare the current value of [and r. If they are not the same and DC1
sends a request, the request will be passed to the Mutex through a C element. The
grant from the Mutex sends to the R latch the set signal to update control variable
r. When updating is completed, the completion signal is delivered to DC2 as a
request. This DC informs the first one and then generates the read access request
and delivers it to the shared memory for reading the data item in the corresponding

slot. After finishing reading, the completion signal triggers DC3 generating a read

142

CHAPTER 4. ACM MODELS IN MATLAB

P
[12
Vinopol—JP 421
P
113
03 op—.dy
.nrQ
114
Iinopok—JP a12
pAGR
.r2
115
nosyol——JP d32
P 3
117
ok P d13
.rS
116
03 O‘)—.d23

-

-. C
P
:}%Noa
»/)C
-

s

19

B NAS

3

IN
11
N

"

5dlD lei §dl
Z z\ /z
N

eV}
)

s32 P
s13 Pp——
23 P

clear '
s21 .—4»—%
s31 P

Figure 4.47: R-Latch

done for acknowledging to the environment the completion for the read cycle. When

the read request is released by the environment, DC4 acknowledges DC3 to withdraw

the read done signal.

143

CHAPTER 4. ACM MODELS IN MATLAB

] . R latc output data
rdlreq ! Shared =.>

I [\
Memory, input data

T
|

: rd1 ack
I

|

I

|

read done

read start

Figure 4.48: Signal Flow for the Reader

4.6.3 Implementation of the Datapath

wrl req N
| D léttCh wrl ack -
S€
Data in N rd] ack
| o —
wr2 ack rd2 ack
wr2 req R rd3 ack
*1 D latch _|Multiplex
ol set set Data out
i (3N}
L * D latch wrack
> set
N rd]1 req
rd2 req
rd3 req

Figure 4.49: Signal Flow for Datapath

The signal flow for the datapath is illustrated in Figure 4.49. This implementa-
tion has a data word size of a byte, i.e. 8-bit. A D latch set is a combination of 8 D

latches, and a multiplex set is a combination of 8 multiplexers. When it receives a

144

CHAPTER 4. ACM MODELS IN MATLAB

request from the writer, the input data item is stored into the corresponding D latch
set. When writing is completed, the acknowledgement is sent back to the writer.
The data outputs from the 3 D latch sets connect to the three data inputs of the
multiplex set. When a read request comes to the multiplex set, one data input is
delivered to the output accordingly, and then an acknowledgement is sent back to

the reader.

4.6.4 Resulting Waveforms and Discussions

Digital simulations of the circuit were carried out with the Cadence tool. The test-
bench is a piece of code written in Verilog (see Appendix A). It generates the source
data items and the requests for the reader and the writer. The time taken by the
reader and writer outside the ACM, or the interval between adjacent requests was
controlled by two independent random number generators. As a commonly used
distribution in reliability engineering |[Boh96|, the exponential distribution was as-
sumed, and the same mean value was set for both w0 to wr and rd to r0. This
gave enough variation for reader waiting and writer overwriting conditions to ap-
pear. Figure 4.50 shows the resulting waveform of one digital simulation. The
write_ start is not included in the waveforms because the change of input data im-

plies the write_ start arriving.

0C was overwritten Reader waited for the new data item

Y
Datain 0B e 3w Joe [or [10 11 T[i2 FERE
read_stare ||| T r L LT
Dataout [oa 0B [oo — Tom [oF [Tz]
read_done i i i i 1 i 1

Figure 4.50: Result Waveforms

In the Dataout stream, there are several temporary data values which appear

as thick bars, such as the ones before 0D and OE. The occurrence of these data

145

CHAPTER 4. ACM MODELS IN MATLAB

values were caused by the speed differences among the 8 multiplexers. It would not
affect what the reader read because the data was stable before the read_done was
generated.

In this sequence, after data item 0D was read by the reader, another read request
arrived. The reader did not respond to requests until a new data item was available.
During this period, the read_ start signal stayed low. On the other hand, when the
writer delivered the data items quickly, such as 0C to 0D, overwriting occurred (0C
was overwritten). The overwritten data items could not be delivered to the reader,
therefore, there is data loss in the Signal.

It can be seen from the resulting waveforms that whenever the read_ start signal
came, the Signal outputted the most recent data item it had obtained. In the
other words, the Signal maintains the property of freshness. The other fact is that,
although there were some missing data items, the order of the data items received
by the reader was still the same as that written into the Signal by the writer. That
is, the Signal preserves the data sequencing property.

With monitoring the reading and the writing indices, it was also found that the
data coherence property was also preserved, because the reading and the writing
indices were never the same value at the same time. This is due to the correct
designed algorithm.

Although the waveforms in Figure 4.50 are not exactly the same as those in Figure
4.16, they imply the same properties, such as writer overwriting, reader waiting and
freshness. The differences include the overall simulation time, the active level, the
intervals between requests and the representation of data items. The differences were
mainly caused by the different simulation environments and the randomly generated

requests.

146

CHAPTER 4. ACM MODELS IN MATLAB

4.7 Conclusion

There are two ways to model ACMs in MATLAB environment. One is from Petri
net specifications, and the other is directly from algorithms.

The former one is based on the method of transforming Petri nets to Stateflow
explained in Chapter 3. The models created by this method are closer to hardware
implementations, as circuits could be built with the same PN specifications by using
direct translation technique. However, these models are complex because they are
more focused on internal structure, which is not necessary in investigating their
applications. A 3-slot Signal was used as example to propose this method and the
hardware implementations. The results show that both the MATLAB model and
the hardware circuits imply the same properties, such as writer overwriting, reader
waiting and freshness.

The latter one is focused on the behaviours of ACMs. Control path of each ACM
is built with handshake models after analysing the information exchange pairs within
the algorithm. Generating and releasing requests / acknowledges are carried out in
entry actions and exit actions of states. Waiting for acknowledges is a condition of
a transition. Updating and referencing control variables are modelled in transition
actions. Datapath designs only depend on the number of slots in the memory.
For example, a 3-slot Signal shares the same memory structure with a 3-slot Pool.
Furthermore, the datapaths of all 3-slot ACMs are the same. This also applies to
all 2-slot and 4-slot ACMs.

The same method is also used in modelling buffered ACMs from algorithms. A
buffered ACM could be modelled in two ways, a global view model and a modular
design one. Compared to the latter, the former one could be more easily built
in MATLAB. However, the latter was more suitable for hardware design. As the
simulation results of an RR-BB for these two types of models showed exactly the

same properties, most of the further discussions are based on the global view model.

147

CHAPTER 4. ACM MODELS IN MATLAB

An RR-BB ACM has the following properties: the writer writes data items to
the buffer until the ACM is full, and, at this time, it does not respond to further
requests until the state is changed. The reader reads the data items in the buffer
in order until the ACM is empty, and it re-reads the latest item until the new one
is available. It gives the best performance, best data continuity and average data
latency, when the speed difference between the reader and the writer is small.

Additional cells normally increase the data continuity while they increase the
data latency. However, after they increased to a certain number, the additional cells
will not improve the performance when the reader is faster, and even increase the

data latency and worsen the data freshness when the writer is faster.

148

Chapter 5

Application in Control Systems

5.1 Introduction

In the previous chapters, ACM models have been integrated into the popular
application-level tool MATLAB. With these models, ACM applications could be
investigated. In this chapter the brushless DC motor will be taken as the example
to discuss the effect of including ACMs in such engineering application systems as

control systems, especially when analogue parts are present.

5.2 Brushless DC control system

5.2.1 Introduction

A brushless DC control system consists of a mechanical part (the motor), an electri-
cal part (the motor’s drive sub-system) and an electronic part (the integrated circuit
controller). Cascade control is usually used for this drive, with an inner loop con-
trolling motor current or torque and an outer loop controlling motor speed. These
two controllers could be implemented by PID controllers.

The output of the current controller is the drive to be applied on the motor. It

149

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

is modulated by a PWM which generates a drive voltage. The level "on" and "off"
in a PWM cycle is switched by a transistor. Because overheating caused by a high
current could damage the transistor, the demand current calculated by the speed

controller is normally limited within a certain range.

5.2.2 System Model

In this section, we will investigate each part of the system shown in Figure 2.12.

5.2.2.1 Motor

The transfer functions of the motor can be derived from the torque balance equation
and the electrical equation.
The torque balance equation is:
dw(t)

J=22 + w(t)D = Konih), (5.2.1)

where J is the inertia, w(t) is the angular velocity, D is the drag load, K, is the
motor constant and i(¢) is instantaneous current.

The electrical equation:

di(t)
at

LY 4 Ri(t) = va(t) — Bw(t), (5.2.2)

where L is the motor inductance, and R is the motor resistance, v,(t) is the
applied voltage and F is the back e.m.f. constant.
Take the Laplace transformation and re-arrange these two equations, the transfer

functions of the motor would be:

Q(s) = 1(s), (5.2.3)

and

150

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

Vals) = EQs)

I(s) = Ls+ R

(5.2.4)

The model of the motor is built according to these two transfer functions as
shown in Figure 5.1.

Transfer Fcn2

y| Km (D

J-S+D w

E [«&———

Back EMF constant

1
> Pé > »(2)
Voltage L.s+R i
Transfer Fcn1

Figure 5.1: Model of a Motor

The angular velocity and the current are related to each other. The Transfer
Fcn2 represents the Equation 5.2.3. It is used to find out the angular velocity
according to the current. The product of the angular velocity and the back e.m.f.
constant is the back e.m.f. voltage. Subtracting it from the applied voltage gives
the numerator of the Equation 5.2.4. Feeding the result to the block Transfer
Fcnl (the denominator of the Equation 5.2.4), the output of the block would be the

current.

5.2.2.2 PWM

Pulse Width Modulation is a technique employed to regulate the output power by
changing the pulse width. In a digital system, an integral number of steps related
to the clock frequency is used as the pulse width. Thus, there are two frequencies in
the system: the clock frequency, and the PWM frequency. There is only one pulse

in each PWM cycle, and one pulse is made up of several clock cycles. The pulse

151

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

may be located in three positions: in the start of the PWM cycle, in the centre of

the cycle or in the end of the cycle.

Convert to time

n T clk
Cé)o—blsw 4’{ _C

PWMreq Period_torq . 0
y
Time in PWM
—— D
voltage
24 _|_>
&S

Repeating 0
Sequence

Figure 5.2: PWM Block

Figure 5.2 shows the PWM block in the DC motor controller. In this block, the
pulse was set to the centre. To do this, the total OFF time in each PWM cycle
was calculated by the time in a PWM cycle (Period torq) subtracting the time
for each pulse. The time for each pulse was achieved by the number of steps ON
multiplied by the clock period (T clk). The time reference here was generated by
a ramp tooth sequence repeating on the PWM frequency. It reset its output every
PWM cycle. When the time reference reached half of the OFF time, the block
delivered 24 volts to the output. When the time reference reached half of the OFF

time plus the time for the pulse, the block switched the output from 24 to 0 volts.

5.2.2.3 Complete Model

The complete model for a brushless DC motor is shown in Figure 5.3.

The Reference Speed is in the unit of RPM. The speed output of the Motor

is in the unit of rad/s. Both of them should be converted to Hz before they are fed

152

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

Speed Torque
Convert to Hz Controller Controller

PID PID » 0 w »{30/pi
voltage —» Voltage . w ;D—' D

PWMreq ! >
Motor Scope

PWM

1/(2"pi)L

Figure 5.3: Complete Modal for a Brushless DC Motor

into the sum block, because the speed controller was designed to require a speed
error in Hz. The speed controller and the torque controller were modelled by two
PID blocks. The error between the instantaneous current, from the Motor, and the
required current, calculated by the Speed Controller, was input to the Torque
Controller to find out the amount of drive. The PWM, triggered by a pulse
generator, worked out the voltage to drive the motor according to the output value
from the Torque Controller. The two outputs of the Motor: speed (converted to

RPM) and current were monitored by a Scope.

5.2.3 System Analysis

The system parameters were obtained from [Bla96|. They are: L = 0.04mH; R =
0.7ohms; J = 107%kgm?/s*; E = 1.53 x 1072Nm/A; K,, = 0.0153Vs/rad; D =
10°Nms; ref = 6000RPM. The PID coefficients for the speed controller are
K, =0.024; K; = 0.023; K; = 0. Those for the torque controller are C}, = 0.003;
C; = 2881; C; = 0. The clock frequencies for the speed controller and the torque
controller are 1 kHz and 30 kHz. Applying them to the model and simulating the
model, it gave the resulting waveforms as shown in Figure 5.4.

The top waveform is the angular velocity and the bottom one is the current.
When the system was started up, the actual speed was 0. The speed was increasing
rapidly within the first 0.5 minutes. After the overshoot, it stabilised at 6000 rpm

which was the desired speed. By zooming in the waveform for the angular velocity,

153

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

8000

6000 /

Speedy
(RPM) 000

2000

6

4

| !
curent) (AN | T AR RN T T

. (It i W

4

8 10

_h .
m o

0 2
Time

Figure 5.4: Waveforms for the Brushless DC Motor

it can be seen that the velocity is oscillating between 5999.96 to 6000.01 at a high
frequency at about 30kHz (the PWM frequency). There was a high pulse at the very
beginning in the current waveform, which was necessary to drive the motor from rest
to a high speed. With the speed being stable, the current oscillated around 0 amps.
The oscillations for the angular velocity and the current are apparently caused by
the PWM.

The system worked as it expected. As the initial motor speed was 0, the difference
between it and the reference speed was significantly large. The large difference
demanded a large current to drive the motor. The current controller made this
demand reality. Driven by the large current, the speed increased rapidly. With the
speed increasing, the speed error decreased, which lowered the demand current. As

the result, the change rate of the speed was lower and lower, and finally, stabilised

154

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

at the reference speed. When the speed stabilised, the error of the speed became 0.
The speed controller was dominated by the integral term, which made the demand
current oscillate around 0.

To analyse the stability of the system, the model was linearised by the Control

Design tool in Simulink. The open loop transfer function for the angular velocity is:

248.5s + 2.386 x 108s 4 2.287 x 10®

= . 5.2.5
G(s) st +1.751 x 10%s3 + 7.084 x 10652 + 3.174 x 107s ()

200

150 oo

Magnitude (dB)

sool i il

Phase (deg)

270 =i il bbbk iii] IR AN gl fede ik iidil
10° 10" 10° 10' 10° 10 10* 10° 10° 107 10

Figure 5.5: Bode Plot for the Open Loop of the Brushless DC Motor System

The Bode plot [FPENO06] is shown in Figure 5.5. From the Bode plot we can see
that the Phase is about —97° when the magnitude is 1, or 0 dB, and the magnitude
is about -54 dB, i.e., the absolute value is between 0 and 1, at —180°. According to

the stability criterion stated in 2.4.3.1, the system is stable.

155

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

5.3 Asynchronous Solutions

5.3.1 Introduction

The synchronous model for the brushless DC motor system has been built and was
analysed in the previous section. In the synchronous solution, the global clock is
necessary. The shortcomings of the global clock solution include the problems of the
propagation delay, the clock skew and EMI from the high frequencies, etc. All these
problems may affect the overall performance. Therefore, it is important to discuss
the asynchronous solutions for this system.

There are three different time domains in this system. The first one is the torque
controller which executes at a high speed. The second one is the speed controller
which runs at a comparatively lower frequency. The third one is the shaft encoder
whose sampling rate relies on the speed of the shaft, i.e., non-uniform. These three
parts would be running in their local clock frequencies, therefore, the whole system
could be implemented as a GALS system. The communications within them need

to be carefully investigated.

5.3.2 Buffer solution

One of the asynchronous solutions is using a buffer between two different time do-
mains to cope with the synchronisation. The data provider stores the data into the
buffer; the data receiver reads data from the buffer. The longer the buffer is, the
more the asynchrony can be tolerated.

The drawbacks of the buffer solution are obvious. It only suitable for connecting
two processes whose speeds are close to each other. If one process is faster than the
other, the buffer will always be full or empty. The faster process will have to wait
until the other process reads a data item from the buffer or writes a data item to

the buffer. Therefore, its speed will be drawn to the same speed as the slow one.

156

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

Furthermore, the speed of whole system will be drawn to the same speed as the
slowest process.

In motor control systems especially, if the inner and outer loops are not tempo-
rally decoupled, potential digital hazards such as deadlocks can propagate through
from one loop to another. The function of the inner control loop is normally safety-
critical, because even temporary failure there could have catastrophic effects such
as causing the power electronic elements or fuses to fail. If such a motor is used in
a safety-critical application (for instance in an aeroplane fuel pump), such failures
which cannot be recovered on-line must always be avoided. As a result, the capabil-
ity of the inner loop to continue functioning even when the outer loop has stopped
working is of vital importance. This means that even though both the speed con-
troller and the torque controller may be integrated into the same piece of silicon,

they must in reality be temporally independent of each other.

5.3.3 DAC-ADC solution

Another asynchronous approach could be that the link between the speed controller
and torque controller is in effect implemented as an analogue connection, with the
digital output from the speed controller first converted into analogue then re-sampled
to provide the input for the torque controller. This kind of temporal decoupling is
essential in these kinds of distributed systems.

Assuming the same technology is being used to implement them in hardware,
the part of the hardware where the speed controller is implemented could have large
amounts of excess computational capacity due to the difference in speed require-
ments for the speed controller and the torque controller. This makes it attractive
to attempt to make use of this capacity for other tasks, i.e. to effectively implement
the speed controller part as one of the threads in a multi-tasking processing ele-

ment. This makes it possible for its progress to be affected by other factors outside

157

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

the immediate control system boundary. Well-implemented operating systems such
as real-time kernels may take care of the safety-critical implications of such com-
plications by ensuring that critical threads do not wait for information from other
threads.

At the basic hardware level of the data connection between the torque controller
and the speed controller of an embedded hard-wired controller chip, this kind of non-
blocking communication can be implemented by using an analogue link. However,

this implies an analogue/digital hybrid chip, and this might not be practical.

5.3.4 Solution with ACMs

With ACMs, the same kind of temporal decoupling stated in the previous section
can be realised without resorting to inserting an analogue wire between two digital
devices. The Pool type ACMs, especially, mimic this function of an analogue wire
perfectly. When a Pool is "full", the writer overwrites one of the items in it instead
of waiting for a space to appear, and when it is "empty" the reader rereads the item
it read during the previous cycle instead of waiting for a new item to appear. This
is functionally the same as connecting the writer with the reader through a Digital
to Analogue (D/A) and Analogue to Digital (A /D) converter pair, assuming perfect

level-matching in the converters.

5.4 Asynchronous Model

5.4.1 Introduction

To investigate the asynchronous solutions for the system, an asynchronous model
should be built. As known, handshake protocols are used in asynchronous commu-
nications. The components that need to communicate with the other time domains

will have to be redesigned with handshake interfaces. As discussed in Chapter 4,

158

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

handshakes can be modelled in Stateflow, these components are to be remodelled
in Stateflow. The components include two controllers and an ADC for the speed
output from the motor. The ADC was not shown in the model stated in Figure 5.3,
because MATLAB itself had already converted the speed into a digital form and
delivered it synchronously. However, in the asynchronous model, an asynchronous
ADC had to be discussed because it only executes when it is necessary and would

trigger the followed asynchronous communication component.

5.4.2 Asynchronous PI Controllers

As stated in Chapter 2, a PID controller combines proportional, integral, and deriva-
tive control actions together, as shown in Figure 5.6. The generic transfer function
is:

PID Controller

K,

Integral

h(t)

K/s [—e

Gy(s)

Derivative

Figure 5.6: PID Controller

K;
H(s) = K, + ~ + Kgs (5.4.1)

or

des(t)
dt

h(t) = Kyes(t) + K; / t es(t)dt + Ky (5.4.2)

159

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

K,, K; and K, are the proportional, integral and derivative coefficients, k(%) is
the output signal, e;(t) is the error between the actual and the reference input signal.
Because neither of the two controllers in this motor system contain the derivative
term, we only discuss the PI controller case here. A controller may receive data
from one process, and deliver its output to the other process. If both of these two
processes are executed in different speeds to the controller, the handshake interfaces

have to be added to both the input and the output of the controller.

idle [calculate==1]
[w_ack==0&&calculate==08&&r_ack==0] [r_ack==1]
Pl
done [w_ack==1] en: integ+=err*dt;
en:w_req=0; = Data_out=err*Kp+integ*Ki;
k w_req=1;

Figure 5.7: Asynchronous PI Controller Model

The PI calculation could be carried out within one State, and the input and the
output handshake interfaces were implemented in two States. The Stateflow model
of an asynchronous PI controller is shown in Figure 5.7.

Here, calculate signal is the trigger of the execution, r req is the request send-
ing to the previous process for seeking data, w_req is the request sending to the
following process for delivering the result, »_ack and w_ ack are the corresponding
acknowledge signals, err is the error signal, dt is the time difference between two

calculations, integ is the integral, and Data_ out is the output data.

160

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

This is how it works: the chart is initially in the idle state. When a calculate
signal triggers it, a request (r_req) is sent to the previous process for seeking data.
After receiving the acknowledge (r_ack), it releases the request (r_req) and then
performs a PI calculation in state PI. Firstly, accumulate the product of err and
dt to find out the integral (integ). Secondly, work out the result (Data_ out) by
adding the P and I terms. When Data_ out is calculated, a request (w_req) is sent
to the following process for delivering the result. After receiving the acknowledge
(w_ ack), the model releases the request (w_req). When both the two acknowledges
(r_ack and w_ack) and the trigger signal (calculate) are withdrawn, a whole cycle
is completed. The chart goes back to the idle state.

Here, the trigger signal (calculate), the acknowledges (r ack and w_ack), the
time difference (dt) and the error (err) are the input signals. The result (Data_ out)

and the requests (r_req and w_req) are the output signals.

5.4.2.1 Speed Controller

The speed controller in this system receives data items from the ADC and sends
its output to the current controller. The execution speed of the ADC depends on
the angular velocity of the shaft in the motor, and the current controller executes
at a high frequency compared to the speed controller. Both the ADC and the
current controller are in a different time domain to the speed controller, therefore,
the handshake interface for both the input and the output of the speed controller
should be retained.

In addition, to protect the transistor in the PWM, the desired current should be
limited within a certain range. If the calculated current exceeds the limit, the output
has to be set to the nearest bound. This could be modelled within an additional
state and transitions between PI and done. As shown in Figure 5.8. The calculation
result was assigned to tmp instead of Data_out in this case. If tmp exceeded the

range between the upper limit (limit_ up) and the lower limit (limit_low), Data_ out

161

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

[calculate==1]

[w_ack==0&&calculate==08&r_ack==0] [r_ack==1]

[tmp>=limit_up]/Data_out=limit_up; [Pl
1 en: integ+=err*dt;
, tmp=err*Kp+integ*Ki;

[tmp>limit_low&&tmp<limit_up]
/Data_out=tmp;

[tmp<=limit_low}/Data_out=limit_low;"

Figure 5.8: Stateflow Model of a Speed Controller

would be set to the nearest limit. Otherwise, the output of the controller would be
the calculated result. After the output was determined, the controller would send

the write request to the component that followed.

5.4.2.2 Torque Controller

The torque controller receives data from the speed controller and sends its output
to the PWM. As in the different time domains, it needs a handshake interface
for receiving data from the speed controller. As known, the output of the torque
controller is the amount of drive in form of a pulse width for each PWM cycle;
therefore, the controller should work in the same frequency to the PWM. As a result,
there is no need to use a handshake interface for handling the communication for
its output. Furthermore, because the pulse width can only be from 0 to full, the
output should also be limited.

Compared to Figure 5.8, the differences in Figure 5.9 include removing the hand-
shake interface for the output (state Write and the transition following) and one of

the three transition conditions "w_ack==0" after the done state.

162

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

[calculate==1]

[calculate==0&&r_ack==0] [r_ack==1]

- o . Pl
[tmp>=limit_up]/Data_out=limit_up; 3 en: integ+=errdt;

[tmp>limit_low&&tmp<limit_up]/Data out=tmp: 2| tmp=err*Kp+integ*Ki;
[tmp<=limit_low]/Data_out=limit_low;

Figure 5.9: Stateflow Model of a Torque Controller

5.4.3 Asynchronous ADC

The asynchronous ADC is used to convert the analogue position information ob-
tained by the sensors into the speed in a digital form asynchronously. In the motor
system, it is actually a shaft encoder.

As stated before, the speed of the motor is calculated by dividing the angle be-
tween two sensors by the time interval between two pulses generated by the sensors.
In the asynchronous system, the speed data should be generated whenever the sen-
sors trigger. At this time, there are two parameters which need to be measured: the
angle and the time interval. Angle measurement needs to be mentioned here. In the
real motor, the angle is known, however, it is an internal value in the motor block
which cannot be obtained directly in the Simulink model. To measure the angle,
the speed output from the motor needs to be integrated. The time interval could
be obtained by the number of a high local frequency clock, or the capacity in an LC
circuit, etc.

Modelling the asynchronous ADC includes modelling the trigger of the sensors
and modelling the speed calculation.

The trigger could be modelled as the condition that the input angle reaches to

163

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

certain levels. The step of these levels is the angle between two adjacent sensors.
The following is how it can be achieved. One level is taken, normally 0 rad, as the
initial reference. When the angle goes beyond the range [reference, reference + step)
this represents the sensors triggering. At this time, the ADC updates the reference
to the level which it just crossed, and then performs a speed calculation.

The speed calculation is calculated by dividing the angle difference by the time
difference between two triggers. The trigger event should be that the angle reaches
the next or previous level, in other words, the trigger condition is [angle == reference
+ step| or |angle == reference]. The angle difference should be exactly the step
between two levels that is 60 degrees or pi/3 rad in this example. However, in
MATLAB modelling, the angle itself is normally a floating point number, and the
reference and step are also floating point numbers. In MATLAB, there is a known
problem that the comparison of two floating point numbers could hardly be equal,
that is, the condition of [angle == reference + step| or [angle == reference| could
hardly be true. To make it work, the trigger conditions are changed to the angle
crossing instead of reaching the levels, i.e. [angle >= reference + step| or |angle
< reference]. Under this condition, the angle difference would not be the constant
step any more, but the difference between the input angle for the current trigger and
that for the previous one. Therefore, after the speed calculation, the current input
angle should be stored so that it could be used in calculating the angle difference in
next cycle. The time difference could be calculated in the same way.

Figure 5.10 shows the model of the asynchronous ADC in Stateflow. The start
state was used to start the whole system. The two transitions after the idle state
model are the trigger of the sensors. The speed calculation was performed in output
state. Because the speed controller requires a speed in the unit of Hz, the output
had to be converted from an angular velocity (rad/s) to a frequency (Hz), which
was achieved by dividing by 2 x 7. After the calculation, the current time and angle

were stored, and then a write request was sent. Normally, it should wait for an

164

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

[inp>=ref+step]/ref+=step;

[inp<ref J/ref-=step;

output
en:out=(inp-4np_old)/(t+told)/(2*3.142);
req=1;
told=t;inp_old=inp;
ex:req=0;

Figure 5.10: Stateflow Model of an Asynchronous ADC

acknowledgement to complete the handshake. However, the ADC must be executed
in real-time because the extra wait for an acknowledgement in the cycle may cause
missing samples and incorrect speed outputs. Therefore, there was no condition in

the transition between the state output and idle.

5.4.4 Whole System

Having all the essential components modelled, the whole system could be built as
shown in Figure 5.11.

Compared to the model in Figure 5.3, the two PID blocks were changed to two
blocks containing Stateflow models; an integrator and an asynchronous ADC were
added in the feedback link in the outer loop; two intermediate blocks were added,
one was between the ADC and the speed controller, and the other was between the
speed controller and the torque controller. These two intermediate blocks were the
asynchronous communication connections, they could be buffers or ACMs.

With inclusion of buffers or ACMs into the system, delayed (because of wait), re-

165

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

dt dt
torque Control
Convert to Hz at Speed Control LoJa
fr irt—»{Data In Data Out i Output—» 0 o] ”@’]
Reference —»ifs J—b w_req w_ack —>lis voltage —» Voltage . R
- write_req K —‘ o » PWMreq
P write_ack r_req r_acl r_acl read_req |- —
TUT > i calculate PWM otor Scope
read_req]
» read_ack
[0}
anj -
Data Out Dataln out in;: <
w_ack w_reqe« L g % step Integrator
r_ack r_req 4 ack]
ADC step
E—"

Time reference

Figure 5.11: Model of the Whole System

peated (because of re-reading) and missing (because of over-writing) samples could
occur during transmission. It is worth discussing the impact of them on the be-
haviour of this system.

A short delay would temporarily break the loop, and worsen the system per-
formance [ZRGO04]. The longer the delay, the worse the systems performance. A
sufficiently long delay would effectively break the loop, and the system would fail
because of it.

Missing samples and repeated samples which arrive at the correct moment are
equivalent to adding noise to the system. However, the noise is small enough to be
ignored. For example, consider a signal is sampled by an asynchronous ADC whose
step is z, and a process, who uses the signal as an input, executes at a rate of 1/Ts.
If the signal is a constant, the asynchronous ADC will only sample once at the initial
stage, and the process would read the same data item every cycle. The equivalent
added noise is the difference between the actual value and the level, which is smaller
than z. If the signal changes comparatively slowly, the previous data item is reread
by the process only when the signal has not reached the next level in asynchronous
ADC. Thus, the equivalent added noise is also the difference between the actual

value and the level, which is still smaller than z. As z is the smallest unit in the

166

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

asynchronous ADC, any value smaller than that has to be ignored. If the signal
changes comparatively fast, some data items could be missed, and the process reads
the latest data item provided by the asynchronous ADC. All the samples missed
would be within the time period Ts. As Ts is the smallest time unit in the process,
the missed samples within this unit would not affect the performance of a real-time

system.

5.5 Results with Different ACMs

5.5.1 Introduction

In this section, the behaviour of the brushless DC motor system with inclusion of
different types of ACMs will be shown and compared. As Channel can be known as a
buffer with a handshake interface, we will take Channel as buffer in the simulations.

As the reference speed is 6000 RPM, the speed output would be about 100
Hz. The 6 sensors located in the shaft triggers the asynchronous ADC running at
around 600 Hz at the steady state. Compared to the speed controller, which runs
at 1 kHz, the asynchronous ADC is slower. That is, the speed controller is a busy
reader, while the asynchronous ADC is a lazy writer. A Pool or a Message should
be used to manage the communication between the two processes. However, Signal
and Channel will still be included into the system so that we can see the different
system performance according to the different types of ACMs.

Similarly, the torque controller, running at 30 kHz, is a busy reader, while the
speed controller is a lazy writer. A Pool or a Message should be used to manage the
communication between the two controllers. Using the other two types of ACM will
introduce blocking to the torque controller, which may cause the current to go out
of control, consequently overheating the PWM transistor and damage the system.

The simulations in this section will be divided in two catalogues, those in a fault

167

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

free case and those in a fault case. In the fault case, we will introduce blocking into
the outer loop. In the asynchronous systems, the blocking in the outer loop should
not propagate to the inner loop, and this would prevent the brushless DC motor
system from damage.

Nyquist or Bode plots are often used in designing both continuous-time and
discrete-time feedback-systems and predicting their performance. However, these
tools cannot be used to illustrate the impact of including ACMs. The inclusion
of ACMs will introduce varying delay. Although a constant delay can be easily
modelled in MATLAB by a function called "pade", the varying delay cannot be
easily modelled as a transfer function. Therefore, it is hard to apply these techniques

to illustrate the impact of including ACMs.

5.5.2 Simulation Results for the Fault-Free Case

There are two ACMs in the system. To investigate different behaviours according
to different types, one of the two ACMs can be fixed and the other changed.

A Channel was fixed into the feedback link, which would block the speed con-
troller temporarily, and varying the ACM between the two controllers. In these
cases, the execution rate of speed controller would depend on that of the asyn-
chronous ADC which could not reach 1 kHz.

The simulation results for the Pool-Channel case and those for the Message-
Channel case were similar to each other. The resulting waveforms are shown in
Figure 5.12.

Compared to Figure 5.4, the overshoot of the speed in Figure 5.12 was smaller.
However, in general, these two figures illustrated similar information: the speed
increased rapidly at start up stage, reached a peak at about 0.5 second, then declined
and stabilised at the reference speed eventually. The current was largest at the

beginning, then declined and oscillated around 0 amps.

168

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

8000

6000
Speed /

(RPM) 4000

2000

2
Current (A)

Time

Figure 5.12: Simulation Results for the Pool-Channel Case

The simulation results for the Signal-Channel case and those for the Channel-
Channel case were similar to each other. The resulting waveforms are shown in
Figure 5.13.

The performance shown in Figure 5.13 was significantly worse than those in
Figure 5.12 and Figure 5.4. The current increased slowly at the beginning. The
response time of the speed was more than 3 seconds longer. The overshoot of the
speed was also larger than it was in Figure 5.12.

All this behaviour could be explained as following: because of the use of the
Signal or the Channel between two controllers, the torque controller had to wait for
29 cycles to obtain an updated data item. During these 29 cycles, the inner loop
was blocked, so the PWM could only supply the voltage according to the last value

it received to drive the motor, which would normally not be sufficient.

169

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

8000

/\

6000

Speed

2000

4 T \ ‘

2
LK i
Current (A) R [‘

0 2 4 6 8 10

Time
Figure 5.13: Simulation Results for the Signal- Channel Case

As the torque controller is exactly 30 times faster than the speed controller, if
the torque controller was managed to read once every 30 cycles, implemented by
including a counter into the controller, the performance was improved as shown in
Figure 5.14.

Compared to Figure 5.12, the speed curves were very similar. The difference was
focused on the current. The current in Figure 5.12 started from a high value, about
5 amps, and then oscillated at 0 amps with amplitude of 2 amps. The current in
Figure 5.14 started from 0, increased to around 4 amps, and then oscillated at 0
amps with amplitude of 2 amps.

The slower start of the current was because the Channel in the feed back link
would block the speed controller at the start-up stage. This would make the speed

controller execute at a rate much lower than 1 kHz. Although the torque controller

170

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

8000

6000

Speed
(RPM) 4000

T

2000

Time

Figure 5.14: Simulation Results for the Signal- Channel Case - Refined

updated its input at only 1 kHz, the Channel (Signal) between the two controllers
would still block the torque controller temporarily. Because of the existence of the
temporary block in the torque controller, the current response would be slower.

Figures 5.15, 5.16, and 5.17 show the bar graphs of the rising times, peak times
and peak values for analogue case and the cases when the four types of ACMs were
included between the two controllers while a Channel or a Signal in the feedback
link.

The reasons for the differences between these two categories were that although
the Channel or the Signal in the feedback link reduced the speed of execution in the
speed controller, the Pool or the Message would keep the torque controller running
normally, which would guarantee the current under control. The Channel or the

Signal between the two controllers would still block the torque controller, especially

171

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

0.4

0.3886

0.35

0.3042 0.3042

0.3

0.25

0.2

Rising Time (s)

0.15

0.1

0.05

Analogu Pool Message Signal Channel

ACMs

Figure 5.15: Bar Graph for Rising Times for the System for a Step Input

0.8

0.715 0.715

Peak Time (s)

Analogue Pool Message Signal Channel

ACMs

Figure 5.16: Bar Graph for Peak Times for the System for a Step Input

172

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

7000

6800 - .
6682.4

6600 -

6364.5 6364.5

6400

6326.7 6326.7

6200

6000

Speed (RPM)

5800

5600

5400

5200

5000

Analogue Pool Message Signal Channel

ACMs

Figure 5.17: Bar Graph for Peak Values for the System for a Step Input

at the start-up stage. Because at this stage, the actual speed was very low, the
sensors would trigger the asynchronous ADC at a low rate. The Channel (or the
Signal) in the feedback link would reduce the execution rate of the speed controller
to the same as that of the asynchronous ADC. The Channel (or the Signal) between
the two controllers would also reduce the execution rate of the torque controller, but
in different manner. The torque controller would run in the following fashion, after
every 30 cycles, it was blocked for waiting for a new data item. The slower response
of the current would slow down the response time of the speed. As a result, the
peak value would be larger, because the motor could not reduce the current in time.
With the angular velocity increasing, the blocking duration was decreased.

The analogue case had a shorter response tine and a larger overshoot value
compared to the case of including ACMs. This is because the ACMs, especially the
one in the feedback path, introduced a delay into the system and jitter to the speed

controller. On one hand, the delay and jitter made the system response time longer.

173

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

On the other hand, at the start up stage, they resulted in larger speed errors than
the actual ones, and consequently, larger drives to correct the errors, which made
the peak values smaller.

The second group of the experiments were putting a Pool into the feedback
link and varying the ACM between the two controllers. In these cases, the speed
controller would never be blocked and its execution rate would be fixed at 1 kHz.

Figure 5.18 was the simulation results for the Channel-Pool case. It was the
same to the Signal-Pool case. In these two cases, the refined torque controller was
used. Figure 5.19 was the simulation results for the Pool-Pool case which was the

same as that for the Message-Pool case.

8000

6000 /

Speed oo
(RPM)

2000

Figure 5.18: Simulation Results for the Channel-Pool Case

There were no significant differences between Figure 5.18 and Figure 5.19. In

the Pool-Pool case, there were no blocks in the system at all. The performance was

174

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

8000

6000 /

Speedy
(RPM) 000

2000

6

4

| !
curent) (AN | T AR RN T T

. (It i W

4

8 10

_h o
m o

0 2
Time

Figure 5.19: Simulation Results for the Pool-Pool Case

close to that shown in Figure 5.4. In the Channel-Pool case, there was no block
in the speed controller, which made it run at 1 kHz. The refined torque controller
only updated its input at 1 kHz, therefore, the Channel could handle it without
introducing any blocks in the torque controller. Although the torque controller
in the Pool-Pool case enquired from its input every cycle (30 kHz), the data was
updated by the speed controller at a rate of 1 kHz, that is, the torque controller used
the same data item for the calculations 30 times before it could be changed. This
is equivalent to enquiring once then performing 30 cycle calculations. This could

explain the similarities between Figure 5.18 and Figure 5.19.

175

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

5.5.3 A Fault within the Outer Loop

From the previous section we can see that a Channel in the feedback link could
hardly make the speed controller run at its full rate (1 kHz). A significant low
motor speed could block the speed controller. Therefore, Pool or Message should
be chosen as the ACM in the feedback path.

The previous section also showed that a refined torque controller would improve
the system performance significantly when the Channel was between the two con-
trollers. However, a fault in the outer loop would still block the torque controller,
which may cause the current to go out of control and damage the switching transistor
in the PWM.

Suppose that a load which was 110 times the initial load (D) was added at the
fourth second and then a load, which was 10,000 times D, was added at the sixth
second. A fault which blocked the outer loop was forced at 5.5 seconds. If there is a
fault in the outer loop, the speed controller will be blocked. The Channel between
the two controllers will propagate the fault to the inner loop, which will block the
torque controller. This will damage the system. The reason will be discussed later.

Figure 5.20 shows the simulation result of the Channel-Pool case.

In this Figure, the top waveform is the speed of the motor, the middle one is
the current, and the bottom one is the average current. Because there were no
differences in the first four seconds between the cases shown in Figure 5.18 and
Figure 5.20, only the performance after the fourth second will be discussed.

In the first waveform, the speed was dropped rapidly from the 4th second due
to the added load. After reaching the valley, it gradually increased. At 5.5 seconds,
where the fault occurred, the speed stopped increasing and levelled off. At the 6th
second, when the other significant large load was added, the speed dropped to and
stayed at a near 0 level.

In the second waveform, the current was increased rapidly from the 4th second.

176

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

5000,
Speed
(RPM)
00 2 4 6 8 10
20
Current
A O
_200 2 4 6 8 10
20
Average
Current 0
(A)
_200 2 4 6 8 10
Time

Figure 5.20: Simulation Results for the Channel-Pool Case with a Fault

When the speed reached the valley, the current slowed down its increasing rate. At
5.5 seconds, the current stopped increasing and oscillated at a certain level. At the
6th second, the current jumped to and oscillated around 15 amps. The average
current in the third waveform illustrated the change of the current more clearly. It
can be seen that the current had exceed the limit. The high current would overheat
the transistor in the PWM.

Equation 5.2.3 and 5.2.4 must be referred to, to explain the reason. When
the load was added in the 4th second, the denominator in Equation 5.2.3 would
increase. As a result, the speed would decrease. The decreased speed would increase
the numerator in Equation 5.2.4, accordingly increasing the current. The increased
current would feed back to Equation 5.2.3 to make the speed rise up again. At

the same time, the difference between the reference and the actual speed required

177

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

a larger current. The torque controller would send the information to the PWM to
increase the voltage. In the real life, it can be easily understood: we have to put
more energy (voltage) to maintain the motor speed when a load is added.

When the fault occurred, the Channel blocked the torque controller. The PWM
generated a constant voltage. The constant voltage led to a constant current ac-
cording to Equation 5.2.4, while the constant current drove a constant speed, which
was lower than the reference speed, according to Equation 5.2.3. In the real life,
when the driving voltage stops increasing, the speed will stop increasing at the same
time.

At the 6th second, an extremely large load was added. This load almost stopped
the rotation of the motor. The speed nearly dropped down to 0. Because the
torque controller was blocked by the Channel, the applied voltage could not be
updated. The fall of the speed increased the current, according to Equation 5.2.4,
to a significant large value. This caused a fatal damage to the system.

As known, the torque controller is used to maintain the current under control. If
the fault had not been propagated to the torque controller, the system would not be
damaged by the bursting current. To stop this propagation, a Pool could be chosen
to play the role of delivering data between the two controllers.

Figure 5.21 shows the resulting waveforms of the Pool-Pool case.

The current in this figure oscillated at a level under 5 amps after the huge load
was added at the 6th second. It shows that the Pool did stop the propagation of
the fault.

Another fact was that the amplitude of the oscillation was also decreased after
the 6th second. To explain this, we have to refer to Equation 5.2.4 again.

To maintain the current under control, the torque controller had to reduce the
applied voltage to counteract the decreased back EMF to respond to the speed
fell. As known, the applied voltage is an equivalent voltage generated by switching

between 0 volts and 24 volts in the PWM. Reducing the voltage was actually de-

178

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

5000
Speed |

(RPM)

OO 2 4 6 8 10

15

10
Current 5
A,

0 2 4 6 8 10
10
Average

Current g N s
(A)

4
00 2 4 6 8 10

Time
Figure 5.21: Simulation Results for the Pool-Pool Case with a Fault

creasing the pulse width. When the pulse width decreased, the charging time for
the current would also be decreased. With the same time constant, it appeared as

reduced amplitude.

5.6 Further Discussions

The simulation results in this chapter showed that, in this particular example, all
the Pool type ACMs could be replaced by the Message type ones, and all the
Channels could be replaced by the Signals. In this example, the writers are slower
than the reader, which ensures that overwriting would never happen, while rereading
occurs frequently. The overwriting property of the ACMs is not important. Without

considering the overwriting property, a Pool is the same as a Message, and a Channel

179

CHAPTER 5. APPLICATION IN CONTROL SYSTEMS

is the same as a Signal.

However, this is not always the case. For instance, if the reference speed increased
to 18000 RPM, the asynchronous ADC may deliver the data items around 1.8 kHz,
which is faster than the rate of the speed controller. In this case, the performance
of the system with inclusion of the four type ACMs into the feedback link may vary.

This case was not discussed because an increase of the reference speed may

accompany the need of increasing the frequency of the speed controller.

5.7 Conclusions

In this chapter, a brushless DC motor control system was used as an example to
investigate the effect of including various ACMs into a control system, especially
when analogue parts are present.

The following conclusions could be drawn from this chapter. The number of the
ACMs needed in a system is determined by the number of time domains existing in
this system and how these time domains connected with each other. A handshake
interface needs to be added to the components connected with ACMs. ACMs could
play the role of delivering data items between the components running at different
speeds in a control system. And the most importantly, the Pool type ACM has the
ability to prevent a fault from propagation which could protect the control system

from being damaged.

180

Chapter 6

Conclusions and Future Work

As important components for asynchronous communications, the ACMs were in-
troduced [Sim90|, studied [Sim92, XC02, Cla00, DC01, Dav97| and implemented
[SXY00b, Sha03, XYST00, YX01]. The main aims of this thesis are building ACMs
at the application level and investigating the effects when ACMs are included in a
control system.

To build ACMs specified by Petri nets, a method of converting Petri nets to
Stateflow models is proposed. A 3-slot Signal was modelled using this method.
Because the model built by this method is concentrating on the detail of the inter-
nal structure, which is complex and not necessary when investigating applications,
another modelling method was proposed. By this method, ACMs are modelled
according to the algorithms. The standard ACMs (Signal, Channel, Message and
Pool) and the buffered ones are modelled using this approach, and studied. With

the models, an investigation of ACM applications in control systems is proposed.

6.1 Conclusions

ACMs are often described in Petri nets. To model ACMs, a conversion method from

Petri nets to Stateflow was proposed in Chapter 3. Petri nets models are built by

181

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

linking basic connections together. These connections include: linear connections,
forks, joins, choices and merges. The conversion approach is based on successfully
converting these basic connections. Because of fundamental differences, the direct
conversion is only suitable for well-formed Petri nets. Conversion of a pipeline be-
comes difficult because of the One Active State Rule in a Stateflow environment.
Instead of translating a transition in Petri nets to a transition in Stateflow, it has
to be modelled as two states, one of which represents when the transition is enabled
and the other indicates when it is disabled.

The control paths of ACMs could be modelled in MATLAB by two approaches.
The first one is translating Petri nets specifications into Stateflow. This approach is
based on the method of transforming Petri nets to Stateflow explained in Chapter
3. The models created by this approach are concentrating on the internal structures
and closer to hardware implementations, since circuits could be built with the same
PN specifications by using direct translation techniques [BY02]. The datapaths
require 1-hot input control variables, which also make models complex. A 3-slot
Signal was used as the example to show that both the model in MATLAB and the
hardware circuits implies the same properties. In investigating applications, internal
structures are not necessary to know and complex models are not required if simple
ones exist, therefore, the other approach was proposed for building simple models.

The second approach is building models directly from algorithms. This approach
is focused on the behaviours of ACMs. With analysing algorithms, information
exchange pairs between reader, writer and datapath could be found. Those pairs
for referencing and updating control variables are simply modelled as comparisons
and / or assignments. Other pairs are modelled with handshakes. After linking the
handshakes and inserting the corresponding control variables, the controller is built.
The datapath only depends on the number of slots in the memory. A 3-slot Signal
shares the same memory structure with a 3-slot Pool. Furthermore, the datapaths

of 3-slot ACMs are all the same. This applies to all the 2-slot and all the 4-slot

182

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

ACMs. The three types of memory models described in Chapter 4 gave all of the
possibilities for ACM datapaths. As a result, the memory models can be taken as
components in a library while modelling ACMs. A 2-slot Channel, a 3-slot Signal
and a 4-slot Pool were modelled with this approach. The simulation results showed
that these models work as they were expected to.

To investigate buffered ACMs, the same method was applied to build models.
Buffered ACMs could be described in two ways: a global view and a modular design.
The former one centralised the control path while the latter distributed it into
identical cells. Increasing or decreasing the size of the buffer will result in the
redesigning of the datapath for the global view model, and simply adding another
cell for the modular design one. Because the algorithm for the latter is much more
complex than that for the former, it is much easier to build a global view model in
MATLAB. However, a modular design model is more suitable for hardware designs
since redesigning always costs extra.

An RR-BB ACM was built in both the global view form and the modular design
structure. Both of the two models showed exactly the same properties. These
properties include: the writer writes data items to the buffer until the ACM is full,
and, at this time, it does not respond to further requests until the state is changed.
The reader reads the data items in the buffer in order until the ACM is empty, and
it re-reads the latest item until a new one is available. It gives the best performance,
best data continuity and average data latency, when the speed difference between
the reader and the writer is small.

Additional cells normally increase the data continuity while decreasing the data
latency. However, after the cells increase to a certain number, the additional cells
will not improve the performance, and can even increase the data latency and worsen
the data freshness when the writer is faster.

The investigation on the effect of including ACMs into a brushless DC motor

system was proposed in Chapter 5. The inclusion of ACMs would introduce a delay

183

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

and / or temporary block to the system. Delays could be compromised by adjusting
the coefficients of controllers. However, temporary blocking may result in damage
to the system. In the brushless DC motor system, this appeared as an increased
current which could burn out the switching transistor in the PWM. Because Pool
type ACMs would not introduce any blocking, they could be used as the components
delivering data items without blocking between processes which execute at different
speeds. In the example in this thesis, Messages played the same role as Pools did.
This is because, in this specific example, the write processes were always slower than
the read ones, Messages would not introduce blocking either in this case. According
to this fact, it could be said that what type of ACMs to be chosen is determined by
the specifications of systems. If non-blocking is the only concern of a system, the
choice of ACMs type is determined by the speed of the read and writer processes. If
the writer is definitely faster than the reader, a Signal could be used to handle the
communication. If the reader is definitely faster than the writer, a Channel could
be used to handle the communication. If it is neither of the extreme cases, a Pool

could be used.

6.2 Future Work

The potential for future research in the areas related to this thesis include several
aspects.

The direct translation approach from Petri nets model to a Stateflow model
proposed in Chapter 3 is still manual. Zhou [Zho03] developed a tool for converting
Petri nets to Stateflows for linear connection in her Master’s thesis. An STG [WB99,
Yak92| format textual file is input as a Petri net model. A corresponding Simulink
model is generated. However, only the linear connection was discussed in the thesis.
Much more study on the complex connections needs to be done for fully automatic

conversions. A successful tool for the Petri net to Stateflow conversion would also

184

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

generate the MATLAB models of ACM automatically from a Petri net specification.

The completion of a tool for algorithm to MATLAB model translations would
be an extended piece of work for ACM modelling. To do this, a standard format for
ACM algorithms should be set up. Although the step by step modelling method has
been developed, the formulated one still needs to be investigated. Combined with
the support from the automatic ACM algorithm derivation, another piece of future
work to be done, an ACM model generator could be implemented.

Only an RR-BB ACM, which only permits re-reading to occur, was discussed in
investigating buffered ACMs. The over-writing strategy requires 2 data slots per cell
rather than 1 [XHC'04]. This makes the algorithms and modelling more complex.
Therefore, more investigations on different over-writing and re-reading strategies
should be carried out. Furthermore, a complete library including both global view
and modular design models for all the four types of buffered ACMs needs to be set
up. The implementation of these into hardware is also an incomplete task.

In Chapter 5, the effects of inclusion of ACMs into a control system were studied.
However, the only consideration of the example was non-blocking, and the write
processes in the system were always slower than the read ones. Further investigation
should be focused on the cases that the write process is faster and which there is
no simple relationship between the rates of two processes. The systems may also
allow a degree of blocking and non-freshness, etc. The investigation is still based
on the experimental results. Theoretical system analysis methods when ACMs are

embedded in also require further research.

185

Appendix A

Testbench for the Cadence

Simulation

This appendix lists the Verilog codes of the testbench for simulation of the 3-slot
Signal in Cadence.

// Verilog stimulus file.

// Please do not create a module in this file.

// Default verilog stimulus.

integer seedl, seed2, seed3;

real c, d;

parameter meanl=1978, mean2=1978;

reg [0:7] tmp[0:2];

integer n;

integer n0O,n1,n2,n3;

initial #700$finish; // similation time is 700ns

// initialise the input data item, the requests and the seeds for
the distributions

initial

begin

186

APPENDIX A. TESTBENCH FOR THE CADENCE SIMULATION

Datain[0:7] = 8’b00000000;
seed1=34;
seed2=443;
seed3=5654;
clear = 1°’b1;
nDatain[0:7] = 8’b11111111;
read_start = 1’b0;
write_start = 1°b0;
#1.11 clear=0;
end
always @ (Datain[0] or Datain[1] or Datain[2] or Datain[3] or
Datain[4] or Datain[5] or Datain[6] or Datain[7])
begin
nDatain[0:7]="Datain[0:7];
end
always
begin
forever
begin
wait(write_done==0&&write_start==0)
//the intervals in the write cycle
begin c=$dist_exponential(seedl,meanl)/1000.0;
// generate a new data item
¢ Datain[0:7]=Datain[0:7]+1;
// request for a new write
write_start=1;
end

end

187

APPENDIX A. TESTBENCH FOR THE CADENCE SIMULATION

end
always
begin
forever
begin
wait(read_done==0&&read_start==0)
begin
// the intervals in the read cycle
d=$dist_exponential (seed2,mean2)/1000.0;
// request for a new read
d read_start=1;
end
end
end
// release the read requests
always @ (posedge read_done)
#0.01 read_start=0;
// release the write requests
always @ (posedge write_done)

0.01 write_start=0;

188

Bibliography

[ASFRO3]

[Bai00]

[BEOO]

[BKR191]

[Bla96]

[BMO1]

E. Allier, G. Sicard, L. Fesquet, and M. Renaudin. A new class of
asynchronous A /D converters based on time quantization. In Proc. In-
ternational Symposium on Advanced Research in Asynchronous Circuits

and Systems, pages 196-205. IEEE Computer Society Press, May 2003.

W. J. Bainbridge. Asynchronous System-on-Chip Interconnect. PhD
thesis, Department of Computer Science, University of Manchester,

March 2000.

A. Bardsley and D. A. Edwards. The Balsa asynchronous circuit syn-

thesis system. In Forum on Design Languages, September 2000.

Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits
Schalij. The VLSI-programming language Tangram and its translation
into handshake circuits. In Proc. European Conference on Design Au-

tomation (EDAC), pages 384-389, 1991.

John Blaiklock. Case study 1: The motor controller - generic specifi-
cation project deliverable 2. Technical report, Dept. of Electrical and

Electronic Engineering., Univ. of Newcastle upon Tyne, UK, April 1996.

Peter Beerel and Teresa Meng. Semi-modularity and self-diagnostic

asynchronous control circuits. In Carlo H. Séquin, editor, Advanced

Research in VLSI, pages 103-117. MIT Press, March 1991.

189

BIBLIOGRAPHY

[Boh96]

|Bru02]

[BS8S]

[BS8Y]

[Bur04]

[BY02]

[Cha84]

[CKK*96]

George A. Bohoris. Trend testing in reliability engineering. Interna-
tional Journal of Quality and Reliability Management, 13:45-54, March

1996.

Michael E. Brumbach. FElectronic Variable Speed Drives (2nd Edition).

Thomson Delmar Learning, January 2002.

C. H. (Kees) van Berkel and Ronald W. J. J. Saeijs. Compilation of
communicating processes into delay-insensitive circuits. In Proc. Inter-
national Conf. Computer Design (ICCD), pages 157-162. IEEE Com-

puter Society Press, 1988.

Erik Brunvand and Robert F. Sproull. Translating concurrent programs
into delay-insensitive circuits. In Proc. International Conf. Computer-
Aided Design (ICCAD), pages 262-265. IEEE Computer Society Press,
November 1989.

R Burch. Monitoring and optimizing pid loop performance. In ISA

Annual Meeting, Houston, 2004.

A. Bystrov and A. Yakovlev. Asynchronous circuit synthesis by di-
rect mapping: Interfacing to environment. In Proc. International Sym-
posium on Advanced Research in Asynchronous Circuits and Systems,

pages 127-136, April 2002.

Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous Sys-

tems. PhD thesis, Stanford University, October 1984.

Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano
Lavagno, and Alexandre Yakovlev. Petrify: a tool for manipulating

concurrent specifications and synthesis of asynchronous controllers. In

190

BIBLIOGRAPHY

[Cla00]

[Dav77]

[Dav78|

[Dav97]

[DCO1]

[DE95]

|Dea92]

[DJO1]

XI Conference on Design of Integrated Circuits and Systems, Barcelona,

November 1996.

Ian G. Clark. A unified approach to the study of asynchronous communi-
cation mechanisms in real time systems. PhD thesis, London University,

King’s College, May 2000.

René David. Modular design of asynchronous circuits defined by graphs.

IEEFE Transactions on Computers, 26(8):727-737, August 1977.

A. Davis. The architecture and system method of ddm-1: A recursively-
structured data driven machine. In Fifth Annual Symposium on Com-

puter Architecture, 1978.

A.C. Davies. Asynchronous communications between locally syn-
chronous subsystems. In Proc. Polish - Czech - Hungarian Workshop
on Circuit Theory, Signal Processing and Applications, pages 7580,
September 1997.

A.C. Davies and 1. G. Clark. Asynchronous communications without
waiting: from the concept to the hardware. In Applied Electronics 2001

conference, Plzen, Czech Republic, pages 55-59, September 2001.

Jorg Desel and Javier Esparza. Free choice Petri nets. Cambridge

University Press, New York, NY, USA, 1995.

Mark E. Dean. STRiP: A Self-Timed RISC Processor Architecture.
PhD thesis, Stanford University, 1992.

Jorg Desel and Gabriel Juhas. "what is a petri net?”. In Unifying Petri

Nets, pages 1-25, 2001.

191

BIBLIOGRAPHY

[DN95]

[Ebe91]

[Esh05]

[FNT99]

[FPENO6]

[Har87]

[HBL199]

[HC03)|

[HP02|

Al Davis and Steven M. Nowick. Asynchronous circuit design: Moti-
vation, background, and methods. In Graham Birtwistle and Al Davis,
editors, Asynchronous Digital Circuit Design, Workshops in Comput-

ing, pages 1-49. Springer-Verlag, 1995.

Jo C. Ebergen. A formal approach to designing delay-insensitive cir-

cuits. Distributed Computing, 5(3):107-119, 1991.

R. Eshuis. Statecharting petri nets. In Beta Working Paper (Int. rep.
WP-153)., 2005.

R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, B. Lin, and
L. Plana. Minimalist: An environment for the synthesis, verification
and testability of burst-mode asynchronous machines. Technical Report

TR CUCS-020-99, Columbia University, NY, July 1999.

Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback

Control of Dynamic Systems. Pearson Education, Inc, 5 edition, 2006.

D. Harel. Statecharts: A visual formalism for complex systems. Science

of Computer Programming, 8(3):231-274, June 1987.

J. M. Hoke, P. W. Bond, T. Lo, F. S. Pidala, and G. Steinbrueck. Self-
timed interface for S/390 I/O subsystem interconnection. IBM Journal
of Research and Development, 43(5/6):829-846, 1999.

Fei Hao and Graeme Chester. Acms in matlab. In 1/th UK Asyn-

chronous Forum, June 2003.

N. Henderson and S Paynter. The formal classification and verification
of simpson’s 4-slot asynchronous communication mechanism. In the In-
ternational Symposium of Formal Methods FEurope, FME 2002: Formal
Methods - Getting IT Right, 2002.

192

BIBLIOGRAPHY

[Huf64]

[HXC*04a

[HXC*04b|

[HXCY04]

[HYC*03]

[ITRO5]

[KAJO1]

[KEMO3]

D. A. Huffman. The synthesis of sequential switching circuits. In E. F.
Moore, editor, Sequential Machines: Selected Papers. Addison-Wesley,
1964.

Fei Hao, Fei Xia, Graeme Chester, Alex Yakovlev, and Ian Clark. Mat-
lab models of acms in control systems. In 1st International Conference
on Informatics in Control, Automation and Robotics (ICINCO-2004),

volume 3, pages 54—61, August 2004.

Fei Hao, Fei Xia, lan Clark, Alex Yakovlev, and Graeme Chester. Rr-bb
algorithm models in matlab. In 15th UK Asynchronous Forum, January

2004.

Fei Hao, Fei Xia, Graeme Chester, and Alex Yakovlev. An acm appli-
cation in broom balancer. In 1st UK Embedded Forum, pages 176-183,
October 2004.

Fei Hao, Alex Yakovlev, Graeme Chester, Fei Xia, Ian Clark, and De-
long Shang. Implementation of a three-slot acm. In Postgraduate Re-
search Conference in Electronics, Photonics, Communications and Soft-

ware, April 2003.
ITRS: http://www.itrs.net/Common/2005ITRS/Home2005.htm, 2005.

D. J. Kinniment, P.P. Acarnley, and A.G. Jack. An integrated circuit
controller for brushless dc drives. In Furopean Power Electronics Con-

ference, pages 111-116, 1991.

Clinton Kelly, Virantha Ekanayake, and Rajit Manohar. SNAP: A
sensor-network asynchronous processor. In Proc. International Sym-
posium on Advanced Research in Asynchronous Circuits and Systems,

pages 24-33. IEEE Computer Society Press, May 2003.

193

BIBLIOGRAPHY

[KKAJ90]

[KKV87]

[KYGO00]

[L.86]

|[Lam86]

[Liu97]

[LPIO1]

[Mar90a]

E. Kappos, D.J. Kinniment, P.P. Acarnley, and A.G. Jack. Design of an
integrated circuit controller for brushless dc drives. In Power Electronics

and Variable-Speed Drives, 1991., Fourth International Conference on,

pages 336-341, July 1990.

Lefteris M. Kirousis, Evangelos Kranakis, and Paul M. B. Vitanyi.
Atomic multireader register. In Jan van Leeuwen, editor, Distributed
algorithms, volume 312 of Lecture Notes in Computer Science, pages

278-296, Jul 1987.

David Kinniment, Alex Yakovlev, and Bo Gao. Synchronous and
asynchronous A-D conversion. IEEE Transactions on VLSI Systems,

8(2):217-220, April 2000.

Devroye L. Nonuniform Random Variate Generation. Springer Verlag,

New York., 1986.

L. Lamport. On interprocess communication. Distributed Computing,

1:77-101, 1986.

J. Liu. Arithmetic and control components for an asynchronous micro-
processor. PhD thesis, Department of Computer Science, University of

Manchester, 1997.

Pasi Liljeberg, Juha Plosila, and Jouni Isoaho. Asynchronous interface
for locally clocked modules in ULSI systems. In Proc. International

Symposium on Circuits and Systems, volume 4, pages 170-173, 2001.

Alain J. Martin. The limitations to delay-insensitivity in asynchronous
circuits. In William J. Dally, editor, Advanced Research in VLSI, pages
263—-278. MIT Press, 1990.

194

BIBLIOGRAPHY

[Mar90b] Alain J. Martin. Programming in VLSI: From communicating processes
to delay-insensitive circuits. In C. A. R. Hoare, editor, Developments
wn Concurrency and Communication, UT Year of Programming Series,

pages 1-64. Addison-Wesley, 1990.
[MATa] Mathworks: MATLAB: http://www.mathworks.com/products/matlab/?BB=1.

[MATD] Mathworks: — Migrating from MATRIXx to MathWorks Prodcuts:

hitp:/ /www.mathworks.com/services/consulting/areas /matrizz. html.
[MATc| National Instruments: MATRIXz: hitp://www.ni.com/matrizz/.

[MB59] David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In
Proceedings of an International Symposium on the Theory of Switching,

pages 204-243. Harvard University Press, April 1959.

[McC65| E. J. McCluskey. Introduction to the Theory of Switching Circuits.

McGraw-Hill, New York, 1965.
[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mul62] David E. Muller. Asynchronous logics and application to information
processing. In Symposium on the Application of Switching Theory to

Space Technology, pages 289-297. Stanford University Press, 1962.

[Mul67] D. E. Muller. The general synthesis problem for asynchronous digital
networks. In Annual Symposium on Switching and Automata Theory,

New York, 1967.
[MyeO1] Chris Myers. Asynchronous Circuit Design. John Wiley & Sons, 2001.

[Pee96] Ad M. G. Peeters. Single-Rail Handshake Circuits. PhD thesis, Eind-

hoven University of Technology, June 1996.

195

BIBLIOGRAPHY

[Pet62]

[Pet73]

|Pet81]

[PFF96]

[SBYO03]

[Sei1]

[Sei80|

[SFo1]

[Sha03]

C. A. Petri. Fundamentals of a theory of asynchronous information

flow. In IFIP Congress, pages 386-390, 1962.

C. A Petri. Concepts of net theory. Mathematical foundations of con-

cepts of computer science, High Tatras, pages 137-146, 1973.

James Lyle Peterson. Petri Net Theory and the Modeling of Systems.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1981.

O. A. Petlin, C. Farnsworth, and S. B. Furber. Design for testability
of an asynchronous adder. Design and Test of Asynchronous Systems,

IEE Colloquium on, 1996.

D. Sokolov, A. Bystrov, and A. Yakovlev. STG optimisation in the
direct mapping of asynchronous circuits. In Proc. Design, Automation
and Test in FEurope (DATE). IEEE Computer Society Press, March
2003.

Charles L. Seitz. Graph Representations for Logical Machines. PhD

thesis, MIT Press, January 1971.

Charles L. Seitz. Ideas about arbiters. Lambda, 1(1, First Quarter):10—

14, 1980.

Jens Sparsg and Steve Furber, editors. Principles of Asynchronous
Circuit Design: A Systems Perspective. Kluwer Academic Publishers,

2001.

Delong Shang. Asynchronous Communication Circuits: Design, Test
and Synthesis. PhD thesis, School of EECE, University of Newcastle

upon Tyne, April 2003.

196

BIBLIOGRAPHY

[Sim90] H. R. Simpson. Four-slot fully asynchronous communication mecha-
nism. IEE Proceedings, Computers and Digital Techniques, 137(1):17—
30, January 1990.

[Sim92] H. R. Simpson. Correctness analysis for class of asynchronous commu-
nication mechanisms. IEFE Proceedings, Computers and Digital Tech-

niques, 139(1):35-49, January 1992.

[Sim94] Hugo R Simpson. Methodological and Notational Conventions in
DORIS Real-Time Networks. IED Supporting Predictable Implemen-
tation of Requirements in Timing and Safety (SPRINTS) Deliverable,

1994.

[Sim03)] Hugo R Simpson. Protocols for process interaction. IEE Proc.-Comput.
Digit. Tech., 150(3), May 2003.

[Sok06] D. Sokolov. Automated synthesis of asynchronous circuit using direct
mapping for control and data paths. PhD thesis, Newcastle University,
UK, January 2006.

[SSV96] N. Sayiner, H.V. Sorensen, and T.R. Viswanathan. A level-crossing
sampling scheme for a/d conversion. IEEE Transactions on Circuits

and Systems II, 43(4):335-339, April 1996.
[Sta] Mathworks: Stateflow: http://www.mathworks.com/products/stateflow/¢BB=1.

[Sut89] Ivan E. Sutherland. Micropipelines. Communications of the ACM,

32(6):720-738, June 1989.

[SXY00a] D. Shang, F. Xia, and A. Yakovlev. Asynchronous circuit synthesis via
direct translation. In Proc. International Symposium on Circuits and

Systems, volume 3, pages 369-372, May 2000.

197

BIBLIOGRAPHY

[SXYO00D)

[Tro89]

[Ung69]

[Ung70]

[Ung71]

[Var73|

|Ver88|

[VMO96a]

[VM96b)

D. Shang, F. Xia, and A. Yakovlev. An implementation of a three-slot
asynchronous communication mechanism using self-timed circuits. In
Alex Yakovlev and Reinder Nouta, editors, Asynchronous Interfaces:

Tools, Techniques, and Implementations, pages 37-44, July 2000.

John Tromp. How to construct an atomic variable (extended abstract).
In Jean-Claude Bermond, editor, Distributed algorithms, volume 392 of

Lecture Notes in Computer Science, pages 292-302, Sept 1989.

S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley-
Interscience, John Wiley & Sons, Inc., New York, 19609.

S. H. Unger. Asynchronous sequential switching circuits with unre-
stricted input changes. In Annual Symposium on Switching and Au-

tomata Theory, pages 114-121. IEEE Computer Society Press, 1970.

Stephen H. Unger. Asynchronous sequential switching circuits with
unrestricted input changes. IEEE Transactions on Computers,

20(12):1437-1444, December 1971.
Victor Varshavsky. Collective Behavior of Automata. 1973.

Tom Verhoeff. Delay-insensitive codes—an overview. Distributed Com-

puting, 3(1):1-8, 1988.

V. I. Varshavsky and V. B. Marakhovsky. Asynchronous control device
design by net model behavior simulation. In J. Billington and W. Reisig,
editors, Application and Theory of Petri Nets 1996, volume 1091 of
Lecture Notes in Computer Science, pages 497-515. Springer-Verlag,
June 1996.

V. I. Varshavsky and V. B. Marakhovsky. Hardware support for discrete

event coordination. In J. Billington and W. Reisig, editors, Proc. of

198

BIBLIOGRAPHY

[VMS95]

[WB99]

[WB00]

[XC99]

[XC00]

[XC02]

International Workshop on Discrete Event Systems(WODES’96), pages

332-340, August 1996.

Victor I. Varshavsky, Vyacheslav B. Marakhovsky, and Vadim V.
Smolensky. Designing self-timed devices using the finite automaton

model. IEEE Design & Test of Computers, 12(1):14-23, Spring 1995.

R. Wollowski and J. Beister. Comprehensive causal specification of
asynchronous circuit behaviour: a generalized STG. In Proc. of the
Workshop Hardware Design and Petri Nets (within the International
Conference on Application and Theory of Petri Nets), pages 149-168,
June 1999.

R. Wollowski and J. Beister. Comprehensive causal specification
of asynchronous controller and arbiter behaviour. In A. Yakovlev,
L. Gomes, and L. Lavagno, editors, Hardware Design and Petri Nets,

pages 3-32. Kluwer Academic Publishers, March 2000.

F. Xia and I. Clark. Studying the three-slot asynchronous communica-

tion mechanism, 1999.

F. Xia and I. Clark. Complementing role models with Petri nets
in studying asynchronous data communications. In A. Yakovlev,
L. Gomes, and L. Lavagno, editors, Hardware Design and Petri Nets,

pages 33-50. Kluwer Academic Publishers, March 2000.

Fei Xia and Ian Clark. Algorithms for signal and message asyn-
chronous communication mechanisms and their analysis. Fundam. Inf.,

50(2):205-222, 2002.

199

BIBLIOGRAPHY

[XHC*04]

[XHC*06]

[Xia00]

IXil]

[XYCS02]

[XYST00]

[Yak92]

[YDN92|

Fei Xia, Fei Hao, Ian G. Clark, Alexandre Yakovlev, and E. Graeme
Chester. Buffered asynchronous communication mechanisms. In ACSD,

pages 36-46, 2004.

Fei Xia, Fei Hao, Ian G. Clark, Alex Yakovlev, and E. Graeme Chester.
Buffered asynchronous communication mechanisms. Fundam. Inform.,

70(1-2):155-170, 2006.

Fei Xia. Supporting the MASCOT method with Petri net techniques for
real-time systems development. PhD thesis, London University, King’s

College, January 2000.

Xilinx. System generator for dsp. http://www.xilinx.com/ise/optional

prod /system generator.htm.

Fei Xia, Alex V. Yakovlev, Ian G. Clark, and Delong Shang. Data
communication in systems with heterogeneous timing. j-IEEE-MICRO,

22(6):58-69, November/December 2002.

F. Xia, A. Yakovlev, D. Shang, A. Bystrov, A. Koelmans, and D. J.
Kinniment. Asynchronous communication mechanisms using self-timed
circuits. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 150-159. IEEE Computer

Society Press, April 2000.

Alexandre V. Yakovlev. On limitations and extensions of STG model
for designing asynchronous control circuits. In Proc. International Conf.
Computer Design (ICCD), pages 396-400. IEEE Computer Society
Press, October 1992.

Kenneth Y. Yun, David L. Dill, and Steven M. Nowick. Synthesis of 3D

asynchronous state machines. In Proc. International Conf. Computer

200

BIBLIOGRAPHY

[YDSO0]

[YKOS]

[YKKL94|

[YLSV96|

[YTS00]

[YVMS95]|

Design (ICCD), pages 346-350. IEEE Computer Society Press, October
1992.

J.K. Yook, Tilbury D.M., and N.R Soparkar. Trading computation for
bandwidth: reducing communications in distributed control systems us-
ing state estimators. In Proceedings of the 2000 Japan-USA Symposium

on Flexible Automation, 2000.

A. V. Yakovlev and A. M. Koelmans. Petri nets and digital hardware
design. In Lectures on Petri Nets II: Applications. Advances in Petri
Nets, volume 1492 of Lecture Notes in Computer Science, pages 154—
236, 1998.

A. Yakovlev, M. Kishinevsky, A. Kondratyev, and L. Lavagno. OR
causality: modelling and hardware implementation. In Proceedings of
the 15th International Conference on Application and Theory of Petri
Nets, volume 815 of Lecture Notes in Computer Science, pages 568587,

Zaragosa, Spain, June 1994. Springer-Verlag.

Alexandre Yakovlev, Luciano Lavagno, and Alberto Sangiovanni-
Vincentelli. A unified signal transition graph model for asynchronous
control circuit synthesis. Formal Methods in System Design, 9(3):139—
188, 1996.

T. Yoneda, D. M. Tilbury, and N. R. Soparkar. A design methodology
for distributed control systems to optimize performance in the presence
of time delays. In the American Control Conference, pages 1959-1964,
April 2000.

A. Yakovlev, V. Varshavsky, V. Marakhovsky, and A. Semenov. De-

signing an asynchronous pipeline token ring interface. In Asynchronous

201

BIBLIOGRAPHY

[YXO01]

[YXS01]

[Zho03]

[ZRGO4|

Design Methodologies, pages 32-41. IEEE Computer Society Press, May
1995.

A. Yakovlev and F. Xia. Towards synthesis of asynchronous communi-
cation algorithms. In Workshop on Synthesis of Concurrent Systems,
22nd International conference on application and theory of Petri nets,

pages 48-57. IEEE Computer Society Press, June 2001.

A. Yakovlev, F. Xia, and D. Shang. Synthesis and implementation of a
signal-type asynchronous data communication mechanism. In Proc. In-
ternational Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 127-136. IEEE Computer Society Press, March
2001.

Ying Zhou. Petri net modelling in matlab. Master’s thesis, School of
EECE, Newcastle University, UK, June 2003.

Jenny Zheng Zhou, Athula Rajapakse, and Aniruddha M. Gole. Effects
of control systems time delay on the performance of direct harmonics
elimination. In IEEFE Canadian Conference on FElectrical and Computer

Engineering, pages 609-612, May 2004.

202

