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Abstract 

 
Dynamic Power Management (DPM) is one of the main system level low power technologies for Systems 

On Chip (SOCs). This paper presents a series of Markov models for various DPM policies and provides 

accurate analysis about their power and latency performances with full consideration of the shutdown and 

wakeup processes. The new models make it possible to incorporate latency analysis in terms of deadline 

satisfaction. 

 

1. Introduction 

With processors becoming more sophisticated and more processors integrated onto a single chip, power 

becomes the bottleneck to system performance and a lot of research concentrates on low power design in SOCs 

(Systems On Chip). Dynamic Power Management (DPM) has been explored as one of the main system level 

energy saving technologies [1]. The power on-off control employed by DPM is especially effective in 

asynchronous systems. For instance, in an on-chip system built in GALS (Globally Asynchronous Locally 

Synchronous) [2] architecture, DPM can reduce the power consumption by shutting down and waking up 

individual blocks according to the task and data flow. 

The simplest policy implemented in DPM systems is called greedy policy [5] which shuts a processor down 

as soon as the execution of the last task in the processor is completed and wakes up the processor as soon as a 

new task arrives. Although simple to implement, this policy only works well if the time and energy overheads of 

waking up and shutting down can be ignored.  

More sophisticated DPM policies have been proposed. Prediction policy, for example, estimates the arrival 

moment of the next task when the processor has completed executing the last task and shuts down the processor 

according to this estimation. Usually, a timeout threshold is set by such DPM systems [6, 7] and the processor 

will be shut down only when its estimated idle time is longer than this threshold. The prediction quality 

significantly influences the system performance. More sophisticated prediction algorithms may help achieve 

lower power consumption, but they may also cost more power and latency to implement. 

Another policy, accumulation and fire (A&F), described in [4] as the “N-policy”, activates the processor 

when a set number of tasks have been accumulated. This is similar to the integrate and fire mechanism found in 

biological neural systems [13]. This scheme trades latency for power savings.  
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Modern processors can have more operation states with different levels of speed and power consumption 

[16]. This provides system engineers extensive options in different and complex DPM policies. This variety and 

complexity also makes it difficult to analyze the effectiveness and impact of these schemes. 

Recent research tends to consider DPM as Markov processes [3] and use stochastic models in analyzing the 

performance of DPM systems. At present, the M\M\1 model in queuing theory [10] serves as the basic and 

primary model used in power analysis. However, without integrating power management (PM) transitions 

(shutdown and wakeup) into its state transition diagram, the analysis results achieved from this model is rather 

sketchy and inaccurate. Attempts have been made to improve this model. In [5], Ren et al consider the energy 

cost of PM transitions only when the processor is in task-free period and make its power estimation of greedy 

policy useful only when the transition cost is very small. The state transition diagram of [8] gives a thorough 

analysis of the time overhead of PM transitions while the energy cost of these transitions is ignored. When the 

energy cost is analyzed in Qiu’s model [4], the effect of new task arriving during PM transitions is not taken into 

consideration. Most of these omissions and simplifications are too restrictive and/or theoretically inconsistent 

(e.g. PM transitions may be included somewhere in the model but disregarded elsewhere in the same model). 

Furthermore, little attention has so far been paid to the computational complexity of solving these models in 

analysis with numerical methods. With the increased potential sophistication in power saving policies and more 

accurate and complex models, more efficient and reliable solution techniques are needed. 

DPM policies, while helping to reduce power consumption, may increase system latency. Existing modeling 

and analysis of DPM policies [4, 5] tend to use the length of queue of waiting tasks as the measure of latency. 

This is because it is directly represented in the Markov models and thus easy to study. However, how well 

systems satisfy task deadline requirements is a much better indication of latency performance and traditionally 

much more widely used in system design. Unfortunately, deadline satisfaction rates have not been studied using 

Markov models so far. 

The main contributions of this paper are: We provide a method of completely representing PM transition 

states in Markov models. This helps us build numerically well-behaved models for different DPM policies in a 

standard fashion. The resulting models avoid the inconsistent and unreliable omissions and approximations in 

previous work. By using such models on three different DPM policies we demonstrate their applicability and 

discover the behaviors of these policies under different operating conditions with better accuracy for the first 

time. We also analyze latency in terms of deadline satisfaction for the first time, and show that our models can 

be effectively used to carry out unified power and latency analysis. 

The rest of this paper is organized as follows: Section 2 describes the new Markov models for greedy 

(Section 2.1), predictive (Section 2.2) and A&F (Section 2.3) policies respectively. This part also includes the 

comparison of power performance of different policies. Section 3 is about the analysis of system latency for 

different DPM policies and investigates the combined power and latency performance. Conclusions and future 

work plans are given in Section 4. 

2. Markov Models for DPM Systems 

2.1 Greedy Policy 
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The transition-state-flow diagram of our new Markov model for greedy policy is given in Figure 1. A 

processor is in state 0 when it has no tasks to be executed. In this state, the processor is sleeping to save power 

until a new task arrives. Similar to the M\M\1 model, we assume the arriving rate of new tasks to be λ. However, 

when the time overhead of wakeup is considered, the processor does not move directly from state 0 to state 1 

when a new task arrives as in the M\M\1 model. In our model, the waking up process is described by a series of 

explicit wakeup states wu1, wu2 and so on. These wakeup states represent the behavior of the processor when a 

number of tasks arrive before the completion of the wakeup process. 
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Figure 1: New model for greedy policy 

Power consumption behavior is most relevant in portable devices where batteries serve as the main energy 

source. The voltage and operating frequency that a battery can support depend on a large number of non-

deterministic factors such as the battery recovery effect [9]. More recently, energy harvesting [18] has gained 

popularity and this type of power source is also non-deterministic depending on multiple independent factors. In 

addition to being affected by power supply uncertainties, wakeup and shutdown also depend on data (e.g. the 

duration of a shutdown may depend on the amount of data needing to be saved) which should best be viewed as 

non-deterministic at system design time. Therefore, similar to [4], we also consider the wakeup and shutdown 

processes to be stochastic, similar to the task arrival and service processes. In Figure 1, γ is the rate of shutdown 

and δ is the rate of wakeup. 

In this model, the processor will move from state 0 first to wu1 when a new task arrives, thus starting its 

wakeup process. If tasks arrive during the wakeup period, the processor will move across the wakeup states to 

wu2, wu3 and so on. After the wakeup period finishes, the processor starts its execution of all tasks accumulated.  

In the paper, states n (n>0) are active states because the processor is active when it stays in any of these 

states. And state 0 is the inactive state. When the last task is completed, the processor will move from state 1 to 

shutdown states sd0, sd1 and so on. Similar to wakeup states, the index number in shutdown states represents the 

number of tasks accumulated so far during the shutdown process. When the processor is in state sd0, it moves to 

state 0 if no tasks have arrived on completion of the shutdown. Otherwise it may move to state sd1 or further. If 

the shutdown process is completed not in sd0, the processor will immediately enter the appropriate wakeup state. 

If Si, Sa, Ssd and Swu are the sums of probabilities of all inactive, active, shutdown and wakeup states 

respectively, the estimated average power consumption can be expressed in E2-1. 

sdsdwuwuwasi PSPSPSPSP **** +++=                                  (E2-1) 
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In E2-1, the power consumption when the processor is working, sleeping, waking up and shutting down are 

Pw, Ps Pwu and Psd respectively. In order to differentiate power and probability in this paper, Q is used to 

represent probability or probability distribution while P is used for power consumption.  

This kind of Markov model allows the probabilities of all states to be expressed in terms of one of them. For 

example, we can get )/(10 λγµ += QQsd
, where Qsd0 and Q1 are the probabilities of state sd0 and 1 respectively. 

This will significantly reduce the computational complexity of solving the model numerically [10]. The regular 

structure of the model in Erreur ! Source du renvoi introuvable. allows us to readily express the probabilities 

of all states in terms of Q1, the probability of state 1. E2-2 to E2-5 are the expressions for the probability of every 

state in different groups. The sums of probabilities in different groups are given in E2-6 to E2-8. Finally the 

value of Q1 used in these equations is derived by setting the total probability of all states to 1 and this is given in 

E2-9. 
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The average power consumption of greedy policy can be derived by integrating E2-6 to E2-8 into E2-1, and 

when the time overhead of both shutdown and wakeup process can be ignored ( ∞→∞→ δγ , ), E2-1 becomes 

E2-10 which is the average power consumption obtained from the M\M\1 model.  

sw PPP
µ

λµ

µ

λ −
+=                                     (E2-10) 

Unlike previous work, our model does not assume a limited number of shutdown and wakeup states because 

potentially an unlimited number of tasks may arrive during a single shutdown or wakeup period. This removes 

one of the key inconsistencies suffered by previous models. And it enables us to derive closed form analytical 

formulas such as E2-7 and E2-8 which behave very well numerically. The inconsistent simplifications of 

previous work are consequently difficult to justify. 

2.2 Prediction Policy 

Greedy policy is relevant when the time and energy overheads of both shutdown and wakeup processes can 

be ignored. It may increase system power consumption when the average power consumption of both shutdown 
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and wakeup processes is greater than the processor’s working power consumption (
wwusd PPP 2>+ ) [11]. In this 

case, the energy gained by short sleeping gaps cannot overcome the energy overhead of shutdown and wakeup. 

To avoid such short sleeping gaps, prediction policy shuts down the processor only when the estimated 

arriving moment of next task will be later than some threshold value. One common prediction scheme [17] shuts 

down the processor when a time gap of τ has passed after the completion of the last task without a new task 

arriving. Advanced prediction policies can dynamically adjust the value of τ and some of them have been 

successfully implemented into chip designs [11].  
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Figure 2: New model for prediction policy 

Figure 2 gives our analysis model of prediction policy. Compared to the greedy model in Figure 1, a new 

state 0 is added in Figure 2. This new state represents the situation when the processor is not shut down but has 

no tasks to process. In order to differentiate this state from the state when the processor is sleeping, a star mark 

(*) is attached to the true sleeping state. When the processor is in state 0, it may be shut down if the estimated 

task free period is long enough and ε=τ-1 represents the rate of long task free period distribution. If the processor 

is to be shut down, its actions are similar to that in the model in Section  2.1. If the estimated task free period is 

very small, the processor will stay in state 0 waiting for a new task to arrive before it moves to state 1 again.  

Here, the probabilities of all states are expressed in terms of Q0 which is the probability of state 0. E2-11 to 

E2-14 gives the probabilities of different groups and E2-15 is the expression for Q0. 
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Next we apply these models on a real example processor. We choose the FUJI MHF 2043AT which was 

used in both [11] and [12]. Table 1 gives the key parameters of this processor. 

Ps 

Watt 

Pw 

Watt 

Twu 

sec 

Tsd 

sec 

Pwu 

Watt 

Psd 

Watt 

0.13 0.95 1.61 0.67 2.85 0.54 

Table 1: Fujitsu MHF2043AT 
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Here, we use γ=1/Tsd, δ=1/Twu, and we pick two different values of τ (τ1=2λ
-1 from [4] and τ2=30s [11]) for 

the prediction policy. In our analysis, the average execution rate of the processor µ has been normalized to 1 and 

Figure 3 shows the variation of average power consumption P with the change of λ. 

λ

P

wP

SP

 
Figure 3:   P  in different PM policies 

From Figure 3, we can see that the curves cross Pw at the same point. When λ is small, τ prediction policy is 

worse than greedy policy because it may fail to shut down even when the actual inactive period is long. Both 

greedy and constant τ policies consume the same power Ps (0.13W) when λ approaches 0 because the system 

sleeps completely, but λ-1-dependent τ does not have this feature. 

The parameters of MHF2043AT satisfy 
wwusd PPP 2>+  (Table 1). Therefore, the power curves go above Pw 

(0.95W) when task arrival is fast enough. From here on, prediction policy shows its advantage over greedy 

policy. It can be seen from Figure 3 that with prediction the system still cannot reduce its energy consumption 

under Pw because τ prediction is not perfect. When λ approaches µ, the processor becomes too busy to execute 

all arriving tasks and has no time to sleep. The curves therefore join at Pw.  

For τ prediction, the value of τ affects the power behavior. Increasing τ trades more loss when λ is low for 

gains when λ is high and λ-1-dependent τ pays too much a price when λ is low. Very large τ implies that the 

system is almost never shut down with power close to Pw for all λ. In the rest of this paper we use constant 

τ2=30s (TAU2 in the figure legends) as a prediction policy example. 

So far we have assumed that the task arrival rate λ is constant. However, in real SOCs, λ may vary from 

time to time according to external environment changes. And the comparison of policies should be based on their 

performance in the full range of λ. Therefore, we have the following equations: 

∫ −=
h

l gregre lhdPP )/(, λλ                               (E2-16) 

∫ −=
h

l predpred lhdPP )/(, λλ                               (E2-17) 

λ,greP and λ,predP represent the average power consumption of greedy and prediction policies which are 

calculated in Sections 2.1 and 2.2 respectively. And h and l are the upper and lower bound of λ variation 

respectively. Since DPM is meaningful only when the processor has much more execution capability than 
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required by the task arrival rate, we choose h=0.1µ and l=0.5µ in our analysis. In this case, λ,greP =0.964W and 

λτ ),2(predP =0.943W which shows prediction policy can be more efficient than greedy policy but the advantage is 

limited. To achieve better than Pw performance in both policy we need to reduce h and/or l. This may cause the 

prediction policy to perform less well than the greedy one. This is a motivation for more sophisticated policies. 

2.3 Accumulation & Fire Policy 

Considering the energy overhead of Power Management, a natural improvement is to reduce the frequency 

of shutdown and wakeup processes. In the A&F policy [4], a processor is not woken up immediately when a new 

task arrives. Instead tasks will be accumulated. The accumulation will continue until a certain limit (which is 

called the accumulation limit) is reached. The processor is then activated to batch process all accumulated tasks. 

And the time of activation is called the fire moment in this policy. Greedy policy can be seen as a basic A&F 

policy whose accumulation limit is 1.  
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Figure 4: Markov Model for A&F policy 

Figure 4 shows the model of A&F policy. Compared to the model given in Figure 1, the major difference is 

that sleeping extends from only one state (0*) in greedy policy to a group of r states (r>0 is the accumulation 

limit).  

Using the same solution technique given in Sections 2.1 and 2.2, we derived the expressions for the sums of 

probabilities in different groups in E2-18 to E2-22. All these equations will become their counterparts in Section 

2.1 when r=1. 
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When we integrate E2-18 to E2-21 into E2-1, we can derive P  for A&F policy and the effectiveness of all 

three policies so far is compared in Figure 5. From this figure, It is clear that A&F policy (r>1) has potential 

advantages over the others. Compared with the other two policies, A&F policy has wider usable range (the range 
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of λ when P <Pw), and sometimes lower worst case value (the highest P  in the full λ range). And this trend 

continues with the increase of accumulation limit r. Given the same parameters in Section 2.2 when calculating 

E2-15 or E2-16, the average power consumption of A&F is 0.731W (r=2) and 0.628W (r=3), which is 22.5% 

and 31.3% lower than that of the τ2 prediction policy. 

λ

P

wP

SP

 
Figure 5:  P  in different policies 

Another advantage of A&F policy is its easy implementation in hardware design. When drawing the 

prediction curve of Figure 5, we do not take the energy cost of prediction computation into consideration. This 

cost is related to the prediction algorithm and will increase with prediction accuracy. On the other hand, A&F is 

as simple as the greedy policy to implement and the energy cost of A&F computation (if it cannot be ignored) 

will not increase with the increase of the accumulation limit r.  

λ

sdS

 
Figure 6: The influence of shutdown process 

The inclusion of shutdown and wakeup processes into Markov models provides us with insight about the 

influence of these transitions in the performance of different policies. Figure 6 shows the variation of probability 

of shutdown states (Ssd) in different policies. From the figure, we can see Ssd reaches its top value when λ is near 

0.5µ because here, the processor switches frequently from inactive states to active states and back. And it is clear 
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that the approximate equation given in [5] may cause gross inaccuracy in energy estimation because the top 

value of Ssd may be as high as 10%. Furthermore, the shutdown process has less influence on prediction policy 

than on greedy policy, and it is the main reason for the former policy gaining more efficiency than the latter. For 

the A&F policy, the larger the accumulation limit is, the less its curve is influenced by Ssd. The variation of 

probability of wakeup groups (Swu) in different groups shows similar trends. 

 

3. Latency Analysis 

Although A&F policy may achieve very low power consumption especially when the accumulation limit is 

high, this gain is achieved at the cost of longer latency. System engineers need to balance both the gain in power 

and the cost in latency brought by DPM when they choose the proper low power policy for processors in their 

systems. For the A&F policy, it is also important to determine a proper value of accumulation limit r for 

different processors. In order to answer these questions, we must first find ways to measure the latency. In 

system design, soft deadlines for task execution have been a popular measure for real-world latency performance. 

For instance, such deadlines have been widely used in DPM or DVS (Dynamic Voltage Scaling) design [15]. 

Different from hard real-time systems [14], soft deadlines are not compulsory. They serve more as guidelines for 

execution scheduling to optimize system performance. Violation of such a deadline is not considered a 

catastrophe. The probability of deadline violation for each new coming task will be used here to mark the latency 

of different policies. This measure is more realistically expressive than the length of queue of waiting tasks. 

According to Figure 4, the processor may work in any of its states when a new task comes. If the processor 

is in active state n when the new task comes, it has n+1 tasks so far waiting to be executed and scheduling is 

needed to select the proper task for the processor from time to time. Here we simply assume that the processor 

use FIFO (First-Input-First-Output) mechanism to choose tasks in the waiting queue and all time cost in the 

scheduling procedure can be ignored, the current task will be executed only after the completion of the previous 

n tasks (other assumptions of scheduling including priority etc. could be readily incorporated into our model). If 

we assume the execution of every task follows Poisson distribution, the execution of n+1 tasks follows Erlang 

distribution [10] with parameters n+1 and µ. If t is the entire time cost that the new coming task spent in the 

processor and Er(t; n+1, µ) is the Erlang probability distribution function (pdf) and Qn is the probability for the 

processor staying in state n, the probability of deadline violation in this case can be expressed as E3-1: 

∫ +=≥
∞
DL rnn dtntEQDLtQ ),1;(*)( µ                                   (E3-1) 

Similarly, if the processor is in wakeup state wu(n) when the new task arrives, the task must wait for the 

completion of the wakeup process and then the execution of the n tasks accumulated before its loading into the 

processor. If m is the fire moment of the processor and k is the time spent in the wakeup processing, Poisson(k;δ) 

represents the corresponding Poisson pdf and the probability of deadline violation in this case can be expressed 

as E3-2: 

        )(1)( )()( DLtQDLtQ nwunwu <−=≥                                (E3-2) 

                               ∫ ∫+−−=
DL m

oissonrnwu dtdkkPnmtEQ
0 0)( ));(),1;(1(* δµ  
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The equations for inactive states and shutdown states are similar to E3-1 or E3-2. And the entire probability 

of deadline violation of the processor is given in E3-3: 
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        With the latency expression of E3-3, we can now derive the combined latency-power index (E3-4).  
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WDLrBalance p

w

p ≥−+=λ                                 (E3-4) 

DL is the average deadline. Wp (0< Wp<1) in E3-4 is the weight of power, which depends on how much 

relative importance has been given to power saving and can be adjusted by system engineers according to their 

particular requirements. In order to unify the dimension of the equation, we normalized P by Pw which measures 

how much energy will be saved by the implemented DPM policy. Given the value of Wp, a DPM policy which 

can minimize E3-4 is the optimal policy which can balance system performance of both latency and power. For a 

particular processor, we assume constant parameters µ, γ and δ. Therefore the value of equation E3-4 depends on 

the accumulation limit r, the arrival rate λ and the deadline DL. If both λ and DL are assumed to be constant as 

well, the determination of accumulation limit r in A&F policy depends on the minimization of E3-4.  

Furthermore, because all DPM policies can behave better than others under certain circumstances, much 

recent research work focuses on hierarchical architecture of DPM design which can adapt the proper DPM 

policy to dynamic systems [5]. And a unified cost function like E3-4 can serve as a standard assessment 

framework of policies and hierarchical DPM can adjust different policies according to the variation of 

environment parameters such as λ and DL. 

Numerical solutions have been obtained using the parameters of MHF2043AT. We have limited our range 

to 0<λ<0.5 because as stated in Section  2.2, DPM does not make practical sense for larger λ. 

Figure 7 shows a series of results. First of all, we set DL as ten times the average execution period (DL=10/µ) 

and set Wp to 0.3 which means latency rather than power is the main concern of the system and obtained Figure 

7(a). Greedy and prediction policies are better here because they cause much less deadline violation than their 

A&F counterparts. If the processor has more powerful execution capability so that the deadline request becomes 

relatively looser, we obtain Figure 7(b) with DL=30/µ. Even with Wp keeping to 0.3, A&F policy can be a good 

choice. For example, A&F (r=2) is the best choice when λ= λ1 and A&F (r=3) is the best choice when λ= λ2. If 

λ1 λ2 

Figure 7: Optimized policy in different conditions. (a) Wp=0.3, DL=10/µ   (b) Wp=0.3 DL=30/µ   (c) Wp=0.6 DL=10/µ  
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we increase Wp to represent those systems where power saving is more important, A&F policy will be chosen 

frequently even when the deadline requirement is tight. In Figure 7(c)), we raise Wp to 0.6 while DL is 10/µ. It 

can be seen A&F policy with large accumulation limit (r=3) is the best choice for a wide range of λ. This trend 

will become more obvious with the increase of Wp or DL. 

4. Discussion and Future Work 

A series of Markov models of DPM policies is presented in this paper. This modeling approach includes the 

explicit and complete representation of PM transition states, which enhances the accuracy and reliability of the 

models. It also produces models of regular shape and pattern with standard representation for any new operating 

states and the transitional states between them. This makes analytical closed-from solutions easier to derive and 

computational complexity of numerical solutions easier to reduce. It also makes these models readily extendible 

to cover the potentially diverse and increasingly sophisticated power management policies of the future. To 

demonstrate the capabilities of this method, the A&F policy is studied here in accurate detail for the first time 

with both power and latency analyses based on real-world processor parameters. We plan to further apply this 

method to study more sophisticated DPM as well as DVS policies in the context of processors (e.g. [16]) with 

more than two operating states.  

It must be said that the philosophy of tau prediction policy is based on the assumption that some knowledge 

exists of system behaviour so that a "good" tau or tau function can be found at system design time. It is therefore 

not entirely fair to compare the performance of this scheme with others under a purely stochastic assumption. A 

detailed study of prediction policies is outside the scope of this report and we plan to investigate this topic in the 

future. 
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