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Abstract

The Conditional Partial Order Graph (CPOG) Model introduced recently is a novel technique for

speci�cation and synthesis of asynchronous controllers. It combines advantages of both Petri nets

and FSM-based approaches and is capable of modelling systems with a high degree of concurrency

and multiple choice.

The paper extends the basic model of CPOGs to handle dynamic evaluation of internal control

signals and introduces behavioural semantics for CPOGs. The extended model has a strong need

for veri�cation support, e.g. reachability analysis, deadlock detection etc. and this paper presents

SAT-based characterisations for the most important CPOG veri�cation problems.

1 Introduction

Speci�cation and synthesis of self-timed control circuits exhibiting a high-degree of concurrency and

choice (e.g. CPU cores, on-chip data transfer and routing controllers) is a challenging problem within

the conventional asynchronous design �ow. RTL-based synthesis �ow [8] supports a synchronous design

paradigm which leads to synchronous �nite state machines for control logic. There are several existing

design methodologies for asynchronous control logic. There are several existing design methodologies

for asynchronous control logic, e.g. [15] and [13]. Methods like Tangram (or Haste) [16] and Balsa [2]

use CSP-like HDL languages for system speci�cation and syntax-direct translation for synthesis; they

describe the entire sysem as a collection of processes and channels, control is implicit in them. Burts-

mode FSMs [12] and Petri nets/Signal Transition Graphs (STGs) [14] are able to capture concurrency

and choice at a very �ne level and are more suitable for control design: they produce more compact and

fast circuits than methods based on syntax-direct translations from HDLs. However these models are

typically targeted at systems with a small number of choice options and speci�cation of systems with

many similar behavioural patterns, or event orders, de�ned on the same domain of operational units in

ine�cient (see Section 4).

The Conditional Partial Order Graph model introduced recently [11] is a new model that combines

the advantages of the existing behavioural models Petri nets (or STGs) and FSMs and avoids the use of

the explicit notion of state.
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Figure 1: Recon�gurable controller

The model builds on the order relation between actions or events from a certain set. The order is

determined by the combination of logical conditions presented to the controller by the environment. To

this end, the controller can be seen as an entity which communicates with two parts of the environment
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(see Figure 1), one part is the source of condition signals (operation decoder in case of a CPU) and the

other part is a set of controlled objects with request-acknowledgement interface (operational units). Thus

the condition signals dynamically recon�gure our controller according to the instruction being executed.

The basic de�nition of the CPOG model in [11] restricted the control signals from the environment

to be constant throughout the execution of the controller which signi�cantly limited the class of the

modelled systems. The paper extends the de�nition and introduces CPOGs with dynamic control signal

evaluation. This allows modelling systems where the control �ow conditions can change during the

execution of actions in the CPOG.

While the static control model from [11] exhibited only syntactic correctness conditions (most of

the semantics was "correct by construction"), the extended model has more sophisticated behavioural

semantics. It requires an automated veri�cation support which is developed in Section 7.

2 Theoretical Background

The section introduces the basic notations, de�nitions and models that are used throughout the paper.

2.1 Partial orders

A partial order (PO) P (S,≺) is a binary relation ≺ over a set of elements S which satis�es the following

three conditions [3, 9]:

1. Irre�exivity : ∀a ∈ S,¬(a ≺ a);

2. Asymmetry : ∀a, b ∈ S, (a ≺ b)⇒ ¬(b ≺ a);

3. Transitivity : ∀a, b, c ∈ S, (a ≺ b)∧(b ≺ c)⇒(a ≺ c).

Partial orders are very natural for speci�cation of order of events in a system when some of the events

are constrained to happen before others. These constraints can be speci�ed with partial order P (S,≺)
such that if a ≺ b for some events a, b ∈ S then event a must happen strictly before event b. If neither

a ≺ b nor b ≺ a holds then the events a and b can happen in any order, possibly simultaneously.

2.2 Directed acyclic graphs

A directed graph is an ordered pair G(V,E) where V is a set of vertices (or nodes) and E ⊆ V × V is the

set of ordered pairs of vertices, called arcs [4, 9].

A sequence of vertices (v0, v1, ..., vn), vk ∈ V, k = 0...n such that (vk−1, vk) ∈ E, k = 1...n and n ≥ 0 is

called a path from v0 (start vertex) to vn (end vertex) and is denoted as 〈v0, vn〉. The set of all paths of
a graph G is denoted as P(G). A cycle is a path 〈v0, vn〉 whose start and end vertices coincide: v0 = vn.

Directed acyclic graph (DAG) is a directed graph that does not contain any cycles.

An arc (a, b) ∈ E of a graph G(V,E) is called transitive i� ∃v ∈ V \{a, b}, 〈a, v〉 ∈ P(G)∧〈v, b〉 ∈ P(G).
The transitive closure of a graph G(V,E) is the smallest graph G ∗ (V,E∗) such that:

• ∀a, b ∈ V, (a, b) ∈ E ⇒ (a, b) ∈ E∗;

• ∀a, b, c ∈ V, (a, b) ∈ E ∗ ∧(b, c) ∈ E∗ ⇒ (a, c) ∈ E∗ (transitivity condition);

Figure 2 shows a DAG and its transitive closure. Transitive arcs are drawn dotted.

Note that there is a strong correspondence between partial orders and DAGs: every partial order is

a DAG, and the transitive closure of a DAG is both a partial order and a DAG itself. The graph in

Figure 2(b) directly matches a partial order relation E over the set of vertices V = {a...g} while the

graph in Figure 2(a) does not because it violates the transitivity condition. For instance, it contains arcs

(d, f) and (f, g) while the corresponding transitive arc (d, g) is not present.
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Figure 2: DAG and its transitive closure

This correspondence between partial orders and DAGs provides an intuitive way of partial order

speci�cation. A DAG G(V,E) de�nes a corresponding partial order P (V,E∗). Note that there can be

more than one DAG with the same corresponding partial order. For example, both of the DAGs in

Figure 2 have the same transitive closure and therefore they de�ne the same partial order. The graph on

Sub�gure (a) is simpler, however, and is preferable in some cases. Hasse diagrams [3] are widely used as

a compact way of partial order speci�cation.

3 Conditional Partial Order Graphs

This section de�nes conditional partial order graphs (CPOGs) formally and introduces CPOG algebra.

Conditional partial order graph is a quintupleH(V,E,X, ρ, φ) where V is the set of vertices, E ⊆ V ×V
is the set of arcs, X is the set of Boolean variables (called control variables or signals), ρ ∈ F(X) is

a restriction function where F(X) is the set of all Boolean functions over variables in X. Function

φ : (V ∪E)→ F(X) assigns a Boolean condition φ(z) ∈ F(X) to every vertex and arc z ∈ V ∪E in the

graph. Let's also de�ne φ(z) = 0 for z /∈ V ∪ E in order to simplify the further computations.

3.1 Addition

The result of addition of H1(V1, E1, X1, ρ1, φ1) and H2(V2, E2, X2, ρ2, φ2) is CPOG H(V1 ∪ V2, E1 ∪
E2, X1 ∪X2, ρ1 + ρ2, φ), where ∀z, φ(z) = φ1(z) + φ2(z). Here f1 + f2 stands for Boolean disjunction of

functions f1 and f2. We will use standard notation for addition: H = H1 +H2.

CPOG addition is commutative (H1+H2 = H2+H1) and associative ((H1+H2)+H3 = H1+(H2+H3))
and thus redundant brackets can be omitted when more than two CPOGs are added.

3.2 Scalar multiplication

A CPOG H(V,E,X, ρ, φ) can be multiplied by a Boolean function f ∈ F(Y ) (which in our context can

be called scalar). The resultant CPOG is H ′(V,E,X ∪ Y, fρ, φ′) where ∀z, φ′(z) = fφ(z) (f1f2 stands

for Boolean conjunction of functions f1 and f2). We will use standard notation for scalar multiplication:

H ′ = fH.

Scalar multiplication and addition have the following common properties:

• Left distributivity: (f + g)H = fH + gH;

• Right distributivity: f(H1 +H2) = fH1 + fH2;

• Associativity: f(gH) = (fg)H;
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3.3 Projection

A projection of a CPOG H(V,E,X, ρ, φ) under constraint x = α (x ∈ X) is denoted as H|x=α and is

equal to CPOG H ′(V,E,X \ {x}, ρ|x=α, φ|x=α) where notations ρ|x=α and φ|x=α mean that variable x is

substituted with constant Boolean value α in ρ and all the functions φ(z), z ∈ V ∪E (which implies that

ρ|x=α and φ|x=α(z) belong to F(X\{x})). Projection is a commutative operation i.e. (H|x=α)|y=β =
(H|y=β)|x=α.

A complete projection of a CPOG H is such a projection that all the variables in X are constrained to

constants. It is denoted as H|ψ where ψ : X → {0, 1} is an assignment function that assigns a Boolean

value to every variable in X. Complete projection is a CPOG whose restriction function and vertex/arc

conditions are only Boolean constants ρ|ψ and φ|ψ (either 0 or 1).
We also de�ne a partial assignment function ψ : X ′ → {0, 1}, X ′ ⊆ X which assigns values only to a

subset of X.

Let H|ψ be a complete projection of CPOG H(V,E,X, ρ, φ). We can construct a directed graph

G(VG, EG) such that VG = {v ∈ V |φ(v) = 1}

EG = {e = (a, b) ∈ E|φ(a)φ(b)φ(e) = 1}

In other words G contains only those vertices and arcs whose conditions in H are constant 1.
A complete projection H|ψ is valid i� its corresponding graph G is a DAG and its restriction function

is satis�ed: ρ|ψ = 1. So the purpose of a restriction function ρ is to restrict domain of the assignment

functions ψ applicable to a CPOG: out of 2|X| di�erent possible assignment functions ψ only those

satis�ng ρ (ρ|ψ = 1) are allowed. The other assignment functions ψ (and the corresponding complete

projections H|ψ) are considered invalid and meaningless in relation to the modelled system.

The obtained DAG G(VG, EG) can be further converted into the corresponding partial order

P (VG, EG∗). Let this operation of partial order construction from a valid CPOG complete projection

H|ψ be shortly denoted as po: P = po(H|ψ) and the inverse operation as po−1: H = po−1(P ) (here

the obtained H does not contain any control variables i.e. X = ∅).

a e: xc db

x x

x
_

x
_

(a) Conditional partial order graph H

a e: xc db

x x

x
_

x
_

(b) Complete projection H|x=1

a e: xc db

x x

x
_

x
_

(c) Complete projection H|x=0

Figure 3: CPOG and its projections

An example of a CPOG and its projections is shown in Figure 3. Sub�gure (a) shows the initial graph.

The conditional arc functions are indicated over the arcs: arcs (b, c) and (c, d) have conditional function
f = x; the function on arcs (a, c) and (b, d) is f = x; arcs (a, b), (d, e) and vertices a...d are unconditional

i.e. their functions are constant Boolean 1. Such functions are not shown on diagrams for simplicity. The

only conditional vertex e has condition f = x which is shown next to its label separated by a colon.
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Figure 3(b) shows the complete projection under x = 1. The dotted arcs are those that turn to have

constant 0 conditions after the projection and therefore will be excluded from the resultant partial order.

The solid arcs have constant 1 conditions. The partial order de�ned with the projection is a simple series

of events: a→ b→ c→ d→ e.

Complete projection under constraint x = 0 (Figure 3(c)) results in the following partial order. Events

b and c can happen only after a. There is no constraint between them, thus they can be concurrent.

Event d can only happen after event b. Event e is excluded from the partial order; note, that this implies

exclusion of arc (d, e) as well.

4 CPOGs synthesis

A CPOG can potentially contain an exponential number of di�erent partial orders in a compressed form

as was demonstrated in the previous section. The natural question is how to synthesise such a compact

speci�cation given the system description as a set of partial orders corresponding to the system's di�erent

behavioural scenarios. And the consequent generalisation of the synthesis problem is to use not only

partial orders as building blocks but CPOGs themselves (observe that partial orders is a subclass of

CPOGs that do not have conditions). This can be very useful if a designer wants to add a new scenario

to an already existing CPOG without its complete resynthesis, or merge two di�erent systems into one

without their preliminary decomposition into distinct projections.

The �rst simple example demonstrates the advantages of the CPOG model for system speci�cation

in comparison with the conventional speci�cations using STGs.

2−permutator
go

done

req

ack

req

ack

x1

x2

1

1

2

2

Figure 4: 2-permutator interface

The example is the smallest non-trivial n-permutator [11], a circuit able to generate n! di�erent hand-
shake sequences according to the control signals from the environment. The interface of 2-permutator is
shown in Figure 4. Depending on the control signals {x1, x2} the controller has to initiate two handshakes
either ordered as 1→ 2 or as 2→ 1. The start of the handshake sequence is prompted by signal go and

as soon as the handshakes are completed the controller issues signal done.

The �rst approach to the speci�cation of the controller with an STG is shown in Figure 5(a). It

has a global choice and the two scenarios are speci�ed as two independent branches: the upper branch

corresponds to the �rst scenario (handshake sequence 1→ 2); the lower branch corresponds to the second

scenario (2 → 1). After the global merge the handshakes are reset concurrently and the system returns

to the initial state.

This speci�cation is straightforward and can be easily obtained by hand but it has a very serious

drawback: it duplicates events in di�erent branches. In the general case n-permutator has n! di�erent
scenarios. Clearly, a speci�cation having n! di�erent branches is infeasible. It is possible to optimise

this unoptimal STG using logic synthesis tool Petrify [5] and obtain an STG speci�cation without event

duplication as shown in Figure 5(b). But such compositional STGs tend to be much more complicated

and contain a lot of additional choice places tracking the current system state. Even for such a simple

controller as 2-permutator the obtained STG is non-trivial and di�cult for manual design.

Speci�cation of this system with a set of two partial orders and merging them into a CPOG seems

to be much more natural. The two scenarios correspond directly to partial orders which are shown in

Figure 6(a,b). And it is possible to merge them into the CPOG in Sub�gure (c) which captures both the

scenarios in a compact and understandable form.

Formally, let H = {H1, H2, ...,Hn} be the set of n given CPOGs. The objective is to synthesize
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(a) Speci�cation with global choice and multiple event occurrences
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go− dummy

x1−

go+

req2+

req1+ ack1+

done−
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(b) Optimised speci�cation obtained by Petrify

Figure 5: 2-permutator STG speci�cations

ba

(a) PO for 1 → 2

ba

(b) PO for 2 → 1

ba
x1

x2

(c) synthesised
CPOG

Figure 6: CPOG synthesis example

CPOG H(V,E,X, ρ, φ) and assignment set Ψ = {ψ1, ψ2, ..., ψn} such that ψk : XC → {0, 1} are partial
assignment functions over the control set XC ⊆ X and

∀ψk ∈ Ψ, H|ψk
= Hk

The idea behind our synthesis approach is to represent H as the following sum of given CPOGs:

H = f1H1 + f2H2 + ...+ fnHn =
n∑
k=1

fkHk

Now control set XC , functions fk ∈ F(XC) and ψk should be selected so that fk|ψk
= 1 and fk|ψj

=
0, j 6= k. This can be done in di�erent ways depending on the chosen encoding scheme [11].

Synthesis from partial orders is a special case of general synthesis problem presented above. Given a

set of n partial orders P = {P1, P2, ..., Pn} we can convert them into CPOGs Hk = po−1(Pk), k = 1...n
and then use the general method to synthesise CPOG containing H = {Hk|k = 1...n} e.g.:

x1 · po−1( ba ) + x2 · po−1( ba ) =
ba

x1

x2

Figure 7 shows the controllers synthesised using CPOG-based approach and Petrify: the solutions are
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di�erent and our method produces a smaller controller. CPOG-based gate-level controllers synthesis uses

Transition Sequence Encoder (TSE) generic circuit [10].

x1

ack2

x2

req2
go

ack1

done

req1

(a) CPOG-based solution

ack2

done

go

x2
req1

ack1

x1

req2

(b) Petrify solution

Figure 7: Synthesised controllers

5 Dynamic control signals evaluation

The basic CPOG model assumes that control signals X remain constant during the active phase (signal

go = 1) of the controller execution and are allowed to change only during the reset phase (signal go = 0).
Although this greatly simpli�es CPOG de�nition and veri�cation it leads to di�culties in speci�cation

of large class of systems with internal choice.

Let us study the CPOG speci�cation of a single scenario of operation diff(a, b) computing the dif-

ference between two values a and b: diff(a, b) = |a − b|. The �ow of execution of the operation breaks

up into the following actions:

1. Load register a from memory (load(a));

2. Load register b from memory (load(b));

3. Compute the di�erence and store the result in a:

(a) Compare registers a and b (cmp(a, b));

(b) If a < b then swap the registers (swap(a, b));

(c) Subtract b from a, store the result in a (sub(a, b));

4. Save register a into memory (save(a)).

Note that the result of comparison action cmp(a, b) is used in the next conditional action of swapping

swap(a, b). The values can only be compared after they have been loaded from memory and therefore

the comparison result is unde�ned before the execution of the comparator. The basic CPOG model does

not allow such changes of the control variables during the active phase of the controller.

cmp(a,b) sub(a,b) save(a)

swap(a,b)load(a)

load(b) implicit
control

Figure 8: CPOG with implicit control

Figure 8 shows the CPOG speci�cation for this operation with the implicit dependence between

actions cmp(a, b) and swap(a, b) denoted with a dotted arc that can switch vertex swap(a, b) on or o�

depending on the result of comparison. The speci�cation problem can be resolved in two di�erent ways:

by using hierarchical TSE structure or by extending the basic CPOG model to handle dynamic signal

evaluation. Both solutions are discussed below.
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Figure 9: Hierarchcal and dynamic evaluation TSE controllers

5.1 Hierarchical TSE controllers

It is possible to use the hierarchical connection of master and slave TSE controllers as shown in Figure 9(a).

Signal go for the slave controller is the acknowledgement signal from the comparator which ensures that

the comparison result is already computed and the slave TSE can use it as the external control signal

staying within the basic CPOG model. The comparison result is represented by two signals le and ge:

le = 1 (ge = 1) is set i� the value in register a is less (greater) or equal to the value in register b. The

slave controller performs the actions according to these control signals and sets signal done that is used

as an acknowledgement from the comparator by the master TSE. The subsystem including the slave TSE

and operational units cmp(a, b), sub(a, b) and swap(a, b) can be treated as a complex operational unit

diff(a, b).

load(a)

diff(a,b) save(a)

load(b)

(a) Master TSE speci�cation

sub(a,b)swap(a,b): le
__
ge

(b) Slave TSE speci�cation

Figure 10: Master and slave CPOGs

CPOG speci�cations for the master and slave controllers are shown Figure 10. The master CPOG is

trivial and does not contain any conditions. The CPOG for the slave controller executes either sequence

of operations swap(a, b)→ sub(a, b) or just a single operation sub(a, b). Vertex swap(a, b) has condition
le · ge which is true i� the value in register a is strictly less then the value in register b: le · ge = (a ≤
b) · (a ≥ b) = (a < b). Thus values a and b are swapped before the subtraction a = a− b if a < b, so the

nonnegative result is guaranteed.
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5.2 CPOGs with dynamic evaluation

Another approach for speci�cation of a system with dynamic signal changes is to extend the basic CPOG

model and to allow some of the control variables to be changed during the active phase of the controller

execution. In our case it is natural to allow the comparator change signals le and ge so that they can be

used by the subsequent operations. Such a connection of the comparator cmp(a, b) to the TSE controller

is shown in Figure 9(b). CPOG speci�cation (see Figure 11) becomes more logical and understandable in

comparison with the two separated speci�cations in case of hierarchical design. Vertex cmp(a, b) controls
signals {le, ge} (this fact is denoted below the vertex) such that after its execution condition le+ ge = 1
holds. This condition is needed to ensure that the comparator does not produce a meaningless result

le = ge = 0. After its execution vertex swap(a, b) is included into the current operational �ow only if

needed.

cmp(a,b) sub(a,b) save(a)

load(a)

load(b)

swap(a,b): lege
__

le+ge=1

Figure 11: Dynamic CPOG

The formal description of CPOG behavior with dynamic control signals evaluation is presented in the

next section.

6 CPOG behavioural semantics

Every vertex v ∈ V in CPOG H(V,E,X, ρ, φ) is associated with an event (or action) in the modelled

system. Such an event can be execution of a data path combinational logic block or enabling of a slave

controller in case of hierarchical control design (see Section 5.1). To describe the dynamic behaviour of a

CPOG-based controller this section introduces �ring rules and the notions of control vector, con�guration

and state.

Control vector is an assignment function ψ : X → {0, 1} that assigns Boolean values to all the internal

and external control variables (signals) X. The set of internal control variables is denoted as Y ⊆ X, and

thus the set of external variables is X \ Y . The restriction function ρ bounds only the values of external

control signals: ρ ∈ F(X\Y ).
Function µ : Y → V assigns a master vertex v ∈ V for every internal variable y ∈ Y , which means

that y is generated during the execution of the action (master action) correspondent to v = µ(y). Before
the execution the value of any internal variable y ∈ Y is unde�ned and can be either 0 or 1. Set

Yv = {y ∈ Y |µ(y) = v} is called the controlled set of vertex v. Note, that controlled sets of any two

vertices do not overlap: Yu ∩ Yv = ∅, u ∈ V, v ∈ V, u 6= v. Every vertex v ∈ V has its own restriction

function ρv ∈ F(Yv) associated with it which restricts values of controlled variables Yv such that ρv|ψ = 1
always holds after the execution of the action associated with v. For example, let v be associated with

a comparator that compares two arguments and a�ects two variables Yv = {le, ge}: it sets le = 1
(ge = 1) i� the �rst argument is less (greater) or equal to the second. Obviously le and ge cannot be

both equal to 0 but the three other combinations are meaningful, thus the restriction function should be

ρv(le, ge) = le+ ge.

The preset of a vertex v ∈ V with respect to control vector ψ is de�ned as •v = {u ∈ V | φ|ψ(u) ∧
φ|ψ((u, v)) = 1}: it contains all the vertices u which precede vertex v in the partial order determined by

the complete projection H|ψ. Postset is de�ned similarly: v• = {u ∈ V | φ|ψ(u) ∧ φ|ψ((v, u)) = 1}.
Con�guration C ⊆ V is the set of vertices whose corresponding actions have been already performed.

A con�guration C is valid i� ∀v ∈ C, φ|ψ(v) = 1 ∧ •v ⊆ C.
Pair 〈C,ψ〉 is called state, as it fully describes the state of the modelled system.

NCL-EECE-MSD-TR-2008-126, University of Newcastle upon Tyne 9



A. Mokhov and A. Yakovlev: SAT-based Veri�cation of Conditional Partial Order Graphs

In a given state 〈C,ψ〉 a vertex v /∈ C is enabled to �re i�

• it is present in the partial order determined by the complete projection H|ψ: φ|ψ(v) = 1.

• its preset is a subset of the con�guration: •v ⊆ C;

A �ring of an enabled vertex v /∈ C produces a new con�guration C ′ = C ∪ {v}. Control vector ψ can

also be a�ected by the �ring if vertex v is associated with an action that changes some of the internal

control variables. In particular, the �ring of vertex v ∈ V a�ects the values of its controlled set Yv in

such a way that its restriction function holds: ρv = 1. Firing is considered to be an atomic event: 〈C,ψ〉
is changed momentarily into the new state 〈C ′, ψ′〉.

Note, that every internal control variable has at most one master vertex and therefore it can change

at most once. This means that system state 〈C,ψ〉 can only change monotonically during the system

evolution: once a vertex is added to con�guration it cannot be removed and once an internal control

variable is changed in ψ it remains constant.

A system state 〈C,ψ〉 is valid i� con�guration C is valid and the restriction functions of H and vertices

in the con�guration are not violated: ρ|ψ = 1 ∧ ∀v ∈ C, ρv|ψ = 1.

6.1 Initial states, �nal states and deadlocks

The initial state of the system is described as 〈∅, ψ0〉 which means that no actions have been performed

and the control signals are set to some initial values ψ0.

Starting from the initial state the system evolves by �ring enabled vertices and �nally reaches a state

when no vertex is enabled. Such a state can either be a �nal state or a deadlock. Notice that the

system will always terminate as the set of vertices V is �nite and each �ring adds a vertex v /∈ C into

con�guration C.

A �nal state of the system is such a state 〈C,ψ〉 that there is no vertex v /∈ C that is present in

projection H|ψ: ∀v /∈ C, φ|ψ(v) = 0.
A deadlock is such a state 〈C,ψ〉 that there are no enabled vertices but at least one vertex v /∈ C is

present in H|ψ: ∃v /∈ C, φ|ψ(v) = 1. A deadlock is a situation wherein two or more competing events

are waiting for the other to happen, and thus neither ever does. Such a situation is caused by the

fact that the complete projection H|ψ contains a cycle and thus invalid (see Section 3.3). A CPOG

H(V,E,X, ρ, φ) is called deadlock free if there is no valid deadlock state which is reachable from any

initial state 〈∅, ψ0〉, ρ|ψ0 = 1.

db

x1 x2 y1 y2

y1 y2+ =1

a: x1 x2+ c: y2

(a) Final state: C = {b, c, d},
(x1, x2, y1, y2) = (0, 0, 0, 1)

db

x1 x2 y1 y2

y1 y2+ =1

a: x1 x2+ c: y2

(b) Deadlock: C = {a, b},
(x1, x2, y1, y2) = (1, 0, 1, 1)

Figure 12: Final state and deadlock

Figure 12 shows an example of a system containing both �nal states and deadlocks (the vertices in the

con�gurations are marked with gray colour) . x1 and x2 are external control signals, while internal signals

Y = {y1, y2} are controlled by vertex b (its restriction function is shown below the vertex). Sub�gure (a)

shows the �nal state reachable through the following �ring sequence. System starts with the initial state

〈∅, (x1 = x2 = y1 = y2 = 0)〉. In this state vertex b is enabled to �re. After its �ring signals Yb = {y1, y2}
can change from zeroes to (y1 = 0, y2 = 1), note that the restriction function ρb = y1 + y2 is satis�ed.

Now vertices d and then c �re and the system comes to the �nal state: vertex a is not present in H|ψ:
φ|ψ(a) = 0.
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A reachable deadlock state is shown in Sub�gure (b): starting from 〈∅, (x1 = 1, x2 = y1 = y2 = 0)〉
system evolves by �ring of vertex a which is followed by �ring of b. Now if control signals Yb = {y1, y2}
evaluate into y1 = y2 = 1 then system comes to the deadlock: both vertices c and d exist in projection

H|ψ but none of them is enabled.

If a system does not contain any internal control variables (Y = ∅) then the �nal state (or deadlock)

can be uniqely determined from the initial state. Otherwise the system can terminate in di�erent states

according to the di�erent internal variable changes during the �ring of their master vertices.

6.2 Valid states reachability

Not every valid state 〈C,ψ〉 is reachable from the initial state 〈∅, ψ〉. The reason is that con�guration

C can contain such a set of vertices that there is no �ring sequence leading to it. Two examples of such

states are shown in Figure 13: both states have subset {a, b} ⊆ C in the con�guration but the external

control signals x1 = x2 = 1 introduce mutual dependence between vertices a and b: it is impossible to

�re them in any order and thus any state with con�guration {a, b} ⊆ C is unreachable. Moreover one

can observe that the initial state 〈∅, x1 = x2 = 1〉 is a deadlock state and it is the only reachable state

provided that the external signals are x1 = x2 = 1.

db

x1 x2 y1 y2

y1 y2+ =1

a: x1 x2+ c: y2

(a) Valid state: C = {a, b, d},
(x1, x2, y1, y2) = (1, 1, 0, 1)

db

x1 x2 y1 y2

y1 y2+ =1

a: x1 x2+ c: y2

(b) Deadlock: C = {a, b},
(x1, x2, y1, y2) = (1, 1, 1, 1)

Figure 13: Unreachable states

The following important property of deadlock free CPOGs is expoited in the veri�cation algorithms

presented in this paper.

Theorem I. If a CPOG H is deadlock free then every valid state 〈C,ψ〉 is reachable from the initial

state 〈∅, ψ〉 through a sequence of valid states.

Proof. By induction. If C = ∅ then 〈C,ψ〉 is the initial state already, otherwise let v ∈ C be such a

vertex that con�guration C does not contain any vertices of the postset of v: C∩v• = ∅. If it is impossible

to select such v then C must contain directed cycle 〈v0, v0〉 = (v0, v1, ..., vn = v0), vk ∈ C, k = 0...n which

implies that the system has a deadlock reachable from state 〈C −
⋃

0≤k<n vk, ψ〉. This contradicts the

fact that H is deadlock free. Thus v ∈ C,C ∩ v• = ∅ can be selected. Now we can un�re vertex v and

obtain a valid state 〈C ′, ψ′〉 = 〈C − v, ψ〉 from which 〈C,ψ〉 is reachable by �ring of vertex v. Note that

the un�ring of vertex v does not change the values of the internal control variables in ψ (ψ′ = ψ). This
is allowed because before the execution of their master action v the values of variables Yv are unde�ned

and nothing restricts them from being equal to the result of the execution: ψ′(y) = ψ(y), y ∈ Yv.
Con�guration C ′ = C − v is smaller than C and we can conclude inductively that eventually

it becomes empty and the initial state 〈∅, ψ〉 is reached. During the process we construct trace

(〈∅, ψ〉, ..., 〈C ′′, ψ〉, 〈C ′, ψ〉, 〈C,ψ〉) of valid states leading from the initial state 〈∅, ψ〉 to state 〈C,ψ〉. �

The proof of the theorem is constructive and is used as a basis for the recursive algorithm of trace

reconstruction for a valid state 〈C,ψ〉 which is shown in Algorithm 1. The presented algorithm directly

matches the proof but it can be further optimised using reverse topological sorting algorithm [4] resulting

in linear complexity w.r.t. to the number of arcs in H: O(|V |+ |E|).
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Algorithm 1 Trace reconstruction

function Trace(H, 〈C,ψ〉)
{

if (C = ∅) then return (); // empty trace

for all (v ∈ C) do

if (@u ∈ C, φ|ψ((v, u)) = 1) then

return Trace(C − v, ψ) + 〈C,ψ〉;

// CPOG H is not deadlock free
return deadlock_found_error ;

}

Reachable deadlock detection

Invalid state reachability

Conflict detection

Mutex property

system is deadlock free

no invalid state reachable

System specification (CPOG)

System state violating

verification property

Trace reconstruction

Trace leading to

the incorrect state

(error correction)

Verification successful

no conflicts found

mutex property not violated

Figure 14: CPOGs veri�cation �ow

7 Veri�cation

The overall veri�cation �ow of systems speci�ed with CPOG model is shown in Figure 14. The given

system is �rst checked for the absence of deadlocks (Section 7.2) and then for the impossibility to reach

an invalid state from a valid one (Section 7.3). After these basic veri�cation procedures the system can

be checked for higher level properties e.g. event con�ict freedom (Section 7.4) or checking that the two

given events are mutually exclusive (Section 7.5). The veri�cation tools provide the error state 〈C,ψ〉 in
case of an incorrect system behaviour and this state can be given to the trace reconstruction algorithm

(Section 6.2) to obtain the trace of events leading to the failure. This information can be used to correct

the given system speci�cation and rerun the veri�cation.

One of the possible veri�cation approaches is to convert the given CPOG into behaviorally equivalent

Petri net and reuse the great deal of existing veri�cation techniques available for them. But Petri net

model is more general and veri�cation of most of its properties is PSPACE-complete [6]. The most

e�cient veri�cation algorithms are based on Petri net unfolding and subsequent use of SAT-based NP-

complete techniques on the obtained pre�x [7]. Because of the acyclic nature of CPOGs valid projections

(each vertex can only �re at most once in every execution run) it is possible to apply SAT directly to

them without the computationally expensive unfolding and to stay within the NP-complete complexity

class.

7.1 SAT formulation

It is possible to formulate CPOG veri�cation problems as instances of a Boolean satis�ability prob-

lem (SAT), which decides whether a given Boolean formula is satis�able or not. A Boolean formula
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F (x1, x2, ..., xn) is called satis�able i� it is possible to �nd an assignment of Boolean values to the vari-

ables (x1, x2, ..., xn) that will make the formula true: F (x1, x2, ..., xn) = 1. Our aim in this section is to

build such a Boolean formula that will be satis�able i� the property under veri�cation holds.

The following variables are used to encode a system state 〈C,ψ〉 into Boolean domain:

• Con�guration C is described with |V | variables confv, v ∈ V such that confv = 1 i� vertex v is

included into the con�guration: v ∈ C.

• Control vector ψ is described with |X| variables valx, x ∈ X, such that valx = 1 i� ψ(x) = 1. We will

also use notation φval(z), z ∈ V ∪E to denote value of a vertex/arc function in complete projection

H|ψ.

Veri�cation formula is a conjunction of a set of constraints. The constraints ensure that variables confv

and valx de�ne a system state that is relevant to the particular veri�cation problem. For instance, if we are

looking only for the states with valid con�gurations then we have to use the following valid con�guration

constraint CONF :

CONF =

(∧
v∈V

confv ⇒ φval(v)

)(∧
v∈V

confv ⇒
∧
u∈•v

confu

)
It ensures that:

• a vertex v ∈ V can be in the con�guration (confv = 1) only if it exists in H|ψ (the �rst clause);

• if a vertex v ∈ V is in the con�guration then all the vertices of its preset •v must be in the

con�guration as well (the second clause).

Another constraint that will be often used is the control signals constraint SIG:

SIG = ρ(valx1 , ..., valx|X|) ·
∧
v∈V

confv ⇒ ρv(valy1 , ..., valy|Yv|
)

It captures the fact that the values valy1 ...valy|Yv|
of the control signals from vertex v cotrolled set Yv

must satisfy its restriction function ρv if v ∈ C, while CPOG restriction function ρ must be satis�ed with

values valx1 , ...valx|X| .

To simplify some of the further equations we also introduce Boolean function enabledv, v ∈ V :

enabledv = confv · φval(v) ·
∧
u∈•v

confu

Thus enabledv = 1 i� vertex v ∈ V is enabled to �re in the current state according to the de�nition

in Section 6.

7.2 Reachable deadlock detection

Veri�cation of deadlock freedom is di�erent from the other veri�cation problems because the deadlock

freedom property ensures that all the valid system states are reachable from the initial state. Thus when

we check for deadlock we cannot be sure that the found solution represents a reachable state. But the

beauty of this property is that if a particular deadlock state which was found by the presented algorithm

is unreachable it means that there must exist another reachable deadlock state that occurs before the

detected one and prevents it from being reachable (this follows from the proof of Theorem I). Therefore

the presented approach does not guarantee that the found deadlock is reachable but it guarantees that

if it �nds a deadlock then there exists a reachable deadlock in the system. Note that the reachability of

the found state can be polynomially checked using the trace reconstruction algorithm (Section 6.2).
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Figure 13(b) shows an example of unreachable deadlock state 〈C = {a, b}, x1 = x2 = y1 = y2 = 1〉.
Note that this deadlock is unreachable because of the existence of reachable deadlock state 〈C = ∅, x1 =
x2 = y1 = y2 = 1〉. To reach the former deadlock state the system should somehow resolve the latter one

which can only be done by violation of one of the con�icting dependencies between vertices {a, b}.
The veri�cation formula for this problem (named RD i.e. reachable deadlock) is the conjunction of

constraints CONF , SIG (which together de�ne a valid state 〈conf, val〉) and the following constraint DS
which is true i� there is no enabled vertex but at least one un�red vertex is present in H|ψ (a deadlock

state by de�nition):

DS =
∧
v∈V

enabledv ·
∨
v∈V

confv · φval(v)

This gives us the following SAT formula:

RD = CONF · SIG · DS

If SAT solver �nds such an assignment of variables confv and valx that RD = 1 then there is a

reachable deadlock in the system, otherwise the system is deadlock free. Note, that it is usually assumed

that formula is given in Conjunctive Normal Form (CNF) to SAT solver but it is possible to convert any

Boolean formula into CNF e�ciently [17].

7.3 Invalid state reachability

The next basic CPOG property that we are going to verify is the reachability of an invalid state from

a valid one. Example of such a situation is shown in Figure 15. The current system con�guration is

C = {a, c}, the only internal control variable y is set to zero and its master vertex is d (this fact is

denoted below the vertex) as shown in Sub�gure (a). This state is legal by de�nition because vertex b is

not present in the current complete projection H|ψ: φval(b) = y = 0. However, vertex d is enabled to �re

and it can change the value of variable y producing an invalid state: C = {a, c, d}, y = 1 (Sub�gure (b)).

This state violates validity of the con�guration because now vertex c ∈ C has vertex b in its preset and

it is not in the con�guration.

b: y

a

c d

y

(a) C = {a, c}, y = 0

b: y

a

c d

y

(b) C = {a, c, d}, y = 1

Figure 15: Reachable invalid state example

The veri�cation formula ISR (i.e. invalid state reachability) is the conjunction of constraints CONF ,
SIG (which together de�ne a valid state 〈conf, val〉) and the following constraint IS which is true i� there

is an invalid state 〈conf ′, val′〉 reachable from 〈conf, val〉:

IS =
∨
v∈V

enabledv · FIRE(v) · SIG′ · CONF ′

where SIG′ is the control signal constraint for variables conf ′v and val′x (we assume that vertex v �res

correctly i.e. it sets its controlled variables according to its restriction function and thus SIG′ constraint
is not violated); term CONF ′ ensures that state 〈conf ′, val′〉 has invalid con�guration. Function FIRE(v)
de�ned below constructs state 〈conf ′, val′〉 by �ring of vertex v in state 〈conf, val〉:

FIRE(v) = conf ′v ·
∧
u6=v

conf ′u ⇔ confu ·
∧
x/∈Yv

val′x ⇔ valx
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It ensures that con�guration conf ′ di�ers from conf only with vertex v and the only control signals

that are allowed to change are those belonging to its control set Yv.

To conclude, there is an invalid state reachable from a valid state in the given CPOG i� the following

Boolean formula is satis�able:

ISR = CONF · SIG · IS

In the example from Figure 15 SAT solver �nds the following assignment of variables: 〈(confa =
confc = 1, confb = confd = 0), (valy = 0)〉 and 〈(conf ′a = conf ′c = conf ′d = 1, conf ′b = 0), (val′y = 1)〉.

If formula ISR is unsatis�able then there is no reachable invalid state in the system.

7.4 Event con�ict detection

Two events are said to be in con�ict i� there is a reachable state 〈C,ψ〉 when both of them are enabled to

�re but �ring of one of them disables the other. Note that a con�ict does not necessarily lead to a deadlock

or an invalid state, and the monotonicity of con�guration C and control signals ψ is not violated. Con�icts

only a�ect the monotonicity of function enabledv, v /∈ C and eventually lead to glitches or hazards in

gate-level implementation of the controller.

ba c

y

y

(a) C = ∅, y = 0,
enabledc = 1

ba c

y

y

(b) C = {a}, y = 1,
enabledc = 0

Figure 16: Con�ict between events a and c

Example of a simple con�ict is shown in Figure 16. The system is in initial state 〈∅, y = 0〉 and all

the three vertices {a, b, c} are enabled to �re. But if vertex a �res and sets its controlled variable y into

1 then vertex c becomes disabled due to the appearance of an arc (b, c) (see Sub�gure (b)).
Veri�cation formula EC (i.e. event con�ict)

EC = CONF · SIG · CS

is constructed from the valid state constraint CONF · SIG and constraint CS which is satis�able i�

there is a state 〈conf ′, val′〉 reachable from 〈conf, val〉 by �ring of an enabled vertex v such that another

enabled vertex u becomes disabled:

CS =
∨

v,u∈V
u 6=v

enabledv · enabledu · FIRE(v) · SIG′ · enabled′u

As before terms SIG′ and enabled′u operate on variables 〈conf ′, val′〉 of the new state constrained with

function FIRE(v). The solution for the example in Figure 16 is: 〈(confa = confb = confc = 0), (valy = 0)〉
and 〈(conf ′a = 1, conf ′b = conf ′c = 0), (val′y = 1)〉.

7.5 Mutex property checking

A CPOG speci�cation can contain more than one vertex corresponding to the same action in the modelled

system. Figure 17 shows an example of MPS430 (a general purpose microprocessor [1]) instruction

speci�cation. The CPOG represents the operational �ow for an ALU operation with addressing mode

#123 to Rn/PC e.g. adding a constant to a register Rn or program counter (PC). PC++ is the

increasing of the counter, IR is the instruction reading, ALU is an arithmetic operation; pca (program

counter access) is the control variable that is set to one (zero) if the second operand is PC (register Rn).
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ALU

PC++: pca

PC++ IR IR

___

Figure 17: Multiple actions occurrence

The scenario is to increase PC (action PC++) and to load the constant (which occupies the next

word in the code memory after the instruction itself) into the instruction register (IR). After that the

constant is added to the second operand (ALU ). If the second operand is not PC then it is increased

concurrently (the second occurrence of PC++). The last step is to load the next instruction into the

instruction register (the second occurrence of IR).

To avoid arbitration it is necessary to be sure that there are no concurrent requests to the same action.

Looking at Figure 17 one can observe that the two occurrences of actions PC++ (and IR as well) are

mutually exclusive, but there can be much more sophisticated CPOGs and an automated procedure is

needed to be sure that the mutex property is not violated for a pair of given events.

The SAT-based veri�cation formula for checking the mutex property for given vertices v, u ∈ V is

MUT EX (v, u) = CONF · SIG · enabledv · enabledu

It is satis�able i� there is a valid state 〈conf, val〉 such that both vertices v and u are enabled to �re.

8 Conclusions

The paper introduced the extended Conditional Partial Order Graph model able to describe systems

with dynamic changes of internal control signals. The complexity of the model requires software tools

for e�cient CPOGs synthesis and veri�cation. This work provides theoretical base for the veri�cation

tool which is the part of the whole CPOG tool �ow that is currently under development. The creation of

this tool �ow would enable us to create a set of real-life examples of synthesis and veri�cation including

speci�cation of processors and NoC routers that are very suitable for CPOG characterisation.

Acknowledgement

Authors would like to thank Victor Khomenko for his expert advice on SAT theory and Danil Sokolov

for the useful discussions. This work was supported by EPSRC grant EP/C512812/1.

References

[1] MSP430x4xx Family User's Guide.

[2] Andrew Bardsley and Doug Edwards. The Balsa asynchronous circuit synthesis system. In Forum

on Design Languages, 2000.

[3] G. Birkho�. Lattice Theory. Third Edition, American Mathematical Society, Providence, RI, 1967.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,

2001.

[5] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify: a tool for ma-

nipulating concurrent speci�cations and synthesis of asynchronous controllers. IEICE Transactions

on Information and Systems, E80-D(3):315�325, 1997.

[6] J. Esparza. Decidability and Complexity of Petri Net Problems - an Introduction. In Lectures on

Petri Nets I: Basic Models, W. Reisig and G. Rozenberg (Eds.)., 1998.

NCL-EECE-MSD-TR-2008-126, University of Newcastle upon Tyne 16



A. Mokhov and A. Yakovlev: SAT-based Veri�cation of Conditional Partial Order Graphs

[7] Victor Khomenko, Maciej Koutny, and Alex Yakovlev. Detecting State Coding Con�icts in STG

Unfoldings Using SAT. In Proceedings of the Third International Conference on Application of

Concurrency to System Design (ACSD'03), 2003.

[8] Luciano Lavagno, Louis Sche�er, and Grant Martin. Electronic Design Automation For Integrated

Circuits Handbook. 2006.

[9] Art Lew. Computer Science: A Mathematical Introduction. Prentice-Hall, 1985.

[10] Andrey Mokhov and Alex Yakovlev. Transition Sequence Encoder. Technical report, University of

Newcastle upon Tyne, September 2006.

[11] Andrey Mokhov and Alex Yakovlev. Conditional Partial Order Graphs and Dynamically Recon�g-

urable Control Synthesis. Technical report, University of Newcastle upon Tyne, January 2008. (The

paper accepted for DATE 2008).

[12] Steven Nowick. Automatic Synthesis of Burst-Mode Asynchronous Controllers. PhD thesis, Stanford

University, 1993.

[13] Danil Sokolov and Alex Yakovlev. Clock-less circuits and system synthesis. In IEE Proceedings,

Computers and Digital Techniques, 2005.

[14] Jens Sparsø and Steve Furber. Principles of Asynchronous Circuit Design: A Systems Perspective.

Kluwer Academic Publishers, 2001.

[15] Kees van Berkel, Mark Josephs, and Steven Nowick. Scanning the technology: applications of

asynchronous circuits. In Proceedings of the IEEE, 1999.

[16] Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits Schalij. The VLSI-

programming language Tangram and its translation into handshake circuits. In Proc. European

Conference on Design Automation (EDAC), 1991.

[17] Ingo Wegener. The Complexity of Boolean Functions. Johann Wolfgang Goethe-Universitat, 1987.

NCL-EECE-MSD-TR-2008-126, University of Newcastle upon Tyne 17


