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Abstract

A Globally Asynchronous and Locally Synchronous (GALS) system can be ob-

tained by: (1) integrating independently clocked domains via an asynchronous

communication link or, (2) desynchronising a synchronous system into a num-

ber of synchronous compartments whose interface is seamlessly refined to handle

asynchronous communication.

In the area of system integration, a number of schemes have been proposed

to handle the synchronisation problem. There have been no comparative perfor-

mance analysis to aid the designer to choose one scheme over another. Therefore,

we classify these schemes into three generic categories so that they can be brought

to a common platform for comparison and show how they can be applied to an ex-

isting partitioned synchronous architecture to obtain a reliable, low latency and

efficient clock control architecture. We present circuit solutions and comparative

analysis results for the generic classes in terms of circuit implementation, perfor-

mance and relative power consumption.

The various system desynchronisation methodologies proposed are targeted

for single clock synchronous systems where all components operate on the same

xx



ABSTRACT

clock or known clock ratios. Weak Endochrony (WE), to the best of our knowl-

edge, is the only methodology that can handle unknown clock ratios. Therefore,

in this area, we specifically address: (a) the problem of synthesising the asyn-

chronous wrappers needed for GALS implementation based on the WE model,

which defines correct desynchronisation conditions for a synchronous system and,

(b) the problem of complexity posed by (a), by proposing a new methodology to

desynchronise modular synchronous specifications, with unrelated clock ratios,

into independent synchronous compartments for their realisation into GALS ar-

chitectures and obtain simple wrappers that are efficiently synthesisable using ex-

isting synthesis tools.

The wrapper synthesis phase in (a) involves the interface refinement and trans-

lation of the WE models into Petri net models, while preserving the WE proper-

ties, to obtain latency insensitive circuits. In the system desynchronisation phase

(b) we present a formal framework that besides bridging the semantic gap be-

tween the synchronous and asynchronous models also addresses the issues posed

by previous desynchronisation methods, while allowing us to reason and present

conditions for the correctness of system partitioning. The results of (a) and (b)

have been demonstrated by applying the respective algorithms on simple proces-

sor models.

xxi



Chapter 1

Introduction

The complexity of digital systems grows enormously, as can be seen from the

technology roadmap [1, 2] in Table 1.1. Globally Asynchronous and Locally Syn-

chronous architectures (GALS) are designed to facilitate the integration of multi-

million transistor on a single chip. Clocking circuits are becoming increasingly

hard to design with larger chip sizes, higher clock rates and larger wire delays.

To reduce the design time of a system, it is becoming essential to reuse verified

and tested intellectual property (IP) blocks. The integration of various IP cores

on complex systems on chip requires a multitude of clock frequencies on a sin-

gle die. Such integrations are enabled by modern deep sub-micron fabrication

technologies in the form of chips with more than a billion transistors [3]. GALS

architectures aid such integration by allowing the synchronous blocks to operate

independently with other synchronous blocks through asynchronous communica-

tion channels. Therefore, instead of using a fixed period clock as used in globally

1



CHAPTER 1. INTRODUCTION

Property Year 1999 Year 2001 Year 2005 Year 2011
CMOS process [µm] 0.18 0.15 0.1 0.05

Transistor on chip 7 14 41 247
[Mtrans/cm2]

On-chip clock[GHz] 1.25 1.77 3.5 10
Off-chip clock[GHz] 0.48 0.722 1.035 1.54

Power dissipation 1.4 1.7 2.2 2.4
(handheld systems) [W ]

Vdd[V ] 1.5 1.2 0.9 0.5

Table 1.1: Technology roadmap from 1999 to 2011

synchronous systems, GALS systems have a locally generated clock whose period

is specific for the local (synchronous) block. The application of locally generated

clocking schemes enables integration of IP cores with unrelated clock ratios. The

components of a heterogeneous system can be clocked using different clock gen-

eration schemes, to obtain a GALS system.

This thesis amalgamates two areas of research that addresses two prevalent

issues in the design of GALS architectures. GALS systems have been extensively

studied and many approaches have been proposed for the design of such systems.

There is a plethora of researchers who have proposed various design methodolo-

gies, presented in Chapter 3, and analysed their particular designs for different

system parameters. Hence, a classification of the proposed systems becomes im-

portant. Once classified, a generic model of the scheme can be built for each

class and a comparative study between them carried out. This first part of the re-

search classifies the model and presents novel comparative analysis results based

on performance and power for each generic model.

2



CHAPTER 1. INTRODUCTION

Since GALS design is seen as a replacement for conventional synchronous

design, it is becoming increasingly important to devise ways of translating exist-

ing synchronous systems into a GALS architecture. There are two ways to do

this. A GALS architecture could be built from individually clocked blocks. These

blocks are integrated using different communication primitives. FIFO is one such

primitive and is extensively discussed in the subsequent chapters. On the other

hand, a globally synchronous system can be desynchronised into small indepen-

dent islands that are made to interact with each other using similar communication

primitives, as mentioned above.

The desynchronisation problem can be defined as the property by which a syn-

chronous system can be deployed over asynchronous architecture in a correct by

construction mechanism. The main objective for desynchronisation is the abil-

ity to use existing synchronous design tools and practises for the specification

and optimisation of a system, while still obtaining an efficient final distributed

architecture. All the approaches to achieve the above can be classed under two

categories, which combine the theoretical properties of synchronous designs with

efficient implementation where the synchronous constraints are relaxed.

1. Desynchronisation: desynchronisation was motivated by the problem of

achieving a correct by construction modular deployment of embedded soft-

ware on distributed architecture [4, 5, 6]. In such an implementation large

system processes are designed synchronously and are made to communi-

cate via asynchronous communication lines. This allows the different parts

of the system to operate at different speeds.

3
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2. Latency Insensitive Design: Latency insensitive design was motivated by

the problem of long interconnect delays between the different components

of the system. In deep submicron (DSM) technologies this is more profound

because the long paths between the components introduce delays that force

the overall clock to slow down in order to maintain synchronous behaviour.

By introducing automatic pipelining and insertion of relay stations [7], la-

tency insensitive design allows the implementation to avoid slowing down

the clock. This aids the recovery of a part of the throughput that could have

been achieved without the interconnection delays.

1.1 Motivation and contribution

The motivation and the main contribution of this research is presented below:

GALS design and comparative analysis

The GALS literature lacks the comparative study between the different GALS

designs which enable design exploration of these applications in terms of which

communication interfaces or architectures are more suitable for deploying. Since

power is an important metric for SoC applications, this work also estimates power

overheads, in addition to the performance overheads, introduced by various on-

chip communication and the clock generators used in each scheme. This thesis

gives a comprehensive overview of the GALS design methodology. Three generic

models of GALS clocking schemes are presented. These form the basis of most

4
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design approaches proposed so far. The contribution of this work lies in the intro-

duction of a system level methodology which is amenable to analysing the power

and performance characteristics of the different clocking schemes. The clocking

schemes presented here allow the different synchronous blocks to be connected

asynchronously without the need to interface them with additional synchronising

elements.

Synthesis of desynchronised components

We consider the problem of synthesising the asynchronous wrappers and glue

logic needed for the correct GALS implementation of a modular synchronous sys-

tem. Our approach is based on the weakly endochronous synchronous model,

which defines high-level, implementation-independent conditions guaranteeing

correct desynchronisation at the level of the abstract synchronous model. It is

shown that Weakly Endochronous (WE) System provides solutions to many issues

posed by previous correct-by-construction methodologies. The previous method-

ologies were applied to independent synchronous blocks which had related clock

ratios. WE systems can handle unrelated clock ratios, which is the most im-

portant characteristic that leads to the choice of WE systems as the basis of our

desynchronisation methodology. This methodology is composable, a factor that

deterred the formation of GALS systems consisting of more than two synchronous

blocks in some of the forerunners. The main contribution of the work is to develop

a methodology to translate the WE models into an implementable one by:

• adding extra signalisation to cope with asynchronous communication which
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supports the notion of data driven clocking scheme, introduced in chapter 4.

• attaching the FIFO information to each signal explicitly, which was earlier

implicit in the model.

The above two aid the implementation of WE system into delay insensitive cir-

cuits.

New desynchronisation methodology

The above work led to the identification of some issues while carrying out the

synthesis process on practical applications. This led to the introduction to our own

desynchronisation methodology. Our approach to this synthesis problem consists

of partitioning the synchronous blocks and assigning them to Localities. Each of

these localities emulate synchronous behaviour and hence can be treated as inde-

pendently clocked domains. The interfaces of these blocks are modified to handle

asynchronous communication which results in a correct GALS implementation.

The blocks are made to communicate with each other using asynchronous FIFOs.

The localities are modeled using the Petri net language, which is highly expres-

sive in modeling concurrency. This is because concurrency is one of the main

properties of a distributed architecture. Our contribution has been the formalisms

presented on the notions of correctness for the partitioning of the globally syn-

chronous systems into localities and preservation of semantics in the GALS de-

ployment of the synchronous system. The approach is easy and efficient and can

be applied to general systems.
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1.2 Thesis Outline

The thesis is organised as follows:

Chapter 2 presents the idea of GALS systems. It briefly describes the differ-

ent components that comprise the GALS architecture. Then it goes on to introduce

the modeling languages used in different parts of the research. These include Petri

nets and State Transition systems. Both these languages play an integral part in

specifying our systems at various levels of abstraction.

Chapter 3 highlights and reviews the existing methodologies related to the

work presented in this thesis. The main categories of methodology are system

integration and system desynchronisation techniques. This chapter also introduces

the concept of Endochronous and Weakly Endochronous systems which form the

basis of our synthesis and desynchronisation methodologies.

Chapter 4 categorises the different clocking schemes proposed to date, into

three main classes. A generic model is then built for the three classes and each of

them synthesised in the Cadence framework. Important metrics are identified for

these circuits to compare them on the basis of performance and power. Results

presented include both model level and system level analysis taking these metrics

into account.

Chapter 5 introduces the idea of weak endochrony and the criteria that equip

the models to be deployed in an asynchronous environment from a synchronous

one. It presents an algorithm to translate this model to an implementable level,

while preserving the semantics of the initial WE system and the correctness of the

7
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GALS implementation.

Chapter 6 proposes a new desynchronisation methodology which addresses

the problems encountered in the previous method, presented in Chapter 5. This

method introduces the idea of Localities and shows how it can be applied to syn-

chronous systems to obtain a distributed architecture. It presents an algorithm for

locality allocation and gives correctness notions for such partitions.

Chapter 7 summarises the results achieved during the course of the research

and also presents areas of potential future work.

8



Chapter 2

Background

2.1 Introduction

The GALS design methodology has been developed to address several issues that

have been posed by synchronous and asynchronous design methodologies. The

goal is to combine the advantages of both synchronous and asynchronous design

styles and avoid their shortcomings. This chapter presents a brief description of

the three design styles, namely, synchronous, asynchronous and GALS. It also

presents the underlying models for the specification of these design styles. These

models include Petri nets and State Transition Systems.

2.1.1 Synchronous Design

The synchronous design style is the most established design style of today. The

main characteristic of a synchronous system is the global clock that governs all

9
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the activities in the system. All the events in the circuit are ordered by the clock

signal. In a synchronous circuit this global clock samples all data signals of the

circuit. The circuit operates correctly as long as all the signals have their data

valid at the time of the clock event.

Since the advent of the digital design era, this scheme has been very success-

ful. But as with all engineering solutions there are several disadvantages of this

approach. Recent developments in IC manufacturing technologies, besides in-

creasing the performance of the ICs by several magnitudes, has also aggravated

several design problems with this design style. The main challenge arising from

this design style is to incorporate the distribution of the global clock across a sin-

gle die.

Since the timing of a synchronous system is of utmost importance, it is im-

perative to distribute the clock signal to all the clocked elements in the circuit at

the same time. The modern IC technologies significantly reduce the circuit size

and increase the clock rate. Therefore, the precision with which the clock is re-

quired to be distributed to the different elements increases. Hence, in modern

design techniques a significant amount of time is spent in distributing the clock

and achieving timing closure.

2.1.2 Asynchronous Design

Contrary to the synchronous design styles, asynchronous circuits operate without

a clock signal. They consist of several blocks that communicate via handshake

signals. These handshake signals request data from connected blocks and on the
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arrival of the relevant data acknowledge its receipt. The handshake signals are

generated locally within each block. Since they do not depend on a global clock

signal, they are also known as “self-timed” circuits.

The self-timed circuits do not have any problems associated with the clock

distribution, therefore, eliminating all synchronisation problems. Asynchronous

designs exhibit average case performance as opposed to worst case performance.

There is an improvement in the critical timing of a circuit when comparing av-

erage case scenarios to worst case scenarios. In a synchronous system, the clock

period is chosen in such a way that it accommodates the slowest synchronous

block and therefore it exhibits worst case performance. On the other hand asyn-

chronous designs can sense the completion of a computation with the help of

completion detection signals. Moreover, a synchronous circuit operates, even if

it has no function to perform and hence consumes dynamic power in idle states.

A self-timed circuit in such a situation is inactive and would simply wait. Self-

timed designs are based on reliable data transfer independent of absolute timing

information. Therefore, different modules designed by the same approach can be

easily integrated with each other.

The self-timed approach is fundamentally different from synchronous designs.

Most engineers are unfamiliar with this design style and hence reluctant to adopt

such methodologies. Moreover, the lack of industrial EDA tool support has hin-

dered the viability of asynchronous circuits.
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2.1.2.1 Classes of Asynchronous Circuits

Asynchronous circuits can be divided into different delay classes and operation

modes which are defined below: [8, 9].

Delay models

1. Bounded delay: The delays in both gates and wires are bounded. Bounded

delay means that the delay is known or at least it is limited. This delay

model is also used for synchronous circuits.

2. Speed-independent: This model assumes that the gate delays are unbounded

and that the delays in wires are negligible.

3. Delay-insensitive: Delays in both wires and gates are unbounded, hence a

signal can be delayed without circuit failure.

4. Quasi-delay-insensitive: Unbounded gate and wire delays, where some

wire forks are isochronic, i.e., the delay to the wire ends are the same for all

wires in the fork or the delay difference is negligible.

Operation modes

1. Fundamental mode: No input signals from the environment are allowed to

change until the circuit and feedback signals have stabilised.

2. Input/Output mode: The environment is allowed to change the input sig-

nals as soon as the circuit has produced the corresponding output signals.
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Hence, the feedback signals do not have to be stable.

3. Single-Input Change: Only one input signal can change at a time.

4. Multiple-Input Change: Multiple-input signals are allowed to change at

the same time.

2.1.2.2 Handshake Protocols

In order to transfer data between blocks it is necessary to use a protocol, so that

both the transmitter and the receiver can agree when data is valid. For the syn-

chronous domain, the clock is used to decide when the data is valid.

Two-phase and four-phase handshake protocol

Two-phase and four-phase handshake protocols are briefly described. The asyn-

chronous processor, Amulet 1 uses mostly the two-phase handshake protocol, but

also includes circuits using the four-phase handshake protocol [10]. Figure 2.1

shows example of both two-phase and four-phase handshake protocols.

In the case of the two-phase handshake protocol, the changes in a signal are

important and while for the four-phase handshake protocol, the signal level is

important. For two-phase handshake protocol, one event occurs on both request

and acknowledgement, and for four-phase handshake protocol, two events occur

on the request and acknowledge signals. In Figure 2.1, two transfers are shown

for the two-phase protocol, and one transfer for the four-phase protocol.

A transfer is always started with an event on the request signal and is al-
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Figure 2.1: Two and Four- phase handshake protocols
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Figure 2.2: Bundled data and dual rail channels

ways followed by an event on the acknowledge signal. The two-phase handshake

protocol is also known as transition or non-return-to-zero (NRZ) signalling and

four-phase handshake protocol is also known as level or return-to-zero (RTZ) sig-

nalling. Both the two-phase and four-phase protocols can be bundled with the data

and is then called bundled data protocol as shown in Figure 2.2.

2.1.3 GALS Design

The globally synchronous paradigm suffers from issues such as clock skew and

power consumption caused by the global clock distribution. In globally syn-

chronous environments, synchronisers or asynchronous FIFOs are used between
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different clock domains to reduce the probability of failure due to metastability.

This leads to a widespread control overhead, which in turn increases the size of

the die. For many years, advocates of the self timed circuits have predicted the

demise of synchronous design.

There has been a gradual transition from the synchronous world to the mixed

synchronous-asynchronous world. The traditional methodology for clock gener-

ation is the synchronisation of a slow off-chip clock with a faster on-chip clock

using a phase-locked loop (PLL). The output of the PLL is distributed across

the chip by a balanced H − tree which balances the propagation delay between

the roots and the leaves. However, a time varying phase displacement called jit-

ter is introduced by the PLL itself and capacitively and inductively coupled into

the clock tree. Process variations in the interconnects and its repeaters introduce

phase differences called skew between the leaves of the tree. These variations are

detrimental because they limit the portion of the clock cycle which is available

for computation. These effects are further exacerbated by shrinking die size and

increased clock frequencies.

Seitz [11] defined synchronous designs as those in which the sequence and

time are connected by a system wide clock and self timed designs as those in

which sequence and time are connected inside elements whose terminal behaviour

only satisfies a sequence domain representation insensitive to elements and wiring

delays. Therefore, Seitz suggested that to avoid the complexity of distributing a

single global clock across the entire chip area and the varying power require-

ments for different blocks, the synchronous blocks can employ independent in-
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ternal clocks. The frequency can be scaled up or down depending on the perfor-

mance requirements of the system. The asynchronous channels over which the

synchronous blocks communicate may use delay insensitive styles such as dual

rail for single bits or 1-of-4 encoding for two bits [12]. They may also use bun-

dled data convention in which a delay matched control bit is transmitted in parallel

with the data bus.

Chapiro’s PhD thesis [13] laid the foundation for subsequent work in standard

GALS system design. Although the circuitry described in this work cannot be

successfully applied to modern high speed digital systems, it still forms the fun-

damental basis of GALS systems. Hemani et. al. [14] investigated the potential

of GALS architectures to save the clock power as compared to synchronous de-

signs. In their work they showed that in a system consisting of N synchronous

blocks, the clock power is reduced by a factor of the square root of N . They also

modeled the power consumption in GALS overhead logic and showed that GALS

still offers a net power savings over the fully synchronous architectures.

In addition to local clock generator circuitry, GALS systems require synchro-

nisation between clock domains for reliable data transfer. This synchronisation is

necessary to avoid or remove metastability. Metastability occurs when a flip flop

fails to arrive at a known state in a specific amount of time. In such a situation it is

not possible to predict the element’s output voltage and the time when the output

would settle to a correct voltage level. During this state the flip flop’s output is at

some intermediate volatge level.

A flip-flop may enter a metastable state if the input is not stable when it is
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Figure 2.3: A single port GALS System

sampled, i.e., the setup and hold times for the flip-flop are violated. Metasta-

bility may occur in the receiving data register of a GALS system if the input is

unstable during the small window around the active edge of the clock. A regis-

ter typically contains several flip-flops, and problems may arise if one or several

of the flip-flops in a register enter a metastable state. To avoid metastability, the

synchronisation strategy stops the clock when the data transfer takes place.

2.1.3.1 GALS architecture

A typical GALS architecture is depicted in Figure 2.3. The GALS wrapper con-

sists of the following:

• Local Clock Generators

• Handshake Unit

17



CHAPTER 2. BACKGROUND

2.1.4 Local clock Generator

The asynchronous wrapper also includes a local clock generator. This genera-

tor controls the granting of the clock pulse to avoid metastability from affecting

the overal working of the system by using Mutual Exclusion (MUTEX) elements.

They basically consist of ring oscillators and mutual exclusion elements. The

locally synchronous modules can utilise the local clock signals of frequencies

suitable to their needs. Whenever an asynchronous data transfer takes place, the

associated port controller sends a request to stretch the clock, Ri. In response to

the request the clock generation circuit stretches or pauses the clock and acknowl-

edges the stretch by setting Ai. The clock generation circuits can either receive

stretch signals from just one port controller, or they could receive the request sig-

nals from more than one port controller contained within the wrapper.

Mutual Exclusion Element

The clock generator circuit shown in Figure 2.4 consists of a ring oscillator

and a MUTEX. The ring oscillator generates a continuous clock signal, whose

frequency can be varied by varying the delay in the feedback loop, depending on

the system requirements. The MUTEX is used to arbitrate between the clock grant

request Ri and data transfer request Rclk.

The rising edge that appears first at the input of the MUTEX will go on to pass

through the MUTEX to its respective output, and the rising edge of the other signal

will only pass through after the first granted signal goes low. If both the signals

appear simultaneously at the input of the MUTEX, then the signals run into a

metastable state inside the MUTEX. At this stage, the MUTEX randomly chooses
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between the requests and grants one of them. Figure 2.5 shows the structure of a

MUTEX.

An asynchronous wrapper can have more than one port. The port-controllers

of each of these ports have the provision to request for clock stretch whenever

required. In order to facilitate this, the wrapper requires to have a clock gener-

ator which is equipped to accept multiple clock stretch request from all the port

controllers in the wrapper. Such a circuit is depicted in Figure 2.6.

The multi-request circuit safely arbitrates between the incoming request sig-

nals, Ri, .., Rin and the rising edge of Rclk. It can be seen that even if one clock

stretch request is present the Rclk is not granted due to the presence of the AND
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gate.

2.1.5 Handshake Unit

The handshake unit mainly consists of the GALS ports. A GALS port comprises

a port controller defined by an Asynchronous Finite State Machines (AFSM) and

a flip flop for signalling the completion of a transfer. These GALS ports from dif-

ferent modules communicate with each other using a simple handshake protocol.

The sending port “requests” a data transfer and the receiving port “acknowledges”

as soon as it is ready. The GALS port can pause the local clock to ensure synchro-

nisation.

GALS Port Controllers There are two families of port controllers:

• Demand: A demand-type (D-type) port also ensures data integrity but in-

corporates a feature similar to clock gating [15]. This type of port stops the

local clock as soon as it is enabled (“sleep while waiting”). All ports work

with the push principle where a sender always initiates a data transfer and
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the receiver answers with an acknowledge. When a D-type port is enabled,

notified by a switching event on Den, it immediately issues a clock stretch

request Ri, which gets acknowleged by Ai, and does not release it until

the data transfer has taken place, denoted by the external hanshake cycle

on Rp/Ap. A D-type port is used whenever data transfer is required im-

mediately - when no further computations can be performed by the locally

synchronous island without the data being transferred. Figure 2.8 shows a

D-type port controller.
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• Poll: A poll-type (P-type ) port asks for clock stretching only to prevent

metastability and ensures data correctness (“proceed while waiting”). These

port controllers influence the clock as infrequently as possible [15]. A P-

type port is used whenever a data transfer is possible but is not necessarily

required to happen immediately. The locally synchronous module continues

to work normally, while the P-type port controls the data transfer. Figure

2.9 shows a P-type port controller. After the activation of the port by signal

Pen , the port polls the handshake lines connected to it. In contrast to the

D-ports, there is no predetermined cycle of the local clock during which

the data transfer accurs. Therefore an extra signal Ti is generated to denote

that the transfer has taken place. In order to feed this signal to the locally

synchronous domain a separate finite state machine is used to synchronise

this signal to the local clock. Since during the event on Tithe local clock is

kept low, a synchronised signal Ts is generated that is high during the clock

pulse following a transition on Ti. In this way, Ts can be safely sampled

with the local clock’s rising edge.

All data transfers on a particular port in a GALS system are managed by port

controllers. Figure 2.10 shows the above port controllers between two locally syn-

chronous islands. The enable signal triggered by the locally synchronous module

uses 2-phase protocol, while all the signal links between the port controller and

the clock generator as well as between the two communicating port controllers

employ 4-phase handshaking. A GALS module with multiple port controller is

shown in Figure 2.7.
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2.2 GALS Behavioural Modeling Schemes

This section presents the modeling schemes used to specify the systems used in

this thesis.

2.2.1 Synchronous Transition Systems

The components and systems interact with each other and with the environment

through variables. The domain of variable v is denoted by Dv. Given V a set of

variables, a label over V is a partial valuation of its variables. The set of all the

labels over V is :
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Lv =
∏

v∈V

(Dv ∪ {⊥})

Every system, component and communication lines are modeled using Gener-

alised Concurrent Transition Systems (GCTS). AnGCTS is a tuple Σ = (S, s0, V, T ),

where, S is the set of states, s0 ∈ S is the initial state, V is a set of communication

variables, T ⊆ S × Lv × S is a set of transitions satisfying the following axioms:

Axiom 1. Void transition:∀s ∈ S : (s,⊥V , s) ∈ T .

Axiom 2. Prefix closure: If (s, l, s′) ∈ T and l′ ≤ l, then there exists s′′ ∈ S,

such that (s, l′, s′′), (s′′, l\l′, s′) ∈ T .

A trace φ over the set of variables V is a finite sequence of labels over V .

The support of a label l ∈ Lv is supp(l) = {v ∈ V | l(v) 6= ⊥}. The interaction

between a synchronous component and its environment is a sequence of reactions,

which are mappings r ∈ Reactions = V → D′. The signature of a reaction r is

sig(r) = {v | r(v) 6= ∗}. Reactions(U) denotes the set of reactions of signature

U ⊆ V . The reachable state space of a GCTS Σ is a set

RSS(Σ) = {s ∈ S | ∃φ : s0
φ→ s}

To take into account directed communication, directed variables are used.

These variables are denoted by !c (to depict the emission on channel c) and ?c
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(to depict reception on channel c). The variable !c and ?c have the same domain

denoted byDc. C(V ) denotes the set of channels associated with a set of variables

V . The communication lines consist of directed FIFO channels, each channel de-

picted by a pair of directed variables. A value on channel c is emitted by assigning

the variable !c, and a value is received on the channel c by reading variable ?c. The

variables !c and ?c must have the same domain Dc. To represent synchronous and

GALS systems, the clock signals are represented by special clock variables that

carry no data and are denoted by τ .

Below are some definitions of some relational properties that are followed by

the traces obtained from each of the system components.

Definition 2.1. Asynchronous Equivalence Relation (∼): For all v ∈ Directed(V ),

if φ1 ≤ φ2 and φ2 ≤ φ1, then φ1 and φ2 are asynchronous equivalent.

The definition states that if for every communication channel c of two traces φ1

and φ2, the order of activities is the same, then the two traces are asynchronously

equivalent. For example, if φ1 :!a!b?a and φ2 :!a?a!b, then φ1and φ2are asyn-

chronously equivalent. This is because the order of !a and ?a is the same.

Definition 2.2. Prefix Relation (�): For all v ∈ Directed(V ), if φ2 = φ1φ3, then

φ1 is a prefix of φ2.

If there exists a trace φ3 such that a sequential execution of φ1and φ3, de-

noted by (φ1;φ3), is asynchronously equivalent to φ2, then φ1 is a prefix of φ2.

Therefore, a prefix φ1 of a trace φ2, maintaining the condition that the order
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of φ1 is equivalent to φ2, can be enhanced by φ3. For example, if φ1 =!a?a!b,

φ2 =!a!b?b?a and φ3 =?b, then φ1 is a prefix of φ2.

Definition 2.3. Asynchronously Non-contradictory Relation ( ./ ): For all v ∈

Directed(V ), if φ1|{v} � φ2|{v} or φ2|{v} � φ1|{v}, then φ1 and φ2 are asyn-

chronously non-contradictory.

The above definition states that if traces φ3 and φ4 exist such that φ1;φ3 ∼

φ2;φ4 and if it is possible to complete φ1 and φ2 to a trace φ, such that φ ∼

φ1;φ3 ∼ φ2;φ4, then φ1 is asynchronously non-contradictory to φ2. For exam-

ple, if φ =!a?a!b?b, φ1 =!a?a!b, φ2 =!a!b?b, φ3 =?b and φ4 =?a, then it can

be observed that !a?a!b?b ∼!a?a!b ; ?b ∼!a!b?b ; ?a, therefore making φ1 non-

contradictory to φ2.

2.2.2 Petri Nets

Petri nets are widely used to model concurrent systems because they have simple

and intuitive semantics. A Petri net (PN ) is a model used to represent systems

with concurrency. It is a quadruple PN = {P, T, F, µ0}, where P is a set of

places, T is a set of transitions, F is an arc denoting the flow relation F ⊆ {(P ×

T ) ∪ (T × P )} and µ0 is the initial marking. A labelled PN is a PN with a

labelling function L : T → A associating each transition of the net with a name.

A labelled Petri net can have a combination of implicit places, where the input

and output transitions are named using symbols from the alphabets, connected by

arcs and transitions which are labelled with signal transitions (a+, a−) or events
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(a_req, a_ack).

There exists an arc from x ∈ P ∪ T to y ∈ P ∪ T iff (x, y) ∈ F . The

preset of a node x ∈ P ∪ T is defined as •x = {y | (y, x) ∈ F} and the postset

as x• = {y | (x, y) ∈ F}. A marking is a mapping µ : P → N denoting the

number of tokens in each place, N = {1, 0} for 1−safe PNs. The number of

token assigned to a place p by a marking µ is written as µ(p). A transition t ∈ T

is enabled at a marking µ, denoted by µ[t >, if for every p ∈ •t, µ(p) > 0. For a

1−safe PN, the firing of the transition t modifies the marking by consuming one

token from each of the predecessor places and producing one token to each of the

successor places. A marking µ′ is reachable from marking µ if there exists a firing

sequence σ = t0...tn that transforms µ to µ′and is denoted by µ[σ > µ′. For any

a ∈ A, by µ[a > (or, µ[a > µ′), it is meant that µ[t > (or, µ[t > µ′) for some t

with L(t) = a. Let Sµ0 be a set of reachable markings from the initial marking

µ0.

Given a Petri netN , the pre- and post-multiset of a transition t are respectively

the multiset preN(t) and the multiset postN(t), such that for all p ∈ P , |p|preN(t) =

F (p, t) and |p|postN (t) = F (t, p), where |p| denotes the number of tokens present

in the place p.

There are several structural and behavioural properties that are followed by

Petri net models. Some of these properties, that are used in this research are

elaborated below.

A Petri net marking is live if for each marking µ ∈ Sµ0 and for each transition

t there exists a marking µ′ ∈ Sµ that enables t. A marked Petri net is live if its
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initial marking is live. A marked Petri net is k−bounded (or simply bounded) if

there exists an integer k such that for each place p, for each reachable marking µ,

µ(p) ≤ k. A marked net is safe if it is 1− bounded.

A transition t1 disables another transition t2 at a marking µ ∈ Sµ0 if both t1

and t2 are enabled at µ and t2 is not enabled in any µ′ ∈ Sµ. A marked Petri

net is persistent if no transition can ever be disabled at any reachable marking.

Therefore, if for every place p ∈ P , | • p| = 1 and |p • | = 1, then we can say that

the net is persistent. Two transitions t1 and t2 in a marked Petri net are concurrent

if there exists a reachable marking µ ∈ Sµ0 where both t1 and t2are enabled and

neither t1 disables t2 nor vice versa. Two transitions t1 and t2 are in conflict if

there exists and reachable marking µ where both t1 and t2 are enabled and firing

of t1 disables t2 and vice versa. A choice place is a place for which |p • | > 1. A

choice place is said to be unique choice if at most one of the successor transitions

|p • | ever becomes enabled. A Petri net is free-choice if for any two transitions

t1and t2 that share a predecessor place, both t1and t2 have only one predecessor.

A Petri net is extended free choice if any two transitions that share one or more

predecessor places have exactly the same set of predecessor places.

The places and transitions of the net can be interpreted in different ways de-

pending on the requirements of the target specification. Examples of such inter-

pretations are presented in Table 2.1.
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Input Places Transition Output Places
Preconditions Event Postconditions

Input Data Computation Output Data
Input Signals Signal Processor Output Signals

Buffer Processor Buffer

Table 2.1: Some typical interpretations of transitions and places

2.2.3 Signal Transition Graphs

Signal transition graphs, or STGs, are a widely used representation of asynchronous

digital circuits [16, 17]. STGs are Petri nets whose transitions are interpreted as

signal transitions of a circuit. The transitions are interpreted as value changes

on input, output or internal signals of the circuit [18]. Positive transitions (la-

belled with a ” + ”) represent 0 → 1 changes and Negative transitions (labelled

with a ” − ”) represent 1 → 0 changes. A Signal Transition Graph N is a tuple

N = {S,A, L}, where S = {N, µ0} is a net system N = {P, T, F, µ0}, µ0 is the

initial marking of N , A is a set of signals and L = T → A×{+,−} is a function

that assigns a signal change to each transition of the net. Moreover, A = X ∪ Z,

where X and Z are disjoint sets of input and output signals, respectively.

It is graphically represented as a directed graph with transitions labelled with

signal names and places denoted by circles. Usually places with only one input

and output transition are omitted. A Signal transition graph is binary if its un-

derlying net system is binary. Each marking is assigned a binary code which is a

string of 0′s and 1′s denoting the value of the signal, at a particular marking.

This encoding of the STG states should be consistent i.e. no transition t+(t−)
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should be enabled at a marking if the binary code of that marking gives the value

of the signal t as ”1”(”0”). This can be intuitively seen as a signal whose value

is already ”1” cannot rise further and similarly a signal with value ”0” cannot fall

further.

An STG is said to satisfy Complete State Coding (CSC) property such that

if there exists two markings with the same binary code then the output signals

enabled at those markings should be the same. But if no two markings can have

the same binary code then it is said to satisfy the Unique State Coding (USC)

property.

An STG is output persistent if all the output signal events are persistent in all

reachable markings and input signals cannot be disabled by outputs. This allows

only inputs to be in direct conflict with each other and therefore, allowing the

designer to model non-deterministic choice in the environment.

Several definitions have been given in the literature to express the idea of con-

sistency of a STG. Examples of these definitions are: live STGs [16, 19, 20, 18,

21, 22], correct STGs [23, 24, 25, 26], implementable STGs [27, 28, 16] and

well-formed STGs [16, 17].

From a Signal Transition Graph it is straightforward to obtain a state based

model of the behaviour of the modelled system known as the State Graph or the

Reachability Graph. It is obtained by starting from the initial state µ0 of the STG

and then by exhaustively simulating it by firing feasible transition sequences until

all the states have been visited [18]. Each node of the SG is in one-to-one corre-

spondence with the markings of the STG reachable from µ0 and is labelled with
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the binary code corresponding to that marking. An edge joins state s′ with the state

s if the marking µ (corresponding to s) can be reached from m′(corresponding to

s′) through the firing of a single transition. This transition labels the edge. The SG

is thus known as the Reachability Graph of the STG. It is a finite state machine

like description of the same behaviour as the STG.

The persistency property [18], described earlier can now be formally defined

in terms of a SG. A state graph is said to be persistent if ∀s ∈ S and ∀a, b ∈ A,

a 6= b, if a and b are allowed in s, then ab is also allowed in S. This is also known

as output semi-modularity [26].

The following statement was proved in [16]: “An STG can be implemented by

a Speed Independent circuit if it is consistent and output persistent.” In this work,

we will be dealing with STGs that are live, output-persistent, safe and consistent.
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Chapter 3

GALS Design Technique

3.1 Introduction

GALS system design has been extensively studied and several approaches have

been presented over the years that address the problem of block partitioning and

data synchronisation between independent blocks. This chapter reviews some

of the work presented in the areas of system integration and desynchronisation

techniques.

3.2 System Integration Strategies

In this section we address the strategies of integrating independent synchronous

blocks. For a particular system architecture, some strategies are more desirable

than the others depending on the requirements of the systems. These require-
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ments include low power consumption, reliable data transfer and low latency be-

tween the input and the output requests. There is a long history of approaches that

guarantee safe communication between blocks that do not share the same clock.

These approaches are based on synchronous operations in the local blocks and

asynchronous handshakes between them.

The first classification is based on the frequency-phase relationship between

the clocks of the synchronous blocks that are required to be integrated. For exam-

ple, with two clock signals, the following classifications can be made:

Synchronous: Both clocks share the same frequency, and there is no phase

difference between the two clocks. In this case, no synchronisation is required.

Mesochronous: Both clocks share the same clock frequency, but there is a

constant phase difference between the clocks. This can be solved by phase com-

pensation [29].

Plesiochronous: Both clocks have nearly the same frequency, but there is a

small difference. As a result of this, the phase difference between the two clocks

can accumulate to an unbounded value. Adaptive synchronisation helps solve the

synchronisation problem [30].

Periodic: There is a fixed ratio between the frequencies of two clocks. In this

case predictive synchronisers are used for synchronisation [31].

Asynchronous: There is no frequency (or phase ) relation between two clocks.

For synchronising the two clocks, 2-flop synchronisers, FIFO or pausible, stretch-

able or data driven clock techniques can be used.

A further classification can be done on the basis of data and clock synchro-
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nisation strategies. Some schemes resolve metastability, while others avoid the

occurrence of metastability. The scheme that resolves metastability is:

• standard synchronisers.

The schemes that avoid metastability are :

• adaptive synchronisers.

• FIFOs.

The following subsections give an overview of the above mentioned schemes.

3.2.1 Standard Synchronisers

Asynchronous interfaces are characterised by the presence of a synchronisation

mechanism. One such mechanism is the synchroniser shown in Figure 3.1. A

synchroniser is a circuit which attempts to solve one of the two equivalent prob-

lems: (1) given a transition on the data signal and a transition on the clock signal,

determine which occurred first; or (2) given a voltage on a data signal, deter-

mine whether it is above or below some threshold value at a given instant in time.

Therefore to address the above problems and perform safe data transfer between

asynchronously communicating blocks, standard synchronisers in the form of a

cascade of registers can be used. A standard solution is the use of two flip-flop

synchronisers, shown in Figure 3.2. The incorporation of such synchronisers be-

tween receiver and sender blocks is shown in Figure 3.2. The purpose of synchro-

nising signals is to protect downstream logic from the metastable state of the first
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Figure 3.1: Standard synchronisers

flip-flop in a new clock domain. A simple synchroniser comprises two flip-flops in

series without any combinational circuitry between them. This design most likely

ensures that the first flip-flop exits its metastable state and its output settles before

the second flip-flop samples it. It is also required to place the flip-flops close to

each other to ensure the smallest possible clock skew between them.

Pechoucek [32] conducted a statistical analysis of the response times of a va-

riety of synchronisers and found them to have an exponential distribution. Since,

the response time was unbounded, it was concluded that the probability of failure

of any synchroniser is non zero. In the work he noted that the failure rate could

be reduced either by decreasing the clock frequency or by increasing the number

of flip flops in the cascade, acknowledging the impact on system performance.

Stucki and Cox [33] developed analytical models for synchroniser response times

based on application parameters, circuit parameters and design parameters.

Unfortunately, the standard synchronisation scheme adds a latency of sev-

eral clock cycles which could be undesirable for high speed data communica-

tion. Therefore, the application of standard synchronisers is advantageous for low
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Figure 3.2: Standard two-flop synchroniser

speed data communication between the independent synchronous blocks.

3.2.2 Adaptive Synchronisers

Data adaptive synchronisation [34] adjusts the delays on the data lines instead of

adjusting the local clock phase. Since the communication channels are connected

point to point, the delays on them can be changed so that they do not conflict

with the local clock, without affecting the other channels. When a conflict is

detected, the data delay is adjusted to prevent conflicts in future communications.

Therefore, in this technique the data lines are delayed as much as it is needed at a

particular moment, in order to avoid metastability. Figure 3.3 shows a statistical

phase detector which estimates the delay margin needed. When the most suitable

delay value for a data line is found, a tuneable delay circuit connected to the

corresponding data line is programmed. As a result the probability of metastability

is reduced to some degree which is sufficient for most practical applications. This

scheme can be used for mesochronous systems.

However, this approach does not aid reduction of power consumption and in-
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troduces a large hardware overhead owing to the introduction of a separate delay

line for every single data line. Moreover, it cannot be used for data transfer be-

tween blocks operating at unrelated clock frequencies.

3.2.3 FIFO Synchronisation

Another synchronisation approach is interfacing the synchronous blocks with asyn-

chronous FIFOs. Such buffers are sometimes called elastic FIFOs because their

sequential depth dynamically expands or contracts depending on the amount of

data they are holding. Such a system can tolerate very large interconnection de-

lays and is quite robust to metastability. If the transmitter and the receiver are not

ready at the same time or if the receiver is a little slower than the transmitter, a

FIFO can be used to speed up the transfer of data. Using a FIFO, the transmitter
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can transfer all data before the receiver can receive it. The FIFO acts as a buffer

that temporarily stores data. There exists many ways of implementing a FIFO.

Elastic FIFOs were used by Kim and Sridhar in [35] where Muller-C elements

perform the handshaking between the receiver’s clock and the incoming data re-

quest signal. Metastability can occur since the clock signal is not persistent, i.e.,

it is de-asserted after a fixed period of time even if it hasn’t been acknowledged.

To avoid the bandwidth loss due to data waiting for synchronisers to resolve

themselves, Seizovic [36] proposed pipeline synchronisation. One stage of the

elastic FIFO is connected to the data bus in parallel with each stage of the syn-

chroniser on the request control line. Seizovic defines a metric called asynchronic-

ity which describes how partially synchronised the data is at each stage of the

pipeline.

Adequate data throughput can be achieved via such interfaces as presented in

[37]. The FIFO architecture presented in this work is shown in Figure 3.4(a). Fig-

ure 3.4(b) shows the design of an architecture when such FIFOs are integrated in

the system. Such a FIFO when integrated in the system gives rise to high latency.

[37] hides some synchronisation latency by inter-module FIFO buffers. The main

drawback is the latency required. The STARI protocol also employs asynchronous

FIFOs to achieve synchronisation at the cost of large latency as presented in [38].

Synchronisation is achieved on the first data transfer, and is automatically main-

tained thereafter. The FIFO must be kept about half full, and each insertion and

removal operation must complete within one cycle. If these requirements are vio-

lated (e.g., on FIFO underflow), synchronisation is lost, and the system has to be
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restarted. Under these conditions each end of the FIFO appears to be synchronised

to the local clock, so there is no chance of metastability.

3.3 Local Clock Control Scheme

Another reliable synchronisation scheme is local clock control scheme. This

scheme is briefly introduced in Chapter 2. This section gives an overview of

different schemes proposed to control the local clock.

In this scheme the independently clocked blocks are enveloped by an asyn-

chronous wrapper. The receiver’s clock can be stopped to allow reading of asyn-

chronous data. The pausable clock is controlled by the port controllers, described

in Chapter 2. The basic design of a GALS module is shown in Figure 3.5. Inter-

connected GALS modules combine to form a GALS system.

The local clock generator consists of an oscillator constructed from a tunable
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delay and an inverter. The frequency of such a clock can be periodically calibrated

to an off chip reference clock. To stretch the local clock an arbitration block

is placed in parallel to the delay line. The mutual exclusion elements resolve

possible concurrent events between the Req. Clock signal and output from the

NOR gate. Mutual exclusion (ME) allows only one of the two incoming requests

to pass at a time. The element decides whether the request is granted or the next

clock pulse is permitted. If all the ME agree to grant the request for clock pause

then the clock signal is set. Figure 3.6 was presented in [39] and shows the scheme

described above. The two incoming requests to the ME are R1 and rclk. If R1 is

granted, asynchronous transfer is facilitated. While granting of rclk produces the

next clock pulse.

Another approach was presented in [40], where the scheme was demonstrated

in the context of processors and memories. In this method the memory is updated

through asynchronous handshake, in each clock cycle. Therefore, in each cycle
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the clock is stretched to allow asynchronous data transfer. Such a scheme is shown

in Figure 3.7.

Rosenberger et. al developed a technique in [41], to build delay insensitive

modules by exploiting input registers with asynchronous handshake interfaces.

These modules are referred to as Q−modules. The Q−modules are internally

clocked and are used to specify delay insensitive specifications. These modules

operate in two distinct phases initiated by the falling and the rising edges of the

clock. On the falling edge each input register samples its inputs and stores their

present value. When the values are stored in all the input registers, the clock is

released and allowed to generate the next clock pulse. The rising edge of the clock

causes all the registers to update their output to equal the values stored in the inputs
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of the registers. Once the update output stage is completed, an acknowledgement

transition is asserted which transits to the actual computation stage.

Vanscheik et. al [42] proposed a similar scheme toQ−modules. In their work

the state elements were called DFLOPs and were implemented exclusively with

digital logic. Their clock generator does not include a self timed delay. Therefore,

the longest path through the combinational logic must be less than the delay in-

curred by the handshake. In a suggested optimisation, the amount of time allowed

for metastability resolution is also reduced to the minimum handshaking delay.

In such a situation, some of the DFLOPs may not update their outputs until the

next cycle if their inputs had switched too close to the previous clock edge.

A finer grain scheme is the elastic pipeline, similar to the elastic FIFOs but

with logic between the pipeline stages and bundled delays added to he handshak-

ing signals. Their throughput may be limited by forward data propagation, hand-

shake control overhead or backward bubble propagation depending on how full

the pipeline is.

Pechoucek outlines in [32], a clock control scheme where the generation of a

fixed number of clock cycles is triggered by the availability of input data. This

type of clocking scheme was recently employed to create an on chip clock gen-

erator for a DSP [43] and a data driven GALS clocking scheme for a low power

reconfigurable processor [44]. Lim describes the use of a stoppable clock gen-

erator in [45]. In this scheme a single input to the clock generator prevents the

clock from generating the next clock pulse until data is available. This work also

describes the use of Mutex to provide an arbitrated input behaviour.
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Chapter 4 presents a generic classification with the primary aim to obtain

generic models for the proposed schemes in order to compare them on the ba-

sis of performance and power related system parameters. These categories are

given by:

• Pausible clocking schemes

• Stretchable clocking schemes

• Data driven clocking schemes

Based on the data and clock synchronisation classification, presented in the pre-

vious section, the clock control schemes that resolve metastability are pausible

clocking scheme and stretchable clocking scheme, while the data driven clocking

scheme is able to avoid metastability. The above will be discussed in detail, in

Chapter 4.

3.4 System Desynchronisation Strategies

Asynchrony can be introduced in a globally synchronous system by either remov-

ing (asynchrony) or relaxing (GALS) the synchronous constraints. Therefore,

a synchronous system can be either translated into an asynchronous system by

completely removing the notion of clocks or into a GALS architecture, by locally

retaining the notion of clock. This section highlights various approaches proposed

to achieve the above.
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3.4.1 Asynchronous Deployment

Several researchers have proposed different approaches to automate the design of

asynchronous circuits [46, 47] instead of using asynchronous design tools. In-

stead a synchronous system is converted into an asynchronous system, in order

to use standard synchronous design tools in the system development. In [48]

Blunno presented a de-synchronisation model which substituted the clock net-

work with a set of asynchronous controllers. They investigated different concur-

rency degrees in different handshake schemes and proposed a controller with max-

imum de-synchronisation. They compared a synchronous and de-synchronised

version of the DLX microprocessor. They did not report any large differences

between the synchronous and the de-synchronised microprocessor, when com-

paring area, speed and power consumption. Figure 3.8 shows an example of de-

synchronisation. The system shown in Figure 3.8(a) is desynchronised into the

one shown in Figure 3.8(b).

Desynchronisation approaches targeting hardware design have been presented

both by Jacobson et al. [49] and Cortadella et al. [50]. Their basic idea is to

start from a fully synchronous synthesised integrated circuit, and then replace the

global clock network with a set of local handshaking circuits.

3.4.2 GALS Deployment

To construct an asynchronous wrapper that controls the input, output and clock

generations from each synchronous module is non-trivial and has been exten-
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Figure 3.8: De-synchronisation technique

sively studied. There are different approaches that implement synchronous speci-

fications over GALS architectures. They are mainly based on latency-insensitive

protocol, endochrony and Kahn process Networks (KPN). All these approaches

follow the same pattern of transforming the components of a system based on

initial specification into equivalent synchronous components whose interface is

modified in such a way that they can be considered self-timed.

Latency-insensitive protocols were proposed in [51] and, then, applied to syn-

chronous hardware design in [52, 53]. A complete presentation of latency-insensitive

design is given in [54], which includes a detailed discussion of the analysis and

optimisation of latency insensitive systems. The application of latency-insensitive

design to integrated circuits provides two main advantages [52]:

(a) automatic pipelining of long wires is enabled by the insertion of patient
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processes (a module is a patient process if its behaviour does not depend on the

latency of the communication channel because it is compliant with the latency

insensitive communication protocol) called relay stations [55]. ;

(b) it eases the assembly of different components that are pre-designed which

can be interfaced to the communication protocol without changing their internal

structure as long as these components are stallable.

Casu and Macchiarulo have proposed an alternative implementation for the

building blocks of latency insensitive systems which applies to the particular case

when the computation of each core module can be scheduled statistically [56].

This implementation can be used only with closed systems. In latency insensitive

protocol, each synchronous component reads each input and writes every output

in each reaction. It simplifies implementation. The main disadvantage of this

protocol is that it simulates a single clocked system and hence is proposed for

single clock architectures only.

Benveniste [57, 4] formally defined the desynchronisation problem in refer-

ence to embedded system applications. Their main motivation is to address the is-

sue of compositionality of synchronous languages and enable modular code gener-

ation. Informally, endochronous systems are characterised by a condition that the

presence and absence of all variables can be inferred incrementally during each re-

action from already known values of the present input variables and state variables

of the Synchronous Transition System (STS) under consideration. In particular,

they advocate a methodology centred on the use of the synchronous paradigm for

system specification and validation followed by a provably correct desynchroni-
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sation step to derive a distributed implementation (e.g. on GALS architectures).

Endochrony can be both model checked and synthesised. Unlike latency insen-

sitive protocol, the endochronous approach takes into account execution modes

and independence between components in order to minimise communication and

allow multi-rate computation.

Unlike latency insensitive systems, endochronous systems can take into ac-

count different execution modes and independence between components in or-

der to minimise communication and allows multi-rate computations. The main

drawback is poor handling of concurrency and hence endochronous systems are

not compositional. This leads to inefficient synthesis of systems formed of more

than two components. Though KPN [58] is the only approach formulated in

causal framework, the main disadvantage is its strong determinism criteria, since

non-determinism is often useful in the specification and analysis of concurrent

systems.

A mathematical framework to support the composition of heterogeneous re-

active systems is presented in [5] together with a set of theorems supporting the

automatic generation of correct-by-construction adaptors between heterogeneous

designs. The idea is applied to the deployment of synchronous design on GALS

architectures and Loosely Time-Triggered Architectures (LTTA) [59]. The Poly-

chrony project aims to support design refinement from the early stages of require-

ment specification to the later stages of synthesis and deployment [60, 61, 62, 63].

The term polychrony denotes the capability of describing circuits and systems

using the synchronous assumption together with multiple clocks. This can be
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applied to abstracting the key properties of a system as well as to describing the

characteristics of the components that can be used to implement it. The concept of

polychrony is used in [61, 64] to address the formal validation of the refinement of

synchronous multi-clocked designs into GALS architectures. In this area Talpin

and Le Guernic presented a process algebraic theory of behavioural type systems

and applied it to the synthesis of latency insensitive protocols. They showed that

the synthesis of component wrappers can be optimised using the behavioural in-

formation carried by the interface type descriptions to yield minimised stalls and

maximised throughput.

The work of Berry and Sentovich in [65] studies the issue of asynchronous

interaction between synchronous Esterel programs. The main issue addressed in

this work was to prevent over writing messages due to asynchrony by blocking the

sender when the single place buffer is full. Although in this way, the size of the

buffer is restricted to 1 and hence reducing latency, the parallelism and pipelin-

ing is decreased. In [66], distribution of synchronous sequential programs is dis-

cussed. In this approach, the asynchronous interaction between the components

is encapsulated in send and receive commands and the work mainly concentrates

on finding the appropriate places for sends and receives in order to minimise com-

munication and maximise parallelism.

Implementing asynchronous systems using synchronous languages is also stud-

ied in [67]. This work presents a general semantic model for the synchronous and

asynchronous computation. The main attention is given to the implementation of

communication mechanisms such as mutual exclusion elements and rendezvous
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scheme. It must be noted that though these mechanisms form an integral part of

asynchronous design, no methodology was presented to obtain components instru-

mented with the structures from synchronous components. The work presented in

[68] models asynchrony (interleaving semantics) in the I/O automata model using

synchronous communication scheme. However, due to differences between the

models of computation for asynchronous and synchronous systems e.g., the input

enabling constrains in I/O automata, the notion of buffer is implicitly addressed

in the semantics.

These methods have evolved over the past few years and there exists a method-

ology that improves on the previous work in terms of scheduling independence

and compositionality, integral properties for modular designs. This leads to intro-

duction of weakly endochronous systems [69]. They support signalisation schemes

that are simpler and more efficient than latency insensitive and endochronous

counterparts. The main disadvantages of WE systems is the absence of efficient

methodologies to implement the wrappers.

3.4.3 Endochronous and Weakly Endochronous Systems

A solution to desynchronisation consists of recreating non-strict synchrony by

adding extra signals that act as clocks for the desynchronised signals. The tech-

nique of associating a Boolean clock with a signal is called Booleanisation. At

each tick of a given clock C, it is checked whether a signal s defined in that clock

domain is present or not. If it is present, then the clock signal of s is written as

C_s = 1 and if not then C_s = 0.
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Figure 3.9: System synchronisation

As discussed in the previous section that in an endochronous system the pres-

ence or absence of a signal can be inferred incrementally from already known val-

ues and variables present in the system. Input clocks in an endochronous system

have sufficient relations to infer the presence or absence status of all the signals

of the system at all times. The main problem with such an approach is that it does

not extend to composition of two or more endochronous systems. This is because

if the modules are ruled by different clocks, it is impossible to build a global pro-

cess, reading their respective asynchronous signals and clocks. This is due to lack

of information to resynchronise the flow of both the signals. Therefore, composi-

tion is only possible if the two processes are governed by the same clock or one

is a fraction of the other. In such a case, the processes require a protocol to first

synchronise their clocks and then keep them synchronised.

Figure 3.9 illustrates a counter example where the processes P andQ have un-

related clock signals. It can be seen that synchronous or asynchronous signals are
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not composable as a common process. This is due to the lack of synchronisation

information between the signals from the two processes since they have unrelated

clocks. The signals from the different processes can have different synchrony

relation [70]:

• The processes communicate together and share a clock

• Processes do not communicate but share the same clock from a third process

• Processes do not communicate and the signals are not related.

For the first two cases, an external scheduler can reconstruct the instants. But

endochrony fails in the third case.

To address the issue of compositionality in concurrent execution of synchronous

modules, Potop et.al. [69] defined a more relaxed assumption than endochrony

called Weak Endochrony. Informally, weak endochrony is a speed-independence

property which characterises synchronous components whose behaviour does not

depend on the order in which various inputs are read. This approach allows the

asynchronous composition of the modules to meet determinism. With this ap-

proach, minimal reactions need to be constructed and synchronisation clocks de-

fined and associated to reactions. The reactions are then scheduled to use to avail-

able data efficiently. For maximised concurrency within a synchronous block the

data should be used as soon it is available and this entails decomposition of the

synchronous system into small blocks. Each of these blocks are activated on the

arrival of input data. Each of these blocks are equipped with a single clock and
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Module M1
input R1, R2, K
output A1, A2
relation R1#K R2#K
abort

loop await R1
emit A1 end

||
loop await R2

emit A2 end
when K
end module

R1,A1, R2, A2

R2,A2

K 01
R1,A1

Figure 3.10: Mapping of a synchronous program to LSTS

shares the inputs from interface of the main process and the outputs from the other

blocks. The idea of Weak Endochrony is described in more details in Chapter 5.

3.4.3.1 Transition System model

This section introduces the modeling framework used to define weakly endochronous

systems. The synchronous programming has been proposed as an effient approach

for the design of reactive and real-time systems. Some examples of such lan-

guages are ESTEREL, LUSTRE and SIGNAL. Mapping SIGNAL programs to

distributed architectures was proposed in [71]. Mapping of LUSTRE programs

onto a network of automata communicating asynchronously via unbounded FIFOs

were presented in [72]. [65] presented a technique, using ESTEREL synchronous

language, for modeling synchronous system which can be desynchronised, al-

though the asynchronous model was not fully stated.

These languages provide statements that emulate the actions of a synchronous
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system. These programs can be mapped to a mealy machine using behavioural

semantics of [73]. The mapping entails corresponding each state with a program

term and the behavioural transitions are translated directly. One such Mealy ma-

chine is the Labelled Synchronous Transition System (LSTS). The underlying

model of computation of these programs is easy to understand and efficient in de-

scribing embedded applications where accuracy and correctness are of paramount

importance. But due to compilation complexity and difficult to follow excution

models of these languages, LSTSs are used instead, which are obtained by map-

ping the synchronous programs onto states and transitions of LSTSs, to model

synchronous and GALS systems.

Implementations of synchronous programs loop continually executing the fol-

lowing three actions 1) reading inputs; 2) computing and emitting outputs; and 3)

computing and storing the next state. The mapping of such programs onto LSTSs

is shown in the following example:

Figure 3.10 shows the LSTS of the program fragment presented. The system

executesR1 and R2 producing A1 and A2 respectively. The process is aborted on

the reception of K.
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Chapter 4

Comparative Analysis of GALS

Clocking Schemes

4.1 Introduction

This chapter presents the comparison between three different GALS approaches.

This comparison highlights the advantages and disadvantages of the three de-

sign solutions based on circuit implementations, power and performance analysis.

The implementation of synchronous computational blocks are not cycle accurate,

while the communication blocks are modelled in a cycle accurate manner. Petri

nets excel in their usefulness to model systems at higher levels of abstraction and

tools like Petrify aid their translation into a gate level implementation. Petri net

modeling provides the designer with fast verification and implementation of the

system. This chapter presents the Petri net models of the three GALS architec-
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tures. These models are verified for correctness using in-house verification tools

PUNF/CLP [74]. The verified models are fed into Petrify to produce logic equa-

tions for gate level implementation. We use two pre-synthesised blocks, namely,

Mutual Exclusion Element (ME) [75] and FIFO [76] and these are plugged into

the circuit implementation of each of the three schemes. The gates were imple-

mented within the Cadence toolkit using the AMS CMOS 0.35 technology library.

The flow of the chapter is depicted in Figure 4.1.

Pausible
Clock
Circuit

PUNF
CLP

PN model
Stretchable 
clock

PN model
Data Driven
Clock

Performance
Analysis

Spectre/Verilog

Petrify Petrify

PUNF
CLP

PN model
of pausible

Clock

Manual

Circuit
Solution
Stetchable

clock

Circuit
Solution

Data Driven
Clock

VerificationVerification

Manual Manual

Figure 4.1: Design flow

A novel design solution is presented for stretchable and data driven clocking
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scheme from prevalent conceptual models. The GALS architecture with pausible

clocking scheme is obtained from [77] and compared for efficiency and power

consumption with the above mentioned approaches.

4.2 Overview of the GALS system

Sync−Async
Interface

Module Module

clock
gen.

clock
gen

SyncSync

Req2

Ack2

Req1

Ack1

Interface
Async−Sync

Producer Consumer

R1

A1

R

A

F

F
O

sync_ack sync_req
clk_A clk_B

InputOutput
Port PortI

send_data accept_new

Figure 4.2: Overall system architecture for producer-consumer interface

In the domain of locally clocked control schemes, introduced in Chapter 3,

the GALS implementation for a given multiprocessor system can be broadly di-

vided into three clock control architectures depending on their type of control.

These are pausible, stretchable and data driven clocking schemes. These schemes

are extended to a system with two clocked domains, one producer and the other

receiver, to replicate communication between two synchronous islands. The two

clocked domains communicate via a two stage asynchronous FIFO. Such a system

architecture is shown in Figure 4.2. The signals Req1 and Req2 will be replaced

by a pause clock, stretch clock or start clock request depending on the type of

clocking scheme.
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The clock generator block is controlled by asynchronous port controllers,

namely, the Input Port (IP) and the Output Port (OP). Such a system is scalable,

with as many IPs and OPs as there are inputs and outputs from a particular syn-

chronous island. A request-acknowledge pair of handshake signals accompanies

each data entering or leaving the synchronous module. The validity of data is

signalled by a four phase protocol depicted by R+, A + R − A− and data is

guaranteed to be valid between R+ and A−. The clock generator sends clock

pulses to the synchronous module to carry out synchronous computations, while

the communication is inactive and vice versa.

4.2.1 Models of the clocking schemes

The Petri net (PN) models help in formalising the behaviour of asynchronous

circuits. For that, PN models require special interpretation (see also Signal Tran-

sition Graph in Chapter 2). Here we recall some PN notations. In PNs the events

of the signals are labelled as + and − symbols. A transition of a label named

R+ indicates the event of the rising edge of the signal R, while R− denotes the

falling edge of R. A transition can only fire if there is at least one token (in our

case, exactly one token) in its pre-place. Firing of the transition consumes a token

from each of its pre-places and assigns a token in each of its post places. The

adaptability and usefulness of PN modeling are demonstrated by two following

features: (a) Extraction of PN model from a circuit level solution for verification

and (b) Use of a PN model to form the specification of a new control system for

synthesis. This work exploits both the features of PN models.
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Figures 4.5, 4.6 and 4.7 depict the models of the consumer block, i.e. the

async-sync interface, of each of the three GALS clocking schemes. We start with

the circuit solution of the pausible clocking scheme, presented in [77], shown

in Figure 4.8(a). We extract a PN model from this circuit solution, as depicted in

Figure 4.5. From the specification of stretchable and data driven clocking schemes

and using this PN as a reference model, we then obtain the PN models for the

stretchable and data driven clocking schemes.

Figure 4.3 shows the PN fragments derived from the causal relationship be-

tween signals for different parts of the circuit. The setting or resetting of a signal in

the circuit is manifested in the PN model by the arrival of a token in the pre-place

of the rising or the falling signal event, respectively. Figure 4.3(a) and (b) show

the Mutual Exclusion element (ME) block and its corresponding PN, respectively.

The interface signals of the ME block are r1, r2, g1 and g2. If signal r1 arrives be-

fore signal r2, then g1 is granted. When r2 goes low, g1 is de-asserted. While the

signal g1 is asserted, g2 cannot be asserted. Such a causal relationship is depicted

in the PN fragment. Similarly, a causal relationship can be derived from the other

parts of the circuit. Let us consider the example shown in Figure 4.3 (c) . This

part of the circuit consists of a XOR gate, a mutual exclusion element, shown as a

black box in this example, as we have already considered it in the above example,

and a latch. The signals R1 and b are the inputs to and r1 is the output from the

XOR gate. Signal r1 is the input to the ME. As we treat it as a black box there is

no conflict with another request. The signal g1 acts as a clock to the latch, which

has R1 as its input and b as its output. The Petri net fragment in Figure 4.3 (d)

58



CHAPTER 4. COMPARATIVE ANALYSIS OF GALS CLOCKING SCHEMES

ME
r1

r2

g1

g2

(a)

r1+

r2+

g1+

g2+

r1−

r2−

g1−

g2−

(b)

g1

ack_rec(b)

R1

r1

(c)

R1+ g1−r1−b+g1+r1+b−

r1+ g1+ b− r1− g1−R1−b+

(i)

(ii)

(d)

C

r2 g2

d

clk

(e)

r2+ g2+
d+

clk+

d−

r2− g2−

clk−

(f)

Figure 4.3: Circuit blocks and PN fragments

shows two situations that lead to the setting and eventually, resetting of the input

to the black box, i.e r1. The dashed lines in the figure correspond to eventual oc-

currence of a signal. For example, the dashed lines between b− and R1+ denotes

that b− eventually causes R1+ and there are transitions in between which, for

simplicity, have not been shown. A similar causal relationship can be derived for
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the locally generated clock circuit shown in Figure 4.3 (e) and its corresponding

PN model depicted in Figure 4.3 (f).
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Figure 4.4: Clock control circuits and their corresponding PN models

Based on the PN model of the pausible clock and the specification require-

ments of stretchable and data driven clocking schemes, we obtain the PN models

of the schemes. The clock control architectures for the above mentioned schemes

are depicted in Figure 4.4. The PN models, shown in Figure 4.4(a) and (c), are

similar to the pausible scheme and only differ in the way the clocks are started and

stopped. Figure 4.4 (b) and (d) depict the corresponding circuits for these models.

Once started, they follow the same pattern as the pausible scheme. Figure 4.4(b)
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and (d) show the clock control architectures of the stretchable and data driven

schemes obtained from the PN models. The port controller models, shown in Fig-

ure 4.6 and 4.7, are derived from the basic specification of stretchable and data

driven clocking schemes. The overall functions of the three clock architectures,

when the PN fragments are put together, are discussed below. The PN models

are subsequently used for model level analysis and the corresponding circuits are

used for the circuit level analysis of the three systems.

It is noted that, for the sake of simplicity, the interaction of the communica-

tion interface with the synchronous module, as shown in Figure 4.2, is not shown

in the PN models presented in Figure 4.5, 4.6 and 4.7. These signals include

the signal sync_ack (input to the synchronous module) and send_data (output

from the synchronous module) on the producer side and signal sync_req (input to

the synchronous module) and accept_new (output from the synchronous module)

on the consumer side. When the synchronous module, on the producer side, re-

ceives signal sync_ack, it releases an enable signal send_data which denotes the

availability of data to be sent to the consumer block. Similarly, on the consumer

side, the synchronous request(sync_req) is sent to the synchronous module after

the reception of enable signal accept_new from it. Therefore, the dotted lines

in three models denote that signal transition b+ → A1+and b− → A1− take

place in the presence of the enable signal accept_new, produced by the consumer

synchronous module, as discussed above.
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4.2.2 Discussions of the models

Pausible clock: The pausible clocking scheme offers an elegant solution to metasta-

bility issue which comes into play when there is a cross domain communication.

Pausible clocks are characterised by a free running clock. A Mutual Exclusion

(ME) element is inserted in the circuit to allow the clock to be interrupted when

an item of data is ready to be transferred. The interruption of the clock enables

safe transfer of asynchronous data. The Petri net model of the async-sync interface

(consumer side) of this system is shown in Figure 4.5. The signal r1, produced

by signals R1 and b, requests for a clock pause, while signal r2 requests a clock

grant. Signals g1 and g2 are mutually exclusive and granting of g1 interrupts the

clock. This leads to an asynchronous data transfer. This request is acknowledged

on reception of the positive edge of the clock signal. Once the clock goes low, it

is triggered again after a tunable delay d.

Stretchable clock: A stretchable clock can also be viewed as a free running

clock, like the pausible clock. The difference between the two is that a stretchable

clock knows in advance that the next clock cycle should wait for an asynchronous

input. Therefore, only in the absence of input request signals, the clock would be

free running. This architecture leads to an increased throughput, since the request

does not have to compete with the clock for an asynchronous data transfer. The

async-sync interface of this system is depicted in Figure 4.6. The signal clk+ can

only proceed if signal str is low, which denotes that there is no data to transfer

from the FIFO. When the signal str is high, the data is transfered from the FIFO

to the consumer block. The request received is acknowledged when the clock
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Figure 4.5: PN model of pausible clocking scheme

goes low. The delay line, like the pausible clocking schemes delays the rising and

falling of the clock signal clk. The delay line is parallel to the arbitration block in

the local clock generator block denoted by the light grey shaded portion.

Data driven clock: In data driven clock scheme clock edges are produced in

response to the presence of data at the input ports of the IP block. Therefore, the

clock is not free running, unlike pausible and stretchable clocking schemes. The

Petri net model of the async-sync interface of this system is shown in Figure 4.7.

Signal clk is asserted on the reception of the positive edge of the signalR1. Signal

clk is de-asserted on the reception of the negative edge of R1 and after a tunable

delay d. The clock is inactive in the absence of signal R1.
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Figure 4.7: PN model of data driven clock scheme

4.3 Verification and Logic Synthesis

The PN models have been constructed in the PEP tool and verified for functional

properties like safeness and deadlock freedom using in-house tools PUNF/CLP.
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These models effectively present a special class of formalism called Signal

Transition Graph (STG). Synthesis based on STGs involve the following steps

[78]: (i) checking sufficient conditions that are required for the implementation

of an STG in a hazard-free logic circuit, (ii) if (i) is not satisfied, then modifying

the model to make it implementable, and (iii) finding the appropriate next state

function for non-input signals. The tool Petrify performs all the above tasks au-

tomatically. On successful completion of these tasks it can proceed to generate

logic equations for the circuit’s gates, to implement the STG.

The circuit implementation for stretchable and data driven clocking schemes

have been obtained from the logic synthesis of their respective STG descriptions,

using the above tool. In order to logically synthesise a given STG, using Petrify,

it is necessary to check that it satisfies safeness and liveness properties.

The tools PUNF and CLP read a PN and perform its verification on the fi-

nite and complete unfolding prefix of the PN [74]. For each new firing a new

transition, called event, is generated and for each newly produced token a place,

called condition, is generated. The unfolding prefix is therefore a finite acyclic

Petri net graph on which it is computationally easier to carry out various model

checking procedures. The statistics obtained after verification are listed in Table

1. This table presents the number of conditions and events generated from each

of the models. These numbers are an indication of the size and complexity of the

circuits obtained from these PN models. It also shows that each of the models

satisfy safeness and liveness properties. We also present the statistics for pausible

clocking scheme for the sake of comparison with the other models.
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The verified models of the sync-async interface (producer side) and async-

sync interface (consumer side), depicted in Figure 4.6 and 4.7 together with the

FIFO were composed together to form a closed system as depicted in Figure 4.9

and 4.10.

Model name |B| |E| Liveness Safeness
Pausible clock 115 81

√ √

Stretchable clock 37 30
√ √

Data driven clock 20 15
√ √

|B| = Number of Conditions

|E| = Number of Events

Table 4.1: Verification statistics for Petri net models of GALS architectures

4.4 Circuit Implementation

In this section, we present the circuit implementation of the three clocking schemes.

The systems consist of producer and consumer synchronous modules communi-

cating via a two stage FIFO. The leftmost block and the FIFO block constitute

the interface between synchronous producer and asynchronous receiver, while the

block on the right and the FIFO denote the interface between asynchronous pro-

ducer and synchronous consumer.
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Pausible clock: The implementation of a producer-consumer block over an

asynchronous interface is depicted in Figure 4.8. The asynchronous interface

arbitrates between granting in favour of the r1 signal, to transfer data to subse-

quent synchronous blocks or a clock request to generate clock (clk_A) for its

locally synchronous module. If signal r1 is granted, the data is latched in the

first latch and the hold is released from the ME. This allows clock request to win

over the ME. Therefore, data is stable before the clock arrives at the next stage

of latch avoiding metastability at the second edge triggered latch. Figure 4.11(a)

shows the phase relation between signals clk_A, ack, ack_rec, sync_ack. The

shaded portion denotes the window when asynchronous data is received. The

synchronous module always waits for a synchronous signal syn_ack. On its re-

ception, the module releases an enable signal for new data transfer. This type of

design methodology is also explored in [39].
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Stretchable clock: The system architecture of this scheme is depicted in Figure

4.9. The assertion of the stretch signal (str) prevents the clock from going high

before the assertion of signal ack_rec (in producer block) or req_rec (in consumer

block). The assertion of signals ack_req and req_rec lead to the de-assertion

of R (in producer block) or assertion of A1 (in consumer block), respectively,

which in turn de-asserts signal str. On the producer side, the synchronous module

waits for a synchronous sync_ack, in a manner similar to the pausible clocking

scheme. Hence, signal ack_rec has to be synchronised to the clock to produce

sync_ack. As can be seen from the stretchable clock architecture in Figure 4.9,

signals ack_rec+ and clk+ are mutually exclusive due to signal str (this can also

be seen on the consumer side (async-sync interface) of the system, in the Petri

net models shown in Figure 4.6, where req_rec+ is mutually exclusive to clk+).
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Therefore, the positive edge of signal ack_rec cannot be synchronised on the

positive edge of signal clk. If the signal ack_rec is synchronised to the negative

edge of the clock cycle with a flip-flop, the system could run into a deadlock. This

is due to the fact that if signal clk has already gone low before the triggering of

signal str+, and then if str+ occurs stopping signal x+(which causes clk+) from

firing, signal ack+ would wait for the falling edge of signal clock, which would

not be triggered till str− occurs . Hence, ack_rec+ will never meet the set up

and hold time of the falling edge of clock signal. Therefore, the only solution

is to use a latch, instead of a flip flop. The latch is made to sample the signal

ack_rec when the clock is low. This synchronised ack_rec is then sent to the

synchronous module, which in turn sends an enable signal to indicate a data-

ready-to-send status. This enable signal latches the ack_received′(c) in the final

set of latches to assert the request signal for sending new available data. A similar

scheme is presented in [40] and [41]. A phase relation between signals clk_A,

ack, ack_rec, Sync_ack at the sync-async interface for stretchable clock, similar

to pausible clocking scheme, is depicted in Figure 4.11(b).
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Figure 4.10: Data driven clock circuit

Data Driven clock: Such an architecture is depicted in Figure 4.10. Since,
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power is an important issue in SoC applications, design methodologies which pro-

vide circuit solutions with reduced power consumption becomes highly attractive.

In this scheme, the local clock oscillates at a frequency determined by the avail-

ability of data signalled by the request signal. Therefore the circuit is switched

off when there is no data to send. This scheme significantly reduces power con-

sumption as clock is only started when enough inputs have been received to carry

out a particular computation. Unlike the previous two clocking schemes, there

is no added synchronisation required for the ack_rec/req_rec, since the signals

are already synchronised to the clock and can be directly sent to the synchronous

module on the reception of enable signals, as denoted in the figure. An extensive

design solution for this approach can be found in [79] and [80]. The simple phase

relation between a1 and clk_A, on the sync-async interface for this scheme is

shown in Figure 4.11(c).
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Figure 4.11: Asynchronous communication-phase relationship at the producer
block
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4.5 Performance Analysis

It is assumed that the system is partitioned logically into synchronous islands and

that they communicate with other synchronous blocks through an asynchronous

interface. The asynchronous interface interacts with the clock generator circuit of

these synchronous blocks for cross domain data transfer. The Petri net models of

the asynchronous interface and clock control circuit developed have been fed to

Petrify for the generation of logic equations to build the gate level implementa-

tions of the architectures. The analogue and digital partitions of the circuits have

been simulated using the SPECTRE and Verilog simulators within the Cadence

framework. We used mixed signal simulations to aid the monitoring of several

signals using digital specification, while leaving other parts of the circuit to run

analog simulations. The design has been incorporated with various digital blocks

to reduce the time taken for analog simulation.

4.5.1 GALS system characterisation parameters

To characterise any design based on SoC applications, we need to define some

metrics that are applicable to power and performance of a system. Similarly, we

define such metrics for the GALS systems. These metrics have been evaluated to

analyse an architecture for studying the effects of different system parameters on

the performance of the system.

The metrics that are relevant for the analysis of pausible clock circuitry of

GALS architecture are the number of times a clock is paused for a given simu-
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lation time and the average latency incurred due to such clock pauses. Another

important system analysis metric for efficiency comparison is the throughput of

the system, i.e., the average production/processing capacity of a system.

Owing to increasing clock frequencies and smaller device sizes, it is becoming

particularly important to consider the total power consumption metric in deciding

on a particular design methodology. GALS based architectures reduce power con-

sumption due to the ability to shift to an asynchronous mode when the local clock

of the synchronous system is paused. Hence, a comparison of energy consumption

in different GALS architectures would help choose between the different asyn-

chronous communication circuitry. Therefore, an analysis of these metrics is use-

ful for the designers to estimate the performance penalties in using one clocking

scheme over the other.

The following sub sections will present the model-level and circuit level anal-

ysis performed on the three GALS architectures.

4.5.2 Model Level Analysis

We present here the analysis of the best and worst case delay between the pau-

sible and stretchable clocking schemes. These delays can help us estimate the

usefulness of using one scheme over another. We take into consideration the la-

tency between sending a request R1 from the FIFO to the consumer module and

receiving an acknowledge A1 at the FIFO input from the consumer module, to

be sent to the producer module, denoting a complete transfer of an item of data

sent by the producer. Since the delay of the logic circuit (i.e. the logic gates)
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for asynchronous data transfer and clock generation is comparable and can vary

with different implementations of the same logic, we mainly take into account the

number of clock cycles needed to obtain the desired output. Here, we assume that

signals r1+ and r2+ for both pausible and stretchable clocks arrive with a time

delay of δ between them, such that δ is greater than the time under which metasta-

bility may occur within the mutual exclusion element. This avoids the possibility

of the resolution leading to a random selection of outputs from the element. In

Figure 4.12 and 4.13, we present the timing diagrams for the best case and the

worst case delay, respectively, scenarios for both the clocking schemes. For the

best case delay, we assume that r1+ for both the clocking schemes arrives with

time delay δ unit of time before signal r2+. As shown in Figure 4.12(a) , signal

A1+ occurs after at least one clock cycle, following R1+, for pausible clocking

scheme. In stretchable clocking scheme, shown in Figure 4.12(b), signal A1+

occurs in less than half a clock cycle. Hence, the best case delay analysis showed

that stretchable clock architectures demonstrated faster data transfer compared to

pausible scheme.

Such an observation is due to the fact that in pausible clocking scheme, the

final set of latches, shown in Figure 4.8 waits for a positive clock edge before

sending the signal to the next clock domain. It is easy to observe that the arrival

of signal b misses the first clock edge and has to wait for the next clock edge to

appear. The latch is enabled by a signal sent from the producer module which

indicates when it is ready to receive new item of data. In stretchable clocking

scheme, as shown in Figure 4.9, the latches are triggered when clock goes low.
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Figure 4.12: Best case req-ack latency in producer block

This latch also waits for the enable signal sent by the consumer module, similar

to the enable signal used in pausible clocking scheme, when it is ready to receive

new data.
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Figure 4.13: Worst case req-ack latency in producer block

Similarly, in the worst case scenario for the pausible clock (shown in Figure

4.13(a)) and stretchable clock (shown in Figure 4.13(b)), the signal r2+ arrives

with time delay δ before r1+ for both the schemes. The delay, between the re-

ception of request R1 and the emission of acknowledge A1, is over one and a half

clock cycles for pausible clock. For stretchable clocking scheme, the delay is just

over a clock cycle. Therefore, it is observed that we are able to save half a clock

cycle on every data transfer for stretchable clocking scheme.

4.6 Circuit Level: Experimental Results

This section presents the results of power and performance analysis of GALS

architecture with the three clocking schemes.
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In the experimental setup, a 2 stage FIFO inter-module communication scheme

has been used. In the experiments an input parameter, namely, the producer clock

frequency, has been varied. It is varied from 125 MHz to 1.75 GHz to observe

the behaviour. The frequency of the consumer clock is maintained at 500 MHz.

Higher frequencies are possible depending upon the complexity of the producer

and consumer blocks. The frequency of the clock has been varied by varying the

delay d, in the three clocking schemes. This delay extends the clock period, thus

changing the frequency of the clock. The ratio between the producer clock and

consumer clock is called clock ratio. The clock ratio has been varied from 0.25 to

3.5 in steps of 0.5. This allows us to study the different phase relationship between

the consumer and producer clocks.

Figure 4.14 and 4.15 show the number of clock pauses in the producer for

pausible and stretchable clocking schemes, respectively, as the clock ratio is in-

creased. We see that as the frequency of the producer clock increases, the number

of pauses increases. The asynchronous data transfer logic operates at a particular

frequency. This frequency depends on the rate of production of signal R from the

producer block and rate of reception of signal A from the consumer block. The

transfer frequency becomes smaller than the frequency of the producer clock as

the producer clock frequency increases and becomes higher than the consumer

clock frequency. Hence, it takes longer to finish the cycle that de-asserts the grant

on the arbiter. Due to this we observe more clock pauses as the period of the clock

is too small to mask this delay. At lower frequencies, the time period is large

enough to mask the pause during its lower half of the clock cycle.
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Figure 4.14: Number of pauses for pausible clocking scheme

The number of clock pauses in pausible and stretchable clocking scheme are

comparable due to the scenario described above. But it can be observed from the

graphs depicting total time incurred by these latencies, shown in Figures 4.16 and

4.17, that they are no longer comparable. The stretchable clocking scheme incurs

longer latencies than pausible clock. This is because the clock is only asserted

when signal str is low.

The arrival of signal A on the producer side or signal R1 on the consumer
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Figure 4.15: Number of clock pauses for stretchable clock

side, asserts signal str. When the producer frequency increases and becomes

more than the consumer frequency, the FIFO gets filled up as more requests are

produced than can be consumed by the consumer module. Hence, the de-assertion

of signal A is delayed. This phenomenon is exemplified in Figure 4.18. The FIFO

is made up of a set of C-elements [81]. The bold lines depict the signals that are

asserted, while the non-shaded lines depict de-asserted signals. It can be observed

that when the FIFO is full WriteAck (which denotes signal A in Figure 4.9)
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Figure 4.16: Pause latency in pausible clock

remains asserted and is only de-asserted when an item of data is read from the

FIFO, i.e. ReadAck (which denotes signal A1 in Figure 4.9) is asserted. The

delay in the de-assertion of A, delays the de-assertion of signal str, which in turn

delays the assertion of signal clk. This leads to a prolonged clock stretch. Such

an occurrence is not observed in pausible clocking scheme.

This is because the reception of b+ immediately releases the grant on the

arbiter and at this stage, the clock can arbitrarily win the grant to assert itself.
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Figure 4.17: Pause latency in stretchable clock

This justifies the graphs shown in Figure 4.16 and 4.17.

C C

C C C

Write Ack

ReqWrite Read Ack

Read Req

Figure 4.18: FIFO design
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Figure 4.19 shows the average dynamic power consumption, at an operating

voltage of 3.3V , for transferring a burst size of 1 over a two stage FIFO imple-

mentation, with varying clock ratios. The power analysis includes the following

blocks: input and output ports of the wrapper, clock control circuit and the FIFO

structure. It is observed that as the clock ratio increases power consumption in-

creases. This is because, as clock ratio increases, the throughput and operating

frequencies of the synchronous islands increases, leading to an increased power

consumption.

It can be seen that the pausible and stretchable clocking schemes consume

more power than the data driven clocking scheme because of their complex asyn-

chronous circuitry. Since the implementation of the FIFO is same for all the pro-

tocols, complexity of port controller implementation of pausible and stretchable

clocking schemes accounts for such observations. It must also be noted that the

absolute power value for all the three clocking schemes include the current drawn

by the local ring oscillator clock (the block ′d′ in Figure 4.8, 4.9 and 4.10).

Figure 4.20 shows the impact of changing clock ratio on the throughput of the

communication channel. It can be observed that as the frequency of the consumer

clock increases the throughput increases linearly up to clock ratio 1. This is be-

cause more data is being read by the consumer in the same period of time. After

this time, the throughput reaches a saturation point. This is because the consumer

clock operates at a lower clock frequency compared to the producer clock. Hence,

there is no additional increase in throughput.

The throughput values obtained for stretchable and data driven clock are higher
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Figure 4.19: Power analysis

than pausible clock. This is due to the delay between two consecutive rising edges

of the request signal (R+). Detailed phase relationships between signals that

cause this delay is shown in Figure 4.21 and 4.22. It is observed that this delay is

12ns for pausible clock and 8ns for stretchable clocking scheme.
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Figure 4.22: Request delay analysis for stretchable clock

The throughput is maximum for data driven clock. It is higher than the stretch-

able scheme since the signal A in the stretchable clocking scheme waits for syn-

chronisation for crossing over to synchronous domain to produce Sync_ack. On

the contrary, no such synchronisation is needed for data driven clock as the clock

starts when there is data to transfer and hence the signal A thus produced is al-

ready synchronised to the clock. This explains the trend of the curves in the graph

that depicts the throughput of the different clocking schemes.
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Figure 4.23: Throughput Analysis with varying FIFO sizes

The control schemes are tested with varying FIFO depths. The FIFO depth is

varied from 0 to 12. It is observed that for pausible clock the performance does not

improve by making the depth more than 2 slots. For stretchable clock, throughput

increases till 4 slots, after which there is no improvement in performance. Data

driven clocking scheme shows increase in performance up to 8 slots and then

does not improve any further. These observations are depicted in Figure 4.23.

The readings for the different architectures with varying FIFO depths are taken at
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clock ratio 1 for comparison.

Table 4.2 presents the maximum throughput (in percentage) obtained for the

three clocking schemes over a 2-stage FIFO at clock ratio 1. It also presents the

power (in percentage) consumed by the same architectures at the same clock ratio.

Schemes Pausible clock(%) Stretchable clock(%) data driven clock(%)
Throughput 50 93 100

Power 218 203 100

Table 4.2: Comparative Throughput and Power analysis results

It can be seen from Figure 4.24 that on removal of the FIFO and by con-

necting the producer and consumer blocks directly, the system demonstrates low

performance and the throughput saturates at 50 Mega Samples/sec. It is also ob-

served that this saturation is reached earlier in time for stretchable and data driven

clocking schemes. The rise occurs below the clock ratio of 0.25. The region of

throughput rise for the two clocking schemes is also depicted in Figure 4.24.

It can also be observed that in the absence of FIFO structures, performance of

stretchable clock is better than the performance of the data driven clock. Requests

are generated every 10ns for stretchable clock, in contrary to data driven clocking

scheme, where requests are generated every 13ns at clock ratio 1.

4.7 Summary

This chapter presented the classification of different clocking schemes for Glob-

ally Asynchronous and Locally Synchronous architectures. Petri nets were used

87



CHAPTER 4. COMPARATIVE ANALYSIS OF GALS CLOCKING SCHEMES

0.1 1.0
Clock ratio (Producer/Consumer)

0

10

20

30

40

50

60

70

80

90

Th
ro

ug
hp

ut
 (M

eg
a 

Sa
m

pl
es

/s
ec

)

FIFO size 0 for stretchable clock
FIFO size 0 for data driven clock
zero_stage_pause

Figure 4.24: Throughput with FIFO size 0

to model the different schemes. It also presented an analysis of the three systems

on performance and power consumption criteria. Data driven approach guaran-

tees faster operation if making further progress in computation requires a constant

stream of data and the computation can be completed in accurately timed clock

periods. This is because if there is a constant flow of data in pausible and stretch-

able clocking schemes, there is a probability that the clock will be unnecessarily

interrupted at every instant of data transfer without completing any useful compu-
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tation, resulting in its delayed completion. Data driven clocking scheme requires

matched data and hence constant stream of data is ideally suited for this type of

scheme. If data is sent in bursts and its progress cannot be done in a number

of specified timed periods then pausible and stretchable clocks are more viable

options. In data driven clocking scheme, the local clock is not free running and

hence, extra circuitry needs to be introduced that can dynamically count the num-

ber of clock cycles needed for each computation, which would further increase the

complexity of the system. An increase in system complexity would give rise to in-

creased dynamic power consumption. Pausible and stretchable clocking schemes

have free running clock which is only stopped in the region of possible occurrence

of metastability and hence no such circuitry is required. When a required burst of

data arrives, the clock is paused to transfer the entire burst. This also reduces the

number of clock pauses.

Stretchable clocking scheme demonstrated better performance compared to

pausible clock in terms of throughput. But, it also exhibited longer clock pause

time in the producer block compared to pausible clocking scheme, at higher clock

ratios (Producer frequency/Consumer frequency). This results in increased com-

putation time in the synchronous island at higher clock ratios. Therefore, if it

is possible to operate the system at a lower clock ratio, then stretchable clock

is more viable than pausible clocking scheme. For higher clock ratios pausible

clock is more advantageous. Therefore, based on the requirements of the sys-

tem, stretchable clocking scheme could be more desirable over pausible clocking

scheme, or vice versa.
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Chapter 5

GALS Implementation of Weakly

Endochronous Systems

5.1 Introduction

Previous chapters have already presented the advantages of GALS architectures.

Therefore, it seems practical to move towards a paradigm that amalgamates the ad-

vantages of both synchronous and asynchronous designs for implementing com-

plex system on chip to form Globally Asynchronous and Locally Synchronous

(GALS) systems. Thus, the system can exploit the existing synchronous tools

for the design of the IP blocks with local clocks while the wrappers and com-

munication channels between the different modules are handled by asynchronous

methodologies. This chapter addresses the problem of correctly and efficiently

implementing a modular synchronous specification as a GALS architecture where
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each locally synchronous module communicates with other modules via asyn-

chronous communication lines.

The exact problem that is considered in this chapter is that of synthesising

the asynchronous wrappers starting from the specification of the synchronous

modules. The approach is based on weakly endochronous synchronous model,

which defines high level implementation conditions guaranteeing correct desyn-

chronisation at the level of the abstract synchronous module. The synthesis prob-

lem involves the weakly endochronous module construction phase and the actual

wrapper synthesis phase. The focus is on the synthesis of delay insensitive asyn-

chronous wrappers from weakly endochronous modules. The choice of delay

insensitive logic as implementation domain is determined by its excellent modu-

larity properties, its ability to support concurrency and by the existence of state of

the art tools allowing the specification and synthesis of delay insensitive circuits.

The main contribution is the introduction of the synthesis methodology, in-

volving synchronous and asynchronous formalisms, for implementing correct by

construction GALS models, while ensuring the properties of Weakly Endochronous

(WE) systems (introduced in Chapter 3). We recall here, the basic idea behind

Weak Endochronous Systems. WE is a speed-independence property which char-

acterises synchronous components whose behaviour does not depend on the order

in which various inputs are read. Hence, this property enables the application of

asynchrony at the synchronous system interfaces. The properties of a WE sys-

tems is presented in Subsection 5.4.1.
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5.1.1 Overview of the methodology

The main contribution of the work is to translate the WE components of a syn-

chronous system into delay insensitive circuits, while preserving the criteria im-

posed by WE systems for correct GALS deployment.

This approach is primarily based on asynchronous handshake protocols. As

shown by the shaded block in Figure 5.1, the distributed synchronous system is

encapsulated by an asynchronous wrapper. This asynchronous wrapper consists

of communication channels and a clock generator. The communication channels

consists of a set of input and output FIFOs, shown in Figure 5.1. We consider

that each signal is transmitted from one synchronous island to the other in a FIFO

dedicated to itself. Therefore, we have as many FIFOs as there are signals in

the system. When data is available at the input FIFOs, they are read by the syn-

chronous module and the clock generator triggers the local clock for computation.

On completion of the computation, the clock is stopped and the outputs are writ-

ten on the output FIFOs. The release of the the clock after the completion of the

computation allows the synchronous module to read the next set of inputs from

the input FIFOs.

Similar to the Data Driven Clocking scheme presented in Chapter 4, the clock

is triggered when the data required for a particular computation is read and is wait-

ing for some operation to be done on it. The clock is released after the completion

of the computation. This leads to a signification reduction in power consump-

tion. Unlike the prevalent clock gating schemes, the synchronous module is not

unnecessarily stalled by the unavailability of an input not required for a particular
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Figure 5.1: Delay Insensitive System

computation. This leads to an increased efficiency.

The WE models of the individual system blocks exhibit synchronous be-

haviour. Therefore, it is required to transform these models before they can be

brought to an implementable level.This involves:

1. Refining the model to handle handshake operations suitable for asynchronous

communication.

2. Removal of the global clock and retention of local clocks, where the clock

signals are used for computation.

3. Fragmenting the individual synchronous modules into smaller segments to

introduce relevant local clock control signals.

Since each synchronous module is weakly endochronous, the removal of the global

clock preserves the I/O behaviour and correctness. The final step involves addi-
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Figure 5.2: GALS wrappers constructed around the synchronous WE blocks

tion of extra signalisation and signal reordering, ensuring that the WE criteria is

satisfied at every stage of refinement. The top view of the model with the asyn-

chronous wrapper is depicted in Figure 5.2. The model of the wrapper obtained

can then be fed to existing synthesis tools to obtain a gate level implementation.

Therefore, the wrapper, in general, has the following two functions:

• reconstruct, for each synchronous module, the input synchronisation points,

which in turn would control the clock

• preserve the semantics of the synchronous specification in GALS imple-

mentation.

5.2 Preliminaries for modeling

Here we introduce the models of concurrency which allows to capture the essen-

tial features of synchronous and asynchronous systems. The underlying model of

computation, state transition systems (STS), has already been introduced in Chap-
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ter 2. This section presents a special class of STSs, known as Microstep Transition

Systems, suitable for the specification of synchronous system to be desynchronised

for GALS deployment [69].

5.2.1 Microstep Transition System model

To represent a synchronous system, finite state machines are used having exactly

one clock variable, consisting of only clock and directed variables and satisfying

a number of axioms. Such a system is called a Microstep transition system. The

weakly endochronous systems are modeled using Microstep transition systems.

Definition 5.1. Microstep: the tuple Σ = (S, s0, V, τ, T ) is a microstep syn-

chronous transition system (STS), if (S, s0, V ∪ τ, T ) is a concurrent transition

system, where all the variables of V are directed, where τ is a clock variable,

where

Axiom 3. clock transitions: if s <τ>→ s′ and l(τ) = ⊥, then l|V = ⊥V

The above axiom identifies the clock symbol with label < τ > which are the

only transitions where the clock transitions are present. These transitions sepa-

rate synchronous reactions during which a variable can be assigned only once.

Therefore, each reaction starts and ends with a clock transition(s).

Axiom 4. Stuttering invariance: s0
<τ>→ s0 and s <τ>→ s′ ⇒ s′

<τ>→ s′

For a pair of states, (s1, s2), if s1 = s2, then it is called a stuttering state. A

process is a set of behaviours σ that is invariant under stuttering iff it contains

every behaviour obtained from σ by adding/removing stuttering steps.
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Axiom 5. unique assignment: if s0
l1→ s2

l2→ .......
ln→ sn and ∀i : li 6= τ, then

l1, l2....ln are non-overlapping.

two assignments of the same variable must be separated by a clock transition.

!a
?b

?c
Σ :micro

τ

τ

τ

In a similar way, the classical macrostep transition system can be defined.

Definition 5.2. Macrostep: A tuple Σ = (S, s0, V, τ, T ) is a macrostep transition

system, if,

s
l→ s′ ↔ ∃φ :























s
φ→ s′

φ = Step0(φ) < τ >

l =< Step0(φ) >

The Macrostep representation of the Σmicro, is denoted by Σmacro.

ab

ar
Σ macro :

τ

τ

τ

This compact form hides both the I/O and computational causality which are

essential features of asynchronous implementation. Therefore, the rest of the

chapter deals with microstep transition systems to handle the transition from syn-

chronous to GALS architecture.
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5.2.2 Theory of Regions

In the previous section, the microstep transition system has been proved to be

equivalent to reachability graphs. This system model is required to be translated

to PN for synthesis. This is done by using Theory of Regions [82]. Some of the

important notations are recalled in this chapter. Subsets of states in a Transition

System (TS) or a RG denoted by {S,A, l, s0}, that correspond to a set of places

in a Petri net denoted by PN = {P, T, F,M0} are called Regions. Let S1 be a

subset of states S of a TS. A transition s1 → s2 enters S1 if s1 /∈ S1 and s2 ∈ S1.

Transition s1 → s2 exits S1 if s1 ∈ S1 and s2 /∈ S1. If neither of the conditions

hold true then the transition does not cross the region. If both the conditions hold

true then the transition is internal to the region. A subset R is a region if ,

∀t ∈ A where l(t) = a(where a is a lable of transition t), one of the conditions

hold true:

1. enter R

2. exit R, or

3. does not cross R.

If R1 and R2 are regions of a TS, such that R2 ⊂ R1, then R2 is a subregion of

R1. Region R2 is a minimal region if it contains no sub-regions of the TS. A

region R is a pre-region of an event a if transition labelled a exits R. A region R

is a post-region of an event a if the transition labelled a enters R. Figure 5.3 (a)

shows an elementary transition system. This TS is divided into regions as shown
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c

bc

b

a

R4

R6

R5

R3

R2

R1

(a)

a

b c

Figure 5.3: Translation of a TS into a PN

in the figure. Figure 5.3 (b) shows the PN that is obtained by mapping the regions

onto places as depicted in [83].

5.3 Composition-GALS idea

Modular synchronous systems and GALS implementations are built from mi-

crostep synchronous automata by using two types of compositions, namely syn-

chronous and asynchronous, as presented in [69]. Both of these approaches are

based on point-to-point communication scheme through FIFOs as described in

[84].

Definition 5.3. Composable Transition System

I/O transition systems Σi, i = 1, 2, ..n are composable if their variable sets are

mutually disjoint.

The above definition has the following two requirements:
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1. Point-to-point communication (no directed variable is shared by two or

more systems. But, broadcast can be simulated by replicating and renaming

the variables.)

2. Non-overlapping clock sets.

5.3.0.1 Synchronous Composition:

To represent synchronous communication, 1-place synchronous FIFO models are

used which are microstep synchronous transition systems themselves. The FIFO

model associated with channel c is illustrated below.

SFIFO(c, τ) = ({c0, c1} ∪
⊗

x ∈ Dc

{cx}, c0, {τ} ∪
⊗

x ∈ Dc

{!c = x, ?c = x},→S)

<τ>

<τ>
<!c> <?c>

c0
cx c1

Synchronous parallel composition of STSs Σi = (Si, s0i
, Vi, τi, Ti), i = 1, 2,

denoted by Σ1|Σ2, is given by:

Σ1[τ1/τ ]⊗ Σ2[τ2/τ ]⊗
⊗

c ∈ C(V1) ∩ C(V2)
SFIFO(c, τ)
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5.3.0.2 Asynchronous Composition:

Asynchronous communication is represented by an infinite asynchronous FIFO

whose transition relation is given by:

AFIFO(c) = (D∗
c , ε,

⊗

x ∈ Dc

{!c = x, ?c = x},→A}

A more specific case of extending the infinite stage FIFO to a 1−place FIFO

is denoted by:
ε c

<?c>

<!c>

Asynchronous composition of Σi = (Si, s0i
, Vi, τi, Ti), i = 1, 2, denoted by

Σ1||Σ2, is given by:

Σ1 ⊗ Σ2 ⊗
⊗

c ∈ C(V1) ∩ C(V2)
AFIFO(c)

Below we show synchronous and asynchronous compositions of two STSs,

Σ1 and Σ2

!a
?b

?r

S0

S1

S2

Σ1:

τ1

τ1

τ1

τ2
?a τ2

τ2
!b τ2Σ2:
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The two requirements that need to be satisfied while composing systems are,

which arise from the definition of the FIFOs:

1. A signal cannot be received before it is emitted.

2. For synchronous composition, the system cannot take a clock transition af-

ter a signal is emitted and before it is read.

Based on these two requirements we exemplify the two compositions.

The synchronous composition is given by:

s3,t3s3,t1s3,t0

s1,t1
s1,t0

s0,t0

s3,t2

τ

Σ1| Σ2:

?r
?a

?r

?a
!a

τ

τ !b

?a?r

The representation is simplified by not showing the state of the two FIFOs

SFIFO(a, τ) and SFIFO(b, τ). It can be seen that the composed system is

blocked in state (s3, t3) because SFIFO(b, τ) cannot take a clock transition since

data has been written but not read. Therefore, the system Σ1|Σ2 can deadlock.

The asynchronous composition is given by:

τ1,τ2,τ1τ2

τ1,τ2,τ1τ2

?r τ2?r

?b
τ2

?r!b

τ1,τ2,τ1τ2
τ1,τ2,τ1τ2

!b
?r ?r

!b

?r
τ2,τ1τ2?a

?a
!a

τ1,τ2,τ1τ2

τ2
τ2 τ2

τ1

Σ1|| Σ2:

?a?r
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It is to be noted that Σ1||Σ2 has traces like !a; ?a; τ2; !b; ?b, that are not asyn-

chronously equivalent to any of the synchronous traces of Σ1|Σ2. In such a case,

the GALS implementation does not preserve the semantics of the specification.

Therefore, a good correctness criterion for desynchronisation is the preservation

of asynchronous traces. This criterion is computationally infeasible even for fi-

nite systems. Therefore, the next section gives sufficient conditions which are

decidable.

5.4 Weak endochrony

In this section weak endochrony is discussed, that was introduced in [69], to

present the construction of modular synchronous architecture. To do so, en-

dochronous systems [57] are first defined which are extended to form weakly en-

dochronous systems. Endochronous systems are characterised by a condition that

the presence and absence of all variables can be inferred incrementally during each

reaction from already known values of the present input variables and state vari-

ables of the Synchronous Transition System (STS) under consideration. The main

advantages of WE systems are that it can take into account different execution

modes and independence between components in order to minimize communica-

tion and allows multi-rate computations, unlike latency insensitive systems [54].

But due to poor handling of concurrency, endochronous systems are not compo-

sitional. This leads to inefficient synthesis of systems formed of more than two

components.
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The above disadvantages lead to the introduction of weakly endochronous sys-

tems. These systems take into account the issues with the previous approaches and

presents an approach that efficiently handles internal concurrency and both the

properties together to form a correct desynchronisation criterion that is decidable

on finite synchronous systems. They support signalling schemes that are simpler

and more efficient than latency insensitive and endo/isochronous counterparts.

5.4.1 Weakly Endochronous Criteria

Weak endochrony generalizes over latency-insensitivity and endochrony, being

able to represent concurrency between different operations of a synchronous com-

ponent. Thus, it potentially supports lighter communication protocols than the

existing approaches. Both latency insensitive systems and endochronous systems

satisfy the axioms of weak endochrony.

Definition 5.4. A system LSTS Σ = (U, S,→, s′) is weakly endochronous if the

following properties are satisfied for all s, s1, s2 ∈ RSS(Σ), and for all r, r1, r2 ∈

Reactions(U):

Criterion 5.1. Determinism - s l→ si, i = 1.2⇒ s1 = s2

Example 5.1. If s is a state and φ is a trace, then s.φ is a unique state reached

from s with φ.
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S1 = S2

S

S

S

1

2

l

l

Criterion 5.2. Independence - If the labels l1 and l2 are disjoint and if l1, l2 6= τ

and if s l1→ s1 and s l2→ s2 then

∃ s′, such that s
l1∪l2→ s′

Criterion 5.3. Clock Properties - assuming that s0
<τ>→ s1 and φ ∈ TracesΣ(s0)

with τ /∈ supp(φ),

1. φ ∈ TracesΣ(s1)

This criterion states that if it is possible to either perform a clock operation

or carry out a directed variable communication, then it is also possible to first

clock and then do the communication. Therefore, in one clock cycle it is possible

to have varying number of communications (signal transitions) without affecting

the communication behaviour of the circuit. Therefore, if it is either possible to

perform τ or ?a; ?b, then τ ; ?a; ?b is also a permissible trace.

2. if φ < τ >∈ TracesΣ(s0), then φ < τ >∈ TracesΣ(s1) and s0.φ < τ >=

s1.φ < τ >
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The above criterion states that in a circuit, the same state is reached by either

doing a; τ or τ ; a; τ . The same conclusion can be drawn as the previous property,

that the communication behaviour does not change by increasing or decreasing

the number of clock cycles.

3. if φψ < τ >∈ TracesΣ(s1), then there exists ψ′ ≤ ψ, such that φψ′ <

τ >∈ TracesΣ(s0).

It is already known from property 2, that τ ;φ;ψ; τ φ;ψ; τ . It is possible to

do a prefix of the communication in one clock cycle because there exists a trace

p, such that ψ′; p ψ, i.e. it is still possible to complete the trace ψ after the

clock tick. Using this property, it is possible to to divide the signal sequences into

smaller fragments in the synchronous circuit.

4. if φ < τ >, θ < τ > TracesΣ(s0) and φ ./ θ, then φ(θ\φ) < τ >∈

TracesΣ(s0).

Let either of the communication traces φ or θ be permitted to execute, where

φ ./ θ, i.e. prefixes of another trace t. The above property denotes that in such

a situation it is possible to execute another non-contradictory prefix of t. This

prefix say, φ; p is bigger than φ and θ. Therefore, in the synchronous system if it

is possible to do two prefixes of a communication sequence, then it must also be

possible to do a bigger prefix of this sequence.
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S1

S2

r1

r2

r1 r1 r2
r2

r1

r2 r1 r2S S’

\
, non−contradictory

\

r’=r’

Criterion 5.4. Choice: if φ < v = xi >∈ TracesΣ(s), i = 1, 2 and φ1 ./ φ2,

then φ < v = x2 >∈ TracesΣ(s)

If it is possible to execute either φ1 or φ2 (prefixes of a trace t) each followed

by the execution of x1 and x2, respectively, it is also possible to execute φ1; x2

or φ2; x1. Therefore, if it is possible to interrupt a trace t, by first doing com-

munication sequence φ1 followed by x1 then it is also possible to do x1 after a

the execution of a non-contradictory trace φ2. It is an important criterion for de-

synchronisation. This is because in the asynchronous circuit the order of !a and ?a

is guaranteed but the order of a and b are not guaranteed. Therefore, it is important

that the circuit is able to do both x1 and x2, otherwise deadlocks are possible or

circuit can reach different states.

Let t :!a!b?a?b be a signal sequence. Two runs of t can be φ1 :!a?a!b?b and

φ2 :!b?b!a?a. Further let x1 :!c = 2 and x2 =!c = 3. The synchronous circuit must

now allow the following runs: (1) φ1; x1, (2) φ2; x2, (3) φ1; x2, (4) φ2; x1.

Therefore, there is a choice of doing x1or x2.

1 S’,

S1

S2S
S S’2

x x2x
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5.4.2 Correctness results

The following theorems, presented in [69], give the basis for the correctness and

synthesis of GALS architecture from synchronous specification:

Theorem 5.5. Let Σi, i = 1, ..n be composable weakly endochronous µSTSs,

then, |ni=1 Σi is weakly endochronous.

The previous section presented the weakly endochronous criteria. From the

above criteria, it can be seen that Σ2 is weakly endochronous and Σ1 is not. There

is a choice between reading b and reading r at the state s1 which is not visible at

the exterior. Therefore, if the environment provides both b and r, the input reading

will be non-deterministic. On the other hand, if ?b and ?r are concurrent, then the

system is weakly endochronous. This is depicted in system Σ3.

!a
?b

?r

?r

?b

τ

τ

τ

τ

Σ3
:

Therefore, it can be seen that the GALS implementation model Σ3||Σ2 pre-

serves the semantics of Σ3|Σ2.

τ τ

τ

Σ3 | Σ2 :

!a
?a

?r ?r

?a
!b ?b
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τ

Σ3 Σ2 :

!a
?a

?r ?r

?a
!b ?b

?r ?r ?r

?b!bτ2

τ1,τ2,τ1τ2

τ1 τ1,τ2,τ1τ2

τ2 τ2

τ1,τ2,τ1τ2
τ1,τ2,τ1τ2

τ1,τ2,τ1τ2

τ1,τ2,τ1τ2

τ2
||

It can be seen that any trace of Σ3||Σ2 is asynchronously equivalent to Σ3|Σ2.

Such a GALS implementation is correct because it does not introduce any new

behaviour.

Theorem 5.6. Let Σi, i = 1, ..n be composable weakly endochronous µSTSs,

and if, |ni=1 Σiis non-blocking, then ‖ni=1Σi is correct with respect to the syn-

chronous specification.

The theorem states that if the components of a deadlock-free synchronous

specification are weakly endochronous, then the synthesis of the GALS wrappers

can be done locally for each module, without knowledge about the global system.

The implementation can be derived by connecting the resulting modules with

asynchronous FIFOs of arbitrary length. In the following section we define a

model for the representation of asynchronous implementation of component-wise

synchronous specification. The model removes the global clock and preserves

global synchronization by means of signalling.
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5.5 Synthesis of the weakly endochronous modules

The methodology for synthesis of the GALS implementation of synchronous sys-

tems requires the transformation of the microstep transition systems of the WE

components to Petri nets. This is required in order to use existing synthesis tools to

obtain asynchronous controllers and be able to use existingPN modules to extend

the type of clock control schemes. There are existing methods for the translation

of a State Transition Graph into a PN (whose Reachability graph (RG) is bisimi-

lar to the transition system), based on the Theory of Regions, presented in Section

5.2.2.

This section presents the translation methodology proposed on the original

system, to bring the specification of the WE system to an implementable level.

We start by presenting some restrictions and assumptions on the models for syn-

thesis.

5.5.1 Requirements of the specification for synthesis

Before we proceed to the synthesis algorithm we specify some requirements of

the system for synthesis.

1. Weakly endochronous systems exhibit true concurrency (represented by the

diagonal in the diamond as shown in Figure 5.4). We replace true concur-

rency with interleaving concurrency in the synchronous model. This does

not restrict the class of systems because in practical examples no two sig-

nals are truly concurrent. Therefore, the model chooses from any execution
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?b

?b?a

!c ?a

!c?a
?b

?b?a

!c ?a

!c?a
?a!c

?a?b

Figure 5.4: True vs interleaved concurrency

sequence and progresses with it.

Such a phenomenon is depicted in Figure 5.4.

2. We consider burst-mode systems, where all emissions take place before all

the receptions. Therefore, no input burst can be a subset of another input

burst leaving the same state. Once the input burst is complete, the circuit

activates the specified output burst and enters the specified next state. A

new input change is allowed only after the circuit has completely reacted to

the previous input bursts.

3. The state that is a destination of a clock transition is not a destination of a

non-clock transition.

In Figure 5.5 it can be seen that the destination of ?d is also a destination of

the clock transition τ . Such a situation is not allowed in our methodology.

4. Finally, a reaction that is atomic in a given state cannot be refined at a later

state.

110



CHAPTER 5. GALS IMPLEMENTATION OF WEAKLY ENDOCHRONOUS
SYSTEMS

?a ?b

?b ?a

τ
τ

!c
τ

τ

?d

(a) counter example

Figure 5.5: clock assumptions

τ

τ

τ

τ

τ
τ

τ

τ

!a ?b

?d

!e

?c

!a

!a

!a

?b

?b

?b

?b!a

?c

?d

!e !e
?c

?d

τ
?c

?d

!e

!e!e

?d ?d

?c ?c

Figure 5.6: Variable flow consistency

In figure 5.6, the reaction ?c; ?d!e is refined to ?d; !e after the first clock tick.

Therefore, it can be seen that the trigger conditions for !e were ?c and ?d in the

first instant and changes to ?d at the next instant which follows after the next clock

tick. Such a situation is not covered by the synthesis algorithm.
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5.5.2 Pre-requisites for transformation

Before presenting the algorithm for the synthesis of weakly endochronous µSTSs,

it is required to define some equivalences between the original and the transformed

models after the application of actions like signal deletion and insertion on µSTS.

Proposition 5.7. Behavioural Equivalence for signal deletion on µSTS(≈):

Let s.→ be a signal deletion transformation of a weakly endochronous system

from Σ1 = (S, V,→Σ1
) to Σ2 = (S ′, V ′,→Σ2

). If Σ1RΣ2, where R is the symbol

for bisimilarity relation, then Σ1 ≈ Σ2.

Let s.→ be a sequence of silent events deleted transforming Σ1 = (S, V,→Σ1

) to Σ2 = (S ′, V ′,→Σ2
). In order to prove relation R between the original and

the transformed graph, we define the relation⇔. If the two graphs are related by

⇔, then we can say that the two graphs are bisimilar up to the relation ⇔. Let

the injective function be defined by γ. Then, the relation Σ1RΣ2 exists, iff there

exists γ between the elements of Σ2 and the non− a and non− →a and non− v

elements of Σ1, where a is an element of the deleted set of states,→a is an element

of the deleted set of transition relations and v is an element of the the deleted set

of variables, such that for every flow relation→ and state s of Σ2,

- l(v) = l(γ(v)) (γ preserves the labels of the variables)

-→∈ •s, then γ(→) ∈ •γ(s) and s ∈→ •, then γ(s) = γ(→)• (γ preserves

the pre-set of the states and the post-sets of the transition relations).

Intuitively, we can say that Σ1 ⇔ Σ2 iff Σ2 can be obtained from Σ1 by

deleting a sequence of silent events, consisting of a set of states, variables and
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transition relations. Th silent events are events that cause a change of state but

are not observable by the external observer. If Σ1 ⇔ Σ2 holds then Σ1RΣ2

holds. Hence, the relation ≈ is satisfied and we can say that the Σ1 and Σ2 are

behaviourally equivalent.

The notion of validity for signal insertion by transition splitting µSTS is

straightforward and the transformation can also be justified in terms of bisimu-

lation, similar to the one presented for signal deletion.

5.5.3 Synthesis algorithm steps

The synthesis methodology derives an asynchronous wrapper to enable the de-

ployment of GALS architecture. The automaton requires to go through some

transformations to incorporate handshake and clock control signals for the imple-

mentation of GALS architecture. This automaton must follow the assumptions

stated in Subsection 5.5.1, before it is finally implemented.

1. We consider an automaton, denoted by Σ = (S, s0, V, τ, T ). This automaton

satisfies weakly endochronous criteria and hence it can be synthesised as

an independent module without the information of the global system it is

integrated into.

2. A set of states Sync = s1, s2, ..., sn is determined that are destinations of

clock transitions, denoted by τ . Such states are called Synchronizing states

where synchronous reactions begin.

For the example in Figure 5.7, Sync = (s1, s2, s3, s4,).
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?a ?b

?a?b

τ ?dτ

τ !e

τ
!cτ

τ

τ

s1
s2 s3

s4

Figure 5.7: Original model

?a ?b

?a?b

!c τ ?dτ

τ !e

τ

Figure 5.8: Model without stuttering steps

3. The stuttering steps (Axiom 4 ) are removed from the original model.

This is in accordance with the functional correctness because addition or re-

moval of stuttering steps does not effect the behavior of a system. The net obtained

after the removal of the stuttering steps is shown in Figure 5.8.

4. From the Weakly Endochronous criterion 3, we can divide the signal se-

quences into smaller parts in the synchronous component. Hence, ∀s ∈

Sync, determine the set Syncsmall of all smallest reactions, in terms of in-

clusions of sets of operations (emissions and receptions) executed along the

reaction.
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Start[R1]

Channel specification

End[R1]

?b

?a?b

?a !c ττ

Start[R2]

Channel Specification

End[R2]

?d τ!eτ

Figure 5.9: Model partitioned into reactions

5. ∀r ∈Syncsmall, such that r ∈ Reactions, we check that all emissions are

after all receptions. From the determinism of WE systems, we can assume

that Syncsmall contains equivalence classes of smallest reactions that have

a set of reception operations followed by a set of emission operations.

Figure 5.9 shows the partition of the model into reactions. These smallest

reactions have all the emissions taking place after all the receptions.

6. To every equivalence class Synceqiv in Syncsmall we can associate:

Start[R] : the unique initial state of all reactions.

End[R] : The unique destination τ for each reaction that appear

• after the set of emission transitions for equivalence classes consisting

of sets of reception transitions followed by sets of emission transitions.

• after the set of reception transitions for equivalence classes consisting

of sets of reception transitions.

7. For all the equivalence classes with sets of receptions followed by emis-

sions, delete the sequence s <τ>→ , where, <τ>→∈ •End[R] and s ∈ • <τ>→ .
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This step is not applied to those classes that only contain reception transi-

tions.

Since the signals deleted/removed from the original model are silent events,

the modified model can be shown behaviourally equivalent (Proposition 5.7) to

the original model.

Each equivalence class consists of sets of transitions that have all their recep-

tion transitions before the emission transitions. Therefore, reconstruction of the

final model will lead to the connection of the emission transitions of one class

with the reception transitions of the next class that appear along the same path. In

a GALS environment clock transitions are only required after the reception of data

to aid computation. The clock transition should be absent at other times during

which the system operates in a causal mode to avoid re-synchronisation issues.

Therefore, the clock transitions between emission and reception transitions are

removed while preserving the behavioural correctness of the model.

8. Handshake expansion is applied to the partitioned models. The channel

specification of the models only contains the active transitions. The hand-

shake expansion equips the model with both active and passive transitions

which are essential requirements for synthesising a net.

This step is elaborated to show the DAG refinement using handshake expan-

sion [85]. The channel representation, denoted by !a (emission of signal a) and

?a (reception of signal a) cannot be directly implemented by existing STG based
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synthesis tools, since the falling transitions are not specified. Therefore, to imple-

ment the above STG, with channel specification, handshake expansion is applied

to obtain a refined specification of the circuit.

This expansion is brought about by substituting each channel with two wires.

The channels are re-labelled by request and acknowledge signals for passive and

active ports of a module. For instance, channel a is specified as ain_req and

ain_ack for passive port and aout_req and aout_ack for active port. The event τ is

refined into clk+ and clk− transitions.

An additional ordering constraint is introduced at this stage to satisfy the

GALS criterion. This constraint is in accordance with the correctness criteria.

The ordering constraint is defined by a protocol which is characteristic of stop-

pable clocks presented in [79]:

• The clock is raised (clk+) after all the input requests have been received.

• The synchronous computation is triggered by the clk+ signal. The com-

pletion of the computation is reported by the assertion of the Completion

Detection (cd) signal.

• On reception of cd, the clock signal clk is lowered (clk−).

• The output request is sent to the next module.

• The module then waits for the output acknowledgement signal.

• On the reception of the acknowledgement signal, all the input request sig-

nals are acknowledged.
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Start[R1]

Handshake Refinement

End[R2]

clk+ clk−ain_req

bin_req

bin_req

ain_req

cout_req cout_ack bin_ack
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Handshake Refinementt

clk−din_req clk+ eout_req eout_ack din_ack

Figure 5.10: Handshake refinement

• When all the input requests are acknowledged, the module is ready to re-

ceive new input request signals.

The clock is stopped when the module is idle. After the reception of the required

subset of data, the clock is started to perform the relevant computations. On com-

pletion of the computations the clock is again lowered, waiting for new input data

to arrive.

The refined model after the application of the handshake refinements is de-

picted in Figure 5.10. The correctness of refinement is discussed in Section 5.7.

9. The clock is controlled by the input signals, i.e., the arrival of all the input

signals notify the clock control signals that the rising edge of the clock can

be allowed for computation. The completion of the computation, denoted
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by a signal cd (completion detection signal), allows the clock signal to be

lowered to generate the outputs obtained from the computational block. The

silent event cd is a newly inserted signal and complies with the notion of

validity for signal insertion.

Such a transformation is depicted in Figure 5.11. The reception of all the input

signals, namely, a_req and b_req triggers the clk signal to high. On the reception

of the completion detection signal, cd the clock goes low denoting the availability

of outputs to be written. Here, we would like to introduce the concept of Request

driven clocking scheme. This scheme is a direct outcome of the synthesis steps

5 and 8. In 5 we consider sequence of transitions where all the emissions take

place after all the receptions. In step 8, we raise the clock when all these inputs

(receptions) have arrived and lower the clock when the computation is completed

and outputs are written.

10. To every refined equivalence class Synceqiv in Syncsmall we can associate:

Mid[R] : the unique state that separates all receptions from emissions in

each reaction, i.e, the active reception transitions before the clock is trig-

gered.

Clk[R] : = the sequence of transitions corresponding to the critical region

where the clock is raised, the computation is performed,the clock lowered

and the communication completed. This is also the transition sequence be-

tween the states Mid[R] and End[R].
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clk+ clk−cd

MID(R1)START(R1) END(R1)

CLK(R1)

ain_req

bin_req

bin_req ain_req

cout_req cout_ack
ain_ack bin_ack

bin_ack ain_ack

clk+ cd clk−

CLK(R2)

START(R2) MID(R2) END(R2)

din_req eout_req eout_ack din_ack

Figure 5.11: Partitioned model with states assigned to sets

Figure 5.11 identifies the states and assigns them to the relevant states as dis-

cussed above.

11. ∀s in Sync:

∀Syncequiv, we consider all the states and sequences of transitions from s

to End[R] and all their interleavings. This automaton is denoted by S. It is

to be noted that S is contained in Σ.

12. As a final step, we need to construct the final implementable model. We

presume that all the states in the original model have identities, then

∀Syncequiv in Syncsmall:
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CLK(R1)
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ain_reqbin_req

bin_req din_req

CLK(R2)

Figure 5.12: Final transformed model

all the states with the same identity are merged to obtain the final model

of the component. For example, if End[R1] is a source of another reac-

tion with initial state Start[R2] appearing along the same path, then merge

End[R1] and Start[R2]. The states End[R1] and Start[R2], would have

the same identity since they are the same state in the original model, before

the partitioning step.

Applying the above rules the final net is shown in Figure 5.12. This net is

implementable and can be fed to Petrify for further automated refinements.

The above steps are straightforward when there is a clear distinction between

the receptions and emissions. If an emission is concurrent to a reception opera-

tion, then there would be a reaction with a sequence which has emission before

reception. In such a situation, the reaction with such a situation is omitted from

the final transformed model. This does not affect the behaviour of the system,

because the system is forcibly made to choose the sequence where the reception

is before the emission.

13. The transformed automaton of each of the components that comprise the
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synchronous system are fed to Petrify to translate them to Signal Transition

Graphs (STG).

This is done automatically by using the Theory of Regions presented in Sub-

section 5.2.2.

14. The STGs thus obtained can be logically synthesized using Petrify. At this

stage we have the circuits of the individual components. These components

are then made to communicate with each other using arbitrary length asyn-

chronous FIFOs.

If the states of the FIFO are ignored, the final net N = {P, T,W,MN0
} of a

system composed of two components depicted by nets N1 = {P1, T1,W1,MN10
}

and N2 = {P2, T2,W2,MN20
}, obtained by directly connecting the outputs of N1

to the inputs of N2 can be defined by:

P = P1 ∪ P2

T = T1 ∪ T2

W (p, t) =











W1(p1, t1) if p1 ∈ P1, t1 ∈ T1

W2(p2, t2) if p2 ∈ P2, t2 ∈ T2

W (t, p) =











W1(t1, p1) if p1 ∈ P1, t1 ∈ T1

W2(t2, p2) if p2 ∈ P2, t2 ∈ T2

l(t) =











l1(t1) if t1 ∈ T1

l2(t2) if t2 ∈ T2

MN =











MN1
(p1) if p1 ∈ P1

MN2
(p2) if p2 ∈ P2
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15. The refined model of each of the synchronous module is fed to Petrify to

obtain the logic equations for gate level implementation. A detailed de-

scription of obtaining such implementations from Petri nets can be found in

[50]. Each of the component circuit thus obtained communicate with other

modules of the system via asynchronous FIFOs.

5.6 Case Study:DLX architecture

We de-synchronize the DLX datapath architecture [86] to exemplify the proposed

traversal from weakly endochronous systems to latency insensitive circuits. Here,

we consider a simple unpipelined DLX architecture. Our approach can be di-

rectly extended to pipelined DLX architecture. The Figure 5.13 shows a simpli-

fied and abstract view of the overall partitioned DLX architecture. The globally

synchronous system is partitioned into five main synchronous islands, Instruction

Fetch(IF), Instruction Decode(ID), Execution(EX) and Write Back(WB). In [86]

the ID and the WB stages are merged. The instructions from the MEM block syn-

chronise with the instructions coming from the IF block. These islands operate at

different clock speeds.

Desynchronisation of the DLX architecture into the above partitions would

allow each island/block to retain a local clock whose frequency can be scaled

independently of the other blocks. Moreover the blocks operate with increased

concurrency which cannot be achieved in a globally synchronous environment.

The dotted lines shows the synchronous island that will be used as a running
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ID EX
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IF WB?Inst

!M_WF=0
!M_Data
!M_WF=1

?D_Data
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Figure 5.13: DLX architecture
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τ ?DData

!MData
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Synchronous Automaton

!

τ

τ

S3

Figure 5.14: DLX-ID automaton

example for demonstrating the synthesis methodology. The block chosen is the

ID block and its interaction with EX and the MEM blocks. This block receives

data from Instruction Fetch(IF) block and communicates with the MEM block,

with exchange of data between them.
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From the theory presented in this chapter, if each of these blocks are modeled

satisfying the WE criteria, then they can be composed correctly by making each

block communicate with the other blocks through asynchronous FIFOs, to form a

correct-by-construction GALS architecture. Therefore, we proceed by modeling

the ID to present the results of our synthesis methodology.

Figure 5.14 depicts the automaton of the Instruction Decode component of

the DLX architecture. This automaton waits for signals ?Load and ?Store to

perform two different computations. If the automaton receives ?Load, it produces

!WF = 0 (write flag=0) signal. After this operation, it waits for ?D_Data. The

signals !WF = 0 and D_Data is separated by τ transitions. This is because, a

system cannot write and afterwards perform another read in the same clock cycle.

After the operation ?D_Data the automaton returns to its initial state s0.

For the example in Figure.5.14, Sync = {s0, s1, s2, s3}.

For the above example the allowable equivalences classes are,

Syncsmall(s0) = {{?Load !WF = 0 τ}, {?Store !WF = 1 !M_Data τ},

{?Store !M_Data !WF = 1 τ}}

Syncsmall(s3) = {{?D_Data τ}}

The transformed reactions are shown in Figure 5.15.

Construction of the final model following the algorithm steps gives rise to a

model depicted in Figure 5.16.

In a similar way, the models for the other blocks of the DLX architecture are

obtained. Since each of the blocks thus obtained after the application of the dif-

ferent steps of transformation are weakly endochronous, the composition of these
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Clk[R3]

Loadin_req WF0out_ackWF0out_req Loadin_ack
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WF1out_req
MDataout_req

MDataout_ack

WF1out_ack

WF1out_req MDataout_ack

WF1out_ack

Storein_ack

Storein_req

Figure 5.15: Reaction refinement

blocks via FIFOs will be weakly endochronous. Then from theorem 2 we can say

that the GALS implementation is correct w.r.t the synchronous specification.

5.7 Correctness of Handshake Refinement

The handshake refinement applied during the transformation steps should be cor-

rect with respect to the original net. Correctness of refinement can be shown with

the notion of observational equivalence [85] between the original channel spec-

ification semantic and the two wire refinement model. We define observational
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0S Load_req
Store_req

DData_reqClk[R1]

Clk[R3]

Clk[R2]

Figure 5.16: The final model

equivalence between the original and refined PNs as an existence of a mapping

between a set of original events and refined events. For every original action such

a mapping selects a Critical event (E) from a set of all events (E1) of the refined

model. For example, the event of reception of an input signal (!Load) at the pas-

sive port is refined in the two wire model as [Loadin_req, Loadin_ack]. Here, the

critical event is Loadin_req which denotes the availability of an item of data to be

read at the passive port, while Loadin_ack is regarded as a silent event. The events

(E1/E) are regards as Auxiliary events. These Auxiliary events may be placed in

the specification according to the designer’s choice. This choice depends on the

ordering constraint imposed by the protocol the circuit follows. Therefore for the

above example, Loadin_ack only occurs on the reception of output acknowledge-

ment signals. This protocol followed by the refinement methodology is presented

in Section 6.

If only the critical signals are considered, then it can be observed that the

original and the refined PN models give rise to the following traces:
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Figure 5.17: Single rail FIFO model and implementation
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loadin_ack

WF0out_ack

WF0out_req
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?Load τ !WF0
(!WF0)

(?Load)

Therefore, the two are observationally equivalent. A similar equivalence can

be showed between the original and the final refined model of the DLX ID block.

5.8 Implementation

The final model obtained in Section 5.6 is translated into PN using the theory of

Regions. This translation is done by the logic synthesis tool Petrify.

Asynchronous FIFOs are chosen as the communication primitives to connect

the different clocked domains, working at different speeds. In the model we use a

very straightforward design of a standard FIFO which is a basic requirement of the

system. The model and implementation of such a single rail FIFO is shown in Fig-

ure 5.17. Therefore, each signal is communicated via dedicated FIFO channels.

Figure 5.17(a) and (b) show the Petri net representation of a 2−depth FIFO and

the C-element circuit implementation of the FIFO, respectively. Such structures

have been explicitly studied in [84].
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5.9 Summary

This chapter presented a method to model and synthesise delay insensitive mod-

ules using a well established concurrency modeling language, Petri nets. This

makes it possible to use existing asynchronous tools for model checking and logic

synthesis of such modules. A set of assumptions have been presented that are

required to be followed by the synchronous specification of the synchronous com-

ponents for the application of methodology for the transltaion of the WE compo-

nents into delay insensitive circuits. The method has utilised the structural and

functional similarities between the underlying models of computations, namely,

State Transition Systems (STSs) and the Reachability Graphs (RGs) of the Weakly

Endochronous components. The models have undergone steps of transforma-

tion to bring the component description to an implementable level. One of the

transformation steps includes the translation of the implicit FIFO communication

scheme incorporated in WE system specification to an asynchronous handshake

protocol to aid the implementation of the components. This protocol reuses the

data driven clocking scheme, presented in Chapter 4. Therefore, the locally syn-

chronous blocks only consume power when all items of data have arrived for a

computation process to begin. When the computation is completed, the module

goes into a “sleep mode” during which asynchronous transfers take place.

A generic synthesis algorithm has been defined, that incorporates all the trans-

formation steps, and ensures the properties for correct GALS deployment is sat-

isfied. This algorithm applies the theoretical results obtained in [69] to obtain a
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final distributed delay insensitive circuit from a synchronous specification. The

wrappers thus obtained uses asynchronous FIFOs as a communication primitive

to communicate with other components of the system.
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Chapter 6

Desynchronisation Technique using

Petri nets

6.1 Introduction

This chapter introduces a new methodology for the desynchronisation of syn-

chronous systems into globally asynchronous and locally synchronous (GALS)

architectures. In the previous chapter Transition Systems (TS) were used as the

specification model to describe the synchronous systems for the purpose of desyn-

chronising the system into GALS architecture. The models obtained for each

synchronous module can be very large and complex due to the weak handling of

concurrency posed by the previous desynchronisation methodology. Concurrency

is a prerequisite for the specification of synchronous systems which are required to

be equipped to handle asynchronous communication for their GALS deployment.
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Figure 6.1: Synchronous system transformation into distributed architecture

Moreover, these models are translated into Petri nets in order to use existing asyn-

chronous tools for logic synthesis.

Therefore, the complexity of the transition system, obtained from the previ-

ous methodology, and the computational complexity of the PN synthesis of these

models form the main motivations for this work. The new technique uses PN as

the specification model whose efficient concurrency handling technique makes it

one of the most viable models to describe systems for desynchronisation. More-

over, the theory behind the new technique uses the concept of Localities, inspired

by [87], which helps in describing the distribution of a synchronous system over

asynchronous architectures owing to its strong structural and functional corre-

spondence with GALS architectures.

A synchronous system consists of components which are associated with a

set of input and output signals. Such a system is depicted in Figure 6.1. Each

of these components are governed by activities like sending and receiving con-
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trol signals as well as exchanging data signals across different components. The

actions performed by all the components are controlled by a single global clock.

The notion of localities inspired by [87] in application to biological mem-

brane systems, introduces the idea of localising these above mentioned compo-

nents and hence their associated actions into individual blocks. These blocks are

incorporated with some additional ordering constraints on their input and output

signals. These constraints enable the individual blocks or localities to behave like

independent synchronous systems. Therefore, the global clock can be eliminated

and each locality can be employed with local clocks which govern the actions as-

signed to them. Such a transformed system is depicted in Figure 6.1. As is evident

from the figure, more than one component can be mapped onto each locality de-

pending on some rules and optimisation criteria, discussed later. These individual

localities created would then communicate with each other asynchronously due

to the absence of a clock signal in between the localities owing to the removal

of the global clock and application of the local clocks. The technique to obtain

a distributed architecture from a globally synchronous system must satisfy two

essential correctness properties, namely,

• semantics preservation of the original synchronous system: During the exe-

cution of each synchronous sequence, components of the synchronous sys-

tem compute events for the output signals based on the internal signals and

the values of the input signals. Within each unit of time, the system is

transformed by a maximally concurrent execution of input and output sig-

nals. The deployment of such a system into GALS architecture entails un-
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bundling of input signals to aid out-of-order reception of these signals in

an asynchronous environment. Therefore, this transformation to form a dis-

tributed architecture should preserve the semantics of the original system.

• prevention of deadlocks: When the synchronous system is transformed into

a GALS architecture, the input transitions that were bound in the original

system are unbundled, as previously discussed. This out-of-order recep-

tion of signals should not cause the system to enter into a deadlock state.

Therefore, there should be additional constraints in the transformed model

to avoid such occurrences.

Both the properties have been dealt with in Section 6.6.

The desynchronisation methodology proposed in this chapter can be sum-

marised in the flow diagram shown in Figure 6.2. The rest of the chapter will

deal with the various steps presented in the shaded sections of the flow.

6.2 Preliminaries

This work uses Petri net models to describe the synchronous systems. This is

because all the components and actions carried out by synchronous systems can

be directly mapped onto the different elements of a Petri net. For instance, syn-

chronous events are represented on the transitions and the trigger conditions are

denoted on the places. In order to show that a trigger condition is true, the place

is equipped with a token. To make a synchronous component transit from one
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Figure 6.2: Flow diagram of the proposed methodology

configuration to another is denoted by the firing of transition(s). Therefore, PN

models are sufficiently expressive in describing a synchronous system. A detailed

description of such models is presented in Section 6.4.

6.2.1 Petri nets

We recall some important notations concerning Petri nets (see Chapter 2), that

will be reused in this Chapter.

Given a Petri netN , the pre- and post-multiset of a transition t are respectively
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the multiset preN(t) and the multiset postN(t), such that for all p ∈ P , |p|preN(t) =

F (p, t) and |p|postN (t) = F (t, p), where |p| denotes the number of tokens present

in the place p. Since, all the systems defined in this work are safe, |p| = 1.

Definition 6.1. Step

A step is a multiset of transitions U : T → N , where N is a set of natural

numbers.

The steps can be executed in various modes depending on the system that the

PN models describe, discussed in Sections 6.4 and 6.5.

For a PN to be synthesisable, it is required to satisfy some Behavioural and

Structural properties, discussed in Chapter 2. We recall an important behavioural

property, namely, Persistency because it plays an integral role in our desynchroni-

sation methodology.

Definition 6.2. Persistency

A Petri net (N, µ0) is persistent if for any two different transitions t1, t2 of N

and any reachable marking µ, if t1 and t2 are enabled at µ, then the occurrence of

one cannot disable the other.

We can generalize the notion of persistency to apply to steps.

6.3 Motivation for using Localities

Our initial model starts with the description of a globally synchronous system. In

such a system, execution and communication progress along a sequence of events
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Figure 6.3: Simple synchronous block

which are tagged by a global logical clock, i.e., they are active only at certain

logical instants. During the execution of such sequences, each of the synchronous

system components compute events for the output signals based on the internal

signals and the values of the input signals. This global clock paradigm is associ-

ated with max firing semantics and transition binding. In order to exemplify the

different firing semantics, a simple example is considered in Figure 6.3.

As stated earlier, Petri net models are used to demonstrate the globally syn-

chronous system. In this model the synchronous events are represented on the

transitions and the trigger conditions are denoted on the places. In our PN model

of the synchronous system, we presume that every event on the transition is im-

plicitly tagged by the global clock and hence, for simplicity, we do not show the

actual clock transition on this model. In such a net there are disjoint sets of inputs

I and outputs O and a function l which maps the transitions of the Petri net to the

set I ∪O ∪ {tint}, where tint /∈ I ∪O is a silent event not observable by the envi-

ronment. Let the inputs In1 and In2 be concurrent to each other. Let Figure 6.4

denote the Petri net representation of the input output dependencies of the system

which is shown in Figure 6.3.

137



CHAPTER 6. DESYNCHRONISATION TECHNIQUE USING PETRI NETS

In2

O3 O4
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Figure 6.4: PN model of the synchronous block

As mentioned before, a globally synchronous paradigm is associated with

maximal firing semantics. A state graph depicting such a semantic is presented

in Figure 6.5(a). In order to desynchronise the synchronous system into a GALS

architecture, the input steps are required to be unbundled to enable out of order

communication. In a synchronous system when two inputs are unbundled and

received at deterministic instances of time, Figure 6.5(b) is obtained.

If a system is globally clocked, the inputs, outputs and the internal signals can

be scheduled to fire in persistent (Definition 6.2) steps since they can be made to

be generated at known instances of time.

Such a schedule cannot be maintained in a GALS environment, since the in-

puts do not arrive at known instances of time. Therefore, in order to realise this

system in an asynchronous or GALS environment, additional conditions are re-

quired to be added to:

• Prevent the system from entering deadlock states arising from the arrival of

out of order inputs
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Figure 6.5: System model

• Exploit the advantages of asynchrony, by allowing the inputs to arrive as

and when available leading to increased concurrency.

In order to incorporate the idea of asynchrony, the inputs must be allowed to arrive

in any order and at any instant of time. This results in unbundling of inputs as

shown in Figure 6.5(b). Since the input signals cannot be scheduled to arrive at

known instants, persistency property cannot be guaranteed. After applying this

feature the state machine of the same system takes the form shown in Figure 6.6.

This results in an unknown delay between the inputs. Therefore, from the figure

it can be seen that the model has non-persistent steps at state s1 and s2.

To exemplify the following example is considered. Let< In1 > arrive first,

which causes < O1, O2 > to execute in a maximal step. But before the execution

of the maximal step < O1, O2 > is completed, if In2 arrives then the system

attempts to execute the maximal step < O1, O2, O3, O4 >. Therefore, the arrival

139



CHAPTER 6. DESYNCHRONISATION TECHNIQUE USING PETRI NETS

In1 In2

In1In2

O1,O2 O3,O4

O3,O4 O1,O2

O1O2O3O4

In1In2

s1 s2

Figure 6.6: Unbundled out-of-order inputs system model

of < In2 > disables the step < O1, O2 >leading to violation of persistency

property between the steps < In2 > and < O1, O2 >at s1. Non-persistent steps

at the state s2 can be easily shown in a similar way.

In order to avoid this situation, the system is not made to follow Max-O se-

mantics globally. If it is possible to partition the system in such a way that none of

the input transitions and output steps are non-persistent in each partition, then the

Max-O semantics can be restricted to each partition leading to a correct realisation

of a concurrent system. This gives the motivation for the use of localities. In order

to obtain a correct implementation of a GALS system from a synchronous specifi-

cation, the synchronous system is required to be partitioned into localities, which

are analogous to partitioned blocks. The importance of persistency for output

steps is associated with the stable conditions in which the local synchronisation

(bundling of outputs) is performed later in the implementation. Therefore, the par-

titioning of the global synchronous system into localities and application of Max-

O semantic in each locality aid the removal of the global clock by guaranteeing
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the absence of deadlock and the realisation of correct input output dependencies.

6.3.1 Max-O semantics and validity criteria using Processes

The previous section presented the idea about Max-O semantics used to describe

distributed architectures. This notion is required to be handled by the specification

models, in this case PN models, used to describe such systems. The standard

interleaving semantics for PN does not associate any notion of maximal firing

by which a set of transitions are always fired concurrently. Therefore, maximal

output semantics is introduced which binds sets of output transitions in order to

fire them concurrently.

In this section we draw some equivalences between models of PN with maxi-

mal output semantic and standard semantics. The reason for obtaining such equiv-

alences is to use PNs that are behaviourally equivalent under both the semantics

due to the feasibility of verification and synthesis. Hence, the models used to rep-

resent our system are those that are equivalent under standard and Max-O seman-

tics. Here, we require to define the restrictions that support the above equivalence.

This is done with the help of theory of Processes, which was introduced in [88].

A process can be represented as a labelled acyclic graph, with places having

at most one incoming and one outgoing arc. The processes can be viewed as

subnets of unfolding. Let v be the prefix relation on processes. The nodes of the

processes have identities, i.e. they are not anonymous. Therefore, if π v π
′ , then

π
′ is a continuation of π rather than some unrelated to π process whose initial part

is isomorphic to π.
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Definition 6.3. Behavioural Equivalence

Let Σ = {P, T,M, µ} be a Petri net model. Let PNSTD be the reachability

graph of Σ under standard semantics and PNmax be the reachability graph of Σ

under the Max-O semantics. Let π and π ′ be the sets of all finite processes of

PNSTD and PNmax, respectively, then

1. π′ ≤ π

2. γ v γ
′

where, γ ∈ π and γ ′ ∈ π′ .

The standard semantics have interleaved output steps and the Max-O seman-

tics have maximal output steps. Hence, the interleaved semantics will have more

permissive steps as compared to Max-O semantics. Therefore, intuitively we can

say that the processes of standard semantics are greater than the processes of Max-

O semantics.

To prevent the Max-O semantic from having additional events which are not

permitted by the standard semantic, our second condition comes into play. There-

fore, by enforcing the processes of PNmax semantics to be a prefix of some pro-

cess of PNSTD, we address the above issue.

Figure 6.7 shows an example of a net that is equivalent under both semantics.

In a similar way, the PN models used to describe the synchronous or the distributed

systems should be equivalent under both standard and Max-O semantics.
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Figure 6.7: A PN equivalent under the two semantics
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Figure 6.8: Synchronous Block

6.4 Synchronous model description

A more complex example is now considered to highlight the main aspects of our

desynchronisation methodology. This will be running example for exemplifying

the process of GALSification.

Figure. 6.8 shows a typical synchronous system. There are two inputs In1

and In2 to the block and seven outputs, namely, O1, O2, O3, O4, O5, O6 and O7

from the block. The system clock is used to clock the whole system globally.

The PN model specification of such a system is shown in Figure 6.9(a). The

state representation of the maximal firing semantics in a globally synchronous
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Figure 6.9: Synchronous model
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Figure 6.10: The synchronous system

environment is shown in Figure 6.9(b).

Each synchronous system can be further divided into smaller computational

blocks. These blocks have their own input signals coming from and outputs going

to other similar internal blocks. These signals, when seen from the top level of the

single synchronous block, form the internal signals of the circuit. These smaller

blocks have their own sets of internal signals. Such a system is exemplified in
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Figure 6.11: PN model of the synchronous block

Figure 6.10. The signals a, b, c and d form internal signals to the overall syn-

chronous block. A PN representation of such a system is shown in Figure 6.11(a).

The reachability graph of such a system is shown in Figure 6.11(b). Therefore,

the system can be partitioned into small computational blocks as shown in Fig-

ure 6.10. If the system is required to be further partitioned into smaller blocks,

then the inputs In1, In2, a, b, c and d can be split to aid the process of locality

formation, as discussed earlier.

For the formation of localities and to aid asynchronous communication be-

tween the localities some transformations are applied at the PN model level. At

the granularity of the individual blocks that compose the synchronous system,

these internal signals form inputs to and outputs from the internal blocks, i.e a

acts as an output from block 1, but behaves as an input for block 4. Since the

internal signals are now interpreted as output from one block and input into the

next block, transformations are applied on the net to incorporate this communica-
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Figure 6.12: Modified model

tion on the channel, in order to distinguish the outputs from the input signals for

desynchronisation. This is necessary to incorporate the idea of localities which

have sets of input and output transitions allocated to each locality. Therefore, out-

put from one locality forms the input to another. To do so, we partition the signal

into output and input signals. For example, signal a is partitioned into a_O and

a_In. To do this, the model needs to be transformed by inserting new internal

signals, for which the transition insertion technique defined in Section 6.4.1 is

used. This refinement leads to a modified PN model of the original system and is

depicted in Figure. 6.12. The shaded blocks denote the insertion of signals in the

original system.
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6.4.1 Net Transformations and notion of validity

In order to obtain a distributed PN model of a system, some transformations are

required on the model to aid the compartmentisation process. One such trans-

formation is Signal Insertion. In this section, signal insertion by transition parti-

tioning is formally defined. The type of insertion is restricted to sequential post

insertion because the insertion is to aid the partition of a signal into its output and

input counterparts and hence eliminates concurrent insertions.

Definition 6.4. Transition partitioning

Given a labelled Petri net Υ = (Σ, I, O, l) where Σ = (P, T, F, µ0), I is a set

of inputs, O is a set of outputs, such that I ∩ O = 0, l is a function that maps the

transitions of the Petri net to the set I∪O∪{tint},where, tint /∈ I∪O, the partition

of the transition t ∈ T yields an LPN Υ
′

= (Σ
′

, I, O, l) with Σ
′

= (P
′

, T
′

, F
′

, µ0),

where,

• T ′

= T ∪ {u}, where u /∈ P ∪ T is a new transition

• P ′

= P ∪ {p}, where p /∈ P ∪ T is a new place

• F ′

= F ∪ ({t, p} ∪ {p, u} ∪ {(u, q) | q ∈ t•})\{(t, q) | q ∈ t•}

The notion of validity for signal insertion is straightforward and the transformation

can be justified in terms of weak bisimulation which is well studied. Such a notion

is presented in [[89], Proposition 5.3].
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(a) Conflicts (b) Output fan-
outs

Figure 6.13: Restrictions on transition splitting

Conditions of valid transformations There are some restrictions that are re-

quired to be followed while inserting the signals.

• The newly inserted places form the interface places between the different

localities. Therefore, these places cannot have the token stolen by another

transition in conflict. To avoid a transition from stealing the token and re-

sulting in running one locality into a deadlock, situation depicted in Figure.

6.13(a), should not be allowed. Hence, interface places cannot be choice

places.

• If the signal has fan-outs, the buffer should be inserted before the fanout,

instead of one buffer in each branch. The later can lead to formation of un-

necessary localities due to numerous signal insertions. This is exemplified

in Figure. 6.13(b).

Therefore, the allowable examples are shown in Figure 6.14.
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Figure 6.14: Transition partitioning

Transition re-labelling The transitions t (the transition which is split) and u

(the newly inserted transition) are labelled by adding a post-fix _O to the label

of t and _In to the label of u. This is done to associate meaning to the inserted

signals which signify channel communication. Therefore, for the example shown

in Figure 6.11, the transition labelled a is split into a_O, denoting output from

block 1 and a_In, denoting input to block 4.

The newly inserted place t• can be regarded as a unit of storage, for instance a

finite FIFO. This FIFO stores item of data before transferring it across to the next

block.

For a synchronous system, the Input transitions should be able to fire as and

when the tokens are available. On the reception of the inputs, all the outputs that

are dependant on this input are generated together.

These steps thus defined can have different modes of execution. To define the

synchronous execution modes we can define the following:

• Free-execution - This means that the events can be executed in any order
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when the trigger conditions for those events are available at deterministic

instances of time, to transit the synchronous component from one configu-

ration or marking to another.

• Seq-execution - This means only one trigger condition is sufficient to exe-

cute an event to transit the synchronous component from one configuration

or marking to another.

• Max-execution - This means that in each step a maximal multiset of events,

denoting the availability all the trigger conditions for the events, must be

executed to transit the synchronous component from one configuration or

marking to another.

Therefore, from the restrictions on the input/output transitions of a synchronous

system, it can be derived that the input and output transitions can follow any of

the above execution rules.

The individual compartments, depicted in Figure 6.15, can now be viewed as a

modular synchronous block with its own input and output signals.Therefore, each

of these compartments will have to follow the synchronous behaviour.

Therefore, the original synchronous system can be now defined as a collection

of these compartments, modelled at the PN level by a standard operation of a

union of PNs, merged on places [90]:

Σ = (P1, T1, F1, µ1) ∪ ...(Pn, Tn, Fn, µn)
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Figure 6.15: System architecture with storage units

Since each of these compartments are viewed as synchronous blocks, the input

and the output transitions from these blocks also follow the same execution rules

as discussed above.

6.5 Petri nets with localities

In order to model a distributed architecture from a synchronous system model, we

apply the theory of Petri net with Localities which was originally introduced in

[87]. In the previous work, the co-located transitions executed maximally and in

persistent steps only. We extend this by making a distinction between input and

output transitions and allowing the input transitions to execute as and when they

arrive and restricting the output transitions to execute maximally. This extension is

in direct relation to the synchronous behaviour, discussed in the previous sections.
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The transitions in the PT-net belong to a fixed unique locality. The allocation

of localities to the transitions is achieved by partitioning the PT net using a locality

mapping function γ. This means if two transitions return the same value for γ they

will be co-located.

A PN with localities is a tuple denoted by NL = (P, T, F, µ0, γ), where the

underlying PN is denoted by UND(NL) = (P, T, F, µ0) and γ : T → N is the

location mapping for the transition set T . γ(t) returns an integer value which

denotes the locality of the transition t. Initially, for all t ∈ T , γ(t) is set to 0,

which denotes that the transition is unallocated.

A net can be partitioned into localities giving rise to the formation of smaller

nets that constitute the original graph.

Definition 6.5. Let Σ = {P, T, F, µ0} be an elementary net system. Then, the

localisation leads to the division of the net into n smaller nets, denoted by,

Σi = (Pi, Ti, F ∩ (Pi × Ti ∪ Ti × Pi), Pi C µ0),

for i = 1 to n, where n is a set of integers, each Ti ⊆ T so that (T1∩T2∩ ....Tn) 6=

Ø and each Pi ⊆ P so that (P1 ∩ P2 ∩ ....Pn) 6= Ø, Pi C µ0 is defined by the

following:

If µ0 : P → {0, 1}, then ∀p ∈ Pi, µ0i : Pi → {0, 1}|µ0i(p) = µ0(p).

Synchronous components versus localities In order to map the synchronous

components into localities, the execution modes of the synchronous counterpart
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should be supported by the localities thus formed. Therefore, the three execu-

tion modes are redefined which are incorporated to support the specification of

synchronous behaviour.

Definition 6.6. Free-enabled

A multiset of transitions U is free-enabled at a marking µ, if µ ≥ preN(U).

This is denoted by µ[U >.

Definition 6.7. Seq-enabled

A multiset of transitions U is seq-enabled at a marking µ, if U is free-enabled

at marking µ and |U | = 1.

Definition 6.8. Max-enabled

A multiset of transitions U is max-enabled at a marking µ, if U is free-enabled

at marking µ and there is no transition t such that µ[U + {t} >.

Therefore, it can be seen that each locality is able to emulate the behaviour

of the synchronous components, giving rise to semantic preservation when syn-

chronous components are mapped onto the localities.

The next section presents some rules for the allocation of localities in a syn-

chronous system.

6.6 Notion of partitioning correctness

As discussed above, a synchronous system can be desynchronised into a dis-

tributed architecture by unbundling the inputs and forming localities. The forma-
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tion of these localities should satisfy some correctness properties to ensure correct

desynchronisation. The partitioning of the GALS deployment of a synchronous

system is correct w.r.t the original synchronous system if there is a behavioural

equivalence between the GALS system and the initial synchronous specification.

This is formally defined in the following way:

Definition 6.9. Let Σ = {P, T, F, µ0} be an elementary net system. The parti-

tioning Σ = Σ1 ∪ Σ2 ∪ ....Σn, each belong to localities L1, L2...Ln, respectively,

is correct at a marking µ iff for all steps of transitions U1 ⊆ T1,..Un ⊆ Tn, where

U1, ...Un are enabled in Σ1, ...Σn, respectively, the combined step U1 ∪ U2 ∪ ...Un

is enabled in Σ. This denoted as,

(µCP1)[U1 >Σ1
∧(µCP2)[U2 >Σ2

∧...(µCPn)[Un >Σn
⇒ µ[U1∪U2∪ ...Un >Σ,

for all U1 ⊆ T1, U2 ⊆ T2..., Un ⊆ Tn.

In1 In2

Loc=1 Loc=2

(t2)(t1)

(a) Conflict-choice
place

In2

Loc=2

In1

Loc=1

(b) conflict-merge
place

Figure 6.16: Conflict between transitions
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Conflict Resolution In order to adhere to the above criterion, the locality alloca-

tion should satisfy correctness properties for conflict resolution. For example, an

incorrect partition is shown in Figure 6.16(a). The net Σ is partitioned into Σ1 and

Σ2 belonging to localities L1 and L2, respectively, so that the transition t1 is allo-

cated to locality L1 and t2 is allocated to L2 and therefore, T1 = t1 and T2 = t2.

Now, substituting p for µ, leads to markings {p}[{t1} >Σ1
and {p}[{t2} >Σ2

in

each of the localities but {p}[{t1, t2} >Σ is not true. Hence, the partitioning is

incorrect. Such an occurrence that leads to an incorrect partition can be similarly

shown for Figure 6.16(b).

The notion imposes the transitions in conflict to be placed in the same local-

ity. The locality optimisation technique can lead to occurrence of such a situation.

Hence, care must be taken while inserting the input/output bridges in the parti-

tions. Therefore, the correctness can be guaranteed if the following criteria is

satisfied:

Criterion 6.1. Let Σ = {P, T, F, µ0} be an elementary net system that has been

partitioned into Σ1,Σ2, ...,Σn. If transitions from the partitions do not share pre-

conditions or postconditions , or

•T1 ∩ •T2 ∩ ... • Tn = T1 • ∩T2 • ∩...Tn• = Ø

then the partitioning is correct.

Step Persistency Another correctness property that the partitioned blocks must

satisfy is Step-persistency. The reason for identifying and handling non-persistency
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is already presented in Section 6.3. The non persistent transitions can be identified

and made persistent by executing the following steps.

1. For each output transition in the net, identify the set Out of output transi-

tions that are dependant on more than one input transition.

2. for each output transition in Out, return the set In of input transitions, on

which the output depends.

3. For each input in In, check if it causes more than one output transition.

4. Return the set persist of input signals for which (3) is true.

5. Return the output transition O1, such that O1 ∈ Out and the input that

causes it belongs to the set persist.

6. Connect the output obtained in (5) with each of the input signals in the

set persist through an output-input transition pair as exemplified in Figure

6.18.

The signals that are inserted are sets of output-input transition pairs, denoted by

Ox and Ix, which behave as internal or silent events for the overall system. These

signals satisfy the notion of validity of signal insertion discussed in Section 6.2.

Adding extra signalisation does not introduce any new behaviour in the system.

This is because the signals are added as pairs of input/output transitions and em-

ulate a buffer which only introduces some extra delays in the system without af-

fecting the consistency of the signals. These signals aid the formation of localities

which have all inputs arriving before the emission of all the outputs.
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O6O1 O2 O4

c_O d_Ob_Oa_O

Figure 6.17: Persistency check

The above is exemplified by taking Figure 6.17 into consideration. Since In1

and In2 can arrive with unknown delays, the model needs to be modified to re-

move non-persistency as described in this section. From (1) we obtain the set

Out := O4 as it is the output transition that is dependant on more than one input

transition. From (2) set In returns {In1, In2} which cause the output transition

O4. For each input In1 and In2, step (3) returns true, since both the inputs

cause more than one output signals. Therefore, the set persist in step (4) returns

{In1, In2}. Step (5) returns O4. The additional signals, in the form of output-

input transition pair, are inserted between In1 and O4 and between In2 and O4.

Therefore, at the model level, the system depicted in Figure 6.12 is trans-

formed into the system depicted in Fig. 6.18. The block level representation of

the part of the circuit, under consideration, is depicted in Figure 6.19.
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Figure 6.18: Bridge formation
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Figure 6.19: Block level representation

6.7 Rules for Locality Allocation

Taking the partitioning constraints, obtained from the correctness properties in

the previous section into consideration, we present some rules for the allocation
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of localities. This leads to correct localisation of transitions. The method of de-

ployment of synchronous systems over localities requires the adherence to the

following rules:

1. In order to obtain the partition sets of transitions, the information about the

locations of each input and output transition of the PT-net is required. We

derive the localisation of each input and output transition of the synchronous

circuit from the input output dependencies. For example, if output transition

y is computed in locality L, then so does the input signal, x in this case, that

are required for the execution of y. Therefore, the input x must also be

located in L. Such a localisation will directly influence the localisation of

internal signals.

2. When allocating localities, all the branches of the choice, i.e. all the transi-

tions of the choice place should be placed in the same locality. Therefore,

two transitions in conflict should not be placed in two different localities.

Violation of this property leads to an erroneous locality allocation for tran-

sitions, discussed earlier in Section 6.6.

3. In each locality, all the transitions should satisfy the persistency constraint.

If the constraint is violated, additional signals are required to be inserted to

eliminate non-persistency. This is elaborated in Section 6.6.

Formally, the above rules lead to the formation of a system that can be defined by

the following definition:
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Definition 6.10. Let Σ = {P, T, F, µ0} be an elementary net system. Then, the

partitioning leads to the division of the net into n smaller nets, denoted by

Σi = (Pi, Ti, F ∩ (Pi × Ti ∪ Ti × Pi), µ0 C Pi),

for i = 1 to n, where n is a set of integers, each Ti ⊆ T so that (T1∩T2∩ ....Tn) =

Ø and each Pi ⊆ P so that (P1 ∩ P2 ∩ ....Pn) 6= Ø.

These rules lead to a correct localisation of input/output transitions.

6.8 Allocation of Localities

This work does not address the problem of finding the optimum localisation of

the computations w.r.t the performances of the resulting distributed system. The

localisation of all the actions of the synchronous system is derived directly from

the localisation of the input and output signals. This section also presents an

optimisation for the locality allocation methodology by redistributing transitions

over localities to avoid locality overloading arising from large input fan outs.

6.8.1 Algorithm for locality allocation

In order to allocate localities to the transitions of a system, we require to define

some methods which are presented in Algorithm 1. The algorithm implements

a locality allocation scheme that is in accordance with the rules presented in the

previous section 6.7.
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The algorithm described in this section incorporates a bi-directional subnet

traversal in order to allocate localities to the transitions it visits. It takes as input

a Petri net model of a synchronous system denoted by Σ. The output of the algo-

rithm is a Petri net model of the synchronous system Σ, with locality information

added to each transition in the model.

This algorithm defines the following methods and the functionality of each is

described below:

Tr_f: This function denotes the forward subnet traversal. This function tra-

verses the net and adds the transitions to sets Tv and Tail, depending on certain

conditions. Once the sources have been identified, for each element of the set the

net is traversed forward, assigning each transition visited to the set Tv. If during

the traversal a transition is reached, which already belongs to the the set Tv due to

a previous net traversal, the traversal is terminated at this node and this transition

is added to the set Tail. Tail denotes the node where a traversal stops and marks

the boundary for a locality. The Tail, in contrary to Source, forms the output

interface for a particular locality. While traversing the net forward, if a transition

is reached that belongs to Source, then the predecessor transition(s) is added to

the set Tail.

Alloc_Tail: Once the set of tail transitions have been identified. This function

takes the set Tail, as a parameter and assigns localities to all the tails of a given

source.

Tr_b: This function defines a backward net traversal starting at the tail and

terminating at the source. This function finds a set of unallocated transitions on
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the backward path to the source(s). If a node that belongs to Tv or Source is

reached which is already allocated, the locality value is not changed. Therefore,

the node retains its original locality, if such a situation arises.

Assign_Loc: This function takes a set of transitions and allocates localities to

them depending on the locality values of the Tail transitions.

Method:

1. A set of Source is identified which consists of all input transitions of the

net.

2. For all the transitions belonging to Source, the following steps are executed:

• Traverse the net forward assigning each transition to the sets Tv or

Tail.

• Allocate localities to all the tails.

• Traverse backward starting from the tail and terminating at the source

assigning all the unallocated transitions to the set LocAssign, in its

path.

• Finally allocate the transitions in the set LocAssign with the locality

of the tail transition chosen from the set Tailnew, which is a set of

assigned tail transitions.

Finally, we obtain a set of all transitions of the net, each of which is allocated to

at most one locality in the system.
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Algorithm 1 Allocation of Localities
function: Allocate_Localities
input: Σ = {P, T, F, µ0}
output: Σout = {P, T, F, µ0, L}
Tv := Ø; Tail := Ø; Tailnew := Ø; LocAssign := Ø
for each t ∈ T
γ(t) = 0

Source← set of all inputs of the system
n ∈ N←set of natural numbers
n = 0
for each tin ∈ Source do

if tin /∈ Tv

tr_f(tin)
for each ttail ∈ Tail do
AllocTail(ttail)

for each ttail ∈ Tail do
tr_b(ttail)

choose t ∈ Tailnew

for each tua ∈ LocAssign
γ(tua) = γ(t)

Forward net traversal Once the set of sources is identified, these form the

nodes of forward net traversal. In this method, the transitions are assigned to sets

Tv (a set of visited transitions) and Tail (a set of tail transitions) depending on the

following conditions:

Tv: if the transition passed as a parameter, it is added to the set of visited

transitions.

Tail: when the transition does not belong to the set Sources and the successor

transition belongs to the set Sources, then it is added to the set of tail transitions.

The traversal is terminated for a given path when the tail is identified. This

method is repeated until all the the tail transitions, for a given source, are identi-
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Algorithm 2 Forward Net Traversal
function: tr_f(t)
input: Σ = (P, T, F, µ0), Sources
output: Σ = (P, T, F, µ0), Tv ⊆ T , Tail ⊆ T
for each p ∈ t• do

for each tsucc ∈ p• do
Tv := Tv ∪ t
if (tsucc /∈ Tv) then
Tv := Tv ∪ tsucc

else Tail := Tail ∪ tsucc

if (t /∈ Sources&& tsucc ∈ Sources)
Tail := Tail ∪ t

if (t /∈ Tail)
if(tsucc /∈ Tail)

tr_f(tsucc)

fied.

Allocation of localities to tail transitions The previous method identifies a set

of tail transitions that could be allocated or unallocated. In this method, all the

allocated and unallocated transitions are identified and assigned to sets Alloc and

Nalloc, respectively. If the Alloc set is null, denoting that all the tail transitions

are unallocated, we assign an integer value to all the tail transitions. If Alloc is not

null, a tail is randomly chosen (this is because all the tail transitions in the set will

have the same locality) from the set and its locality is assigned to all the other tail

transitions in the set Nalloc. This methodology assigns the same locality values

to all the sources that form presets of a set of output transitions.

Backward net traversal In this method, for each of the tail transitions obtained

from Algorithm 3 which are an element of the set Tailnew, the net is traversed in
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Algorithm 3 Locality Allocation for Tail Transitions
function: AllocTail(Tail)
input: Tail ⊆ T
output: Tailnew ⊆ T
Alloc = Ø
Nalloc = Ø
for each t ∈ Tail

if (γ(t) 6= Ø) then
Alloc := Alloc ∪ t
else Nalloc := Nalloc ∪ t

if (Alloc == Ø) then
n = n+ 1
for each t ∈ Nalloc
γ(t) := n
Tailnew := Tailnew ∪ t

else
choose talloc ∈ Alloc
for each t ∈ Nalloc
γ(t) := γ(talloc)
Tailnew:= Tailnew ∪ t

the backward direction to all the unallocated sources that are reached on the back-

ward traversal path. In the path, it assigns all the transitions that are unallocated to

a set called LocAssign. When the traversal reaches a source that does not belong

to the set Tv, the transition is assigned to the set Tv, so that this transition is not

need to be dealt with anymore since it has already been allocated a locality owing

to another backward traversal.

6.8.2 A simple Example

1. Consider a complete model of a synchronous system Σ in the form shown

in Figure 6.12. This system is partitioned into localities by following the
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Algorithm 4 Backward Net Traversal
function tr_b(t)
input: Σ = (P, T, F, µ0)
output: Σ = (P, T, F, µ0), LocAssign ⊆ T
for each p ∈ •t do

for each tpred ∈ •p do
if (γ(tpred) == 0)
LocAssign := LocAssign ∪ tpred

if (tpred ∈ Source)
Tv := Tv ∪ tpred

else tr_b(tpred)

steps of the algorithm. The steps are elaborated by applying the rules on the

system model.

2. Let Source be a set of all input signals that are sent to each internal compu-

tational block in the system Σ. It is represented by Source = {In1, In2, In3, In4, In5, In6}.

3. For each input transition tin ∈ Source, the net is traversed forward, adding

each transition visited, to the set Tv, including the source transition tin. For

example, in the forward traversal along the first branch for input In1, the

transitions that are assigned to the set Tv are In1, O1 and a_O.

4. The forward traversal assigns transition t to a set Tail if the transition is

such that its successor transition, denoted by tsucc ∈ p•, where p ∈ t•,

belongs to the set Source. This is exemplified in Figure 6.20.
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O2

(a) Forward
Traversal

Figure 6.20: Net Traversal

5. This procedure is repeated for each branch of the initial input source. This

is depicted in Figure 6.20.

6. Once all the tails have been identified for a given root, we assign the same

locality value to all the tails. For example in Figure 6.20, transitions labelled

a_O and b_O are assigned to the same locality 1.

8. For each tail, we traverse backward and assign the same locality value to

all the transitions till all the possible backward paths are assigned a locality,

each path terminating at the transition that belong to the set Source. This is

shown in Figure 6.21. On the backward traversal path allocation continues

until all the sources in its path have been allocated.
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Figure 6.21: Backward net traversal

10. The above steps are repeated for all the inputs in Source.

The above steps lead to the partition of the system into localities. The parti-

tioned system is shown in Figure 6.22. The places shared by the localities depict

the storage units that form the interface between two localities. Table 6.1 shows

the different localities and the input and the output signals assigned to each local-

ity.

To guarantee partitioning correctness as discussed in Section 6.6, the net is

checked for step-persistency before the locality allocation algorithm is applied.

Relevant signals are inserted if there is any persistency violation.

The partitioning algorithm presented, also satisfies the correctness criterion,

namely, conflict-resolution. Adherence to conflict-resolution is exemplified in

Figure 6.23. As can be seen from the figure, the transitions in conflict, namely
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Figure 6.22: Partition Optimisation

a_O and b_O are placed in the same locality. Since choice places are contained

inside each locality, it can be easily seen that the algorithm also contains the merge

places inside the localities, owing to the input/output dependency notion used to

derive the locality formation.

6.9 Locality Optimisation

Let us consider the system shown in Figure 6.24. The rules of locality alloca-

tion allocates localities based on input output dependencies. Therefore, large in-

put fanouts could lead to the formation of large localities. In order to avoid the
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Loc=1
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Figure 6.23: Locality allocation for conflicts

Locality Inputs Outputs
L1 In1 O1, O2, a_O, b_O,Ox2
L2 a_In, b_In O3
L3 In2 Ox3, O6, d_O
L4 Ix2, Ix3 O4, c_O
L5 c_In O5
L6 d_In O7

Table 6.1: I/O allocation to localities

overloading, the fanouts can be partitioned so that they are allocated to different

localities. We do not present an optimum criterion of obtaining as many or as

few as possible localities, because it is system dependant. Therefore, depending

on a system requirement, large localities can be further partitioned into smaller

localities to avoid overloading.

This can be done by introducing extra signalisation in the path of the fan-out

that requires segregation. A manual signal introduction technique is introduced

in this section which is applied to the original un-partitioned system. The signals

that are inserted are sets of output-input transition pairs, denoted by Ox and Ix,
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Figure 6.24: Input fan-outs

which behave as internal or silent events for the overall system. Such an insertion

is depicted in Figure 6.25. These signals abide by the notion of validity of signal

insertion discussed in Section 6.4.1. The output signal Ox can only be enabled

by In1, which requires one or more of its fan-out transition to be relocated to

another locality. The transition Ox is followed by Ix which in turn enables the

outputs, which were originally activated by In1. Hence, these signals enforces

the formation of extra localities, in turn reducing the load on any one locality. The

algorithm presented in the previous section can now be applied to this transformed

system. When the algorithm is applied the following is obtained:

• The transition Ox belongs to the same locality as In1.

• The newly inserted input signal Ix and the output transitions that follow

along the path are assigned to a new locality, say X .
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Figure 6.25: Bridge formation for fanouts

• If these output signals require other source signals, besides In1, for their

activation, then these sources are also located in the same locality and so

are the output transitions that are dependant on these sources.

Adding extra signalisation does not introduce any new behaviour in the sys-

tem. This is because the signals are added in pairs and act as buffers which only

introduce extra delays in the system without affecting the consistency of the sig-

nals. While inserting the signal it has to be made sure that the choice places are not

split. The choice branches should be contained in the same locality, as discussed

earlier.
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6.10 GALSification

Each of the localities formed have a clock signal that activates that locality. In

a synchronous system this clock is the global clock which is sent to each of the

localities. At every clock edge new data is read from the input signal ports. These

inputs can arrive from other localities or the environment. Due to the delays in the

wire, the inputs may arrive at different times.

Due to this phenomenon the order of inputs is not guaranteed. On the contrary,

a clock edge triggers all the active input and output transitions maximally.

If the input maximal steps are unbundled and the restrictions on the input and

the output transitions, based on the correctness properties, are guaranteed then the

global clock which samples these input and output transitions, is no longer a re-

quirement at the locality interfaces. Therefore, we can eliminate the global clock

and substitute each locality with local clocks. Therefore, each locality behaves

like an independent synchronous system which communicates asynchronously

with other localities.

The signals are communicated from one locality to another through an asyn-

chronous domain. Hence, the actions performed in this domain are causal. Hence,

the localities have to synchronise with each other while sending and receiving data

with the receiver and sender blocks, respectively. This leads to the formation of a

GALS architecture.

Therefore, we can deduce that if the I/O conditions are satisfied the globally

synchronous system can be translated into a GALS system. Hence, to enforce
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the I/O conditions in each locality, we impose that the inputs are interleaved to

guarantee correctness by allowing them to be received as and when they arrive and

outputs are maximal, i.e, if they are active they will fire concurrently. Hence, we

implement the principle of maximal output or Max-O semantics which is obtained

by substituting max-enabled transitions of each locality to the outputs generated

from them.

6.11 Implementation of clock control

Until now, the clock signal in the net has been represented implicitly. The transi-

tions were coupled with the notion of clock. Therefore, the activation of a transi-

tion signified that the clock’s positive edge for positive logic or negative edge for

negative logic, is also active. Firing of the transition activates the negative edge

for positive logic and positive edge for negative logic. On the contrary, a clock

control circuit is required when local clocks are deployed to the individual locali-

ties. This clock control circuit synchronises the signals while crossing the domain

from one locality to another.

Hence, the clock transitions need to be shown explicitly to enable this con-

trol. Therefore, instead of coupling transitions with the clock information, we

introduce explicit clock transitions to signify the positive/negative edges. The

formation of the localities enables the treatment of each locality as a black box.

Therefore, the process of reading the inputs and the producing the outputs is not

dealt with. It is considered that the inputs are read and the outputs produced in one

174



CHAPTER 6. DESYNCHRONISATION TECHNIQUE USING PETRI NETS

clock cycle. For the sake of simplicity, in the examples the operations are shown

to be completed in one clock cycle.

To show the clock control, the signals which denote the availability of inputs

and outputs are explicitly depicted. Since the signals travel from one locality to

another, which belong to different clock domains, the transfer from the clocked

domain to the unclocked domain should occur when the clock is inactive to avoid

metastability. The clock should not be triggered until this transfer is completed.

When the transfer is completed the clock can be triggered again to process another

set of data. A similar process occurs when a signal is transfered from an unclocked

to a clocked domain in the form of inputs. When all the input signals have been

received which signifies the availability of input data, the clock is allowed to go

high to process the data and produce relevant outputs. The above phenomenon

elaborates the working of the clock control architecture in the deployment of a

synchronous system into a GALS system. This is exemplified in Fig. 6.26. Note

that this net uses double headed arcs (sometimes called read-arcs).

The green arrows depict the operations of the net that triggers the positive edge

of the clock. For the input In1 to be received, the clock requires to be inactive

or low to avoid metastability (see Chapter 2). On the reception of the signal, the

clock is triggered to process the data. The completion of the process is denoted

by the completion detection signal CD. When signal CD is received, the clock is

lowered for the transfer of outputs.

Such transformations are applied to all the localities to handle local clocks.

The insertion of the signal CD does not affect the behaviour of the system as it
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Ox1 Ox2
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clk+ clk−
CD

Figure 6.26: Clock Control

is an internal signal and it adheres to the notion of validity of signal insertions

discussed in Section 6.2. It is inserted after the reception of the input signal and

therefore does not delay the input signals.

In a similar way, such implementations are obtained for all the localities. The

final model has inputs going in and outputs coming out of each locality to be

communicated to the other localities which is done through asynchronous FIFOs.

The FIFOs are the interface places that act as storage units for the system. Finally,

a system is obtained with localised clocks which communicate with each other

using asynchronous FIFOs.

6.12 Summary

This chapter addressed the problem of synthesising delay insensitive wrappers

for GALS implementation. The methodology used Petri nets to model the syn-

176



CHAPTER 6. DESYNCHRONISATION TECHNIQUE USING PETRI NETS

chronous system interfaces, thus reducing the complexity of the component mod-

els posed by the previous methodology presented in Chapter 5. This work over-

comes the concurrency problems through the use of Petri nets. It presented a

formalism for desynchronising globally synchronous system while preserving the

behavioural correctness and semantics of the original system. The method in-

corporates the idea of Localities, to formally define the partitioning of the syn-

chronous systems. The partitioning technique takes into account the persistency

of signals which need to be satisfied in each partitioned block or locality. This

also aids the use of a data driven clocking scheme as the chosen local clock con-

trol scheme. This is because, in order to satisfy the persistency property, each

individual block waits for all the inputs to arrive before starting the clock. There-

fore, like the previous, power is only consumed when all the data for a particular

computation has been received.

This work has improved on the previous methods of converting existing syn-

chronous circuits into a GALS architecture. This chapter presented a notion of

correctness of the partitiong technique. This has led to the definition of the neces-

sary conditions for correctness. The algorithm for system partitioning presented,

offered a faster and more efficient route to the synthesis of the asynchronous wrap-

pers while preserving the IO behaviour of the synchronous systems.

177



Chapter 7

Conclusion

This thesis has drawn together two relatively disjoint areas of GALS research

in order to address important issues in the field of GALS design methodologies.

These include GALS integration techniques on the one hand, and system desyn-

chronisation techniques for GALS deployment, on the other. In this chapter we

summarise the main results obtained from the research. In the area of system

integration, this thesis presents a model and system level design technique that

aids performance and power analysis. We studied the interplay among effects of

communication latency, clock pause and FIFO insertions. In the area of desyn-

chronisation, we proposed a new synthesis framework for weakly endochronous

system and gave a new formalization for the desynchronisation of a globally syn-

chronous system into a GALS architecture and we studied the interplay among the

concepts of event absence, event sampling, and communication latency in model-

ing distributed concurrent systems.
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7.1 Summary of contribution

The intermediate models used for the design and synthesis of GALS architecture

are Petri nets and state transition systems. Due to their ability to exhibit advanced

concurrency, Petri nets are ideal for modeling distributed concurrent systems. On

the other hand state transition systems are well suited for specifying clocked sys-

tems. Therefore, chapter 2 gave the necessary background for GALS systems,

Petri net and state transition system modeling.

Chapter 3 reviewed a set of existing methodologies in the relevant areas of

GALS design. This chapter also presented the concept of endochrony and weak

endochrony. This forms the basis of the proposed synthesis methodology and

motivation for the introduction of the new desynchronisation formalism.

Chapter 4 presented the classification of different clocking schemes for Glob-

ally Asynchronous and Locally Synchronous architectures. These schemes have

been modelled using Petri nets. A Petri net model of these interconnect archi-

tectures, allows the designer to use existing logic synthesis tools, like Petrify to

obtain gate level design solutions. Such solutions for GALS systems with stretch-

able and data driven clocking schemes have been presented in this thesis. All the

three clocking schemes exhibited reliable data transfer between the synchronous

domains. A complex SoC can exploit any of the above given architectures de-

pending on the requirements of the target system. These models can be plugged

into existing partitioned synchronous blocks. These schemes can be extended to

employ various power reduction methodologies in the wrapper without affecting
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the synchronous IP blocks.

In addition to the classification and design solutions for the three clocking

schemes this thesis also analysed the three systems on performance and power

consumption criteria. Stretchable and data driven clocking schemes demonstrated

higher throughput and lower power consumption characteristics, respectively, com-

pared to the prevalent pausible clocking scheme. The stretchable and pausible

clocking schemes were further compared on two other metrics, namely, the num-

ber of times the clock is paused or stretched and the total latency incurred by

these pauses. Such an analysis aids the designer to make different design deci-

sions based on power and performance.

Chapter 5 sets the guidelines for a new methodology for the synthesis of the

delay-insensitive asynchronous wrappers needed for the correct-by-construction

GALS implementation of a modular synchronous system. The approach is based

on the results presented in [69], which define high-level, decidable criteria for

the correct GALS implementation of modular synchronous specification, namely

the weak endochrony of the modules and the absence of deadlocks in the global

synchronous specification. The synthesis problem is thus reduced to that of syn-

thesising the asynchronous wrappers for weakly endochronous synchronous mod-

ules. This problem can be solved on a local basis, without knowledge about the

properties of the global system.

We use as an example a model of a DLX-like processor to intuitively present

and give implementation steps on the different phases of the proposed methodol-

ogy. This work has been presented in [91].
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Chapter 6 addressed the problem of synthesising a GALS system by a desyn-

chronisation methodology which employed PN as its model of abstraction. The

granularity of desynchronised systems thus constructed using PNs is smaller than

the ones obtained from the previous method [91] and thus is easier to automate

and apply even for large complex circuits. The GALS system is obtained by ap-

plying the theory of localities to a synchronous system model preserving the syn-

chronous properties of the input output signals. This chapter also defined two

behaviour preserving transformations, namely, signal insertion and localisation of

transitions used at different stages of the desynchronisation process. As a result

this chapter presented a desynchronisation methodology with a relatively clear

route to automated synthesis, preserving the IO behaviour of the synchronous

systems.

7.2 Future Work

Chapter 4 presented a comparative study of of the three classes of clocking schemes

based on performance and power consumption with static frequency variation.

Dynamically changing the frequency and the supply voltage for sub-blocks to

reduce power consumption has been successfully implemented for high perfor-

mance micro-processors[92]. They are called Dynamic Voltage and Frequency

Scaling (DVFS) methods. Since microprocessors are sources of increased power

consumption, these methods are very desirable for the reduction of power con-

sumption. GALS design offers many advantages that could be exploited to realise
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DVFS systems. The main characteristic being that it allows the individual blocks

to be clocked independently. Therefore, it is possible to extend this idea to support

different voltages as well. This method could be applied to each of the clocking

schemes and study the change of the analysis results.

In a GALS system like the ones presented in chapter 4, which pause the clock

until data transfer is completed, both the Req-Ack signal pairs can be used to

determine how active a module is. If the environment is faster than the module,

then by increasing the operating frequency and voltage of the module could result

in an increased throughput. On the other hand, if the module is faster than the

environment, the supply voltage of the module and the operating frequency of the

local clock can be reduced to save energy.

Chapters 5 and 6 presented sound formalisms for the translation of WE sys-

tems into synthesisable Petri net models and desynchronisation of globally syn-

chronous systems for GALS deployment, respectively. These algorithms need to

be automated to reduce design time and designer intervention.

The state transition models obtained by applying the idea of WE are com-

plex for practical examples due to the weak handling of concurrency. Therefore,

one possible extension is to extend the underlying theory in order to simplify the

generated logic by taking into consideration:

• closed-system assumptions, for instance under the form of sequential care

sets

• the fact that synchronous specifications are often meant to run in asyn-
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chronous environments, under specific input arrival hypothesis

The locality allocation techniques presented in chapter 6 can be further optimised

to minimise interconnection between localities, yet still containing the choices

between signals in the same locality to guarantee correctness, as previously dis-

cussed. The protocol used in the proposed algorithm, can be optimised to increase

the component speed. We would also take into consideration that the system may

require more than one clock cycle for a particular computation. Hence, a counter

can be introduced to count the number of clock cycles required for a computation

and allow the clock to tick for the required number of cycles while preserving the

behaviour of the system.
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