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Abstract

Multiple rail phase encoding data communication protocol introduced recently has several unex-

ploited advantages over traditional encodings. The main di�culties in using it arise from the absence

of practical and scalable implementations of controllers for phase encoded data transmission.

This paper presents analytical justi�cation for the practical bene�ts of using multiple rail phase

encoding protocol and focuses on techniques for generating e�cient circuits for multiple rail phase

encoders, decoders and repeaters. The circuits are speci�ed and synthesised using Conditional Partial

Order Graph model which provides robust and scalable area-e�cient gate-level implementation of the

controllers.

1 Introduction

The design of the on-chip interconnect fabric is a crucial part of the design of large complex Systems-on-

Chip (SoCs). The many-layered set of design requirements imposed by the ever-increasing performance

constraints, coupled with the di�cult task of ensuring timing closure in newer technology nodes, require

the identi�cation of fast, reliable and scalable data/control signalling techniques. Networks-on-Chip

(NoCs) are one such method, responding to the need of modularity and scalability, and also adaptability:

the network can be designed a priori, freeing the designer team from the task of designing ad-hoc solutions

for their designs. Mentioning layers in the preceding text is apt in the context of NoC: these are typically

designed using a layered approach (see, for instance, [1]), which identify and separate the requirements

and characteristics of physical communication, node-to-node interaction all the way to application-speci�c

requirements. The physical layer of a NoC, and more generally on-chip signalling, is the underlying

motivation of this paper.

D'Alessandro et al. in [5] introduced the concept of phase encoding for on-chip signalling, where

the information is encoded into the sequence of events over a number of lines: this provides a way to

concentrate information into symbols more than by using binary encoding, with the added advantage

of reliability to single-event upsets [4, 6]. However, the previous work does not describe a satisfactory

method to generate encoders and decoders for this communication scheme: the structures described are

limited to small number of wires (rails), and the scalability of these encoders/decoders (in terms of logic

per number of wires in the channel) is not clearly described.

Phase encoding is a signalling technique that belongs to a class of self-synchronous (cf.

mesochronous [7]) protocols, where the validity of data (i.e. clocking) is transmitted together with

the data itself. The class of delay insensitive data transfer protocols [12] is a subclass of self-synchronous

schemes. This paper presents asymptotic comparison between phase encoding and several well-known

delay insensitive encodings in terms of information capacity, power consumption etc.

While conventional control logic speci�cation and synthesis methods based on Petri nets/Signal Tran-

sition Graphs [3, 11] or on Burst-mode Finite State Machines [10] have certain advantages, they cannot

be directly applied to the problem of phase encoders circuitry synthesis as shown in [9]. In particular,

the speci�cation size of matrix phase encoder (see Section 5.2) is exponential w.r.t. the number of output

rails in these models. To overcome this, the paper de�nes and solves the problem of speci�cation and
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synthesis of multiple rail phase encoding circuits using the model of Conditional Partial Order Graphs

which was recently introduced in [9], providing e�cient gate-level implementations for the circuits.

2 Phase encoding essentials

Phase encoding protocol was introduced by D'Alessandro et al. in [5]. The initial idea was to encode

an information bit into phase di�erence between two switching signals. The idea was further extended

into multiple-rail phase encoding [6] which uses several wires for communication and data is encoded

in the order of occurrence of transitions on the communication lines. Figure 1 shows an example of

4-wire phase encoding communication channel. The order of rising signals on wires {a, b, c, d} indicates
that permutation abdc is being sent. In total it is possible to send n! di�erent permutations over an
n-wire channel. This makes the multiple rail phase encoding protocol very attractive for its information

e�ciency.

Figure 1: Data symbol in multiple-rail phase encoding channel

Table 1 contains several important characteristics of multiple-rail phase encoding protocol. The

amount of information that can be sent in a symbol in n-wire channel grows faster than linearly. This is

due to the fact that

log2(n!) =
n∑
k=1

log2 k ≈
n∫

1

log2 xdx = x(log2 x− ln 2)|n1 = Θ(n log2 n) (1)

number of number of bits per bits per transitions

wires permutations data symbol wire/time slot per bit

2 2 1 1/2 2

3 6 2 2/3 3/2

4 24 4 1 1

5 120 6 6/5 5/6

6 720 9 3/2 2/3

n (asymptotic) n! Θ(n log2 n) Θ(log2 n) Θ( 1
log2 n

)

Table 1: Phase encoding protocol characteristics

We use the standard notation for describing the asymptotic behaviour of functions:

• f(n) ∈ O(g(n)) means that f is bounded above by g (up to a constant factor) asymptotically i.e.

∃C > 0, n0 : ∀n > n0, |f(n)| ≤ |Cg(n)|

• f(n) ∈ Θ(g(n)) means that f is bounded both above and below by g asymptotically i.e.

∃C1 > 0, C2 > 0, n0 : ∀n > n0, |C1g(n)| ≤ |f(n)| ≤ |C2g(n)|
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• f(n) ∈ Ω(g(n)) means that f is bounded below by g asymptotically i.e.

∃C > 0, n0 : ∀n > n0, |Cg(n)| ≤ |f(n)|

Asymptotic behaviour of other characteristics is based on (1), e.g. number of bits that can be sent in a

time slot (the time separation between signals switching) is

log2(n!)
n

=
Θ(n log2 n)

n
= Θ(log2 n)

Protocol number of bits per time slots bits per bits per transitions

data combinations symbol per symbol wire time slot per bit

phase encoding n! Θ(n log2 n) n Θ(log2 n) Θ(log2 n) Θ( 1
log2 n

)

dual rail 2b
n
2 c Θ(n) 1 Θ(1) Θ(n) Θ(1)

1-of-n encoding n Θ(log2 n) 1 Θ( log2 n
n ) Θ(log2 n) Θ( 1

log2 n
)⌊

n
2

⌋
-of-n encoding

(
n
bn2 c
)

Θ(n) 1 Θ(1) Θ(n) Θ(1)

Table 2: Asymptotic comparison of DI communication protocols
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Figure 2: Numeric comparison of DI communication protocols: information e�ciency

Table 2 shows asymptotic comparison of characteristics of phase encoding, dual rail and m-of-n

encoding protocols [12] for n wires. You can see that phase encoding loses only in one parameter -

bits per time slot: Θ(n) (dual-rail) and O(n) (m-of-n encoding) vs Θ(log2 n) (phase encoding). This is
because it needs n time slots to send one data symbol. Phase encoding is a clear winner in all the other

parameters. The last one is particularly interesting: number of signal transitions per data bit. Phase

encoding protocol needs only Θ( 1
log2 n

) transitions per data bit so the more wires the channel has the

cheaper (in terms of power consumption) the bits are. Theoretically if we had in�nite number of wires

we could send a bit of information for free. A special case of m-of-n encoding with m = 1 (one hot

encoding [12]) also needs only Θ( 1
log2 n

) transitions per data bit but its information e�ciency is very low

so it is not reasonable to use it for large values of n.

m-of-n encoding [8, 12] cannot principally beat dual-rail asymptotically in terms of number of bits

per symbol: it reaches its maximum information e�ciency when m =
⌊
n
2

⌋
. The number of bits in symbol

in this case is

log2

(
n⌊
n
2

⌋) = log2

(
n!⌊

n
2

⌋
!
⌈
n
2

⌉
!

)
≈ log2

( √
2πnnne−n

πnnn2−ne−n

)
= log2

(
2n√
πn
2

)
= Θ(n) (2)
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Here we used Stirling approximation of factorial n! ≈
√

2πnnne−n. Equation (2) gives the upper

bound of information e�ciency for m-of-n encoding protocol. The lower bound is achieved for one hot

encoding and is equal to log2(n1 ) = log2 n. For other values of 0 < m < n information e�ciency varies

but remains within Ω(log2 n) ∩O(n) interval. (Intersection Ω(f(n)) ∩O(g(n)) denotes a set of functions
bounded by f(n) below and by g(n) above.)

So, asymptotically m-of-n encoding is equivalent to dual-rail in terms of information e�ciency though

it is better by constant factor approximately equal to 2:

lim
n→∞

log2

(
2n√
πn
2

)
log2 2b

n
2 c

= lim
n→∞

log2 2n − log2

√
πn
2

log2 2b
n
2 c

= lim
n→∞

n−Θ(log2 n)⌊
n
2

⌋ = 2

In terms of power consumption m-of-n encoding can beat dual-rail and approach phase encoding. The

lower bound of power consumption is achieved for one hot encoding (m = 1) and is equal to

m

log2 n
=

1
log2 n

But the upper bound (when m =
⌊
n
2

⌋
) is the same as of dual-rail:

m

Θ(n)
=

⌊
n
2

⌋
Θ(n)

= Θ(1)

So, power consumption of m-of-n encoding protocol is in interval Ω( 1
log2 n

) ∩ O(1). Interestingly the

interval spans exactly between phase-encoding and dual rail protocols.

The numeric comparison of the three protocols for up to 10-wire communication channels is shown

in Figure 2. The results of m-of-n encoding are calculated for the most informative case when m =
⌊
n
2

⌋
.

Sub�gure (a) shows information e�ciency with respect to a symbol size, while Sub�gure (b) - with respect

to a time slot. Notice that phase encoding is dominating on the �rst graph and shows rather bad results

on the second. However this should not be misleading: although n-wire phase encoding protocol needs

n time slots to send a data symbol these time slots can be signi�cantly shorter than that of dual rail

or m-of-n protocols because each wire switches only once in these n time slots. Therefore the sending

and receiving circuitry of a particular wire can work at a speed n times slower than the communication

channel as a whole. It allows the time slots to be compressed much more than for dual rail and m-of-n

encoding protocols and achieve higher information density over time. Thus phase encoding is potentially

optimal in terms of area (number of bits per wire), speed (number of bits per time interval) and power

(number of signal transitions per bit).

All these comparisons are theoretical and need experimental re�nement. However existing imple-

mentations of multiple rail phase encoding circuitry are area ine�cient and usually designed by hand

for a particular number of wires. This work presents a number of techniques for generating circuits

for multiple-rail phase encoding senders/receivers/repeaters. Figure 3 shows the overall phase encoding

communication circuitry. Rectangular boxes represent functional units for conversion between di�erent

data encodings. The paper covers implementation of the units in tinted boxes. Most of the phase encod-

ing circuits presented in the work are synthesised using Conditional Partial Order Graphs [9] which are

introduced in the next two sections.

3 Conditional Partial Order Graphs

Conditional partial order graph (CPOG) is a tuple H(V,E,X, φ) where V is the set of vertices (or nodes),

E ⊆ V ×V is the set of ordered pairs of vertices, called arcs, X is the set of Boolean variables, and function

φ : V ∪ E → F(X) assigns a condition to every vertex and arc in the graph. A condition on a vertex
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Figure 3: Phase encoding communication circuitry (numbers of wires are shown beside communication
channels; implementation of functional units that are drawn tinted is covered in the paper)

or arc z ∈ V ∪ E is a Boolean function φ(z) ∈ F(X) where F(X) is the set of all Boolean functions

over variables in X. Let's also de�ne φ(z) = 0 for z /∈ V ∪ E in order to simplify some of the further

computations.

The following subsections introduce an algebra over CPOGs.

3.1 Addition

The result of addition of H1(V1, E1, X1, φ1) and H2(V2, E2, X2, φ2) is CPOG H(V1 ∪ V2, E1 ∪ E2, X1 ∪
X2, φ), where ∀z, φ(z) = φ1(z) + φ2(z). Here φ1 + φ2 stands for Boolean disjunction of functions φ1 and

φ2. We will use standard notation for addition: H = H1 +H2.

CPOG addition is commutative (H1+H2 = H2+H1) and associative ((H1+H2)+H3 = H1+(H2+H3))
and thus redundant brackets can be omitted when more than two CPOGs are added.

3.2 Scalar multiplication

A CPOG H(V,E,X, φ) can be multiplied by a Boolean function f ∈ F(Y ) (which in our context can be

called scalar). The resultant CPOG is H ′(V,E,X∪Y, φ′) where ∀z, φ′(z) = fφ(z) (fφ stands for Boolean

conjunction of functions f and φ). We will use standard notation for scalar multiplication: H ′ = fH.

Scalar multiplication and addition have the following common properties:

• Left distributivity: (f + g)H = fH + gH;

• Right distributivity: f(H1 +H2) = fH1 + fH2;

• Associativity: f(gH) = (fg)H;

3.3 Projection

A projection of a CPOG H(V,E,X, φ) under constraint x = α (x ∈ X) is denoted as H|x=α and is

equal to CPOG H ′(V,E,X \ {x}, φ|x=α) where notation φ|x=α means that variable x is substituted with

constant Boolean value α in all the functions φ(z), z ∈ V ∪E. Projection is a commutative operation i.e.

(H|x=α)|y=β = (H|y=β)|x=α.

NCL-EECE-MSD-TR-2008-133, University of Newcastle upon Tyne 5
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A complete projection of a CPOG H is such a projection that all the variables in X are constrained to

constants. It is denoted as H|ψ where ψ : X → {0, 1} is an assignment function that assigns a Boolean

value to every variable in X. Complete projection is a CPOG whose vertex and arc conditions are only

Boolean constants φ|ψ (either 0 or 1).
Let H(V,E, ∅, φ) be a complete projection (∀z, φ(z) ∈ {0, 1}). We can construct a graph G(VG, EG)

such that

VG = {v ∈ V |φ(v) = 1}
EG = {e = (a, b) ∈ E|φ(a)φ(b)φ(e) = 1}

In other words G contains only those vertices and arcs whose conditions in H are constant 1.
A complete projection H is valid i� its corresponding graph G is a directed acyclic graph [2].

The obtained DAGG(VG, EG) can be further converted into a corresponding partial order [2] P (VG,≺)
such that a ≺ b i� G contains an oriented path between vertices a and b. Let this operation of partial

order construction from a valid CPOG complete projection H be shortly denoted as po: P = po(H)
and the inverse operation as po−1: H = po−1(P ). Note, that po−1 is a right inverse operation i.e.

po(po−1(PO)) = PO but po−1(po(H)) is not necessarily equal to H.

(a) Conditional partial order graph

(b) Projection under x = 1

(c) Projection under x = 0

Figure 4: CPOG and its projections

An example of a CPOG and its projections is shown in Figure 4. Sub�gure (a) shows the initial graph.

The conditional arc functions are indicated over the arcs: arcs (b, c) and (c, d) have conditional function
f = x; the function on arcs (a, c) and (b, d) is f = x; arcs (a, b), (d, e) and vertices a...d are unconditional

i.e. their functions are constant Boolean 1. Such functions are not shown on diagrams for simplicity. The

only conditional vertex e has condition f = x which is shown next to its label separated by a colon.

Figure 4(b) shows the complete projection under x = 1. The dotted arcs are those that turn to have

constant 0 conditions after the projection and therefore will be excluded from the resultant partial order.

The solid arcs have constant 1 conditions. The partial order de�ned with the projection is a simple series

of events: a→ b→ c→ d→ e.

Complete projection under condition x = 0 (Figure 4(c)) results in the following partial order. Events

b and c can happen only after a. There is no constraint between them, thus they can be concurrent.

Event d can happen only after event b. Event e is excluded from the partial order; note, that this implies

exclusion of arc (d, e) as well.

NCL-EECE-MSD-TR-2008-133, University of Newcastle upon Tyne 6
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3.4 Ψ-equivalence

Let assignment set Ψ = {ψ1, ψ2, ..., ψn} be the set of n assignment functions ψk : X → {0, 1}. Two

Boolean functions f, g ∈ F(X) are Ψ-equivalent i� they evaluate to the same values over the assignment

set Ψ:

∀ψk ∈ Ψ, f |ψk = g|ψk

A CPOG H is Ψ-well-formed i� every complete projection H|ψ, ψ ∈ Ψ is valid. Ψ-well-formed CPOGs

H1 and H2 are Ψ-equivalent i� they produce the same partial orders:

∀ψk ∈ Ψ,po(H1|ψk) = po(H2|ψk)

We will use the following notation for Ψ-equivalence: f
Ψ∼ g or H1

Ψ∼ H2. Ψ-equivalence is a proper

equivalence relation [2] as it satis�es the following properties:

• Re�exivity: a
Ψ∼ a;

• Symmetry: a
Ψ∼ b⇒ b

Ψ∼ a;

• Transitivity: a
Ψ∼ b ∧ b Ψ∼ c⇒ a

Ψ∼ c.

4 CPOG Synthesis

The previous section showed that a CPOG can contain several partial orders in a compressed form

and thus can be used to specify a system with several behavioural scenarios. [9] showed that it is

possible to synthesise a compact CPOG system speci�cation given its description as a set of partial

orders corresponding to di�erent scenarios in the modelled system.

Formally, let P = {P1, P2, ..., Pn} be the set of n given partial orders. The objective is to synthesise

CPOG H(V,E,X, φ) and assignment set Ψ = {ψ1, ψ2, ..., ψn} such that ψk are assignment functions and

∀ψk ∈ Ψ,po(H|ψk) = Pk

The idea behind the synthesis approach presented in [9] is to represent H as the following sum of

given partial orders:

H = f1po−1(P1) + ...+ fnpo−1(Pn) =
n∑
k=1

fkpo−1(Pk) (3)

Now control signals X, functions fk ∈ F(X) and ψk should be selected so that fk|ψk = 1 and

fk|ψj = 0, j 6= k. This can be done in di�erent ways depending on the chosen encoding scheme. The

following three encoding schemes will be used for synthesis of phase encoding senders in this paper.

4.1 One-hot encoding scheme

In this scheme we use n control signals X = {x1, x2, ..., xn}. Functions fk and ψk (k = 1...n) are trivial:
fk = xk, ψk(xk) = 1, ψk(xj) = 0, j 6= k.

One-hot scheme provides a simple and intuitive way of encoding but it is ine�cient because of the

large size of control signals set X: |X| = n.

Here is an example of synthesis of a CPOG containing two partial orders P1 = {a ≺ b, a ≺ c, b ≺ c}
and P2 = {b ≺ a, b ≺ c}. The control signals set is X = {x1, x2}. The complete projections obtained

from the partial orders are H1 = po−1(P1) =
a b c

and H2 = po−1(P2) =
ca b

. The

result of application of (3) to partial orders P = {P1, P2} is CPOG H:
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H = x1·
a b c

+x2·
ca b

=

=
a: b: c:

x1 x1

x1 x1 x1

x1

+
c:a: b:

x2 x2

x2 x2 x2

=
c:a: b:

x1

x2

x1 x2
+

x1

x1 x2+ x1 x2
+ x1 x2

+

Bearing in mind the assignment set Ψ = {ψ1, ψ2} = {(1, 0), (0, 1)} it is possible to optimise the

obtained result into a simpler Ψ-equivalent CPOG:

c:a: b:
x1

x2

x1 x2
+

x1

x1 x2+ x1 x2
+ x1 x2

+
Ψ∼

ca bx1

x2

Details of the logic optimisation technique that reduces the size of CPOGs based on the notion of

Ψ-equivalence can be found in [9].

4.2 Binary encoding scheme

In binary scheme onlym = dlog2 ne control variablesX = {x1, x2, ..., xm} are used which is the theoretical
minimum. Let bjk denote j-th bit of integer number k. Then we can de�ne functions ψk and fk (k = 1...n)
as:

ψk(xj) = b(j−1)(k−1) , fk =
m∧
j=1

(xj ⇔ ψk(xj))

For example, if n = 3 we will get ψ1 = (0, 0), ψ2 = (1, 0) and ψ3 = (0, 1). Functions fk are:

f1 = (x1 ⇔ 0)(x2 ⇔ 0) = x1 x2, f2 = x1x2 and f3 = x1x2.

If we apply binary encoding scheme for synthesis of a CPOG containing P1 = {a ≺ b, a ≺ c, b ≺ c}
and P2 = {b ≺ a, b ≺ c} (as in Section 4.1) we get

H = x·
a b c

+x·
ca b

=
c:a: b:

x

x
x
_ x +x

_
x +x

_
x +x

_
x +x

_

Ψ∼
ca bx

x
_

As one can see the selected encoding scheme does not a�ect the structure of the optimised CPOG.

However, it a�ects the complexity of the functions and the size of the physical controller implementation.

4.3 Matrix encoding scheme

The size of the control signals set in this scheme does not depend on the number of scenarios |P|. It

depends only on the number of di�erent events in the system |V |. In particular, X = {xjk|j = 1...|V |, k =
1...|V |}, so |X| = |V |2 and thus X can be called control matrix. Control matrix has enough information

capacity to describe any partial order P (V ′,≺) of any subset V ′ ⊆ {e1, e2, ..., e|V |} of |V | events:

ψ(xjk) =

1 if (ej ∈ V ′) ∧ (ek ∈ V ′) ∧ (ej ≺ ek)

0 otherwise
(j 6= k)

ψ(xkk) =

1 if (ek /∈ V ′)

0 otherwise

Matrix encoding scheme is general in the sense that it can be used to encode any possible behavioural

scenario of a system with n events in a reasonably compact and understandable way. It is a trade-o�

between one-hot encoding which is straightforward but ine�cient in terms of the number of control

signals and binary encoding which has the least possible number of control signals but more complicated

encoding functions which are not a�ordable in some cases as will be demonstrated later.

The encoding matrices for the example from the previous sections are shown in Table 3. Instead of

applying (3) for the resultant CPOG synthesis it is possible to use generic solution (see Figure 5(a)).
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ψ(xjk) k = 1 k = 2 k = 3
j = 1 0 1 1
j = 2 0 0 1
j = 3 0 0 0

(a) ψ1 for P1 = {a ≺ b, a ≺ c, b ≺ c}

ψ(xjk) k = 1 k = 2 k = 3
j = 1 0 0 0
j = 2 1 0 1
j = 3 0 0 0

(b) ψ2 for P2 = {b ≺ a, b ≺ c}

Table 3: Assignment functions for the matrix encoding example

This generic solution can be optimised taking into account assignment set Ψ = {ψ1, ψ2} from Table 3

producing a simpler CPOG in Figure 5(b). Note that again it is structurally similar to the CPOGs

obtained using di�erent encoding schemes from the previous sections.

a:x11

_
c: x33

_

b:x22

_

x12

x 21

x
23x

32
x13

x31

(a) generic CPOG

a c

b

x1
2

x 2
1

(b) optimised CPOG

Figure 5: CPOG synthesis and optimisation using matrix encoding scheme

5 Phase encoding repeater

The �rst multiple rail phase encoding circuit that we are going to synthesise is phase encoding repeater [4]

� a circuit able to regenerate the deteriorating phase di�erence between signals in phase encoding com-

munication channel.

Phase encoding

 channel

Phase

detector
Order

matrix

n Matrix

phase

encoder

2
n

2
n n Phase encoding

 channel

Figure 6: Phase encoding repeater circuitry

Phase encoding repeater consists of two functional parts: a receiver (a phase detector, which deter-

mines the order of the incoming transitions) and a sender (a phase encoder, which has to generate a series

of transitions in the order they were received) as shown in Figure 6.

It should be noted that we assume here that the phase encoded symbols arriving via the communication

channel to the repeater are correct i.e. all transitions are ordered with appropriate time slot condition.

The issues of error behaviour and noise tolerance have been addressed in [4].

5.1 Phase detector

Phase detector for n-wire communication channel consists of
(
n
2

)
mutual-exclusion (mutex ) elements [4]:

each for every pair of wires. A possible implementation of a mutex is shown in Figure 7(a): it consists of

a pair of cross-coupled NAND gates (an SR-latch) and a simple metastability �lter constructed from two

inverters. To determine the order of n transitions it is possible to compare their arrival times pairwise

(see Figure 7(b) for an example of 3-wire phase detector).

The result of phase detection can be seen as a control matrix from Section 4.3 with diagonal elements

set to 0. Therefore the subsequent phase encoder should be synthesised using matrix encoding scheme

to avoid additional encoding conversion circuitry.
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a

b

a<b

b<a

a

b

a<b

b<a

(a) mutex

a

b

c

a<b

b<a

a<c

c<a

b<c

c<b

(b) 3-wire phase detector

Figure 7: Phase detection

5.2 Matrix phase encoder

Given control matrix X = {xjk|j = 1...n, k = 1...n, j 6= k} containing pairwise comparisons of arrival

times of n transitions matrix phase encoder should generate n output transitions in the speci�ed order.

The control matrix X coming from the phase detector has n! di�erent possible values assignments

ψk : X → {0, 1}, k = 1...n! each of them corresponding to a partial order of a particular scenario.

Conditional partial order graph H(V,E,X, φ) containing all of them as its projections has the following

generic description:

V = {ej |j = 1...n}
E = {(ej , ek)|j = 1...n, k = 1...n, j 6= k}
X = {xjk|j = 1...n, k = 1...n, j 6= k}
φ(ej) = 1, j = 1...n
φ((ej , ek)) = xjk, j = 1...n, k = 1...n, j 6= k

(4)

Example of such a CPOG for the case of 3 wires is shown in Figure 8(a).

x1
2

x 2
1

x
2
3x

3
2

x
13

x
31

e1

e2

e3

(a) CPOG speci�cation

delay elements
go

t1

t2

t3

x12

x13

x21

x23

x31

x32

(b) gate-level implementation

Figure 8: 3-wire matrix phase encoder speci�cation and implementation

Having synthesised the CPOG it is possible to derive Boolean equations for physical controller im-

plementation. The controller should have 2
(
n
2

)
= n2 − n inputs X = {xjk|j = 1...n, k = 1...n, j 6= k} and

n outputs T = {t1, t2, ..., tn}. Output transition tk is enabled to �re if all the preceding (w.r.t. to the

partial order speci�ed by control matrix X) transitions have already �red i.e.

tk = φ(ek) ·
∧

1≤j≤n
j 6=k

(φ(ej) · φ((ej , ek))⇒ tj) (5)
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(Here a⇒ b stands for Boolean implication [2] indicating 'b if a' relation. It shouldn't be mixed with

a⇔ b which is Boolean equivalence [2] indicating 'b if and only if a' relation.)
This generic equation can be simpli�ed taking into account the particular CPOG speci�cation (4):

tk =
∧

1≤j≤n
j 6=k

(xjk ⇒ tj) =
∧

1≤j≤n
j 6=k

(xjk + tj)

Another optimisation opportunity is to exploit the fact that the control matrix X speci�es a total

order [2] (a special case of partial order P (V,≺) such that (a ≺ b)⇔ ¬(b ≺ a) i.e. every pair of elements

in V is ordered). In our case it means that xjk = xkj :

tk =
∧

1≤j≤n
j 6=k

(xkj + tj)

As the phase encoder should maintain a certain time separation ∆ between the generated transitions

it is necessary to modify the above equation to take this fact into account:

tk =
∧

1≤j≤n
j 6=k

(xkj + t∆j )

where t∆j represents signal tj delayed for ∆ time units. For the purpose of resetting the controller into

the initial state after generating the desired sequence of transitions we should also add control signal go

that would serve as an initiating and resetting signal:

tk = go ·
∧

1≤j≤n
j 6=k

(xkj + t∆j ) (6)

The gate-level implementation of the controller speci�ed with equation (6) is shown in Figure 8(b).

Implementation of phase encoding repeater consisting of phase detector and phase encoder is shown

in Figure 9. Generation of signal go can be done in a number of ways depending on whether the repeater

should be early-propagative or not as well as on several other criteria which are out of the scope of this

paper and are discussed in details in [4].

a

b

c

a

b

c

go

Figure 9: Phase encoding repeater

6 One hot phase encoder

One hot encoding can be used to specify the order of signal transitions for small values of n (for large

values of n the method is inappropriate because it needs n! wires). To send data presented in one hot

NCL-EECE-MSD-TR-2008-133, University of Newcastle upon Tyne 11



Andrey Mokhov, Crescenzo D'Alessandro, Alex Yakovlev: Multiple rail phase encoding circuits

encoding it is possible to convert it �rst into matrix form using one hot code to matrix converter and

then to send the result using matrix phase encoder. Alternatively, to avoid unnecessary conversions it is

possible to send one hot data directly using one hot phase encoder as shown in Figure 10.

Phase encoding

channel

One hot to

matrix

converter

n!

One hot

encoding

One hot

phase

encoder

n! n

Matrix

phase

encoder

Order

matrix

2
n

n

2
n

Figure 10: One hot phase encoder

There are n! partial orders P = {P1, P2, ..., Pn!} specifying the n! scenarios. Using one hot encoding

scheme (Section 4.1) it is possible to synthesise CPOG containing all of them.

Consider the following example of synthesis of 3-wire one hot phase encoder. There are 6 one hot

control signals X = {x1, x2, x3, x4, x5, x6} and 6 partial orders corresponding to the possible permutations
of output transitions T = {a, b, c}:

# permutation one hot encoding partial order

1 (a, b, c) ψ1 = (1, 0, 0, 0, 0, 0)

a b c

2 (a, c, b) ψ2 = (0, 1, 0, 0, 0, 0)

a bc

3 (b, a, c) ψ3 = (0, 0, 1, 0, 0, 0)

ab c

4 (b, c, a) ψ4 = (0, 0, 0, 1, 0, 0)

ab c

5 (c, a, b) ψ5 = (0, 0, 0, 0, 1, 0)

a bc

6 (c, b, a) ψ6 = (0, 0, 0, 0, 0, 1)

abc

The synthesised CPOG (using approach from Section 4.1) is shown in Figure (a). Using logical

optimisation it is possible to simplify it into slightly smaller CPOG shown in Figure (b).

x 1

a

b

c

+
x 2

+
x 5

x 3
+
x 4

+
x 6

x
1+ x

3+ x
4

x
2+ x

5+ x
6x

1+x
2+x

3

x
4+x

5+x
6

(a) synthesised CPOG

x 1

a

b

c

+
x 5

x 3
+
x 6

x
1+x

4

x
2+
x

6

x
2+x

3

x
4+x

5

(b) optimised CPOG

Figure 11: CPOGs for 3-wire one hot phase encoder

The gate-level implementation of 3-wire one hot phase encoder speci�ed with the obtained optimal

CPOG is shown in Figure 12.

7 Binary phase encoder

Binary encoding is traditionally used for data transmission. To send a binary encoded data symbol

it is possible to convert it �rst into matrix form using binary code to matrix converter and then to

send the result using matrix phase encoder. But to avoid unnecessary conversion we can synthesise
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x6

a

x1

b

x4

x2

c

go

x3

x5

Figure 12: 3-wire one hot phase encoder circuit

customised binary phase encoder using the same principle as in the previous section for one hot encoding

(cf. Figure 10).

x1

x3

x2

go

a

b

c

Figure 13: Binary phase encoder

The CPOG synthesis process is the same as for one hot phase encoding with the only exception that

the binary encoding scheme is used (see Section 4.2). For the case of 3-wire binary phase encoder, the

following set of Boolean equations for output signals T = {a, b, c} is eventually derived:
a = ((x1x2x3 + x1x2x3)⇒ b∆)((x1x2x3 + x1x2 x3)⇒ c∆)

b = ((x1 x2 x3 + x1x2 x3)⇒ a∆)((x1 x2x3 + x1x2x3)⇒ c∆)

c = ((x1 x2x3 + x1x2x3)⇒ a∆)((x1 x2 x3 + x1x2x3)⇒ b∆)

Taking into account binary assignment set Ψ = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)}
the above equations can be simpli�ed into

a = x1 x2 + b∆c∆ + x3(b∆ + c∆)

b = x2 + x3a
∆ + x3c

∆

c = x1 + a∆b∆ + x3(a∆ + b∆)

These resultant equations can now be mapped into gates to produce physical implementation of the
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binary phase encoder as shown in Figure 13 (signal go is added for start/reset purposes).

8 Conclusions

The paper discusses the bene�ts of using multiple rail phase encoding protocol and compares it with the

some other self-synchronous communication protocols. It also presents a CPOG model based approach for

speci�cation and synthesis of phase encoding multiple-rail controllers (phase detector, repeater, variety

of phase encoders for di�erent source encodings). The obtained solutions are more robust and scalable

than in the previously published approaches.
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