

School of Electrical, Electronic & Computer Engineering

Virtual Self-timed Block Design using Coloured

Petri Nets

Yuan Chen, Fei Xia, Delong Shang, Alex Yakovlev

Technical Report Series

NCL-EECE-MSD-TR-2008-134

August 2008

Contact: yuan.chen1@ncl.ac.uk

Partially Supported by EPSRC grant EP/E044662/1 and EP/C512812/1

NCL-EECE-MSD-TR-2008-134

Copyright c 2008 Newcastle University

School of Electrical, Electronic & Computer Engineering

Merz Court, Newcastle University

Newcastle upon Tyne, NE1 7RU

UK

http://async.org.uk

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

Virtual Self-timed Block Design using Coloured

Petri Nets

Yuan Chen, Fei Xia, Delong Shang, Alex Yakovlev,

August 2008

ABSTRACT

In order to increase the power efficiency of IP cores in an SoC, a Self-timed Event

Processor (STEP) is designed in this paper to provide power management and event

handling for each IP core in a frame of Virtual Self-timed Block (VSB). Following

Model Based Design (MBD) method, this paper presents the specification, analysis

and verification of a VSB design in detail.

1. INTRODUCTION

With the fast development of semiconductor technologies, all components of a

computer system can now be integrated into a single chip forming a System on Chip

(SoC). Previous research about GALS (Globally Asynchronous Locally Synchronous)

[1] has successfully solved asynchronous communication using different types of

ACM (Asynchronous Communication Mechanism) [2] among heterogeneous

integrated IP cores. Large transistor integration also made complex electronic devices

energy hungry and the confliction between high power consumption in IP cores and

the limited energy that can be supplied by onboard buttery became the main

restriction to system performance. Although many IP core designs have integrated

various low power technologies so as to enable an IP core to be operated in different

modes, the power/latency cost brought by mode switching transitions [3] requires

system-level power control in an SoC context.

Although the GALS architecture has great potential in power saving, system level

power management has not been considered by previous GALS design. Without a

global clock system, an SoC built in GALS architecture can easily power on/off an IP

core or switch it to another mode without interfering the clocks of other clock

domains. There have been many studies about system latency and throughput in a

GALS based SoC, but how to introduce power control/management into such

architectures so as to achieve system performance in low power is still a relatively

unexplored area.

Higher integration changes embedded software design as well. When more and more

IP cores have been integrated into one chip, task execution in an IP core becomes

nondeterministic and concurrent. In other words, the start moment of a task’s

execution is unpredictable, and it is highly possible that two or more tasks become

ready for execution simultaneously. The concurrency in task execution brings

competition for resources, like limited battery energy, finite memory space or

communication bandwidth, etc. Nondeterminism in task execution requires faster or

more real-time resource allocation.

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

Event driven programming can be used in on-chip software design. An event is

modelled as something happening or happened and should be responded to by a task.

It may mean the availability of request signal or data, or idleness of input/output ports,

or enough energy in the battery, depending on different implementations. In this case,

resource allocation in an SoC amounts to event handling. A task in an IP core can be

executed only after its corresponding event has been handled by the core. Therefore,

well-designed dedicated event handlers, which can quickly and properly respond to

incoming events, have great importance to system performance in both latency and

power.

When on chip nondeterminism and concurrency are taken into consideration,

asynchronous circuits have certain advantages in event handler design. Without clock

control, an asynchronous event handler can respond to new incoming events without

delay, the probability of metastability can be greatly reduced. Furthermore no power

is wasted in an asynchronous handler when no state change happens in the system.

Therefore, an asynchronous coprocessor can be designed and used in a GALS based

SoC. This coprocessor will not only do asynchronous/synchronous data transform and

asynchronous communication for its IP core (thus replacing the traditional wrapper),

but also provide event handling and power management for the core. With the

coprocessor, every IP core can work as an event driven domain in a highly

nondeterministic and concurrent SoC environment. This coprocessor is called as Self-

Timed Event Processor (or STEP in short) and the combination of the coprocessor and

its IP will work as a “Virtual” Self-timed Block (or VSB in short) in the GALS

architecture [4].

When multiple functions are integrated into a VSB, the VSB design becomes

complicated because it should consider not only the design of all function modules,

but also the cooperation of these modules in terms of power and latency. The Model

Based Design (MBD) method, adapted from control system design, has been used in

our research as the design flow of a VSB. As power control is the essential function

provided by a STEP to its corresponding IP core, the identification of a proper control

policy for power is the first step of our design. Stochastic models are used for this

identification since these mathematical models are widely used in previous research

and highly representative of actual systems. This study is reported in [5] where a

policy called Accumulation & Fire (A&F) shows high efficiency and easy realization

in power control.

When the control policy has been identified, we focused on the specification, analysis

and verification of the VSB design in this paper. The specification of a VSB is given

in Section 2. Following this specification, the design of a VSB will be carried out by

modelling its behaviour from abstract execution among basic modules in a top level

model to detailed processing within every module in low level models. Coloured Petri

Nets (CPN) is used for the modelling design of a VSB because its strong

representations of systems in which concurrency, communication, and

synchronisation play a major role [6]. This modelling design is described in Section 3.

And this section also includes the analysis and verification of the VSB design in CPN

where concurrent executions in a VSB are highlighted. And conclusion and future

work are given in Section 4.

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

2. VSB Specification

According to the stochastic models given in [5], an IP core can be represented by two

factors: Tasks and Modes. Although an infinite length of task queue is assumed in the

stochastic model analysis, an IP core can only provide a finite number of task

services. A mode defines the power dissipation as well as the processing speed in the

core. With such knowledge, we can give a basic functional specification of a VSB in

Figure 1.

Figure 1: The Specification of a VSB

Although Petri Nets (PN) were used by previous studies to specify different types of

ACM [7], we prefer to use high level Coloured Petri Nets (CPN) to give the

specification of a VSB in a more concise way. Similarly as the basic Petri Nets (PN),

CPN uses places to indicate states of the modelled system by means of ellipses (or

circles) and uses transitions to indicate operations in the system by means of

rectangles. For example two places TQ and Sleep, and two transitions STEP and

IPCore are used in Figure 1. Places and transitions are connected by a set of directed

arrows, which are called arcs.

A place in a CPN/PN model is used to hold tokens, which are represented by the small

dots next to each place. An arbitrary distribution of tokens in places is called a

marking. Different from PN, each token in CPN is attached with some data value

(called token colour). The data value may be of an arbitrarily complex type. For a

given place, all tokens must share the same colour. This colour is called the colour set

of the place which is written in the right bottom corner of the place.

In CPN, two operators ++ and ` are used for the construction of a multi-set consisting

of token colours. The infix operator ` takes a nonnegative integer to specify the

number of appearances of the element provided as the right argument. The ++ takes

two multi-sets as arguments and returns their union (sum). For example, the tokens

2`0++3`1 in the TQ place describe two tokens with colours (values) of ‘0’ and three

tokens with value of ‘1’ respectively (In this paper, a pair of quotations ‘’ will be used

to quote a colour value when it may be confused with the token number).

The VSB specified in Figure 1 presents an on-off IP core under A&F power control.

Two colours have been declared in this figure. Colour BIT is declared to describe

binary information and have only values ‘0’ and ‘1’. It is the set colour of the place

Sleep. Initially a ‘1’ token is given to the Sleep place (The initial token of a place is

described in the upper right side of the place), which indicates the IP core is in its off

mode.

The other colour declared in the figure is called TASK, which represents tasks that can

be executed in the IP core. In this high-level specification, all tasks are taken as

identical and the TASK colour is declared as BIT colour whose token value represents

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

whether the task is ready for processing (value ‘1’) or not (value ‘0’). The TASK

colour is the set colour of the TQ place (means Task Queue). Since an IP core can

only perform a finite number of tasks, two integer constants L and M represent the

total number of tasks of the core and the number of valid tasks of the core

respectively. Therefore, the initial marking of M`1++(L-M)`0 in the TQ place

indicates initially M out of L tasks in the core are ready for processing. When M and L

are specified as 3 and 5 respectively, the token held in the TQ becomes 2`0++3`1.

A transition is enabled if and only if each of its input places contains at least the

number of tokens prescribed by the expression of the corresponding input arc. When a

transition is enabled, the corresponding move may take place, which is called the

occurrence of the transition. As a consequence, tokens from the input places will be

removed from the input places and added to the output places after the execution of an

occurrence.

The STEP transition is used to describe the power/task control given to the IP core,

i.e. the actions performed by the STEP. The expression in the arc from the Sleep place

to the STEP transition is written as 1`1, which means this transition is only enabled

when the token value in the Sleep place is ‘1’. It indicates the power control is given

to the IP core only when it is in its off mode. The TQ place and the STEP transition

are connected by a double-headed arc. A double headed arc is shorthand for two

directed arcs in opposite directions between two nodes which have the same arc

expression. The integer constant N (N≤L) is used to represent the accumulation limit

of A&F policy which is implemented in the STEP. Therefore, when N is specified to

2, the STEP transition is enabled (which is highlighted by a dotted rectangle) and its

occurrence will change the token colour in the Sleep place to ‘0’. This occurrence

indicates the IP core is activated when there are at least N tasks accumulated.

When the token in the Sleep place becomes ‘0’, the IPCore transition is enabled and

its occurrence will first reset all ‘1’ tokens in the TQ place to ‘0’, and then toggle the

token in the Sleep place to ‘1’. This occurrence describes the processing of all ready

tasks in the activated IP core, and the shutting down of the core afterwards when no

tasks are ready.

Figure 2: New Specification of a VSB

Although the model in Figure 1 specifies the basic function in a STEP and an IP core

in a VSB, it only represents an isolated computation block without interactions with

its environment. In Figure 2, we present the relationship between a VSB and its SoC

environment. Transitions InEnv and OutEnv represent the SoC environment and dark

shade is used in these two places so as to differentiate them from other

places/transitions which represent a VSB. The occurrence of the InEnv transition will

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

update a ‘0’ token in the TQ place to ‘1’, which represents some task provided by the

IP core is requested by an event coming from the environment.

One place RT is added in this figure, and the token held in this place represents the

result of task executions in an IP core. Any token in this place will enable the OutEnv

transition, which describes the effect of the execution in the current VSB to its

environment.

Therefore, the specification in Figure 1 presents the essential processing in a VSB: A

STEP will accumulate at least N tasks to activate a sleeping IP core, and an active IP

core will shut down itself when all task executions are completed. This specification

will inspire the VSB design and analysis in Section 3.

3. VSB DESIGN AND ANALYSIS IN CPN

In Section 2, we assume the event handling processing in a STEP is instantaneous.

Therefore, no representation of event handling is given in the specification. Besides,

the VSB presented in the specification is isolated from its SoC environment. All these

simplifications will be removed in the VSB design in this section. A top-down design

will be realized by a group of hierarchical CPN models of a VSB. We will first give a

top level model to present all necessary components in a VSB and their connections,

and then extend the design of every component in different detailed CPN models.

3.1 The Top Level CPN Model of a VSB architecture design

Figure 3: Top Level CPN Model of a VSB

Figure 3 is the top level CPN model of a VSB. Three colours are declared in this

model. The colours BIT and TASK have been introduced in the previous section. The

colour EVENT is declared to represent events accessing VSBs in an SoC frame. It is

declared as BIT colour in the top level model since all events are taken as identical.

Different from the colour TASK, an EVENT ‘1’ token represents an event arriveing

to the current VSB and an EVENT ‘0’ token indicates either an event for the current

VSB is not ready, or an event that is not relevant to the current VSB.

3.1.1 Model Description

After the introduction of colour declaration, we can now describe the model in Figure

3. The place EQ (means Event Queue) represents all incoming events waiting to be

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

responded to by the STEP. Similarly, the place TQ represents the status of all tasks

that need to be executed in the IP core. An initial token L`0 is attached to the TQ

place. The initial value ‘0’ indicates that no task is ready for execution and all tasks

are waiting for their corresponding events.

The transition EH (means Event Handler) is used to represent the event handling

execution in a STEP. It is enabled when there is at least one ‘1’ EVENT token in the

EQ place and one ‘0’ TASK token in the TQ place. The occurrence of this transition

will remove one EVENT token from the EQ place, indicating one incoming event has

been responded to by the STEP. At the same time, a ‘0’ token in the TQ place is

replaced by a ‘1’ token, indicating one more task is ready for execution. When a VSB

is designed for data processing, the possible asynchronous/synchronous data

transform which used to be performed in an asynchronous wrapper is also included by

the occurrence of the EH transition.

The EH transition will be enabled again until no more ‘0’ tokens can be found in the

TQ place. In this case, all tasks are ready for execution and further responding to the

incoming events in the event handler cannot change the status of the task queue until

some tasks are completed in the IP core.

The power control in a STEP is represented by the transition PM (means Power

Management) in the CPN model. According to A&F policy, the PM transition is

enabled only when there are at least N ‘1’ tokens in the TQ place. The occurrence of

the PM transition will toggle the token value in the Sleep place from ‘1’ to ‘0’, which

indicates the wakeup processing in the IP core. It will also add one ‘1’ token to the

load place, which means the IP core will load a new task for execution when the

wakeup processing is completed. According to the arc from the Sleep place to the PM

transition, the PM transition is only enabled when the token value in the Sleep place is

‘1’. It is such designed because A&F is useful only when the IP core is sleeping.

Disabling the execution in the PM after the IP core is activated will further reduce the

power dissipation in a VSB.

The nondeterministic incoming of events make it highly possible that several tasks

can become ready before the IP core is woken up. In this case, some scheduling

execution is necessary to select one task from all the ready ones for the IP core’s

execution. Although task scheduling is provided by many IP cores, a task manager is

designed as a component of a STEP to provide scheduling service. It is not only

because hardware scheduling can be many times faster than software scheduling, but

also because this design means both task scheduling in the STEP and wakeup

processing in the IP core are carried out in parallel for better system latency and

power dissipation.

In Figure 3, the transition TM is used to represent the execution in the task manager.

This transition is enabled when there are more than one TASK ‘1’ token in the TQ

place and one BIT ‘1’ token in the load place. Because all tasks are treated as

identical in the top level model, the occurrence of this transition will add one TASK

‘1’ token to the NTask (means New Task) place, indicating a randomly chosen task is

loaded to the IP core. At the same time, one TASK ‘0’ token is added to the TQ place

indicating the chosen task in the NTask place has already progressed to the next step.

When one TASK token is available in the NTask place, the Execution transition is

enabled and the occurrence of this transition indicates the execution of the current

task in the IP core and it will add one TASK ‘1’ token to the RT (means Result Task)

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

place. Generally speaking, the completion of one task execution will either release

some system resources like I/O port or data bus, or generate some new data or signals.

In most cases, the released resources or generated data in one VSB can work as a new

event to trigger some other task in the SoC, probably in other VSBs. Therefore, a new

component of STEP, named as output controller, is needed to prepare a new event

when the execution of the current task is completed. In the top level model, the

transition OutCt is used to represent the executions in the output controller. Its

occurrence will add one EVENT ‘1’ token to the OEQ (means Output Event Queue)

place where events will be sent to the SoC environment. The occurrence of OutCt

transition will also add one token to the Load place which enables the TM transition

to choose another task for the IP core’s execution. Note that this cycle implies an

assumption of fully sequential execution in the IP core, but can easily be extended to

situations when the IP core can handle execution concurrency.

When a new BIT token in the load place is generated but finding no TASK ‘1’ token

available in the TQ place, the Shutdown transition will be enabled since ready tasks

have all been executed. Its occurrence will toggle the token in the Sleep place to ‘1’

which means the IP core has been shut down.

3.1.2 Environmental Set Description

All places and transitions introduced so far construct the top level model of a VSB. In

order to check the behaviour of the model and verify the properties, some extra places

and transitions are added so as to simulate the asynchronous environment of an SoC.

Therefore, the entire top level model can represent an enclosed system. These places

and transitions are highlighted by dark shade so as to differentiate from their

counterparts describing a VSB.

Transition Env (means environment) is used to describe event transferring in an SoC.

The occurrence of the Env transition indicates the event generated from the current

VSB is transferred to its SoC environment. It will be used in some other VSB to

enable some task’s execution. And the execution of the task will also generate some

new events. Eventually this relay of “event transfer – task execution – event transfer”

may generate some event to enable a task in the current VSB in turn again, but the

time span cost in this relay is nondeterministic.

A CPN function P() and a transition Env1 are used to model the nondeterministic

characteristic of event relays. The CPN function P() is defined as:

fun P() = poisson (2.5)

This function uses the random number generator poisson provided by CPN Tools [8]

to generate a random integer number which follows Poisson distribution. The number

2.5 in the function declaration is the rate λ in the Poisson distribution and can be

changed according to the feature of the implementation environment.

The expression of the arc from the transition Env to the place EQ is written as “if

P()>1 then 1`1 else 1`0”. Therefore, the value of the token generated by the Env

transition’s occurrence depends on the result of P() function. If the function result is

less than 1, an EVENT ‘0’ token is added to the EQ place indicating the event relay is

not completed since an EVENT ‘0’ token can not enable the EH transition. Instead, it

will enable the Env1 transition and the latter’s occurrence will add one EVENT ‘0’

token to the OEQ place. When an EVENT type variable event is used in the

expression of arc from the OEQ place to the Env transition, the latter transition will be

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

enabled no matter what value the token in the OEQ has. Therefore, the token loop in

OEQ-Env-EQ-Env1-OEQ represents the event relay in the SoC environment and the

moment to jump out of the loop depends on the random result generated by the P()

function. When the P() result becomes bigger than 1, an EVENT ‘1’ token added to

the EQ place will enable occurrences in the current VSB. We use this token loop and

its non-deterministic exit to model the non-deterministic nature of event distribution

within an SoC and its effect on any single VSB because at this stage we have no

application-specific system level information.

3.1.3 Simulation

CPN Tools [9] is the computer aid software for CPN modelling and analysis. This

software provides easy editing, simulation, state space analysis, and performance

analysis of CPN models. In this section, we use CPN Tools to build CPN models of a

VSB and simulation and state space checking are used for analysis and error

checking. Initially we set one ‘0’ token to the Sleep place suggesting the IP core is

inactive. Constant L is set to 5, and five ‘0’ TASK tokens are given to the TQ place

indicating none of the five tasks are ready for execution. Two EVENT ‘1’ tokens are

set to the EQ place showing two incoming events are waiting to be responded to by

the STEP. Even when the two events are responded to, the IP core cannot be woken

up since N is set to 3. At the same time, two EVENT ‘0’ tokens are added to the OEQ

place indicating two events are relaying in the environment. Therefore, the activation

of the IP core needs the arrival of at least one EVENT ‘1’ token to be added to the

EQ.

With the initial marking, we can observe the behaviour of the top level model using

the simulation tool by CPN Tools. All concurrent executions in the system are shown

with simulation steps. Sometimes more than one transition is enabled in one step. This

simultaneous transition enabling describes the concurrent processing in the

corresponding system. The occurrence sequence of multi enabled transitions is

random, which represents the nondeterminism in their modelled operations. Since

different occurrence sequences may bring different markings, CPN models are highly

representative for the behaviour of a system under nondeterministic and concurrency.

(b) Step =23

(c) Step =6

(a) Step =0

Figure 4: The simulation result of the CPN model

Some typical concurrent executions are shown in Figure 4 where every enabled

transition is highlighted by a dotted rectangle. Figure 4(a) is about the concurrent

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

executions between the current VSB (The EH transition) and the environment (The

Env transition). Figure 4(b) indicates the concurrent executions among different

components of a STEP (The EH and TM transitions). The concurrent executions

between a STEP (The EH transition) and its IP core (The Execution transition) are

shown in Figure 4(c).

The simulation can also help users to correct errors in their model design. For

example, one double-headed arc is used to connect the Shutdown transition and the

TQ place because all ‘0’ TASK tokens will be checked but not consumed when the

Shutdown transition occurs. However, designers might miss the arc directing from the

Shutdown transition to the TQ place (Figure 5(a)) and the consumption of TASK ‘0’

tokens in the occurrence of Shutdown transition will make further enabling in the EH

transition impossible.

If simulation is carried out with the incorrect top level model, it will stop after a

certain number of steps because in that case no more transitions will be enabled

(called dead marking or dead lock). Therefore, a dead marking in the simulation is

used to detect an error. However, because of the randomness brought by the function

P(), this simulation termination may not happen within a few steps. Five simulations

have been carried out when the model has the given error. In these simulations, the

CPN Tools took 103, 202, 159, 394, 941 steps respectively to reach the dead marking.

Fewer designers will take thousands of steps in the simulation and if they quit in the

first several hundreds steps when 941 steps are needed to detect the error, the error

will be hidden in the design.

(a) Error Case A (b) Error Case B

Figure 5: Two Possible Errors in Top Level Model Design

Furthermore, the position of some other errors cannot be detected based on simulation

termination. In Figure 5(b), the arc directing from the OutCt transition to the Load

place in Figure 3 is changed by the arc leading from the Execution transition. This

comes from the initial thought that a load requirement should be given as soon as the

execution of the current task is complete. However, if only TASK ‘0’ tokens are

available in the TQ place, the Shutdown transition will be enabled simultaneously

with the enabling of the OutCt transition. If the Shutdown transition occurs first, the

OutCt transition is disabled which means no more executions for new events

preparation will be carried out because the IP core is inactive and the corresponding

event may be missed or duplicate sent. Unfortunately, this error cannot be found by

the method of simulation termination because the concurrent enabling of both OutCt

and Shutdown transitions will not make the model reach dead marking. And errors

like this will be more easily missing by the designers. Since simulations cannot

guarantee the finding of any particular malfunction, we need other more reliable

function tool to prove the correctness of the model.

3.1.4 State Space Checking

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

The state space tool provided by CPN Tools will check all possible executions of the

model and present the properties of the full state spaces of the model in a statistical

report. Therefore, state space checking has been used on the top level model (as well

as other CPN models in the following sections) for error checking and property

verification.

When state space checking is done on a top level containing the error marked in

Figure 5, the corresponding report is given in Table 1.

Table 1: State Space Report for CPN Model with Error A

Statistics

--

Occurrence Graph Scc Graph

 Nodes: 149 Nodes: 35

 Arcs: 387 Arcs: 80

 Secs: 0 Secs: 0

 Status: Full

 Boundedness Properties

--

 Best Integers Bounds Upper Lower

 TOP'EQ 1 4 0

 TOP'Load 1 1 0

 TOP'NTask 1 1 0

 TOP'OEQ 1 4 0

 TOP'RT 1 1 0

 TOP'Sleep 1 1 1

 TOP'TQ 1 5 5

 Best Upper Multi-set Bounds

TOP'EQ 1 2`0++4`1 TOP'Load 1 1`1

TOP'NTask 1 1`1 TOP'OEQ 1 3`0++4`1

TOP'RT 1 1`1 TOP'Sleep 1 1`0++1`1

TOP'TQ 1 5`0++4`1

 Best Lower Multi-set Bounds

TOP'EQ 1 empty TOP'Load 1 empty

TOP'NTask 1 empty TOP'OEQ 1 empty

TOP'RQ 1 empty TOP'Sleep 1 empty

TOP'TQ 1 1`0

 Home Properties

--

 Home Markings: [109]

 Liveness Properties

--

 Dead Markings: [109]

 Dead Transitions Instances: None

 Live Transitions Instances: None

A full state space is a directed graph, where there is a node for each reachable

marking and an arc for each occurring binding element. Therefore, the first part of the

state space report is state space statistics telling how large the state space is. The next

two parts of the state space report contain information about the boundedness

properties. The boundedness properties tell how many (and which) tokens a place

may hold. The best upper integer bounds for a place specify the maximal number of

tokens that can reside on each place in any reachable marking. For the place EQ, it

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

holds four EVENT ‘1’ or two EVENT ‘0’ tokens at most. The best lower integer

bounds for a place specify the minimal number of tokens that can reside on each place

in any reachable marking.

Following the boundedness properties are the home properties, which are about the

reachable property of markings and transitions in the model. A home marking is a

marking which can be reached from any reachable marking. The report of the

example model shows one home marking exists whose index is 109. A dead marking

is a marking which no binding elements are enabled. The current report shows the

home marking is a dead marking.

A transition is live if from any reachable marking we can always find an occurrence

sequence containing the transition. A transition is dead if there is no reachable

marking in which it is enabled. The report shows that all transitions in the model are

neither live nor dead. In other words, they can be reached from some initial markings

but cannot from others.

The information given in the report can help users have a more specific and thorough

understanding of their models so as to correct errors which cannot be easily found by

simulation and improve the performance of the corresponding systems.

Because no dead transition exists in the model, it means all transitions can be enabled

at least once. However the occurrence of some transition causes an abnormal marking

which makes no more transitions can be enabled since then. Since the dead marking is

a home marking, it means this abnormal marking will always happen no matter what

occurrence sequences may happen. This analysis can help the designer finally find the

error in the arc between Shutdown transition and the TQ place. When the error is

removed from the model, the corresponding state space report is given in Table 2(all

identical items with the report in Table 1 are omitted).

Table 2: State Space Report for a Correct CPN Model

Statistics

--

Occurrence Graph Scc Graph

 Nodes: 177 Nodes: 1

 Arcs: 471 Arcs: 0

 Secs: 1 Secs: 0

 Status: Full

 Boundedness Properties

--

…

 Home Properties

--

 Home Markings: All

 Liveness Properties

--

 Dead Markings: None

 Dead Transitions Instances: None

 Live Transitions Instances: All

When Error B in Figure 5 happens, the corresponding report is shown below (all

identical items with the correct model report are omitted):

Table 3: State Space Report for CPN Model with Error B
Statistics

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

Occurrence Graph Scc Graph

 Nodes: 266 Nodes: 1

 Arcs: 757 Arcs: 0

 Secs: 0 Secs: 0

 Status: Full

 Best Upper Multi-set Bounds

 TOP'NTask 1 1`1 (Identical to the correct report)

 TOP'RQ 1 4`1

No dead marking in the model means the token flow can continue forever in the

simulation and the designer cannot use the simulation termination method to find the

error. When the Best Upper Multi-set Bounds are checked, it shows the RQ places can

hold at most 4 tokens while only one token can be held in the NTask place. When a

new task suggested by the ‘1’ token is loaded in the IP core, the correct operation in

the IP core should first do the new event preparation based on the completed task, and

then try to load a new task. Therefore, the multi tokens should not happen in the RQ

place. Based on this analysis, the designer can easily find the error in the RQ place.

3.1.5 The Extension of Top Level Model

In this section, we present a top level CPN model of a VSB (including a STEP and an

IP core). Although abstract, this model clearly presents the basic architecture and

execution flow in a VSB. The integration of A&F policy for power control is also

specified in the model. Both simulation and state space function tools provided by

CPN Tools are used to check the correctness of the model.

The abstract declaration of both EVENT and TASK colours make the top level model

maintain robustness when events are specified by different concepts in various

implementations. However, it also prevents representing the execution details in the

model. For example, the top level model gives no information about how incoming

events are handled in the EH and how scheduling is carried out in the TM. Refining to

lower level models is needed to clarify the design. In these models EVENT and

TASK colours are re-declared. In the following sections, four CPN models are

designed, each of which focuses on one component of a STEP and works as the

extension of the top level CPN model.

Figure 6: Possible Hazards Brought by Concurrent Executions

During simulation, the top level model indicates all possible concurrent executions

between different parts of a VSB. Some concurrency can bring parallel processing so

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

as to reduce system latency. However, others may cause hazards which may affect a

VSB’s performance. For example, Figure 6 presents the case when both the Shutdown

and EH transitions are concurrently enabled. It indicates the case when the EH

component is handling incoming events while the IP core is shutting down. If the EH

transition occurs first, one TASK ‘0’ token in the TQ place changes to ‘1’ and the

Shutdown transition is disabled. This occurrence sequence indicates the case when a

shutdown process is interrupted by a new incoming event. However, an interruption in

a mode switching transition may cause data loss or more serious consequences in

most IP core implementations. Therefore, a new component named as Interface will

be designed to avoid interruptions when a shutdown process is ongoing. This

component, together with the event handler (EH), the power manager (PM), the task

manager (TM), the output controller (OutCt), constitutes the basic structure of a

STEP.

3.2 The CPN Model of the Event Handler Component

In this section, we try to model and specify executions in the event hander component

of a STEP. In the top level model, every occurrence of the EH transition can only

consume one EVENT token in the EQ place, which means all incoming events from

different communication Channels must wait in a queue to be responded by the STEP

and therefore arbiter(s) become indispensible when events may arrive simultaneously.

The direct use of arbiters will bring cost in both power dissipation and latency. A

better solution should enable multiple events to be handled in parallel.

Moreover, the occurrence of the EH transition in the top level model will update the

value of one task token from ‘0’ to ‘1’, which means every incoming event will make

one corresponding task ready for execution. However, this is not true in the

implementation of STEPs with multiple input Channels. Although events from the

same Channel always indicate different tasks in an IP core (otherwise two events can

be taken as one with double amount of information), events from different Channels

are highly possible to indicate the execution of the same task (but with different

information like data for operation). In this case, the consumption of one event token

may not change the value of its corresponding task token if the latter’s value has been

updated by one previous event with the same task indication.

3.2.1 A Matrix Structure of Event Handler

When we take the two problems into consideration, a matrix structure used in the

Butler coprocessor’s design [9] is a good reference for the design of the event handler

in the STEP (Figure 7).

Suppose in the current VSB, there are M tasks embedded in the IP core and S input

Channels provided by the STEP, an M*S matrix is built and the unit Ui,j (i≤M, j≤S) in

the matrix responds to the event which comes from the j
th
 Channel and the processing

in this unit will determine if task i is ready for execution in the IP core. With a matrix

structure, several events coming from a different Channel can be responded to in

parallel since the corresponding executions are carried out in different units.

If there is at least one Ui,j in the i
th
 row of the matrix indicating the i

th
 task is ready for

execution, a ready signal (which is written as Rdy for short in Figure 7) becomes

valid. All ready tasks are called candidates. One and only one candidate can be

scheduled out and loaded to the IP core for execution each time, and the ready signal

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

of the corresponding task will be withdrawn afterwards so that the task cannot be a

candidate for next scheduling.

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

Task1

Task2

Task3

TaskM

Channel1 Channel2 Channel3 ChannelS

OR Rdy3

Rdy1

Rdy2

RdyM

Figure 7: A Matrix Structure of Event Handler

The structure within every Ui,j relies on the implementation of the VSB. When the

VSB is used for data processing, the execution of a task needs the combination of

both operation codes and the data for operation. An incoming event in this case

indicates the corresponding data is available, and the operation codes which are

embedded in the IP core will be ready for execution except when they are just under

processing, or they are forbidden to be executed by other tasks in case of suspension,

interruption or synchronization etc [9]. Therefore, two 1-bit variables wait and stim

(which are written as W and S for short in Figure 7) are used in every unit of the

matrix. The wait bit will be set when the operation codes of the corresponding task are

ready for execution, and it will be reset otherwise. Similarly, the stim bit will be set

when the event (mainly the corresponding data) is accessible and it will be reset

otherwise. The ready signal for task i becomes valid (and the task becomes a

scheduling candidate) only when at least one Ui,j unit of the matrix has both stim and

wait bits set.

The matrix structure will give high expandability to the STEP. When used in different

environment or to cooperate with another IP core, the parameters of the matrix M and

S may be changed accordingly. However, the Event Handler component can be easily

adjusted by adding/deleting several units in the matrix while the entire structure keeps

the same. As every unit in the matrix structure is identical, we only present the CPN

model of a unit in this section (Figure 8).

3.2.2 Colour Set Description

When the implementation of the modelled VSB is specified as data processing, the

colour of EVENT and TASK will be re-declared. In most cases, each task is given a

unique ID number which will be used for the IP core to find the start address of the

corresponding codes in its ROM memory if needed. Therefore, the colour TASK will

be declared as:

color TASK = int with 0 .. Max

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

where Max is a constant standing for the maximum ID number used in the current

VSB.

When data is transferred among different domains with different clock frequencies, an

Asynchronous Communication Mechanism (ACM) can serve as an efficient and safe

method used in many implementations and will be used in VSB design. Because the

CPN model of an ACM has been designed in [10], an abstract DATA colour is

declared as the colour string (as the set of all text strings) whose content shown as the

DATA token value will be used to describe the property of the corresponding data.

color DATA = string

Therefore the colour EVENT is re-declared as:

color EVENT = product TASK*DATA

It means an EVENT token is composed by a TASK token and a DATA token. The

TASK token indicates which operation will be used to process the data represented by

the DATA token. The colour BIT keeps the same declaration in this model (as well as

the rest models in this paper).

Figure 8: CPN Model of One Unit in the Event Handler

3.2.3 Model Description

In Figure 8, the place Channel is used to hold EVENT tokens coming from one

channel. A group of Channel places from all units of the Matrix is the extension of the

EQ place in the top level model. Any EVENT token in this place will enable the ACM

transition. This transition represents the data transfer carried out by the STEP when an

ACM is used. The detailed description of this transition can be found in [10]. The

occurrence of this transition will generate a TASK token to the ID place, which

indicates the completion of the data preparation for the task suggested by the token

value.

Constant ID1 in Figure 8 is declared as a constant integer which represents the ID

number of the task represented by the current unit. A guard [task=ID1] is attached in

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

the upper left side of the transition Sstim (means Set stim bit). A guard is a Boolean

expression and the corresponding transition is enabled only when the Boolean

expression is true. Therefore, the Sstim transition is only enabled by a TASK token

valued in ‘1’ (ID1 is currently declared as 1). The occurrence of the Sstim transition

will update the token value in the Stim place to ‘1’ which means the data for the

execution of task1 (taski is the short expression for the task whose ID number is i) is

ready for execution. With an initial ‘1’ token available in the wait place, the transition

Candidate is enabled and the occurrence of this transition will update the token in the

Rdy place to ‘1’ which means task1 becomes a candidate for scheduling. A group of

Rdy places from all units of the Matrix is the extension of the TQ place in the top

level model.

The token value in the place Ntask indicates which task is chosen to be loaded to the

IP core. Variable ntask is declared to represent the token value in the Ntask place.

When the token value in this place becomes ‘1’, the transition selected is enabled

because task1 will be loaded to the IP core for execution. The occurrence of this

transition will reset the value of tokens in both stim and wait places and the transition

Decand (means disabled candidate) is enabled in sequence. The occurrence of the

Decand transition will reset the token value in the Rdy place to ‘0’, which means

task1 will no longer be a candidate for scheduling and the corresponding ready signal

becomes invalid.

3.2.4 Environmental Set Description

Similarly in the top level model in Figure 3, environmental places/transitions are

highlighted by dark shade in the current model. The transition Schedule is used to

represent the scheduling processing in the STEP. This transition is enabled only when

the token in the Rdy place is ‘1’ because the scheduling result will influence the

current model only when task1 is a candidate task. No matter what scheduling policy

may be implemented in the STEP, how quickly task1 can be chosen for loading after

it becomes a candidate task is nondeterministic. Therefore, a CPN function New() is

declared as follows:

 fun New()=discrete(1,5)

This function will use the random integer number generator discrete provided by CPN

Tools to generate a random integer number from 1 to 5. And the generated number

indicates the ID number of the new selected task. A guide [ntask<>ID1] (means ntask

is not equal to ID1) is attached to the Schedule transition to make sure that the

scheduling (as well as the execution of tasks in the IP core) is enabled until task1 is

chosen (after that the scheduling result will not influence the current model until the

token value in the Rdy place becomes ‘1’ again).

The execution of the selected transition will also generate two tokens, one for the new

place and the other for the new2 place. The cooperation of place new with transitions

env and env1 are used to simulate the stochastic generation of another event

corresponding to task1 from the same channel. The description of these places/

transitions can be referred to places/transitions with the same names in the top level

model. CPN function P1() (as well as P2() in the expression of arc directing from the

execution transition to the new2 place) shares the same form as the P() function in the

top level with different rate λ. The occurrence of the transition env1 represents the

incoming of another event (as well as the data) corresponding to task1 in the current

model.

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

Similarly, the cooperation of the place new2 with the transition execution is used to

simulate the execution of task1 in the IP core. When a ‘1’ token is generated in the

new2 place, it indicates the execution of task1 is complete so that the wait bit will be

set again accordingly by the occurrence of the Swait transition.

Because of the random token value given by functions P1() and P2(), either the

transition Sstim or Swait can be first enabled (or they are concurrently enabled),

which reflects the nondeterministic operations in the STEP. CPN simulation and the

verification of the correctness of the model by state space checking is give in

Appendix I.

3.3 The CPN Model of the Power Manager Component

In this section, we try to model and specify executions in the power manager

component of a STEP where A&F policy is implemented. According to the previous

section, a group of ready signals indicates the status of tasks embedded in the IP core.

And the A&F policy can be realized by counting the number of valid ready signals so

as to decide whether task accumulation is enough or not.

When tasks in an IP core are assumed to be independent from each other, there is no

pattern that can be predicted when their corresponding ready signals become valid.

The STEP must be alert to any change in ready signals so as not to miss any new valid

ready signals. On the other side, a valid ready signal will only be withdrawn by the

reset in some stim & wait bits in the Event Handler. Since the PM part in the STEP

cannot disable any ready signals after accumulation counting, the PM needs to know

which ready signals have been used in the accumulation and which are not.

Furthermore, the Matrix structure used in the Event Handler enables responding to

events from different Channels in parallel, and therefore several ready signals can

become valid simultaneously. These signals need to be arbitrated before they are

counted and added to the accumulation result.

3.3.1 Model Description

Figure 9 presents the CPN model of the PM component in a STEP when only two

example tasks are considered. Tokens’ value ‘1’ or ‘0’ in the Rdy1/Rdy2 places

indicates whether the ready signal for task1 or task2 is valid or not. A BIT token in

the En1/En2 (means Enable) places is used to record whether the corresponding ready

token has been used for accumulation. A ‘1’ token in En1/En2 place means the

corresponding ready ‘1’ token has not been used for accumulation and the

access1/access2 transition is enabled accordingly.

The occurrence of the access1/access2 transition will update the token value in the

Irdy1/Irdy2 place to ‘1’ respectively, indicating a new ready token can be counted.

The occurrence of the access1/access2 transition will also toggle the token value in

En1/En2 place to ‘0’ so that the ‘1’ token in Rdy1/Rdy2 can only enable the

access1/access2 transition any more and duplicated counting is avoided in this model.

As demonstrated in the top level model, the PM only needs to work when the IP core

is inactive. Therefore, transitions access1/access2 can be enabled only when the token

value in the STEPSleep place is ‘1’. This place is related but not the same as the Sleep

place in the top level model, and their relationship will be explained in Section 3.4.2.

Because only one accumulation value is kept in this part, all ready signals can only be

added to the accumulation value in sequence. Therefore arbiters are indispensible in

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

the current model. One easy solution is to build an arbitration array for all ready

signals like Figure 10(a). If M is the number of tasks, this solution will use
2
MC arbiters to build the sequence. Given a big number M, the number of arbiters and

corresponding logic gates will increase dramatically.

Figure 9: CPN Model of the Power Manager

Another improved solution (Figure 10 (b)) is inspired from the ring based arbiter

introduced in the multi arbiter systems section in the book of [11]. In this case, a

polling token will cycle in the arbitration system and any arbitration can only be

carried out when it gets the token. Similarly in the A&F part, a valid ready signal can

be added to the accumulation only when the polling token arrives. Therefore, no

arbitration is needed to be given to different ready signals since they do not have any

collision in polling token accessing. Although arbiters are still needed to solve the

collision between the validation of one ready signal and the arrival of the polling

token, the number of arbiters is reduced to M. Therefore this arbitration solution is

chosen in the PM design.

A
rb
it
e
r

A
rb
it
e
r

A
rb
it
e
r

Ready1

Ready2

Ready3

Ready

Sequence
OrOr

Poll

And

And

And

A
rb
it
e
r

A
rb
it
e
r

A
rb
it
e
r

And

And

And

Ready1

Ready2

Ready3
Ready

Sequence
OrOr

a b

Figure 10: Two Arbitration Solutions in the PM Part

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

In the current CPN model, the polling token is held in the Me/Me1 places and when at

least one access transition occurs, the token in the Me place becomes ‘1’ to enable the

polling accumulation. The pair of select1 and pass1 transitions indicates the operation

of polling accumulation of the ready signal for task1. If the token value in Irdy1 is ‘1’,

the availability of the polling token in the Me place will enable the transition select1.

The occurrence of the transition will first grant the ready token for accumulation, and

then pass the polling token to the Me1 place. If the token value in Irdy2 is ‘0’, the

transition pass1 will be enabled accordingly and pass the polling token directly to the

Me1 place. The occurrence of select2/pass2 transition is carried out in the similar way

and it will return the polling token to the Me place. For power saving reason, the

polling will be ended after the occurrence of select2/pass2 transition since the polling

token value is reset to ‘0’, and it will begin next time when at least one

access1/access2 transition occurs.

The arbitration between a ready signal and a polling signal is modelled by the

competition of polling token in the Me place between the access1/access2 transition

and the select1/pass1 transition. When two (or more) tokens in the Rdyi (i=1,2) places

become ‘1’, their corresponding accessi transitions will be enabled. After one accessi

transition occurs, the polling token in the place Me becomes ‘1’ and enables one of

the pair select1/pass1 transitions. Therefore, both the other accessi and one of the pair

select1/pass1 transitions are enabled concurrently. If the select1/pass1 transition

occurs first, no token is left in the Me place. The accessi transition is disabled until the

end of one round polling accumulation. This occurrence sequence reflects the

situation when the polling token is first granted by the arbiter and the valid ready

signal will be added to the accumulation result next time when the polling token

arrives. Otherwise, if the other accessi transition occurs first, the token polling will

increase the accumulation by two. This occurrence sequence reflects the situation

when the valid ready signal is first granted by the arbiter and one round of polling will

realize the accumulation of several tasks.

The or1/or2 transitions represent a logical OR gate, and the execution of one or1/or2

transition will add one token to the Queue place and move the polling token to the

Me/Me1 place and let the token polling continue. The colour in the place acc is set to

INT because the integer value of the token held in this place represents the

accumulation result. As soon as one token is available in the Queue place, the Adder

transition is enabled and the execution of this transition will increase the accumulation

by 1. One guard [acc>=N] is attached to the Fire transition to make sure one token

will be added to the Activation place only when the token value in the acc place is

greater than the accumulation limit N (N is set to 2 in the current model). The

occurrence of the Fire transition will reset the token value in the acc place to ‘0’ to

prepare for the next accumulation procedure.

3.3.2 Environmental Set Description

The environmental transition Wakeup represents the wakeup processing in the IP core

and its occurrence will set the token in the STEPSleep place to ‘0’ and all transitions

in the current model are disabled afterwards. The occurrence of this transition will

also set the tokens in both En1 and En2 places to ‘1’ so that new valid ready tokens

can access the current model when the IP core becomes inactive again.

In the left side of Figure 9, environmental transitions Execution1 and Execution2

represent the executions of task1 and task2 in the IP core respectively. These two

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

transitions can be enabled concurrently and the random occurrence of these transitions

represents the different scheduling result generated by the STEP. The occurrence of

each Execution transition will reset the token value in the corresponding Rdy place.

Assuming only two tasks are embedded in the IP core, the shutdown transition is

enabled when both tokens in the Rdyi place are ‘0’.

Environmental transitions new1 and new2 are used to change the token values in their

corresponding Rdy1/Rdy2 places. The occurrences of these transitions reflect the

generation of new events in the environment and function P() (which is also used in

the top level model) is used to make the generation of tokens in Rdyi place

stochastically. All these environmental transitions/places will generate all possible

combination of input tokens to and consume output tokens from the current system.

The correctness of the current model has been verified by state space checking in

Appendix II.

3.4 The CPN Model of the Task Manager Component

In this section, we try to model and specify executions in the task manager component

of a STEP where task scheduling is provided.

3.4.1 Priority Based Round Robin Scheduling Priority

Although many different scheduling priorities have been used in various systems, we

prefer to use a priority based round robin policy (Figure 11) in our task manager

design.

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Figure 11: Priority Based Round Robin Policy

Arrows in the left of Figure 11 keep a list of all tasks in the IP core sorted by their

priorities. A dotted arrow represents an invalid scheduling candidate (the

corresponding task is not ready for execution) and a solid arrow indicates a valid

candidate. A new scheduling will always start from the highest priority group and

towards the lowest priority group. For tasks in the same priority group, the scheduler

will use round robin policy to choose a new task so as to give all tasks in the same

group fair opportunity to be executed in the IP core.

In each priority group, the task loaded to the IP core most recently is marked as a last

task. In Figure 11, the last task in every priority group is pointed by the Begin arrow.

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

A new polling scheduling starts from the last task in the highest priority group and

checks the validation of each task in turn. The scheduling ends when the first valid

task is found. If no valid candidate can be found in this group, the scheduling point

will jump to the last task in the second highest priority group to carry out the similar

exploration. When no valid task can be found even in the lowest priority group, it

means no task is ready for execution, and a particular ID number (for example 0 or

255) will be fetched to the IP core.

3.4.2 The CPN Model for Scheduling

A CPN model (Figure 12) is built to show the scheduling execution when four

example tasks are involved. In Figure 12, tokens in places Rdyi (i=1,2,3,4) represent

the status of the corresponding ready signals. In this example, task1 and task2 have

the same priority which is higher than that of task3 and task4. The initial tokens in the

model indicate only task3 is a valid candidate. Task1 and task3 are set as the last task

in each group and one ‘1’ token is given to places Last1 and Last3 each while tokens

in places Last2 and Last4 are ‘0’. Places Me, MeN and Mei (i=1,2,3,4) are used to

hold the polling token for the round robin scheduling in each group. A new

scheduling is enabled by a ‘1’ token in the Me place and simulation results in Figure

13 show the scheduling procedure (a dotted rectangle in each figure is used to indicate

an enabled transition).

Figure 12: CPN Model for Scheduling

The token in the place Me will first enable the scheduling in the high priority group.

When task1 serves as the last task in this group, the transition PollStart1 is enabled.

The occurrence of this transition will add one token to the Me2 place because task2 is

the first task for checking. With the initial token ‘0’ in the Rdy2 place (indicating

task2 is not a valid candidate), the pass2 transition is enabled (Figure 13(a)) and the

occurrence of this transition will pass the polling token to the place Me1.

As the polling token finds the last task in the group (task1) is not a valid candidate, it

means no valid candidate contains in this group and the scheduling will move on to

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

the next priority group. Therefore, the NextG1 instead of pass1 transition is enabled

by the token in the Me1 place (Figure 13(b)).

The occurrence of the NextG1 transition will generate one token to the MeN place

which enables transition PollStart3 because task3 is the last task in the group (Figure

13(c)). After the occurrence of the PollStart3 transition, the polling token is moved to

the Me4 place and task4 is under checking. With one ‘0’ token in the Rdy4 place, the

transition pass4 is enabled (Figure 13(d)) and one token is added to the Me3 place

after this transition’s occurrence. Since the token value in the Rdy3 place is ‘1’, the

transition Found3 is enabled which indicates one valid candidate task is found (Figure

13(e)).

g

fed

cba

g

fed

cba

Figure 13: Simulation Result of the Scheduling

The token in the place Ntask is used to save the scheduling result. As soon as a token

is generated in the Taski (i=1,2,3,4) place, the corresponding NTaski (i=1,2,3,4)

transition is enabled (Figure 13(f)) and its occurrence will update the token value in

the NTask place with the corresponding ID number of the valid candidate, and move a

‘0’ token to the Me place which indicates the completion of scheduling (Figure 13

(g)).

Given any combination of token values in the four Rdyi places, the scheduling flow is

similar. Next, we only discuss the scheduling flow when all tokens in the Rdyi places

are ‘0’. The first several steps are similar to the case introduced in Figure 13(a) to (d).

Since the token ‘0’ in Rdy3 place indicates task3 is not a valid candidate task, the

NextG3 transition is enabled (the dotted rectangle in Figure 14) because no candidate

task can be found in this priority group. Without any lower priority group available, it

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

means no task can be executed in the IP core. Therefore, the occurrence of NextG3

(or NextG4 when task4 is the last task in the group) will reset the token value in

NTask place by ‘0’ to indicate the IP core no more new task can be loaded.

In Figure 14, transitions and places with same index number (for example, transitions

PollStart1, Found1 share the same index 1) can be seen as a basic unit of the model

(the dotted cycle in Figure 14). Therefore, the current model can be easily extended to

represent a scheduler when more tasks are involved, or when tasks are divided into

more groups.

Figure 14: No Ready Task Found in Scheduling

3.4.3 The CPN Model of the Task Manager

Although transitions and places in Figure 13 can successfully carry out a priority

based round robin scheduling, some more places and transitions are needed to

guarantee the safety and correctness of scheduling every time. Figure 15 gives one

example model of the Task Manager in the STEP and its test environment when only

two tasks (and one priority group) is concerned in the scheduling.

The environmental place within the dotted circle is named LoadEn whose token ‘1’

represents the task loading request from the IP core. A ‘1’ token in the LoadEn place

will enable the Load transition in the right side of the figure and the occurrence of the

transition indicates the task loading execution in the IP core. One token whose value

is the ID number of the new task will be added to the Ltask (means Loaded task) place

in consequence.

Tokens in the Rdy1/Rdy2 places indicate whether task1/task2 is a valid candidate task

or not. As external events may come to the current VSB at any time, the two tokens in

the Rdy1 and Rdy2 places may become ‘1’ simultaneously when the Load transition

is enabled. In this case, new scheduling execution and task loading execution are

carried out simultaneously. Suppose the new scheduling will update the token value in

the Ntask place from ‘1’ to ‘2’, whether task1 or task2 will be loaded to the IP core

depends on whether the scheduling transitions or the loading transition will occur

first. The uncertainty in task loading will confuse the IP core and may cause serious

consequence. A safer design will enable scheduling only when no load request is

given. In Figure 15, transitions Access1 and Access2 can be enabled only when the

token value in the LoadEn place is ‘0’. Therefore, when the token in the LoadEn place

becomes ‘1’, no further token change in Rdy1/Rdy2 place can influence the token

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

value in the LTask place. As task scheduling is of no use when the IP core is in its off

mode, another enabling precondition of transitions access1 and access2 is the

existence of ‘0’ token in the STEPSleep place.

Figure 15: The Full CPN Model of the Task Manager

The tokens held in places Irdy1 and Irdy2 indicate the status of ready signals for the

usage of scheduling. Variables irdy1, irdy2, rdy1 and rdy2 are used to indicate the

token value in the place with the same name (But capital first character) respectively.

With the guard [irdy1<>rdy1] and [irdy2<>rdy2] in the access1/access2 transitions,

scheduling will only begin when some changes happen to the ready signals. The

occurrence of these transitions will update the token value in the Me place to ‘1’. The

scheduling executions are modelled by places and transitions within the dotted

rectangle which has been introduced in Section 3.4.2 in detail.

According to the model, when more than one ready token is toggled concurrently, one

Assessi (i=1,2) transition and some scheduling transition within the dotted rectangle

may be enabled concurrently. The different occurrence sequences of these transitions

reflect the competition between the validation of a ready signal and the arrival of the

round robin polling signal. However, given no valid LoadEn signal is generated from

the IP core, different occurrence sequences of these transitions will achieve the same

scheduling result.

The occurrence of the Load transition will not only load the ID number of the new

task to the IP core, but also update the status in the STEP. After the task that is loaded

to the IP core, the corresponding unit in the EH will be reset and the task will not

serve as a candidate for scheduling any more. In Figure 15, the expression of the arc

from the place Rdy1 to the transition Load is written as “if Ntask=1 then 1`0 else

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

1`rdy1”. Therefore, if the token value in the place Ntask is ‘1’ which means when

task1 is loaded to the IP core, the token value in the place Rdy1 will be reset to ‘0’.

Otherwise, the token value stays the same as before. Furthermore, any token reset in

the Rdy1/Rdy2 place will enable the Access1/Access2 transition when the IP core

starts execution about the new task and the token value in the LoadEn place becomes

‘0’. Therefore, new scheduling will be carried out in parallel with the execution in the

IP core and a new task can be prepared in the Ntask place in advance of the next load

request from the IP core.

The occurrence of the Load transition will also reset the last task in every priority

group if it changes. And if no task is found to be ready for execution, the occurrence

of the Load transition will reset the last task to its default status (for example, in the

current model, task2 is the default last task in its group).

3.4.4 Environmental Set Description

When one token is added to the Ltask place, the environment transition Start is

enabled which indicates the IP core starts the execution of the new chosen task.

Therefore one token ‘1’ is given to the place current, which indicates that one task is

under processing. The occurrence of the Start transition will give one ‘0’ token to the

LoadEn place, which means the task loading procedure is completed. One function

P1() (which is the same as the P1() function in the EH unit model in Figure 8) is used

in the arc expression from the execution transition to the current place. This function

is used to simulate the stochastic processing behaviour in the IP core. When the token

value in the current place becomes ‘0’, the current task’s execution is completed. And

the token value in the LoadEn place will be updated to ‘1’ and new tasks will be

loaded afterwards. If the taken value in the Ltask place is ‘0’ which means no more

valid task has been loaded to the IP core, the Start transition can be seen to indicate

the shutdown operation in the IP core and the execute transition can be seen to

indicate task accumulation procedure. Similarly, the complete transition indicates the

activation of the IP core in this case.

The environmental transition Env1/Env2 uses the function P() (which has been

introduced in the top level model) to simulate the generation of new event which will

in turn validate the corresponding ready signals again. All these environmental

transitions/places will generate all possible combinations of input tokens to and

consume output tokens from the current system. State space has been done to prove

the correctness of the current model (Appendix III).

3.5 The CPN Model of the Output Controller and Interface Components

When the wakeup and shutdown executions in an IP core are not taken as

instantaneous, it is highly possible that some events come during the same time. As

indicated in Section 3.1.6, executions in the STEP about these events may interrupt

the mode switching transitions in an IP core so as to bring serious consequences. The

interface design in this section is to avoid possible hazard brought by STEP

executions.

As indicated in the top level model, the output controller will generate a new event

when the execution of the current task is completed. If the new task stimulated by the

event generated from the output controller locates in the same VSB, the new task can

become ready for execution much faster than the case when the new task is located in

the other VSB. It is because both asynchronous/synchronous transform and data

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

transfer between two VSBs are omitted. The CPN Model in this section tries to

specify this difference.

Figure 16 presents the CPN model of the Interface and Output Control part in the

STEP where only two example tasks (task1 and task2) are concerned. The

declarations of the four token colours involved in the figure, BIT, EVENT, TASK and

DATA, are the same as those given in the EH CPN model in Section 3.2.

The relationship among Fire and wakeup transition as well as the Activation and

STEPSleep places have been introduced in the PM in Section 3.3 (the accumulation

limit is set to 1 to simplify the current model). The token in the STEPSleep place

indicates the command given by the PM while that in the Sleep place indicates the

mode of the IP core. Transitions Waking and Shutting represent the wakeup and

shutdown executions in the IP core respectively. A ‘0’ token in the STEPSleep place

will enable the Waking transition and the latter’s occurrence will update the token in

the Sleep place to ‘0’, which indicates the completion of the wakeup execution in the

IP core. In Section 3.3 and 3.4, the token in the STEPSleep place instead of that in the

Sleep place is used to enable/disable the executions in the PM and TM components.

Therefore, the PM execution can be terminated and the TM execution can start as

soon as the beginning of the wakeup execution, which can reduce system latency as

well power dissipation.

Transitions ACM, as well as places Ch3, Rdy and ID, are used to represent the

executions in the EH component. The token value in the Rdy place indicates the ID

number of the ready task. Different from the model in Section 3.2, the occurrence of

the ACM transition will also produce a DATA color token to the DIN2 place, which

indicates the data for the corresponding task’s execution.

Figure 16: The CPN Model of the Output Controller and Interface Components

The occurrence of the wakeup transition will also generate one token to the LoadEn

place so that the scheduling result can be loaded to the LTask place. A ‘1’ token in the

Read place indicates the read signal from the IP core, and it will enable the

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

Load1/Load2 transition based on the ID number of the new task. The occurrence of

the Execution1/Execution2 transition represents the execution of task1/task2

respectively in the IP core, and it will consume the DATA token in the DIN1/DIN2

place indicating the data processing involved in the corresponding task execution.

When the task execution is completed, a TASK token is generated to the RT place

indicating the ID number of the completed task and a DATA token is put to the

DOUT place indicating the result data generated by the task execution.

When the task execution is completed, the output controller starts event routing,

which means to decide which task is supposed to use the result data and which VSB

the task (called target task later) locates in. In the current model, we suppose the

target task for task1 is task3 which is located in a different VSB and that for task2 is

task1 which is in the current VSB. When task1 is the completed task, the transition

OutCt1 is enabled. The occurrence of this transition generates an EVENT token in the

OCh3 place, which represents the generation of a new event that will be sent to the

other VSB with Output Channel 3. The environmental transition OBlock represents

the event relay in the environment, and it will generate an EVENT token in the Ch3

place which means a new event comes to the current VSB. The corresponding task

can become ready only after the completion of data transfer/transform represented by

the occurrence of the ACM transition.

On the other hand when task2 is the completed task, the transition OutCt2 is enabled.

Its occurrence simply move the DATA token to the DIN1 place because it represents

simple data transfer within the same time domain. Therefore task1, as the target task

of task2, can become ready much faster than the previous case. The occurrence of

OutCt1/OutCt2 transition will also add one token to the Complete place, which

indicates the completion of output control. A BIT token is added to the LoadEn place

in sequence to require the new task from the TM component. If the value of the token

moved to the Ltask place is ‘0’, it indicates no active task can be found. In this case,

the shutdown transition is enabled whose occurrence will toggle the token value in the

STEPSleep to ‘1’. This token value change will enable the shutting transition and the

token value in the Sleep place will be changed to ‘1’ after the latter’s occurrence.

In Section 3.1.6, we present the hazard brought by concurrent execution of the event

handling in the STEP and the shutdown processing in the IP core. This hazard is

avoided by the design in the current model. When the shutdown processing is carried

out in the IP core, the token value in the STEPSleep place is ‘1’ and that in the Sleep

place is ‘0’. Suppose there are enough events come during this period and the Fire

transition occurs to generate a ‘1’ token in the Activation place. However, the wakeup

transition cannot be enabled because it requires a ‘1’ token in the Sleep place. When

the wakeup transition is disabled, no token will be sent to the LoadEn place.

Therefore, no new task will be loaded to the IP core so as to interrupt the shutdown

processing.

4. CONCLUSION AND FUTURE WORK

This paper presents the modelling and design work of an asynchronous coprocessor

named as STEP in a framework of a virtual self-timed block (VSB) under GALS

architecture. This coprocessor is designed to provide effective power control and fast

event handling for task executions in an IP core. Hierarchical CPN models have been

used to develop the STEP design from basic functional specifications to detailed

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

signals and data processing. CPN simulation and state space checking have been used

to testify the correctness of our design.

Although strong in modelling concurrent and nondeterministic executions in a real

system, CPN has limited power for time based analysis, and can not provide concrete

verification about the efficiency of a VSB in power saving for an SoC. In the future,

another modelling tool will be used to simulate the execution of an SoC built by

VSBs so as to verify the power efficiency of our design.

The current model of STEP can only give power on-off control to an IP core, the

future work is to extend the model of the power manager component of a STEP to

give dedicate mode switching control to an IP core with multiple operation modes.

REFERENCES

[1] S.Moore, G.Taylor, R.Mullins, P.Robinson, “Point to Point GALS

Interconnect”, ASYNC 2002.

[2] H.R.Simpson, “Four-slot fully asynchronous communication mechanism”, IEE

Proceedings, Computers and Digital Techniques, 1990

[3] L.Benini, A.Bogliolo, G. De Micheli, “A survey of Design Techniques for

System-level Dynamic Power Management” IEEE Transactions on VLSI June

2000.

[4] Yuan.Chen, Fei.Xia, Alex.Yakovlev, “Virtual Self-timed Block for Systems-

On-Chip”, ISCAS, 2006

[5] Yuan Chen, Fei Xia, Delong Shang and Alex Yakolev “Stochastic Modeling

Of Dynamic Power Management Policies And Analysis Of Their Power-

Latency Tradeoffs”, 4
th
 UKEF, Southampton, 2008

[6] K.Jensen, L.M.Kristensen, L.Wells, “Coloured Petri Nets and CPN Tools for

modeling and validation of concurrent systems”, International Journal on

Software Tools for Technology Transfer, 2007.

[7] J. Cortadella, K. Gorgonio, F. Xia, A. Yakovlev, “Automating Synthesis of

Asynchronous Communication Mechanisms”. ACSD 2005

[8] CPN Tools, http://wiki.daimi.au.dk/cpntools/cpntools.wiki

[9] E.Campbell, H.Simpson, “Patent – Integrated circuits for multitasking support

in single or multiple processor networks”, World Intellectual Property

Organisation WO 97/22926, June 1997

[10] K. Gorgonio, F. Xia, “Modeling and Verifying Asynchronous Communication

Mechanisms using Coloured Petri Nets”, Technical Report, NCL-EECE-MSD-

TR-2008-127, School of EECE, Newcastle University, March 2008

[11] D.J.Kinniment, “Synchronization and Arbitration in Digital Systems”, John

Wiley & Sons, Ltd, 2007.

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

APPENDIX

Appendix I State Space Report for Event Handler Part of a STEP

This state space report is about the CPN model of Event Handler in Figure 8:

Statistics

Occurrence Graph Scc Graph

 Nodes: 31 Nodes: 6

 Arcs: 44 Arcs: 5

 Secs: 0 Secs: 0

 Status: Full

 Boundedness Properties

 Best Integers Bounds Upper Lower

 Matrix'Channel 1 1 0

 Matrix'NTask 1 1 1

 Matrix'Stim 1 1 1

 Matrix'Wait 1 1 1

 Matrix'new 1 1 0

 Matrix'new2 1 1 0

 Matrix'Rdy 1 1 1

 Best Upper Multi-set Bounds

 Matrix'Channel 1 1`(1,"DATA1") Matrix'Wait 1 1`0++1`1

 Matrix'Stim 1 1`0++1`1 Matrix'new 1 1`0++1`1

 Matrix'new2 1 1`0++1`1 Matrix'Rdy 1 1`0++1`1

 Matrix'NTask 1 1`1++1`2++1`3++1`4++1`5

 Best Lower Multi-set Bounds

 Matrix'Channel 1 empty Matrix'Wait 1 empty

 Matrix'Stim 1 empty Matrix'new 1 empty

 Matrix'new2 1 empty Matrix'Rdy 1 empty

 Matrix'NTask 1 empty

 Home Properties

 Home Markings: None

 Liveness Properties

 Dead Markings: None

 Dead Transitions Instances: None

 Live Transitions Instances: Matrix'env1

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

Appendix VI: State Space Report for A&F Part in a STEP

This state space report is about the CPN model of A&F part in Figure 9.

Statistics

--

Occurrence Graph Scc Graph

 Nodes: 58 Nodes: 29

 Arcs: 104 Arcs: 49

 Secs: 0 Secs: 0

 Status: Full

 Boundedness Properties

 Best Integers Bounds Upper Lower

 AF'Cand 1 2 0

 AF'En1 1 1 1

 AF'En2 1 1 1

 AF'Irdy1 1 1 1

 AF'Irdy2 1 1 1

 AF'Me 1 1 0

 AF'Me1 1 1 0

 AF'Rdy1 1 1 1

 AF'Rdy2 1 1 1

 AF'Sleep 1 1 1

 AF'Wakeup 1 1 0

 AF'acc 1 1 1

 AF'grant1 1 1 0

 AF'grant2 1 1 0

 Best Upper Multi-set Bounds

AF'Cand 1 2`1 AF'En1 1 1`0++1`1

AF'En2 1 1`0++1`1 AF'Irdy1 1 1`0++1`1

AF'Irdy2 1 1`0++1`1 AF'Me 1 1`0++1`1

AF'Me1 1 1`1 AF'Rdy1 1 1`0++1`1

AF'Rdy2 1 1`0++1`1 AF'Sleep 1 1`0++1`1

AF'Wakeup 1 1`1 AF'acc 1 1`0++1`1++1`2

AF'grant1 1 1`1 AF'grant2 1 1`1

 Best Lower Multi-set Bounds

AF'Cand 1 empty AF'En1 1 empty

AF'En2 1 empty AF'Irdy1 1 empty

AF'Irdy2 1 empty AF'Me 1 empty

AF'Me1 1 empty AF'Rdy1 1 empty

AF'Rdy2 1 empty AF'Sleep 1 empty

AF'Wakeup 1 empty AF'acc 1 empty

AF'grant1 1 empty AF'grant2 1 empty

 Home Properties

 Home Markings: None

 Liveness Properties

 Dead Markings: None

 Dead Transitions Instances: None

 Live Transitions Instances: AF'new1 AF'new2

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

According to the Best Integers Bounds in the report, all places other than the Cand

place contain no more than one token in any cases, which indicates the correct

operation in this part without any confusion. The availability of multiple tokens in the

Cand place happens when more than one ready signal become valid simultaneously.

The upper bound of the token in this place is M (M=2 is the number of tasks in the

model) means the accumulation of simultaneous validated ready signals will not be

conflicted with that of later validated ready signals.

The Best Upper Multi-set Bound of the acc place indicates the token value in this

place will be no more than N (N=2 is the accumulation limit) which means the

activation signal will be generated without delay when the accumulation limit is

achieved. The Best Upper Multi-set Bound of the Me place indicates only one polling

accumulation is carried out each time because it holds at most ‘1’ token. The

availability of ‘0’ token in the Me place indicates polling accumulation can have a rest

when no more ready signal becomes valid.

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

Appendix VII: State Space Report for Task Manager Part in a STEP

This state space report is about the CPN model of Task Manager part in Figure 15:

Statistics

Occurrence Graph Scc Graph

 Nodes: 873 Nodes: 201

 Arcs: 2521 Arcs: 468

 Secs: 1 Secs: 0

 Status: Full

Boundedness Properties

 Best Integers Bounds Upper Lower

 TM'Irdy1 1 1 1

 TM'Irdy2 1 1 1

 TM'Last1 1 1 1

 TM'Last2 1 1 1

 TM'LoadEn 1 1 0

 TM'Ltask 1 1 0

 TM'Me 1 1 0

 TM'Me1 1 1 0

 TM'Me2 1 1 0

 TM'NTask 1 1 1

 TM'Rdy1 1 1 1

 TM'Rdy2 1 1 1

 TM'Task1 1 1 0

 TM'Task2 1 1 0

 TM'current 1 1 0

 Best Upper Multi-set Bounds

TM'Irdy1 1 1`0++1`1 TM'Irdy2 1 1`0++1`1

TM'Last1 1 1`0++1`1 TM'Last2 1 1`0++1`1

TM'LoadEn 1 1`0++1`1 TM'Ltask 1 1`0++1`1++1`2

TM'Me 1 1`0++1`1 TM'Me1 1 1`1

TM'Me2 1 1`1 TM'NTask 1 1`0++1`1++1`2

TM'Rdy1 1 1`0++1`1 TM'Rdy2 1 1`0++1`1

TM'Task1 1 1`1 TM'Task2 1 1`1

TM'current 1 1`0++1`1

 Best Lower Multi-set Bounds

TM'Irdy1 1 empty TM'Last1 1 empty

TM'Irdy2 1 empty TM'Last2 1 empty

TM'LoadEn 1 empty TM'Ltask 1 empty

TM'Me 1 empty TM'Me1 1 empty

TM'Me2 1 empty TM'NTask 1 empty

TM'Rdy1 1 empty TM'Rdy2 1 empty

TM'Task1 1 empty TM'Task2 1 empty

TM'current 1 empty

 Home Properties

 Home Markings: None

 Liveness Properties

 Dead Markings: None

 Dead Transitions Instances: None

Yuan Chen: Virtual Self-timed Block Design using Coloured Petri Nets

NCL-EECE-MSD-TR-2008-134, Newcastle University

 Live Transitions Instances: TM'execute 1

