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ABSTRACT 

Systematic power management techniques have not been a focus of GALS (Globally 

Asynchronous Locally Synchronous) design although GALS provides an ideal 

environment for controlling individual IP blocks for better power performance. In this 

work an event driven coprosessor STEP, which provides an Accumulation & Fire 

power/latency control for IP blocks in a GALS setting, is modelled and designed. A 

model-based design (MBD) method was employed in the motivation, specification, 

design derivation and verification process. The resulting asynchronous STEP 

architecture will provide fast event handling with low power consumption. 

 

1. INTRODUCTION 

With the fast development of semiconductor technologies, all components of a 

computer system can now be integrated into a single chip forming a System on Chip 

(SoC). In order to provide more functions to the on chip system and satisfy the fast 

manufacture and update requirements of the market, engineers prefer to design a chip 

by integrating several predesigned and reusable hardware modules or blocks (called 

IP cores or IP blocks). GALS (Globally Asynchronous Locally Synchronous) 

architecture [1] is used to arrange IP cores with different clock frequencies into a 

SoC, and an asynchronous wrapper [2] is used with every IP core to make the latter a 

self-timed island in asynchronous SoC environment. All synchronous signals and data 

generated by an IP core will be made asynchronous by the wrapper, and then be 

transferred to another IP core through shared memory such as an ACM (Asynchronous 

Communication Mechanism) [3]. Most studies about GALS as well as asynchronous 

wrappers tried to use buffers of different sizes as well as different types of ACMs to 

increase the throughput of asynchronous communication and reduce the latency of the 

entire GALS based SoC. 

Higher degrees of transistor integration also made complex electronic devices 

portable or wearable. However, the high frequency and chip density in new designs 

not only bring high execution performance, but also make battery-based systems more 

energy hungry. Low power technologies at different levels have been explored for 

decades. Some of these, like clock gating [4], power gating [5] as well as MTCMOS 

(Multi Threshold CMOS) [6] have been used in IP core design so as to reduce their 

dynamic and/or leakage power dissipation. The supply voltage and/or clock frequency 

can also be varied to optimize power [28]. With these low power technologies, an IP 
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core can be operated in different modes. The multiple modes provide greater 

flexibility to an IP core since it is possible to switch operation mode to satisfy 

different performance requirements of high throughput or low power dissipation. 

However, mode switching transitions bring overheads in both power and latency to 

system performances. In some cases, the power cost in mode switching transitions is 

even higher than that when an IP core is operating [7]. Therefore, mode switching 

transition arrangement becomes a system level problem and many papers about DPM 

(Dynamic Power Management) studied various schemes or policies about when and 

how to carry out mode switching transitions so as to minimize an IP core’s power 

dissipation.  

Although the GALS architecture has great potential in power saving, system level 

power management has not been considered by previous GALS design. Without a 

global clock system, an SoC built in GALS architecture can easily power on/off an IP 

core or switch it to another mode without interfering the clocks of other clock 

domains. There have been many studies about system latency and throughput in a 

GALS based SoC, but how to introduce power control/management into such 

architectures so as to achieve system performance in low power is still a relatively 

unexplored area. 

Higher integration changes embedded software design as well. When more and more 

IP cores have been integrated into one chip, task execution in an IP core becomes 

nondeterministic and concurrent. In other words, the start moment of a task’s 

execution is unpredictable, and it is highly possible that two or more tasks become 

ready for execution simultaneously. The concurrency in task execution brings 

competition for resources, like limited battery energy, finite memory space or 

communication bandwidth, etc. Nondeterminism in task execution requires faster or 

more real-time resource allocation. 

Event-driven programming can be used in on-chip software design. An event is 

modelled as something happening or happened and should be responded to by a task. 

It may mean the availability of request signal or data, or idleness of input/output ports, 

or enough energy in the battery, depending on different implementations. In this case, 

resource allocation in an SoC amounts to event handling. A task in an IP core can be 

executed only after its corresponding event has been handled by the core. Therefore, 

well-designed dedicated event handlers, which can quickly and properly respond to 

incoming events, have great importance to system performance in both latency and 

power.  

When on-chip nondeterminism and concurrency are taken into consideration, the 

synchronous or software based event handler from previous research [8] becomes 

unsatisfactory. First of all, the operation of synchronous circuits (as well as the 

software running in synchronous circuits) is controlled by clock signals. When several 

events come within one clock cycle, they will be taken as simultaneous by 

synchronous circuits and can only be handled in the next clock cycle. If metastability 

[9] happens due to the unnecessary accumulation of events, synchronous circuits may 

require large costs to resolve it. Secondly, the nondeterminism of event arrival means 

the event handler is kept on all the time. Although the power consumption in the 

handler can be small compared with that in the IP, given high clock frequencies and 

enough time extension, the total energy cost cannot be ignored. 
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On the other hand, asynchronous circuits have certain advantages in event handler 

design. Without clock control, an asynchronous event handler can respond to new 

incoming events without delay, the probability of metastability can be greatly 

reduced. Furthermore no power is wasted in an asynchronous handler when no state 

change happens in the system. 

Therefore, an asynchronous coprocessor can be designed and used in a GALS based 

SoC. This coprocessor will not only do asynchronous/synchronous data transform and 

asynchronous communication for its IP core (thus replacing the traditional wrapper), 

but also provide event handling and power management for the core. With the 

coprocessor, every IP core can work as an event driven domain in a highly 

nondeterministic and concurrent SoC environment. This coprocessor is called as Self-

Timed Event Processor (or STEP in short) and the combination of the coprocessor and 

its IP will work as a “Virtual” Self-timed Block (or VSB in short) in the GALS 

architecture (Figure 1) [10]. 
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Figure 1: Self-timed Event Processor and Virtual Self-timed Block 

When multiple functions are integrated into a VSB, the VSB design becomes 

complicated because it should consider not only the design of all function modules, 

but also the cooperation of these modules in terms of power and latency. The Model 

Based Design (MBD) method, adapted from control system design, has been used in 

our research as the design flow of a VSB (Figure 2). As power control is the essential 

function provided by a STEP to its corresponding IP core, the identification of a 

proper control policy for power is the first step of our design. Stochastic models are 

used for this identification since these mathematical models are widely used in 

previous research and highly representative of actual systems. This study is reported 

in Section 2 of this paper where a policy called Accumulation & Fire (A&F) shows 

high efficiency and easy realization in power control. 
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When the control policy has been identified, the functions of a VSB can be specified 

(Section 3). Following this specification, the design of a VSB will be carried out by 

modelling its behaviour from abstract execution among basic modules in a top level 

model to detailed processing within every module in low level models. Coloured Petri 

Nets (CPN) is used for the model-based design of a VSB because its strong 

representations of systems in which concurrency, communication, and 

synchronisation play a major role [26]. This design process is described in Section 4. 

And this section also includes the analysis and verification of the VSB design in CPN 

where concurrent executions in a VSB are highlighted. 

In Section 5, an example SoC constructed by four VSBs is built in MATLAB 

Simulink. The simulation of this SoC will investigate the dynamic performance of the 

modelled system. Conclusion and future work are given in Section 6. 

Control Policy Identification

System Specification

System Design

System Analysis/Verification

System Simulation

Design Flow Modelling Tools

Stochastic Models

Coloured Petri Nets

(CPN)

MATLAB Simulink

 
Figure 2: The Design Flow of a VSB 

2. POWER CONTROL IDENTIFICATION 

In this study we concentrate on simple on/off Dynamic Power Management (DPM) 

policies and do not directly touch DVS, DFS or DVFS type policies for several 

reasons. First, it is becoming apparent that with the continued reduction of operating 

voltage and even sub-threshold vdd the scope for adjusting vdd dynamically becomes 

smaller. Also, with the reduction of threshold voltages leakage power is becoming 

more and more important, thus increasing the importance of on/off policies. 

Furthermore, the methods developed in this study can be adapted for use in any multi-

mode IP situation including when some of these modes involve different voltages or 

frequencies, thus we do not necessarily lose generality with regard to DVS, DFS, etc. 

In this paper we refer to on/off DPM as simply DPM. 

In order to reduce the power dissipation in a processor or IP core, different DPM 

policies have been proposed. Some policies try to predict the arrival moment of events 

so as to make the power on/off decision [11, 12], and these policies are generally 

called prediction policies. Others take both events incoming and task processing as 

stochastic and mainly Markov processes, and use optimistic method to derive mode 

transition decisions [13, 14]. The achievement of either accurate prediction or 

optimized control by these policies highly depends on the complexity of power 

control circuits. On the other hand, DPM policies with simple design and easy 

implementation are more attractive to industry manufacture. For example, in the ultra 

low power DSP processor designed for electrocardiogram (ECG) application [15], 50 

ECG samples will be accumulated every time before activating the DSP for 

processing. This policy is called Accumulation and Fire policy or A&F policy in 
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short, which is similar to the integrate and fire mechanism found in biological neural 

systems [16].  

When A&F policy is implemented, a sleeping IP core will not be activated 

immediately when a new event arrives (and its corresponding task is ready for 

processing). Instead we accumulate ready tasks by continuously accumulating 

incoming events. The accumulation will continue until a certain limit N is reached (N 

is called accumulation limit). The IP core is then woken up to batch process 

accumulated tasks. When N=1, a single ready task can trigger a sleeping core and 

A&F policy in this case is the “greedy” policy [17] or “eager” policy [13]. Compared 

with previous policies, A&F has a much simpler hardware realization. In this section, 

we build Markov models to analyze the A&F policy. Based on the results of this 

analysis, we then argue that A&F has such desirable properties as efficiency of power 

saving and flexibility of power-latency tradeoffs. 

2.1 Stochastic Model for A&F Policy 

The transition-state-flow diagram of the Markov model for the implementation of 

A&F policy in an on-off IP core is shown in Figure 3.  
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Figure 3: Markov Model for A&F Policy 

The mode transition from mode on to off is normally called shutdown and the 

opposite transition is called wakeup accordingly. In this stochastic model, we assume 

the event handling in a STEP to be instantaneous. Therefore, any new incoming event 

will add one ready task to Task Queue (TQ), which represents the queue of all tasks 

ready for processing. The length of TQ is used to present the status of the IP core in 

the model. A star mark (*) is attached to the TQ length to represent the status of the IP 

core when the latter is in its off mode. For example, state 0* indicates no task is ready 

(because no event comes) and the core is in its off mode. Similar to previous models 

[13, 14, 17], λ and µ are used as the arrival rate of external events and the task 

execution rate in the core respectively. In a Markov model like Figure 3, all these 

executions (and the wakeup and shutdown executions) are assumed to follow Poisson 

distribution, which is caused by the high abstraction of model representation [7]. 

The incoming of a new event makes one task ready, and it will drive the IP core to 

state 1*. Similarly, each further incoming event will make the IP core move one state 

to the right until it reaches the (N-1)* state. Because N in this model represents the 

accumulation limit, one more event coming in this case will trigger a wakeup 
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transition, which is represented by state wu(N). Parameter δ is used to describe the 

non instantaneous time cost in wakeup transitions (and γ is used to describe that in 

shutdown transitions, which is introduced later). Because no task processing is done 

in the wakeup transition, the task accumulation may increase if some new events 

come when the wakeup transition is in progress. In our model, state wu(N+i) is used 

to represent the state when an arbitrary number of events come during the wakeup 

transition. The usage of infinite number of wakeup states wu(N+i) enables our model 

to describe the behaviour of the IP core in greater accuracy. 

Suppose there are (N+i) tasks accumulated when the wakeup transition is completed, 

the IP core moves to the state N+i for task processing. When any task execution is 

completed, the core will move one state to the left. When the execution of the last task 

in the TQ is completed (system leaving state 1), a shutdown transition starts, 

described by shutdown states sd0, sd1 etc. The IP core can move to its off mode when 

no more than N events come during the shutdown transition, otherwise the core has to 

be woken up immediately when the shutdown transition is completed. 

2.2 Power and Latency Analysis of A&F Policy 

For a case study, we chose parameters (Table 1) of a Fuji Hard Disk Driver Processor, 

which was also used in previous papers [7, 18].  

Table 1: Parameters for FUJI MHF 2043AT 

Poff(W) Pon(W) Twu(s) Tsd(s) Pwu(W) Psd(W) 

0.13 0.95 1.61 0.67 2.85 0.54 

In Table 1, Poff, Pon, Pwu and Psd are the power consumption of the IP core in off and 

on modes, and wakeup and shutdown transitions respectively. And the reciprocal 

value of Twu and Tsd in Table 1 are used as δ and γ respectively. For better presentation 
and analysis, the execution speed µ in the core is normalized to 1, and the arrival rate 

λ and the transition rates δ and γ are normalized accordingly. It can be seen that the 

average power consumption of Pwu and Psd (1.695W) is higher than that for task 

processing (0.95W). 
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Figure 4: Power and Latency Performance of A&F Policy 

In Figure 4(a), we compare the average power consumption (P ) when different values 

of N are implemented. When N=1, the greedy policy can only help the IP core reduce 

its power consumption when the event arrival rate is no more than λ1 (λ1 is called 

effective range of the greedy policy). It is because dense event incoming (λ>λ1) will 
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cause frequent wakeup and shutdown transitions which will cost more power 

overheads than power saving. With the increase of N, A&F policy can not only 

increase its effective range continuously, but also reduces P  for across this range. 

Furthermore, the flexibility of A&F policy can be demonstrated by Figure 4(b) where 

system latency caused by A&F policy with different N values is presented. In many 

SoC design, some deadline is given to a task and the execution of the task is thought 

to add system latency only when it can not be completed before the deadline 

requirement. Therefore different from previous studies, we use the concept of 

Average Percentage of Deadline Violation (APDV) to measure system latency. When 

the deadline for every task in the IP core is set to 10 times the average execution 

period (Deadline=10/µ), Figure 4(b) shows APDV value will increase with the rise of 

N. Therefore, different power-latency tradeoff in A&F policy is realized by simply 

adjusting the value of N. This characteristic makes A&F policy more flexible than 

other DPM policies. 

Actually A&F policy shows its efficiency and flexibility not only when it is 

cooperated with on/off IP cores, but also when it is implemented with IP cores with 

multiple modes for finer control [19]. Furthermore, the simple A&F policy requires 

little event processing power for a STEP compared with for instance a prediction 

policy. Therefore, the A&F policy that is specified in this section will serve as the 

power control mechanism used in our STEP design. 

 

3. VSB Specification 

According to the stochastic models given in Section 2, an IP core can be represented 

by two factors: Tasks and Modes. Although an infinite length of task queue is 

assumed in the stochastic model analysis, an IP core can only provide a finite number 

of task services. A mode defines the power dissipation as well as the processing speed 

in the core. With such knowledge, we can give a basic functional specification of a 

VSB in Figure 5. 

 
Figure 5: The Specification of a VSB 

Although Petri Nets (PN) were used by previous studies to specify different types of 

ACM [25], we prefer to use high level Coloured Petri Nets (CPN) to give the 

specification of a VSB in a more concise way. Similarly as the basic Petri Nets (PN), 

CPN uses places to indicate states of the modelled system by means of ellipses (or 

circles) and uses transitions to indicate operations in the system by means of 

rectangles. For example two places TQ and Sleep, and two transitions STEP and 

IPCore are used in Figure 5. Places and transitions are connected by a set of directed 

arrows, which are called arcs. 
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A place in a CPN/PN model is used to hold tokens, which are represented by the small 

dots next to each place. An arbitrary distribution of tokens in places is called a 

marking. Different from PN, each token in CPN is attached with some data value 

(called token colour). The data value may be of an arbitrarily complex type. For a 

given place, all tokens must share the same colour. This colour is called the colour set 

of the place which is written in the right bottom corner of the place. 

In CPN, two operators ++ and ` are used for the construction of a multi-set consisting 

of token colours. The infix operator ` takes a nonnegative integer to specify the 

number of appearances of the element provided as the right argument. The ++ takes 

two multi-sets as arguments and returns their union (sum). For example, the tokens 

2`0++3`1 in the TQ place describe two tokens with colours (values) of ‘0’ and three 

tokens with value of ‘1’ respectively (In this paper, a pair of quotations ‘’ will be used 

to quote a colour value when it may be confused with the token number). 

The VSB specified in Figure 5 presents an on-off IP core under A&F power control. 

Two colours have been declared in this figure. Colour BIT is declared to describe 

binary information and have only values ‘0’ and ‘1’. It is the set colour of the place 

Sleep. Initially a ‘1’ token is given to the Sleep place (The initial token of a place is 

described in the upper right side of the place), which indicates the IP core is in its off 

mode.  

The other colour declared in the figure is called TASK, which represents tasks that can 

be executed in the IP core. In this high-level specification, all tasks are taken as 

identical and the TASK colour is declared as BIT colour whose token value represents 

whether the task is ready for processing (value ‘1’) or not (value ‘0’). The TASK 

colour is the set colour of the TQ place (means Task Queue). Since an IP core can 

only perform a finite number of tasks, two integer constants L and M represent the 

total number of tasks of the core and the number of valid tasks of the core 

respectively. Therefore, the initial marking of M`1++(L-M)`0 in the TQ place 

indicates initially M out of L tasks in the core are ready for processing. When M and L 

are specified as 3 and 5 respectively, the token held in the TQ becomes 2`0++3`1. 

A transition is enabled if and only if each of its input places contains at least the 

number of tokens prescribed by the expression of the corresponding input arc. When a 

transition is enabled, the corresponding move may take place, which is called the 

occurrence of the transition. As a consequence, tokens from the input places will be 

removed from the input places and added to the output places after the execution of an 

occurrence.  

The STEP transition is used to describe the power/task control given to the IP core, 

i.e. the actions performed by the STEP. The expression in the arc from the Sleep place 

to the STEP transition is written as 1`1, which means this transition is only enabled 

when the token value in the Sleep place is ‘1’. It indicates the power control is given 

to the IP core only when it is in its off mode. The TQ place and the STEP transition 

are connected by a double-headed arc. A double headed arc is shorthand for two 

directed arcs in opposite directions between two nodes which have the same arc 

expression. The integer constant N (N≤L) is used to represent the accumulation limit 

of A&F policy which is implemented in the STEP. Therefore, when N is specified to 

2, the STEP transition is enabled (which is highlighted by a dotted rectangle) and its 

occurrence will change the token colour in the Sleep place to ‘0’. This occurrence 

indicates the IP core is activated when there are at least N tasks accumulated. 



 

Yuan Chen: Modelling and Design of a Low Power Event Processor 

NCL-EECE-MSD-TR-2008-136, Newcastle University 

When the token in the Sleep place becomes ‘0’, the IPCore transition is enabled and 

its occurrence will first reset all ‘1’ tokens in the TQ place to ‘0’, and then toggle the 

token in the Sleep place to ‘1’. This occurrence describes the processing of all ready 

tasks in the activated IP core, and the shutting down of the core afterwards when no 

tasks are ready. 

 
Figure 6: New Specification of a VSB 

Although the model in Figure 5 specifies the basic function in a STEP and an IP core 

in a VSB, it only represents an isolated computation block without interactions with 

its environment. In Figure 6, we present the relationship between a VSB and its SoC 

environment. Transitions InEnv and OutEnv represent the SoC environment and dark 

shade is used in these two places so as to differentiate them from other 

places/transitions which represent a VSB. The occurrence of the InEnv transition will 

update a ‘0’ token in the TQ place to ‘1’, which represents some task provided by the 

IP core is requested by an event coming from the environment. 

One place RT is added in this figure, and the token held in this place represents the 

result of task executions in an IP core. Any token in this place will enable the OutEnv 

transition, which describes the effect of the execution in the current VSB to its 

environment. 

Therefore, the specification in Figure 5 presents the essential processing in a VSB: A 

STEP will accumulate at least N tasks to activate a sleeping IP core, and an active IP 

core will shut down itself when all task executions are completed. This specification 

will inspire the VSB design and analysis in Section 4. 

4. VSB DESIGN AND ANALYSIS IN CPN 

In Section 2 and 3, we assume the event handling processing in a STEP is 

instantaneous. Therefore, no representation of event handling is given in the 

specification. Besides, the VSB presented in the specification is isolated from its SoC 

environment. All these simplifications will be removed in the VSB design in this 

section. A top-down design will be realized by a group of hierarchical CPN models of 

a VSB. We will first give a top level model to present all necessary components in a 

VSB and their connections, and then extend the design of every component in 

different detailed CPN models. 

4.1 The Top Level CPN Model of a VSB architecture design 
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Figure 7: Top Level CPN Model of a VSB 

Figure 7 is the top level CPN model of a VSB. Three colours are declared in this 

model. The colours BIT and TASK have been introduced in the previous section. The 

colour EVENT is declared to represent events accessing VSBs in an SOC frame. It is 

declared as BIT colour in the top level model since all events are taken as identical. 

Different from the colour TASK, an EVENT ‘1’ token represents an event arriveing 

to the current VSB and an EVENT ‘0’ token indicates either an event for the current 

VSB is not ready, or an event that is not relevant to the current VSB. 

4.1.1 Model Description 

After the introduction of colour declaration, we can now describe the model in Figure 

7. The place EQ (means Event Queue) represents all incoming events waiting to be 

responded to by the STEP. Similarly, the place TQ represents the status of all tasks 

that need to be executed in the IP core. An initial token L`0 is attached to the TQ 

place. The initial value ‘0’ indicates that no task is ready for execution and all tasks 

are waiting for their corresponding events. 

The transition EH (means Event Handler) is used to represent the event handling 

execution in a STEP. It is enabled when there is at least one ‘1’ EVENT token in the 

EQ place and one ‘0’ TASK token in the TQ place. The occurrence of this transition 

will remove one EVENT token from the EQ place, indicating one incoming event has 

been responded to by the STEP. At the same time, a ‘0’ token in the TQ place is 

replaced by a ‘1’ token, indicating one more task is ready for execution. When a VSB 

is designed for data processing, the possible asynchronous/synchronous data 

transform which used to be performed in an asynchronous wrapper is also included by 

the occurrence of the EH transition. 

The EH transition will be enabled again until no more ‘0’ tokens can be found in the 

TQ place. In this case, all tasks are ready for execution and further responding to the 

incoming events in the event handler cannot change the status of the task queue until 

some tasks are completed in the IP core.  

The power control in a STEP is represented by the transition PM (means Power 

Management) in the CPN model. According to A&F policy, the PM transition is 

enabled only when there are at least N ‘1’ tokens in the TQ place. The occurrence of 

the PM transition will toggle the token value in the Sleep place from ‘1’ to ‘0’, which 

indicates the wakeup processing in the IP core. It will also add one ‘1’ token to the 
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load place, which means the IP core will load a new task for execution when the 

wakeup processing is completed. According to the arc from the Sleep place to the PM 

transition, the PM transition is only enabled when the token value in the Sleep place is 

‘1’. It is such designed because A&F is useful only when the IP core is sleeping. 

Disabling the execution in the PM after the IP core is activated will further reduce the 

power dissipation in a VSB. 

The nondeterministic incoming of events make it highly possible that several tasks 

can become ready before the IP core is woken up. In this case, some scheduling 

execution is necessary to select one task from all the ready ones for the IP core’s 

execution. Although task scheduling is provided by many IP cores, a task manager is 

designed as a component of a STEP to provide scheduling service. It is not only 

because hardware scheduling can be many times faster than software scheduling, but 

also because this design means both task scheduling in the STEP and wakeup 

processing in the IP core are carried out in parallel for better system latency and 

power dissipation. 

In Figure 7, the transition TM is used to represent the execution in the task manager. 

This transition is enabled when there are more than one TASK ‘1’ token in the TQ 

place and one BIT ‘1’ token in the load place. Because all tasks are treated as 

identical in the top level model, the occurrence of this transition will add one TASK 

‘1’ token to the NTask (means New Task) place, indicating a randomly chosen task is 

loaded to the IP core. At the same time, one TASK ‘0’ token is added to the TQ place 

indicating the chosen task in the NTask place has already progressed to the next step.  

When one TASK token is available in the NTask place, the Execution transition is 

enabled and the occurrence of this transition indicates the execution of the current 

task in the IP core and it will add one TASK ‘1’ token to the RT (means Result Task) 

place. Generally speaking, the completion of one task execution will either release 

some system resources like I/O port or data bus, or generate some new data or signals. 

In most cases, the released resources or generated data in one VSB can work as a new 

event to trigger some other task in the SoC, probably in other VSBs. Therefore, a new 

component of STEP, named as output controller, is needed to prepare a new event 

when the execution of the current task is completed. In the top level model, the 

transition OutCt is used to represent the executions in the output controller. Its 

occurrence will add one EVENT ‘1’ token to the OEQ (means Output Event Queue) 

place where events will be sent to the SoC environment. The occurrence of OutCt 

transition will also add one token to the Load place which enables the TM transition 

to choose another task for the IP core’s execution. Note that this cycle implies an 

assumption of fully sequential execution in the IP core, but can easily be extended to 

situations when the IP core can handle execution concurrency. 

When a new BIT token in the load place is generated but finding no TASK ‘1’ token 

available in the TQ place, the Shutdown transition will be enabled since ready tasks 

have all been executed. Its occurrence will toggle the token in the Sleep place to ‘1’ 

which means the IP core has been shut down. 

4.1.2 Environmental Set Description 

All places and transitions introduced so far construct the top level model of a VSB. In 

order to check the behaviour of the model and verify the properties, some extra places 

and transitions are added so as to simulate the asynchronous environment of an SoC. 

Therefore, the entire top level model can represent an enclosed system. These places 
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and transitions are highlighted by dark shade so as to differentiate from their 

counterparts describing a VSB. 

Transition Env (means environment) is used to describe event transferring in an SoC. 

The occurrence of the Env transition indicates the event generated from the current 

VSB is transferred to its SoC environment. It will be used in some other VSB to 

enable some task’s execution. And the execution of the task will also generate some 

new events. Eventually this relay of “event transfer – task execution – event transfer” 

may generate some event to enable a task in the current VSB in turn again, but the 

time span cost in this relay is nondeterministic. 

A CPN function P() and a transition Env1 are used to model the nondeterministic 

characteristic of event relays. The CPN function P() is defined as: 

fun P() = poisson (2.5)  

This function uses the random number generator poisson provided by CPN Tools [21] 

to generate a random integer number which follows Poisson distribution. The number 

2.5 in the function declaration is the rate λ in the Poisson distribution and can be 

changed according to the feature of the implementation environment. 

The expression of the arc from the transition Env to the place EQ is written as “if 

P()>1 then 1`1 else 1`0”. Therefore, the value of the token generated by the Env 

transition’s occurrence depends on the result of P() function. If the function result is 

less than 1, an EVENT ‘0’ token is added to the EQ place indicating the event relay is 

not completed since an EVENT ‘0’ token can not enable the EH transition. Instead, it 

will enable the Env1 transition and the latter’s occurrence will add one EVENT ‘0’ 

token to the OEQ place. When an EVENT type variable event is used in the 

expression of arc from the OEQ place to the Env transition, the latter transition will be 

enabled no matter what value the token in the OEQ has. Therefore, the token loop in 

OEQ-Env-EQ-Env1-OEQ represents the event relay in the SoC environment and the 

moment to jump out of the loop depends on the random result generated by the P() 

function. When the P() result becomes bigger than 1, an EVENT ‘1’ token added to 

the EQ place will enable occurrences in the current VSB. We use this token loop and 

its non-deterministic exit to model the non-deterministic nature of event distribution 

within an SoC and its effect on any single VSB because at this stage we have no 

application-specific system level information. 

4.1.3 Simulation 

CPN Tools [21] is the computer aid software for CPN modelling and analysis. This 

software provides easy editing, simulation, state space analysis, and performance 

analysis of CPN models. In this section, we use CPN Tools to build CPN models of a 

VSB and simulation and state space checking are used for analysis and error 

checking. Initially we set one ‘0’ token to the Sleep place suggesting the IP core is 

inactive. Constant L is set to 5, and five ‘0’ TASK tokens are given to the TQ place 

indicating none of the five tasks are ready for execution. Two EVENT ‘1’ tokens are 

set to the EQ place showing two incoming events are waiting to be responded to by 

the STEP. Even when the two events are responded to, the IP core cannot be woken 

up since N is set to 3. At the same time, two EVENT ‘0’ tokens are added to the OEQ 

place indicating two events are relaying in the environment. Therefore, the activation 

of the IP core needs the arrival of at least one EVENT ‘1’ token to be added to the 

EQ. 
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With the initial marking, we can observe the behaviour of the top level model using 

the simulation tool by CPN Tools. All concurrent executions in the system are shown 

with simulation steps. Sometimes more than one transition is enabled in one step. This 

simultaneous transition enabling describes the concurrent processing in the 

corresponding system. The occurrence sequence of multi enabled transitions is 

random, which represents the nondeterminism in their modelled operations. Since 

different occurrence sequences may bring different markings, CPN models are highly 

representative for the behaviour of a system under nondeterministic and concurrency. 

Some typical concurrent executions are shown in Figure 8 where every enabled 

transition is highlighted by a dotted rectangle. Figure 8 (a) is about the concurrent 

executions between the current VSB (The EH transition) and the environment (The 

Env transition). Figure 8(b) indicates the concurrent executions among different 

components of a STEP (The EH and TM transitions). The concurrent executions 

between a STEP (The EH transition) and its IP core (The Execution transition) are 

shown in Figure 8(c). 

The simulation can also help users to correct errors in their model design. For 

example, one double-headed arc is used to connect the Shutdown transition and the 

TQ place because all ‘0’ TASK tokens will be checked but not consumed when the 

Shutdown transition occurs. However, designers might miss the arc directing from the 

Shutdown transition to the TQ place (Figure 9) and the consumption of TASK ‘0’ 

tokens in the occurrence of Shutdown transition will make further enabling in the EH 

transition impossible.  

(b) Step =23

(c) Step =6

(a) Step =0

 
Figure 8: The simulation result of the CPN model 

If simulation is carried out with the incorrect top level model, it will stop after a 

certain number of steps because in that case no more transitions will be enabled 

(called dead marking or dead lock). Therefore, a dead marking in the simulation is 

used to detect an error. However, because of the randomness brought by the function 

P(), this simulation termination may not happen within a few steps. Five simulations 

have been carried out when the model has the given error. In these simulations, the 

CPN Tools took 103, 202, 159, 394, 941 steps respectively to reach the dead marking. 

Since simulations cannot guarantee the finding of any particular malfunction, we need 

other more reliable function tool to prove the correctness of the model. 
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Figure 9: A Possible Error in Top Level Model Design 

4.1.4 State Space Checking 

The state space tool provided by CPN Tools will check all possible executions of the 

model and present the properties of the full state spaces of the model in a statistical 

report. Therefore, state space checking has been used on the top level model (as well 

as other CPN models in the following sections) for error checking and property 

verification. 

When state space checking is done on a top level containing the error marked in 

Figure 9, the corresponding report is given in Table 2. 

Table 2: State Space Report for CPN Model with an Error 

Statistics 

-------------------------------------------------------------------- 

Occurrence Graph   Scc Graph 

    Nodes:  149     Nodes:  35 

    Arcs:   387     Arcs:   80 

    Secs:   0     Secs:   0 

    Status: Full  

 

 Boundedness Properties 

--------------------------------------------------------------------  

  Best Integers Bounds    Upper      Lower 

  TOP'EQ 1                4          0 

  TOP'Load 1              1          0 

  TOP'NTask 1             1          0 

  TOP'OEQ 1               4          0 

  TOP'RT 1                1          0 

  TOP'Sleep 1             1          1 

  TOP'TQ 1                5          5 

 

  Best Upper Multi-set Bounds 

TOP'EQ 1            2`0++4`1   TOP'Load 1          1`1 

TOP'NTask 1         1`1   TOP'OEQ 1           3`0++4`1 

TOP'RT 1            1`1   TOP'Sleep 1         1`0++1`1 

TOP'TQ 1            5`0++4`1  

   

  Best Lower Multi-set Bounds 

TOP'EQ 1            empty   TOP'Load 1          empty 

TOP'NTask 1         empty   TOP'OEQ 1           empty 

TOP'RQ 1            empty   TOP'Sleep 1         empty 

TOP'TQ 1            1`0  

 

 Home Properties 

-------------------------------------------------------------------- 

  Home Markings:  [109] 

 

 Liveness Properties 

-------------------------------------------------------------------- 

  Dead Markings:  [109] 
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  Dead Transitions Instances: None 

  Live Transitions Instances: None 

 

A full state space is a directed graph, where there is a node for each reachable 

marking and an arc for each occurring binding element. Therefore, the first part of the 

state space report is state space statistics telling how large the state space is. The next 

two parts of the state space report contain information about the boundedness 

properties. The boundedness properties tell how many (and which) tokens a place 

may hold. The best upper integer bounds for a place specify the maximal number of 

tokens that can reside on each place in any reachable marking. For the place EQ, it 

holds four EVENT ‘1’ or two EVENT ‘0’ tokens at most. The best lower integer 

bounds for a place specify the minimal number of tokens that can reside on each place 

in any reachable marking. 

Following the boundedness properties are the home properties, which are about the 

reachable property of markings and transitions in the model. A home marking is a 

marking which can be reached from any reachable marking. The report of the 

example model shows one home marking exists whose index is 109. A dead marking 

is a marking which no binding elements are enabled. The current report shows the 

home marking is a dead marking. 

A transition is live if from any reachable marking we can always find an occurrence 

sequence containing the transition. A transition is dead if there is no reachable 

marking in which it is enabled. The report shows that all transitions in the model are 

neither live nor dead. In other words, they can be reached from some initial markings 

but cannot from others. 

The information given in the report can help users have a more specific and thorough 

understanding of their models so as to correct errors which cannot be easily found by 

simulation and improve the performance of the corresponding systems. 

Because no dead transition exists in the model, it means all transitions can be enabled 

at least once. However the occurrence of some transition causes an abnormal marking 

which makes no more transitions can be enabled since then. Since the dead marking is 

a home marking, it means this abnormal marking will always happen no matter what 

occurrence sequences may happen. This analysis can help the designer finally find the 

error in the arc between Shutdown transition and the TQ place. When the error is 

removed from the model, the corresponding state space report is given in Table 3(all 

identical items with the report in Table 2 are omitted). 

Table 3: State Space Report for a Correct CPN Model 

Statistics 

-------------------------------------------------------------------- 

Occurrence Graph   Scc Graph 

    Nodes:  177     Nodes:  1 

    Arcs:   471     Arcs:   0 

    Secs:   1     Secs:   0 

    Status: Full  

 

 Boundedness Properties 

-------------------------------------------------------------------- 

… 

 Home Properties 

-------------------------------------------------------------------- 

  Home Markings:  All 
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 Liveness Properties 

-------------------------------------------------------------------- 

  Dead Markings:  None 

  Dead Transitions Instances: None 

  Live Transitions Instances: All  

4.1.5 The Extension of Top Level Model 

In this section, we present a top level CPN model of a VSB (including a STEP and an 

IP core). Although abstract, this model clearly presents the basic architecture and 

execution flow in a VSB. The integration of A&F policy for power control is also 

specified in the model. Both simulation and state space function tools provided by 

CPN Tools are used to check the correctness of the model. 

The abstract declaration of both EVENT and TASK colours make the top level model 

maintain robustness when events are specified by different concepts in various 

implementations. However, it also prevents representing the execution details in the 

model. For example, the top level model gives no information about how incoming 

events are handled in the EH and how scheduling is carried out in the TM. Refining to 

lower level models is needed to clarify the design. In these models EVENT and 

TASK colours are re-declared. In the following sections, four CPN models are 

designed, each of which focuses on one component of a STEP and works as the 

extension of the top level CPN model. 

 

Figure 10: Possible Hazards Brought by Concurrent Executions 

During simulation, the top level model indicates all possible concurrent executions 

between different parts of a VSB. Some concurrency can bring parallel processing so 

as to reduce system latency. However, others may cause hazards which may affect a 

VSB’s performance. For example, Figure 10 presents the case when both the 

Shutdown and EH transitions are concurrently enabled. It indicates the case when the 

EH component is handling incoming events while the IP core is shutting down. If the 

EH transition occurs first, one TASK ‘0’ token in the TQ place changes to ‘1’ and the 

Shutdown transition is disabled. This occurrence sequence indicates the case when a 

shutdown process is interrupted by a new incoming event. However, an interruption in 

a mode switching transition may cause data loss or more serious consequences in 

most IP core implementations. Therefore, a new component named as Interface will 

be designed to avoid interruptions when a shutdown process is ongoing. This 
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component, together with the event handler (EH), the power manager (PM), the task 

manager (TM), the output controller (OutCt), constitutes the basic structure of a 

STEP. 

4.2 The CPN Model of the Event Handler Component 

In this section, we try to model and specify executions in the event hander component 

of a STEP. In the top level model, every occurrence of the EH transition can only 

consume one EVENT token in the EQ place, which means all incoming events from 

different communication Channels must wait in a queue to be responded by the STEP 

and therefore arbiter(s) become indispensible when events may arrive simultaneously. 

The direct use of arbiters will bring cost in both power dissipation and latency. A 

better solution should enable multiple events to be handled in parallel. 

Moreover, the occurrence of the EH transition in the top level model will update the 

value of one task token from ‘0’ to ‘1’, which means every incoming event will make 

one corresponding task ready for execution. However, this is not true in the 

implementation of STEPs with multiple input Channels. Although events from the 

same Channel always indicate different tasks in an IP core (otherwise two events can 

be taken as one with double amount of information), events from different Channels 

are highly possible to indicate the execution of the same task (but with different 

information like data for operation). In this case, the consumption of one event token 

may not change the value of its corresponding task token if the latter’s value has been 

updated by one previous event with the same task indication. 

4.2.1 A Matrix Structure of Event Handler 

When we take the two problems into consideration, a matrix structure used in the 

Butler coprocessor’s design [22] is a good reference for the design of the event 

handler in the STEP (Figure 11). 
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Figure 11: A Matrix Structure of Event Handler 

Suppose in the current VSB, there are M tasks embedded in the IP core and S input 

Channels provided by the STEP, an M*S matrix is built and the unit Ui,j (i≤M, j≤S) in 

the matrix responds to the event which comes from the j
th
 Channel and the processing 

in this unit will determine if task i is ready for execution in the IP core. With a matrix 
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structure, several events coming from a different Channel can be responded to in 

parallel since the corresponding executions are carried out in different units. 

If there is at least one Ui,j in the i
th
 row of the matrix indicating the i

th
 task is ready for 

execution, a ready signal (which is written as Rdy for short in Figure 11) becomes 

valid. All ready tasks are called candidates. One and only one candidate can be 

scheduled out and loaded to the IP core for execution each time, and the ready signal 

of the corresponding task will be withdrawn afterwards so that the task cannot be a 

candidate for next scheduling. 

The structure within every Ui,j relies on the implementation of the VSB. When the 

VSB is used for data processing, the execution of a task needs the combination of 

both operation codes and the data for operation. An incoming event in this case 

indicates the corresponding data is available, and the operation codes which are 

embedded in the IP core will be ready for execution except when they are just under 

processing, or they are forbidden to be executed by other tasks in case of suspension, 

interruption or synchronization etc [22]. Therefore, two 1-bit variables wait and stim 

(which are written as W and S for short in Figure 11) are used in every unit of the 

matrix. The wait bit will be set when the operation codes of the corresponding task are 

ready for execution, and it will be reset otherwise. Similarly, the stim bit will be set 

when the event (mainly the corresponding data) is accessible and it will be reset 

otherwise. The ready signal for task i becomes valid (and the task becomes a 

scheduling candidate) only when at least one Ui,j unit of the matrix has both stim and 

wait bits set. 

The matrix structure will give high expandability to the STEP. When used in different 

environment or to cooperate with another IP core, the parameters of the matrix M and 

S may be changed accordingly. However, the Event Handler component can be easily 

adjusted by adding/deleting several units in the matrix while the entire structure keeps 

the same. As every unit in the matrix structure is identical, we only present the CPN 

model of a unit in this section (Figure 12). 

4.2.2 Colour Set Description 

When the implementation of the modelled VSB is specified as data processing, the 

colour of EVENT and TASK will be re-declared. In most cases, each task is given a 

unique ID number which will be used for the IP core to find the start address of the 

corresponding codes in its ROM memory if needed. Therefore, the colour TASK will 

be declared as: 

color TASK = int with 0 .. Max 

where Max is a constant standing for the maximum ID number used in the current 

VSB.  

When data is transferred among different domains with different clock frequencies, an 

Asynchronous Communication Mechanism (ACM) can serve as an efficient and safe 

method used in many implementations and will be used in VSB design. Because the 

CPN model of an ACM has been designed in [23], an abstract DATA colour is 

declared as the colour string (as the set of all text strings) whose content shown as the 

DATA token value will be used to describe the property of the corresponding data.  

color DATA = string 

Therefore the colour EVENT is re-declared as: 
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color EVENT = product TASK*DATA 

It means an EVENT token is composed by a TASK token and a DATA token. The 

TASK token indicates which operation will be used to process the data represented by 

the DATA token. The colour BIT keeps the same declaration in this model (as well as 

the rest models in this paper). 

 

Figure 12: CPN Model of One Unit in the Event Handler 

4.2.3 Model Description 

In Figure 12, the place Channel is used to hold EVENT tokens coming from one 

channel. A group of Channel places from all units of the Matrix is the extension of the 

EQ place in the top level model. Any EVENT token in this place will enable the ACM 

transition. This transition represents the data transfer carried out by the STEP when an 

ACM is used. The detailed description of this transition can be found in [23]. The 

occurrence of this transition will generate a TASK token to the ID place, which 

indicates the completion of the data preparation for the task suggested by the token 

value. 

Constant ID1 in Figure 12 is declared as a constant integer which represents the ID 

number of the task represented by the current unit. A guard [task=ID1] is attached in 

the upper left side of the transition Sstim (means Set stim bit). A guard is a Boolean 

expression and the corresponding transition is enabled only when the Boolean 

expression is true. Therefore, the Sstim transition is only enabled by a TASK token 

valued in ‘1’ (ID1 is currently declared as 1). The occurrence of the Sstim transition 

will update the token value in the Stim place to ‘1’ which means the data for the 

execution of task1 (taski is the short expression for the task whose ID number is i) is 

ready for execution. With an initial ‘1’ token available in the wait place, the transition 

Candidate is enabled and the occurrence of this transition will update the token in the 

Rdy place to ‘1’ which means task1 becomes a candidate for scheduling. A group of 

Rdy places from all units of the Matrix is the extension of the TQ place in the top 

level model. 
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The token value in the place Ntask indicates which task is chosen to be loaded to the 

IP core. Variable ntask is declared to represent the token value in the Ntask place. 

When the token value in this place becomes ‘1’, the transition selected is enabled 

because task1 will be loaded to the IP core for execution. The occurrence of this 

transition will reset the value of tokens in both stim and wait places and the transition 

Decand (means disabled candidate) is enabled in sequence. The occurrence of the 

Decand transition will reset the token value in the Rdy place to ‘0’, which means 

task1 will no longer be a candidate for scheduling and the corresponding ready signal 

becomes invalid. 

4.2.4 Environmental Set Description 

Similarly in the top level model in Figure 7, environmental places/transitions are 

highlighted by dark shade in the current model. The transition Schedule is used to 

represent the scheduling processing in the STEP. This transition is enabled only when 

the token in the Rdy place is ‘1’ because the scheduling result will influence the 

current model only when task1 is a candidate task. No matter what scheduling policy 

may be implemented in the STEP, how quickly task1 can be chosen for loading after 

it becomes a candidate task is nondeterministic. Therefore, a CPN function New() is 

declared as follows: 

                 fun New()=discrete(1,5) 

This function will use the random integer number generator discrete provided by CPN 

Tools to generate a random integer number from 1 to 5. And the generated number 

indicates the ID number of the new selected task. A guide [ntask<>ID1] (means ntask 

is not equal to ID1) is attached to the Schedule transition to make sure that the 

scheduling (as well as the execution of tasks in the IP core) is enabled until task1 is 

chosen (after that the scheduling result will not influence the current model until the 

token value in the Rdy place becomes ‘1’ again). 

The execution of the selected transition will also generate two tokens, one for the new 

place and the other for the new2 place. The cooperation of place new with transitions 

env and env1 are used to simulate the stochastic generation of another event 

corresponding to task1 from the same channel. The description of these places/ 

transitions can be referred to places/transitions with the same names in the top level 

model. CPN function P1() (as well as P2() in the expression of arc directing from the 

execution transition to the new2 place) shares the same form as the P() function in the 

top level with different rate λ. The occurrence of the transition env1 represents the 

incoming of another event (as well as the data) corresponding to task1 in the current 

model. 

Similarly, the cooperation of the place new2 with the transition execution is used to 

simulate the execution of task1 in the IP core. When a ‘1’ token is generated in the 

new2 place, it indicates the execution of task1 is complete so that the wait bit will be 

set again accordingly by the occurrence of the Swait transition. 

Because of the random token value given by functions P1() and P2(), either the 

transition Sstim or Swait can be first enabled (or they are concurrently enabled), 

which reflects the nondeterministic operations in the STEP. CPN simulation and state 

space checking has been done to prove the correct design of the current model. 

4.3 The CPN Model of the Power Manager Component 
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In this section, we try to model and specify executions in the power manager 

component of a STEP where A&F policy is implemented. According to the previous 

section, a group of ready signals indicates the status of tasks embedded in the IP core. 

And the A&F policy can be realized by counting the number of valid ready signals so 

as to decide whether task accumulation is enough or not. 

When tasks in an IP core are assumed to be independent from each other, there is no 

pattern that can be predicted when their corresponding ready signals become valid. 

The STEP must be alert to any change in ready signals so as not to miss any new valid 

ready signals. On the other side, a valid ready signal will only be withdrawn by the 

reset in some stim & wait bits in the Event Handler. Since the PM part in the STEP 

cannot disable any ready signals after accumulation counting, the PM needs to know 

which ready signals have been used in the accumulation and which are not. 

Furthermore, the Matrix structure used in the Event Handler enables responding to 

events from different Channels in parallel, and therefore several ready signals can 

become valid simultaneously. These signals need to be arbitrated before they are 

counted and added to the accumulation result. 

4.3.1 Model Description 

Figure 13 presents the CPN model of the PM component in a STEP when only two 

example tasks are considered. Tokens’ value ‘1’ or ‘0’ in the Rdy1/Rdy2 places 

indicates whether the ready signal for task1 or task2 is valid or not. A BIT token in 

the En1/En2 (means Enable) places is used to record whether the corresponding ready 

token has been used for accumulation. A ‘1’ token in En1/En2 place means the 

corresponding ready ‘1’ token has not been used for accumulation and the 

access1/access2 transition is enabled accordingly. 

 

Figure 13: CPN Model of the Power Manager 

The occurrence of the access1/access2 transition will update the token value in the 

Irdy1/Irdy2 place to ‘1’ respectively, indicating a new ready token can be counted. 
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The occurrence of the access1/access2 transition will also toggle the token value in 

En1/En2 place to ‘0’ so that the ‘1’ token in Rdy1/Rdy2 can only enable the 

access1/access2 transition any more and duplicated counting is avoided in this model. 

As demonstrated in the top level model, the PM only needs to work when the IP core 

is inactive. Therefore, transitions access1/access2 can be enabled only when the token 

value in the STEPSleep place is ‘1’. This place is related but not the same as the Sleep 

place in the top level model, and their relationship will be explained in Section 4.4.2. 

Because only one accumulation value is kept in the PM, all valid ready signals can 

only be added to the accumulation value in sequence. Therefore arbiters are 

indispensible in the current model. We choose the ring based arbiter introduced in 

[24] for the arbiter design in the Power Manager. In this case, a valid ready signal can 

be added to the accumulation only when some polling signal arrives. And an arbiter is 

used for the arbitration between a valid ready signal and the polling signal. It is only 

when a ready signal is granted by the arbiter that it can be added to the accumulation 

result.  

In the current CPN model, the polling token is held in the Me/Me1 places and when at 

least one access transition occurs, the token in the Me place becomes ‘1’ to enable the 

polling accumulation. The pair of select1 and pass1 transitions indicates the operation 

of polling accumulation of the ready signal for task1. If the token value in Irdy1 is ‘1’, 

the availability of the polling token in the Me place will enable the transition select1. 

The occurrence of the transition will first grant the ready token for accumulation, and 

then pass the polling token to the Me1 place. If the token value in Irdy2 is ‘0’, the 

transition pass1 will be enabled accordingly and pass the polling token directly to the 

Me1 place. The occurrence of select2/pass2 transition is carried out in the similar way 

and it will return the polling token to the Me place. For power saving reason, the 

polling will be ended after the occurrence of select2/pass2 transition since the polling 

token value is reset to ‘0’, and it will begin next time when at least one 

access1/access2 transition occurs. 

The or1/or2 transitions represent a logical OR gate, and the execution of one or1/or2 

transition will add one token to the Queue place and move the polling token to the 

Me/Me1 place and let the token polling continue. The colour in the place acc is set to 

INT because the integer value of the token held in this place represents the 

accumulation result. As soon as one token is available in the Queue place, the Adder 

transition is enabled and the execution of this transition will increase the accumulation 

by 1. One guard [acc>=N] is attached to the Fire transition to make sure one token 

will be added to the Activation place only when the token value in the acc place is 

greater than the accumulation limit N (N is set to 2 in the current model). The 

occurrence of the Fire transition will reset the token value in the acc place to ‘0’ to 

prepare for the next accumulation procedure. 

4.3.2 Environmental Set Description 

The environmental transition Wakeup represents the wakeup processing in the IP core 

and its occurrence will set the token in the STEPSleep place to ‘0’ and all transitions 

in the current model are disabled afterwards. The occurrence of this transition will 

also set the tokens in both En1 and En2 places to ‘1’ so that new valid ready tokens 

can access the current model when the IP core becomes inactive again. 

In the left side of Figure 13, environmental transitions Execution1 and Execution2 

represent the executions of task1 and task2 in the IP core respectively. These two 
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transitions can be enabled concurrently and the random occurrence of these transitions 

represents the different scheduling result generated by the STEP. The occurrence of 

each Execution transition will reset the token value in the corresponding Rdy place. 

Assuming only two tasks are embedded in the IP core, the shutdown transition is 

enabled when both tokens in the Rdyi place are ‘0’. 

Environmental transitions new1 and new2 are used to change the token values in their 

corresponding Rdy1/Rdy2 places. The occurrences of these transitions reflect the 

generation of new events in the environment and function P() (which is also used in 

the top level model) is used to make the generation of tokens in Rdyi place 

stochastically. All these environmental transitions/places will generate all possible 

combination of input tokens to and consume output tokens from the current system. 

The correctness of the current model has been verified by state space checking.  

4.4 The CPN Model of the Task Manager Component 

In this section, we try to model and specify executions in the task manager component 

of a STEP where task scheduling is provided. 

4.4.1 Priority Based Round Robin Scheduling Priority 

Although many different scheduling priorities have been used in various systems, we 

prefer to use a priority based round robin policy (Figure 14) in our task manager 

design.  
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Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate
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Figure 14: Priority Based Round Robin Policy 

Arrows in the left of Figure 14 keep a list of all tasks in the IP core sorted by their 

priorities. A dotted arrow represents an invalid scheduling candidate (the 

corresponding task is not ready for execution) and a solid arrow indicates a valid 

candidate. A new scheduling will always start from the highest priority group and 

towards the lowest priority group. For tasks in the same priority group, the scheduler 

will use round robin policy to choose a new task so as to give all tasks in the same 

group fair opportunity to be executed in the IP core. 

In each priority group, the task loaded to the IP core most recently is marked as a last 

task. In Figure 14, the last task in every priority group is pointed by the Begin arrow. 

A new polling scheduling starts from the last task in the highest priority group and 
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checks the validation of each task in turn. The scheduling ends when the first valid 

task is found. If no valid candidate can be found in this group, the scheduling point 

will jump to the last task in the second highest priority group to carry out the similar 

exploration. When no valid task can be found even in the lowest priority group, it 

means no task is ready for execution, and a particular ID number (for example 0 or 

255) will be fetched to the IP core. 

4.4.2 The CPN Model for Task Manager 

Figure 15 gives one example model of the Task Manager in the STEP and its test 

environment when only two tasks (and one priority group) is concerned in the 

scheduling. 

The environmental place within the dotted circle is named LoadEn whose token ‘1’ 

represents the task loading request from the IP core. A ‘1’ token in the LoadEn place 

will enable the Load transition in the right side of the figure and the occurrence of the 

transition indicates the task loading execution in the IP core. One token whose value 

is the ID number of the new task will be added to the Ltask (means Loaded task) place 

in consequence. 

Tokens in the Rdy1/Rdy2 places indicate whether task1/task2 is a valid candidate task 

or not. As external events may come to the current VSB at any time, the two tokens in 

the Rdy1 and Rdy2 places may become ‘1’ simultaneously when the Load transition 

is enabled. In this case, new scheduling execution and task loading execution are 

carried out simultaneously. Suppose the new scheduling will update the token value in 

the Ntask place from ‘1’ to ‘2’, whether task1 or task2 will be loaded to the IP core 

depends on whether the scheduling transitions or the loading transition will occur 

first. The uncertainty in task loading will confuse the IP core and may cause serious 

consequence. A safer design will enable scheduling only when no load request is 

given. In Figure 15, transitions Access1 and Access2 can be enabled only when the 

token value in the LoadEn place is ‘0’. Therefore, when the token in the LoadEn place 

becomes ‘1’, no further token change in Rdy1/Rdy2 place can influence the token 

value in the LTask place. As task scheduling is of no use when the IP core is in its off 

mode, another enabling precondition of transitions access1 and access2 is the 

existence of ‘0’ token in the STEPSleep place. 

The tokens held in places Irdy1 and Irdy2 indicate the status of ready signals for the 

usage of scheduling. Variables irdy1, irdy2, rdy1 and rdy2 are used to indicate the 

token value in the place with the same name (But capital first character) respectively. 

With the guard [irdy1<>rdy1] and [irdy2<>rdy2] in the access1/access2 transitions, 

scheduling will only begin when some changes happen to the ready signals. The 

occurrence of these transitions will update the token value in the Me place to ‘1’. 

Places and transitions within the dotted rectangle represent the scheduling executions 

of two tasks in a priority based round robin policy and the detailed explain can be 

found in [27]. 

According to the model, when more than one ready token is toggled concurrently, one 

Assessi (i=1,2) transition and some scheduling transition within the dotted rectangle 

may be enabled concurrently. The different occurrence sequences of these transitions 

reflect the competition between the validation of a ready signal and the arrival of the 

round robin polling signal. However, given no valid LoadEn signal is generated from 

the IP core, different occurrence sequences of these transitions will achieve the same 

scheduling result. 
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Figure 15: The Full CPN Model of the Task Manager 

The occurrence of the Load transition will not only load the ID number of the new 

task to the IP core, but also update the status in the STEP. After the task that is loaded 

to the IP core, the corresponding unit in the EH will be reset and the task will not 

serve as a candidate for scheduling any more. In Figure 15, the expression of the arc 

from the place Rdy1 to the transition Load is written as “if Ntask=1 then 1`0 else 

1`rdy1”. Therefore, if the token value in the place Ntask is ‘1’ which means when 

task1 is loaded to the IP core, the token value in the place Rdy1 will be reset to ‘0’. 

Otherwise, the token value stays the same as before. Furthermore, any token reset in 

the Rdy1/Rdy2 place will enable the Access1/Access2 transition when the IP core 

starts execution about the new task and the token value in the LoadEn place becomes 

‘0’. Therefore, new scheduling will be carried out in parallel with the execution in the 

IP core and a new task can be prepared in the Ntask place in advance of the next load 

request from the IP core. 

The occurrence of the Load transition will also reset the last task in every priority 

group if it changes. And if no task is found to be ready for execution, the occurrence 

of the Load transition will reset the last task to its default status (for example, in the 

current model, task2 is the default last task in its group). 

4.4.3 Environmental Set Description 

When one token is added to the Ltask place, the environment transition Start is 

enabled which indicates the IP core starts the execution of the new chosen task. 

Therefore one token ‘1’ is given to the place current, which indicates that one task is 

under processing. The occurrence of the Start transition will give one ‘0’ token to the 
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LoadEn place, which means the task loading procedure is completed. One function 

P1() (which is the same as the P1() function in the EH unit model in Figure 12) is 

used in the arc expression from the execution transition to the current place. This 

function is used to simulate the stochastic processing behaviour in the IP core. When 

the token value in the current place becomes ‘0’, the current task’s execution is 

completed. And the token value in the LoadEn place will be updated to ‘1’ and new 

tasks will be loaded afterwards. If  the taken value in the Ltask place is ‘0’ which 

means no more valid task has been loaded to the IP core, the Start transition can be 

seen to indicate the shutdown operation in the IP core and the execute transition can 

be seen to indicate task accumulation procedure. Similarly, the complete transition 

indicates the activation of the IP core in this case. 

The environmental transition Env1/Env2 uses the function P() (which has been 

introduced in the top level model) to simulate the generation of new event which will 

in turn validate the corresponding ready signals again. All these environmental 

transitions/places will generate all possible combinations of input tokens to and 

consume output tokens from the current system. State space has been done to prove 

the correctness of the current model. 

4.5 The CPN Model of the Output Controller and Interface Components 

When the wakeup and shutdown executions in an IP core are not taken as 

instantaneous, it is highly possible that some events come during the same time. As 

indicated in Section 4.1.6, executions in the STEP about these events may interrupt 

the mode switching transitions in an IP core so as to bring serious consequences. The 

interface design in this section is to avoid possible hazard brought by STEP 

executions. 

As indicated in the top level model, the output controller will generate a new event 

when the execution of the current task is completed. If the new task stimulated by the 

event generated from the output controller locates in the same VSB, the new task can 

become ready for execution much faster than the case when the new task is located in 

the other VSB. It is because both asynchronous/synchronous transform and data 

transfer between two VSBs are omitted. The CPN Model in this section tries to 

specify this difference. 

Figure 16 presents the CPN model of the Interface and Output Control part in the 

STEP where only two example tasks (task1 and task2) are concerned. The 

declarations of the four token colours involved in the figure, BIT, EVENT, TASK and 

DATA, are the same as those given in the EH CPN model in Section 4.2. 

The relationship among Fire and wakeup transition as well as the Activation and 

STEPSleep places have been introduced in the PM in Section 4.3 (the accumulation 

limit is set to 1 to simplify the current model). The token in the STEPSleep place 

indicates the command given by the PM while that in the Sleep place indicates the 

mode of the IP core. Transitions Waking and Shutting represent the wakeup and 

shutdown executions in the IP core respectively. A ‘0’ token in the STEPSleep place 

will enable the Waking transition and the latter’s occurrence will update the token in 

the Sleep place to ‘0’, which indicates the completion of the wakeup execution in the 

IP core. In Section 4.3 and 4.4, the token in the STEPSleep place instead of that in the 

Sleep place is used to enable/disable the executions in the PM and TM components. 

Therefore, the PM execution can be terminated and the TM execution can start as 
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soon as the beginning of the wakeup execution, which can reduce system latency as 

well power dissipation.  

Transitions ACM, as well as places Ch3, Rdy and ID, are used to represent the 

executions in the EH component. The token value in the Rdy place indicates the ID 

number of the ready task. Different from the model in Section 4.2, the occurrence of 

the ACM transition will also produce a DATA color token to the DIN2 place, which 

indicates the data for the corresponding task’s execution. 

 

Figure 16: The CPN Model of the Output Controller and Interface Components 

The occurrence of the wakeup transition will also generate one token to the LoadEn 

place so that the scheduling result can be loaded to the LTask place. A ‘1’ token in the 

Read place indicates the read signal from the IP core, and it will enable the 

Load1/Load2 transition based on the ID number of the new task. The occurrence of 

the Execution1/Execution2 transition represents the execution of task1/task2 

respectively in the IP core, and it will consume the DATA token in the DIN1/DIN2 

place indicating the data processing involved in the corresponding task execution. 

When the task execution is completed, a TASK token is generated to the RT place 

indicating the ID number of the completed task and a DATA token is put to the 

DOUT place indicating the result data generated by the task execution. 

When the task execution is completed, the output controller starts event routing, 

which means to decide which task is supposed to use the result data and which VSB 

the task (called target task later) locates in. In the current model, we suppose the 

target task for task1 is task3 which is located in a different VSB and that for task2 is 

task1 which is in the current VSB. When task1 is the completed task, the transition 

OutCt1 is enabled. The occurrence of this transition generates an EVENT token in the 

OCh3 place, which represents the generation of a new event that will be sent to the 

other VSB with Output Channel 3. The environmental transition OBlock represents 

the event relay in the environment, and it will generate an EVENT token in the Ch3 

place which means a new event comes to the current VSB. The corresponding task 
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can become ready only after the completion of data transfer/transform represented by 

the occurrence of the ACM transition. 

On the other hand when task2 is the completed task, the transition OutCt2 is enabled. 

Its occurrence simply move the DATA token to the DIN1 place because it represents 

simple data transfer within the same time domain. Therefore task1, as the target task 

of task2, can become ready much faster than the previous case. The occurrence of 

OutCt1/OutCt2 transition will also add one token to the Complete place, which 

indicates the completion of output control. A BIT token is added to the LoadEn place 

in sequence to require the new task from the TM component. If the value of the token 

moved to the Ltask place is ‘0’, it indicates no active task can be found. In this case, 

the shutdown transition is enabled whose occurrence will toggle the token value in the 

STEPSleep to ‘1’. This token value change will enable the shutting transition and the 

token value in the Sleep place will be changed to ‘1’ after the latter’s occurrence. 

In Section 4.1.6, we present the hazard brought by concurrent execution of the event 

handling in the STEP and the shutdown processing in the IP core. This hazard is 

avoided by the design in the current model. When the shutdown processing is carried 

out in the IP core, the token value in the STEPSleep place is ‘1’ and that in the Sleep 

place is ‘0’. Suppose there are enough events come during this period and the Fire 

transition occurs to generate a ‘1’ token in the Activation place. However, the wakeup 

transition cannot be enabled because it requires a ‘1’ token in the Sleep place. When 

the wakeup transition is disabled, no token will be sent to the LoadEn place. 

Therefore, no new task will be loaded to the IP core so as to interrupt the shutdown 

processing. 

From Section 4.2 to Section 4.5, we present four CPN models to extend the top level 

CPN model of a VSB. Each CPN model specifies the design in one part of the STEP. 

The concurrent executions in different components of the VSB are highlighted by the 

simulation tool provided by CPN Tools. The state space tool is used to check the 

correctness of the design. In next section, we try to implement the VSB design to 

build one example SoC where some realistic tasks are carried out. 

5. THE CONSTRUCTION OF SOC WITH VSBS 

In the previous section, all important executions in a STEP have been modelled and 

specified in CPN models. However, the executions in the corresponding IP core are 

abstracted to only two transitions (the Loadi and Executioni (i=1,2) transitions in 

Section 4.5). It is because our main concern is about the design of a STEP which can 

cooperate with different kinds of IP cores. Although the execution detail in an IP core 

can be abstracted away because it has little influence on the VSB design, it has great 

impact on the VSB performance. The analysis of both power and latency performance 

in a VSB can only be carried out when the IP core is specified. 

Furthermore, our modelling and analysis work from Sections 2 to 4 assumes the 

arrival of events follows exponential distribution. This assumption cannot be satisfied 

in all implementations. Therefore, we have to explore the performance of our VSB 

with A&F control when event arrival follows non-exponential distribution. 

Therefore, an example implementation of VSB named as “ball game” is designed 

where some example tasks are controlled by VSBs to perform data processing in a 

SOC content. 

5.1 Implementation Specification 
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Figure 17 presents the implementation of “Ball Game” where four balls of different 

size move in a playground with different speed but identical mode. The entire 

playground has been evenly divided into four parts, named as playground I, II, III, IV 

respectively. Four VSBs are employed and each VSB is used to control the ball 

movement in one playground. Four tasks are executed in the IP core of every VSB 

whose codes provide the movement control of the corresponding balls.  
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Figure 17: The Example Implementation of Ball Game 

Four squares of different sizes represent the four balls in the game. And five 

parameters are used to describe one ball’s movement. PosX and PosY are the positions 

of the ball in X and Y axes. Width represents the size of the ball and Speed indicates 

how fast the ball moves in each step. History remembers the direction of the ball’s last 

movement. Four numbers (0,1,2,3) are used for the History information, which 

represent moving left, right, up, down respectively. When some ball moves across the 

border between two playgrounds, an event is generated to hand over the control of the 

ball to another VSB and parameters about the ball will be transferred to the VSB by 

the way of ACM. 

If no balls are contained in one playground (like playground III in Figure 17), the IP 

core in the corresponding VSB will be shut down to save power and the 

corresponding playground will be patched in black colour accordingly. When and 

how to activate the IP core for task processing depends on the DPM policy 

implemented in the STEP of each VSB. 

MATLAB Simulink rather than CPN Tools has been used to implement the example 

SoC design. It is because CPN Tools has an advantage in representing concurrency 

but has limited power to give the execution sequence varied with time/sample 

elapsing. However, the execution property in time domain which stands for the 

probability distribution among different operation modes of the IP core is of vital 

importance for the power analysis. On the other hand, MATLAB Simulink provides 

powerful visualization of signals variation in the time domain. 
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5.2 The Design of a VSB in MATLAB Simulink 

PM

EH

TM

 
Figure 18: The Design of a VSB in MATLAB Simulink 

Since all VSBs in the implementation are identical, Figure 18 only gives the 

architecture of VSB I which controls the ball movement in playground I in MATLAB 

Simulink. The subsystem block IPCore is the realization of an example IP core which 

contains four tasks, each of which controls the moving of one ball.  

The other five subsystem blocks, PM, EH, TM, Interface and Output Controller, are 

the five basic components of the STEP. The design of these blocks is based on the 

CPN models given in Section 4.2 to 4.5, and some improvement has been done in the 

PM design. In order to represent the difference between tasks, different priorities are 

given to the four tasks in the current implementation based on their corresponding 

balls’ size. The larger the size of a ball, the bigger a priority number is given to the 

corresponding task in every IP core. Therefore, priority numbers instead of the 

number of tasks are used in accumulation in the PM component. This improvement 

can optimize system latency since tasks with high priority spend less time for 

activating a sleeping IP core.  

5.3 The Test Bench of the Ball Game 

With only four VSBs in the example SOC, events incoming to every VSB cannot be 

taken as ideal exponential distribution. Therefore the example SOC test bench will be 

used to analyze the power efficiency achieved by A&F policy in weak Markovian 

environment. Four different DPM policies (including A&F) have been implemented 

in the PM component of every STEP in four independence tests. To simplify the 

analysis, the executions in STEPs are taken as cost free whatever DPM policies are 

used.  

In our simulation, the time spent for one step movement of a ball without collision is 

set as one time unit. Both wakeup and shutdown executions have been adjusted so 

that their latency cost is one time unit as well. To simplify the analysis, we assume the 

power dissipation for task processing is one unit and that for wakeup and shutdown is 

1.5 units.  
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Figure 19: The Power Analysis of the Test Bench 

To make our example implementation has wider representation of real systems, a 

threshold parameter is used in every task’s codes to adjust the movement of the 

corresponding ball. When the threshold value equals to 0, the ball’s movement is 

totally random. When the threshold value equals to 1, the ball’s movement is totally 

history based, i.e. the ball will move one step further in the same direction as its 

previous movement unless it may collide with other balls or hit the playground ball. 

When some value between 0 and 1 is given to the threshold, the ball’s movement can 

be random or history based from time to time. 
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Figure 20: Latency Analysis of the Test Bench 

Figure 19 presents the average power dissipation of one IP core (Pave) for various 

ball movements represented by different threshold value (Threshold) when different 

DPM policies have been used. The Timeout1 in the legend indicates the case when a 

Timeout policy [7] is implemented in the PM and its parameter τ is set to 5. Timeout2 

represents the case of Timeout policy when τ is set to 10. The Predict in the legend 

indicates the case when a linear prediction policy is implemented. From this figure, it 

is clear that A&F policy has the highest power efficiency amongst all policies, no 

matter what movement balls take. 

Figure 20 is about the latency analysis of the test bench when A&F policy is used. In 

our first simulation, we set the average deadline for every task’s execution as 6 time 

units in our first simulation. It can be seen that A&F policy causes no more than 2.5% 

deadline violation in average. In most cases, this latency is acceptable. In our second 
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simulation, the deadline is extended to 8 time units to present the case when the 

deadline requirement is looser. It can be seen that the deadline violation becomes less 

accordingly. 
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Figure 21: Latency Analysis of the Test Bench (Continue) 

As different priorities have been given to the four tasks, these tasks have different 

latency performance. Figure 21 presents the different latency performance of the four 

tasks when the deadline is set to 6. It can be seen that task4, which has the highest 

priority, has negligible deadline violation. It is because this task can trigger a sleeping 

IP core alone while the other can not. 

According to Figure 21, task2 and task3 have more frequent deadline violation than 

task1, although they have higher priority than the latter. It is because ball2 and ball3 

move faster than ball1, so as to have more chance to move across different 

playgrounds. When ball2 or ball3 moves to a new playground, the ready task2 or 

task3 cannot activate the IP core alone and it cost extra latency when it waits for other 

task’s readiness. On the other hand, ball1, which has small size and slow speed, will 

always move within one playground. Therefore the execution of task1 pays less cost 

in task accumulation. 

The violation of a deadline is interpreted in this game as missing a move for a ball 

when it should have one. This violation therefore affects the realism in visualizing the 

ball movements. 

6. CONCLUSION AND FUTURE WORK 

This paper presents the modelling and design work of an asynchronous coprocessor 

called STEP in a framework of a virtual self-timed block (VSB) under GALS 

architecture. This coprocessor is designed to provide effective power control and fast 

event handling for task executions in an IP core. A stochastic model is first built to 

justify the efficiency of the power control given by the STEP. Hierarchical CPN 

models have been used to develop the STEP design from basic functional 

specifications to detailed architecture with signals and data processing. CPN 

simulation and state space checking have been used to verify the correctness of our 

design. An example SoC is built in MATLAB Simulink to demonstrate the potential 

implementation of VSB architecture in real systems.  

The STEP model has also been implemented into VLSI design flow and benchmarks 

will be achieved soon where the performance of the coprocessor is tested in real 

implementation. The current model of STEP can only give power on-off control to an 

IP core, One potential future work is to extend the model of the power manager 
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component of a STEP to include more elaborate mode switching control to an IP core 

with multiple operation modes for DVS/DFS controls. 
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