
School of Electrical, Electronic & Computer Engineering

Conditional Partial Order Graphs Algebra

Andrey Mokhov, Alex Yakovlev

Technical Report Series

NCL-EECE-MSD-TR-2008-137

September 2008

Contact:

Andrey.Mokhov@ncl.ac.uk

Alex.Yakovlev@ncl.ac.uk

Supported by EPSRC grants EP/C512812/1 and EP/F016786/1

NCL-EECE-MSD-TR-2008-137

Copyright c© 2008 University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,

Merz Court,

University of Newcastle upon Tyne,

Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

Conditional Partial Order Graphs Algebra

Andrey Mokhov, Alex Yakovlev

September 2008

Abstract

This paper introduces a formal algebra over conditional partial order graphs which were inrtoduced

recently. The algebraic approach provides a set of `safe' techniques operating on well-formed graphs

without the need for veri�cation of intermediate results.

The presented concepts provide the background for e�cient synthesis and optimisation methods

and form the natural development of conditional partial order graph model.

1 Introduction

Conditional partial order graphs (CPOGs) were recently introduced in [5]. It was shown that speci�cation

of a certain class of controllers is ine�cient using conventional models (e.g. synthesis based on Signal

Transition Graphs [8, 3], or on Finite State Machines [7]). The CPOG model has a distinctive feature of

capturing similar behavioural patterns in a compact functional form as opposed to the existing models

which either have a direct event traces representation or an explicit notion of states and transitions

between the states.

The model was further developed in [6] to handle the dynamic control signals evaluation. The extended

model revealed a strong need for veri�cation support. SAT-based veri�cation methods provided in [6] are

computationally expensive what motivated the authors of this paper to introduce CPOG algebra closed

over the set of well-formed CPOGs. The algebraic approach eliminates the need for veri�cation in most

cases, because the synthesis and optimisation can be based on operations which are proved to preserve

the correctness of CPOGs.

The paper is organised as follows: Sections 2 and 3 introduce partial orders and directed acyclic

graphs which constitute the basis for the CPOG model. The model itself and algebra over CPOGs is

presented in Section 4. Section 5 summarises the paper.

2 Partial orders

Partial orders are widely used to formalise the intuitive concept of ordering of events with cause and

e�ect relationships between them. This section contains mathematical de�nitions for the most important

classes of partial orders.

2.1 Non-strict partial orders

De�nition 2.1. A non-strict (or weak, or re�exive) partial order P (S, �) is a binary relation � over a

set of elements S which satis�es the following three conditions [1, 4]:

1. Re�exivity : ∀a ∈ S, (a � a);

2. Antisymmetry : ∀a, b ∈ S, (a � b) ∧ (b � a)⇒ (a = b);

3. Transitivity : ∀a, b, c ∈ S, (a � b) ∧ (b � c)⇒ (a � c).

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 1

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

In some contexts, the quali�er non-strict is omitted because it is often assumed that the partial order

relation is re�exive. However, in this work the authors focus on the irre�exive partial orders (also called

strict) which can represent the mutual dependencies between events in an asynchronous system more

directly (see Subsection 2.2).

Example 2.1. Consider the following non-strict partial order.

Let set S consist of four events (or actions):

a) Read input value X;

b) Read input value Y ;

c) Compute sum Z = X + Y ;

d) Store the result value Z.

Now we would like to order these events taking into account the cause and e�ect relationships between

them. One can see that action c depends on actions a and b (there is no way to compute sum Z without

having values X and Y ; actions a and b are so-called passive, or material causes for action c), and action

d in turn cannot happen until action c is completed. Note that although d does not depend on a and b

directly, it has them as indirect causes, what should also be re�ected in the partial order. Such indirect

dependencies are called transitive (see De�nition 2.3).

The above dependencies can be captured with the following non-strict partial order P (S, �):

P =

S = {a, b, c, d}

�= {a � a, b � b, c � c, d � d, a � c, b � c, a � d, b � d, c � d}

Figure 1: Non-strict partial order example

It is possible to depict the obtained partial order graphically as shown in Figure 1. The events are

shown in boxes and the relationships between them � as arcs. The re�exive ones {a � a, b � b, c �
c, d � d} are drawn as dashed self-loops, and the transitive {a � d, b � d} � as dash-dotted arcs.

Note, that every non-strict partial order P (S, �) contains |S| re�exive dependencies ∀a ∈ S, (a � a),
which do not carry any useful information about the order of the events. Moreover, for our purpose of

cause and e�ect relationships speci�cation, a dependency of an event on itself should be avoided. This

can be done using strict partial orders de�ned in Subsection 2.2.

Depicting all the transitive dependencies on a partial order diagram is usually unnecessary. For

example, it is possible to omit transitive arcs {a ≺ d, b ≺ d} in the Figure 1 without losing the essential

information about the depicted partial order: one can always keep the transitivity property of partial

orders in mind and realise that any two relationships a ≺ b and b ≺ c (a, b, c ∈ S) in a diagram imply

the transitive relationship a ≺ c. Hasse diagrams [1, 4] are widely used as a compact way of graphical

representation of partial orders, as explained in Subsection 2.4.

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 2

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

2.2 Strict partial orders

De�nition 2.2. A strict (or irre�exive) partial order P (S, ≺) is a binary relation ≺ over a set of

elements S which satis�es the following three conditions [1, 4]:

1. Irre�exivity : ∀a ∈ S, ¬(a ≺ a);

2. Asymmetry : ∀a, b ∈ S, (a ≺ b)⇒ ¬(b ≺ a);

3. Transitivity : ∀a, b, c ∈ S, (a ≺ b) ∧ (b ≺ c)⇒ (a ≺ c).

Note, that the second condition (asymmetry) is redundant, because it is implied by the other two: if for

some a, b ∈ S both conditions a ≺ b and b ≺ a hold then transitivity leads to (a ≺ b)∧ (b ≺ a)⇒ (a ≺ a)
which contradicts irre�exivity. Still, asymmetry is often considered as one of the three basic properties

of strict partial orders for its importance.

Strict partial orders are irre�exive and therefore no unwanted re�exive self-dependencies are intro-

duced into speci�cation of cause and e�ect relationships between events (see Example 2.2).

De�nition 2.3. Dependency (relationship, etc.) a ≺ b between events a, b ∈ S in strict partial order

P (S, ≺) is called transitive (denoted as a ≺≺ b) i� there exists event x ∈ S such that both conditions

a ≺ x and x ≺ b hold:

(a ≺≺ b) df= ∃x ∈ S, (a ≺ x) ∧ (x ≺ b)

De�nition 2.4. Two events a, b ∈ S are called concurrent or parallel (denoted as a ‖ b) with respect to

strict partial order P (S, ≺) i� they are incomparable, i.e. neither a ≺ b nor b ≺ a holds:

(a ‖ b) df= ¬(a ≺ b) ∧ ¬(b ≺ a)

Concurrent events can happen at any time independently from each other, possibly simultaneously.

Note that an event is concurrent to itself by the de�nition: ∀a ∈ S, a ‖ a.

De�nition 2.5. Two events a, b ∈ S are called sequential (denoted as a ∦ b) with respect to strict partial

order P (S, ≺) i� they are comparable, i.e. either a ≺ b or b ≺ a holds:

(a ∦ b) df= (a ≺ b) ∨ (b ≺ a) = ¬(a ‖ b)

Note that in an asynchronous system any two events are either concurrent or sequential and therefore

they are bound to be strictly ordered: they cannot happen at exactly the same time. This is another

reason that makes non-strict ordering undesirable: it implies `less than or equal to' relation which is not

applicable to asynchronous systems (however, in a synchronous system two events can happen at exactly

the same discrete moment of time � during the same clock cycle).

Example 2.2. Strict partial order helps to specify the dependencies between the events from Example 2.1

in a simpler way:

P =

S = {a, b, c, d}

≺= {a ≺ c, b ≺ c, a ≺ d, b ≺ d, c ≺ d}

Events a and b are concurrent and all the other pairs of events are sequential. Every dependency

in P (S, ≺) corresponds directly to a cause and e�ect relationship in the speci�ed system without any

self-dependencies: ∀a ∈ S, ¬(a ≺ a).
In the rest of the thesis the author deals only with strict partial orders and the quali�er `strict' will

be omitted for clarity.

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 3

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

2.3 Total orders

De�nition 2.6. A total order is a partial order P (S, ≺) which has an additional property called totality

(or comparability, or trichotomy):

∀a, b ∈ S, (a = b) ∨ (a ≺ b) ∨ (b ≺ a)

In other words, a total order is a partial order with no two concurrent (incomparable) events: all the

events are totally ordered in one of |S|! possible ways.

De�nition 2.7. A chain, or a totally ordered subset C ⊆ S of a partial order P (S, ≺) is a set of events
C = {a1, a2, ..., a|C|} such that it contains no two concurrent events: ak ≺ ak+1, 1 ≤ k < |C|. It is

denoted as a1 ≺ a2 ≺ ... ≺ a|C|.

Partial order P (S, ≺) from Example 2.2 is not total: it contains two concurrent events a ‖ b. Subsets
{a, c, d} ⊂ S and {b, c, d} ⊂ S, however, are totally ordered, so a ≺ c ≺ d and b ≺ c ≺ d are chains.

2.4 Hasse diagrams

A partial order P (S, ≺) normally contains a lot of transitive dependencies, for instance, a chain of n

events a1 ≺ a2 ≺ ... ≺ an, ak ∈ S, k = 1...n implies
(
n−1

2

)
= (n−1)(n−2)

2 = O(n2) transitive relationships
aj ≺≺ ak, 1 ≤ j < k − 1 < n (a1 ≺≺ a3, a1 ≺≺ a4, a2 ≺≺ a4 etc). So, there can be a lot more transitive

dependencies than non-transitive, essential ones.

Hasse diagram [1, 4] is a graphical representation of a partial order based on transitive reduction [2]:

it depicts only non-transitive dependencies between the events thus keeping the diagram as simple as

possible. One can always reconstruct all the reduced transitive dependencies performing transitive closure

of a Hasse diagram. Transitive reduction and closure are formally introduced in terms of graphs in

Section 3. There is also a convention of arranging the events in a Hasse diagram in such a way that all

the arrows point only downward or upward thus forming event levels which sometimes help understanding

the depicted partial order.

Example 2.3. Hasse diagram of the strict partial order from Example 2.2 is shown in Figure 2. Note

the di�erence from diagram in Figure 1: all the unnecessary (re�exive and transitive) dependencies are

eliminated resulting in a clear and intuitively understandable form.

Figure 2: Hasse diagram of strict partial order

3 Directed acyclic graphs

De�nition 3.1. A directed graph is a tuple G(V, E) where V is a set of vertices (or nodes) and E ⊆ V ×V
is the set of ordered pairs of vertices, called arcs [2, 4].

A directed graph is typically depicted as a set of labelled circles (standing for vertices) and a set of

arrows between the circles (standing for arcs). Figure 3(a) shows an example of a directed graph

G(V, E) containing |V | = 7 vertices and |E| = 6 arcs.

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 4

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

A sequence of n ≥ 2 vertices (x1, x2, ..., xn), xk ∈ V, k = 1...n such that (xk−1, xk) ∈ E, k = 2...n
is called a path from x1 (start vertex) to xn (end vertex) and is denoted as 〈x1, xn〉. The fact that graph
G contains path 〈x, y〉 is denoted as 〈x, y〉 ∈ G. For instance, graph G in Figure 3(a) contains paths

(c, d, f, g) = 〈c, g〉 ∈ G and (a, b) = 〈a, b〉 ∈ G but does not contain path (d, f, e) = 〈d, e〉 /∈ G
because (f, e) /∈ E.

A cycle is a path 〈x, y〉 whose start and end vertices coincide: x = y.

De�nition 3.2. Directed acyclic graph (DAG) is a directed graph G(V, E) that does not contain any

cycles: ∀x ∈ V, 〈x, x〉 /∈ G. All the graphs in Figure 3 are DAGs.

De�nition 3.3. The transitive closure of a graph G(V, E) is graph G∗(V, E∗) such that:

∀x, y ∈ V, 〈x, y〉 ∈ G⇔ (x, y) ∈ G∗

In other words graph G∗ contains arc (x, y) ∈ E∗ for every two vertices x, y ∈ V that are connected

with a path 〈x, y〉 ∈ G in the original graph (and vice versa). The transitive closure of graph from

Figure 3(a) is shown in Figure 3(b).

An arc (x, y) ∈ E of a graph G(V, E) is called transitive i� ∃z ∈ V \{x, y}, 〈x, z〉 ∈ G∧ 〈z, y〉 ∈ G
i.e. there is an indirect path from x to y in the graph. Arcs {(c, f), (c, g), (d, g), (e, g)} in Figure 3(b)

are transitive.

(a) Directed acyclic graph G(V, E)

(b) Transitive closure G∗(V, E∗)

(c) Transitive reduction G′(V, E′)

Figure 3: Directed acyclic graph, its transitive closure and transitive reduction

De�nition 3.4. The transitive reduction of a graph G(V, E) is the smallest (with respect to the number

of arcs) graph G′(V, E′) such that:

∀x, y ∈ V, 〈x, y〉 ∈ G⇔ 〈x, y〉 ∈ G′

So, transitive reduction preserves all the paths in a graph but minimises the number of arcs: all the

transitive arcs are reduced. Figure 3(c) shows the transitive reduction of graph from Figure 3(a): the

transitive arc (d, g) ∈ E has been removed.

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 5

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

3.1 DAGs and partial orders correspondence

There is a strong correspondence between partial orders and DAGs: every partial order is a DAG, and the

transitive closure of a DAG is both a partial order and a DAG itself. The graph in Figure 3(b) directly

matches a partial order relation E∗ over the set of vertices V while the graph in Figure 3(a) does not

because it violates the transitivity condition. For instance, it contains arcs (e, f) ∈ E and (f, g) ∈ E
while the corresponding transitive arc is not present: (e, g) /∈ E.

This correspondence between partial orders and DAGs provides an intuitive way of partial order

speci�cation. A DAG G(V, E) de�nes a corresponding partial order P (V, E∗). Note that there can be

more than one DAG with the same corresponding partial order. For example, all the DAGs in Figure 3

have the same transitive closure and therefore they de�ne the same partial order. The graph in Figure 3(c)

is the simplest, however, and is preferable in most cases. This is equivalent to the approach used in Hasse

diagrams (see Subsection 2.4).

Example 3.1. Figure 4 shows the four possible DAG speci�cations of partial order from Example 2.2.

The leftmost graph is the simplest but all of them are valid. Their transitive closure is the same and is

equal to the rightmost graph.

Figure 4: Possible speci�cations of a strict partial order using directed acyclic graphs

4 Conditional Partial Order Graphs

This section de�nes conditional partial order graphs formally and introduces algebra over them.

De�nition 4.1. Conditional partial order graph (further called CPOG or graph for short) is a quintuple

H(V, E, X, ρ, φ) where:

• V is a �nite set of vertices which correspond to the events in the modelled system i.e. V de�nes

the system's event domain.

• E ⊆ V × V is a set of ordered pairs of vertices, or arcs, representing the dependencies between the

events.

• Control vector X is a �nite set of Boolean variables (also called control variables or signals).

• ρ ∈ F(X) is a restriction function, where F(X) is the set of all Boolean functions over the con-

trol variables in X. ρ de�nes the operational domain of the graph: control vector X is allowed

to have only those values (x1, x2, ..., x|X|) ∈ {0, 1}|X| which satisfy the restriction function:

ρ(x1, x2, ..., x|X|) = 1. Graph is called singular i� its operational domain is empty i.e. function

ρ is a contradiction: ρ = 0.

• Function φ : (V ∪ E) → F(X) assigns a Boolean condition φ(z) ∈ F(X) to every vertex and arc

z ∈ V ∪ E in the graph. Let us also de�ne φ(z) = 0 for z /∈ V ∪ E in order to simplify some of the

further computations.

Conditional partial order graphs are represented graphically by drawing a labelled circle for every

vertex v ∈ V , and drawing a labelled arrow for every arc e ∈ E. Label of a vertex v ∈ V consists

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 6

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

of the vertex name, semicolon and the vertex condition φ(v), while every arc e ∈ E is labelled with

the corresponding arc condition φ(e). The restriction function ρ is depicted in a box next to the graph;

control vector X can therefore be observed as the parameters of ρ.

Example 4.1. Figure 5(a) shows an example of a graph containing |V | = 5 vertices and |E| = 7 arcs.

The restriction function is ρ(x) = 1, and the control vector consists of a single variable X = {x}. Vertices
{a, b, d} have constant φ = 1 conditions and are called unconditional, while vertices {c, e} are conditional
and have conditions φ(c) = x and φ(e) = x respectively. Arcs also fall into two classes: unconditional

(arc (c, d)) and conditional (all the rest). As CPOGs tend to have many unconditional vertices and arcs

it is reasonable to use a simpli�ed notation in which conditions equal to 1 are not depicted in the graph.

This is demonstrated in Figure 5(b).

(a) Full notation (b) Simpli�ed notation

Figure 5: Graphical representation of conditional partial order graphs

The purpose of the vertex and arc conditions is to `switch o�' some of the vertices and arcs in the

graph according to the control variables. This makes CPOGs capable of specifying multiple DAGs, and

consequently multiple partial orders (due to the DAGs and partial orders correspondence, which was

demonstrated in Subsection 3.1). Figure 6 shows an example of a graph and its two projections (cf.

formal De�nition 4.2). The leftmost projection is obtained by keeping in the graph only those vertices

and arcs whose conditions evaluate to Boolean 1 after substitution of the control variable x with Boolean

1. Hence, vertex e disappears (denoted as a dashed circle), because its condition evaluates to 0:
φ(e) = x = 1 = 0. Arcs {(a, d), (a, e), (b, d), (b, e)} disappear for the same reason (denoted as dashed

arrows). The rightmost projection is obtained in the same way with the only di�erence that the

control variable x is set to 0. Note also that although the condition of arc (c, d) evaluates to 1 (in fact

it is constant 1) the arc is still excluded from the resultant graph because one of the vertices it connects

(vertex c) is excluded and obviously an arc cannot appear in a graph without one of its vertices. The

restriction function of the graph does not a�ect anything in this particular case because it evaluates to

1 for both possible control vector assignments (x = 1 and x = 0): ρ(0) = ρ(1) = 1. Its role will be

explained in details later.

The concept of system speci�cation with a set of partial orders contained within a single graph is

clari�ed by the following example.

Example 4.2. Consider a processing unit that has the accumulator register A and the general purpose

register B, and performs two di�erent operations: addition and exchange of two variables stored in

memory. The event domain of the system consists of the following �ve events:

a) Load register A from memory.

b) Load register B from memory.

c) Add a value (a constant or a value from a register) to accumulator A.

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 7

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

Figure 6: Multiple DAGs contained in a single CPOG

d) Save register A into memory.

e) Save register B into memory.

Table 1 contains the event descriptions of the two operations. Addition consists of loading of the two

operands from memory (concurrent events a and b), their addition (event c), and saving the result (event

d). This is re�ected in the table with the corresponding partial order and DAG of this scenario (cf. also

partial order in Example 2.2). The operation of exchange consists of loading of the operands (concurrent

events a and b), and saving them into swapped memory locations (concurrent events d and e). Note, that

in order to start saving one of the registers it is necessary to wait until both of them have been already

loaded to avoid overwriting one of the values.

Operation Addition Exchange

a) Load A a) Load A
Events b) Load B b) Load B

description c) Add B to A d) Save A
d) Save A e) Save B

Partial S {a, b, c, d} {a, b, d, e}
order ≺ {a ≺ c, b ≺ c, a ≺ d, b ≺ d, c ≺ d} {a ≺ d, b ≺ d, a ≺ e, b ≺ e}

DAG speci�cation

Table 1: Two behavioural scenarios speci�ed as two CPOG projections

Now, one can observe that the two DAGs in Table 1 appear to be the two projections from Figure 6.

Thus the both operations of the presented processing unit can be speci�ed with the single graph.

The rest of the section contains the formal de�nitions of projections and algebra over CPOGs.

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 8

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

4.1 Projections

De�nition 4.2. A projection of graph H(V, E, X, ρ, φ) under constraint x = α (where x ∈ X,

α ∈ {0, 1}) is denoted as H|x=α and is equal to graph H ′(V, E, X \{x}, ρ|x=α, φ|x=α) where notations
ρ|x=α and φ|x=α mean that variable x is substituted with constant Boolean value α in ρ and all functions

φ(z), z ∈ V ∪ E, which implies that ρ|x=α and φ|x=α(z) belong to F(X\{x}).
Projection is a commutative operation i.e. (H|x=α)|y=β = (H|y=β)|x=α so the following short notation

can be used without any ambiguity: H|x=α, y=β .

De�nition 4.3. A complete projection of graph H is such a projection that all the variables in X are

constrained to constants. It is denoted as H|ψ where ψ : X → {0, 1} is an assignment function (or

encoding) that assigns a Boolean value to every variable in X. Complete projection is a graph whose

restriction function and vertex/arc conditions are only Boolean constants ρ|ψ and φ|ψ (either 0 or 1), and
control signals set is empty: X = ∅.

A (complete) projection is called singular i� the resultant graph is singular.

De�nition 4.4. Given a non-singular complete projection H(V, E, ∅, 1, φ) operation G = dg(H)
generates directed graph G(VG, EG) such that

VG = {v ∈ V | φ(v) = 1}

EG = {e = (a, b) ∈ E | φ(a)φ(b)φ(e) = 1}

In other words G includes only those vertices and arcs whose conditions in H are constant 1. Note,
that exclusion of a vertex also leads to exclusion of all its adjacent arcs. Brackets around the operation

argument can sometimes be omitted for clarity: G = dg H.

The inverse operation is H ′ = dg−1(G). Here H ′(V, E, X, ρ, φ) is de�ned in terms of G(VG, EG)
as follows: V = VG, E = EG, X = ∅, ρ = 1 and φ(z) = 1, z ∈ V ∪ E. Note, that dg−1 is a right inverse

operation i.e. dg(dg−1 G) = G but dg−1(dg H) is not necessarily equal to H. This is demonstrated

in Figure 7 which shows an example of complete projection H (Figure 7(a)), its conversion into directed

graph G = dg H (Figure 7(b)), and complete projection H ′ = dg−1 G (Figure 7(c)). One can see, that

H 6= H ′ but both dg H and dg H ′ are the same and equal to G.

(a) Complete projection H (b) Directed graph G = dg H (c) Complete projection H′ = dg−1 G

Figure 7: Operation dg and its inverse

De�nition 4.5. A complete projection H|ψ is called valid i� it is not singular and its corresponding

directed graph dg H|ψ is acyclic. Hence, an assignment function ψ is called valid with respect to graph

H i� complete projection H|ψ is valid.

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 9

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

De�nition 4.6. Graph H(V, E, X, ρ, φ) is well-formed i� its every non-singular complete projection

H|ψ is valid. In other words, every complete projection H|ψ which is allowed by the restriction function

(ρ|ψ = 1) must produce an acyclic directed graph dg H|ψ.
Let the set of all CPOGs be denoted as C, and the set of all well-formed CPOGs � as W.

Veri�cation of well-formedness of a graph is a computationally expensive task so its use should be kept

to a minimum by employing the `safe' operations from CPOG algebra which are closed over the set of

well-formed graphs W (see Subsections 4.2 through 4.5). In fact, it is possible to synthesise and optimise

graphs without any veri�cation of intermediate results using only the `safe by construction' techniques.

However, veri�cation may still be required for the custom graph design/optimisation.

De�nition 4.7. Given a DAG G(VG, EG) operation P = po(G) generates partial order P (S, ≺) such
that S = VG and ≺= E∗G where G∗(VG, E∗G) is the transitive closure of G.

The inverse operation is po−1: G = po−1(P). The obtainedG(VG, EG) contains all the transitive arcs
from P (S, ≺): VG = S, EG =≺. As was shown in Subsection 3.1, a partial order has more than one DAG

speci�cation, therefore po−1 is also a right inverse operation: po(po−1 P) = P but po−1(po G) = G∗

and G 6= G∗ in general.

Using operations dg and po it is possible to write equations operating over CPOGs, DAGs and partial

orders. For example, the partial order de�ned by the rightmost projection of graph H in Figure 6 can be

denoted as po(dg H|x=0):

po(dg H|x=0) =

S = {a, b, d, e}

≺= {a � d, b � d, a � e, b � e}

De�nition 4.8. The set of all partial orders de�ned by a well-formed graph H(V, E, X, ρ, φ) is denoted
as P(H) and is formally de�ned as:

P(H) = {P = po(dg H|ψ), ρ|ψ = 1}

For example, the set of all partial orders de�ned by graph in Figure 6 is

P(H) = {P1, P2} = {po(dg H|x=0), po(dg H|x=1)}

where P1 and P2 are shown in Table 1.

Note, that there is no restriction on the number of encodings for a particular partial order

within a graph: there can be more than one assignment function yielding the same partial order

P = po(dg H|ψ1) = po(dg H|ψ2), ψ1 6= ψ2.

De�nition 4.9. Two well-formed graphs H1 and H2 are said to be in con�ict with respect to their

restriction functions ρ1 and ρ2 i� ρ1ρ2 6= 0. A con�ict implies the existence of an encoding ψ such that

both the restriction functions are satis�ed: ρ1|ψ = ρ2|ψ = 1. This leads to an ambiguity in some cases

(for instance, in case of graph addition introduced in Subsection 4.3), when two graphs describe di�erent

behaviour under the same encoding ψ. Depending on whether the two graphs actually specify the same

or di�erent scenarios under ψ the con�ict can be either true or false.

A con�ict is true if the scenarios encoded with ψ are di�erent:

po(dg H1|ψ) 6= po(dg H2|ψ)

Similarly, a con�ict is false if the scenarios encoded with ψ are in fact the same:

po(dg H1|ψ) = po(dg H2|ψ)

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 10

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

4.2 Equivalence

De�nition 4.8 provides the background for a natural equivalence relation [4] ∼ over the set of well-formed

graphs W.

De�nition 4.10. Graphs H1 ∈ W and H2 ∈ W are equivalent (denoted as H1 ∼ H2) i� they de�ne the

same set of partial orders:

(H1 ∼ H2)
df= P(H1) = P(H2)

Pair (W, ∼) satis�es all the required properties of an equivalence relation [4]:

• Re�exivity : ∀H ∈ W, (H ∼ H)

• Symmetry : ∀H1, H2 ∈ W, (H1 ∼ H2)⇒ (H2 ∼ H1)

• Transitivity : ∀H1, H2, H3 ∈ W, (H1 ∼ H2) ∧ (H2 ∼ H3)⇒ (H1 ∼ H3)

Example 4.3. Figure 8 shows three equivalent graphs Ha ∼ Hb ∼ Hc. Graph Ha in Figure 8(a) is taken

from Example 4.1. Figure 8(b) shows graph Hb with the modi�ed control set. It contains two control

variables X = {x, y} which are restricted in the one hot encoding manner: only encodings (0, 1) and

(1, 0) are allowed with the restriction function ρ(x, y) = x⊕y. Graph Hc in Figure 8(c) does not contain

any arc conditions (which are in fact redundant) and it also has inverted encodings compared to Ha.

In spite of the seeming di�erence between the three graphs, they are equivalent as they de�ne the

same set of two partial orders P(Ha) = P(Hb) = P(Hc) = {P1, P2}:P1 = po(dg Ha|x=0) = po(dg Hb|x=0, y=1) = po(dg Hc|x=1)

P2 = po(dg Ha|x=1) = po(dg Hb|x=1, y=0) = po(dg Hc|x=0)

(a) Example graph (b) Graph with two control variables (c) No redundant conditional arcs

Figure 8: Equivalent graphs

It is useful to introduce a measure of complexity of graphs in order to be able to compare them within

the same equivalence class. For instance, graph Hc in Figure 8 has the simpler description in comparison

with graphs Ha and Hb and is preferred in most cases.

De�nition 4.11. The complexity (or size) C(H) of graph H(V, E, X, ρ, φ) is measured in the number

of literals contained in the restriction function ρ and conditions φ(z), z ∈ V ∪ E:

C(H) df= C(ρ) +
∑
v∈V

C(φ(v)) +
∑
e∈E

C(φ(e))

where C(f), f ∈ F(X) denotes the literal count of a Boolean function f (see [9]).

Looking at graphs in Figure 8 one can see that C(Ha) = 0 + 2 + 6 = 8, C(Hb) = 2 + 2 + 6 = 10, and
C(Hc) = 0 + 2 + 0 = 2. So, graph Hc can be called optimal in this context. Methods for graphs size

optimisation are addressed in [5].

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 11

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

4.3 Addition

De�nition 4.12. The result of addition of two graphs H1(V1, E1, X1, ρ1, φ1) and

H2(V2, E2, X2, ρ2, φ2) is graph H(V1 ∪ V2, E1 ∪ E2, X1 ∪ X2, ρ1 + ρ2, φ) where the vertex/arc

conditions φ are de�ned as

∀z ∈ V1 ∪ V2 ∪ E1 ∪ E2, φ(z) df= ρ1ρ2φ1(z) + ρ1ρ2φ2(z)

Addition is denoted using the standard notation H = H1 +H2.

Theorem 4.1. Pair (W, +) is a commutative semigroup [1] i.e. set of well-formed graphs W is closed

under addition +, which is an associative and commutative operation.

Proof. 1) Closure: (H1 ∈ W) ∧ (H2 ∈ W)⇒ (H1 +H2 ∈ W).
Let H = H1 + H2. According to De�nition 4.6, graph H is well-formed i� its every non-singular

complete projection H|ψ is valid.

Consider a non-singular complete projection H|ψ. Non-singularity implies ρ|ψ = ρ1|ψ + ρ2|ψ = 1
which is possible in one of the following three cases:

• ρ1|ψ = ρ2|ψ = 1 (H1 and H2 are in con�ict with respect to encoding ψ). In this case, all the vertex

and arc conditions φ(z) evaluate to zero: ∀z, φ(z)|ψ = (ρ1ρ2φ1(z) + ρ1ρ2φ2(z))|ψ = 1 · 1 ·φ1(z)|ψ +
1 · 1 · φ2(z)|ψ = 0. This projection generates an empty directed graph dg H|ψ which is obviously

acyclic. Therefore, H|ψ is valid.

• ρ1|ψ = 1 and ρ2|ψ = 0. Here it is possible to show that dg H|ψ is equal to dg H1|ψ and therefore

H|ψ is valid due to the well-formedness of graph H1 and validity of all its complete projections.

For every z ∈ V1 ∪ V2 ∪ E1 ∪ E2 condition φ(z)|ψ in the complete projection H|ψ is equal to

φ(z)|ψ = (ρ1ρ2φ1(z) + ρ1ρ2φ2(z))|ψ = 1 · 0 · φ1(z)|ψ + 1 · 0 · φ2(z)|ψ = φ1(z)|ψ

So, dg H|ψ has the same set of vertices and arcs as dg H1|ψ, hence H|ψ is valid.

• ρ1|ψ = 0 and ρ2|ψ = 1. This case is symmetric to the previous one: H|ψ is valid because dg H|ψ =
dg H2|ψ.

So, any non-singular complete projection H|ψ is valid, and thus H = H1 +H2 is well-formed.

2) Associativity: ∀H1, H2, H3 ∈ W, (H1 +H2) +H3 = H1 + (H2 +H3).
Follows from associativity of set union ((V1 ∪ V2)∪ V3 = V1 ∪ (V2 ∪ V3) etc.) and Boolean disjunction

((ρ1 + ρ2) + ρ3 = ρ1 + (ρ2 + ρ3)). To prove associativity with respect to conditions φ, let us de�ne

ρ′ and φ′ to be the restriction functions and conditions of graph H ′ = H1 + H2: ρ′ = ρ1 + ρ2 and

φ′ = ρ1ρ2φ1 + ρ1ρ2φ2. In the same way, let ρ and φ denote the restriction function and conditions of the

�nal graph H = H ′ +H3. So, ρ = ρ′ + ρ3 = ρ1 + ρ2 + ρ3 while φ is equal to

φ = ρ′ρ3φ
′ + ρ′ρ3φ3 = (ρ1 + ρ2)ρ3(ρ1ρ2φ1 + ρ1ρ2φ2) + (ρ1 + ρ2)ρ3φ3 =

= (ρ1 + ρ2)(ρ1ρ2 ρ3φ1 + ρ1ρ2ρ3φ2) + (ρ1 ρ2)ρ3φ3 = ρ1ρ2 ρ3φ1 + ρ1ρ2ρ3φ2 + ρ1 ρ2ρ3φ3

The result remains the same if the order of addition of the three graphs is altered: H ′ = H2 + H3,

H = H1 +H ′. So, independently of the order, function φ(z) for a particular z will eventually be equal

to ρ1ρ2 ρ3φ1(z) + ρ1ρ2ρ3φ2(z) + ρ1 ρ2ρ3φ3(z). Observe the correct scaling of the orthogonal coe�cients

from {ρ1ρ2, ρ1ρ2} to {ρ1ρ2 ρ3, ρ1ρ2ρ3, ρ1 ρ2ρ3}.
3) Commutativity: H1 +H2 = H2 +H1.

Follows from the commutativity of set union (V1 ∪ V2 = V2 ∪ V1 etc.) and Boolean disjunction

(ρ1 + ρ2 = ρ2 + ρ1 etc.) operations.

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 12

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

Corollary 1. When adding more than two graphs the redundant brackets can be omitted without any

ambiguity: H1 +H2 +H3.

Corollary 2. The general equation for conditions φ in graph H(V, E, X, ρ, φ) in case of addition of

n ≥ 2 graphs Hk(Vk, Ek, Xk, ρk, φk), 1 ≤ k ≤ n is

φ =
∨

1≤k≤n

(φkρk
∧

1≤j≤n
j 6=k

ρj)

e.g. if n = 3 the equation is φ = ρ1ρ2 ρ3φ1 + ρ1ρ2ρ3φ2 + ρ1 ρ2ρ3φ3.

In the same way as graphs H1 and H2 are considered to be speci�cations of certain behavioural

scenarios over event domains V1 and V2, graph H1 +H2 is considered to be speci�cation of the scenarios

from both the graphs over the joint event domain V = V1 ∪ V2. This is formally stated in the following

theorem.

Theorem 4.2. If H1 and H2 are well-formed graphs that are not in con�ict then P(H1) ∪ P(H2) =
P(H1 +H2).

Proof. Let H = H1 + H2. At �rst let us show that P(H1) ∪ P(H2) ⊆ P(H). Consider a partial order

P ∈ P(H1) (the proof for the case when P ∈ P(H2) is similar due to the symmetry between H1 and H2).

By De�nition 4.8, there must exist at least one possible valid assignment function ψ such that ρ1|ψ = 1
and P = po(dg H1|ψ). It is possible to show, that dg H1|ψ = dg H|ψ (and thus H also de�nes P under

the same assignment function):

1. The restriction function ρ2|ψ of H2 is not satis�ed because H1 and H2 are not in con�ict: (ρ1ρ2)|ψ =
ρ1|ψ · ρ2|ψ = 1 · ρ2|ψ = ρ2|ψ = 0.

2. The restriction function ρ of H is satis�ed with ψ: ρ|ψ = (ρ1 + ρ2)|ψ = 1 + 0 = 1.

3. Vertex/arc conditions φ(z) for ∀z ∈ V1 ∪ E1 in H|ψ evaluate to the same values as in H1|ψ:
φ(z)|ψ = (ρ1ρ2φ1(z) + ρ1ρ2φ2(z))|ψ = 1 · 0 · φ1(z)|ψ + 1 · 0 · φ2(z)|ψ = φ1(z)|ψ.

4. Vertex/arc conditions φ(z) for ∀z /∈ V1 ∪ E1 in H|ψ evaluate to 0: φ(z)|ψ = φ1(z)|ψ = 0 (by

De�nition 4.1 of φ).

Thus sets of vertices and arcs of dg H|ψ are the same as those of dg H1|ψ. Consequently, P =
po(dg H1|ψ) = po(dg H|ψ) and therefore P ∈ P(H).

Now, let us prove the reverse statement: P(H) ⊆ P(H1)∪P(H2). Consider a partial order P ∈ P(H).
There must exist at least one possible valid assignment function ψ such that P = po(dg H|ψ). The

restriction function ρ = ρ1 + ρ2 must be satis�ed which means that either ρ1 or ρ2 is satis�ed but not

both of them. Let it be ρ1: ρ1|ψ = 1 and ρ2|ψ = 0 (the other case is again symmetric). This leads to the

same conclusion as in the �rst part of the proof (see points (3) and (4)): dg H1|ψ = dg H|ψ. Therefore
P ∈ P(H1) ⊆ P(H1) ∪ P(H2). This completes the proof.

Consider an example of addition in Figure 9. Each of graphs H1 and H2 specify a single scenario (cf.

Table 1 for the details of the scenarios). The graphs are not in con�ict (ρ1ρ2 = xx = 0), the result of

their addition H1 +H2 is shown in Figure 9(c). It contains both of the scenarios (as was demonstrated

in Figure 6).

4.4 Scalar multiplication

De�nition 4.13. Graph H(V, E, X, ρ, φ) can be multiplied by a Boolean function f ∈ F(Y) (which
in our context can be called scalar). The resultant graph is H ′(V, E, X ∪ Y, fρ, φ) . The standard

notation will be used for scalar multiplication: H ′ = fH.

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 13

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

(a) H1 (b) H2 (c) H1 + H2

Figure 9: Graph addition

Theorem 4.3. For every Boolean function f and well-formed graph H, graph H ′ = fH is also well-

formed and P(H ′) ⊆ P(H).

Proof. Every encoding ψ which is valid with respect to H is either singular with respect to H ′ (when

f |ψ = 0) or also valid (when f |ψ = 1, and conditions φ(z) in H ′ are the same as in H). In the latter

case the partial order P = po(dg H|ψ) de�ned by ψ remains the same in H ′: P = po(dg H ′|ψ). Thus
function f only `�lters out' some of the partial orders de�ned by H by setting an additional constraint

to the restriction function ρ, and no new partial orders are introduced.

Corollary 3. Multiplication by f = 1 does not change a graph: 1 ·H = H and P(1 ·H) = P(H).

Corollary 4. Multiplication by f = 0 produces a singular graph: P(0 ·H) = ∅.

De�nition 4.14. A linear combination of n ≥ 1 graphs H1, H2, ..., Hn and scalars f1, f2, ..., fn is∑
1≤k≤n

fkHk = f1H1 + f2H2 + ...+ fnHn

Any linear combination of well-formed graphs is also well-formed due to the closure of addition and

scalar multiplication operations over well-formed graphs (Theorems 4.1 and 4.3).

4.5 Con�ict resolution

The operation of addition introduced in Subsection 4.3 produces a conservative result in case of a con�ict

in the added graphs. In particular, if there is a false con�ict between graphsH1 andH2 for a particular en-

coding ψ the sumH1+H2 does not contain the con�icting partial order P = po(dg H1|ψ) = po(dg H2|ψ)
at all, so P(H1) ∪ P(H2) 6= P(H1 +H2) (cf. Theorem 4.2).

In order to be able to add graphs with true and false con�icts preserving the con�icting partial orders

in the sum, the following concept of asymmetric addition is introduced.

De�nition 4.15. The result of asymmetric addition of two graphs H1(V1, E1, X1, ρ1, φ1) and

H2(V2, E2, X2, ρ2, φ2) is linear combination H1~+H2
df= H1 + ρ1H2. Asymmetric addition is a left-

associative operation i.e. it is conventionally evaluated from left to right: H1~+H2~+H3
df= (H1~+H2)~+H3.

Asymmetric addition is closed over well-formed graphs ((H1 ∈ W)∧(H2 ∈ W)⇒ (H1~+H2 ∈ W)) but
because of the asymmetry it is neither commutative (H1~+H2 6= H2~+H1) nor associative ((H1~+H2)~+H3 6=
H1~+(H2~+H3)) unlike normal addition.

It is possible to generalise the linear combination for asymmetric addition of more than two graphs.

Let ρ′ be the the restriction function of graph (H1~+H2): ρ′ = ρ1 + ρ1ρ2 = ρ1 + ρ2. This leads to

(H1~+H2)~+H3 = (H1 + ρ1H2)~+H3 = H1 + ρ1H2 + ρ′H3 = H1 + ρ1H2 + ρ1 ρ2H3. The generalised linear

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 14

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

combination for asymmetric addition of n ≥ 2 graphs Hk(Vk, Ek, Xk, ρk, φk), 1 ≤ k ≤ n is

H1~+H2~+...~+Hn =
∑

1≤k≤n

(
∧

1≤j<k

ρj)Hk

Theorem 4.4. If H1 and H2 are well-formed graphs that are not in a true con�ict then P(H1)∪P(H2) =
P(H1~+H2).

Proof. Let H = H1~+H2 = H1 + ρ1H2. At �rst, notice that graphs H1 and ρ1H2 are not in con�ict:

ρ1(ρ1ρ2) = 0. According to Theorems 4.2 and 4.3, P(H) = P(H1 + ρ1H2) = P(H1) ∪ P(ρ1H2) ⊆
P(H1) ∪ P(H2).

Now, let us prove the reverse statement P(H1)∪P(H2) ⊆ P(H). Any partial order P ∈ P(H1) must
belong to P(H) = P(H1 + ρ1H2) (by Theorem 4.2). Consider a partial order P ∈ P(H2) which has

encoding ψ: P = po(dg H2|ψ). There can be two cases with respect to the value of ρ1|ψ:

• ρ1|ψ = 0: P(ρ1H2) = P(1 · H2) = P(H2) (due to Corollary 3). So, P ∈ P(H2) also belongs to

P(ρ1H2) and thus P ∈ P(H).

• ρ1|ψ = 1, which means that ψ is a con�icting encoding. If the con�ict is false, then P = po(dgH1|ψ)
and as was already shown, any partial order from graph H1 is included into P(H).

So, both P(H1) ⊆ P(H) and P(H2) ⊆ P(H) hold. Together with P(H) ⊆ P(H1) ∪ P(H2) this proves
that P(H1~+H2) = P(H1) ∪ P(H2).

Corollary 5. If well-formed graphs H1 and H2 have a true con�icting encoding ψ i.e. po(dg H1|ψ) 6=
po(dg H2|ψ) then asymmetric sum H1~+H2 includes po(dg H1|ψ) but not po(dg H2|ψ).

(a) H1 (b) H2 (c) H1~+H2

(d) (H1~+H2)|x=1, y=0 (e) (H1~+H2)|x=0, y=0 (f) (H1~+H2)|x=0, y=1

Figure 10: Asymmetric addition: false con�ict

Example 4.4. Consider an example of asymmetric addition of two graphs with a false con�ict shown in

Figure 10. Graph H1 (Figure 10(a)) de�nes two simple partial orders P1 = {a ≺ b} = po(dg H1|x=1, y=0)
and P2 = {b ≺ a} = po(dg H1|x=0, y=0), while graph H2 (Figure 10(b)) de�nes P1 = {a ≺ b} =
po(dg H2|x=1, y=0) and P3 = {a ≺ c} = po(dg H2|x=0, y=1). One can see that ψ = (1, 0) is

a con�icting encoding, but the con�ict is false, because the corresponding partial orders are equal:

po(dg H1|x=1, y=0) = po(dg H2|x=1, y=0) = P1. Asymmetric sum H1~+H2 shown in Figure 10(c)

contains all the three partial orders: P(H1~+H2) = {P1, P2, P3} = P(H1) ∪ P(H2). The corresponding
projections are demonstrated in Figures 10(d), (e), (f).

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 15

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

(a) H1 (b) H2 (c) H1~+H2

(d) H2~+H1 (e) (H1~+H2)|x=1, y=0 (f) (H2~+H1)|x=1, y=0

Figure 11: Asymmetric addition: true con�ict

Example 4.5. Asymmetric addition of graphs with a true con�ict is demostrated in Figure 11. Graph

H1 (Figure 11(a)) de�nes partial orders P1 = {a ≺ b} = po(dg H1|x=1, y=0) and P2 = {b ≺ a} =
po(dg H1|x=0, y=0), while graph H2 (Figure 11(b)) de�nes P3 = {b ≺ c} = po(dg H2|x=1, y=0) and

P4 = {a ≺ c} = po(dg H2|x=0, y=1). Con�ict under ψ = (1, 0) is true, because the corresponding

partial orders are di�erent: P1 = po(dg H1|x=1, y=0) 6= po(dg H2|x=1, y=0) = P3. Two asymmetric

sums H1~+H2 and H2~+H1 are shown in Figures 11(c) and (d). The di�erence between them is due

to the di�erent con�ict resolution choice: the former graph keeps partial order P1 = {a ≺ b} while

the latter keeps P3 = {b ≺ c}. This fact is demonstrated in Figures 11(e) and (f) which show the

complete projections of these graphs under the con�icting encoding (x, y) = (1, 0). So, the result of

asymmetric sum depends signi�cantly on the order of arguments: P(H1~+H2) = {P1, P2, P4}, while
P(H2~+H1) = {P2, P3, P4}.

5 Conclusions

The paper presents a set of relations and operations over well-formed CPOGs: equivalence and con�ict

relations; addition, scalar multiplication and asymmetric addition operations. A method for �exible

con�ict resolution based on non-commutativity of asymmetric addition is also introduced. This provides

the necessary set of tools for `safe by construction' synthesis and optimisation.

The future work includes the incorporation of the introduced techniques into the existing CPOG

software toolkit.

Acknowledgement

This work was supported by EPSRC grants EP/C512812/1 and EP/F016786/1.

References

[1] G. Birkho�. Lattice Theory. Third Edition, American Mathematical Society, Providence, RI, 1967.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,

2001.

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 16

Andrey Mokhov, Alex Yakovlev: Conditional Partial Order Graphs Algebra

[3] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and Alexandre Yakovlev.

Logic synthesis of asynchronous controllers and interfaces. Advanced Microelectronics. Springer-

Verlag, 2002.

[4] Art Lew. Computer Science: A Mathematical Introduction. Prentice-Hall, 1985.

[5] Andrey Mokhov and Alex Yakovlev. Conditional Partial Order Graphs and Dynamically Recon-

�gurable Control Synthesis. In Proceedings of Design, Automation and Test in Europe (DATE)

Conference, 2008.

[6] Andrey Mokhov and Alex Yakovlev. Veri�cation of conditional partial order graphs. In Proc. of 8th

Int. Conf. on Applicatioon of Concurrency to System Design (ACSD'08), 2008.

[7] Steven Nowick. Automatic Synthesis of Burst-Mode Asynchronous Controllers. PhD thesis, Stanford

University, 1993.

[8] Jens Sparsø and Steve Furber. Principles of Asynchronous Circuit Design: A Systems Perspective.

Kluwer Academic Publishers, 2001.

[9] Ingo Wegener. The Complexity of Boolean Functions. Johann Wolfgang Goethe-Universitat, 1987.

NCL-EECE-MSD-TR-2008-137, University of Newcastle upon Tyne 17

