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Abstract 

With the fast development of semiconductor technology, more and more Intellectual 

Property (IP cores) can be integrated into one chip under the Globally Asynchronous 

and Locally Synchronous (GALS) architecture. Power becomes the main restriction of 

the System-on-Chip (SOC) performance especially when the chip is used in a portable 

device. Many low power technologies have been proposed and studied for IP core’s 

design. However, there is a shortage of system level power management schemes 

(policies) for the GALS architecture. In particular, the area of using Dynamic Power 

Management (DPM) to optimize SOC power dissipation under latency restriction 

remains relatively unexplored. 

Event driven programming is widely used in the design of embedded software. A task 

execution in an IP core is enabled only when the corresponding event, which 

represents the availability of resources, arrives. Therefore, the design of an efficient 

event handler which can quickly respond to incoming events in a highly 

nondeterministic and concurrent on-chip environment is essential to the improvement 

in system performance. 

This thesis describes the work of modelling and design of an asynchronous event 

coprocessor to control the operations of an IP core in the GALS architecture. This 

coprocessor is called a Self-timed Event Processor (or STEP in short), and it provides 

event handling, power management as well as asynchronous communication for its 

cooperating IP core. The combination of one IP core and its STEP constitutes a 

Virtual Self-timed Block (or VSB in short). 



 
 

Abstract 

In order to demonstrate the justification for such a scheme, stochastic models were 

used for power-latency analysis of a virtual self-timed block with different DPM 

policies. Both the event arrival and task execution of an IP core were modelled as 

continuous time Markov processes. The integration of mode switching transition 

states in the stochastic models provides accurate analysis in the research. One DPM 

policy named Accumulation & Fire (or A&F in short) was given a particular emphasis 

in this thesis not only because it has great advantage in trading latency for power, but 

also because it is easy in hardware realization.     

A general architecture for STEP was developed from basic functional specifications. 

Coloured Petri Nets (CPN) was used to model the architecture of the resulting virtual 

self-timed block hierarchically. These CPN models focus on the concurrent 

processing between different components of a STEP as well as that between a STEP 

and its IP core, so as to improve system performance as well as avoid metastability. 

Functional performance of a Virtual Self-timed Block was demonstrated in simulation 

and verified by state space checking. 

To better present SOCs composed of Virtual Self-timed Blocks, an example SOC with 

four virtual self-timed blocks was built in MATLAB Simulink, whose design follows 

the specification given in the previous CPN models. A “ball game” test bench 

application runs on this 4-VSB system in the MATLAB environment, showing 

important aspects of STEP operations such as the A&F. 
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Chapter 1  

Introduction 

1.1. IP Cores and GALS Architecture 

Up to now, the evolution of digital microelectronics is characterized by the 

exponential growth of the number of transistors per chip which results in an 

exponential increase of computing power. All components of a computer system can 

now be integrated into a single chip, which is called System On Chip (SOC). In order 

to provide more functions to the on chip system and satisfy the fast manufacture and 

update requests of the market, chip designers prefer to integrate several predesigned 

and reusable hardware modules or blocks to make their new chip. These predesigned 

and reusable hardware modules are called IP cores or IP blocks because they are 

treated as intellectual properties and licensed to original equipment manufacturers 

(OEM). Companies that supply IP Cores, like ARM, become new highlight of the IT 

industry. 

Although most IP Cores are still synchronously designed, more and more SOCs can 

not be treated as pure synchronous systems. It is not only because integrated IP Cores 

are designed to have different clock frequencies to optimize their performances, but 
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also because deep transistor integration makes it hard to keep an accurate global clock 

system which can distribute an identical clock signal to every corner of the chip. In 

this case, different IP cores can keep their own clock systems and operate 

synchronously while communicate asynchronously with each other. These electronic 

systems are called Globally Asynchronous Locally Synchronous (GALS for short) 

systems [moor02]. The main concern of chip designers is to make sure signals and 

data among different clock islands or clock domains can be exchanged correctly and 

efficiently. SOC design becomes more communication centric rather than 

computation centric. 

IP core

I

Asynchronous Wrapper

Clock Domain I

req

ack IP core

II

Asynchronous Wrapper

Clock Domain II

req

ack

IP core

III

Asynchronous Wrapper

Clock Domain III

req

ack IP core

IV

Asynchronous Wrapper

Clock Domain IV

req

ack

ACM

Memory

ACM

Memory

ACM

Memory

ACM

Memory

SOC

 
Figure  1-1: SOC with the GALS Architecture 

In a GALS system, an asynchronous wrapper [zhua02] is usually added to every IP 

core. All synchronous signals and data generated by an IP core are first transformed 
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into their asynchronous counterparts by the wrapper, and then be transferred to 

another IP core (Figure  1-1) using the Asynchronous Communication Mechanism 

(ACM), which was first researched by Hugo Simpson [simp90] in 1990. Most studies 

about GALS as well as asynchronous wrappers tried to use different sizes of buffer as 

well as different types of ACM to increase the throughput of asynchronous 

communication so as to reduce the latency of the entire GALS based SOC [dasg06]. 

1.2. Power Dissipation and Low Power Technologies 

The large degree of transistor integration also made electronic equipments portable or 

wearable. Statistics show a 30% decrease in the device dimensions with each 

technology generation [bork99]. Portable devices such as laptops, digital cameras, 

mobile phones, and iPods, bring convenience and become indispensible in our 

everyday life. However, they must rely on batteries for power supply. Compared with 

the exponential integration of transistors, battery capacity has improved very slowly 

(a factor of two to four over the last 30 years) [simu01], which makes power the 

bottleneck to improve the performance of SOCs.  

Pull-up

(PMOS)

Pull-down

(NMOS)

V
dd

Cout

ishort

GND  
Figure  1-2: The Structure of CMOS Transistors 

In the past decades, many researches have been done to reduce the power 

consumption of SOCs which are built by CMOS circuits. Figure  1-2 is the CMOS 
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gate structure given in [beni98]. The pull-up network, which is generally composed of 

PMOS transistors, connects the output node Out to the power supply Vdd. The pull-

down network, which is generally composed of NMOS transistors, connects Out to 

the ground node GND. When a transition on the inputs causes a change in the 

conductive state of the pull-up and the pull-down network, electric charge is 

transferred from the power supply to the output capacitance Cout or from Cout to 

ground. The power dissipation caused by transition(s) in pull-up and/or pull-down 

networks is called dynamic power. The measurement of dynamic power is given by 

Equation  1-1: 

fVCP ddeffdynamic

2=  Equation  1-1 

In Equation  1-1, Vdd is the supply voltage, f is the operating frequency and Ceff is the 

effective switching capacitance of Cout.  

Another kind of power dissipation in CMOS circuits is called short-circuit power. It 

is caused by the non-zero rise/fall time in input signal change. During this time, both 

the pull-down and pull-up networks are on for a short period of time and some current 

is drawn from the supply and flows directly to ground. This current is called short-

circuit current and the short-circuit power is just the power consumed by the short 

circuit current.  

The third contributor to the power dissipation in CMOS is the leakage power, which 

is mainly caused by two phenomena: 1) diode leakage current due to the reverse 

saturation currents in the diffusion regions of the PMOS and NMOS transistors; 2) 

sub-threshold leakage current of transistors. Therefore, the average power 

dissipation in a CMOS transistor can be expressed in Equation  1-2: 
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leakageshortdynamicave PPPP ++=  Equation  1-2 

In Equation 1-2, Pdynamic, Pshort and Pleakage represent the dynamic, short-circuit and 

leakage power consumptions in the transistor respectively. 

Traditional low power design tries to reduce the dynamic power consumption since it 

gives the main contribution to the total power consumption in CMOS circuits. 

Technologies have been explored in different levels to change at least one of the three 

parameters in Equation  1-1 so as to reduce dynamic power. Transistor level low 

power design focuses on reducing Vth, the threshold voltage of CMOS, so that an SOC 

system can be operated by a lower supply voltage Vdd. Two main low power solutions 

have been given at the gate level. One is called scaling, which provides multiple Vdd 

to the same CMOS circuits in different cases. A high supply voltage Vdd,H is 

connected only to CMOS circuits whose operations are critical to signal propagation, 

and a low supply voltage Vdd, L is used to other non-critical CMOS circuits to achieve 

lower power consumption. When Vdd, L is used in oscillator circuits, the clock 

frequency controlled by the oscillator circuits is reduced, and the dynamic power 

dissipation of the CMOS circuits controlled by the clock signal are reduced 

accordingly.  

Another solution which tries to reduce the effective capacitance in switching is called 

gating, which stops the propagation of input signals to some part of CMOS circuits 

when the latter are not used. Since the clock signal is the most important control 

signal for synchronous circuits, clock gating is the most popular and widely used 

gating technology [jaco04]. Data Compression is the most popular low power 
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technology used at the behaviour level, which tries to reduce the number of 

connecting wires among electronic components.  

In the past decades, low power researchers have made lots of efforts to reduce the 

supply voltage Vdd (as well as Vth) since it contributes to the power by a square factor. 

However, the leakage power dissipation reduces slowly with Vdd decreasing, which 

makes it play a more important or even dominant role in the power dissipation in 

contemporary electric devices or chips. Furthermore, deep transistor integration 

brought by advanced semiconductor technology sees an increasing proportion of the 

leakage power in the total power consumption. For example, the sub-threshold 

leakage current is predicted in [aydi01] to increase from 0.01 µA/µm for the 130 nm 

technology to 3µA/µm for the 45 nm technology.  

 
Figure  1-3: The Variation of Power Consumption with Vdd.  

In [jiju04], the power consumption in a Transmeta Crusoe processor which is built by 

0.07 µm technology is under test. Figure  1-3 shows the reduction in both dynamic 

power and leakage power with the decreasing of Vdd (PAC in the legend is the dynamic 
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power dissipation and PDC is the leakage power dissipation. Pon is the power 

consumed by transistors that cannot be turned off.). It is clear that reducing leakage 

power is more important when Vdd becomes lower than 0.7V.  

Because CMOS transistors with low a threshold voltage Vth have large leakage current, 

multi threshold CMOS (MTCMOS) [calh03] is a popular technique at the transistor 

level, which increases the Vth of CMOS transistors in a non-critical path so as to 

reduce its leakage power. At the gate level, signal gating such as clock gating can stop 

switching in CMOS transistors, but cannot avoid leakage current when the transistor 

capacitance has been charged. Therefore, power supply gating, which cuts down Vdd 

supply for the CMOS transistors [henz07] is used to reduce both dynamic and leakage 

power dissipation in the gated transistors. 

All these low power technologies have been widely used in IP core design. Low 

power dissipation, as well as high throughput, becomes one basic performance 

requirement of IP cores as well as SOCs. [yseb07] describes how to use low power 

technologies at different levels to design a DSP microprocessor so as to satisfy the 

low power requirement. When several low power technologies have been integrated 

into the design of an IP core, operations in the IP core are changed accordingly so as 

to satisfy various throughputs as well as power requirements. Therefore an IP core can 

do its processing in various operation modes. For example, a sleep mode in an IP 

core always means all transistors in the core have been power gated. An idle mode in 

an IP core can be taken as the case when switches in transistors are stopped by clock 

gating. When different supply voltages are used to drive transistor switching, the 

corresponding IP core is said to use different work modes to provide service. The 

more low power technologies have been integrated, the more operation modes can be 
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provided by an IP core. Multiple mode IP cores are widely adopted in both Hard Disk 

Drivers (HDDs) (like IBM Travelstar [ibmt97], FUJI MHF 2043AT [lu00]) as well as 

microprocessors (like SA1110 [sa11], Transmeta Crusoe [jiju04]). When some low 

power technology is enabled or disabled, the corresponding IP core is said to switch to 

another operation mode. 

One thing needs to be highlighted here is that operation mode switching transitions 

bring overheads in both power and latency. For example, a microprocessor entering 

its sleep mode needs three steps: 1) flush to memory all system information that 

should be preserved throughout the sleep period; 2) reset all internal processor register 

and program wakeup events; and 3) shutdown the internal clock generator. Similarly, 

three steps are taken when the processor is switching back to its work mode: 1) 

turning on and stabilizing the power supply and the clock; 2) reinitializing the system; 

and 3) restoring the context. The possible high overheads in mode switching means 

frequent mode switching cannot benefit, and may even deteriorate an IP core in its 

power dissipation. Therefore when several IP cores are integrated into one SOC, some 

scheme or policy is needed at the system level to manage mode switching in all 

component IP cores so as to minimize not only the power dissipation in every power 

domain, but also that of the entire SOC. The group of circuits where this policy is 

implemented is often called a power manager. When only one power manager is 

used to control all IP cores, it is called a centre power manager. Otherwise, several 

distributed power managers are used to provide power control in different power 

domains.  

System level low power technologies can be generally divided into two groups: one 

group tries to make an IP core to carry on its operation in its full power and then 
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switch the latter to stay in one of its low power modes (such as sleep mode) as long as 

possible. This kind of technology is often called Dynamic Power Management 

(DPM). The other group of technologies tries to make an IP core do its operation as 

slowly as possible. The IP core can only switch to some mode with faster operation 

speed when the corresponding latency cannot be tolerated. This kind of technology is 

often called Dynamic Scaling, which includes Dynamic Voltage Scaling (DVS), 

Dynamic Frequency Scaling (DFS), and Dynamic Voltage and Frequency Scaling 

(DVFS) depending upon which parameter(s) can be scaled. Delicate DPM/DVS 

design can reduce both dynamic and leakage power in an IP core [jeju03]. 

However, system level power management has not been considered by SOC with 

GALS architecture, although this architecture has great potential in power saving. 

Without a global clock system, an SOC built in the GALS architecture can easily 

power on/off an IP core or switch it to another mode without interfering with the 

clock propagating to other IP cores. 

Furthermore when low power dissipation is concerned, asynchronous circuits show 

great advantage over synchronous ones. By eliminating the clock system, which 

always has the largest capacitance and switching frequency in the chip, asynchronous 

circuits can do the same operation as their synchronous counterparts with extremely 

low power. That is why asynchronous technology is claimed as a “revolutionary” low 

power technology in [beni98]. Therefore, an asynchronous power manager can 

provide power control to its IP core with extreme low power overheads. 
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1.3. Event Driven System and STEP 

The increase in the degree of transistor integration brings changes not only to 

hardware design but also software design. On the one hand, executions in an IP core 

become multiple processing. More and more tasks, which represent operation threads, 

can be embedded into one IP core. On the other hand, when more and more IP cores 

have been integrated into one chip, task execution in an IP core becomes 

nondeterministic and concurrent. In other words, the start moment of one task’s 

execution is unpredictable, and it is highly possible that two or more tasks become 

ready for execution simultaneously. The concurrency in task execution brings 

competition of resources, which represent limited battery energy, finite memory 

space or communication bandwidth, etc. Nondeterminism in task execution brings 

great challenge in the area of fast or real-time resource allocation. 

In this case, event driven programming is preferred to be used in on-chip software 

design. An event is modelled as something happening or happened and should be 

responded to by a task. It may mean the availability of a request signal or data, or 

idleness of input/output ports, or enough energy in the battery, depending on different 

implementations. Therefore, event handling can be taken as resource allocation in an 

SOC. After some event is handled by an IP core, its corresponding task can be carried 

out. 

In an event driven system, a task, when allowed to run, must return control when it 

completes or when it cannot be executed further. In other words, the task cannot 

perform an operation which would cause execution to suspend within that task. If the 

task was half way through an operation and was waiting on more resources such as 
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data, it would need to remember where it was and return. When the resource that the 

task was waiting on arrived, the task would then continue from where it had 

previously stopped. A scheduler or dispatcher is used to allow other tasks to run when 

the execution of the current task is completed or stopped. 

When on chip nondeterminism and concurrency are taken into consideration, the 

synchronous or software based event handler and scheduler designed by previous 

research cannot satisfy the requirement of SOC. 

IP core
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Figure  1-4: Self-timed Event Processor and Virtual Self-timed Block 

First of all, the operation of synchronous circuits (as well as the software running in 

synchronous circuits) is controlled by clock signals. When several events come within 

one clock cycle, they are taken as simultaneous by synchronous circuits and can only 

be handled in the next clock cycle. If arbitration [kinn07a] involves due to the 

unnecessary accumulation of events, synchronous circuits may use hundreds of clock 
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cycles to solve it and the corresponding latency may greatly deteriorate the 

performance of IP cores as well as the entire SOC. Secondly, the nondeterminism of 

event arrival means circuits for event handling cannot be powered off at any time. 

Although the power consumption in these circuits may be trivial, given a high enough 

frequency of the IP core and enough time, the total energy cost in these circuits cannot 

be ignored. 

On the other hand, asynchronous circuits have a great advantage in event handler and 

scheduler design. Without clock control, an asynchronous event handler can respond 

to new incoming events without delay, and the chance of metastability should be 

greatly reduced. Similarly since no power is wasted in the handler (and scheduler) 

when no change happens in the system, an asynchronous handler can fulfil its job 

while keeps an energy hungry IP core in its sleep mode when no task is enabled. 

Therefore, an asynchronous coprocessor rather than a simple asynchronous wrapper is 

necessary to be used in a GALS based SOC content. This coprocessor helps IP cores 

to work as event driven domains in a highly nondeterministic and concurrency 

environment with limited power. This coprocessor is called a Self-Timed Event 

Processor (or STEP in short) and the combination of one STEP with its processor 

works as a “Virtual” Self-timed Block (or VSB in short) in the GALS architecture 

(Figure  1-4). The main function modules of a STEP are as follows: 

1) An asynchronous wrapper which can realize asynchronous/synchronous signal 

and data conveyance 

2) A power manager where a system level DPM policy is used to reduce the power 
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consumption while not seriously deteriorating system throughput. Since low 

power technologies have been integrated into IP core design, the power manager 

in a STEP provides not low power circuit realization but low power commands 

to an IP core. In other words, the power manager dynamically adjusts the IP core 

to use a proper operation mode according to the environment situation. 

3) An event handler which can quickly respond to the incoming events and enable 

their corresponding tasks. A memory about what tasks have been enabled by the 

corresponding events (if it has not been executed yet) and which tasks have been 

stopped due to lack of resources is kept in the handler. 

4) A scheduler who chooses a task from all candidates for processing in an IP core 

when the execution of the current task is completed or terminated. 

The main contributions of this thesis are as follows: 

1) To present the architecture of an asynchronous designed Self-timed Event 

Processor where asynchronous communication, power control and event 

handling are taken into consideration. 

2) To obtain analytical solutions for stochastic models of DPM systems which for 

the first time allow an infinite number of system states in mode switching 

transitions. The achievement of an analytical solution enables a more accurate 

estimation of the power/latency performance in an IP core with DPM control. 

3) To present Fine Grain models for DPM systems for the first time which does not 

take the cost in power manager circuits as cost free. 
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4) To present a thorough analysis of the implementation of Accumulation & Fire 

policy with different kinds of IP cores. Both power efficiency and applicability 

of this policy have been explored so as to prove its great potential in power 

saving. 

5) To model the structure of a Virtual Self-timed Block with the modelling tool of 

Coloured Petri Net (CPN) where all nondeterministic and concurrent processing 

in a VSB has been modelled and proved by simulation and state space checking. 

6) To present the construction of a SOC with VSBs in MATLAB Simulink. A test 

bench named as ball game was designed for the analysis of a VSB performance 

in a real implementation. 

1.4. Thesis Outline 

The rest of the thesis is organized as follows: 

Chapter 2 first categorises previous studies about DPM policies into two classes: 

prediction policies and stochastic policies. When the overheads in mode switching 

transitions of a processor are highlighted, a new policy named Accumulation & Fire 

becomes promising to increase the power efficiency of a processor. This chapter also 

introduces different modelling languages (tools) that are used in subsequent chapters 

of this thesis.  

Chapter 3 is about stochastic models for power-latency analysis of a VSB when 

different DPM policies are used. In these models, both events incoming and task 

executions of an IP core are modelled as continuous time Markov processes. The 

integration of mode switching transition states in the stochastic models increases the 
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accuracy in our analysis. Three kinds of DPM systems, named as On-off DPM 

systems, DPM systems with multiple inactive modes and DPM systems with multiple 

active modes, have been modelled and analyzed. One DPM policy named as 

Accumulation & Fire (or A&F in short) is highlighted in this chapter not only because 

it has great advantage in trading latency for power for all DPM systems, but also 

because its easy hardware realization.     

Chapter 4 presents the modelling work of a VSB modelled in Coloured Petri Nets 

(CPN). These CPN models focus on the concurrent processing between different 

components of a STEP as well as that between a STEP and its IP core, so as to 

improve system performance as well as avoid metastability. State space checking is 

used to verify the correctness of CPN models. 

Chapter 5 describes the implementation of an example SOC system with four virtual 

self-timed blocks in MATLAB Simulink. Simulation results are provided when a test 

bench named ball game is running in the model system. 

Chapter 6 concludes this thesis and suggests some ideas for further studies. 
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Chapter 2 

Background 

2.1. Research in System-Level Dynamic Power Management 

With rapid progress in semiconductor technology, portable devices are enabled with 

sophisticated processing capability and can provide services that were only available 

in desktop computers decades ago. However, the high frequency and chip density in 

new designs not only bring fast execution performance, but also make battery-based 

systems more energy hungry. Therefore, low-power design which tries to reduce the 

power dissipation while still satisfying the latency requirement becomes a hot 

research topic in the electronics field.  

System level energy-saving technologies focus on increasing the energy efficiency in 

portable devices. Dynamic Power Management (DPM) [beni98], for example, 

provides power on-off control to a portable device whose computation units are event-

driven for reactive processing. These units are activated and can access the battery 

power only when they are triggered by some external events to carry out the 

corresponding tasks, and a so-called power management (PM) unit is added to the 

system where some scheme (policy) is implemented to decide when and how to 
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shutdown or wakeup certain units. These computation units are called power 

manageable components (PMCs) [beni00]. 

In system level, PMCs are modelled as black boxes. As an atomic block in power 

management execution, the detail of task executions in a PMC is ignored by DPM 

control. Instead, the (multiple) modes of operation that can be controlled for power-

latency trade-off are the fundamental characteristics of a PMC. A mode switching 

transition command is issued by the PM when the current mode in the PMC cannot 

minimize the power dissipation under certain latency constraints (or when the PMC 

cannot minimize the latency under tolerable power dissipation). If a PMC only has 

two operation modes: on and off, the corresponding mode switching transitions are 

called shutdown (from mode on to off) and wakeup (from mode off to on) 

respectively.  

2.1.1. Cost of PMC Mode Transitions 

As introduced in Section 1.2, mode switching transitions in PMCs have costs in both 

power and latency. In most cases, the lower the power dissipation one mode can 

provide, the longer latency and higher power dissipation are paid in the switching 

transitions from/to the mode. Therefore, a switching transition to a mode with lower 

power dissipation should only be carried out when the energy saved (or latency 

improved) by the mode can compensate for that consumed in the corresponding mode 

switching transition. 

The concept of Break-Even Time (TBE) is defined in [beni00] and [lu00] to measure 

the energy cost caused by a mode switching transition. The Break-Even Time for 

switching from mode i to mode j in a PMC is defined as the minimum time spent in 
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mode j to compensate for the cost of entering this mode. Therefore, a switching 

transition from mode i to mode j is carried out only when the PMC can spend at least 

TBE in mode j. 

If Tin and Tout are defined as the time cost for the switching from mode i to mode j and 

visa versa respectively, TTR as the transition time is the sum of Tin and Tout. 

TTR = Tin + Tout Equation  2-1 

The average transition power dissipation PTR can be expressed as 
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Pin and Pout in Equation  2-2 are the power cost spent in the transition to and from 

Mode j respectively. If Pi and Pj are defined as the power dissipation of mode i and j 

(Pi>Pj), TBE can be expressed as:  
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TBE = TTR                                     if PTR≤Pi 

2.1.2. Predictive DPM Policies 

The TBE values of a PMC are of great importance when some predictive DPM policy 

is used. Predictive DPM policies turn a PMC to one mode with lower power 

dissipation if the PMC is predicted to stay in the mode long enough. These policies 

use “the correlation between the past history of the workload and its near future in 

order to make reliable predictions about future events” [beni00].  

The simplest prediction policy is called timeout policy, which does a mode switching 

transition (for example, shuts down the PMC) after a fixed idle time (represented by 

the parameter τ) during which no executions are carried out in a PMC. The PMC is 

switched back to its previous mode when a new event arrives. This policy relies on 
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the assumption that a PMC is highly likely to remain idle if it has been idle for some 

time. Although simple, this policy is widely used for many laptops and other portable 

devices [lu00]. 

Therefore, if Tidle is the total time span of the idle period in a PMC, the timeout policy 

shuts down the PMC when Tidle>τ and can only save the power of the PMC if 

Tidle>τ+TBE. The choice of τ value in different PMCs relies on the conditional 

probability of Q( predidleT , >τ+TBE | Tidle>τ). In order to differentiate power from 

probability, alphabet P is only used for power and Q is used to represent probability 

or probability distribution in this thesis. predidleT ,  here means the predicted length of 

Tidle. If predidleT , > τ+TBE while Tidle<τ+TBE, the timeout policy increases rather than 

reduce the power dissipation of a PMC. If a predicted idle period is longer (shorter) 

than the actual one, it is called over-prediction (under-prediction). An over-prediction 

means the corresponding DPM control worsens rather than improve the power 

efficiency in a PMC, and an under-prediction means the energy saving that can be 

brought by the corresponding DPM control is not fully used. In [beni00], two 

measurements are used to reflect the quality of a PM when some predictive policy is 

used. The concept safety is defined as the complement of the risk of making over-

predictions, and efficiency is defined as the complement of the risk to make under-

predictions. In this thesis, we redefine the two concepts to give them wider description. 

The concept safety is defined as the percentage of the risk of making energy worse, 

and efficiency is defined as the percentage of power saving compared with the 

original power dissipation. 
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The timeout policy has two main advantages: it is general enough to be implemented 

in almost all portable devices, and its prediction safety can be improved simply by 

increasing the τ value. However, its limitation is obvious as well. It trades safety 

against efficiency, and the power is wasted during the τ period. Therefore, advanced 

prediction policies try to improve the prediction efficiency without much loss of 

safety. 

Some policies try to make a mode switching decision as soon as the idle period begins, 

so that no energy is wasted in the τ period (since τ=0). These polices are called 

predictive shutdown polices in [beni00]. If an active period is defined as the period 

when a PMC is doing processing, it happens alternately with an idle period. In the end 

of the (n-1)th active period, the PM makes a prediction about the length of nth idle 

period based on the history data: 
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Different functions F() are used by different policies to make the prediction safer or 

more efficient. For example, the nonlinear regression equation in [sriv96], α 

adaptation in [hwan97] and Artificial Neural Network in [lu06] are used as the F() in 

their own implementations. A mode switching (shutdown) transition command is 

issued when n

predidleT , >TBE. 

Besides the prediction function F(), the prediction safety and/or efficiency also relies 

on the amount of history data used for prediction (the parameter k in Equation  2-4). 

The use of a large amount of history data makes the PM circuits’ complex, and 

somehow counteracts the power saved by DPM control. A threshold method is given 

by [sriv96] which shuts down a PMC when the ending active period is shorter than 
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some threshold ( ThresholdT n

active <−1 ). This policy can only be used in PMCs whose 

active periods are in L-shaped, i.e., a short active period in a PMC is often followed 

by a long idle period.  

Other prediction policies, which focus on wakeup transitions, are always called 

predictive wakeup policies. These policies also predict the length of Tidle in Equation 

 2-4, and a PMC is woken up as soon as predidleT , is reached. Compared with predictive 

shutdown policies, these wakeup policies focus more on latency rather than power 

dissipation in a PMC.  

All these policies try to improve the power efficiency of a PMC without much 

deterioration of the safety. However, there is no easy trade-off between efficiency and 

safety in these policies, like the timeout policy. The prediction efficiency highly 

depends on the correlation between continuous idle and active periods. Therefore, 

their efficiency varies greatly in different implementations and simple variations in 

parameters (like the k in Equation  2-4) do no guarantee prediction efficiency and/or 

safety improvement. Therefore comparative simulation is indispensible in deciding 

whether and which prediction policy can be implemented in one particular PMC. 

A timer is indispensible in the PM for all kinds of prediction policies. Although the 

timer is only used casually to record the time τ when the timeout policy is used, this 

counter is always used to record the length of Tactive and Tidle for the predictive wakeup 

policies. In these cases, the timer works as a clock in the PM, which is energy hungry 

especially when an accurate record of Tactive and Tidle is needed. Besides, the PM can 

hardly be taken as cost free, as claimed by most research about prediction policies. 
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2.1.3. Stochastic DPM Policies 

Although highlighting the uncertainty (as well as the correlation) of the workloads, 

predictive policies always assume deterministic response and transition times for a 

PMC. However, the abstraction of a PMC as a black box makes this assumption 

doubtful, and the other group of DPM policies, named as stochastic DPM policies, 

prefers to model the execution in a PMC as a stochastic process as well. Rather than 

trying to eliminate uncertainty by prediction, these policies try to take the DPM 

control as an optimization problem under uncertainty. Therefore, these polices have 

wider implementations in different PMCs to satisfy the power-latency trade-off 

required by the environment or the users.  

In most of these policies, both the workload and the PMC execution are taken as 

Markov Processes and Markov Based Model is used to describe the processing in a 

PMC under DPM control. The fitness of Markov Processes modelling portable 

devices have been demonstrated in [simu00] where three experiments, with a hard 

disk for a laptop, a personal communication interactive device and a WLAN card, are 

carried out respectively. 

2.1.3.1 Stochastic Model of DPM Systems 

A stochastic process is a family of random variables {X(t), t≥0} where t is the time 

parameter. The values assumed by the process are called the states, and the set of 

possible values is called the state space. A stochastic process X(t) is called a Markov 

Process if for any set of time t0<t1<…<tn<t, its conditional distribution has the 

property: 

Q[X(t)≤x | X(tn) = xn, …, X(t0) = x0] = Q[X(t) ≤x| X(tn) = xn] Equation  2-5 
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Where t0, t1, …, tn, t∈T and x0,x1,…,xn∈S. T and S are called the parameter space and 

state space of the Markov process respectively. When both T and S belong to discrete 

space, the Markov process is called the discrete-time Markov process. When T is a 

continuous space and S is a discrete space, the Markov process is called the 

continuous-time Markov process. A Markov model of a DPM system consists of 

three parts (Figure  2-1): 

Service Requestor

(SR)

Service Provider

(SP)

Power Manager

(PM)

Mode 

Switching 

Commands

<χ, µ, Pow, 

Energy>

EQ TQ

 

Figure  2-1: The Architecture of a DPM system 

A service requester (SR) is a Markov process with state set R which models the 

arrival of service requests in the system (i.e., the workload of events). 

A service provider (SP) is a Markov process which models a PMC where r operation 

modes are provided. Transitions among these states are stochastic, which are 

controlled by commands issued by the power manager. An SP responds to the 

incoming events from the SR by execution of their corresponding tasks. All tasks 

waiting to be executed are saved in a task queue (TQ) and the SP fetches new task 

from the TQ by FCFS (First Come First Serve). 

In [qiu99], the description of the SP has been specified as a set group <χ, µ, Pow, 

Energy>. If M={Mi | i=0,1,2,…,r-1} is the operation mode set in an SP, we have: 

Χ is an rr × matrix called the transition rate matrix of the SP. The χi,j (i<r, j<r) 
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component in the matrix represents the transition rate from Mi to Mj (the 

transition is written as Mi,j later). Since the switching from Mi to itself is 

instantaneous, χi,i is set to ∞. In case a mode Mj cannot be switched directly 

from another mode Mi, the corresponding χi,j is set to 0. 

Μ is an r vector and µi stands for the mean service rates of the SP when it is in 

mode Mi. 

Pow is an r vector and Powi is the power consumption in the SP in mode Mi. 

Energy is an rr × matrix and Energyi,j indicates the energy cost of Mi,j. Energyi,i is 

set to 0 because no extra energy is needed for the SP to keep in the same 

mode. 

A power manager (PM), which issues mode transition commands (Cmd) to the SP 

following the function f: M×R→Cmd. This represents a decision process: the PM 

observes the mode in the SP as well as the workload, makes a decision and issues a 

command to the SP so as to control the future status of the system. The execution in 

the PM is generally taken as cost free in both power and latency. 

Given L is the maximum length of the TQ, vector Len={0,1,…L} represents the 

variable length of the TQ. When Tr represents the set of mode switching transitions 

Tr={Mi,j i≠j}, the full state space of a DPM system can be represented by 

Sys=R× (M+Tr)×Len. A DPM policy π is the set of commands that is issued by the 

PM when the system stays in any of its states Sys×Cmd→ π. 

In a simple example, we assume that only one requesting mode exists in the SR (The 

average interval time of requests generated by SR follows the exponential distribution 
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with mean value 1/λ), and the SP has two operation modes: M1 for mode on and M0 

for mode off. L=1 is the maximum length of TQ, the full state space of the 

corresponding DPM system has R× (M+Tr)×Len = 1× (2+2)× 2 = 8 states. We use 

<Mi, n> to represent the state when the operation mode in SP is Mi and the TQ length 

is n. Suppose two commands can be given by the PM: {wu, sd} (wu stands for 

wakeup and sd stands for shutdown). A DPM policy can be expressed as follows: 

Sys (M0,0) (M0,1) (M0,1,0) (M0,1,1) (M1,0) (M1,1) (M1,0,0) (M1,0,1) 

wu 0 1 1 1 0 0 0 0 

sd 0 0 0 0 1 0 1 1 

2.1.3.2 The Generator Matrix and the Probability Distribution 

A system generator matrix G=Sys× Sys is kept to record state transitions according to 

the new arrival of events, the execution carried in the SP as well as commands given 

by the policy. If )(tQ ji⇒ is the transition probability from state i to state j during time 

0 to t and )(' tQ ji⇒ is its derivative, a generator matrix G is shown like below: 
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A unit σi,j in G is called the transition rate from state i to state j which is calculated 

by Equation  2-6 or Equation  2-7: 
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According to queuing theory [klei75], for a continuous Markov process, a state i is 

said to be recurrent if and only if, starting from i, eventual return to this state is 
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certain. A recurrent state is said to be positive recurrent if and only if the mean time 

to return to this state is finite. A state i is said to be transient if and only if, starting 

from i, there is a positive probability that the process may not eventually return to this 

state. 

State j is said to be accessible from state i if j can be reached from i within finite time, 

which is denoted as i→j. If i→j and j→i, they are communicate, which is denoted as 

i↔j. The set of all states of a Markov process that communicate with each other forms 

a communicating class. If the set of all states of a stochastic process X form a single 

communicating class, then X is irreducible. 

If the Markov process is irreducible, the limiting distribution iit QtQ =∞→ )(lim , Sysi∈ , 

exists and is independent of the initial conditions of the process. The probability 

distribution among all states Sys is given by the unique solution of the equation: QG = 

0 and ∑ ∈
=

Sysi iQ 1where Q= (Q0, Q1, …). 

Therefore, if we use Gπ
 to indicate the generator matrix of the current DPM system 

when a certain policy π is implemented, this matrix can be used to derive the 

probability distribution among all states. In this case, the power cost can also be 

defined as:  
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+=  Equation  2-8 

In Equation  2-8, nM i
Q , and nM

ji
Q ,

,
represent the probability of state <Mi,n> and 

<Mi,j,n> respectively. In many works like [beni99, qiu99, beni00, ren05], the average 

length of TQ has been used as the measurement of the system latency, therefore, the 

latency cost can be defined as: 
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If П is the set of all possible policies π, an optimized policy πopt is a policy that can 

minimize Cpow within certain latency restriction D: 

Π∈≤ optpowpow CC opt ππππ
,,  Equation  2-10 

DC opt

latency ≤π
 Equation  2-11 

This policy optimization has been described in detail when the system is modelled as 

discrete Markov processes [beni99] or continuous Markov processes [qiu99] 

respectively. 

In all these papers, authors modelled mode switching transitions as Markov processes 

in their models. It is first because these transitions are task dependent. For example, 

the shutdown transition needs to save all system information to the memory before 

gating the power supply to go into sleep mode. Therefore, the time and power cost in 

this transition highly depends on the amount of system information involved, which 

varies from task to task. This can be supported by Table 2 in [mihi04], which gives 

different time costs for the shutdown and wakeup transitions (called A-S-A time in the 

paper). Furthermore, the nondeterministic characteristic of an on board battery is 

another important factor for the stochastic execution of mode switching transitions. 

Recent papers [chia01, luci08] have disclosed that the energy consumption in a 

battery is not linear, and the energy may be partially recovered after some idle period. 

All these factors give a more nondeterministic character to the mode switching 

transitions. 

One thing that must be emphasized here is that the optimized policy chosen by this 

method is highly parameter sensitive. In other words, whether the policy can achieve 
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the lowest power consumption highly depends on whether the workload parameter (λ) 

as well as the SP (like µ, χ) used in the system level model is accurate or not.  

Some research has been done to increase the robustness of the optimized policy. For 

example, Hidden Markov Process in [tan08] and Partially Observable Markov Process 

[qiu07] are used to give a better description of workloads whose variability may be 

hidden or partially observable. Others [chun99] keep several optimized policies in the 

PM. Each policy responds to a different group of possible parameters, and the PM can 

dynamically change to a new policy when the environment varies. However, 

considering circuit design and real system implementation, the robust optimized 

policy achieved by these methods still faces problems in the implementation, as 

shown below: 

First of all, the safety of DPM policy is totally unexplored. These optimized policies 

are trying to increase the power efficiency. However they do not measure the possible 

unsafeness. If some unsafeness happens because of environmental changes, there is no 

easy way to trade power efficiency for safety. 

Secondly, it is difficult to adjust trade-off between power and latency. It is clear that 

all power and latency requirements are implementation oriented and can be changed 

from time to time. Therefore, the user prefers a DPM policy that can easily realize 

different power latency tradeoffs without much change in the PM circuits. However, 

every optimized policy is only for one particular latency (or power) restriction, and it 

is not easy to find an optimized policy to fit the requirement of a new latency (or 

power) restriction.   
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Thirdly, hardware circuits for the robust optimized policy may be very complex. The 

more advanced Markov Processes are used to model the behaviour of a DPM system, 

the more complex the corresponding circuits may be. If designers want to implement 

several optimized polices for different parameter sets in their PM, the corresponding 

circuits may increase in size several times since no evidence is given in these papers 

that any two optimized policies have similarities. 

Finally, it may involve a lot of possible redesign work for different implementations. 

Since every optimized policy is effective only for one parameter set, the PM needs to 

be redesigned every time the optimized policy is changed due to parameter changes. 

No evidence shows this redesign work can be easily carried out.  

All these reasons give us enough motivation to look for a sub optimized but easily 

implemented policy for the real implementation. This policy should take both policy 

efficiency and safety into consideration. It can realize an easy (online or offline) 

adaptation for a new power latency trade-off. Besides, its realization in the PM should 

be simple to keep the power overhead of the PM as low as possible. 

2.1.4. Accumulation & Fire Policy 

Generally speaking, one and only one command can be issued by the PM when the SP 

is carrying out some mode transition (For example, only command wu can be issued 

when the SP is carrying mode transition M0,1). Therefore, the main difference between 

various policies π lies in how many tasks are in the TQ when the mode transition 

commands are issued. If no less than one task is still left in the TQ when the shutdown 

command is issued, it is called pre-shutdown in this thesis, and if more than one task 
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is available in the TQ before the wakeup command is issued, it is called accumulated 

wakeup.     

Although it may help an SP to reduce its power consumption, the pre-shutdown 

method is not considered in this thesis because it may cause great latency for some 

task. For example, if the PM decides to shut down its SP when the latter has no more 

than two tasks in the TQ, the execution of the last two tasks must wait until the SP is 

woken up again which may cause serious latency to these two tasks. Although FCFS 

is considered in high level DPM model, many real systems prefer to use a priority 

based policy for scheduling. In these cases, tasks with the lowest priority are 

scheduled to be executed as the last one, even when they may come earlier than some 

high priority task. If the pre-shutdown method is used, the low priority task may 

NEVER get the chance to be executed in the SP because the SP is always shut down 

before they are chosen to be executed. 

Our main focus is on the accumulation wakeup method because it is similar to the 

integrate and fire mechanism found in biological neural systems [buzs04]. One 

biological neuron may generate its own stimulation pulse when it receives enough 

stimulation pulses from other neurons. This mechanism helps many biological 

creatures to complete some complex tasks with extremely low power compared with 

electronic computers or chips. If this method uniquely used as a DPM policy, it is 

called Accumulation and Fire policy or A&F policy in short in this thesis. This 

policy is also referred as N-policy, which was first studied by Yadin and Noar 

[yadi63]. 
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Because of the simplicity of the A&F policy, analytical solutions for probability 

distributions can be achieved even when an infinite number of states is involved. 

Although the powerful calculation capability of modern computers makes the 

numerical calculation involved in the QG=0 much easier than before, the analytical 

solution of a Markov model (if the latter has) has a great advantage over its numerical 

counterpart. First of all, the analytical solution can directly reflect the influence of 

parameters on the probability distribution while the numerical solution cannot. When 

multiple parameters can be changed to achieve better performance, the analytical 

solution can indicate to the designer which parameter adjustment is the most effective. 

Secondly, the accuracy of probability distribution calculated by the numerical method 

depends on the number of states involved in the calculation. When only a small 

number of states is used for calculation, the inaccuracy in the solution may be too 

high to reflect the basic properties of the corresponding process. However, one can 

hardly know in advance how many states are enough to reflect the properties of the 

process. On the other hand, the accuracy of analytical solution is independent of the 

number of states. Finally, if the numerical solution use as many as possible states for 

calculation, the calculation complexity increases by n2 while that for the analytical 

only increases by n where n is the number of states. 

Since the A&F policy has great potential in power saving and can have analytical 

solutions for more accurate analysis, many investigations have been carried out about 

this policy. On the one hand, many queuing theory models have been used by 

mathematical studies. To be more specific, if the SP (the server in queuing theory) can 

be turned off from service providing sometimes, it is called “N-policy with single 

removable server”. Hersh and Brosh [hers80] used the M/M/1 model, Teghen [tegh87] 
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used the M/G/1 model, and Wang and Huang [wang95, pear04] used the M/Ek/1 

model to analyze the probability distribution in N-policy. The latest research about the 

N-policy can be seen in [chou04, thom08]. Some optimization in N-policy is also 

provided accordingly. However, these policies all take the server turn-on/off transition 

as instantaneous and cost free, which makes their analysis of N-policy not suitable for 

DPM implementations. Furthermore, all these studies limit themselves to deal with 

simple SPs with only on/off modes. (Queuing theory uses T/S/N to describe different 

queueing systems. T indicates the type of stochastic process for incoming customers, 

S indicates the type of stochastic process for service providing and N represents the 

number of servers in the system. For example, M/M/1 describes a queuing system 

when both incoming customers and service in the server follows Markov Processes 

and only one server exists in the system. For the meaning of other abbreviations, one 

can use [klei75] for reference.) 

On the other hand, electronic engineers also make attempts to implement this policy. 

For example, in the ultra low power DSP processor designed for electrocardiogram 

(ECG) applications [yseb07], 50 ECG samples are accumulated before activating the 

DSP for processing. However, no mathematical analysis is given in the paper and the 

accumulation limit of 50 is purely based on simulation results. Some models have 

been built for the A&F analysis, while the models they have used seem not accurate 

enough to reflect the DPM system behaviour. In the following sections, we use the 

model given by [ren05] and [wang95] to demonstrate the previous research about the 

A&F policy in both electronics and mathematics studies.  

2.1.4.1 State Transition Diagram 
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When one and only one task is accumulated before the activation of an SP, the A&F 

policy in this case is called the greedy [ren05] or eager policy [beni99], which serves 

as the simplest stochastic policy of DPM. The analytical estimation of the average 

power consumption for the greedy policy is given in [ren05], which is based on the 

M/M/1 model [klei75] in queuing theory. 

According to Section 2.1.3.2, a Markov process can be expressed by a generator 

matrix. It can also be described by a state-transition diagram. Each state is denoted 

by a circle (or ellipse) in the diagram and transitions among these states are 

represented by arcs connecting the corresponding circles. The transition rate is 

marked as an expression on the arc. An M/M/1 model describes the behaviour of a 

system when there is only one server which provides service to incoming customers. 

Both the execution rate (µ) in the server and the arrival rate (λ) of the customers 

follow the exponential distribution. 

1 2 r-1 r r+13

µ µ µµµµ

λ λ λ λ λ λ

µ

λ

0

µ

λ

 

Figure  2-2: The State-transition-diagram of the M/M/1 Model 

Figure  2-2 is about the corresponding state-transition diagram, and the generator 

matrix of the M/M/1 model is given below: 

 0 1 2 3 … 

0 -λ λ 0 0 … 
1 µ -(λ+µ) λ 0 … 
2 0 µ -(λ+µ) λ … 
3 0 0 µ -(λ+µ) … 
… … … … … … 

As an irreducible Markov process with infinite states, the numerical solution for the 

probability distribution can be achieved from the generator matrix when only n states 
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are involved in the calculation and the probability of rest states are thought to be 0. On 

the other hand, an analytical solution can be found for a Markov process with infinite 

states if the process satisfies two pre-requests: 

1) The process has at least one delegate state. A delegate state is a state whose 

probability can represent the probability of all others according to the equation 

QG=0. 

2) If Qd is the probability of the delegate state, the probability distribution of all 

states can be expressed as a convergent serial of Qd. 

Take the M/M/1 model in Figure  2-2 for example, the equation QG=0 is written as:  

              -λQ0    + µQ1      = 0 Equation  2-12 

λQ0 - (λ+µ)Q1    + µQ2     = 0 Equation  2-13 

λQ1 - (λ+µ)Q2    + µQ3     = 0 Equation  2-14 

                       …  

λQn - (λ+µ)Qn+1+ µQn+2 = 0 Equation  2-15 

In Equation  2-12, Q0 can be used to represent Q1 as: 

01 QQ
µ
λ=  Equation  2-16 

When Equation  2-16 is integrated into Equation  2-13, Q2 can also be represented by 

Q0. The remaining probabilities can also be expressed through Q0 in Equation  2-17. 

0)( QQ n

n µ
λ=  Equation  2-17 

Therefore, the state 0 in the M/M/1 model is a delegate state. The probability 

distribution of {Q0, 0)( Q
µ
λ

, 0

2)( Q
µ
λ

, 0

3)( Q
µ
λ

,…} becomes a convergent series of Q0 if 
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and only if λ<µ. The probability distribution can be solved by introducing the 

restriction equation∑ ∈
=

Si iQ 1. For the M/M/1 model, we have 
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Equation  2-18 

Therefore, the analytical solution for the M/M/1 model is given in Equation  2-19. 

)1()(
µ
λ

µ
λ −= n

nQ  Equation  2-19 

Therefore, the probabilities of the 0 state and non-0 states in the M/M/1 model 

indicate the proportion of the idle period (Tidle) with the active period (Tactive) of an SP.  

2.1.4.2 Analytical Solutions for the Greedy Policy based on the M/M/1 Model 

In [ren05], Twu and Tsd represent the average latency for wakeup and shutdown 

transitions respectively (Tsd=1/χon,off and Twu=1/χoff,on). An idle period Tidle>0 happens 

if and only if no more tasks are added to the TQ during the shutdown transition 

(otherwise, a wakeup transition follows the shutdown transition immediately). When 

the workload follows the Poisson distribution, the probability of non-zero idle period 

can be calculated as follows: 

Q(Tidle>0)=Q(no tasks arrive during Tsd)= )0(
sdT

Q = sdTe
λ−  Equation  2-20 

According to the greedy policy, the SP is woken up (and the idle period is terminated) 

when a new workload arrives. Following the Poisson distribution, the average interval 

between two continuous workloads is 1/λ and the average length of the idle period is 

calculated below: 

sdT

idle eT
λ

λ
−= 1

 Equation  2-21 
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With the assumption that the proportion between the average length of the non active 

period ( idleT +Tsd+Twu) and activeT is the same as that for idleT with activeT in the M/M/1 

model, the average length of the active period is calculated below: 
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 Equation  2-22 

Finally the corresponding average power dissipation P is derived in Equation  2-23. 
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In Equation  2-23, PTR and TTR are defined in Equation  2-2 and Equation  2-1 

respectively. The P in Equation  2-23 is still not accurate enough since the assumption 

µ
λ
µ

λ

−
=

++ 1wusdidle

active

TTT

T
can only be satisfied when both Tsd and Twu are very small. 

The inaccuracy lies in the absence of the wakeup and shutdown transitions in the 

Markov model. Furthermore, this derivation of P  can hardly be used for DPM 

systems whose SP has multiple operation modes. 

2.1.4.3 Optimal N-policy Based on the M/Ek/1 Queuing Model 

In [wang95], Wang and Huang used the M/Ek/1 model to find the probability 

distribution of N-policy, and optimized the parameter N accordingly. In their research, 

the execution in the server is modelled as an Erlang type k process which means the 

execution in the server can be divided into k independent stages and each of them 

follows the exponential distribution with mean 1/kµ. A customer goes into the first 
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stage of the service (say stage k), then progresses through the remaining stages and 

must complete the last stage (say stage 1) before the next customer enters the first 

stage. The representations of state probabilities are defined as follows (In order to 

keep the same as [wang95], P stands for probability only in this section): 

0

00P  The probability that there are no customers in the system and zero stages of 
service when the server is turned off. 

0

,knP  The probability that there are n customers in the system and the customer in 
service is in stage k when the server is turned off. 

1

,inP  The probability that there are n customers in the system and the customer in 
service is in stage i when the server is turned on and in operation. 

The probability distribution among all these states is given in the following equations: 

0

00

0

1 PP k λλ =  Equation  2-24 

0

,1

0

knnk PP −= λλ  (2≤n≤N-1) Equation  2-25 

1

11

0

00 PkP µλ =  Equation  2-26 

1
1,1

1
1)( +=+ ii PkPk µµλ  (1≤i≤k-1) Equation  2-27 

…  

The first and second equations describe the accumulation of N customers when the 

server is sleeping. The service of every customer at this time is pending in stage k. In 

the third equation, 1

11P  indicates there is only one customer in its last service stage 

(stage 1) when the server is active. If the service is completed, there is no customer 

waiting for service and the server is turned off accordingly and the system moves to 

the state 0

00P . Therefore, this equation indicates the shutdown transition in the server. 

When no extra states are used to describe the behaviour when the server is under turn-

off transition, this research considered the shutdown (as well as wakeup) transition as 

instantaneous. This assumption of instantaneous shutdown/wakeup transition derives 

on even probability distribution among all inactive states, 
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i.e., 0

,1

0

2

0

1

0

00 ... knkk PPPP −==== . With the probability distribution, the service in the 

system can be characterized by the following parameters: 

LN is the expected number of customers in the system. 

I represents the Idle Period, which is the length of time when the server is 
turned off per cycle. 

B represents the Busy Period, which is the length of time when the server is 
turned on and in operation and customers are being served per cycle. 

C represents the Busy Cycle, which is the length of time from the beginning of 
the last idle period to the beginning of the next idle period. 

The expected length of the idle period, the busy period and the busy cycle, are 

denoted by E[I], E[B] and E[C]. All these characteristics of the service can be derived 

from the probability distribution. 

In order to optimize the parameter N, some cost variables are defined as follows: 

Ch is the holding cost per unit time per customer present in the system. 

Co is the cost incurred per unit time for keeping the server on. 

Cf is the cost incurred per unit time for keeping the server off. 

Cs is the start-up cost for turning the server on. 

Cd is the shut-down cost for turning the server off. 

With these cost definitions, the total expected cost per unit time, F(N) is given by 
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CLCNF dsfoNh ++++=  Equation  2-28 

The optimized value of N* can be derived by minimizing the corresponding cost 

function F(N*), which satisfy:  

)1*(*)()1*( −≤≥+ NFNFNF  Equation  2-29 
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Although Co and Cf can be easily used to represent the power consumption for the 

server (in our case, the SP) when the latter is on and off respectively, the cost of the 

wakeup/shutdown transition cannot be simply represented by constants Cs and Cd 

because both transitions are not carried out instantaneously. When different number of 

tasks is added to the TQ during the shutdown or wakeup transitions, the power 

performance of an SP varies accordingly. This variation may have great influence 

about the choice of the optimized parameter N.  

In conclusion, although many attempts have been made by electronics and 

mathematics studies, their results are still too sketchy for the description of the 

implementation of the A&F policy in a DPM system. Furthermore, these studies only 

considered a SP (or server) with only two operation modes. New models need to be 

built to describe the usage of the A&F policy in a DPM system whose SP has multiple 

operation modes.  

2.2. Coloured Petri Nets 

Coloured Petri Nets (CPN), as one kind of high-level net for system modelling, is now 

in widespread use for various practical purposes. This kind of high-level net model is 

developed from low-level Petri Nets (PN) [pete81] for representing complex 

information. 

2.2.1 Petri Nets 

Petri Nets, as a modelling tool for system behaviour, have been developed and 

implemented for real world practice for decades. Traditionally, a PN is defined as a 

tuple ∑= (P, T, A, N, M0) [alex98] where P is a finite set of places, which indicate 

states of the modelled system by means of ellipses (or circles). Each place may 
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contain a dynamically varying number of small black dots, which are called tokens. 

M stands for a marking, which is an arbitrary distribution of tokens on places. M0 

represents the initial distribution of tokens on the places which is called the initial 

marking. T is a finite set of transitions, which indicate operations in the system by 

means of rectangles. The places and transitions of a PN are collectively referred to as 

nodes (N). Nodes in a PN are connected by a set of directed arrows, which are called 

arcs (A). Each arc connects a place with a transition or a transition with a place –but 

never two nodes of the same kind. Some positive integer is attached to each arc which 

is called the arc expression. If an arc points from node x to node y, node x is called an 

input node of y and y is the output node of x.  

If and only if each input place of one transition contains at least the number of tokens 

prescribed by the expression of the corresponding input arc, the transition is enabled. 

Otherwise, the transition is disabled because some of its input places lack enough 

tokens. When a transition is enabled, the corresponding move may take place, which 

is called the occurrence of the transition. Tokens from the input places are removed 

from the input places and added to the output places after the execution of an 

occurrence. With the occurrence of different transitions, tokens are moved among 

different places and system processing can be modelled as a “token game”. If every 

transition occurrence in the PN is called a Step, system marking is changed from M0 

to M1 M2, …Mi and so on, where i is the step number of the system. If one and only 

one transition is enabled in any step of the model, the corresponding system is a 

sequential system. When more than one transition is enabled in some step, the 

corresponding system is called a concurrent system. When several transitions are 
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enabled by Mi, the occurrence sequence of these transitions is nondeterministic, and it 

may generate several different consequent markings Mi+1.  

With all tokens having the same abstract meaning in Petri Nets, the system 

representation of PN is limited to integer meaning by the number of tokens contained 

in one place (0 means no token in the place). Therefore, two different nets have to be 

used by the PN to represent two systems with many similarities. This presents no 

problem in a small system, but it shows PN has limited power to describe a large real-

world system which has many similar but not identical parts. Using Petri Nets, these 

parts must be represented by disjoint subnets. This not only means that the total Petri 

Nets model becomes very large, but also presents difficulties to show the similarities 

(and difference) between the individual subnets corresponding to similar parts.  

2.2.2 Updating PN to CPN 

In CPN, a more compact representation has been achieved by equipping each token 

with an attached data value –– called the token colour. The data value may be of 

arbitrarily complex type. For a given place, all tokens must have token colours that 

belong to a specified type. This type is called the colour set of the place. Therefore, 

both the number and colour of a token are used to represent the marking in the CPN. 

Attaching a colour to each token and a colour set to each place allows a CPN to use 

fewer places than would be needed in a PN. Tokens’ movement in a CPN becomes 

more complex since enabling a transition depends not only upon token numbers from 

each input place, but also upon token colours. It also means that the colours of input 

tokens may determine the colours of the output tokens produced by ways of transition 

occurrence. Therefore, more elaborate arc expressions are used in CPN to specify a 

collection of tokens with a defined token colour. 
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With a colour set, a CPN place can represent a state of the modelled system which 

must be represented by several places in a traditional Petri Net. Similarly, a CPN 

transition can also represent a set of similar operations in the modelled system when 

variables are used in the arc expressions surrounding a given transition. These 

variables can be bound to different token colours (or values) so that arc expressions 

evaluate to different values. A transition in a CPN model is enabled if and only if each 

of its input places contains at least one set of tokens to which the corresponding arc 

expression evaluates. 

Besides arc expressions, the CPN also uses the guard of a transition to evaluate input 

token values. The guard is a Boolean expression and may have variables in exactly the 

same way that arc expressions have. The guard defines an additional constraint which 

must be satisfied before the transition is enabled. 

Similar to Petri Nets, CPN has its own mathematical definition of its syntax and 

semantics. A CPN net can be defined as a set of (∑, P, T, A, N, C, G, E, I) satisfying 

the requirement below [jens97]: 

(i) ∑ is a finite set of non-empty types, called colour sets. 

(ii)  P is a finite set of places. 

(iii)  T is a finite set of transitions. 

(iv) A is a finite set of arcs such that : φ=∩=∩=∩ ATAPTP  

(v)  N is a node function. It is defined from A into PTTP ×∪× . 

(vi) C is a colour function. It is defined from P into ∑. 

(vii) G is a guard function. It is defined from T into expressions such that: 

])))((())(([: Σ⊆∧=∈∀ tGVarTypeBooleantGTypeTt  

(viii) E is an arc expression function.  

(ix) I is an initialization function.  
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With colours attached to tokens, and the extension in the expression of transitions and 

arc expressions, CPN can represent a system with a more delicate and compact model, 

or represent a system which cannot or hardly be represented by traditional PN. By 

simulation of the CPN model, it is possible to investigate different scenarios and 

explore the behaviours of a system. 

2.2.3 CPN Tools and Example Implementation 

CPN Tools [cpnt08] is the computer aid software for CPN modelling and analysis. 

Users of CPN Tools work directly on the graphical representation of CPN models. 

This software provides easy editing, simulation, state space analysis, and performance 

analysis of CPN models.  

The interface of CPN Tools can be seen in Figure  2-3 where an example CPN model 

is given as well. This model is used to introduce the description and analysis functions 

provided by CPN Tools. 

1

2
3

 

Figure  2-3: The User Interface of CPN Tools 
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2.2.3.1 Color Set Description 

The declaration of the example model is given in the dotted rectangle (1) in the left 

side of the figure. The language used for declaration is called CPN ML. Colour sets 

are declared first. Four basic colour types in Standard ML (SML) [miln90] have been 

provided by the CPN Tools, which are declared in the “Standard declarations”: colour 

INT (as the set of all integers), colour STRING (as the set of all text strings), colour 

BOOL (as the set of Boolean values, true or false), colour E (as the set of only one 

colour). Users can use any of these standard colours in their design, or declare their 

implementation oriented colours. Colours below the “Standard declarations” are 

colours declared by users themselves. A user defined colour can be a subset of the 

three standard colours provided by the CPN Tools (INT, STRING or BOOL). For 

example, the colour BIT is declared as an integer with only two values ‘0’ or ‘1’ 

(therefore a BIT token represents one bit of information). Users can also declare their 

colours from some already declared colour sets by means of a built-in colour set 

constructor ‘product’. 

Variables used in the system are declared with the key word ‘var’. Each variable 

declaration can introduce one or more variables with a type that has been declared 

before. In the example, variable c is declared as an INT variable and a is declared as a 

BIT variable.  

Similar to high level languages in computer programming, a constant can also be 

used in CPN models if it has been defined before. Constant declaration is similar to 

variable declaration with the change of key word ‘var’ to ‘val’. For example, the 

constant Threshold is declared as 5 in Figure  2-3.  



 
 

Chapter 2 Background 

Functions can also be declared in CPN Tools. Each function declaration introduces a 

function. The function takes a number of arguments and returns a result. The 

arguments and the result have a type which is either a declared colour set, the set of 

all multi-sets over a declared colour set. In the example model, function P() uses the 

random number generator discrete provided by CPN Tools to generate a random 

number from 0 to 5. 

2.2.3.2 Model Description 

With the colour declaration, places can be put into the model. The name of a place is 

written inside the corresponding ellipse. The colour set of the place is given in the 

lower right side of the place and the initial tokens are given in the upper right side of 

the place. If the upper right side of a place is empty, no initial tokens are available in 

the place. Two operators ++ and ` are used for the construction of a multi-set 

consisting of token colours. The infix operator ` takes a nonnegative integer to specify 

the number of appearances of the element provided as the right argument. The ++ 

takes two multi-sets as arguments and returns their union (sum). For example, 

1`1++1`0 describes two tokens with colours (values) of ‘1’ and ‘0’ respectively (In 

this thesis, a pair of quotations ‘’ is used to quote a colour value when it may be 

confused with the token number).  

Similarly, the name of a transition is inside the rectangle and the Boolean expression 

of the transition guard is given in the upper left side of the transition (sometimes the 

guard is dragged to other side of the transition) within a pair of braces []. In the 

example model, the transition toggle has one guard [a=0] and the transition reset has 

one guard [a=1]. The expression of an arc can be found in the upper or lower side of 

the arc. A simple arc expression has the format N`C (where N is the token number and 
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C is the token colour or a variable). When the number of tokens used in the arc 

expression is 1, the 1` prefix can be omitted. Therefore, the expression for the arc 

from the place A to the transition reset is written as a, which has the same meaning as 

1`a. More complex logic expressions can also be used in arc expressions, always in 

the form of “if … then… else…”. For example, the expression for the arc from the 

toggle transition to the place A is written as “if c>Threshold then 1`1 else 1`0”. It 

means that if the token value held in the place counter is bigger than 5 (Threshold), 

one ‘1’ token is added to the A place, otherwise, one ‘0’ is added instead. 

With all declarations of colours, variables, constant(s) and function(s), the model 

given in the example describes a system where a counter (the place counter) is used 

to update the count number with a certain frequency (the transition toggle) until some 

threshold (the constant Threshold) is reached. A signal (the place A) is sent to reset 

(the transition reset) the number in the counter by a random number (the function P()) 

and the counter starts again. 

2.2.3.3 Simulation and State Space 

A CPN model is built for analysis and performance testing. The most straightforward 

kind of analysis is simulation, which in many respects is similar to the debugging and 

execution of a program. A simulation tool palette (the dotted rectangle (2)) is used in 

the CPN Tool to control the simulation. The user can choose to run the simulation by 

single step or automatic multiple steps.  

Figure  2-4 gives the marking of the example model in several steps of the simulation 

(enabled transitions are marked in a dotted rectangle). The number of steps taken in 

the simulation so far is shown in the left side of the model, just under the model name. 
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Tokens in the model change their values and places according to the model 

construction until all transitions are disabled. In this way, the user can know whether 

the occurrence of transitions in the model can correctly reflect the processing in the 

modelled system, or whether the processing of the modelled system reflected by the 

occurrence of transitions is correct or not. Therefore simulation result can help users 

to update or correct their models. 

Step=1 Step=6

Step=7 Step=107  
Figure  2-4: Several Steps in the Example Model's Simulation 

However, simulation result cannot obtain a complete proof of the properties of CPN 

(Unless the nets or the properties are trivial) since the result achieved from simulation 

cannot be guaranteed to cover all possible executions. The property verification is 

given when full state spaces representing all possible executions of the model is 

analysed. A state space tool palette (the dotted rectangle (3) of Figure  2-3) is also 

provided by CPN Tools which does the state calculation, and the result is given in a 

standard report as below: 

Statistics 
--------------------------------------------------- ------------------ 
Occurrence Graph   Scc Graph 
    Nodes:  7     Nodes:  1 
    Arcs:   7     Arcs:   0 
    Secs:   0     Secs:   0 
    Status: Full  
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 Boundedness Properties 
--------------------------------------------------- ------------------ 
  Best Integers Bounds    Upper      Lower 
  Example'A 1             1          1 
  Example'counter 1       1          1 
 
  Best Upper Multi-set Bounds 
  Example'A 1         1`0++1`1 
  Example'counter 1   1`0++1`1++1`2++1`3++1`4++1`5 
 
  Best Lower Multi-set Bounds 
Example'A 1         empty Example'counter 1   empty  

 
 Home Properties 
--------------------------------------------------- ------------------ 
  Home Markings:  All 
 
 Liveness Properties 
--------------------------------------------------- ------------------ 
  Dead Markings:  None 
  Dead Transitions Instances: None 
  Live Transitions Instances: All 

 

A full state space is a directed graph, where there is a node for each reachable 

marking and an arc for each occurring binding element. Therefore, the first part of the 

state space report is some state space statistics telling how large the state space is. 

For example, the report indicates the directed Occurrence Graph uses 7 nodes and 7 

arcs to show its full status. The generation of the full state spaces is in most cases 

followed by the generation of the Strongly Connected Component Graph (SCC-

graph) which is derived from the graph structure of the state space.  

The next two parts of the state space report contain information about the 

boundedness properties. The boundedness properties tell how many (and which) 

tokens a place may hold. The report clearly shows one and only one token resides in 

the A and counter place of the example model respectively. The best upper integer 

bounds for a place specify the maximal number of tokens that can reside on each 

place in any reachable marking. For the place A, only one token can reside in the 

place (as also shown in the Best Integers Bounds) which has the value either ‘0’ or 
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‘1’. For the token in the counter place, it may have five possible values from ‘0’ to 

‘5’. The best lower integer bounds for a place specify the minimal number of tokens 

that can reside on each place in any reachable marking. 

Following the boundedness properties is the home properties, which is about the 

reachable property of markings and transitions in the model. A home marking Mhome 

is a marking which can be reached from any reachable marking. The report of the 

example model shows all markings in the model are home markings although a 

random function P() is used. A dead marking Mdead is marking which no binding 

elements are enabled. For the example model, no marking is dead because all 

markings can be repeated given enough simulation steps. A transition is live if from 

any reachable marking we can always find an occurrence sequence containing the 

transition. A transition is dead if there is no reachable marking in which it is enabled. 

The report proves both transitions in the example model are live. 

All this information given in the report can help users have a more specific and 

thorough understanding of their models so as to correct errors which cannot be easily 

found by simulation and improve the performance of the corresponding systems.  

2.3. MATLAB Introduction 

MATLAB is a highly versatile language for technical computing. The name stands for 

Matrix Laboratory. It integrates computation, visualisation, and programming in an 

easy-to-use environment where problems and solutions are expressed in familiar 

mathematical notation. It is an interactive system whose basic data element is an array 

that does not require dimensioning. This allows the user to solve many technical 

computing problems, especially those with matrix and vector formulations, in a 
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fraction of the time it would take to write a program in a scalar non-interactive 

language such as C or FORTRAN. 

1
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Figure  2-5: The GUI of MATLAB Simulink 

2.3.1 Simulink 

Simulink, as one important package of MATLAB, is used for modelling, simulating, 

and analysis of dynamic systems. It supports linear and nonlinear systems, modelled 

in continuous time, sampled time, or a hybrid of the two. Simulink provides a 

graphical user interface (GUI) for building models as block diagrams (Figure  2-5). 

Simulink includes a comprehensive library of sinks, sources, linear and nonlinear 

components, and connectors. Such components can be easily added to the Simulink 

model by click-and-drag mouse operations ((1) in Figure  2-5). Several components 

which are used to build our model in Chapter 5 are listed in the right side of Figure 

 2-5: 

Inport components ((1) in Figure  2-5) and Outport components ((2) in Figure  2-5), 

stand for the input/output port for all kinds of model systems and subsystems built by 

MATLAB Simulink. When hierarchical design is implemented to build a complicated 

Simulink model, modules in different level can be represented by a group of nesting 
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used subsystem components (3). When double clicked a subsystem component, 

Simulink opens another window to give the detail of the subsystem. 

A constant component (4) represents a constant signal or value that may be used in 

the model design. A switch component (5) passes through the first (top) input or the 

third (bottom) input based on the value of the second (middle) input. Some adjustable 

threshold is set for each switch component. For example, when the threshold is 0, the 

switch component passes on the first input if the second input is higher than 0 and 

passes on the third input otherwise. A scope component (6) is used to observe the 

variation of the input signal (the number of inputs is adjustable) in time (sample) 

sequence.  

A mux component (7) is used to merge all its inputs (the number of inputs is 

adjustable) into one integrated output if the designer want to make the model more 

concise. A demux component (8) is used to decompose an input to several outputs.  

A memory component (9) outputs its input from the previous time step, applying a 

one integration step sample-and-hold to its input signal. The memory component is 

indispensible in the representation of feedback signals of a Simulink model. It is 

because Simulink takes a signal propagating in any connection line (like (10) in 

Figure  2-5) as instantaneous. The one sample step delay brought by every memory 

component can prevent ambiguous execution order in a loop. Therefore, in our design 

in Chapter 5, all memory components used for this aim are named as delay to 

differentiate other subsystem components that are used for storing signals or data. 
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2.3.2 Mathematical Expression of Simulink Execution 
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Figure  2-6: Mathematical Expression of Simulink Execution 

Figure  2-6 presents the mathematical expression of a Simulink component. Vectors u 

and y represent the inputs to and outputs from a Simulink component respectively. 

Vector x represents the states of the component. xc and xd are used to represent the 

continuous and discrete states in x respectively. If x0 represents the initial status of the 

component, it is initialized to x during the initialization phase of Simulation model 

execution. When the initialization completes, Simulation executes all components in 

sequence according to the model’s structure/connection. For the execution of one 

particular component, Simulink calculates the new output of the component based on 

the current input u and state x. It calculates the component’s new state by derivation 

(for a continuous system) and/or update (for a discrete system). This continues until 

the simulation is complete. 

Therefore, although the model built in Simulink cannot represent and simulate truly 

asynchronous behaviours, because MATLAB is a synchronous platform, its 

simulation result can be very close to that generated in a real asynchronous system 

when the components used in the model are atomic and the sample intervals are short 

enough. 
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2.3.3 Simulink S-function 

When some design can not be represented by components provided by the Simulink 

Library, the S-function component ((11) in Figure  2-5) can be used to describe their 

design in program codes and integrate the codes with the other components in 

Simulink. An S-function (system-function) is a computer language description of a 

Simulink block. S-function can be written in MATLAB, C, C++, Ada, or Fortran. S-

function uses a special calling syntax that enables one to interact with Simulink 

equation solvers. The form of an S-function is very general and can accommodate 

continuous, discrete, and hybrid systems.  

An S-function template in MATLAB language is given below (In MATLAB 

programming, codes after % mark are comments). It is composed of three main 

functions. Function mdlInitializeSizes is used to specify how many inputs, outputs as 

well as discrete and continuous states are used in this S-function, and it also gives the 

initial value of all states. The function mdlUpdate is used to realize the y=fo(t,x,u) 

function introduced in Figure  2-6 to calculate the output value of y. It also specifies 

the state derivation and update functions introduced in Figure  2-6. The function 

mdlOutputs is used to specify which variable is used for output.    

function [sys,x0,str,ts] = sfundsc1(t,x,u,flag) 
  
switch flag, 
  
  %%%%%%%%% 
  % Initialization % 
  %%%%%%%%% 
  case 0, 
   [sys,x0,str,ts]=mdlInitializeSizes; 
   
  %%%%%%  
  % Update % 
  %%%%%% 
  case 2,                                                
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    sys = mdlUpdate(t,x,u); 
     
  %%%%%% 
  % Output % 
  %%%%%% 
  case 3,                                                
    sys = mdlOutputs(t,x,u);     
  
  %%%%%%% 
  % Terminate% 
  %%%%%%% 
  case 9,                                                
    sys = []; 
  
  otherwise 
    error(['unhandled flag = ',num2str(flag)]); 
end 
  
%end sfundsc1 
 
%========================================================== 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-function. 
%========================================================== 
% 
function [sys,x0,str,ts]=mdlInitializeSizes 
  
sizes = simsizes; 
  
sizes.NumContStates     = 0; 
sizes.NumDiscStates      = 1; 
sizes.NumOutputs          = 1; 
sizes.NumInputs             = 1; 
sizes.DirFeedthrough     = 0; 
sizes.NumSampleTimes = 1; 
  
sys = simsizes(sizes); 
  
x0  = 0;  
  
str = []; 
ts  = [0, 0]; 
% end mdlInitializeSizes 
  
% 
%========================================================== 
% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step requirements. 
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%========================================================== 
% 
%system status 
  
function sys = mdlUpdate(t,x,u) 
  
sys = [x(1)]; 
  
%end mdlUpdate 
  
% 
%========================================================= 
% mdlOutputs 
% Return the output vector for the S-function 
%========================================================= 
% 
function sys = mdlOutputs(t,x,u) 
  
sys = [x(1)]; 
  
%end mdlOutputs 
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Chapter 3 

Markov Models for Different DPM Systems 

3.1. Power and Latency Analysis 

3.1.1. Power Analysis   

According to the introduction in Section 2.1.3, a stochastic model of a DPM system is 

composed of three components: A service requestor (SR), a service provider (SP) and 

a power manager (PM). An SP in a DPM system responds to the incoming events by 

processing their corresponding tasks with one of its r operation modes in the 

discipline of First-Come-First-Serve (FCFS). Some of the modes in the SP focus on 

low power dissipation and do not provide a task service. These modes, like sleep, idle 

or standby modes provided by many HDDs (Hard Disk Drives) and processors, are 

generally called inactive modes. Other modes in the SP, which provide task execution 

(but with different rates), are called active modes. If I and A are used to represent the 

sets of inactive and active modes respectively, we have AIM ∪= where M={Mi | 

i=0,1,2,…,r-1} is defined as the set of all operation modes in Section 2.1.3. Tasks for 

their corresponding incoming events can only be executed in the SP when the latter is 

in one of its active modes. Previous models in [beni99, qiu99, ren05] use the length of 

the task queue (TQ) to reflect the status of a DPM system. One and only one state 0 is 

provided in these models to present the status of a DPM system if the SP is inactive. 

This representation may neither reflect the different inactive modes that the SP is in, 
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nor reflect transitions among these modes. When they are used for power and/or 

latency estimation, they may cause great inaccuracy. For more accurate description, 

the mode of an SP serves as the auxiliary index of the state in our Markov models.  

In this chapter, dual indexing (n, Mi) is used to represent the states in the Markov 

models. The first index n is the length of TQ and the second index is the current 

operation mode chosen by the SP from its mode set M. We use Mi,j to represent the 

mode switch transition from Mi to Mj, and the corresponding state index becomes (n, 

Mi,j).  

With dual indexes, we can describe the behaviour of a DPM system with more 

accuracy. For example, when M0 and M1 are the two operation modes in the SP, state 

(n, M0), (n, M1) and (n, M0,1) can represent different status of the DPM system 

although the length of the TQ is the same for all these cases. 

When the SP is switching among inactive modes or from an inactive mode to an 

active mode or vice versa, no service is provided in the SP and the length of the TQ 

increases monotonically if new events come during these transitions (suppose the 

corresponding memory is unlimited). Additional states must be provided to the 

Markov models to represent the change in the TQ in these cases. Otherwise the 

execution of tasks which correspond to the incoming events during these transitions 

can not be reflected in the model. It makes the power estimation far lower than the 

real case. 

Things are different for switching among active modes. DVS/DFS policies can be 

regarded as implementations of active mode switching management systems within a 

general DPM framework. According to [yuan05], DFS/DVS systems can be divided 
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into optimistic or pessimistic feasible systems. The former allows continuous task 

execution during mode switching while the latter does not. If the DVS is pessimistic 

feasible, new events incoming during ongoing DVS operations only cause an 

increasing in the TQ, because the execution in the SP ceases before the complete of 

the DFS/DVS transition. However, in a system with optimistic feasible DVS, all tasks, 

whether they are enabled before or during the transition, are executed seamlessly 

during the mode switching transitions. Therefore, these transitions can be regarded as 

costing no extra energy and time [yuan05, pill01, beig08] (i.e. Energyi,i=0 for Aji ∈, ) 

and do not need to be modelled as explicit states. Optimistic feasible DVS is 

supported in many advanced SOCs such as PowerPC 405LP [brok03] and is currently 

seeing an increased representation in new research [beig08, mats08]. In this thesis we 

concentrate on optimistic DVS/DFS. Not representing active to active mode switching 

as explicit states makes it easy to construct models with closed-form analytical 

solutions. For models of pessimistic DVS systems, additional states are needed to be 

integrated in the stochastic models so as to reflect the DVS/DFS transitions and one 

can seek [karg05] for detail. 

In Section 2.1.3, an SP is described by a set group <χ, µ, Pow, Energy>, and two 

assumptions should be emphasized here. One is that all mode switching transitions in 

this chapter are assumed to be atomic, which means a mode switching transition Mi,j 

cannot be replaced by two continuous mode transition like Mi,k and Mk,j. The other is 

one and only one mode switching transition exists from one mode to the other. These 

assumptions are satisfied by most implementations. 

In this case, low power design at the gate-level or Register Transfer Level (RTL) tries 

to lower the power consumption in the SP when it is processing and carrying out 
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mode transitions (i.e. reduce Powi and Energyi,j for mode Mi). High level DPM 

policies, on the other hand, try to reduce the average power consumption (P ) in the 

SP by optimizing the latter’s distribution among all possible operation modes. The 

unified expression for P  is given in Equation  3-1. 
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In the equation above, LT is the maximum length of TQ and ∑
=
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sum of probabilities of all states when the SP is in state Mi. When multiplied with 

Powi, the unit component ∑
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, represents the contribution to P  when the SP 

is in mode Mi. Therefore the first component of Equation  3-1 reflects the average 

power consumed in the SP when it stays in any of its active or inactive modes. 

Similarly, ∑
=
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, ,

is the sum of probabilities of all states for mode transition Mi,j. 

The product of Energyi,j and χi,j is the average power consumption of this mode 

transition. Therefore the second component of Equation  3-1 represents the 

contribution of none ‘active to active’ mode transitions to P . This unified equation is 

used in the following sections to show the different power performance brought by 

different policies. 

3.1.2. Latency Analysis 

Whatever policies may be implemented, the reduction in power of a DPM system may 

always be at the expense of longer latency. System engineers need to balance both the 

gain in power and the cost in latency before applying the proper DPM policy to the 
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PM in their systems. Previous studies [beni99, ren05, qiu99] always use the average 

length of TQ as the latency measurement since it is directly reflected by the stochastic 

models. However, the average length of TQ, which was used by all these models as 

the measure of the system latency, is of very limited practical use. This measure has 

no direct relationship to the Quality of Service (QoS) of an SP. For example for the 

same SP, an increase in task queue may cause faster drop of QoS for multimedia tasks 

than pure text tasks because the former tasks tend to take longer time to process. It is 

much more important to know how long a task is likely to wait, than how many other 

tasks are likely to sit before it in the TQ.  

In system design, soft deadlines for task execution have been a popular measure for 

real-world latency performance, and are widely used in many implementations like 

DVS analysis [karg05]. Different from hard real-time deadlines, soft deadlines are not 

compulsory. They serve more as guidelines for execution scheduling to optimize 

system performance. Violation of such a deadline is not considered a catastrophe. The 

quality of service in a processor can be measured by the probability of task deadline 

violation. A high probability of deadline violation indicates bad QoS. The Average 

Probability of Deadline Violation (APDV) for all tasks embedded in an SP is used 

here as a much better measurement for the latency of different policies. This 

measurement is more practically expressive to directly reflect the system latency 

performance than the average length of TQ. If the APDV value for every state (n, Mi) 

or (n, Mi,j) in a DPM system is known, the APDV value for the system is just the sum 

of these APDV values weighted by their corresponding state’s probability. 
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For a clear representation in the APDV derivation, we can generally divide all states in 

a DPM system into several groups (Table  3-1) according to the similarity in their 

latency performance. 

Table  3-1: The Representation of Different State Groups 

Index Representation 

(n, Mi) The state when the length of TQ is n and the SP is in active mode Mi. 

(n*, Mi) The state when the length of TQ is n and the SP is in inactive mode Mi. 

(n*, Mi,j) The state when the length of TQ is n and the SP is in transition from 
inactive mode Mi to active mode Mj. 

(n’, Mi,j) The state when the length of TQ is n and the SP is in transition from 
active mode Mi to inactive mode Mj. 

(n**, Mi,j) The state when the length of TQ is n and the SP is in transition from 
inactive mode Mi to inactive mode Mj. 

3.1.2.1 APDV for state (n, Mi) 

Suppose an SP is in the state (n, Mi) when a new event arrives, the corresponding task 

is added to TQ (the corresponding event handling is taken as instantaneously) and 

there are n+1 tasks so far waiting to be executed. The task corresponding to the new 

event is executed only after the completion of the previous n tasks, assuming FCFS 

without losing generality (Non-FCFS execution sequences have no influence on the 

average probability of deadline violation). The latency in this case is the execution 

time of n+1 tasks in the SP. Suppose the n+1 tasks are executed in the same mode Mi 

in the SP and the execution of each task following Poisson distribution, the execution 

of n+1 tasks follows the Erlang distribution [klei75] with parameters n+1 and µi (µi is 

the execution rate of mode Mi). A deadline violation happens when no more than n 

tasks can be completed during DL, and the APDV(DL, n, Mi) in this case can be 

expressed as Equation  3-2: 
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where DL is the mean deadline requirement of task execution. 

When the SP use a serial of active modes Mc, Mc+1,…, Mi (χc≤χc+1≤…≤ χi) to execute 

the n+1 tasks according to the length of the queue, we can first divide the n+1 tasks to 

(i-c+1) groups Gc, Gc+1, …, Gi (Gc+Gc+1+…+Gi=n+1) according to the operation 

modes that are used in their execution. Suppose mj (c≤j≤i) is the time slice given by 

the system to complete the (j-c+1)th groups of tasks (Gc to Gj), a deadline violation 

happens when any task group cannot be completed within its given mj time slot. 

Therefore we have: 
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Equation  3-3 

When only optimistic featured DVS/DFS technologies are considered, the SP can 

carry out task executions during the ‘active to active’ transitions. Therefore, no extra 

latency is caused by the ‘active to active’ transitions. 

3.1.2.2 APDV for state (n*, Mi,j) 

Similarly, if the SP is within the duration of one ‘inactive to active’ transition Mi,j 

when a new event arrives, the execution of the corresponding task must first wait for 

the completion of the transition Mi,j, and then the execution of the n tasks accumulated 

previously. Suppose m is the time slice given to complete the Mi,j transition, the 

corresponding APDV calculation is shown in Equation  3-4. 
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m

ji
jieMmAPDV ,),( ,

χ−=  Equation  3-4 

The rest DL-m time slice is given by the SP to execute the n+1 tasks using mode Mj 

(The new incoming events in the transition Mi,j or the execution in Mj does no 

contribution to APDV value because FCFS). A deadline violation happens when the 

transition Mi,j or the Mj execution cannot be completed in the given time. Therefore, 

we have the corresponding APDV for state (n*, Mi,j) when m is integrated from 0 to 

DL (Equation  3-5). 

dmMmAPDVMnmDLAPDVMnDLAPDV
DL

jijji ∫ −−−−=
0

,, )),(1))(,,(1(1)*,,(  

Equation  3-5 

The APDV(DL-m, n, Mj) and APDV(m, Mi,j) components in Equation  3-5 come from 

Equation  3-3 and Equation  3-4 respectively. 

3.1.2.3 APDV for state (n*, Mi) 

If an SP is in one inactive state (n*, Mi), the time spent by a task before its execution 

completion can be divided into three parts.  

First of all, it is the time spent before the PM issues a command to activate the SP. For 

example, DPM systems with the A&F policy only activate the SP when N tasks are 

accumulated in the TQ. If n<N-1, the PM only activates the SP after the other (N-n-1) 

events have come. If m is the time spent in waiting for the other (N-n-1) events 

coming, the corresponding APDV calculation is shown in Equation  3-6. 

∫ −−= ∞
m ri dtnNtEMmAPDV ),1;(),( λ  Equation  3-6 

After an activation decision is made, the SP starts one ‘inactive to active’ mode 

transition. Finally, the execution of the example task is carried out in the SP after the 

first n tasks have been executed. The corresponding APDV for the ‘inactive to active’ 
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transition and the execution is given in Equation  3-5. Therefore, the APDV for the 

new event cost in the three parts can be derived by the following equation. 

∫ −−−−= DL
ijii dmMmAPDVMnmDLAPDVMnDLAPDV

0 , )),(1))(*,,(1(1()*,,(
 

Equation  3-7 

The APDV(DL-m, n*, Mi,j) and APDV(m, Mi) components in Equation  3-7 come from 

Equation  3-5 and Equation  3-6 respectively. 

3.1.2.4 APDV for state (n’, Mi,j) 

If the SP is in an ‘active to inactive’ transition when the new event arrives, the first 

part of its latency comes from the completion of the Mi,j transition. Given that m is the 

time slot set for the completion of the Mi,j transition, the corresponding APDV is given 

in Equation  3-4 where χi,j is the transition rate of Mi,j. When the transition is complete, 

the next action of the DPM system varies according to different state (n, Mi,j). If the 

PM decides to switch the SP to active mode Mk as soon as the Mi,j transition is 

complete (for example, the current TQ length is longer than N in the A&F policy), the 

corresponding APDV is given in Equation  3-8. 

∫ −−−−= DL
jikjji dmMmAPDVMnmDLAPDVMnDLAPDV

0 ,,, )),(1))(*,,(1(1(),',(  

(n≥N-1)    Equation  3-8 

The two APDV expressions in Equation  3-8 come from Equation  3-5 and Equation 

 3-4 respectively. 

On the other hand, if the PM prefers to keep the SP in the inactive mode Mj after the 

Mi,j transition (for example, the current TQ length is less than N in the A&F policy), 

the corresponding APDV becomes: 
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∫ −−−−= DL
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(n<N-1)   Equation  3-9 

The two APDV expressions in Equation  3-9 come from Equation  3-5 and Equation 

 3-7 respectively. 

3.1.2.5 APDV for state (n**, Mi,j) 

The actions in an SP when an ‘inactive to inactive’ transition takes place are similar to 

that in the SP when an ‘active to inactive’ transition is carried out. Therefore, we can 

use Equation  3-8 or Equation  3-9 to calculate the APDV(DL, n**, Mi,j) in this case. 

3.1.2.6 APDV for an entire DPM system 

With the APDV values for all state groups available, the average deadline violation for 

a DPM system is the sum of these APDV values weighted by their corresponding 

states’ probabilities. 
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 Equation  3-10 

3.1.3 Balance of both power and latency 

In previous sections, we introduced the equations for P (the average power 

consumption) and APDV (the Average Percentage of Deadline Violation). The two 

variables are used to represent the power and latency features of a DPM system 

respectively. System engineers may have different emphasis on power/latency of one 

DPM system when it is used in different implementations. Therefore, we provide one 
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unified equation to evaluate the system performance in both power and latency so as 

to help system engineers to choose correct DPM policy in their implementations. 

)()1(),( DLAPDVTOL
P

P
TOLDLBalance

Max

×+×−=λ  Equation  3-11 

Tolerance of Latency (TOL, 0< TOL<1) in Equation  3-11 reflects how much relative 

weight has been given to latency and this parameter can be adjusted by system 

engineers according to their requirements. Therefore, (1-TOL) is the concern given to 

the power dissipation. PMax in the equation above, as the maximum Pow value for all 

SP modes, is used to normalize P and unify the dimension of the equation. Given the 

value of TOL, a DPM policy which can minimize Equation  3-11 is the optimal policy 

for both latency and power performance.  

Furthermore, because all DPM policies can be regarded as better than others under 

certain circumstances, recent research work focuses on a hierarchical architecture of 

DPM design which can dynamically adapt different DPM policies to portable systems 

[ren05]. A unified cost function like Equation  3-11 can serve as a standard assessment 

framework of policies to allow hierarchical DPM to adjust different policies according 

to the variation of environment parameters such as λ and DL. 

With the measure in both power and latency, we try to model and analyze the 

behaviour of different DPM systems in the following sections when different 

stochastic policies have been implemented. 

3.2. On-off DPM Systems 

If only two modes are used in the SP (M={Mi | i=0,1}, I={M0}, A={M1}), we have an 

on-off DPM system. Normally M0, M1, M0,1, M1,0 are called the sleep mode, work 
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mode, wakeup transition and shutdown transition respectively. The dual indexes 

introduced in section 3.1 can be specified and simplified according to Table  3-2. 

Table  3-2: Alias Index Used in On-off DPM Systems 

Standard (n*, M0) (n, M1) (n*, M0,1) (n’, M1,0) 

Alias n* N wu(n) sd(n) 

In the following sections, two models are given about an on-off DPM System when 

the greedy and the A&F policies are implemented respectively. 

3.2.1. The Greedy Policy 

3.2.1.1 The Description of the Markov Model 
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Figure  3-1: The Markov Model for the Greedy Policy 

The transition-state-flow diagram of the Markov model for the greedy policy can be 

seen in Figure  3-1. Similar to previous models [qiu99, ren05], λ and µ are used as the 

arrival rate of external events from the SR and execution rate of tasks in the SP 

respectively. State 0* indicates the SP is in its sleep mode (M0). When an event 

arrives, the SP starts the wakeup transition (M0,1) which is represented by wakeup 

states wu1, wu2 and so on. As explained in Section 2.1.3, both wakeup and shutdown 

transitions are taken as Markov processes whose rates are represented by δ and γ 

respectively (χ0,1=δ, χ1,0=γ) in Figure  3-1. During the wakeup transition, the system 

starts in state wu1, and may then move to state 1 if the transition is completed without 
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any other events coming. Otherwise, the system may move from wu1 to wu2 and even 

further if one or more event comes during the transition. In order to make our model 

more general, we set LT=∞ and use an infinite number of wakeup states in Figure  3-1. 

After the wakeup transition is completed (e.g. at the completion of state wu(n)), the 

SP is activated and starts its execution of all n tasks in the TQ. The system is now in 

(active) state n and the completion of one task enables the system to move one state to 

the left side. 

When the execution of the last task in the TQ is completed (system leaving state 1), 

the SP starts a shutdown transition, described by shutdown states sd0, sd1 etc. If one 

or more event arrives during the shutdown transition, the SP is activated immediately 

on completion of the shutdown transition. Otherwise, the SP starts sleeping and 

moves back to state 0*. 

3.2.1.2 The Derivation of the Analytical Solution 

According to the method introduced in section 2.1.3, the probability distribution in 

Figure  3-1 can be solved analytically. In the derivation, (Active) state 1 is chosen as 

the delegate state, and its probability (Q1) is used to represent the probabilities of the 

rest states. The derivation detail is given in Appendix I, and Table  3-3 lists the group 

of analytical solutions. 

Table  3-3: The Analytical Solutions for the Greedy Policy 
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3.2.1.3 The Performance Analysis 

In this chapter, we apply the greedy model in Figure  3-1 on some real example 

systems. A FUJI MHF 2043AT HDD which was used in both [beni00] and [lu00] 

serves as our first example whose parameters are given in Table  3-4. 

Table  3-4: Parameters for a FUJI MHF 2043AT 

Ps(W) Pw(W) Twu(s) Tsd(s) Pwu(W) Psd(W) 

0.13 0.95 1.61 0.67 2.85 0.54 

In Table  3-4, Ps, Pw, Pwu and Psd are the power consumption of the SP in its sleep 

mode, work mode, wakeup transition and shutdown transition respectively. For better 

presentation and comparison of the performance of different DPM systems, the 

execution speed µ in the SP is normalized to 1 (for an SP with multi active modes in 

the coming sections, µmax, as the fastest execution rate provided by the SP, is 

normalized to 1), and the arrival rate λ and the transition rates in the matrix of χ are 

normalized accordingly. Therefore, the reciprocal values of Twu and Tsd in Table  3-4 

are used as δ and γ respectively. Because the overhead caused in mode switching 

transitions is our main concern, we first examine the variation of mode switching 

frequency.  
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Figure  3-2: The Frequency of Mode Switching Transitions 

In Figure  3-2, we choose Ssd and Swu, which are the sum of probabilities of shutdown 

and wakeup states respectively, as the measure of the mode switching frequency (The 

calculation of Ssd and Swu are given in Equation 3-16 and Equation 3-18 respectively). 

When the arrival of external events is sparse, the SP has a great chance to finish the 

execution of all tasks in the TQ and be turned to sleep before one new event arrives. 

Therefore, the mode switching frequency rises with λ increasing. However, when the 

arrival of external events is dense, new task is added to the TQ with much faster speed 

and the TQ is seldom to be empty. In this case, the mode switching frequency drops 

when λ increases. Therefore, both curves in Figure  3-2 are convex with λ and the 

variation in the mode switching frequency influences the power performance in the 

DPM system (Figure  3-3). 

When external events come sparsely (λ→0), the SP is seldom woken up and spends 

most of its time in sleep. Therefore, the power curve above starts from Ps when λ→0. 

With the increase of λ from the start point, P  increases quickly because more and 

more executions are needed in the SP.  
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Figure  3-3: P  in the FUJI HDD for the Greedy Policy 

According to Table  3-4, the average power consumption cost in mode switching is 

even higher than that consumed by the SP when it is in its active mode 

( w
sdwu P
PP >+

2
), which means too frequent on-off mode switching transitions may 

cause more power consumption in the system and an SP like this HDD is called a 

high transition cost SP accordingly. In the figure, when the arrival rate is denser than 

λ1, P  becomes even higher than Pw. From then on, the power overhead brought by the 

power control becomes higher than the achieved power saving in the SP (λ1 is called 

the effective boundary later). This situation reaches its worst case when λ=λ2 and 

decreases after that because the mode switching frequency drops. When λ→µ (µ has 

been normalized to 1), the SP is kept busy doing executions and hardly shutdown. 

Therefore, the power curve above ends in Pw.  

In Section 2.1.3.2, we mentioned that the optimized policy given by previous study 

only focuses on the energy efficiency, while it ignores the energy safety. Parameters 

effective boundary and worst case are used to describe the energy safety of the greedy 

policy (as well as the A&F policy in Section 3.2.2 later). These parameters indicate 
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the users how safe the corresponding DPM policy for their particular implementation 

can be, and what is the worst situation caused by the policy.  

In Section 2.1.4, we have introduced the equation for the average power consumption 

of the greedy policy given by [ren05]. The power curves calculated from our equation 

(Equation  3-1) and Ren’s equation (Equation  2-23) are compared in Figure  3-4 (‘Old 

Pave’ in the legend stands for the power estimation made by Ren’s model and ‘New 

Pave’ is the power estimation made by our model). Because Ren’s calculation uses 

the proportion between the working period and the sleeping period (as well as the 

wakeup and shutdown transitions) achieved from the M/M/1 model, its estimation of 

power is higher than our estimation value and the greatest difference happens in the 

middle where mode switching transitions happen frequently. 

λ

P
)(W

wP

SP

 
Figure  3-4: Power Curves in Different Models 

Another study is carried out with one IBM HDD [iran03] whose parameters are given 

in Table  3-5. The IBM HDD can provide three inactive modes and one active mode in 

its operation. Here, only its sleep and work modes are studied and the other modes 

will be added to the investigation in the following sections. For easy calculation, we 

assume both the χ and Energy matrices are symmetric for this SP, i.e. χi,j= χj,i and 
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Energyi,j= Energyj,i, which means the energy and latency cost in shutdown transition 

are 4.75J and 5s respectively. We can calculate Pwu=Psd=0.95W. 

Table  3-5: Parameters for IBM HDD 

Mode Power (W) Start-up Energy(J) Transition Time to Active 

Sleep 0 4.75 5s 

Standby 0.2 1.575 1.5s 

Idle 0.9 0.56 40ms 

Work 1.9 0 0 

Different from the parameters in Table  3-4, the average power consumption in the 

mode switching transitions of IBM HDD is less than Pw (1.9W) ( w
sdwu P
PP <+

2
) (an 

SP like this HDD is called a low transition cost SP accordingly).  

λ

P
)(W

wP

SP  
Figure  3-5: P  for the IBM HDD 

After we normalize the wakeup and shutdown transition rates (δ=3/Twu γ=4/Tsd), 

Figure  3-5 indicates the power curve does not surpass Pw in the entire variation of λ 

and the greedy policy can help the SP to save power no matter how dense the external 

events arrival rate may be (0<λ<µ).  

In the next figure, we give the APDV value of the greedy policy in the IBM HDD 

when we set the average deadline request to ten times of the average execution period 

(DL=10/µ)(Figure  3-6). The lower curve shows the APDV value when there is no 
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power control in the system (the SP is always on). It can be seen that the APDV value 

is not always 0 and may become very high when λ→µ. It proves that deadline 

violation cannot be totally avoided even when an SP is never shut down.  

The above curve in Figure  3-6 is the APDV curve for the greedy policy. The distance 

between the two curves in Figure  3-6 suggests the additional latency brought by the 

greedy DPM control. Figure  3-5 and Figure  3-6 clearly shows how the greedy policy 

trades extension in latency for reduction in power. 

A
v
e
ra
g
e
 P
e
rc
e
n
ta
g
e
 o
f 
D
e
a
d
lin
e
 V
io
la
ti
o
n
 (
A
P
D
V
)

λ

Additional Latency

 

Figure  3-6: The APDV Value for the Greedy Policy (DL=10/µ) 

Although the greedy policy is ‘to activate the SP as soon as a new event arrives’, the 

APDV value for the greedy policy is not 0 when λ→0 and the SP is in the sleep mode 

with almost probability 1. It is because the SP must carry on the wake up transition 

before providing execution service. With the increase of λ, the SP spends more time in 

the active mode, and incoming events when the SP is active do not have any wakeup 

time cost in their latency. This explains the slight drop in the middle of the greedy 

APDV curve. When events incoming becomes even denser, the time spent waiting for 

the other tasks serve as the main reason for the extension of deadline violation and it 

indicates the sharp increase in both APDV curves when λ→µ. 
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The APDV value depends not only on the policy used in the DPM system, but also on 

the capacity of the SP. Given the same incoming events, their corresponding tasks can 

be executed much faster in a SP with high capability than in a SP with low capability. 

In this case, the deadline request of incoming events is relatively looser in a DPM 

system with high capability SP than that in a DPM system with low capability SP. 

This trend is clearly shown in Figure  3-7. 
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Figure  3-7: Different APDV Values in Different Deadline Requirements 

3.2.1.4 Conclusions 

The greedy policy, as the classic protocol of other advanced DPM policies, was 

thoroughly studied in this section. An infinite number of states is used in the Markov 

model in Figure  3-1 to represent the status of a DPM system when mode switching 

transitions are carried out. This helps to make our model avoid inconsistent 

representations in other models used in previous researches. Analytical solutions of 

the probability distribution in the Markov model are derived, which makes the power 

and latency estimation more accurate than before.  

With two example SPs, the performance of the greedy policy is studied in the above 

section. The property of the greedy policy to trade latency extension for power 



 
 

Chapter 3. Markov Models for Different DPM Systems  

reduction is clearly shown by both P  and APDV curves. However, the reduction in 

power consumption cannot be achieved in the full range of λ if a high transition cost 

SP is used in the DPM system. The power reduced by the greedy policy is limited 

especially when the deadline request is loose. All these shortcomings serve as 

motivation to analyze more delicate policies which can better balance system 

performance in power and latency, or trade more latency for power when needed. 

3.2.2. The A&F policy 

Considering the energy overhead of mode switching in an SP, a natural improvement 

is to reduce the mode switching frequency. Therefore, we investigate the practice of 

accumulating tasks before activating an SP for batch processing, which is the 

Accumulation & Fire (A&F) policy introduced in Section 2.1.4.  

In the A&F policy, an SP is not activated immediately when a new event arrives (and 

its corresponding task becomes ready for processing). Instead, the SP remains inactive 

while tasks accumulate in the TQ. This task accumulation continues until a certain 

limit N is reached. The SP is then activated to batch process all accumulated tasks. 

The moment of activation is called the fire moment in the A&F policy. The greedy 

policy can be regarded as a basic A&F policy with N=1. 

3.2.2.1 Markov model description 
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Figure  3-8: The Markov Model for the A&F policy 

Figure  3-8 gives the transition-state-flow diagram of the Markov model for the A&F 

policy. According to the introduction before, a sleeping SP is activated by a new 

incoming event only when N-1 tasks are available in the TQ. Therefore, the TQ may 

contain 0 to N-1 tasks before the SP is activated and the inactive state(s) extend from 

only one state 0* in Figure  3-1 to N states (0* to (N-1)*) in Figure  3-8. The wakeup 

transition only happens when there are enough tasks accumulated in the TQ. 

Therefore the index of wakeup states starts from wu(N) instead of wu1 in the greedy 

policy. If N=1, the A&F policy model in Figure  3-8 becomes the greedy policy model 

in Figure  3-1. 

Table  3-6: Analytical Solutions for the A&F Policy 
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3.2.2.2 The Derivation of Analytical Solutions 

Similarly as the derivation of the analytical solution of the greedy policy, (Active) 

state 1 is chosen as the delegate state and its probability (Q1) is used to derive the 

probability distribution of the entire model. 

The derivation details are given in Appendix II, and Table  3-6 lists the analytical 

solutions. It can be seen that these solutions become their counterparts in the greedy 

policy in Table  3-3 when N=1. 

3.2.2.3 The Performance Analysis 

λ

P
)(W

 
Figure  3-9: P  with Different Accumulation Limit Ns 

In this section, we use the two example SPs whose parameters given in Table  3-4 and 

Table  3-5 respectively to analyze the performance of the A&F policy. For the low 
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transition cost SP like the IBM HDD, the average power curves for different 

accumulation limit Ns are given in Figure  3-9. It can be clearly seen that P  decreases 

continuously with the rise of N for all events arrival rate except the boundary values 

(λ→0 and λ→µ) while the improvement extent reduces at the same time. 

The A&F policy can play more important role if it is implemented in DPM systems 

with high transition cost SP like the FUJI HDD. The power curves for different Ns of 

the FUJI HDD are displayed in Figure  3-10.  
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Figure  3-10: P  for Different Ns (continue) 

First of all, the increase of accumulation in this case can also reduce the average 

power consumption in the SP continuously. The (N=1) curve describes the power 

performance when the SP is controlled by the greedy policy. With high transition cost, 

the greedy policy can only help the SP to reduce its power consumption when λ<λ1. 

With the implementation of the A&F policy, the effective boundary (λ2 for N=2 and λ3 

for N=3) extends greatly with the rise of N and the worse case power consumption 
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reduces as well. All these properties show that the A&F policy has great advantage in 

power saving especially when implemented in the high transition cost SPs. 

Figure  3-11 displays the latency performance for the IBM HDD when the A&F policy 

with different Ns is implemented. The increase of N causes more deadline violations 

in the system, which is just the trade-off for the corresponding reduction in power 

consumption. According to the A&F policy, a new incoming event adding the nth task 

to the TQ of a sleeping SP cannot activate the latter if n<N. The SP must wait for the 

availability of another N-n tasks and the corresponding waiting time highly depends 

on the event arrival rate λ. That explains why the APDV curves for the A&F policy 

(N>1) drop sharply when λ<0.5. When λ>0.5, there are always many tasks 

accumulated in the TQ, and the rise in APDV curves mainly comes from waiting for 

other tasks’ execution. 
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Figure  3-11: APDV Values for Different Ns (DL=10/µ) 

The latency performance for low transition cost SPs like the FUJI HDD can be 

analyzed similarly, and the result shows a similar feature as Figure  3-11. 
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In section 3.1, we introduced the Balance variable (Equation  3-11) which estimates 

both power and latency performance as a whole. When implemented in the same 

DPM system, a DPM policy which can achieve the minimum Balance value is the 

optimized policy for the implementation. For the A&F policy, the balance value is 

also important in determining a proper value for the accumulation limit N in the 

implementation. 
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Figure  3-12: The Balance Value for Different Ns (a) TOL=0.6 (b) TOL=0.4 

Based on the power and latency analysis carried out in Figure  3-9 and Figure  3-11, we 

give the balance values for the same DPM systems with different A&F limits. In 

Figure  3-12, we first set TOL (Tolerance of Latency) to 0.6, which means the system 

engineers care more about latency than power in the system performance. The figure 

discloses that the greedy policy should be chosen as the optimized policy because it 

has the shortest latency extension. Next we reduce TOL to 0.4, the result shows that 

the A&F policy with large N serves as the optimized policy when λ>λ1 because it can 

effectively reduce the power dissipation in the system. 

As noted in Section 2.1.4, previous studies of the N-policy ignored events arrived 

during mode switching transitions. Therefore, all shutdown and wakeup states are 

omitted from their models. This omission not only causes inaccuracies in cost 
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estimation of mode switching transitions, but also changes the entire power estimation. 

It is because the probability distribution of the entire system changes accordingly. 

According to the M/Ek/1 model of N-policy in Section 2.1.4.3, the probabilities of 

state 0* to (N-1)* are the same across the entire λ range (Qi*=Qj* for 0<i,j<N and 

00
jkik PP = in Equation  2-25). In Figure  3-13, we compare the probabilities of states 0*, 

1* and 2* (Q0*, Q1* and Q2* in the legend of Figure  3-13) for the A&F policy (N=3). 

It is clear that these probabilities are different across the entire λ range, which makes 

previous N-policy models inaccurate here. 
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Figure  3-13: The Probability of Inactive States 

3.3. DPM Systems with Multi Inactive Modes 

Many processors/micro controllers have some additional inactive mode(s) 

(I={M0,…,Mi | i>0}) other than the sleep mode. These additional modes try to give an 

SP a quicker response time to switch back to one of its active mode(s). The additional 

inactive mode(s) is often called idle/standby mode. Compared with the sleep mode, 

the SP in the idle mode has lower cost to switch from/to active mode(s), but consumes 

more power when it is in the mode. This mode is mostly used when the SP is under 

suspension and waiting to resume [beni99]. 
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In the previous section, the greedy or the A&F policy is chosen to manage the wakeup 

transition. With multiple inactive modes in this section, we can use different policies 

or the same policy with different parameters (for example, the A&F policy with 

different Ns) to switch among different modes. In this example, three modes, sleep, 

idle and active, are used in an SP (M={0,1,2}, I={0,1}, A={2}), and their mode 

switching transitions are shown in Figure  3-14.  

active

idle sleep
shutdown

wakeupturn-on

turn-off

 
Figure  3-14: Mode Switching Transitions in DPM Systems with Multiple Inactive 

Modes 

Once the wakeup transition (M0,2) is completed, the SP starts a task execution. When 

the last task in the TQ is completed, the SP first switches to the idle mode. This 

transition (M2,1) is called turn-off in this section. If new events arrive when the SP is 

idle, the SP switches back to the work mode for execution (the transition M1,2 is called 

turn-on accordingly). Otherwise, after a Poisson time interval, the SP is shut down 

(transition M1,0) and switched to the sleep mode to save power. In the example given 

in Figure  3-15, the A&F policy and the greedy policy are implemented to manage the 

wakeup transition (transition M0,2) and the turn-on transition (transition M1,2) 

respectively. 

3.3.1 Markov model description 

In Figure  3-15, the turn-on (ton1, ton2 and so on) and turn-off (toff0, toff1 and so on) 

states represent the corresponding transitions. Parameters α, β are used to represent 
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the normalized transition rates of turn-on (χ1,2) and turn-off (χ2,1) respectively. When 

the greedy policy is implemented to control the turn on transition, only one idle state 

(0*, M1) is needed to represent the case when the SP is in the idle mode. 

When the TQ is empty, the SP may have low latency if it spends more time in the idle 

mode than the sleeping mode. Otherwise the SP can have lower power consumption. 

Therefore, different probability distributions among inactive modes can be used to 

adjust the power-latency trade-off. In Figure  3-15, ε is the rate of leaving idle mode 

for the sleeping mode. Large ε means short stay in idle mode and small ε means long 

stay in idle mode. 
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Figure  3-15: Markov Model for DPM System with Idle Mode 

3.3.2 The Derivation of Analytical Solutions 

Comparing Figure  3-15 with Figure  3-1 or Figure  3-8, we can find that the probability 

of the idle state (Qidle), instead of Q1, serves as the delegate state. The derivation of the 
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corresponding analytical solutions is given in Appendix III. In Table  3-7, we conclude 

the analytical solutions for the model in Figure  3-15. 

Table  3-7: Analytical Solutions for DPM Systems with Multiple Inactive Modes 
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3.3.3 Performance Analysis 

An example study has been carried out using the IBM HDD parameters in Table  3-5 

including the idle mode. The result in Figure  3-16 shows that low power can be 
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achieved by either increasing the accumulation limit N or increasing the value of ε, 

both of which can make the SP spend more time in the sleep mode than the idle mode. 

However, the latency curve gives the opposite conclusion and system engineers may 

end up using Equation  3-11 to balance their power & latency interests. 
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Figure  3-16: P  with the Variation of N and ε 

3.3.4 Further discussion 

If more inactive states can be provided by an SP, the corresponding DPM system can 

provide more flexible power management for transitions from different inactive 

modes to the active mode, and/or for transitions among inactive modes. Besides the 

power management solution given in Figure  3-15, another possible solution is to use 

the A&F policy to control both the wakeup and turn-on transitions (Figure  3-17). 

Different accumulation limits (N for the A&F policy in the wakeup transition and S 

for that in the turn-on transition) can be implemented to control different transitions. 

When S>1, tasks corresponding to incoming events must be accumulated to activate 

the SP even when the latter is in its idle mode. Therefore, a group of idle states idle0, 

idle1 and so on are used in Figure  3-17 to describe the behaviour of the SP in the idle 

mode. The system engineers can use the same method introduced in this section to 

derive the analytical solution for this model, and find the optimal value of both N and 

S to achieve the optimized system performance in both power and latency. 
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Figure  3-17: Markov Model for DPM Systems with Multi A&F Policy Control 

The models given in this section can also be extended when more inactive modes are 

involved. From Table  3-5, it can be seen that another inactive mode ‘standby’ can be 

provided by the IBM HDD. 
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Figure  3-18: Mode Switching in DPM System with Enabled Standby Mode 

Compared with the idle mode, the HDD under its standby mode consumes even less 

power while needing longer response time to be activated. Therefore, one possible 

power management solution is given in Figure  3-18. Once the TQ is empty, the SP 

starts a turn-off transition and move to the idle mode when the turn-off transition is 

complete. When the greedy policy is implemented in the idle mode, the SP is turned 

on as soon as one new event arrives. Without incoming events, the SP may be 
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switched to the standby mode (which is shown as sby in Figure  3-18) and this 

transition is called pre-shutdown in our research. If the standby mode is also 

managed by the greedy policy, the SP is switched to the active mode when a new 

event arrives (Transition s-active), or to the sleep mode (Transition wakeup) 

otherwise. Similar to previous models like Figure  3-15, the A&F policy is used to 

control the wakeup transition and active the SP when enough events have been 

accumulated.  

If α1, β1 represent the execution rate of pre-shutdown and s-active respectively, and ε1 

represents the rate of shutdown the SP to sleep mode, the Markov model for a DPM 

system under the control of Figure  3-18 is given in Figure  3-19. 
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Figure  3-19: Markov Model for DPM Systems with Three Inactive Modes 

3.4. DPM Systems with Multiple Active Modes 

If more than one active mode is enabled in the DPM system (A={Mi| i=1, 2, …, r-1} 

(r>1)), the SP can choose different execution speeds to process tasks with different 
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power/latency requirements. DVS and DFS are the main techniques to switch 

operation modes. As introduced in Section 3.1, [karg05] gives a stochastic model of 

DVS with the pessimistic feature. In our work, we try to give the Markov model for 

the DVS system with the optimistic feature, which may have much wider 

implementation in real systems. 

3.4.1 Markov model description 

An example case is given where one sleep mode (M0) and two work modes (M1, M2) 

are provided by an SP. The A&F policy is implemented to control the wakeup 

transition. Once activated, the SP first uses a low execution rate µL to process tasks in 

the TQ. Work mode M2 is used only when the length of TQ is longer than some 

threshold H, and the SP in this case does task execution with a higher speed µH until 

the length of TQ becomes shorter than H. The SP moves to sleep when the TQ is 

empty and be activated until N new events are accumulated. Figure  3-20 gives the 

Markov model when N≤H and the model for N>H is in Figure  3-21. 
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Figure  3-20: Markov Model for DPM/DVS System (N>H) 
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Figure  3-21: Markov Model for DPM/DVS System (N<H) 

3.4.2 The Derivation of Analytical Solution 

Similar to the derivation in the on-off DPM system, active state 1 is chosen as the 

delegate state, and the derivation of the analytical solution is given in Appendix IV. In 

Table  3-8, we list the analytical solutions of the model in Figure  3-20. When H=1 and 

µH = µL = µ, the equations given below becomes their counterparts in Table  3-6. 

Table  3-8: Analytical Solutions for DPM Systems with Two Active Modes 
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For the case N<H, the derivation of Sa is more complicated. One approximate 

analytical solution is just changing the position of N with H in Equation 3-49 or 

Equation 3-50. This approximation does not cause much difference from the accurate 

solution especially when λ<µL and we use this approximation value in our later 

analysis. 

3.4.3 The Performance Analysis 

For DPM systems with multiple active modes, the corresponding power-saving as 

well as latency depends on two parameters N and H. Large N and/or H brings low 

power dissipation and long latency in different degrees. Optimized system 

performance may be achieved by adjusting H as well as N.  

Table  3-9: The Parameters of Example DVS System 

fL(MHz) Pow1(mW) Energy0,1(mJ) χ0,1(KHz) Pow0(mW) 

152 53 1.6 0.5 0 

fH(MHz) Pow2(mW) Energy1,0(mJ) χ1,0(KHz)  

380 500 0.6 0.5  

For a case study using these models, we use an example SP whose key parameters are 

given in Table  3-9. Most of these parameters are based on information from IBM 

PowerPC 405LP [nowk02] in order to make the case study realistic. 
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In the study, µH is set to 1 and µL is set to 0.4 according to the relationship between fH 

and fL. Figure  3-22 displays the system performance with various parameters H and N. 

Figure  3-22(a) shows the power dissipation when λ=0.3, and it can be seen that the 

power dissipation drops when N and/or H increase. Next, we calculated the Balance 

value according to Equation  3-11 in order to find the parameter for the best 

performance. According to Equation  3-11, the optimized performance comes from the 

minimum value of Balance (λ, N, H, DL). Figure  3-22(b) shows the value of 1-

Balance (λ, N, H, DL) and the peak value therefore indicates the optimized 

performance is achieved when H=7 and N=2 (λ=0.3, DL=20/µH, TOL=0.4). This 

optimized performance varies from system to system. For example, Figure  3-22(c) 

shows the optimized performance is achieved at H=3, N=2 when another group of 

parameters are used (λ=0.5, DL=20/µH, TOL=0.6). 
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Figure  3-22: Analysis of DPM Systems with Multiple Active Modes 

3.4.4 Further discussion 

For an SP has three or more active modes, the Markov model in Figure  3-20 can be 

extended, and in this case a series of H values (H1, H2,… Hr-1, r is the number of 

active modes in the SP) are used and the SP changes to a new operation mode with 

faster speed when it reaches these H states. Although complicated, the model with 

multiple active modes can also be solved analytically. 
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In Section 3.3 and 3.4, we introduced the DPM systems with multiple inactive/active 

modes respectively. They can serve as the basic models that can be extended to study 

more complicated DPM systems, in other words, DPM systems with multiple inactive 

and active modes. For example, the Markov model in Figure  3-23 describes DPM 

systems with two inactive modes (sleep and idle) and two active modes (whose 

execution rates are µL and µH respectively). The models developed from the basic 

models given in Section 3.2 to 3.4 can help system engineers to do power-latency 

analysis so as to optimize system performance. 
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Figure  3-23: DPM Systems with Multiple Inactive/active Modes 

3.5. Fine Grain Model for On-off DPM Systems 

All studies in this chapter so far take the control execution in the power manager (PM) 

as cost free in both energy and latency. The PM, as the event/energy watch dog of the 

entire DPM system, never sleeps. Although the power dissipation in the PM is small 

compared with that in the SP, the former’s total energy consumption may not be 

negligible given enough time accumulation. Furthermore, the control circuits of an SP 

in many portable devices have extended to include some frequent routine executions 

such as task scheduling. This design can first give the energy hungry SP more time to 



 
 

Chapter 3. Markov Models for Different DPM Systems  

sleep. Besides, because hardware scheduling can be many times faster than software 

scheduling, this design can also reduce the system latency. In this case, a control unit 

(CU) is employed to provide Event Handling (EH), Power Management (PM) and 

Task Management (TM) to the SP. In these cases, the power consumption in a CU 

cannot be simply ignored.  Finally, the power consumption in a PM (or a CU) varies 

with different DPM policies’ implementation. The efficiency of a DPM policy should 

be judged by its power saving in the entire DPM system, not only that in an SP. All 

these reasons give us enough motivation to make a new fine-grain power analysis of 

DPM systems with full consideration of the cost in the CU. 

3.5.1 The Fine Grain Structure of a DPM System 

Service Requestor

(SR)

Service Provider

(SP)

Power Manager

(PM)

Power Control

TQ
Task Manager

(TM)

EQ

Control Unit

Operation 

Modes Parameters

Event Handler

(EH)

New Task

 

Figure  3-24: The Fine Grain Structure of a DPM System 

The nondeterministic events incoming and scheduling provides enough Markovian 

characteristics to the CU, and it enables us to integrate the CU execution into our 

previous stochastic models which previously only represents the SP states. In this case, 

the structure of the DPM system introduced before is refined in Figure  3-24.  

In such a system, events in the EQ first access the EH, where they are responded to 

and released after their corresponding tasks are activated and added to the TQ. Tasks 
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in the TQ are used by the PM for the processing of a mode switching decision, and 

they are also used by the TM for scheduling.  A new task selected by the TM is loaded 

into the SP for processing. 

When considered as not cost free, a power on-off control can also be used to a CU 

itself for power saving. Although the EH should be always on to respond to the 

stochastically incoming events, the PM can be shut down after the SP is woken up 

because no power control is needed in this case. Similarly, the scheduler in the TM 

can be powered off when the SP is inactive. It is because the scheduling work has no 

meaning if no task is executed in the SP. Therefore, the execution in the CU highly 

depends on whether the SP is inactive or active. The length of the EQ is chosen to 

represent the status of the CU in the Markov model. If m is the current length of the 

EQ, symbol m is used to represent the status of the CU when the SP is active or 

carrying ‘active to active’ transitions and m* is used to represent the status of the CU 

when the SP is inactive or carrying non ‘active to active’ transitions. Although some 

components like PM may be turned on/off during the operation of the CU for power 

saving, the speed for the on/off transitions is much faster (100 times or more) than the 

mode switching in the SP. Therefore, these on/off transitions are taken as 

instantaneous and no more states are used to represent them in the Markov model. 

Combined with the dual indexes (n, Mi,j) for SP states representation, triple indexes (m, 

n, Mi,j) are used to represent the Markov states for a DPM system when the CU is not 

regarded as cost free. 
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Equation  3-51 

With the consideration of CU cost, the average power consumption (P ) in Equation 

 3-51 is modified from Equation  3-1. 

The first two components are used to calculate the power consumption in the SP and 

the rest are used to calculate the power consumption in the CU (PowCUI and PowCUA 

are the power dissipation in the CU when the SP is inactive and active respectively). 

The modification in latency (APDV) can be carried out similarly. 

3.5.2 Fine grain Markov model for on-off DPM system 

In this section, we try to extend the Markov model for on-off DPM system to integrate 

executions in the CU. The alias names of states shown in the Markov model are given 

in Table  3-10. 

Table  3-10: Alias Index Used in Fine Grain On-off DPM Systems 

Standard (m*, n*, M0) (m, n, M1) (m, n*, M0,1) (m*, n*, M1,0) 

Alias mn* mn wu(mn) sd(mn) 

In the example model, the A&F policy is implemented in the DPM system. With the 

explicit representation of CU execution, the number of states in the Markov models 

increases from n to n2. This makes it difficult to show the full model in one figure. 

Therefore, each of Figure  3-25 to Figure  3-28 describes one single tile of the fine-

grain Markov model of the A&F policy. 
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Figure  3-25 shows the inactive states of the new fine-grain model. The black nodes in 

the figure are the inactive states while the white nodes are the connected states in 

other groups. Suppose one event comes when the system is in the state 00*. The EQ 

becomes 1 and the TQ keeps 0 so the system moves to state 10*. The arrival of the 

new event triggers the CU to start processing with the rate of µ1. If the processing in 

the CU is completed before the arrival of the next event, the system moves to the state 

01*. Otherwise, it moves to the state 20*. The more events that have been executed in 

the CU, the more tasks accumulate in the TQ. Given enough time, the system may 

reach state i(N-1)* (i>0), and the PM activates the SP as soon as one more task is 

added to the TQ (The meaning for parameters like λ,δ,γ and so on have been 

introduced in Section 3.2.1). 
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λ λ

µ1 µ1
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01* 11* 21*

µ1

31*

µ1 µ1

λ

λ λ λ λ
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γ γ γ γ
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Figure  3-25: The Tile of Inactive States 

The tile of wakeup states of the model is given in Figure  3-26. Once there are N tasks 

in the TQ, the SP starts its wakeup process and the PM part of the CU is shut down to 

save power. At the same time, TM starts to sort tasks for the execution in the SP. The 

parameter µ2 is used as the execution rate of the CU in this case. If the system is in 
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state wuij (i>0, j>N), its state movement has three possible directions: It may move to 

the state wu(i+1)j when one new event comes, or move to the state wu(i-1)(j+1) when 

the scheduling of j+1 tasks is complete, or move to the active state ij when the 

wakeup process finishes. 
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λ λ

wu3N
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Figure  3-26: The Tile of Wakeup States 
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Figure  3-27: The Tile of Active States 

Figure  3-27 describes the behaviour of the system when the SP is active. The 

parameter µ3 is used as the execution rate of the SP. The system in the state ij (i>0, j>0) 

can move to one of three neighbour states: It may move to the state i(j-1) when the 

execution in the SP is completed, or move to the state (i-1)(j+1) when the CU 
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completes a new task scheduling, or move to the state (i+1)j when a new event arrives 

in the system. If the system moves to the state i1, the SP is shut down and move to the 

shutdown state sdi0 when the execution of the last task is complete. 
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λ λ

sd30

λ

sd0N sd1N sd2N

µ1
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Figure  3-28: The Tile of Shutdown States 

Figure  3-28 is the last tile of the system, which reflects the movement of the system 

when the SP is shutting down. The TM is powered off because no more service is 

provided in the SP and the PM is activated again to carry out A&F calculation. 

Therefore, the execution rate in the CU becomes µ1 again. If the system is in state sdij 

(j<N), it moves to inactive state ij* when the shutdown processing is complete. On the 

other hand, if the system is in state sdij (j≥N), the SP is activated immediately after 

the shutdown processing finishes because N or more tasks are already in the TQ. 

3.5.3 The Derivation of Analytical Solutions 

Different from the Markov models introduced before, no one delegate state can be 

found whose probability can represent the probabilities of others. Therefore, only 

numerical solutions can be achieved given the length of the TQ in the calculation. 

3.5.4 Performance Analysis 
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In previous sections, we show that the A&F policy can trade more latency for power 

when the CU is taken as cost free. However, when this assumption cannot be satisfied, 

the analysis becomes complicated. When a simple DPM policy is implemented, the 

cost in the CU is small. For example, when the greedy policy is used for the on/off 

control, the PM needs no more than a group of OR gates to make the activation 

decision. Both the latency and power cost in the PM is extremely small. On the other 

hand, complicated computation is needed when some advanced policy is implemented. 

For example, when the A&F policy is used (N>1), adders are needed in the PM 

circuits to calculate the length of TQ, and arbiters [byst00] are also used to deal with 

the metastability caused by simultaneous arrival of events. The complexity in PM 

circuits increases both power dissipation and system latency. The fine grain model 

introduced in this section can be used to balance the trade-off between the overhead in 

the CU and power saving in the SP, and find the optimized policy which can reduce 

the power consumption in the entire system. 

To demonstrate the usage of the fine grain model, the example SP in Table  3-5 is used 

again in the analysis (suppose only sleep and active modes are used). Table  3-11 gives 

the parameters of the CU for different policies. 

Table  3-11: Parameters of the CU 

Greedy Policy 

µ1 1000 µ2 100 PCU 141.6mW 

A&F Policy (N=4) 

µ1 100 µ2 100 PCU 200mW 

In our analysis, we simply assume the maximum length of TQ (and therefore EQ) is 7 

and further coming events are discarded when the TQ is full. Figure  3-29(a) describes 

the power consumption in the example DPM system when the greedy policy is 

implemented. When the straight line in the top of the figure stands for PW, (1) is the 
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gross power gain of the DPM system, and (2) is the net power gain of the system. The 

power overhead paid in the CU is given in (3). 
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Figure  3-29: Power Analysis of Fine Grain DPM models 

Figure  3-29(b) compares the power overheads in the CU ( CUP ) when different 

policies have been implemented. It is clear that the A&F policy CU (N=4) consumes 

more power than the greedy policy CU. However, the overhead paid for the A&F 

policy can be worthwhile because the P  of the A&F policy is smaller than that of the 

greedy policy even when the power cost in CU is taken into consideration (Figure 

 3-30). 
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Figure  3-30: Power Cost of Different Policies 
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The fine-grain model can also help analyze of the system latency. For example, as 

shown in Figure  3-31, when the curve in the bottom of the figure represents the APDV 

value (DL is set to 10/µ3) when the SP is always on, (1) and (2) serves as the gross and 

net extra latency cost by DPM control when the A&F policy (N=4) is implemented. 
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Figure  3-31: The Latency Performance of A&F Policy (N=4) 

Conclusions and Further Discussion 

In this section, the fine grain model of an on-off DPM system was presented and 

analyzed. When some advanced processor serves as the SP in a DPM system, the 

execution of the PM is extended from simple on-off decisions to managing the 

switching among various modes provided by the SP. Markov modelling of such DPM 

systems when the PM is taken as cost free has been thoroughly explored in section 

3.2.2 and section 3.2.3. The fine grain model designed for the on-off DPM systems 

can be easily extended to represent DPM systems with multiple inactive and/or active 

modes. 

The fine-grain Markov model in this section can also help hardware designers to 

improve their circuits. The same high-level DPM policy can have various 

implementation circuits in the PM/TM with different power/latency parameters. The 
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analysis given in this section can help hardware designers to compare the performance 

of these circuits as well as their influence on the entire system. 

With DPM control, IP cores are triggered by incoming events, such as data, signal and 

energy tokens. For the more explicit energy driven systems [kans03], the SP, which 

stands for the main processor in the system, can provide the execution only when 

enough energy is available. The CU in this case represents the energy-harvesting unit 

which is always alert to the environment and carries out the harvesting execution 

when the energy that can be collected is higher than that is consumed in the task 

execution. Energy instead of data events is accumulated in this unit and the activation 

of the main processor depends on this accumulation. We believe that our current 

model, which is derived mainly with data and signal events in mind, may be further 

refined and modified to better suit energy driven systems. An immediate next task is 

to develop a more systematic and coherent representation of harvested energy as 

atomic events as well as example models of CUs from real-world energy harvesting 

systems. 



 

104 

 

 

Chapter 4 

Hierarchical CPN Models for a VSB 

With stochastic models built in Chapter 3, the A&F policy shown to have great 

potential to reduce power consumption in all kinds of SPs (no matter how many 

operation modes they have), and even when the PM (or CU) part of a DPM system is 

not cost free. The Parameter N in the A&F policy can be used to trade off power 

against latency. The simple A&F mechanism makes this policy easy implement in 

hardware without much complexity in circuit design. Therefore, this policy is chosen 

as the power management policy in the design of a Self Timed Event Processor 

(STEP), which can help an IP core to work as a Virtual Self-timed Block (VSB) in an 

asynchronous SOC context. 

The Fine Grain model of a DPM system introduced in Section 3.4 also discloses the 

high concurrency of a DPM system (now specifically a VSB). The execution of 

existing events in the CU (now a STEP) may be carried out concurrently with the 

handling of new incoming events. Similarly, the execution of tasks in the SP (now 

specifically an IP core) may be processed concurrently with the execution of events in 

the CU. When no global clock is available, a VSB has to deal with nondeterministic 
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cases brought not only by the asynchronous environment, but also by the 

asynchronous operations in different parts of STEP and its IP core. 

Therefore, the design of a reliable and high performance STEP becomes difficult if 

designers go directly into hardware design in gate level, as some important interaction 

patterns may be easily ignored when designing such a complex system. Some 

potential flaws brought by the nondeterministic nature of the environment may not 

happen frequently, but the lack of an adequate solution brings great hidden danger for 

the implementation of STEP. It is essential to provide methods that enable debugging 

and testing of the entire system (or at least some central parts of the system) prior to 

implementation and deployment.  

Coloured Petri Nets (CPN) is a language for the modelling and validation of systems 

in which concurrency, communication, and synchronisation play a major role 

[jens07]. The construction and analysis of CPN can be carried out in CPN Tools, 

which is an industrial-strength software tool. Users can take advantage of this tool to 

simulate the behaviour of the modelled system, and to verify its properties by means 

of state space methods and model checking. 

Modelling of a complex system is always carried out in levels. It is difficult for a 

system designer to implement every detail of its system in a complex model. If some 

errors are contained in the model, it is time consuming to find the real cause of an 

error, because the error may have propagated through the system. Therefore, dividing 

a complex system into different modules in a hierarchy and using the top-down design 

flow to carry out the model design is an efficient modelling method. Besides, models 

at different levels of a design hierarchy have their own usages. Models in the lower or 

lowest level of the hierarchy present a clear and detailed description of executions of 
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the corresponding system. They can be mapped to hardware components and circuits 

using direct mapping [shan02] or synthesis [sing06]. These models are 

implementation oriented and must be re-designed if the corresponding implementation 

is changed. Models at the higher level of the hierarchy, although abstract and having 

no direct connection with hardware circuits, remain robust when the implementation 

changes, and can be used for the analysis of similar systems different only in some 

detail.  

Although many solutions can design models in a hierarchy, CPN is chosen because it 

can clearly show the concurrent execution in different parts of one model. With CPN 

models, the design idea of STEP with the implementation of the A&F policy can be 

realized in the form of signals and data processing. Simulations and State space 

checking is used to prove the correctness of CPN models at different levels.    

4.1. A top Level Model of a Virtual Self-timed Block in CPN 

According to the introduction in Section 3.4, a CU (now a STEP) is roughly divided 

into an Event Handler (EH) for handling stochastically incoming events, a Power 

Manager (PM) which gives mode switching decisions to the IP core and a Task 

Manager (TM) which selects a suitable task from the TQ and loads it to the IP core 

when necessary. Although the A&F policy can be implemented into all kinds of DPM 

systems, currently we assume only a simple IP core with just on/off modes to be 

implemented in a VSB design. A top level CPN model (Figure  4-1) is built in this 

section to show the basic connection among different parts of a VSB.  

4.1.1 The Color Set Description 
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Three colours have been declared and used in this model. Colour BIT is declared to 

have only value ‘0’ and ‘1’, which is used to indicate the signal changes in a VSB. 

When the corresponding system is a hardware system, the colour BIT becomes the 

fundamental colour in the CPN model, and places with the other colours used in high 

level model like Figure  4-1 will be eventually decomposed into a combination of 

places with BIT colour set in the lowest level model.     

 
Figure  4-1: Top Level Model of a VSB 

Colour TASK is declared to represent tasks that can be carried out in the IP core. In 

the top level model, all tasks have the same abstract meaning. Therefore, the TASK 

colour is declared as BIT whose token value represents whether the task is ready for 

execution in the IP core (value ‘1’) or not (value ‘0’). In the lower level model, the 

TASK colour should be specified when the execution of different tasks is not identical. 

In this thesis, all tasks are assumed to be independent, which means any execution 

sequences of these tasks are acceptable (although different execution sequence may 

bring variation in system performance). 

Colour EVENT is declared to represent events accessing VSBs in an SOC frame. 

Similar to the declaration of colour TASK, EVENT is declared as BIT in the top level 
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model since all events are identical. In this thesis, an event is an open concept. It can 

represent energy, data processing requests, communication requests or others. 

Therefore, the abstract declaration of colour EVENT in the top level model helps the 

model to have a wider representation, and the colour of EVENT can be re-declared 

according to the specified concept of EVENT in different implementations. Different 

from the colour TASK, an EVENT ‘1’ token represents an event arrived in the current 

VSB and an EVENT ‘0’ token indicates either an event for the current VSB is not 

ready, or an event that has no relationship with the current VSB. 

4.1.2 The Model Description 

After the introduction of the colour declaration, we can now describe the model in 

Figure  4-1. Tokens in the place EQ represent all incoming events waiting to be 

responded to by a STEP. Similarly, the place TQ represents the status of all tasks that 

can be executed in the IP core. An initial token L`0 is attached to the TQ place. The 

integer constant L is used to indicate the number of tasks embedded in the IP core of 

the current VSB. The initial value ‘0’ indicates that all L tasks are not ready for 

execution and waiting for the incoming of their corresponding events. 

When there is at least one ‘1’ EVENT token in the EQ place and one ‘0’ TASK token 

in the TQ place, the transition EH is enabled. The occurrence of this transition 

removes one EVENT token from the EQ place, indicating that one incoming event 

has been responded to by the STEP. At the same time, a ‘0’ token in the TQ place is 

replaced by a ‘1’ token, indicating one task is ready for execution. When a VSB is 

designed for data processing, the possible asynchronous/synchronous data transform 
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performed in an asynchronous wrapper is also represented by the occurrence of the 

EH transition. 

The EH transition is enabled again when further events arrive, and each occurrence 

updates one ‘0’ token in the TQ place to ‘1’. When the i`1++(L-i)`0 marking shows in 

the TQ place, it means that i out of L tasks in the IP core are ready for execution. 

However, when no more ‘0’ tokens can be found in the TQ place, it means that all 

tasks provided by the IP core are ready for execution. If new events come at this time, 

they cannot be responded to by the STEP until their corresponding tasks have been 

processed in the IP core. Therefore, the EH transition becomes disabled when no ‘0’ 

TASK token is available in the TQ place. 

The place Sleep is declared as BIT colour set and its token indicates the status of the 

IP core in the current VSB. By the initial token ‘1’, the IP core is indicated to be 

inactive initially. When the A&F policy is implemented in the STEP, another constant 

integer N is declared in the model. Therefore, the transition PM is enabled only when 

there are more than N TASK ‘1’ tokens in the TQ place. The TQ place and the PM 

transition are connected by a double-headed arc. A double headed arc is shorthand 

for two directed arcs in opposite directions between two nodes which have the same 

arc expression. The occurrence of the PM transition toggles the token value in the 

Sleep place to ‘0’, which indicates the wakeup processing in the IP core. It adds one 

BIT ‘1’ token to the Load place as the consequence of the completion of the wakeup 

processing. As mentioned in Section 3.5, the A&F policy is only used when the IP 

core is inactive and the PM circuits should be shut down to save power as soon as the 

IP core is activated. This design idea is reflected by the expression of the arc directed 
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from the Sleep place to the PM transition, which indicates the latter transition can 

only be enabled when the token value in the Sleep is ‘1’.  

Although the first occurrence in the EH transition adds one ‘1’ token to the TQ place, 

the TM transition is enabled only when the occurrence of the PM transition puts one 

token in the Load place. It is because the TM is supposed to be powered off when the 

IP core is sleeping. The availability of one token in the Load place indicates the 

completion of the wakeup processing in the IP core, so the TM transition is enabled 

afterwards. The occurrence of this transition consumes one ‘1’ token in the Load 

place and one TASK ‘1’ token in the TQ place. It adds one TASK ‘1’ token to the 

NTask (meaning New Task) place to indicate one new task chosen from all ready 

tasks is loaded to the IP core for execution. At the same time, one TASK ‘0’ token is 

added to the TQ place, indicating the chosen task in the NTask place is not scheduled 

before its execution is completed in the IP core. 

If the IP core is inactive, TASK ‘1’ tokens in the TQ place are used by the PM and 

TM transitions for occurrence in sequence. However, if the IP core is active, no task 

accumulation in the PM is needed and new added TASK ‘1’ token is only be used for 

the enabling of the TM transition. 

When three execution units EH, TM and PM in the STEP are represented by three 

transitions with the same name in the model, their concurrent executions can be 

clearly represented by the simultaneous enabling of these transitions. For example, 

when N<L, the transition TM is enabled when a token is available in the Load place 

and the transition EH may be enabled at the same time if another EVENT ‘1’ token 

appears in the EQ place (Figure  4-2(b)). Concurrent executions can benefit a VSB 
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since parallel processing can reduce the latency of the VSB, but they may also bring 

hidden dangers as well. For example, two occurrence sequences exist when both TM 

and EH transitions are enabled simultaneously. If the EH transition occurs first, it 

adds another task for scheduling. While the first occurrence of the TM transition 

indicates the new ready task is not used during current scheduling. The random 

occurrence sequences of the two transitions cause no trouble in the top level model 

since all tasks are regarded identical, while they can bring hazards in the scheduling 

result when tasks are thought to be different. Therefore, a low level model should 

solve this hazard brought by concurrent execution in the STEP. 

When one TASK token is available in the NTask place, the Execution transition is 

enabled. The occurrence of this transition indicates the execution of the current task in 

the IP core, and it adds one TASK ‘1’ token to the RQ (means Result Task Queue) 

place. Generally speaking, the result generated by the execution of one task in the 

current VSB either releases some system resources like the data bus, I/O port or 

battery power, etc, or generates new data or requests. Therefore, the completion of 

one task can trigger some event, so as to enable some other task to be executed. 

Therefore, the post-processed TASK token in the RQ place is used to enable the 

OutCt (means Output Control) transition which represents all necessary preparation 

of a new event (for example, request signal generation, data path preparation, 

browsing the route table to determining the destination VSBs and so on). Finally one 

EVENT ‘1’ token is added to the OEQ (means Output Event Queue) place and sent to 

the environment. The occurrence of OutCt transition also adds one token to the Load 

place which enables the TM transition to choose another task for the IP core’s 

execution. 
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When all TASK ‘1’ tokens have been consumed in the execution transition, the 

Shutdown transition is enabled. Its occurrence toggles the token in the Sleep place to 

‘1’, which means the shutdown process is completed. 

Without a global clock inside the VSB, the operation in the IP core as well as in the 

STEP can be carried out concurrently. This concurrent execution can also be reflected 

by the simultaneous enabling of transitions in the CPN model. For example, 

transitions Execution and EH may be enabled simultaneously, which means that the 

STEP needs to respond to new incoming events when the IP core is processing. This 

concurrent processing can improve the performance of the VSB. However, some 

concurrency may also bring problems to the VSB. For example, when no more TASK 

‘1’ token is in the TQ place and one EVENT ‘1’ token is in the EQ place are available, 

both Shutdown and EH transitions are enabled (Figure  4-2(c)) and different 

occurrences of the two transitions have different consequences. If the Shutdown 

transition occurs first, the new TASK ‘1’ token added by the occurrence of the EH 

transition is used in task accumulation. Otherwise, the new TASK ‘1’ token is directly 

used for scheduling in the TM transition. The random occurrence of the two 

transitions may bring contradictory operations in the VSB when a new task is enabled 

during the shutdown processing. The IP core may be confused about whether to 

continue the shutdown processing or start a new wakeup processing. This confusion 

may cause data loss or even more serious consequences and should be avoided. 

Therefore, some solutions should be added to the low level model of the IP core 

control interface so that the shutdown processing cannot be disturbed before its 

completion. 
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4.1.3 The Environmental Set Description 

The places and transitions introduced so far construct the top level model of a Virtual 

Self Timed Block. In order to check the behaviour of the model and verify its 

properties, some places and transitions must be added so as to simulate the behaviour 

in the environment. These places and transitions are highlighted by the dark shade so 

as to differentiate from their counterparts describing the current system. 

Equipped with environmental places/transitions, the model given in Figure  4-1 

describes a closed system, and the event sent by the current VSB to the environment 

finally stimulates some other event to come back to the current VSB. Transitions Env 

and Env1 are used to describe this procedure by means of an EVENT type variable 

event. Therefore, given one token in the OEQ place (no matter what value it has), the 

transition Env is enabled and the occurrence of this transition indicates the 

corresponding event is sent out to the environment. As the events incoming is 

modelled as a stochastic (in most cases Markovian) process, how quickly the outgoing 

of the event from the current VSB to the environment can stimulate an event from the 

environment to the current VSB is uncertain. Therefore, a random function P() is used 

in the expression of arc from the Env transition to the EQ place. The declaration of 

this function is given below: 

                fun P() = poisson (2.5)  

This function uses the random number generator poisson provided by CPN Tools to 

generate a random integer number which follows the Poisson distribution. The 

number 2.5 in the function declaration is the rate λ in the Poisson distribution and can 

be changed according to the features of the implementation environment.  
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Therefore, when the random number generated by the P() function is greater than 1, 

an EVENT ‘1’ token is added to the EQ place after the occurrence of the Env 

transition, which means one new event arrives at the current VSB and waits to be 

responded to. When the random number generated by the P() function is no more than 

1, an EVENT ‘0’ token is added to the EQ place accordingly. This means the 

corresponding new event is not available for the usage in the current VSB. An 

EVENT ‘0’ token enables the Env1 transition and the latter’s occurrence moves the 

token to the OEQ place. Therefore the marking of i`1++j`0 in the OEQ place indicates 

that there are i events ready to be sent out to the environment from the current VSB 

and j events are relaying in the environment. How quickly the value of these EVENT 

tokens can become ‘1’ in the EQ place is determined by the value of λ in the P() 

function. 

4.1.4 Initial Marking 

Figure  4-1 also shows the initial marking M0 of the model. One ‘0’ token is given to 

the Sleep place suggesting that the IP core is inactive in the initial state. When L is set 

to 5, five ‘0’ TASK tokens are given to the TQ place, which indicate none of the five 

tasks are ready for execution. Two ‘1’ EVENT tokens are set to the EQ place, 

showing that two incoming events are waiting to be responded to by the STEP. Even 

when the two events are responded to by their corresponding tasks, the IP core cannot 

be woken up since N is set to 3. Therefore, the activation of the IP core needs the 

arrival of at least one EVENT token initially in the OEQ place. 

4.1.5 Simulation 
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With the integration of environment places and transitions, we can use the simulation 

function provided by the CPN Tools to check the behaviours in the current model. 

Figure  4-2 shows several segments of the model when concurrency properties in 

different parts of the VSB are disclosed (Every enabled transition is highlighted by a 

dotted rectangle).  

Figure  4-2(a) shows the concurrent execution in the STEP (the enabling of the EH 

transition) as well as that in the environment (the enabling of the Env transition). 

Figure  4-2(b) presents the concurrent execution within the STEP (the enabling of both 

the EH and TM transitions). Figure  4-2(c) shows the concurrent processing in the 

STEP (the enabling of the EH transition) as well as in the IP core (the enabling of the 

Execution transition). 

(b) Step =23

(c) Step =6

(a) Step =0

 
Figure  4-2: Simulation of the Top Level CPN Model 

The simulation can also help the designers to correct errors in their models. For 

example, one double-headed arc is used to connect the Shutdown transition and the 

TQ place because five ‘0’ TASK tokens are checked but not consumed by the IP core 

to make shutdown decisions. However, designers can easily miss the arc from the 

Shutdown transition to the TQ place (Figure  4-3(a)), and the consumption of TASK 
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‘0’ tokens in the occurrence of Shutdown transition makes further enabling of the EH 

transition impossible.  

When simulation is carried out at the top level with this error, it terminates after a 

certain number of steps because in that case no more transitions are enabled (called 

dead marking or dead lock). Therefore, a dead marking in the simulation is used to 

detect errors in model design stage. However, because of the randomness brought by 

the function P(), this simulation termination may not happen within 100 or even more 

steps. Five independent simulations have been carried out when the model has the 

design error. In these simulations, the CPN Tools took 103, 202, 159, 394, 941 steps 

respectively to achieve the dead marking. Few designers take thousands of steps in the 

simulation and if they quit in the first several hundreds steps when 941 steps are 

needed to detect the error, the error is hidden in the design. Therefore, we need some 

other more reliable function tool to prove the correctness of the model. 

(a) Error Case A (b) Error Case B
 

Figure  4-3: Possible Errors in the Top Level Model 

Furthermore, the exposition of some other errors cannot be detected based on 

simulation termination. In Figure  4-3(b), the arc directing from the OutCt transition to 

the Load place in Figure  4-1 is changed by the arc leading from the Execution 

transition. This comes from the initial thought that a load requirement should be given 

as soon as the execution of the current task is complete. However, if only TASK ‘0’ 

tokens are available in the TQ place, the Shutdown transition is enabled 
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simultaneously with the enabling of the OutCt transition. If the Shutdown transition 

occurs first, the OutCt transition is disabled. It means no more executions for new 

events preparation are forbidden because the IP core is sleeping, and the 

corresponding event may be missed or duplicated sent. Unfortunately, this error 

cannot be found by the method of simulation termination because the concurrent 

enabling of both OutCt and Shutdown transitions does not make the model reach a 

dead marking. Errors like this are more easily ignored by the designers. 

4.1.6 State Space Checking 

In this case, the state space checking provided by the CPN serves as a more reliable 

method to find possible errors and prove the dynamic properties of the models. In our 

design, the BIT colour set is the most fundamental colour which may be mapped to 

electronic level or edge signals in hardware design. Therefore, no more than one BIT 

token can be held in the same place under any circumstances, and multiple BIT tokens 

in the same place indicate errors in the model design. The Boundedness Properties 

in the state space report can be used for this check. For places with other colour set, 

the Boundedness Properties shows all possible token values in one place, and the user 

can check if any illegal values appear in the model. 

All transitions in a CPN model should be enabled at least once (otherwise the 

transition should be removed), therefore no transitions should be reported as Dead 

Transitions in the Liveness Properties of the state space report. In case some Dead 

Transitions are reported in the report, designers can use the Dead Markings given in 

the same report to trace the possible errors. Now we try to examine the state space 

report about the top level STEP model. 
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Statistics 
--------------------------------------------------- ------------------ 
Occurrence Graph   Scc Graph 
    Nodes:  177     Nodes:  1 
    Arcs:   471     Arcs:   0 
    Secs:   1     Secs:   0 
    Status: Full  

 
 Boundedness Properties 
--------------------------------------------------- ------------------ 
  Best Integers Bounds    Upper      Lower 
  TOP'EQ 1                4          0 
  TOP'Load 1              1          0 
  TOP'NTask 1             1          0 
  TOP'OEQ 1               4          0 
  TOP'RQ 1                1          0 
  TOP'Sleep 1             1          1 
  TOP'TQ 1                5          5 
 
  Best Upper Multi-set Bounds 
TOP'EQ 1            2`0++4`1   TOP'Load 1          1`1 
TOP'NTask 1         1`1   TOP'OEQ 1           3`0++ 4`1 
TOP'RQ 1            1`1   TOP'Sleep 1         1`0++ 1`1 
TOP'TQ 1            5`0++4`1  

   
  Best Lower Multi-set Bounds 
TOP'EQ 1            empty   TOP'Load 1          emp ty 
TOP'NTask 1         empty   TOP'OEQ 1           emp ty 
TOP'RQ 1            empty   TOP'Sleep 1         emp ty 
TOP'TQ 1            1`0  

 
 Home Properties 
--------------------------------------------------- ------------------ 
  Home Markings:  All 
 
 Liveness Properties 
--------------------------------------------------- ------------------ 
  Dead Markings:  None 
  Dead Transitions Instances: None 
  Live Transitions Instances: All   

According to the report, no transition in the model is dead. The Best Integer Bounds 

show all BIT places hold no more than one token at any time. Therefore the 

corresponding circuits give no conflicting indications to the executions of a VSB. The 

state space report can help the user to find possible errors of the model. Figure  4-3 

presents two errors which may easily happen in the design and these errors are 

checked out in their state space reports respectively. 



 
 

Chapter 4. Hierarchical CPN Models for a VSB 

When ErrorA in Figure  4-3 contains in the model, the corresponding report is shown 

below (all identical items with the report of the correct model are omitted): 

Statistics 
--------------------------------------------------- ------------------ 
Occurrence Graph   Scc Graph 
    Nodes:  149     Nodes:  35 
    Arcs:   387     Arcs:   80 
    Secs:   0     Secs:   0 
    Status: Full  

 
 Boundedness Properties 
--------------------------------------------------- ------------------ 
… 
 
 Home Properties 
--------------------------------------------------- ------------------ 
  Home Markings:  [109] 
 
 Liveness Properties 
--------------------------------------------------- ------------------ 
  Dead Markings:  [109] 
  Dead Transitions Instances: None 
  Live Transitions Instances: None 

 

It can be seen that one Dead Marking [109] is highlighted in this report and no live 

transitions exist in the model. Because no dead transitions exist in the model, it means 

that all transitions can be enabled at least once. However the occurrence of some 

transition causes an abnormal marking, so that no more transitions can be enabled 

since then. Since the dead marking is a home marking, it means this abnormal 

marking always happens no matter what occurrence sequences may happen. Therefore, 

transitions that may be concurrently enabled are highly impossible to be the cause of 

dead marking. This analysis can help the designer finally find the error in the arc 

between Shutdown transition and the TQ place. 

When ErrorB in Figure  4-3 happens, the corresponding report is shown below (all 

identical items with the correct model report are omitted): 

Statistics 
--------------------------------------------------- ------------------ 
Occurrence Graph   Scc Graph 
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    Nodes:  266     Nodes:  1 
    Arcs:   757     Arcs:   0 
    Secs:   0     Secs:   0 
    Status: Full  

 
  Best Upper Multi-set Bounds 
  TOP'NTask 1         1`1 (Identical to the correct  report) 
  TOP'RQ 1            4`1 

No dead marking means that the token flow can continue forever in the simulation 

and the designer cannot use the simulation termination method to find the error. When 

the Best Upper Multi-set Bounds are checked, it shows that the RQ places can hold at 

most 4 tokens while only one token can be held in the NTask place. When a new task 

suggested by the ‘1’ token is loaded into the IP core, the correct operation in the IP 

core should first do the new event preparation based on the completed task, and then 

try to load a new task. Therefore, the multi tokens should not happen in the RQ place. 

Based on this analysis, the designer can easily find the error in the RQ place. 

4.1.7 Conclusions and Further Discussion 

A top level CPN model of a VSB (including a STEP and an IP core) was presented in 

this section. Both simulation and state space function tools provided by the CPN 

Tools were used to check the correctness of the model. The abstract declaration of 

both EVENT and TASK colours make the top level model robust when events are 

specified as different concepts in various implementations. 

Although abstract, this model clearly shows the integration of the accumulation & fire 

policy in the operation of the STEP. It also indicates the possible concurrent 

executions between different parts of the STEP, or between the STEP and its 

corresponding IP core. This concurrency may bring parallel processing in the VSB. 

However, it may also cause hazards which may affect the VSB’s performance if no 

corresponding solutions are given.  



 
 

Chapter 4. Hierarchical CPN Models for a VSB 

The abstraction at the top level model prevents further discussion about the influence 

of concurrency to system design and gives no direct guidance to the hardware design. 

In the following sections, we decompose the top level model into several connected 

segments and use a lower level CPN model to specify each part in detail.  

4.2.  The Design of a Power Manager in CPN 

In this section, we try to specify one segment of the top level model, which centres on 

the EH transition (Figure  4-4). As indicated by the top level model, this segment is 

mainly used to respond to incoming events and update the status of the corresponding 

tasks. 

 
Figure  4-4: The Event Handler Segment in the Top Level Model 

In the top level model, every occurrence of the EH transition can only consume one 

EVENT token in the EQ place. It means all incoming events must wait in a queue to 

be responded to by the STEP even when they arrive simultaneously from different 

directions. In this thesis, we assume that all STEPs are point-to-point connected, and 

one point-to-point connection between two STEPs is called a communication 

Channel. When a STEP has more than one input Channel, arbiter(s) become 

indispensible to create an event queue when simultaneous events arrival occurs. The 

number of arbiters used in the STEP increases with the Channels’ number in 2
nC , and 
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the corresponding circuits’ costs in both power dissipation and latency increase 

dramatically. A better solution should enable multiple events to be responded to in 

parallel. 

Moreover, the occurrence of the EH transition in the top level model updates the value 

of one task token from ‘0’ to ‘1’, which means every incoming event makes one 

corresponding task ready for execution. However, this is not true in the 

implementation of STEPs with multiple input Channels. Although events from the 

same Channel always indicate different tasks in an IP core (otherwise two events can 

be taken as one with doubled amount of information), events from different Channels 

are highly likely to indicate the execution of the same task (but with different 

parameters). In this case, the consumption of one event token may not change the 

value of its corresponding task token if the latter’s value has been updated by one 

previous event with the same task indication. 

4.2.1 A Matrix Structure of Event Handler 

When we take the two problems into consideration, a matrix structure used in the 

Butler coprocessor’s design [camp97] is a good reference for the design of the EH 

part in the STEP (Figure  4-5).  

Suppose in the current VSB, there are M tasks embedded in the IP core and S input 

Channels provided by the STEP. An M*S matrix is built and the unit Ui,j (i≤M,j≤S) in 

the matrix responds to the event which comes from the jth Channel, and the processing 

in this unit determines if task i is ready for the execution in the IP core. With a matrix 

structure, several events coming from different Channels can be responded to in 

parallel since the corresponding executions are carried out in different units.  
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Figure  4-5: The Matrix Structure in the Butler 

If there is at least one Ui,j in the i
th row of the matrix indicating the ith task is ready for 

execution, a ready signal (which is written as Rdy for short in Figure  4-5) becomes 

valid. All ready tasks are called candidates and the number of candidates is used in 

the Power Manager of the STEP for accumulation when the IP core is inactive and 

they are also used in the Task Manager for scheduling, which will be introduced in the 

following sections in detail. One and only one candidate can be chosen and loaded 

into the IP core for execution each time, and the ready signal of the corresponding 

task is withdrawn afterwards so that the task cannot be a candidate for next scheduling.  

The structure within every Ui,j relies on the implementation of the VSB. When the 

VSB is used for data processing, the execution of one task needs the combination of 

both operation codes and the data for operation. An incoming event in this case 

indicates that the corresponding data is available. The operation codes of the 

corresponding task are always ready for processing except when they are just under 

processing, or they are prevented from execution by other tasks in case of suspension, 

interruption or synchronization etc [masc87]. Therefore, two 1-bit variables wait and 

stim (which are written as W and S for short in Figure  4-5) are used in every unit of 
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the matrix. The wait bit is set when the operation codes of the corresponding task are 

ready for execution, and it is reset otherwise. Similarly, the stim bit is set when the 

event (mainly the corresponding data) is accessible and it is reset otherwise. A task i 

becomes a candidate task and its ready signal becomes valid only when at least one 

Ui,j unit of the matrix has both stim and wait bits set. 

The matrix structure gives high expansibility to the STEP. When used in different 

environment or to cooperate with different IP cores, the parameters of the matrix M 

and S may be changed accordingly. However, the Event Handler part can be easily 

adjusted by adding/deleting several units in the matrix while the entire structure keeps 

the same. 

 
Figure  4-6: CPN Model of One Unit in the Event Handler 

Although the matrix structure has been designed in the Butler coprocessor [camp97], 

the previous design goes directly to gate level without any modelling work. For the 

sake of better integration with other parts of the STEP, the model of one unit of the 

matrix is designed in CPN (Figure  4-6). 
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4.2.2 The Color Set Description 

As the implementation of the modelled VSB is specified as data processing, the 

colour of EVENT and TASK in the new second level model is re-declared. In most 

cases, each task is given a unique ID number which is used for the IP core to find the 

start address of the corresponding codes in its memory if needed. Therefore, the 

colour TASK is declared as: 

color TASK = int with 0 .. Max 

where Max is a constant standing for the maximum ID number used in the current 

VSB.  

When data is transferred among different domains with different clock frequencies, 

the Asynchronous Communication Mechanism (ACM) serves as an efficient and safe 

method used in many implementations and is used in the VSB design. Because the 

CPN models of ACM memories has been designed in [gorg08], an abstract DATA 

colour is declared as the colour string (as the set of all text strings) whose content is 

used to describe the property of the corresponding data. 

color DATA = string 

Therefore the colour EVENT is re-declared as: 

color EVENT = product TASK*DATA 

This means that an EVENT token is composed of a TASK token and a DATA token. 

The TASK token indicates which operation is used to process the data represented by 

the DATA token. The colour BIT keeps the same declaration in this model (as well as 

other models in the chapter). 

4.2.3 Model Description 
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In Figure  4-6, the place Channel is used to hold EVENT tokens coming from one 

channel. A group of Channel places from all units of the Matrix is the extension of the 

EQ place in the top level model. Any EVENT token in this place enables the ACM 

transition. This transition represents the data transfer/transform carried by the STEP 

when ACM is used. The specification of this transition is shown in [gorg08]. The 

occurrence of this transition generates a TASK token to the ID place, which indicates 

the completion of the data preparation for the task suggested by the token value. 

The constant ID1 in Figure  4-6 is declared as a constant integer which represents the 

ID number of the task represented by the current unit. A guard [task=ID1] is attached 

to the transition Sstim (means Set stim bit) to make sure the latter can only be enabled 

by a TASK token (which is one part of an EVENT token) valued in ‘1’ (ID1 is 

currently declared as 1). The occurrence of the Sstim transition updates the token 

value in the Stim place to ‘1’, which means the data for the execution of task1 (taski 

is the short expression for the task whose ID number is i) is ready for execution. With 

an initial ‘1’ token available in the wait place (which means the corresponding codes 

in the IP core are ready for execution), the transition Candidate is enabled and the 

occurrence of this transition updates the token in the Rdy place to ‘1’ which means 

task1 becomes a candidate for scheduling. A group of Rdy places from all units of the 

Matrix is the extension of the TQ place in the top level model. 

The token value in the place Ntask indicates which task is chosen to be loaded into 

the IP core. The variable ntask represents the token value in the Ntask place. When 

the token value in this place becomes ‘1’, the transition selected is enabled because 

task1 is loaded into the IP core for execution. The occurrence of this transition resets 

the value of the tokens in both the stim and wait places, and the transition Decand is 
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enabled in sequence. The occurrence of the Decand transition resets the token value in 

the Rdy place to ‘0’, which means task1 is no longer a candidate for scheduling and 

the corresponding ready signal becomes invalid. 

4.2.4 The Environmental Set Description 

Similar to the top level model in Figure  4-1, environmental places/transitions are 

highlighted by a dark shade in the current model. The transition Schedule is used to 

represent the scheduling processing in the STEP. This transition is enabled only when 

the token in the Rdy place is ‘1’ because the scheduling result influences the current 

model only when task1 is a candidate task. No matter what scheduling policy may be 

implemented in the STEP, how quickly task1 can be chosen for loading after it 

becomes a candidate task is nondeterministic. Therefore, a CPN function New() is 

declared as follows: 

                 fun New()=discrete(1,5) 

This function uses the random integer number generator discrete provided by CPN 

Tools to generate a random integer number from 1 to 5. The generated number 

indicates the ID number of the newly selected task. A guide [ntask<>ID1] (means 

ntask is not equal to ID1) is attached to the Schedule transition to make sure that the 

scheduling work (as well as the execution of tasks in the IP core) is carried out until 

task1 is chosen (after that the scheduling result does not influence the current model 

until the token value in the Rdy place becomes ‘1’ again). 

The execution of the selected transition also generates two tokens: one in the new 

place and the other in the new2 place. The cooperation of the place new with the 

transitions env and env1 is used to simulate the stochastic generation of another event 

corresponding to task1 from the same channel. The description of these places/ 



 
 

Chapter 4. Hierarchical CPN Models for a VSB 

transitions is shown in places/transitions with the same names in the top level model 

in Figure  4-1. CPN function P1() (as well as P2() in the expression of the arc from the 

execution transition to the new2 place) shares the same form as the P() function in the 

top level with different rate λ. The occurrence of the transition env1 represents the 

incoming of another event (as well as the data) corresponding to task1 in the current 

model. 

Similarly, the cooperation of the place new2 with the transition execution is used to 

simulate the execution of task1 in the IP core. When a ‘1’ token is generated in the 

new2 place, it indicates that the execution of task1 is complete so that the wait bit is 

set by the occurrence of the Swait transition. 

4.2.5 Simulation and State Space 

Because of the random token value arranged by functions P1() and P2(), either the 

transition Sstim or Swait can be enabled first (or they are concurrently enabled), 

which reflects the nondeterministic operations of the STEP. CPN simulation is used to 

verify the token flow in the current model and CPN state space report is given in 

Appendix V. 

4.2.6 Conclusions and Further Discussion 

In this section, a Matrix structure used in Butler processor was modelled in CPN for 

event handling and task storage. A pair of stim and wait bits is used to judge whether 

its corresponding task is ready for processing in the IP core. As soon as a task 

becomes a scheduling candidate, a corresponding ready signal becomes valid and this 

signal is used in other parts of the STEP for power management or task management. 
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Defined as a string colour, a DATA token has only an abstract meaning in the model. 

When it is defined as a BIT color in a lower level model, the ACM model [gorg08] 

can be integrated to the current model for hardware design. 

4.3. The Design of a Power Manager in CPN 

In this section, we specify the segment of the top level model which focuses on the 

realization of the A&F policy (Figure  4-7). 

 
Figure  4-7: The Segment of the PM part in the Top Level Model 

According to the previous section, a ready signal becomes valid as soon as the 

corresponding task becomes a candidate task. A simple A&F realization in the STEP 

is to count the number of valid ready signals so as to decide whether task 

accumulation is enough or not.  

When tasks in an IP core are assumed to be independent, there is no pattern to indicate 

how their corresponding ready signals become valid. The STEP must be alert to any 

change in ready signals so as not to miss any new ones in the accumulation. On the 

other hand, a valid ready signal is withdrawn by the reset in the stim & wait bits in the 

Event Handler part. Since the PM part in the STEP cannot disable any ready signals 

after accumulation counting, the PM needs to know which ready signal is new (not be 

counted in the accumulation) and which one is old (already counted in the 

accumulation) in the counting. 
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Furthermore, the Matrix structure used in the Event Handler enables responding to 

events from different Channels in parallel, and therefore several ready signals can 

become valid simultaneously. These signals need to be arbitrated before they are 

counted and added to the accumulation result. 

4.3.1 The Model Description 

 
Figure  4-8: The CPN model of the PM  

Figure  4-8 presents the CPN model of the PM part in a STEP where only two example 

tasks are considered. Token values ‘1’ or ‘0’ in the Rdy1/Rdy2 places indicate 

whether the ready signal for task1 or task2 is valid or not. A BIT token in the 

En1/En2 places is used to record whether the corresponding ready token has been 

used for accumulation. A ‘1’ token in En1/En2 place means that the corresponding 

ready ‘1’ token has not been used for accumulation, and therefore the latter token can 

enable the access1/access2 transition.  
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The occurrence of the access1/access2 transition updates the token value in 

Irdy1/Irdy2 place to ‘1’ respectively, indicating a new ready token is ready to be 

counted. The occurrence of the access1/access2 transition also toggles the token value 

in En1/En2 place to ‘0’ so that a ready ‘1’ token can only access to the current model 

once and duplicated counting is avoided in this model.   

As demonstrated in the top level model, the task accumulation is needed only when 

the corresponding IP core is inactive. Therefore, transitions access1/access2 can be 

enabled only when the token value in the STEPSleep place is ‘1’.  

When only one accumulation value is kept in the PM, all ready signals can be added 

to the accumulation value only in sequence. Therefore arbiters are indispensible in the 

current model. One easy solution is to build an arbitration array for all ready signals 

like Figure  4-9(a). If M is the number of tasks, this solution uses 2
MC arbiters. Given a 

big number M, the number of arbiters and corresponding logic gates increase 

dramatically.  

Another improved solution (Figure  4-9(b)) is inspired from the ring based arbiter 

introduced in the multi arbiter systems section in the book of [kinn07b]. In this case, a 

polling token circles in the arbitration system and any arbitration can only be carried 

out when it gets the token. Similarly in the A&F part, a valid ready signal can be 

added to the accumulation only when the polling token arrives. Therefore, no 

arbitration is needed to be given to different ready signals since they do not 

experience any collision during polling token accessing. Although arbiters are still 

needed to solve the collision between the validation of one ready signal and the arrival 
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of the polling token, the number of arbiters is reduced to M. Therefore this arbitration 

solution is chosen in the PM design. 
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Figure  4-9: Two Arbitration Solutions in the PM Part 

In the current CPN model, the polling token is held in the Me/Me1 places and the 

variable poll is used to represent the flow of the polling token. When at least one 

access transition occurs, the token in the Me place becomes ‘1’ to enable the polling 

accumulation.  

The pair of select1 and pass1 transitions indicates the operation of polling 

accumulation of the ready signal for task1. If the token value in Irdy1 is ‘1’, the 

availability of the polling token in the Me place enables the transition select1. The 

occurrence of the transition first grants the ready token for accumulation, and then 

passes the polling token to the Me1 place. If the token value in Irdy1 is ‘0’, the 

transition pass1 is enabled accordingly and pass the polling token directly to the Me1 

place. The occurrences of the pair select2 and pass2 transitions are carried out in a 

similar way and they return the polling token to the Me place. After adding all current 

valid ready signals to the accumulation, the polling accumulation ends after the 

occurrence of select2/pass2 transition for power saving, and it begins next time when 

at least one access1/access2 transition occurs. 
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The arbitration between a ready signal and a polling signal is modelled by the 

competition of polling tokens in the Me place between the access1/access2 transition 

and the select1/pass1 transition. When two (or more) tokens in the Rdyi (i=1,2) places 

become ‘1’, their corresponding accessi transitions are enabled. After one accessi 

transition occurs, the polling token in the place Me becomes ‘1’ and enables one of 

the pair select1/pass1 transitions. Therefore, both the other accessi and one of the pair 

select1/pass1 transitions are enabled concurrently. If the select1/pass1 transition 

occurs first, no token is left in the Me place. The accessi transition is disabled until the 

end of one round of polling accumulation. This occurrence sequence reflects the 

situation when the polling token is first granted by the arbiter, and the valid ready 

signal is added to the accumulation result next time when the polling token arrives. 

Otherwise, if the other accessi transition occurs first, the token polling increases the 

accumulation by two. This occurrence sequence reflects the situation when the valid 

ready signal is first granted by the arbiter, and one round of polling realizes the 

accumulation of several tasks. 

The or1/or2 transitions represent the OR gate in Figure  4-9(b), and the execution of 

one or1/or2 transition adds one token to the Queue place and move the polling token 

to the Me/Me1 place and let the token polling continue. The colour in the place acc is 

set to INT because the token held in this place represents the accumulation result. As 

soon as one token is available in the Queue place, the Adder transition is enabled and 

the execution of this transition increases the accumulation by 1. One guard [acc>=N] 

is attached to the Fire transition to make sure one token is added to the Activation 

place only when the token value in the acc place is no less than the accumulation limit 
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N (N is set to 2 in the current model). The occurrence of the Fire transition resets the 

token value in the acc place to ‘0’ to prepare for the next accumulation processing. 

4.3.2 The Environmental Set Description 

The environmental transition Wakeup represents the wakeup processing in the IP 

core, and its occurrence sets the token in the STEPSleep place to ‘0’ to disable all 

transitions in the current model. The occurrence of this transition also sets the tokens 

for both En1 and En2 places to ‘1’ so that new valid ready tokens can access the 

current model when the IP core becomes inactive again. 

On the left side of Figure  4-8, environmental transitions Execution1 and Execution2 

represent the executions of task1 and task2 in the IP core respectively. These two 

transitions may be enabled concurrently, and the random occurrences of these 

transitions represent the different scheduling results generated by the STEP. The 

occurrence of each Execution transition resets the token value in the corresponding 

Rdy place. Assuming only two tasks are embedded in the IP core, the shutdown 

transition is enabled when both tokens in the Rdyi place are ‘0’ and its occurrence 

reflects the shutdown processing in the IP core when none of the tasks are ready for 

execution.  

Environmental transitions new1 and new2 are used to change the token values in their 

corresponding Rdy1/Rdy2 places. The occurrences of these transitions reflect the 

generation of new events in the environment, and the function P() (which is used in 

the top level model) is used to make the generation of tokens in Rdyi place 

stochastically. These environmental transitions/places generate all possible 

combinations of input tokens to and consume output tokens from the current system. 
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The state space report in Appendix VI gives the correctness verification of the current 

model. 

4.3.4 Conclusions and Further Discussion 

In this section, a Power Manager CPN model was built where the A&F policy is used 

to give on-off control to the IP core. An enable token is used for every ready token to 

avoid duplicated counting. A polling accumulation, which is inspired by ring-based 

arbiters, is used in accumulation with a limited number of arbiters. Although only two 

tasks are involved in the current model, the model can be easily extended to more 

realistic cases when tens of tasks are embedded in an IP core. 

In the current model, all tasks are thought to have the same priority since only task 

numbers are accumulated. Realistic tasks always have different priorities since they 

may have different deadline requirements. In this case, their priorities instead of task 

numbers are accumulated in the Power Manager. Therefore, a sleeping IP core can be 

activated by one high priority task or several low priority tasks in different situations. 

Although the priority based A&F policy increases the complexity of the PM circuits, 

it could enable the IP core to have better performance. 

4.4.  The Design of a Task Manager in CPN  

When an IP core completes its wakeup processing, it tries to load a new task from the 

accumulated ones. In this section, we try to specify one segment (Figure  4-10) in the 

top level model which focuses on the scheduling execution. 
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Figure  4-10: The Segment of TM in the Top Level Model 

4.4.1 A Priority Based Round Robin Scheduling Policy 

When more than one task is ready for execution, some scheduling policy is needed for 

task selection. In this section, a Priority Based Round Robin policy works as an 

example scheduling policy when we build the CPN model. 
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   Figure  4-11: The Priority Based Round Robin Policy 

Figure  4-11 is the figure used in the introduction of Priority Based Round Robin 

policy [camp04]. Arrows on the left of the Figure keep a list of all tasks in the IP core 

sorted by priority. A dotted arrow represents an invalid scheduling candidate (the 

corresponding task is not ready for execution) and a solid arrow indicates a valid 

candidate. Scheduling always starts from the highest priority group towards the lowest 



 
 

Chapter 4. Hierarchical CPN Models for a VSB 

priority group, so as to give tasks with a higher priority more opportunity to be loaded 

in the IP core. For tasks in the same priority group, the scheduler uses Round Robin 

policy to choose a new task so as to give all tasks in the same group fair opportunity 

to be executed in the IP core. 

In each priority group, the task which has been loaded into the IP core most recently is 

marked as a last task. In Figure  4-11, the last task in every priority group is pointed by 

the Begin arrow. Polling scheduling starts from the next task to the last task in the 

highest priority group and ends when the first valid task is found. If no valid candidate 

can be found in this group, the scheduling point jumps to the last task in the second 

highest priority group to carry out a similar exploration. When no valid task can be 

found even in the lowest priority group, it means no task is ready for execution, and a 

particular ID number (for example 0 or 255) is sent to the IP core. 

4.4.2 The CPN Model of Scheduling 

A CPN model (Figure  4-12) is built to show the scheduling execution of Priority 

Based Round Robin policy. In Figure  4-12, tokens in places Rdyi (i=1,2,3,4) 

represent the status of the corresponding ready signals. In this example, task1 and 

task2 have the same priority, which is higher than that of task3 and task4. The initial 

tokens in the model indicate only task3 is a valid candidate. Task1 and task3 are set as 

the last task in each group because one ‘1’ token is given to places Last1 and Last3 

each while the tokens in places Last2 and Last4 are ‘0’. Places Me, MeN and Mei 

(i=1,2,3,4) are used to hold the polling token for round robin scheduling in each group. 

A new scheduling is enabled by a ‘1’ token in the Me place, and simulation results in 
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Figure  4-13 show the scheduling procedure (a dotted rectangle in each figure is used 

to indicate the enabled transition). 

 
Figure  4-12: The CPN Model for Scheduling 

The token in the place Me first enables the scheduling in the high priority group. 

When task1 serves as the last task in this group, the transition PollStart1 is enabled. 

The occurrence of this transition adds one token to the Me2 place because task2 is the 

first task for checking. With the initial token ‘0’ in the Rdy2 place (indicating task2 is 

not a valid candidate), the pass2 transition is enabled (Figure  4-13(a)) and the 

occurrence of this transition passes the polling token to the place Me1. 

As the polling token finds the last task in the group (task1) is not a valid candidate, it 

means no valid candidate can be found in this group. The scheduling moves on to the 

next priority group. Therefore, the NextG1 instead of pass1 transition is enabled by 

the token in the Me1 place (Figure  4-13(b)).  
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The occurrence of the NextG1 transition generates one token to the MeN place which 

enables transition PollStart3 because task3 is the last task in the group (Figure 

 4-13(c)). After the occurrence of the PollStart3 transition, the polling token is moved 

to the Me4 place to check the status of task4. With one ‘0’ token in the Rdy4 place, 

the transition pass4 is enabled (Figure  4-13(d)) and one token is added to the Me3 

place after this transition’s occurrence. Since the token value in the Rdy3 place is ‘1’, 

the transition Found3 is enabled which indicates one valid candidate task is found 

(Figure  4-13(e)). 
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Figure  4-13: Simulation Steps in the scheduling 

The token in the place Ntask is used to save the scheduling result. As soon as a token 

is generated in the Taski (i=1,2,3,4) place, the corresponding NTaski (i=1,2,3,4) 

transition is enabled (Figure  4-13(f)). Its occurrence updates the token value in the 
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NTask place with the corresponding ID number of the valid candidate, and move a ‘0’ 

token to the Me place, which indicates the completion of scheduling (Figure  4-13(g)). 

Given any combination of token values in the four Rdyi places, the scheduling flow is 

similar. Next, we discuss the scheduling flow when all tokens in the Rdyi places are 

‘0’. The first several steps are similar to the case introduced in Figure  4-13(a) to (d). 

Since the token ‘0’ in Rdy3 place indicates task3 is not a valid candidate task, the 

NextG3 transition is enabled (the dotted rectangle in Figure  4-14) because no 

candidate task can be found in this priority group. Without any lower priority group 

available, it means no task is ready to be executed in the IP core. Therefore, the 

occurrence of NextG3 (or NextG4 when task4 is the last task in the group) resets the 

token value in NTask place by ‘0’ to indicate the IP core that no more new tasks can 

be loaded.  

 
Figure  4-14: No Ready Tasks in the Scheduling 

In Figure  4-14, transitions and places with the same index number (for example, 

transitions PollStart1, Found1 share the same index 1) can be seen as a basic unit of 

the model (the dotted cycle in Figure  4-14). Therefore, the current model can be easily 
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extended to represent a scheduler when more tasks are involved, or when tasks are 

divided into more groups. 

4.4.3 The CPN Model of the Task Manager  

Although the transitions and places in Figure  4-12 can successfully carry out a priority 

based round robin scheduling policy, more places and transitions are needed to 

guarantee the safety and correctness of scheduling. Figure  4-15 gives one example 

model of the Task Manager in the STEP and its test environment when only two tasks 

(and one priority group) is used in the scheduling. 

 
Figure  4-15: The Full CPN model for the Scheduling 

The environmental place within the dotted circle is named LoadEn whose token ‘1’ 

represents the task loading a request from the IP core. A ‘1’ token in the LoadEn place 

enables the Load transition in the right side of the Figure and the occurrence of the 
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transition indicates the task loading execution in the IP core. One token whose value 

is the ID number of the new task is added to the Ltask (means Loaded task) place in 

consequence.  

Tokens in the Rdy1/Rdy2 places indicate whether task1/task2 is a valid candidate task 

or not. As external events may arrive at the current VSB at any time, the two tokens in 

the Rdy1 and Rdy2 places may become ‘1’ simultaneously when the Load transition 

is enabled. In this case, new scheduling and task loading execution are carried out 

simultaneously. Suppose the scheduling updates the token value in the Ntask place 

from ‘1’ to ‘2’. Whether task1 or task2 is loaded into the IP core depends on whether 

the scheduling transitions or the loading transition occurs first. This uncertainty 

confuses the IP core and may cause serious consequence. A safer design enables 

scheduling only when no load request is available. In Figure  4-15, transitions Access1 

and Access2 can be enabled only when the token value in the LoadEn place is ‘0’. 

Therefore, when the token in the LoadEn place becomes ‘1’, no further token change 

in Rdy1/Rdy2 place can influence the token value in the LTask place. Another 

enabling precondition of transitions access1 and access2 is the existence of a ‘0’ token 

in the STEPSleep place, which means that scheduling is enabled only when the IP 

core is active. 

The tokens held in places Irdy1 and Irdy2 indicate the status of the ready signals for 

the usage of scheduling. Variables irdy1, irdy2, rdy1 and rdy2 are used to indicate the 

token value in the place with the same name respectively. With the guard 

[irdy1<>rdy1] and [irdy2<>rdy2] in the access1/access2 transitions, scheduling only 

begins when some changes happen to the ready signals. When at least one of these 

transitions occurs, the token value in the Me place is updated to ‘1’. The scheduling 
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executions are modelled by places and transitions within the dotted rectangle which 

has been introduced in the last section in detail. 

According to the model, when more than one ready token is toggled concurrently, 

some competition exists in the occurrence of the Accessi transition and some 

scheduling transition within the dotted rectangle, since the occurrence of a scheduling 

transition consumes the token in the Me place so as to block any further occurrence of 

the access transition until the end of the scheduling. This behaviour of the model 

reflects the competition between the validation of a ready signal and the arrival of the 

round robin polling signal. However, given that no valid LoadEn signal is generated 

from the IP core, different occurrence sequences of these transitions do no influent the 

scheduling result. 

The occurrence of the Load transition not only loads the ID number of the new task 

into the IP core, but also updates the status in the STEP. The task loading enables the 

EH to reset the wait & stim unit in the matrix. In Figure  4-15, the expression of the 

arc from the transition Load to the place Rdy1 is written as “if Ntask=1 then 1`0 else 

1`rdy1”. Therefore, if the token value in the place Ntask is ‘1’ (which means when 

task1 is loaded to the IP core), the token value in the place Rdy1 is reset to ‘0’. 

Otherwise, the token value stays the same as before. Furthermore, any token reset in 

the Rdy1/Rdy2 place enables the Access1/Access2 transition when the IP core starts 

executing the new task, and the token value in the LoadEn place becomes ‘0’. 

Therefore, new scheduling is carried out in parallel with the execution in the IP core, 

and a new task can be prepared in the Ntask place in advance of the next load request 

from the IP core. 
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The occurrence of the Load transition also resets the last task in every priority group if 

it changes. If no task is found to be ready for execution, the occurrence of the Load 

transition resets the last task to its default status (for example, in the current model, 

task2 is the default last task in its group). 

4.4.4 Environmental Set Description 

When one token is added to the Ltask place, the environment transition Start is 

enabled. It indicates that the IP core starts the execution of the new task. Therefore 

one token ‘1’ is given to the place current, which indicates that one task is processing. 

The occurrence of the Start transition gives one ‘0’ token to the LoadEn place, which 

means the task loading procedure is completed. The function P1() (which is the same 

as the P1() function in the EH unit model in Figure  4-6) is used in the arc expression 

from the execution transition to the current place. This function is used to simulate 

the stochastic processing behaviour in the IP core. When the token value in the current 

place becomes ‘0’, the current task’s execution is completed. Therefore the token 

value in the LoadEn place is updated to ‘1’, and a new task is loaded afterwards. If  

the taken value in the Ltask place is ‘0’ which means no more valid task has been 

loaded to the IP core, the Start transition can be seen to indicate the shutdown 

operation in the IP core and the execute transition can be seen to indicate task 

accumulation. Similarly, the complete transition indicates the activation of the IP core 

in this case. 

The environmental transition Env1/Env2 uses the function P() (which has been 

introduced in the top level model) to simulate the generation of a new event which in 

turn validates the corresponding ready signals again. 
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All these environmental transitions/places generate all possible combinations of input 

tokens to and consume output tokens from the current system. The state space report 

in Appendix VII gives the correctness proof of the current model. 

4.5. The Design of an Output Control and Interface in CPN  

In this section, we try to specify the segment in the top level model which takes 

charge of the wakeup/shutdown procedure and the output event control (Figure  4-16).  

As introduced in Chapter 2.1.1, both shutdown and wakeup processing of an IP core 

have cost in time and power. It is possible that some changes are happening in the 

environment during the shutdown or wakeup transitions. For example, some new 

events may arrive at the current VSB during the shutdown processing. If they are 

handled by the EH, their corresponding tasks become ready and generate an activation 

token in the PM part according to Figure  4-8. 

 
Figure  4-16: The Output Control Segment in the Top Level Model 

This token may confuse the IP core whether to continue the shutdown processing, or 

abandon it to carry out the wakeup processing instead. One important job of the 

interface part is to make sure that both shutdown and wakeup transitions in the IP core 

can be carried out without being disturbed by the environment.   
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On the other hand, the Interface part can improve the entire VSB’s performance by 

applying parallel processing in the STEP when the IP core is waking up or shutting 

down. As introduced in Section 4.3 as well as in Section 4.4, the PM part is shut down 

when the IP core is active and the TM part is shut down when the IP core is inactive. 

In this section, we focus on whether they should be active during the wakeup and/or 

shutdown processing. In our design, the PM part is activated as soon as the shutdown 

transition starts (given its result does not disturb the execution of the shutdown 

processing in the IP core). Therefore, events that arrive during the shutdown transition 

are accumulated without delay. Similarly, the TM part is activated as soon as the 

wakeup transition starts, so that task scheduling can be completed before the IP core is 

ready for task processing. When these improvements are considered, the PM as well 

as the TM part cannot use the Sleep token provided by the IP core to control its 

execution. It is because the token in the Sleep token only toggles when the 

wakeup/shutdown transition completes rather than starts. Therefore, a new token is 

required to be generated from the interface to indicate the beginning of the 

corresponding transitions.  

As indicated in the top level model, the output controller generates a new event when 

the execution of the current task is completed. If the new task stimulated by the event 

generated from the output controller locates in the same VSB, the new task becomes 

ready for execution much faster than the case when the new task is located in the 

other VSB. It is because both asynchronous/synchronous transform and data transfer 

between two VSBs are omitted. The CPN Model in this section tries to specify this 

difference. 
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4.5.1 The Model Description 

Figure  4-17 presents the CPN model of the Interface and Output Control part in the 

STEP where only two example tasks are concerned. The declarations of the four token 

colours involved in the figure, BIT, EVENT, TASK and DATA, are the same as those 

given in the EH CPN model in Section 4.2.  

I

II

 
Figure  4-17: The CPN Model of Output Control and Interface 

The Fire transition highlighted by the dotted ellipse has been introduced in the PM 

part in Section 4.3 (the accumulation limit is set to 1 to simplify the current model). 

The occurrence of this transition gives one ‘1’ token to the Activation place. At the 

same time, it also updates the token value in the STEPSleep place to ‘0’. The token in 

this place indicates the beginning of wakeup processing when its value is ‘0’ or 

shutdown processing when its value is ‘1’. Therefore, the token in this place is used in 

the PM model in Figure  4-8. All transitions in the PM part are disabled immediately 

without waiting for the completion of the wakeup processing in the IP core. Similarly, 
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the token in this place is used in the TM model in Figure  4-15 to enable task 

scheduling to be carried out in parallel with the waking up of the IP core. 

The availability of a ‘1’ token in the activation place enables the DoWakeup 

transition and the latter’s occurrence gives a ‘1’ token to the Wu place. The enabling 

of the DoWakeup transition also depends on the token value in the Sleep place. If the 

token in the Sleep place is ‘0’ (which means the IP core is active), the DoWakeup 

transition is not enabled even when the token in the active place is ‘1’. It means no 

wakeup command is issued by the STEP when the IP core is active or shutting down, 

even when enough tasks have been accumulated in the PM part. This design allows an 

IP core to complete its mode switching transitions without being disturbed by the 

environment. 

The occurrence of the Dowakeup transition also generates one token to the LoadEn 

place so that the scheduling result can be loaded to the LTask place. The states and 

transitions within the dotted rectangle I represent the operations in an IP core for 

wakeup, shutdown and task loading. For example, the Waking transition in the upper 

left edge of Figure  4-17 is enabled when a ‘1’ token is available in both Wu and Sleep 

places. Its occurrence reflects the completion of the wakeup transition in the IP core 

and it toggles the token in the Sleep place to ‘0’. A ‘1’ token is also added to the Read 

place, which indicates that the IP core sends a Read signal to its STEP to load the ID 

number of a new task from the LTask place. 

Transitions and states within the dotted rectangle II represent the task executions in 

the IP core. Once the task ID number is loaded into the IP core, the IP core uses the 

number to search for the corresponding codes segment. If task1 is loaded into the IP 
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core, transition Load1 is enabled since one guard [ntask=ID1] is attached to this 

transition.  

The occurrence of this transition turns the token value of the Current place to ‘1’, 

which is used to indicate that task execution starts. The availability of tokens in 

Mtask1 and DIN1 places represents both the codes and the data are ready so that the 

transition Execute1 is enabled. The occurrence of the Execute1 transition reflects the 

completion of task1’s execution in the IP core. Both the result data and ID number of 

the current task are saved afterwards. Therefore, one ‘1’ token is added to the RQ 

place, and one DATA token is added to the DOUT place. The expression in the arc 

from the Execute2 transition to the DOUT place is written as ---- 

substring(data1,0,4)^ “2”, which replaces the last character of the input DATA token 

to “2”, which is the ID number of task2. For example, if the input DATA token is 

“DATA1”, the output DATA token in the DOUT place is “DATA2”. This arc 

expression is used to simulate the data processing in the IP core. The occurrence of 

the Execute1 transition also resets the token value in the Current place as the symbol 

of task completion. The execution of task2 in the IP core is described by transitions of 

Load2 and Execute2, whose enabling and occurrence are similar to their counterparts 

introduced before. 

The token toggle in the Current place activates the output control processing in the 

STEP. One basic job of the output control is task routing, which means to find which 

task is supposed to use the result data and in which VSB the task (called target task 

later) is located. If the target task is not in the current VSB, the current VSB needs to 

use the ACM method to transfer the data to the new VSB and load the ID number of 

the target task into the communication channel to the new VSB. When the target task 
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is in the current VSB, data transfer is either avoided if the IP core can just update the 

start address of the input data for the target task by that of the result data, or it can be 

easily carried out within the same clock domain. In order to represent both cases, in 

the model given in Figure  4-17, the target task for task1 is supposed to be task3, 

which is located in another VSB and that for task2 is task1 which is in the same VSB. 

Now we can continue the description of the CPN model. If the token value in the RQ 

place is ‘1’ (which means the completed task is task1), the transition OutCt1 is 

enabled as soon as the token in the Current place becomes ‘0’. The occurrence of this 

transition adds a TASK ‘3’ token (ID3=3) as well as a “DATA1” DATA token  to the 

OCh3 place, which indicates the signal and data transfer taken place in the 3rd Output 

Channel of the STEP. The occurrence of the environmental transition OBlock is used 

to reflect the execution of task3 in another VSB which in turn generate an event to the 

current VSB in the 3rd Input Channel. Therefore, a new EVENT token is available in 

the Ch3 place.  

If the token value in the RQ place is ‘2’ (which means the execution of task2 is just 

complete), the transition OutCt2 is enabled and its occurrence moves the DATA 

token in the DOUT place to the DIN1 place, which means the result data of task2 is 

just ready for the execution of task1 (as the target task of task2). The token value in 

the Rdy place is increased by 1, which indicates task1 is ready for scheduling. 

Compared with the output control token flow for task1, the output control for task2 

does not involve the occurrence of both OBlock and EH transitions. It means that one 

target task can be quickly ready for execution if it is located in the same VSB as the 

task who generated the input data.  



 
 

Chapter 4. Hierarchical CPN Models for a VSB 

The occurrence of OutCt1/OutCt2 transition adds one token to the Complete place, 

which enables the LoadEn transition in sequence to load a new task. The token toggle 

to ‘0’ in the Current place also enables the Next transition, whose occurrence issues a 

Read token to load the task to the IP core.  

If the value of the new token in the LTask place is ‘0’, it enables the DoShutdown 

transition and the occurrence of this transition turns the token value in the STEPSleep 

place to ‘1’ which means the transitions in the PM part is enabled (and the transitions 

in the TM part is disabled) afterwards. The occurrence of the DoShutdown transition 

also give one token to the Sd place, and the token in this place enables the Shutting 

transition whose occurrence represents the completion of the shut down processing in 

the IP core. A new wakeup command can be issued from the STEP from then on. 

4.5.2 Simulation and State space 

All concurrent execution between the STEP and its IP core can be seen by simulation. 

For example in Figure  4-18, both Shutting and Fire transitions are enabled (All 

enabled transitions are highlighted by dotted rectangles) which indicates the 

concurrent processing between the PM part in the STEP and the IP core. In order not 

to disturb the IP core, different occurrences of the two transitions should achieve the 

same result. If the shutting transition occurs first, the token in the sleep place becomes 

‘1’. The occurrence of the Fire transition afterwards gives one ‘1’ token to the 

activation place which enables the Dowakeup transition. On the other hand, if the Fire 

transition occurs first (Figure  4-18(b)), the ‘1’ token in the activation place cannot 

enable the Dowakeup transition because the token in the sleep place is still ‘0’. The 

latter is only enabled after the occurrence of the shutting transition. The same result 
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achieved from different occurrences indicates the Interface can protect the IP core 

from environmental interruptions when a mode switching is carried on. 

a b  
Figure  4-18: Concurrent Operations in a VSB 

More verification can be achieved from the state space report in Appendix VIII. 

4.5.3 Conclusions and Further Discussion 

In most cases, the function performance in a portable device is decomposed into 

executions of several tasks in different computation components. The Output Control 

part of the STEP is used to connect executions of these tasks in different VSBs to 

fulfil the performed function. The CPN model in this section describes the structure of 

the Output Control (as well as the Interface) part and highlights the different event 

transfer when the target task has different locations. 

The CPN model in this section is still sketchy since this part of STEP is highly 

implementation oriented. For example, a more delicate route-map is needed to easily 

get the location and ID number of the target task when tens or more tasks are 

embedded in an IP core. When task priority instead of task number is used in the 

accumulation in the PM part, the Output Control part also transfers the priority of the 

target task to the new VSB (if the target task is not in the current VSB). All this 
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information should be implied to a lower level CPN model when the implementation 

is specified. 

4.6. Conclusions and Future Work 

In this chapter, a top level VSB model was built in CPN, which highlighted 

concurrent processing among different parts of a VSB. Four second level CPN models 

were also presented, each of which focused on one key part of the STEP. These 

models are used to specify executions in the STEP and avoid unnecessary 

concurrency in the VSB which may do harm to the system performance. Simulation 

and State space tools provided by CPN Tools have been used to prove the correctness 

of these models. 

If a synthesis method is considered, we may continue the design of CPN models at the 

lower levels until BIT is the only colour of all places, and CPN models finally become 

their counterparts in normal PN. One problem of this method is the state explosion, 

since tens of BIT tokens may be needed to represent one EVENT or TASK token 

shown in the top level model. 

Furthermore, all CPN models given in this section involve only the minimum number 

of tasks. Although this can make the model more clear for demonstration purpose, it 

cannot be implemented directly on a real system since each IP core may involve tens 

or more tasks in most cases. When these tasks are modelled in the CPN model of a 

real system, the number of states may be out of the power of CPN state space 

calculation. 
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Therefore, a state space check for a BIT token based CPN model which can directly 

reflect the circuit design is not a practical solution. Instead, we may use the high-level 

CPN models about different parts of the STEP to guide the design of these parts and 

use simulation to partially prove the correctness of our model.  
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Chapter 5 

The Construction of SOCs with VSBs in 

MATLAB 

With CPN models given in Chapter 4, all important concurrency properties of a 

Virtual Self-timed Block have been demonstrated. However, the modelling work is 

not carried out to the lowest level because the lowest level model depends on the 

detail about the IP core that cooperates with the STEP in a VSB. On the other hand, 

the power efficiency of a VSB, which is the main concern of system performance, is 

not being analyzed in CPN models in Chapter 4 since the power property relies on the 

implementation of a VSB for real systems. 

In this chapter, an example implementation of a VSB is designed where some tasks 

embedded in VSBs are designed to carry out data processing in an SOC content. This 

example is used not only to demonstrate the cooperation of VSBs in an SOC, but also 

provides a test bench for the power analysis of a VSB. 

In Chapter 3, the A&F policy has been proven to have great potential to trade latency 

for power. However, the analysis was based on Markov processes assumption. No 

proof has so far been given of whether this policy can still be efficient when the 
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Markov assumption is weakened or not even satisfied. Actually, few users know in 

advance whether their systems follow Markov process, let alone the necessary 

parameters for the power/latency calculation used in Chapter 3. Therefore, the test 

bench designed in this chapter has great usage for the efficiency verification of the 

A&F policy in real implementations. 
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Figure  5-1: The Implementation of Ball Game 

The example implementation used in this chapter is called Ball Game (Figure  5-1). 

Four balls of different size move in a playground with different speeds but identical 

mode. The entire playground has been evenly divided into four parts, called 

playground I, II, III, IV respectively. Four VSBs are employed, and each VSB is used 

to control the ball movement in one playground. Four tasks are in the IP core of every 

VSB whose codes provide the movement control of the corresponding balls. Different 
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codes may be used in the four tasks to provide random or history based movement, 

but they all need to avoid ball collision (two balls are overlapping) in the movement.  

When some ball moves across the border between two playgrounds, an event is 

generated to hand over the control of the ball to another VSB and the parameters of 

the ball is transferred to the VSB by the way of ACM. 

If no balls contain in one playground (like playground III in Figure  5-1), the IP core 

corresponds to the playground is shut down to save power and the playground is 

patched in black colour accordingly. When and how to activate the IP core for task 

processing depends on the DPM policy implemented in the STEP of each VSB. 

We prefer to use MATLAB Simulink rather than CPN Tools to design models for the 

example implementation of ball game. CPN Tools is good for presenting concurrent 

executions, but has limited power to present the execution sequence varied with 

time/sample elapsing. However, the execution property in the time dimension, which 

shows the probability distribution among different operation modes of an IP core, is 

of vital importance for the power analysis. On the other hand, MATLAB Simulink 

provides powerful observation of signal variation in time dimension. 

Secondly, the state space checking provided by CPN Tools can only deal with limited 

number of states. When four VSBs with realistic IP cores are used, the total number of 

states may be too big to be calculated in state space checking. On the other hand, with 

the checking of state space about one VSB in chapter 4, any further state space 

checking with multiple identical VSBs is not needed. Even if some errors happen in 

the connection among VSBs, they can be easily found by the simulation provided by 

MATLAB Simulink. 
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Finally, MATLAB Simulink can provide visual observation of the four VSBs’ 

execution by showing the ball movement on the screen while CPN Tools cannot do 

this. 

Therefore, MATLAB Simulink is chosen to realize the example implementation of a 

ball game in this chapter. The implementation detail is as follows: A 100*100 pixels 

area is used as the entire playground of the ball game. Therefore each VSB controls a 

50*50 pixels area. Four squares with different sizes represent the four balls in the 

game, and five parameters are used to describe one ball’s movement. PosX and PosY 

are the positions of the bottom left edge of the ball on the X and Y axis respectively. 

Width represents the size of the ball and Speed indicates how fast the ball moves 

with each step. History remembers the direction of the ball’s last movement. Four 

numbers (0,1,2,3) are used for the History information, which represent moving left, 

right, up, and down respectively. Table  5-1 gives the initial parameters of all balls in 

our example system. 

Table  5-1: Initial Parameters of Four Balls 

 PosX PosY Width Speed History 

Ball1 84 54 4 4 1 

Ball2 60 80 6 6 2 

Ball3 20 45 8 8 3 

Ball4 43 40 10 10 2 

The position of the upper right edge of a ball is used to calculate if it is crossing the 

border of one playground. For example in Figure  5-1, Ball4 is just crossing from 

playground I to playground II, and VSB II takes control of this ball accordingly. 
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Figure  5-2: Data and Event Communication in the ball game 

In the current version of the ball game, constant values are given to the width and 

speed of each ball and kept in each task program in IP cores. The other three 

parameters, PosX, PosY and History, are updated from time to time. When one task in 

a processor tries to decide the next position of its corresponding ball, it needs to 

consult all balls’ positions no matter whether they are controlled by the same 

processor or not. Therefore a public POOL type ACM [xia02] (Figure  5-2) is used to 

save updated position of each ball for the consultation of possible all processors in the 

SOC. On the other hand, four Channel type ACM [xia02] contain in each VSB for the 

event communication with other VSBs. For each VSB, Channel0 is reserved for 

events sent to the same processor, while the other three Channels are used for event 

communication between processors in different VSBs (Figure  5-2 only describes 

Channels for VSB I, Channels for other VSBs can be built in the similar way). 
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According to the introduction of MATLAB Simulink in Section 2.3, a Simulink 

model can be built either with the construction of basic components provided by the 

Simulink Library, or by writing S-function codes. We construct the STEP of a VSB 

by basic components provided by the Simulink Library while using S-function to 

write task codes embedded in IP cores. This is because hierarchical design of the 

STEP from basic components can provide more observable signals to show the 

properties of different parts of a STEP, and it is more valuable for the real VLSI 

design guidance. On the other hand, an IP core design is not part of our research, we 

care only about functions rather than the circuit detail of an IP core.  

PM

EH

TM

 
Figure  5-3: The Design of a Virtual Self-timed Block in MATLAB 

Since all VSBs in the implementation are identical, Figure  5-3 gives only the 

architecture of VSB I which controls the ball movement in playground I in MATLAB 

Simulink. The five subsystem blocks, PM, EH, TM, Interface and Output Control, are 

the five basic parts of a STEP. The IPCore block contains four tasks, each of which 

controls the moving of one ball. The task programs are written as S-Functions so as to 

integrate with other blocks to give a unified simulation result. In order to reduce wires 
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and connections in the Simulink model, multiple input/output ports are used and the 

number contained with the braces [] indicates the wire indexes integrated by the port. 

For example in Figure  5-3, the first input port Ch1[1:4] represents the four input 

signals from input Channel 1 and the fourth input port DataIn[1:24] represents 24 data 

input signals. 

In the following sections, the structure of the five parts of a STEP as well as the flow 

charts of the task embedded in the corresponding IP core part will be introduced in 

detail. These MATLAB models can be seen as the implementation of the CPN models 

in Chapter 4 and the simulation results in time/sample dimension of different signals 

in each part will be displayed accordingly. 

5.1.  The Design of Event Handler Part in MATLAB 

As four VSBs are used in the system and each VSB’s IP core contains four tasks, the 

Event Handler Part of each VSB is built by 4*4 Wait&Stim nodes altogether (Figure 

 5-4). The first input port Chs[1:4][1:4] is a multiplexed input port, which indicates 

there are four input Event Channels, and each Channel uses one-hot coding to indicate 

the ID number of the driven task. The first three Channels are used to connect with the 

other three VSBs and the last Channel is used as the feedback channel to receive 

events generated from the same VSB. Therefore, the event signals coming from the 

Chs[1:4][1:4] port are decomposed into 16 stim signals to set their corresponding stim 

bit in Nodes 1 to 16. Signals from Wait[1:4] and Reset[1:4] ports set the wait bit or 

reset all Wait&Stim nodes in one column respectively. The operation in each node is 

the realization of the CPN model in Figure  4-6. The subsystem block 4OR models the 
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logic OR gate with four inputs, and signals from the output port Ready[1:4] indicate 

which task is ready for processing. 

Node13

Node5

 
Figure  5-4: The Design of EH Part in MATLAB 

According to the initial positions of the four balls indicated by Figure  5-1, both Ball3 

and Ball4 are in playground I. Therefore the IP core in VSB I is activated and task3 

and task4 are executed to control their corresponding balls to move one step further. 

Based on their initial history parameters, Ball3 moves one step up and Ball4 moves 

one step right. They are out of playground I afterwards. The IP core in VSB I is shut 

down accordingly. Although short, the period presents all executions that may be 

carried in one VSB. Therefore we use simulation provided by the MATLAB Simulink 

to observe the signal variation in different parts during this period. The simulation 

result for the EH part is given in Figure  5-5.  

In Figure  5-5, Wait16 indicates the status of the wait bit of Node 16. Since no task is 

processing in the IP core in the initialize stage, all wait signals keep high (1). The 

initial setting generates two events in the feedback Channel to activate task3 as well 
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as task4. Therefore, Stim16, as the stim bit for Node 16, becomes valid. When both 

the stim and wait bits of Node 16 are set, Ready4 (the 4th output signal in Ready[1:4]) 

becomes valid accordingly (2). After the IP core is fired (which is controlled by the 

A&F part that will be introduced in Section 5.2) and task4 is chosen to be loaded into 

the IP core (which is controlled by the Scheduler part that will be introduced in 

Section 5.3), Reset4, as the 4th signal from input port Reset[1:4] becomes valid. This 

signal clears both stim and wait bits in Node 16 (3) so that Ready4 becomes invalid 

accordingly (4). After the execution of task4 in the IP core, Wait4 becomes valid 

again (5) indicating the corresponding task codes can be loaded into the IP core 

afterwards. 
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Figure  5-5: Simulation Result of the EH 

5.2.  The Design of PM Part in MATLAB 

Figure  5-6 shows the design of the PM Part in a VSB which is the realization of the 

CPN model of the PM in Section 4.3. Each access subsystem block is the realization 

of the corresponding access transition in the CPN model of Figure  4-8. Each Polling 

block is the realization of the corresponding select/pass transitions in Figure  4-8. 
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Figure  5-6: The Design of PM in MATLAB 

The Trigger block in Figure  5-6 is based on the adder and Fire transitions in Figure 

 4-8. Moreover, the weight of each task rather than the number of tasks is accumulated 

in this block according to the suggestion given by the future work in Section 4.3. 

Currently, fixed weight is given to each task and the realization of the trigger block is 

given in Figure  5-7.  

 
Figure  5-7: The Design of the Trigger unit in MATLAB 

If any grant signal from Grants[1:4] becomes valid, the corresponding weight number 

from Weight[1:4] is added to the accumulation data which is kept in the 

Accumulation Memory block. Initially, weight number 5 and 3 are given to task3 and 
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task4 respectively. Given Threshold 6, the accumulation of these two tasks can 

activate the IP core. A fire signal is sent through the output port Fire accordingly. 

The simulation result of the PM part is given in Figure  5-8. The validation of Ready3 

(as the 3rd signal of Ready[1:4]) disables Enable3 (as the enable signal for Ready3) so 

that the corresponding weight can only be added to the accumulation once(1). Irdy3, 

as the output signal of access3 in Figure  5-6, becomes valid accordingly (2). When at 

least one valid ready signal is captured, the polling accumulation, which was 

introduced in Section 4.3, begins. When Token3, as the 2nd input signal for Polling3 

block, becomes valid, it indicates that the polling token arrives to check if Rdy3 is 

valid (3).  
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Figure  5-8: The Simulation Result of the PM Part 

Since Ready3 becomes valid earlier than Token3, the former signal is granted. 

Therefore Grant3, as the 2nd output signal of Polling3 block, becomes valid (4). The 

grant signal enables the corresponding weight for accumulation and Acc, as the 
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accumulation result, increases to 5 (5). After the accumulation in Acc, Irdy3 is 

withdrawn (6) and so is Grant3. The weight of task4 can be added to the Acc 

afterwards in the similar executions. When the Acc value becomes 8, the Fire signal 

becomes valid accordingly (7). When the sleep signal becomes 0, both Enable3 and 

Enable4 becomes valid again to cooperate with further incoming valid ready signals 

(8). 

5.3.  The Design of TM Part in MATLAB 

 
Figure  5-9: The Design of Scheduler in MATLAB 

Figure  5-9 introduces the design of the TM part in MATLAB, which is the realization 

of the CPN model of TM in Section 4.4. Each Access subsystem block is the 

realization of the corresponding Access transition in the CPN model in Figure  4-15. 

Similarly Each Scheduler block is the realization of the corresponding scheduling 

transition group (combined by transitions Foundi, PollStarti, Passi, NextGi i=1,2,3,4) 

in the CPN model of Figure  4-15. Similarly as in Figure  4-15, task1 and task2 have 

higher priority than task3 and task4 in the current model. Task1 and task3 are set as 

the initial last task in each task group. The scheduling result is given in the Found 

output port of each scheduling block. The block named Last in Figure  4-15 is one part 
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of the realization of the Load transition in Figure  4-15, which is used to update the 

information of the last task in each group. The NewTask block is the other part of the 

realization of the Load transition in the corresponding CPN model, which focuses on 

loading the ID number of the new task into the IP core. 

Because of the complexity of the scheduler part, the simulation result is given in 

Figure  5-10 and Figure  5-11 respectively. In Figure  5-10, Ready3 and Ready4 

represent the 3rd and 4th ready signals in Ready[1:4]. When Ready3 becomes valid, 

Found3 (the Found output signal of the 3rd Scheduler block) stays invalid because 

scheduling is forbidden when the IP core is sleeping (1). When the sleep signal 

becomes invalid, both Irdy3 and Irdy4 (as the output signals of the 3rd and 4th Access 

block respectively) signals are enabled by their corresponding ready signals (2). The 

Me2 signal is the input signal for both Scheduler3 and Scheduler4 blocks in their 3rd 

input port. The validation of this signal indicates that neither task1 nor task2 is ready 

for execution. This signal enables Found4 (as the Found output signal in the 4th 

Scheduler Block) since Task3 is initially set as the last task (4). The scheduling result 

is loaded into the address bus and sent to the IP core when the LoadEn signal becomes 

valid (5) and the detail of task loading will be introduced in Figure  5-11. The loading 

of the new task also resets the corresponding ready signal in the EH part (which is 

introduced in section 5.1). When Ready4 becomes invalid, the Irdy4 becomes invalid 

accordingly (6). Therefore Found3 becomes valid since Ready3 is the only valid ready 

signal at this time (7). 
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Figure  5-10: The Simulation Result of Scheduling (1) 

Figure  5-11 focuses on executions in the scheduler part during the task loading 

processing. After the scheduling result is achieved (1), NTask4, as the 4th signal of 

NewTask[1:4], becomes 1 when the LoadEn signal becomes valid (2). The LoadEn 

signal is withdrawn when task4 has been loaded to the IP core. The withdrawal of this 

signal updates the record of the last task in every priority group. In current case, Last4 

becomes valid and Last3 becomes invalid at the same time, because task4 is carried in 

the IP core (3). The withdrawal of LoadEn also triggers the Reset signal to update the 

record in the Event Handler. In the current case, a pulse of Reset4, as the 4th signal of 

Reset[1:4] is generated (4) to clean the Stim&Wait bits in Node 13 to Node 16 of the 

EH part in Figure  5-4. This reset operation makes Ready4 in Figure  5-10 invalid, and 

the change in ready signals triggers another scheduling, which chooses task3 as the 

new candidate for IP core’s execution (5). This task is chosen as the new task to the IP 

core when the next valid LoadEn signal is issued (6). 
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Figure  5-11: The Simulation Result of Scheduling (2) 

5.4.  The Design of Interface in MATLAB 

Figure  5-12 is about the design of Interface part in MATLAB. The explanation of the 

execution in this part can be found in the corresponding CPN model in Figure  4-17 for 

detail. 

The simulation result in this part is given in Figure  5-13. The validation of the Fire 

signal from the PM part sends the wakeup signal to the IP core, given that the IP core 

is sleeping (1). Although the sleep signal from the IP core cannot be toggled because 

the wakeup processing in the IP core just begins, the STEPSleep signal becomes 0 

without delay (2). This signal disables the execution in the PM part and enables 

scheduling in the TM part. Therefore the TM can generate the scheduling result 

before the IP core completes its wakeup processing. A LoadEn signal is issued 

afterwards (3). Tasks, as the 4th row in Figure  5-13, is the output of the 4OR block 
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which is connected with NewTask[1:4]. Therefore, when the signal Tasks is 1, it 

means a non-zero task ID number is loaded in the NewTask[1:4] (4). 

 
Figure  5-12: The Design of Interface Part in MATLAB 

The sleep signal becomes 0 and a Read signal is generated accordingly (5) when the 

wakeup completes. This read signal reads the ID number of the new task chosen from 

the STEP to the IP core. If the IP core starts executing the corresponding task, the 

Current signal becomes valid (6), which withdraws the LoadEn signal (7). The 

following pulses in the Read signal are generated during the execution of the current 

task in the IP core. When the current task is completed, the output control unit, which 

will be introduced later in Figure  5-14, decides which VSB will control the ball 

movement corresponding to the current task. After the decision is made, a complete 

signal is issued, and this signal triggers the issuing of another LoadEn signal (8). 

According to Figure  5-1, both task3 and task4 can only be enabled once in VSB I 

because their corresponding balls move outside of playground I after one step. 

Therefore, the 3rd valid LoadEn signal cannot find any valid task ID number from the 

TM (9). In this case, a Shutdown signal is issued to IP core to start the shutdown 

processing (10). At the same time, the STEPSleep signal becomes 1 to start operations 
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in the PM part and disable operations in the TM part (11). However, the IP core is 

woken up by the fire signal again after the shutdown processing in the IP core is 

completed (12). 
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Figure  5-13: The Simulation Result of the Interface Part 

5.5.  The Design of the Output Control Part in MATLAB 

Figure  5-14 shows the design of the Output Control part in MATLAB. When the 

current new position of one ball is calculated, its parameters are loaded into the data 

bus to be transferred to the ACM (which will be introduced in section 5.6). Therefore, 

the DeMux block is used to derive the PosX and PosY information from the data bus. 

Two comparators are used to calculate which VSB takes charge of the ball whose 

parameters are given on the data bus. When the decision is made, the ID number of 

the ball (also the ID number of the corresponding task) in the Address[1:4] port is sent 

to the corresponding Output Channel (Ochi[1:4], i=0,1,2,3 and Och0[1:4] is the 
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feedback channel). At the same time, a Complete signal is issued to the Interface part 

to enable the next task loading. 

 
Figure  5-14: The Design of OutputControl Part in MATLAB 

Figure  5-15 shows the simulation result of this part. The Enable signal is the signal in 

the first input port of both the Comparator and Comparator1 blocks. EdgeX and 

EdgeY is the X and Y position of the upper right edge of the current ball which is 

calculated in Comparator and Comparator1 blocks. When the Enable signal becomes 

1, the two position parameters are used to decide which VSB controls the current ball 

(1).  
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Figure  5-15: The Simulation Result of the OutControl 
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Och1 in Figure  5-15 is the output signal of block 2And2 in Figure  5-14. The 

validation of this signal indicates that the current task is sent out as an event from 

output channel 1 (2). At the same time, the Complete signal becomes valid (1) to 

enable the Interface part to start another task loading. 

5.6.  The Design of the IP Core Part in MATLAB 

Figure  5-16 shows the design of the IP Core part in MATLAB. Two subsystem blocks 

are contained in this part. One is called OS which takes charge of IP core’s 

wakeup/shutdown according to the commands from the corresponding STEP. It loads 

a new task ID number from the STEP. This part is designed based on the transitions 

and states in the dotted rectangle I of the CPN model in Figure  4-17. The block of 

Tasks is the combination of four embedded tasks which is shown in Figure  5-17, and 

this block design is based on the dotted rectangle area II of the CPN model in Figure 

 4-17.  

 
Figure  5-16: The Design of IP Core in MATLAB 

As discussed before, since we only care about the function of the IP core, five S-

functions are used in this part to realize both the OS block as well as the four tasks 

embedded in this IP core. In Figure  5-17, four blocks Inputi (i=1,2,3,4) create input 

vectors u for each task S-function. Similarly, the four blocks Outputi (i=1,2,3,4) 

derive output vectors y from each task and turn them into signals that can be used in 
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the other parts of the MATLAB model. The four S-Function blocks named as Task i 

(i=1,2,3,4) are the embedded codes for each task. 

 
Figure  5-17: The Design of Task Subsystem Blocks in MATLAB 

5.6.1 The Flow chart of the S-Function of OS 

The S-function code for the OS program for VSB I is given in Appendix IX (The S-

function code for other VSBs is similar). Figure  5-18 provides the flow chart of the 

program. 

Initially, we assume that the IP core is sleeping. Therefore, variables Sleep and Read 

in the output vector are set to 1 and 0 respectively. When the Wakeup signal from the 

input vector becomes 1, the OS starts the wakeup processing. When the wakeup 

processing is completed, the Sleep signal is set to 0 so as to indicate the STEP that the 

IP core is ready for task processing. The Read signal is then set to 1 so as to load a 

new task from the STEP. If the IP core begins executing the new task, the Current 
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signal in the input vector becomes 1, and it sets the Read signal in the output vector to 

0. 

Start

Wakeup=1?

Sleep=1, Read=0

Wakeup processing

Complete?

Sleep=0, Read=1

Current=1?

Y

N

Y

N

N

Read=0

Current=0?

N

Y

Y

Shutdown=1?

Shutdown processing

Complete?

Read=0

N

Y

Y

N

 
Figure  5-18: The Flow Chart of the OS program 

When the Current signal becomes 0, it means that the current task is completed, and 

the Read signal is set to 1 again to read another new task from the STEP. This loop 

may continue several times before the shutdown signal from the input vector is 

captured. In this case, the Read signal is first set to 0 since no new task is read from 

the STEP, and the shutdown processing begins. When the shutdown processing is 

completed, the Sleep signal is reset to 1 and the IP core starts sleeping until it is 

activated again. 

5.6.2 The Flow chart of the S-Function of Task4  

The S-function code for task4 (since all task codes are similar) is given in Appendix X. 

Figure  5-19 shows the flow chart of the code. The program starts when its ID number 

(for task4, [0 0 0 1]) is loaded onto the address bus. The signal Current in the output 

vector is set to 1 so as to tell the OS to withdraw the Read signal. The first step of the 



 
 

Chapter 5. The Construction of SOCs with VSBs in MATLAB 

task execution is to load the parameter data of all four balls from the ACM, which is 

carried out by the function DataLoad in Appendix X. Using the parameters of the 

previous position of Ball4, task4 can calculate the next position of the ball by the 

function NextPosition. This function lets the ball to move one step (the size of the 

step is determined by the speed parameter) in the direction specified by the History 

parameter. 

Start

Current=1, i=0

DataLoad

Loading Complete?

UpdateHistory

N

Y

NextPosition

Collision(4,i)?

i<4?

i=i+1

Y

mod(History+1, 4)

N Show the Ball 

in New Position

Y

N
DataTransfer

Transfer Complete?

Current=0

N

Y

Reset DataBus

End

 

Figure  5-19: The Flow Chart of the Task4 program 

Therefore, if the history parameter loaded from the ACM is used directly in the 

NextPosition function, the new position calculated is totally determined by the current 

position (unless Ball4 is knocked back by one wall of the playground or collides with 

other balls which will be discussed later). The UpdateHistory function (Figure  5-20) 

is used to introduce some degree of nondeterministic to the ball movement.  

0 1Threshold

NHistory=History NHistory=floor(unifrnd(0,4))

s=unifrnd(0,1)  
Figure  5-20: The UpdateHistory Function 
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This function uses the MATLAB command unifrnd to generate a random number 

from 0 to 1 which follows uniform distribution. If the random number is less than 

some Threshold (0≤ Threshold ≤1), the history parameter loaded from the ACM is 

used to calculate a new position for the ball. Otherwise, a random integer is used to 

generate the new ball position.  

A different Threshold value gives different move mode to balls in the game. If only 

one ball contains in the game, the larger the Threshold value is, the more deterministic 

its movement becomes. However, when several balls contain in the game, the 

probability of collisions between different balls (which is introduced later) also 

increases with the rise of the Threshold value. Since a ball collision changes a ball’s 

next movement to a random direction, what direction is chosen by the ball’s 

movement and when the next collision happens are nondeterministic. Therefore when 

multiple balls contain in the game, their movements are nondeterministic no matter 

what Threshold value is given to each ball’s movement. 

The loading of the parameters for Ball4 from the POOL typed memory is used for the 

new position calculation. The loading of parameters of other three balls are used to 

check if the new position calculated by the NextPosition function can have any 

collision with the others. Function Collision in Appendix X takes charge of the 

collision detection and Figure  5-21 indicates the mechanism used by this function. 

The variable Dis_Centres calculate the distance between the two balls’ centre. If 

Width1 and Width2 represent the width of the two balls separately, ball collision 

happens when 22 )
2

21
(2_

WidthWidth
CentresDis

+< . 
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Figure  5-21: The Calculation of Collision 

Therefore in Figure  5-19, when the new position of ball4 is calculated, the program 

checks if it has collision with other three balls in sequence (i in Figure  5-19 represents 

the ball’s ID number). If any collision happens, the program changes the history 

parameter and re-calculates the new position of Ball4 until no collision is found. After 

collision detection, the program can safely show the ball in the new position, and then 

transfer the parameters of Ball4 to the ACM. This data transfer is carried out by the 

DataTransfer function in Appendix X. When the data transfer is completed, the task4 

program resets the Current signal to 0 so as to tell the STEP to do output control, and 

the execution is stopped after the data bus is reset. 

5.7.  A Test Bench of Ball Game 

In our simulation, the time spent for one step movement of a ball without collision is 

set as one time unit. Both wakeup and shutdown executions have been adjusted so that 

their latency cost is one time unit as well. To simplify the analysis, we assume that the 

power dissipation for task processing is one unit and that for wakeup and shutdown is 

1.5 units. Because wire latency cannot be reflected by MATLAB Simulink, the 

latency cost of a STEP model cannot be compared with that of its IP core model. 

Therefore, the benchmark achieved in this section regards the STEP as cost free in 

both power and latency.  
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With only four VSBs in the example SOC, events incoming to every VSB cannot be 

taken as an ideal exponential distribution. With only four tasks embedded in every IP 

core, the execution in every IP core cannot be taken as an ideal exponential 

distribution either. Therefore the example SOC test bench is used to analyze the 

power efficiency achieved by the A&F policy in a weak Markovian environment. 

Four different DPM policies were used to control the four VSBs in different tests. The 

first one is the greedy policy which means that the threshold in the A&F part in Figure 

 5-7 is set to 1, therefore any ball incoming to a black playground activates the 

corresponding IP core. 

The A&F policy is used in our second simulation. As the priorities of the four balls 

have been set as 1, 2, 3, 5 respectively, we set 5 as the threshold in every A&F part of 

STEP. This means that the incoming of ball4 only or several other balls to a black 

playground can activate a sleeping IP core. 

The timeout policy serves as the third DPM policy in our test where we set the 

timeout threshold to 5 and 10 time units in two different simulations.  

The prediction policy is the fourth DPM policy that is implemented. In Section 2.1.1, 

a TBE time is defined as the minimum time spent in sleeping to compensate for the 

wakeup and shutdown overhead. In our case, the TBE is 3 time units according to 

Equation  2-3. Furthermore, the implementation of the prediction policy needs to 

predict the length of next idle period according to Equation  2-4. A linear regression 

method is used in our test for idle period prediction (Equation  5-1). 
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321

_ *2.0*3.0*5.0 −−− ++= n

idle

n

idle

n

idle

n

predidle TTTT  Equation  5-1 

The prediction of the next (nth) idle period depends on the last three idle periods with 

reliability of 0.5, 0.3 and 0.2 respectively. For the implementation of the Timeout or 

Prediction policy, a subsystem block of state flow is used instead of the A&F part in a 

STEP. 

To make our test have a wide representation of real systems, we vary the threshold in 

Figure  5-20 from 0 to 1 in 11 independent simulations for every DPM policy’s 

implementation. The change of this threshold from 0 to 1 indicates the variation of 

ball movements from pure random to mostly history based. 

Figure  5-22 presents the average power dissipation of one IP core for various ball 

movements when different DPM policies are used. The Timeout1 in the legend 

indicates the case when Timeout parameter τ is set to 5, and Timeout2 is the case 

when τ is set to 10. From this figure, it is clear that the A&F policy is more power 

efficiency than the other three policies, no matter what movement the balls take. 
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Figure  5-22: Power Analysis of Test Bench 

Figure  5-23 shows the latency analysis of the test bench when the A&F policy is used. 

If four tasks are ready in one IP core, 2 time units are needed by one task for 

scheduling before execution in average, and 1 time unit is needed for execution at 

least (suppose no collision happens). Therefore we set the deadline (DL) for every 

task’s execution as 6 time units in our first simulation. It can be seen front the figure 

that the A&F policy causes no more than 2.5% deadline violations on average. In 

most cases, this latency is acceptable. In our second simulation, the deadline is set to 8 

time units to present the case when the deadline requirement is less strict. It can be 

seen that deadline violations become less accordingly. 

As different priorities have been given to the four tasks, these tasks have a different 

latency performance. Figure  5-24 presents the different latency performance of the 

four tasks when the deadline is set to 6. It can be seen that task4, who has the highest 
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priority, has extremely low deadline violation cases. It is because no latency cost is 

paid in task accumulation. 
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Figure  5-23: Latency Analysis of Test Bench 

According to Figure  5-24, task2 and task3 have more frequent deadline violations 

than task1, although they have a higher priority than the latter. It is mainly caused by 

the parameter settings of these balls. According to Table  5-1, ball2 and ball3 have a 

higher speed than ball1, which means ball2 or ball3 moves more frequently across 

different playgrounds than ball1. When ball2 or ball3 moves to a new playground 

whose corresponding IP core is sleeping, it needs another balls’ arrival to activate the 

IP core and much latency is involved during task accumulation. On the other hand, 

ball1, which has small size and low speed, always moves within one playground. 

Therefore this ball pays less cost in accumulation latency than ball2 or ball3.  
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Figure  5-24: Latency Analysis for Test Bench (Continue) 

5.8. Conclusions 

This chapter presents an example SOC which is constructed from four VSBs in 

MATLAB Simulink. All parts of a STEP that are modelled by CPN models in 

Chapter 4 have been built by basic components in the Simulink Library. An example 

IP core with four embedded tasks is designed in the Simulink S-function. The 

example SOC is used to carry out a test bench named as a ball game in MATLAB 

simulation, and the simulation result achieved from the test bench not only proves the 

correctness of executions in the VSB based SOC, but also indicates the high energy 

efficiency of the A&F policy even in a weak Markovian environment. 



 

184 

 

 

Chapter 6 

Conclusions and Future Work 

6. Conclusions and Future Work 

In recent years, IP cores have been widely used in SOC design under the GALS 

architecture. Asynchronous wrappers and ACMs are used to provide asynchronous 

communication for IP cores belonging to different time domains. When power instead 

of throughput becomes the main bottleneck of the system performance, various low 

power technologies in gate and transistor levels in hardware design and event driven 

programmes in software design help IP cores to reduce their power dissipation. 

However, no low power consideration so far has been provided in the GALS 

architecture so as to optimize system performance (mainly in power dissipation) in a 

SOC scheme. In this thesis, an asynchronous coprocessor named as Self-Timed Event 

Processor (STEP) is modelled and designed, which provides event handling, power 

control, task scheduling as well as asynchronous communication for each IP core in 

an SOC with low overheads. The combination of one IP core and its STEP forms a 

virtual self-timed block (VSB) since it works as a self-timed domain in the 

asynchronous environment. 



 
 

Chapter 6. Conclusion and Future Work 

As the demonstration of the motivation validity for such design, stochastic models in 

Chapter 3 were used for the power-latency analysis of a virtual self-timed block when 

different DPM policies have been implemented. Not only various modes provided by 

an IP core, but also mode switching transitions have been modelled in our stochastic 

(mainly Markov) models. A stochastic DPM policy named as Accumulation & Fire 

(A&F) is verified to be promising in trading latency for power, and this policy has 

relatively easy hardware implementation. 

In Chapter 4, hierarchical CPN models were built to demonstrate and analyze a 

general architecture of a STEP, following some basic functional specifications. 

Concurrent processing between different components of a STEP as well as that 

between a STEP and its IP core were highlighted in all CPN models, and simulation 

and state space checking were used to correct possible design errors in our design. 

Chapter 5 introduced an example SOC which is built by four VSBs in MATLAB 

Simulink. The construction of all these VSBs follows the specification given in the 

previous CPN models. A test bench named as ball game is running in the example 

SOC and simulation results show the energy efficiency of our design. 

Further study can be done in different aspects in the future. Since all executions in a 

portable device rely on the energy stored in an on board battery, we prefer to combine 

our stochastic models presented in this thesis with that for battery given in [luci08], so 

as to analyze the optimized performance of an IP core (as well as a SOC) when the 

nonlinear power consumption in the battery is taken into consideration. 

Secondly, current STEP model only provides on-off power control to its IP core. In 

the future, new CPN models of a STEP will be built to provide more delicate control 
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to use various operation modes provided by advanced IP cores to further optimize 

system performance. 

Finally, current STEP model needs to be implemented into VLSI design. In this case, 

we can first test the power and latency of the STEP in real case, so as to prove the 

A&F policy has very low overheads. Furthermore, several real IP cores can be used to 

cooperate with our STEP to analyze the power efficiency of the A&F policy. The 

construction of SOC with VSBs will be carried afterwards. 
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Appendix 

Appendix I: Analytical Solution Derivation for the Greedy Policy in 

an On-Off DPM System 

In this section, we use the probability of state 1 in Figure  3-1 (Q1) to represent the 

probability of other states. 

The probabilities of shutdown states 

If Qsd0 is the probability of shutdown state sd0, the relationship between Q1 and Qsd0 is 

shown in Equation a-1. 

01 )( sdQQ γλµ +=  Equation a-1 

Therefore, we can use Q1 to represent Qsd0 in Equation a-2. 

10 QQsd γλ
µ
+

=  Equation a-2 

Qsd1 can also be represented by Q1 with the help of Qsd0 (Equation a-3). 
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=

+
=  Equation a-3 

We can carry on the derivation for Qsd2, Qsd3 and so on. The general expression for the 

probability of shutdown states Qsd(n) (n=0,1,2,…) is given in Equation  3-2 or Equation 

a-4. 
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=  Equation  3-2 or Equation a-4 
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If Ssd is the sum of the probabilities of all shutdown states, we can derive 
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The probabilities of inactive states 

According to Figure  3-1, only one state 0* belongs to inactive state. With the help of 

Qsd0, we can represent Q0* by Q1 in Equation  3-13 or Equation a-6. 
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==  Equation  3-13 or Equation a-6 

The probabilities of wakeup states 

If Qwu1 is the probability of wakeup state wu1, the relationship among Qwu1, Qsd1 and 

Q0* is shown in Equation a-7. 

1*01 )( wusd QQQ δλλγ +=+  Equation a-7 

Therefore, we can derive 

*011 QQQ sdwu δλ
λ

δλ
γ

+
+

+
=  Equation a-8 

Similarly, we have 
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Therefore, the general expression for the probability of wakeup state Qwu(n) (n>0) is 

given in Equation  3-14 or Equation a-11. 
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Equation  3-14 or Equation a-11 

If Swu is the sum of the probabilities of all wakeup states, the calculation of Swu can be 

carried out in the following steps: 

First of all, we define 
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X2 can be easily calculated in Equation a-15. 
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In Equation a-12, it can be seen that all components in X1 are the functions of n and k. 

For example, when n=1 and k=0, we have our first component 1. When n=2, k=0, the 

second component is 
γλ

λ
+

, and when n=2, k=1, we have 
δλ

λ
+

.  

For better understanding the relationship of all components in X1 so as to calculate the 

sum of the probability of all wakeup states, we list all components in X1 in a matrix 

way. The value for the (n, k) component of X1 is given in the (n, k+1) unit of the 

matrix. 
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If Y1 is the sum of the first column of the X1 matrix (which is highlighted by the grey 

shade), the result is: 
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Similarly, Y2 as the sum of the second column of the matrix, the result is: 
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The sums of the rest columns like Y3, Y4 and so on share the similar form as Equation 

a-17. Now, we can derive X1 by adding all the column value together (Equation a-18). 
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Equation a-18 

Swu can be calculated by integrating Equation a-15 and Equation a-18 into Equation 

a-14, and the final result is given below. 

1QSwu δ
µ=  Equation  3-18 or Equation a-19 

The probabilities of active states 
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If Qn (n>0) is the probability of active state n, Qn can be represented by the 

probabilities of neighbour states Qn-1 and Qn+1 and the connected wakeup state Qwu(n) 

(Equation a-20 or Equation a-21). 

112 )( QQQ wu µλδµ +=+  Equation a-20 

nnwunn QQQQ )()(11 λµδµλ +=++ +−  (n>1) Equation a-21 

The general expression for the probability of active state n is given in Equation a-22 

accordingly. 
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 Equation  3-15 or Equation a-22 

In order to calculate Sa, as the sum of the probabilities of all active states, we use the 

similar way as the derivation of Swu. First we define X1 and X2 in the following 

equations. 
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Therefore, we have  
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We rewrite X1 as a matrix according to n, k: 
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Suppose T is the total number of active states, therefore the sum of the first column is 

T and the sum of the second column is
µ
λ

)1( −T . X1, as the sum of the matrix becomes: 

...))(2()1( 2
1 +−+−+=

µ
λ

µ
λ

TTTX  Equation a-26 

When X1 is multiplied by
µ
λ
, we have 
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When we subtract Equation a-27 by Equation a-26, we have 
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Next, we rewrite X2 as a matrix according to n, k: 

X2= 
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If the total number of all active states is T, then the rank of X2 should be T-1 because 

the expression of Q1 does not have any Qwu(n) component. Now, we first calculate the 

sum of the first column of the X2 matrix. 
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Similarly as the calculation of X1, we multiply Y1 by µ
λ
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The value of Y1 can be achieved by subtracting Equation a-30 by Equation a-31. 
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The sum of the following columns can be computed using the similar steps as above. 

For example, the expression for Y2 and Y3 are given in Equation a-33 and Equation 

a-34 respectively. 
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−=  Equation a-34 

Now, we can use Yj (j=1,2,3,…) to represent X2 in Equation a-35. 
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 Equation a-35 

      ...)(
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...])2()1[( 21221 ++
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= wuwuwuwu QQQTQT
λµ

λµ
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µ
 

If we define 

...)2()1( 211 +−+−= wuwu QTQTZ  Equation a-36 

And 

...3212 +++= wuwuwu QQQZ  Equation a-37 

X2 in Equation a-35 can be represented by the combination of Z1 and Z2 (Equation 

a-38). 
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2212
)(
ZZX

λµ
λµ

λµ
µ

−
−

−
=  Equation a-38 

Z2, as the sum of the probabilities of all wakeup states, has been calculated in 

Equation a-19. Equation a-11gives the general expression of all wakeup states, and we 

integrate this equation to Equation a-36, so we have  

+
+

−= 12 )1( sdQTX
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                                                                     *0)1( QT
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γ
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−  

         +
++
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++
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γ
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λ
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γ
                *0)2( QT
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−  

         +
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− 11

2 )3()()3( sdsd QTQT
δλ

λ
γλ

λ
δλ

γ
γλ

λ
δλ

γ
….. 

It can be seen that components 1)1( sdQT
δλ

γ
+

− , 1)2( sdQT
γλ

λ
δλ

γ
++

−  and so on 

behave like a number serial, and components 1)2( sdQT
δλ

λ
δλ

γ
++

− , 

1)3( sdQT
δλ

λ
γλ

λ
δλ

γ
+++

− behave like another serial. In order to emphasize all 

number serials in the calculation, we rewrite X2 in a matrix way (all plus (+) symbols 

are omitted): 
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Similarly as the calculation of Z1 matrix, we do the calculation according to the 

columns. If Zc1 is the sum of the first column of Z1, we have: 

1
2

1 ...]))(3()2()1[( sdc QTTTZ +
+

−+
+

−+−
+

=
γλ

λ
γλ

λ
δλ

γ
 Equation a-39 

The serial of Zc1 is similar to the serial of X1 in Equation a-26, and the serial of Y1 in 

Equation a-31, and we can use the similar method to get the solution. 
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γλ
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+−+−=  Equation a-40 

The sum of the following columns (Zc2, Zc3 and so on) can be calculated in the similar 

steps. Therefore, we have: 
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1

2
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            *0
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δ
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Equation a-41 

If we use the Zc(i) in Equation a-41 to represent Z2, we have: 

)(212 ... nccc ZZZZ +++=   Equation a-42 
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Using Equation a-3 and Equation a-6, we can use Q1 instead of Qsd1 and Q0* to 

represent Z2. 

1

2

2 ]
)(

)1[( QTZ
γγλ

λ
δ
λ

δ
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+
−−−=  Equation a-43 

When we integrate Equation a-19  and Equation a-43 into Equation a-38, we have 
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=   Equation a-44 
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=  

When we integrate Equation a-29 and Equation a-44 into Equation a-25, we finally 

achieve the equation for the Sa. 
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δ
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+
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−
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∞

=
 Equation  3-19 or Equation a-45 

Now, we have used Q1 to represent the probabilities of all other states. If Q1 is known, 

we can derive the probabilities of other states using the equations before. When we set 

the total probability of all states to 1 (Si + Sa + Swu + Ssd =1), we can derive the value 

of Q1. 
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γγλ
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−
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=Q  
Equation  3-20 or Equation a-46 
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Appendix II: Analytical Solution Derivation for the A&F Policy in an 

On-Off DPM System 

In this section, we use Q1 (the probability of (Active) state 1 in Figure  3-8) to 

represent the probability of other states. 

The probabilities of shutdown states 

The relationship between the shutdown states Qsd(n) and Q1 in the A&F policy keeps 

the same as its greedy counterpart. Therefore, we have: 

1)( )( QQ n
nsd γλ

λ
γλ

µ
++

=  Equation  3-2 or Equation a-4 

1QSsd γ
µ=  Equation  3-16 or Equation a-5 

The probabilities of inactive states 

The relationship between Q1 and Q0 is given in Equation  3-13 or Equation a-6. 

1*0 QQ
γλ

µ
λ
γ

+
=  Equation  3-13 or Equation a-6 

The probabilities of the rest inactive states Qn* can be expressed by the probability of 

its left neighbour Q(n-1)* and that of the corresponding shutdown state Qsd(n) in. 

)(*)1(* nsdnn QQQ γλλ += −  (1<n<N) Equation a-47 

When we integrate Equation  3-2 or Equation a-4 and Equation a-6 into Equation a-47, 

we can derive the general expression for the inactive states. 

1

1

0

0
* ])(1[)( Q

Q
Q n

n

k

ksd
n

+

= +
−=

+
= ∑ γλ

λ
λ
µ

γλ
λ

λ
γ

 (n<N)  

Equation  3-21 or Equation a-48 

The sum of all inactive states (Si) is given in the following equation. 
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1

1

0
* )])(1([ QNQS N

N

n
ni γλ

λ
γ
λ

λ
µ

+
−−=∑=

−

=
  Equation  3-25 or Equation a-49 

When N=1,Equation a-48 and Equation a-49 become their counterpart Equation a-6 

(Because there is only one inactive state, Si=Q0*) in the greedy policy. This 

characteristic can also be found in the following state groups. 

The probabilities of wakeup states 

As explained before, the first wakeup state changes from wu1 in the greedy policy to 

wu(N) in the A&F policy. However, the basic relationship among wakeup states does 

not change. We have: 

)(*)1()( )( NwuNNsd QQQ δλλγ +=+ −    (n=N) Equation a-50 

)()1()( )( nwunwunsd QQQ δλλγ +=+ −    (n>N-1) Equation a-51 

Using the general expressions of shutdown and inactive state groups, we can derive 

the general expression of the wakeup states in Equation a-52. 
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γλ
λ

δλ
γ

 (n>N-1) 

Equation  3-22 or Equation a-52 

The sum of the probabilities of the wakeup state Swu can be derived accordingly. For 

more detailed steps, one can seek the derivation from Equation a-12 to Equation a-19 

in the greedy policy. We simply give the result here. 

1QSwu δ
µ=  Equation  3-18 or Equation a-19 

The probabilities of active states 

The active state group can be divided into two sub-groups. The probabilities of active 

states from 1 to (N-1) are only determined by the probability of their neighbours. It is 
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because the SP is not activated when the accumulation in the TQ is not enough. 

Therefore, we have: 

1
1

)1()( QQ
n

k

k
n ∑=

=

−

µ
λ

       (n≤N) Equation  3-23 or Equation a-53 

For active states from N, their probabilities are not only influenced by the 

probabilities of their neighbour states, but also affected by the probability of the 

connected wakeup state. The relationship between these states is given in Equation 

a-54. 

nnwunn QQQQ )()()1()1( λµδµλ +=++ +−  Equation a-54 

The general expression for these states is given in Equation a-55. 
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 (n>N) Equation  3-24 or Equation a-55 

In order to derive the sum of the probabilities of all active states (Sa), we first define 
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 Equation a-56 
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δ

 Equation a-57 

So we have 

Sa = X1 + X2 Equation a-58 

The calculation of X1 is given in detail in its counterpart of the greedy policy. One can 

seek the derivation from Equation a-25 to Equation a-29 for detail. Here we only give 

the final result (T is the number of all active states under calculation). 
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[ Q
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X
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λµ
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µ
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−
−

=  Equation a-29 

If we rewrite the X2 serial as a matrix by n and k, we have 

X2= 

Qwu(N) 
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)()1( NwuQ
µ
λ+  Qwu(N+1) 

  

)(
2))(1( NwuQ

µ
λ

µ
λ ++  )1()1( ++ NwuQ

µ
λ

 Qwu(N+2) 
 

… … … … 

This matrix is quite similar to its counterpart in the greedy policy, but has quite 

different rank. Starting from wu(N), the rank of X2 matrix shrinks to T-N because the 

calculation of the first N active states do not involve wakeup states. The value of the 

matrix changes accordingly. For example, the sum of the first column becomes 

)(21 ]
)(

)(
[ NwuQ

NT
Y

λµ
λµ

λµ
µ

−
−

−
−=  Equation a-59 

The result of X2 is given in Equation a-60. One can seek the derivation from Equation 

a-32 to Equation a-44 in the greedy policy for detail. 
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 Equation a-60 

The value of Sa is given in Equation a-61. 
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 Equation  3-26 or Equation a-61 
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Appendix III: Analytical Solution Derivation for a DPM System with 

multiple inactive modes 

In this section, the probability of the idle state (Qidle) in Figure  3-15 is used to 

represent the probability of the remaining states. 

The probabilities of shutdown states 

Qsd0, as the probability of state sd0 is only determined by Qidle. Therefore, we have: 

idlesd QQ
γλ

ε
+

=0  Equation a-62 

The probability of the other shutdown states sd(n) is determined by the probability of 

its left neighbour Qsd(n-1). Using the iteration method, we can derive the general 

expression of the shutdown states and the sum of the probabilities (Ssd) in Equation a-

63 and Equation a-64 respectively. 

idle
n

nsd QQ )()( γλ
λ

γλ
ε

++
=  Equation  3-27 or Equation a-63 

∑ ==
∞

=0
)(

n
idlensdsd QPS

γ
ε

 Equation  3-33 or Equation a-64 

The two equations are similar to their counterparts in the greedy or A&F polices of 

the on-off DPM system, with the change of µ to ε. 

The probability of sleep states 

With more than one inactive modes involved in the DPM system, states 0* to (N-1)* 

cannot be called as inactive states as in the on-off DPM system. We rename these 

states as sleep states because the SP is in the sleep mode when it is in any of these 

states. 
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In the current case, the relationship between Qsd0 and the probability of the sleep 

states are the same as that in the on-off DPM system when either the greedy or the 

A&F policy is implemented. Therefore, the general expressions for the probability of 

sleep states and the sum of the probabilities (Si) are given inEquation  3-28 or Equation 

a-65 and Equation  3-34 or Equation a-66 respectively. 
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    (n≤N) Equation  3-28 or Equation a-65 
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QS ]})(1[{
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λ

γ
ε

λ
ε

+
−−==∑

=

 Equation  3-34 or Equation a-66 

The probability of wakeup states 

Similar as the sleep states, the relationship between the probability of wakeup states 

and shutdown/sleep states are the same as that in the on-off DPM system when either 

the greedy or the A&F policy is implemented. Therefore, the general expressions for 

the probability of wakeup states and the sum of the probabilities (Swu) are given in 

Equation  3-24 or Equation a-55 andEquation  3-35 or Equation a-67 respectively. The 

detail of Swu calculation can be found in the derivation from Equation a-12 toEquation 

 3-18 or Equation a-19 in Section 3.2.1. 
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 Equation  3-24 or 

Equation a-55 

idlewu QS
δ
ε=  Equation  3-35 or Equation a-67 

The probability of turn-off states 

The derivation of the analytical solution of the turn-off states is similar to the 

derivation of the solution of shutdown states. The probability of state toff0 (Qtoff0) is 

only determined by Qidle (Equation a-68). 



 
 

Appendix 

idletoff QQ
α

ελ +=0  Equation a-68 

The probability of turn-off state toff(n) is determined by its left neighbor toff(n-1). 

Using the iteration method, we can derive the general expression of the turn-off states 

and the sum of the probabilities (Stoff) inEquation  3-29 or Equation a-69 and Equation 

 3-23 or Equation a-70 respectively. 

idle
n

ntoff QQ )()( αλ
λ

α
ελ

+
+=  Equation  3-29 or Equation a-69 

idletoff QS
2

))((

α
αλελ ++=  Equation  3-23 or Equation a-70 

The probabilities of turn-on states 

The probability of state ton(n) is determined by its left neighbor ton(n-1) and the 

corresponding turn-off state toff(n). Therefore, we have: 

11 toffidleton QQQ
βλ

α
βλ

λ
+

+
+

=  Equation a-71 

)()1()( ntoffntonnton QQQ
βλ

α
βλ

λ
+

+
+

= −  Equation a-72 

Using the iteration method, we can derive the general expression of the turn-on states 
and the sum of the probabilities (Ston) in Equationa-73  and Equation a-74 respectively. 

The calculation of Ston can be referred to the calculation of Swu in the greedy policy of 

the on-off DPM system for detail. 
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Equation  3-30  

or Equation a-73 

idleton QS
α

εαλ
β
λ ++=                                               Equation  3-37 or Equation a-74 

The probabilities of active states 

As shown in Figure  3-15, the probabilities of active state 1 to N-1 are influenced by 

the probability of their neighbour active states and that of the corresponding turn-on 

states. Therefore, we have  
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01 toffQQ
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αλ +=  Equation a-75 

)1()1()1( −− −+= ntonnn QQQ
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 Equation a-76 

Using the iteration, the general expression of Qn (n≤N) is given in Equation a-77. 
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 (n≤N) Equation  3-31 or Equation a-77 

For n>N, Qn  is also affected by Qwu(n), therefore we have: 
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 Equation  3-32 or Equation a-78 

In order to calculate Sa, we first regroup all components according to Q1, Qton(n) and 

Qwu(n). Therefore, we have: 

∑ ∑=
∞

=

−

=1

1

0
11 )(

n

n

k

kQX
µ
λ

 Equation a-79 
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 Equation a-81 

Sa = X1 + X2 + X3 Equation a-82 

Suppose the number of the active states under calculation in Equation a-82 is T, the 

value of X1 can be easily calculated in Equation a-83. 

121 ]
)(

[ Q
T

X
λµ

λµ
λµ

µ
−

−
−

=  Equation a-83 

The calculation of X2 and X3 can refer to the calculation of X2 in Equation a-30 to 

Equation a-44 in Section 3.2.1. Now we simply give the results here. 
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When we integrate Equation a-83, Equation a-84 and Equation a-85 into Equation 

a-82, we can achieve the value of Sa in Equation  3-38 or Equation a-86. 
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Appendix IV: Analytical Solution Derivation for an DPM System 

with Multiple Active Modes 

When (Active) state 1 is chosen as the delegate state, we use Q1 to represent the 

probability of the rest states. The derivation of the analytical solution for the 

shutdown, wakeup and inactive states are similar to the derivation in Appendix I and 

the only change is to use µL to replace µ. 

The probabilities of active states 

In this section, we try to derive the probabilities of active states in Figure  3-20. 

For active states from 1 to H-1, Equation  3-42 or Equation a-87 gives the general 

expression for the probabilities of these states. 
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(n<H) Equation  3-42 or Equation a-87 

The sum of these states (X1) can be achieved in Equation a-88. 
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 Equation a-88 

QH, as the probability of the state H, can be represented by QH-1 and QH-2 (Equation 

 3-43 or Equation a-89). 
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 Equation  3-43 or Equation a-89 

For active states from H+1 to N, we can use the combination of QH and QH-1 to 

represent their probabilities.  
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Equation  3-44 or Equation a-90 
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For the rest active states, their probabilities can be expressed by the combination of 

QH, QH-1 and the corresponding wakeup states. 
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 Equation  3-45 or Equation a-91 

In order to derive the analytical solution of Sa, we reconstruct the calculation 

components in the following equations. 

∑ ∑=
∞

=

−

=Hn

Hn

k
H

k

H

QX
0

2 )(
µ
λ

 Equation a-92 

∑ ∑−=
∞

+=

−−

=
−

1

1

0
13 )(

Hn

Hn

k
H

k

HH

QX
µ
λ

µ
λ

 Equation a-93 

∑ ∑ ∑−=
∞

=

−

=

−

=Nn

Nn

k

Nn

ks
kwu

s

HH

QX
0

)(4 )(
µ
λ

µ
δ

 Equation a-94 

Sa = X1 + X2 + X3 + X4 Equation a-95 

Suppose the number of active states whose index is no smaller than H is T and the 

value of X2 and X3 are easily calculated in Equation a-96 and Equation a-97 

respectively. 
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If we integrate Equation a-87 and Equation a-89 into Equation a-96 and Equation a-97, 

we can derive:  

12

1

32 ]
)()(

)(

))((

))(1(

[ Q
HNT

XX
H

L

H

L

LH

H

L

L

λµ
λµ

λµ
µ

λµλµ
µ
λλµ

−
−

−
−++

−−

−
=+

−

 
Equation a-98 

The calculation of X4 can follow the steps shown in Equation a-30 to Equation a-43. 

One thing needs to be paid attention to is the number of states under calculation of X4 

is T-N. The result is given in Equation a-99. 
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When we integrate Equation a-88, Equation a-98 and Equation a-99 into Equation 

a-95, the value of Sa is given in Equation a-100. 
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(λ≠µL)           Equation  3-49 or Equation a-100 

Given H=1 and µL= µH= µ, the Markov model in Figure  3-20 becomes Figure  3-8, 

which stands for an simple on-off DPM system, and the equations for the analytical 

solutions in this section such as Equation 3-49becomes their counterparts like 

Equation  3-26. 

In previous sections, λ<µ serves as the basic requirement about the rate of incoming 

events. Otherwise the SP may never finish the execution of tasks. When we deal with 

DPM systems with multiple active modes, the system may provide a serial execution 

rate µ1, µ2, … µr (suppose r is the number of all active modes, and µ1≤µ2≤ … ≤µr). In 

this case, the requirement of the rate of incoming events becomes λ<µr, and for the 

model in Figure  3-21, we have λ<µH. Given λ→µL, the expression of the analytical 

solution is provided by  or Equation a-101. 
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Appendix V: State Space Report for the Event Handler 

This state space report is about the CPN model of Event Handler in Figure  4-6: 

Statistics 
--------------------------------------------------- ------------------ 
Occurrence Graph   Scc Graph 
    Nodes:  31     Nodes:  6 
    Arcs:   44     Arcs:   5 
    Secs:   0     Secs:   0 
    Status: Full  

 
 Boundedness Properties 
--------------------------------------------------- ------------------ 
  Best Integers Bounds    Upper      Lower 
  Matrix'Channel 1        1          0 
  Matrix'NTask 1          1          1 
  Matrix'Stim 1           1          1 
  Matrix'Wait 1           1          1 
  Matrix'new 1            1          0 
  Matrix'new2 1           1          0 
  Matrix'Rdy 1            1          1 
 
  Best Upper Multi-set Bounds 
  Matrix'Channel 1 1`(1,"DATA1") Matrix'Wait 1       1`0++1`1 
  Matrix'Stim 1       1`0++1`1 Matrix'new 1        1`0++1`1 
  Matrix'new2 1       1`0++1`1 Matrix'Rdy 1        1`0++1`1 
  Matrix'NTask 1      1`1++1`2++1`3++1`4++1`5 

 
  Best Lower Multi-set Bounds 
  Matrix'Channel 1    empty Matrix'Wait 1       emp ty 
  Matrix'Stim 1       empty Matrix'new 1        emp ty 
  Matrix'new2 1       empty Matrix'Rdy 1        emp ty 
  Matrix'NTask 1      empty 

 
 Home Properties 
--------------------------------------------------- ------------------ 
  Home Markings:  None 
 
 Liveness Properties 
--------------------------------------------------- ------------------ 
  Dead Markings:  None 
  Dead Transitions Instances: None 
  Live Transitions Instances: Matrix'env1  
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Appendix VI: State Space Report for the Power Manager 

This state space report is about the CPN model of the Power Manager. 

Statistics 
--------------------------------------------------- ----------------- 
Occurrence Graph Scc Graph 
   Nodes:  58     Nodes:  29 
   Arcs:   104     Arcs:   49 
   Secs:   0     Secs:   0 
   Status: Full  

 
 Boundedness Properties 
--------------------------------------------------- ------------------ 
  Best Integers Bounds    Upper      Lower 
  AF'Cand 1               2          0 
  AF'En1 1                1          1 
  AF'En2 1                1          1 
  AF'Irdy1 1              1          1 
  AF'Irdy2 1              1          1 
  AF'Me 1                 1          0 
  AF'Me1 1                1          0 
  AF'Rdy1 1               1          1 
  AF'Rdy2 1               1          1 
  AF'Sleep 1              1          1 
  AF'Wakeup 1             1          0 
  AF'acc 1                1          1 
  AF'grant1 1             1          0 
  AF'grant2 1             1          0 
 
  Best Upper Multi-set Bounds 
AF'Cand 1           2`1   AF'En1 1            1`0++ 1`1 
AF'En2 1            1`0++1`1   AF'Irdy1 1          1`0++1`1 
AF'Irdy2 1          1`0++1`1   AF'Me 1             1`0++1`1 
AF'Me1 1            1`1   AF'Rdy1 1           1`0++ 1`1 
AF'Rdy2 1           1`0++1`1   AF'Sleep 1          1`0++1`1 
AF'Wakeup 1         1`1   AF'acc 1       1`0++1`1++ 1`2 
AF'grant1 1         1`1   AF'grant2 1         1`1 

 
  Best Lower Multi-set Bounds 
AF'Cand 1           empty AF'En1 1            empty  
AF'En2 1            empty AF'Irdy1 1          empty  
AF'Irdy2 1          empty AF'Me 1             empty  
AF'Me1 1            empty AF'Rdy1 1           empty  
AF'Rdy2 1           empty AF'Sleep 1          empty  
AF'Wakeup 1         empty AF'acc 1            empty  
AF'grant1 1         empty AF'grant2 1         empty  

 
 Home Properties 
--------------------------------------------------- ------------------ 
  Home Markings:  None 
 
 Liveness Properties 
--------------------------------------------------- ------------------ 
  Dead Markings:  None 
  Dead Transitions Instances: None 
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  Live Transitions Instances: AF'new1 AF'new2 

 

According to the Best Integers Bounds in the report, all places other than the Cand 

place contain no more than one token in any cases, which indicates the correct 

operation in this part without any confusion. The availability of multiple tokens in the 

Cand place happens when more than one ready signal become valid simultaneously. 

The upper bound of the token in this place is M (M=2 is the number of tasks in the 

model) means the accumulation of simultaneous validated ready signals has no 

confliction with that of later validated ready signals.  

The Best Upper Multi-set Bound of the acc place indicates the token value in this 

place is no more than N (N=2 is the accumulation limit) which means the activation 

signal is generated without delay when the accumulation limit is achieved. The Best 

Upper Multi-set Bound of the Me place indicates only one polling accumulation is 

carried out each time because it holds at most ‘1’ token. The availability of ‘0’ token 

in the Me place indicates polling accumulation can have a rest when no more ready 

signal becomes valid.  
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Appendix VII: State Space Report for the Task Manager 

This state space report is about the CPN model of the Task Manager 

Statistics 
--------------------------------------------------- ------------------ 
Occurrence Graph Scc Graph 
    Nodes:  873     Nodes:  201 
    Arcs:   2521     Arcs:   468 
    Secs:   1     Secs:   0 
    Status: Full  

   
Boundedness Properties 
--------------------------------------------------- ------------------ 
  Best Integers Bounds    Upper      Lower 
  TM'Irdy1 1              1          1 
  TM'Irdy2 1              1          1 
  TM'Last1 1              1          1 
  TM'Last2 1              1          1 
  TM'LoadEn 1             1          0 
  TM'Ltask 1              1          0 
  TM'Me 1                 1          0 
  TM'Me1 1                1          0 
  TM'Me2 1                1          0 
  TM'NTask 1              1          1 
  TM'Rdy1 1               1          1 
  TM'Rdy2 1               1          1 
  TM'Task1 1              1          0 
  TM'Task2 1              1          0 
  TM'current 1            1          0 
 
  Best Upper Multi-set Bounds 
TM'Irdy1 1          1`0++1`1 TM'Irdy2 1          1` 0++1`1 
TM'Last1 1          1`0++1`1 TM'Last2 1          1` 0++1`1 
TM'LoadEn 1         1`0++1`1 TM'Ltask 1     1`0++1` 1++1`2 
TM'Me 1             1`0++1`1 TM'Me1 1            1` 1 
TM'Me2 1            1`1 TM'NTask 1     1`0++1`1++1` 2 
TM'Rdy1 1           1`0++1`1 TM'Rdy2 1           1` 0++1`1 
TM'Task1 1          1`1 TM'Task2 1          1`1 
TM'current 1        1`0++1`1  

 
  Best Lower Multi-set Bounds 
TM'Irdy1 1          empty   TM'Last1 1          emp ty 
TM'Irdy2 1          empty   TM'Last2 1          emp ty 
TM'LoadEn 1         empty   TM'Ltask 1          emp ty 
TM'Me 1             empty   TM'Me1 1            emp ty 
TM'Me2 1            empty   TM'NTask 1          emp ty 
TM'Rdy1 1           empty   TM'Rdy2 1           emp ty 
TM'Task1 1          empty   TM'Task2 1          emp ty 
TM'current 1        empty  

 
 Home Properties 
--------------------------------------------------- ------------------ 
  Home Markings:  None 
 
 Liveness Properties 
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--------------------------------------------------- ------------------ 
  Dead Markings:  None 
  Dead Transitions Instances: None 
  Live Transitions Instances: TM'execute 1 
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Appendix VIII: State Space Report for Output and Interface  

This state space report is about the CPN model of Output Control and Interface 

Statistics 
--------------------------------------------------- ------------------ 
Occurrence Graph Scc Graph 
    Nodes:  46     Nodes:  1 
    Arcs:   82     Arcs:   0 
    Secs:   0     Secs:   0 
    Status: Full  

   
Boundedness Properties 
--------------------------------------------------- ------------------ 
  Best Integers Bounds    Upper      Lower 
  OutCt'Ch3 1             1          0 
  OutCt'Complete 1        1          0 
  OutCt'Current 1         1          1 
  OutCt'DIN1 1            1          0 
  OutCt'DIN2 1            1          0 
  OutCt'DOUT 1            1          0 
  OutCt'LTask 1           1          0 
  OutCt'Mtask1 1          1          0 
  OutCt'Mtask2 1          1          0 
  OutCt'OCh3 1            1          0 
  OutCt'RQ 1              1          0 
  OutCt'Rdy 1             1          1 
  OutCt'Read 1            1          1 
  OutCt'STEPSleep 1       1          1 
  OutCt'Sd 1              1          0 
  OutCt'SearchEn 1        1          0 
  OutCt'Sleep 1           1          1 
  OutCt'Wu 1              1          0 
  OutCt'activation 1      1          1 
 
  Best Upper Multi-set Bounds  
OutCt'Activation   1 1`1++1`0 OutCt'Ch3 1        1` (2,"DATA1") 
OutCt'Current 1    1`0++1`1 OutCt'DIN1 1       1`"D ATA2" 
OutCt'DIN2 1       1`"DATA1" OutCt'LTask 1      1`0 ++1`1++1`2 
OutCt'DOUT 1       1`"DATA1"++1`"DATA2" 
OutCt'LoadEn 1     1`1 OutCt'Mtask1 1     1`1 
OutCt'Mtask2 1     1`2 OutCt'OCh3 1       1`(3,"DAT A1") 
OutCt'RQ 1         1`1++1`2 OutCt'Rdy 1        1`0+ +1`1++1`2 
OutCt'Sleep 1      1`0++1`1 OutCt'Complete 1   1`1 
OutCt'Read 1       1`0++1`1 OutCt'STEPSleep 1  1`0+ +1`1 
OutCt'Sd 1         1`1 OutCt'Wu 1         1`1 
OutCt'Sleep 1      1`0++1`1  

   
  Best Lower Multi-set Bounds 
OutCt'Activation 1 empty OutCt'Ch3 1        empty 
OutCt'Current 1    empty OutCt'DIN1 1       empty 
OutCt'DIN2 1       empty OutCt'LTask 1      empty 
OutCt'DOUT 1       empty OutCt'Sleep 1      empty 
OutCt'LoadEn 1     empty OutCt'Mtask1 1     empty 
OutCt'Mtask2 1     empty OutCt'OCh3 1       empty 
OutCt'RQ 1         empty OutCt'Rdy 1        empty 
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OutCt'Sleep 1      empty OutCt'Complete 1   empty 
OutCt'Read 1       empty OutCt'STEPSleep 1  empty 
OutCt'Sd 1         empty OutCt'Wu 1         empty 

 
 Home Properties 
--------------------------------------------------- ------------------ 
  Home Markings:  All 
 
 Liveness Properties 
--------------------------------------------------- ------------------ 
  Dead Markings:  None 
  Dead Transitions Instances: None 
  Live Transitions Instances: All 
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Appendix IX: The S-function Code of OS Subsystem 

function [sys,x0,str,ts] = sfundsc1(t,x,u,flag) 
  
switch flag, 
  
  %%%%%%%%% 
  % Initialization  % 
  %%%%%%%%% 
  case 0, 
   [sys,x0,str,ts]=mdlInitializeSizes; 
   
  %%%%%%  
  % Update % 
  %%%%%% 
  case 2,                                                
    sys = mdlUpdate(t,x,u); 
     
  %%%%%% 
  % Output % 
  %%%%%% 
  case 3,                                                
    sys = mdlOutputs(t,x,u);     
  
  %%%%%%% 
  % Terminate% 
  %%%%%%% 
  case 9,                                                
    sys = []; 
  
  otherwise 
    error(['unhandled flag = ',num2str(flag)]); 
end 
  
%end sfundsc1 
  
% 
%========================================================== 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-function. 
%========================================================== 
% 
function [sys,x0,str,ts]=mdlInitializeSizes 
  
sizes = simsizes; 
  
sizes.NumContStates  = 0; 
sizes.NumDiscStates  = 3; % 3 states Sleep, Read and Now to be kept;  
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sizes.NumOutputs      = 2; % 2 output named as Sleep, Read; 
sizes.NumInputs         = 3; % 3 input Wakeup Shutdown and Current; 
sizes.DirFeedthrough = 0; 
sizes.NumSampleTimes = 1; 
  
sys = simsizes(sizes); 
  
%initialization 
x0(1) = 1;    % the initial value of Sleep 
x0(2) = 0;    % the initial value of Read 
x0(3) = -1;   % the initial value of Now 
  
str = []; 
ts  = [0, 0] 
% end mdlInitializeSizes 
  
% 
%========================================================== 
% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step requirements. 
%========================================================== 
% 
%system status 
  
function sys = mdlUpdate(t,x,u) 
  
%name the three inputs from vector u 
Wakeup    = u(1); 
Shutdown = u(2); 
Current     = u(3); 
  
%name the five states from vector x 
Sleep  = x(1); 
Read   = x(2); 
Now    = x(3); 
  
%the size of playboard 
Board  = 100; 
  
%Initial patching the playboard I (50*50) which is  controlled by VSB I in black 
%color 
  
if Now==-1 
    H=[0   0             Board/2   Board/2]; 
    V=[0   Board/2  Board/2   0      ]; 
    patch(H,V,'k'); 
    drawnow; 
end 
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%If the IP core is sleeping and the Wakeup signal is captured, start wakeup  
if (Sleep==1 & Wakeup==1) 
    Now = 0; 
end 
  
%The wakeup processing is simulated by patching one stripe of playboard I 
%everytime by white color. State Now is used to record %the processing degree 
if (Now<=(Board/2)-1 & Now>=0 & Sleep==1) 
     H=[0          0             Board/2   Board/2]; 
     V=[Now    Now+2   Now+2     Now   ]; 
     patch(H,V,'w'); 
     drawnow; 
     Now = Now + 2; 
end 
  
%The wakeup processing completes when all playboard I is patched by  
%white color, the Sleep signal is set to 0 and a Read signal is  
%sent out to load new task ID number to the IP core 
if Now==(Board/2) & (Sleep==1)            
   Sleep = 0; 
   Read  = 1;  
   Now = Now + 1; 
end 
  
%If some task start processing in the IP core, the Current signal  
%becomes 1 and the OS will withdraw the Read signal 
if(Current==1) 
   Read = 0; 
end 
  
%When Current becomes 0, it means the current task is completed, and  
%the OS needs to load another task to the IP core 
if(Current==0 && Sleep==0) 
    Read = 1; 
end 
  
%When a Shutdown signal is captured, the OS starts the shutdown  
%execution state Shutting becomes 1 to mark the shutdown is in %processing 
if(Sleep==0 && Shutdown==1 && Now>Board/2) 
    Now = (Board/2); 
    Read = 0; 
end 
  
%The shutdown processing is simulated by patching one stripe of  
%playboard I everytime by black color 
if (Now<=(Board/2) && Now>=2 && Sleeping==1) 
     H=[0          0            Board/2   Board/2]; 
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     V=[Now    Now-2   Now-2     Now   ]; 
     patch(H,V,'k'); 
     drawnow; 
      
     Now = Now - 2; 
end 
  
%When all playboard I have patched in black, the shutdown processing is 
%completed. The Sleep signal becomes 1 
if Now == 0 && Sleep==0           
   Sleep = 1;  
   Now = Board; 
end 
  
%Updating the system states 
sys = [Sleep R Now]; 
   
%end mdlUpdate 
  
%========================================================== 
% mdlOutputs 
% Return the output vector for the S-function 
%========================================================== 
% 
function sys = mdlOutputs(t,x,u) 
%Output Sleep and Read signals 
sys = [x(1) x(2)]'; 
%end mdlOutputs 
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Appendix X: The S-Function Code of Task4 in the Ball Game 

function [sys,x0,str,ts] = sfundsc1(t,x,u,flag) 
  
Task    = [0 0 0 1];    % the one hot code for task4 
Width  = [2, 4, 6, 8]; % the width of all four balls 
Speed  = [2, 4, 6, 8]; % the moving speed of all four balls 
  
switch flag, 
  
  %%%%%%%%% 
  % Initialization  % 
  %%%%%%%%% 
  case 0, 
   [sys,x0,str,ts]=mdlInitializeSizes; 
   
  %%%%%%   
  % Update % 
  %%%%%% 
  case 2,                                                
    sys = mdlUpdate(t,x,u,Task, Width, Speed); 
     
  %%%%%% 
  % Output % 
  %%%%%% 
  case 3,                                                
    sys = mdlOutputs(t,x,u);     
  
  %%%%%%%% 
  % Terminate  % 
  %%%%%%%% 
  case 9,                                                
    sys = []; 
  
  otherwise 
    error(['unhandled flag = ',num2str(flag)]); 
end 
  
%end sfundsc1 
  
% 
%========================================================== 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-function. 
%========================================================== 
% 
function [sys,x0,str,ts]=mdlInitializeSizes 
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sizes = simsizes; 
  
sizes.NumContStates     = 0; 
sizes.NumDiscStates     = 46; 
sizes.NumOutputs         = 31; 
sizes.NumInputs            = 30; 
sizes.DirFeedthrough     = 0; 
sizes.NumSampleTimes = 1; 
  
sys = simsizes(sizes); 
  
x0  = zeros(1,46);  
  
for i=43:45 
    x0(i) = -1; 
end 
  
str = []; 
%ts  = [-1 0]; % Inherited sample time 
ts  = [0, 0] 
% end mdlInitializeSizes 
  
% 
%========================================================== 
% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step 
% requirements. 
%========================================================== 
% 
%system status 
  
function sys = mdlUpdate(t,x,u,Task, Wide, Speed) 
  
%specialize the input vector u 
    AddressIn = u(1:4); 
    DataIn      = u(5:28); 
    Rdy          = u(29); 
    Ack          = u(30); 
     
%specialize the state vector x 
    Address = [ x(1),    x(2), x(3), x(4)]; 
    Data1    = [ x(5),    x(6),  Wide(1), Speed(1), x(7)]; 
    Data2    = [ x(8),    x(9),  Wide(2), Speed(2), x(10)]; 
    Data3    = [ x(11), x(12), Wide(3), Speed(3), x(13)]; 
    Data4    = [ x(14), x(15), Wide(4), Speed(4), x(16)]; 
 
%DataOut[1:8] represents PosX, DataOut[9:16] represents PosY,  
%DataOut[17:24] represents History       
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    DataOut     = x(17:40); 
    Read          = x(41); 
    Write         = x(42); 
    NextData   = x(43); 
    Stage         = x(44); 
    NextACM = x(45); 
    Current     = x(46) 
  
%check if the ID number is matching. If so, set the Current signal to 1,and let the OS 
%to withdraw the Read signal 
    if(Task*AddressIn'==1) 
           Current = 1; 
           Stage = 1; 
    end 
  
%Load the parameters of four balls from ACM 
    if(Stage==1) 
        [Current, Data1, Data2, Data3, Data4, R, NextData, NextACM]  
      = DataLoad(Data1, Data2, Data3, Data4,DataIn, Rdy, NextData,  
        NextACM, Current, R); 
 
        if (NextACM==4) 
                   Stage  = 2; 
            NextData  = -1; 
            NextACM = -1; 
        end 
    end 
     
 %Calculate the new position of the corresponding ball 
    if (Stage==2) 
        %Load the old position 
        PosX    = Data4(1); 
        PosY    = Data4(2); 
        Width   = Data4(3); 
        Speed   = Data4(4); 
        History = Data4(5); 
         
        %erase the old mark of the ball 
        H=[PosX    PosX               PosX+Width    PosX+Width]; 
        V=[PosY    PosY+Width    PosY+Width    PosY     ]; 
        patch(H,V,'w'); 
        drawnow; 
         
        %update the history 
        [History] = UpdateHistory(History); 
  
        %find the new position candidate 
        [NPosX, NPosY, NHistory]  



 
 

Appendix 

        = NextPosition(PosX, PosY, Width, Speed, History); 
         
        %check if the new position has collision with Ball 1 
        OtherX = Data1(1);  OtherY = Data1(2);  OtherW = Data1(3); 
              
        [Collapse]= Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Width); 
              
        while(Collapse==1) 
              History=mod(History+1,4) 
              [NPosX, NPosY, NHistory]  
              = NextPosition(PosX, PosY, Wide, Speed, History); 
 
              [Collapse] = Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Width); 
        end 
  
        %check if the new position has collision with Ball2 
        OtherX = Data2(1); OtherY = Data2(2); OtherW = Data2(3); 
              
        [Collapse] = Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Width); 
              
        while(Collapse==1) 
             History=mod(History+1,4) 
            [NPosX, NPosY, NHistory]  
            = NextPosition(PosX, PosY, Width, Speed, History); 
             
            [Collapse] = Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Width); 
        end 
  
        %check if the new position has collison with Ball3 
        OtherX = Data3(1); OtherY = Data3(2); OtherW = Data3(3); 
              
       [Collapse] = Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Width); 
              
       while(Collapse==1) 
            History=mod(History+1,4) 
           [NPosX, NPosY, NHistory]  
           = NextPosition(PosX, PosY, Wide, Speed, History); 
 
           [Collapse] = Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Width); 
       end 
              
        %show the new mark of the ball 
        H=[NPosX     NPosX                NPosX+Width    NPosX+Width]; 
        V=[NPosY     NPosY+Width    NPosY+Width    NPosY     ]; 
        patch(H,V,'r'); 
        drawnow; 
         
        %update the ball parameter 
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        Data4(1)= NPosX; 
        Data4(2)= NPosY; 
        Data4(5)= History; 
        Stage = 3; 
         
    end 
  
%Transfer the parameter of the new position of the ball to the ACM 
    if (Stage==3) 
        %Address[1:2] indicates the VSB's ID  
        %and Address[3:4] indicates the ball's ID 
        Address = [0 1 0 0]; 
        [Address, DataOut, W, NextData]  
        = DataTransfer(Data4, Ack, NextData, Address, DataOut, W); 
 
        if (NextData== -2) 
            Stage = 4; 
            Write = 0; 
            NextData = -1; 
        end 
    end 
     
    %Release the usage of the IP Core 
    if (Stage==4 && Ack==0) 
        Current = 0; 
        Write = 1; 
        Stage =5; 
    end 
     
%When the ID number in the AddressIn is changed, the Write  
%signal is withdrawn 
    if(Task*AddressIn'~=1) 
            Address = [0 0 0 0]; 
            DataOut = zeros(1,16); 
            Write = 0; 
            Stage = -1; 
            NextData = -1; 
     
    end 
  
Data = [Data1(1),Data1(2),Data1(5), Data2(1),Data2(2),Data2(5), 
             Data3(1),Data3(2),Data3(5),  Data4(1),Data4(2),Data4(5),DataOut]; 
  
sys = [Address, Data, Read, Write, NextData, Stage, NextACM]; 
    
%end mdlUpdate 
  
% 
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%========================================================== 
% mdlOutputs 
% Return the output vector for the S-function 
%========================================================== 
% 
function sys = mdlOutputs(t,x,u) 
  
sys = [x(1:4), x(17:42)] 
  
%end mdlOutputs 
  
%the function is about loading data to the ACM         
function [Current, DataOut, W, NextData]  
          = DataTransfer(Data4, Ack, NextData, Current, DataOut, W) 
    
   PosX    = Data4(1); 
   PosY    = Data4(2); 
   Width   = Data4(3); 
   Speed   = Data4(4); 
   History = Data4(5); 
    
   % turn the position parameter into binary 
   DataOut1 = Binary (PosX); 
   DataOut2 = Binary (PosY); 
    
% if Current is 1, then output the History Parameter to  
% DataOut[17:24] 
   if (Current==1) 
           DataOut3 = Binary (History); 
   % else DataOut[17:24] is composed of the width of the ball as  
   %well as the ID number of the ball. This data is used for output  
   %control in the STEP 
   else 
           DataOut4 = Binary (Width); 
           DataOut3 = DataOut4(5:8); 
           DataOut3 = [DataOut3 0 0 0 1]; 
   end 
    
   % Load the data to the databus, then enable the Write signal 
   if (NextData==-1 && Ack==0) 
       DataOut  = [DataOut1, DataOut2, DataOut3]; 
       Write = 1; 
       NextData=0; 
   end 
    
   % When Ack from the ACM is recognized, withdraw the write signal 
   if (Ack==1 && NextData == 0) 
       W = 0; 
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       NextData = -2; 
   end 
    
    %this function is about conveying integer number to binary 
function [Data] = Binary(Original) 
    Data = zeros(1, 8); 
    i = 7; 
    x = Original; 
     
    Data(8) = mod(x,2); 
    x = floor(x/2); 
    while (x>0) 
        Data(i) = mod(x,2); 
        x = floor(x/2); 
        i = i-1; 
    end 
  
%this function is about load data of four balls in sequence from the ACM 
function [Address, Data1, Data2, Data3, Data4, R, NextData, NextACM]  
         = DataLoad(Data1, Data2, Data3, Data4, DataIn, Rdy,  
           NextData, NextACM, Address, R) 
  
   if NextACM ==-1 
%Address[3:4]=[0 1] indicates the ACM that data for ball1 is needed 
       Address3 = 0; 
       Address4 = 1; 
       [Address,Data1,R, NextData] = DataCome(DataIn, Data1,   
        Address3, Address4, Rdy, NextData, Address, R); 
       if NextData == -2 
           NextACM = 1; 
           NextData = -1; 
       end 
   end 
   
   if NextACM == 1 
 %Address[3:4]=[1 0] indicates the ACM that data for ball2 is needed 
       Address3 = 1; 
       Address4 = 0; 
       
       [Address,Data2,R, NextData] = DataCome(DataIn, Data2,  
        Address3, Address4, Rdy, NextData, Address, R); 
       if NextData == -2 
           NextACM = 2; 
           NextData = -1; 
       end 
   end 
    
   if NextACM == 2 
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 %Address[3:4]=[1 1] indicates the ACM that data for ball3 is needed 
       Address3 = 1; 
       Address4 = 1; 
       [Address,Data3,R, NextData] = DataCome(DataIn, Data3,  
       Address3, Address4, Rdy, NextData, Address, R); 
       if NextData == -2 
           NextACM = 3; 
           NextData = -1; 
       end 
   end 
    
   if NextACM == 3 
%Address[3:4]=[0 0] indicates the ACM that data for ball4 is needed 
       Address3 = 0; 
       Address4 = 0; 
      [Address,Data4,R, NextData] = DataCome(DataIn, Data4,    
      Address3, Address4, Rdy, NextData, Address, R);        
       if NextData == -2 
           NextACM = 4; 
           NextData = -1; 
       end 
   end 
  
%this function specify the parameters loading of a ball in sequence    
function [Address, Data, R, NextData] = DataCome(DataIn, Data,  
         Address3, Address4, Rdy, NextData, Address, R) 
  
%When the previous loading is complete (Rdy=0), start the current 
       if(NextData == -1 && Rdy == 0) 
           Address    = [0 1 Address3, Address4]; 
           Read         = 1; 
           NextData  = 0; 
       end 
        
%When Rdy=1, it means the ACM is loading the data into the databus 
       if(NextData == 0 && Rdy == 1) 
           % Turn the binary information into integer 
           PosX = 128*DataIn(1) + 64*DataIn(2) + 32*DataIn(3)  
                         + 16*DataIn(4) + 8*DataIn(5) + 4*DataIn(6)  
                         + 2*DataIn(7) + DataIn(8); 
           PosY = 128*DataIn(9) + 64*DataIn(10) + 32*DataIn(11)  
                        + 16*DataIn(12) + 8*DataIn(13) + 4*DataIn(14)  
                        + 2*DataIn(15) + DataIn(16); 
        History = 128*DataIn(17) + 64*DataIn(18) + 32*DataIn(19)  
                        + 16*DataIn(20) + 8*DataIn(21) + 4*DataIn(22)  
                        + 2*DataIn(23) + DataIn(24); 
     NextData = -2; 
       Address = [0, 0, 0, 0]; 
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            Read = 0; 
       end 
       
       Data = [PosX, PosY, Width, Speed, History]; 
        
%the function is about updating history 
function [NHistory] = UpdateHistory(History) 
        s=unifrnd(0, 1); 
        Threshold = 0.5; 
        if s>=Threshold 
             History = floor(unifrnd(0,4)); 
        else 
            NHistory = History; 
        end 
  
%the function is to calculate whether two balls have collision 
function [Collapse]  
       = Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Wide) 
  
        Centre1_X = NPosX+0.5*Wide; 
        Centre1_Y = NPosY+0.5*Wide; 
        Centre2_X = OtherX+0.5*OtherW; 
        Centre2_Y = OtherY+0.5*OtherW; 
 
        Dis_Centres = power((Centre1_X - Centre2_X), 2)  
                      + power((Centre1_Y - Centre2_Y), 2);  
 
        Dis_Length  = power((Wide+OtherW)*0.5, 2); 
                  
        if(Dis_Centres <2*Dis_Length)              
               Collapse = 1; 
        else 
               Collapse = 0; 
        end 
  
%the function is to give a new position of the ball                  
function [NPosX, NPosY, NHistory]  
               = NextPosition(PosX, PosY, Width, Speed, History) 
   
    Board = 100; 
         
    switch (History) 
        case 0 %move left 
            if PosX-Speed>0 
                PosX = PosX - Speed; 
                NHistory = 0; 
            else 
                PosX = PosX + Speed; 
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                NHistory = 1; 
            end 
             
        case 1 %move right 
            if PosX+Width+Speed < Board 
                PosX = PosX + Speed; 
                NHistory = 1; 
            else 
                PosX = PosX - Speed; 
                NHistory = 0; 
            end 
        case 2 %move up 
            if PosY+Width+Speed < Board 
                PosY = PosY + Speed; 
                NHistory = 2; 
            else 
                PosY = PosY - Speed; 
                NHistory = 3; 
            end 
        case 3 %move down 
            if PosY-Speed > 0 
                PosY = PosY - Speed; 
                NHistory = 3; 
            else 
                PosY = PosY + Speed; 
                NHistory = 2; 
            end 
             
    end%end switch 
    NPosX = PosX; 
    NPosY = PosY; 
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