

High Level Modelling and Design of a Low

Power Event Processor

Yuan Chen

Technical Report Series

NCL-EECE-MSD-TR-2009-141

January 2009

Contact: yuan.chen1@ncl.ac.uk

NCL-EECE-MSD-TR-2009-141

Copyright c 2008 Newcastle University

School of Electrical, Electronic & Computer Engineering

Merz Court, Newcastle University

Newcastle upon Tyne, NE1 7RU

UK

http://async.org.uk

High Level Modelling and Design of a Low

Power Event Processor

Yuan Chen

School of Electronic Engineering and Computer Engineering

Newcastle University

PhD Thesis

January 2009

To My Parents

III

Contents

LIST OF FIGURES ...VII

LIST OF TABLES ..X

LIST OF ABBREVIATIONS .. XI

LIST OF PUBLICATIONS .. XIII

ACKNOWLEDGEMENT...XV

ABSTRACT...XVI

1. INTRODUCTION..1

1.1. IP CORES AND GALS ARCHITECTURE ..1

1.2. POWER DISSIPATION AND LOW POWER TECHNOLOGIES3

1.3. EVENT DRIVEN SYSTEM AND STEP..10

1.4. THESIS OUTLINE ...14

2. BACKGROUND ..16

2.1. RESEARCH IN SYSTEM-LEVEL DYNAMIC POWER MANAGEMENT16

2.1.1. Cost of PMC Mode Transitions ...17

2.1.2. Predictive DPM Policies..18

2.1.3. Stochastic DPM Policies..22

2.1.4. Accumulation & Fire Policy ..29

2.2. COLOURED PETRI NETS ..39

2.2.1 Petri Nets ..39

2.2.2 Updating PN to CPN ..41

2.2.3 CPN Tools and Example Implementation...43

2.3. MATLAB INTRODUCTION..49

Context

2.3.1 Simulink...50

2.3.2 Mathematical Expression of Simulink Execution52

2.3.3 Simulink S-function ...53

3. MARKOV MODELS FOR DIFFERENT DPM SYSTEMS56

3.1. POWER AND LATENCY ANALYSIS ...56

3.1.1. Power Analysis...56

3.1.2. Latency Analysis ..59

3.1.3 Balance of both power and latency...65

3.2. ON-OFF DPM SYSTEMS ..66

3.2.1. The Greedy Policy..67

3.2.2. The A&F policy..76

3.3. DPM SYSTEMS WITH MULTI INACTIVE MODES ..82

3.3.1 Markov model description ..83

3.3.2 The Derivation of Analytical Solutions...84

3.3.3 Performance Analysis ...85

3.3.4 Further discussion ..86

3.4. DPM SYSTEMS WITH MULTIPLE ACTIVE MODES..88

3.4.1 Markov model description ..89

3.4.2 The Derivation of Analytical Solution ..90

3.4.3 The Performance Analysis ..91

3.4.4 Further discussion ..92

3.5. FINE GRAIN MODEL FOR ON-OFF DPM SYSTEMS ...93

3.5.1 The Fine Grain Structure of a DPM System...94

3.5.2 Fine grain Markov model for on-off DPM system......................................96

3.5.3 The Derivation of Analytical Solutions...99

3.5.4 Performance Analysis ...99

4. HIERARCHICAL CPN MODELS FOR A VSB..104

4.1. A TOP LEVEL MODEL OF A VIRTUAL SELF-TIMED BLOCK IN CPN..............106

4.1.1 The Color Set Description ..106

4.1.2 The Model Description ...108

4.1.3 The Environmental Set Description ..113

Context

4.1.4 Initial Marking ..114

4.1.5 Simulation ...114

4.1.6 State Space Checking..117

4.1.7 Conclusions and Further Discussion..120

4.2. THE DESIGN OF A POWER MANAGER IN CPN ...121

4.2.1 A Matrix Structure of Event Handler..122

4.2.2 The Color Set Description ..125

4.2.3 Model Description ..125

4.2.4 The Environmental Set Description ..127

4.2.5 Simulation and State Space...128

4.2.6 Conclusions and Further Discussion..128

4.3. THE DESIGN OF A POWER MANAGER IN CPN ...129

4.3.1 The Model Description ...130

4.3.2 The Environmental Set Description ..134

4.3.4 Conclusions and Further Discussion..135

4.4. THE DESIGN OF A TASK MANAGER IN CPN ..135

4.4.1 A Priority Based Round Robin Scheduling Policy....................................136

4.4.2 The CPN Model of Scheduling..137

4.4.3 The CPN Model of the Task Manager ..141

4.4.4 Environmental Set Description ...144

4.5. THE DESIGN OF AN OUTPUT CONTROL AND INTERFACE IN CPN.................145

4.5.1 The Model Description ...147

4.5.2 Simulation and State space ...151

4.5.3 Conclusions and Further Discussion..152

4.6. CONCLUSIONS AND FUTURE WORK ..153

5. THE CONSTRUCTION OF SOCS WITH VSBS IN MATLAB155

5.1. THE DESIGN OF EVENT HANDLER PART IN MATLAB................................161

5.2. THE DESIGN OF PM PART IN MATLAB ...163

5.3. THE DESIGN OF TM PART IN MATLAB ...166

5.4. THE DESIGN OF INTERFACE IN MATLAB...169

5.5. THE DESIGN OF THE OUTPUT CONTROL PART IN MATLAB.......................171

5.6. THE DESIGN OF THE IP CORE PART IN MATLAB.......................................173

Context

5.6.1 The Flow chart of the S-Function of OS ...174

5.6.2 The Flow chart of the S-Function of Task4 ..175

5.7. A TEST BENCH OF BALL GAME...178

5.8. CONCLUSIONS ...183

6. CONCLUSIONS AND FUTURE WORK...184

APPENDIX...187

APPENDIX I: ANALYTICAL SOLUTION DERIVATION FOR THE GREEDY POLICY IN AN

ON-OFF DPM SYSTEM ...187

APPENDIX II: ANALYTICAL SOLUTION DERIVATION FOR THE A&F POLICY IN AN ON-

OFF DPM SYSTEM ..197

APPENDIX III: ANALYTICAL SOLUTION DERIVATION FOR A DPM SYSTEM WITH

MULTIPLE INACTIVE MODES ..201

APPENDIX IV: ANALYTICAL SOLUTION DERIVATION FOR AN DPM SYSTEM WITH

MULTIPLE ACTIVE MODES..206

APPENDIX V: STATE SPACE REPORT FOR THE EVENT HANDLER.............................209

APPENDIX VI: STATE SPACE REPORT FOR THE POWER MANAGER..........................210

APPENDIX VII: STATE SPACE REPORT FOR THE TASK MANAGER212

APPENDIX VIII: STATE SPACE REPORT FOR OUTPUT AND INTERFACE214

APPENDIX IX: THE S-FUNCTION CODE OF OS SUBSYSTEM.....................................216

APPENDIX X: THE S-FUNCTION CODE OF TASK4 IN THE BALL GAME220

BIBILIOGRAPHY ..230

VII

List of Figures

Figure 1-1: SOC with the GALS Architecture ..2

Figure 1-2: The Structure of CMOS Transistors ...3

Figure 1-3: The Variation of Power Consumption with Vdd. ...6

Figure 1-4: Self-timed Event Processor and Virtual Self-timed Block11

Figure 2-1: The Architecture of a DPM system...23

Figure 2-2: The State-transition-diagram of the M/M/1 model33

Figure 2-3: The User Interface of CPN Tools ...43

Figure 2-4: Several Steps in the Example Model's Simulation....................................47

Figure 2-5: The GUI of MATLAB Simulink ..50

Figure 2-6: Mathematical Expression of Simulink Execution.....................................52

Figure 3-1: The Markov Model for the Greedy Policy..67

Figure 3-2: The Frequency of Mode Switching Transitions..70

Figure 3-3: P in the FUJI HDD for the Greedy Policy...71

Figure 3-4: Power Curves in Different Models ...72

Figure 3-5: P for the IBM HDD ...73

Figure 3-6: The APDV Value for the Greedy Policy (DL=10/µ)74

Figure 3-7: Different APDV Values in Different Deadline Requirements75

Figure 3-8: The Markov Model for the A&F policy..77

Figure 3-9: P with Different Accumulation Limit Ns ..78

Figure 3-10: P for Different Ns (continue) ...79

Figure 3-11: APDV Values for Different Ns (DL=10/µ)..80

Figure 3-12: The Balance Value for Different Ns (a) TOL=0.6 (b) TOL=0.481

Figure 3-13: The Probability of Inactive States...82

List of Figures

Figure 3-14: Mode Switching Transitions in DPM Systems with Multiple Inactive

Modes...83

Figure 3-15: Markov Model for DPM System with Idle Mode...................................84

Figure 3-16: P with the Variation of N and ε ...86

Figure 3-17: Markov Model for DPM Systems with Multi A&F Policy Control87

Figure 3-18: Mode Switching in DPM System with Enabled Standby Mode.............87

Figure 3-19: Markov Model for DPM Systems with Three Inactive Modes...............88

Figure 3-20: Markov Model for DPM/DVS System (N>H) ..89

Figure 3-21: Markov Model for DPM/DVS System (N<H) ..90

Figure 3-22: Analysis of DPM Systems with Multiple Active Modes........................92

Figure 3-23: DPM Systems with Multiple Inactive/active Modes93

Figure 3-24: The Fine Grain Structure of a DPM System...94

Figure 3-25: The Tile of Inactive States ..97

Figure 3-26: The Tile of Wakeup States..98

Figure 3-27: The Tile of Active States ..98

Figure 3-28: The Tile of Shutdown States...99

Figure 3-29: Power Analysis of Fine Grain DPM models...101

Figure 3-30: Power Cost of Different Policies ..101

Figure 3-31: The Latency Performance of A&F Policy (N=4)..................................102

Figure 4-1: Top Level Model of a VSB...107

Figure 4-2: Simulation of the Top Level CPN Model ...115

Figure 4-3: Possible Errors in the Top Level Model ...116

Figure 4-4: The Event Handler Segment in the Top Level Model121

Figure 4-5: The Matrix Structure in the Butler ..123

Figure 4-6: CPN Model of One Unit in the Event Handler124

Figure 4-7: The Segment of the PM part in the Top Level Model129

Figure 4-8: The CPN model of the PM..130

Figure 4-9: Two Arbitration Solutions in the PM Part ..132

Figure 4-10: The Segment of TM in the Top Level Model136

Figure 4-11: The Priority Based Round Robin Policy...136

Figure 4-12: The CPN Model for Scheduling..138

Figure 4-13: Simulation Steps in the scheduling ...139

List of Figures

Figure 4-14: No Ready Tasks in the Scheduling ...140

Figure 4-15: The Full CPN model for the Scheduling...141

Figure 4-16: The Output Control Segment in the Top Level Model145

Figure 4-17: The CPN Model of Output Control and Interface.................................147

Figure 4-18: Concurrent Operations in a VSB ..152

Figure 5-1: The Implementation of Ball Game..156

Figure 5-2: Data and Event Communication in the ball game...................................159

Figure 5-3: The Design of a Virtual Self-timed Block in MATLAB160

Figure 5-4: The Design of EH Part in MATLAB..162

Figure 5-5: Simulation Result of the EH ...163

Figure 5-6: The Design of PM in MATLAB...164

Figure 5-7: The Design of the Trigger unit in MATLAB..164

Figure 5-8: The Simulation Result of the PM Part ..165

Figure 5-9: The Design of Scheduler in MATLAB...166

Figure 5-10: The Simulation Result of Scheduling (1)..168

Figure 5-11: The Simulation Result of Scheduling (2)..169

Figure 5-12: The Design of Interface Part in MATLAB ...170

Figure 5-13: The Simulation Result of the Interface Part..171

Figure 5-14: The Design of OutputControl Part in MATLAB..................................172

Figure 5-15: The Simulation Result of the OutControl Part......................................172

Figure 5-16: The Design of IP Core in MATLAB ..173

Figure 5-17: The Design of Task Subsystem Blocks in MATLAB...........................174

Figure 5-18: The Flow Chart of the OS program ..175

Figure 5-19: The Flow Chart of the Task4 program..176

Figure 5-20: The UpdateHistory Function...176

Figure 5-21: The Calculation of Collision ...178

Figure 5-22: Power Analysis of Test Bench ..181

Figure 5-23: Latency Analysis of Test Bench ...182

Figure 5-24: Latency Analysis for Test Bench (Continue)..183

X

List of Tables

Table 3-1: The Representation of Different State Groups ...61

Table 3-2: Alias Index Used in On-off DPM Systems ..67

Table 3-3: The Analytical Solutions for the Greedy Policy ..68

Table 3-4: Parameters for a FUJI MHF 2043AT...69

Table 3-5: Parameters for IBM HDD ..73

Table 3-6: Analytical Solutions for the A&F Policy ...77

Table 3-7: Analytical Solutions for DPM Systems with Multiple Inactive Modes.....85

Table 3-8: Analytical Solutions for DPM Systems with Two Active Modes..............90

Table 3-9: The Parameters of Example DVS System..91

Table 3-10: Alias Index Used in Fine Grain On-off DPM Systems96

Table 3-11: Parameters of the CU ...100

Table 5-1: Initial Parameters of Four Balls..158

XI

List of Abbreviations

ACM Asynchronous Communication Mechanism

A&F Accumulation & Fire

APDV Average Percentage of Deadline Violation

CPN Colored Petri Nets

CU Control Unit

DFS Dynamic Frequency Scaling

DL Dead Line

DSP Digital Signal Processing

DPM Dynamic Power Management

DVS Dynamic Voltage Scaling

DVFS Dynamic Voltage and Frequency Scaling

ECG ElectroCardioGram

EQ Event Queue

EH Event Handler

FCFS First Come First Service

GALS Globally Asynchronous and Locally Synchronous

GUI Graphical User Interface

IP Intellectual Property

MATLAB Matrix laboratory

List of Abbreviations

PDF Probability Distribution Function

PM Power Manager

PMC Power Manageable Component

PN Petri Nets

QoS Quality of Service

RTL Register Transfer Level

SCC Strongly connected Component

SOC System On Chip

SP Service Provider

SR Service Requestor

STEP Self Timed Event Processor

TBE Break-Even Time

TOL Tolerance of Latency

TM Task Manager

TQ Task Queue

VLSI Very Large Scale Integration

VSB Virtual Self-timed Block

XIII

List of Publications

Conference Publications:

1 Yuan Chen, Fei Xia, Alex Yakovlev, “Virtual Self-timed Block for Systems-On-

Chip”, ISCAS, 2006

2 Yuan Chen, Fei Xia, Delong Shang, Alex Yakovlev, “The Design of Virtual

Self-timed Block for Activity Communication in SOC” ACSD 2007 pp.100-109

Workshop/Forum Publications:

1 Yuan Chen, Fei Xia, Alex Yakovlev, “The Design of STEP Processor”, 17th UK

Asynchronous Forum, Southampton, 2005

2 Yuan Chen, Fei Xia, Delong Shang, Alex Yakovlev, “Power Management with

Accumulation and Fire Mechanism”, 19th UK Asynchronous Forum, London,

2007

3 Yuan Chen, Fei Xia, Delong Shang and Alex Yakovlev “Fine Grain Stochastic

Modeling and Analysis of Low Power Portable Devices with Dynamic Power

Management”, 24th UKPEW Workshop, London, 2008

4 Yuan Chen, Fei Xia, Delong Shang and Alex Yakovlev “Stochastic Modelling

Of Dynamic Power Management Policies And Analysis Of Their Power-Latency

List of Publications

Tradeoffs”, 4th UKEF, Southampton, 2008

Technical Reports:

1 Yuan Chen, Fei Xia, Alex Yakovlev, “Modelling Asynchronous Artificial Neural

Networks for Energy Efficient Implementation”,

NCL-EECE-MSD-TR-2005-105, Microelectronic System Design Group, School

of EECE, University of Newcastle upon Tyne, May 2005

2 Yuan Chen, Fei Xia, Alex Yakovlev, “Stochastic Modelling Of Dynamic Power

Management Policies And Analysis Of Their Power-Latency Tradeoffs”,

NCL-EECE-MSD-TR-2007-123, Microelectronic System Design Group, School

of EECE, Newcastle University, November 2007

3 Yuan Chen, Fei Xia, Delong Shang, Alex Yakovlev, “Virtual Self-timed Block

Design using Coloured Petri Net”, NCL-EECE-MSD-TR-2008-134,

Microelectronic System Design Group, School of EECE, Newcastle University,

August 2008

4 Yuan Chen, Fei Xia, Delong Shang, Alex Yakovlev, “Studying an SoC with

Virtual Self-timed Blocks using MATLAB Simulink”, NCL-EECE-MSD-TR-

2008-135, Microelectronic System Design Group, School of EECE, Newcastle

University, August 2008

5 Yuan Chen, Fei Xia, Delong Shang, Alex Yakovlev, Mohammad Rastegar

Tohid, “Modelling and Design of a Low Power Event Processor”, NCL-EECE-

MSD-TR-2008-136, Microelectronic System Design Group, School of EECE,

Newcastle University, September 2008

XV

Acknowledgement

I would like to first express my gratitude to my supervisor, Prof. Alex Yakovlev, for

introducing me to the area of asynchronous design. His guidance and valuable advice

is essential to every achievement in my research. I would specially thank Dr. Fei Xia

for his help in my entire PhD study in inspiring new ideas, in discussing about my

research and in patient correcting errors in my paper drafts. I would also thank Dr.

Delong Shang for all numerous technical discussions and instructions in my research.

I would like also to express my gratitude to my parents and family for their whole

hearted support during the course even if they are thousands of miles away. This

thesis is also to memory my grandfather, who brought me up since I was a kid and

passed away last year.

I am thankful to my friends, Jincheng Zhu, Jun Zhou, Ping Wang, Fei Hao and Yu

Zhou for their help in both research and life.

Finally, I would like to acknowledge that this work was partly sponsored by Overseas

Research Students Awards Scheme (ORSAS), Newcastle University, School of EECE,

and UK EPSRC through NEGUS Project (EP/C512812/1) and STEP Project

(EP/E044662/1) respectively.

XVI

Abstract

With the fast development of semiconductor technology, more and more Intellectual

Property (IP cores) can be integrated into one chip under the Globally Asynchronous

and Locally Synchronous (GALS) architecture. Power becomes the main restriction of

the System-on-Chip (SOC) performance especially when the chip is used in a portable

device. Many low power technologies have been proposed and studied for IP core’s

design. However, there is a shortage of system level power management schemes

(policies) for the GALS architecture. In particular, the area of using Dynamic Power

Management (DPM) to optimize SOC power dissipation under latency restriction

remains relatively unexplored.

Event driven programming is widely used in the design of embedded software. A task

execution in an IP core is enabled only when the corresponding event, which

represents the availability of resources, arrives. Therefore, the design of an efficient

event handler which can quickly respond to incoming events in a highly

nondeterministic and concurrent on-chip environment is essential to the improvement

in system performance.

This thesis describes the work of modelling and design of an asynchronous event

coprocessor to control the operations of an IP core in the GALS architecture. This

coprocessor is called a Self-timed Event Processor (or STEP in short), and it provides

event handling, power management as well as asynchronous communication for its

cooperating IP core. The combination of one IP core and its STEP constitutes a

Virtual Self-timed Block (or VSB in short).

Abstract

In order to demonstrate the justification for such a scheme, stochastic models were

used for power-latency analysis of a virtual self-timed block with different DPM

policies. Both the event arrival and task execution of an IP core were modelled as

continuous time Markov processes. The integration of mode switching transition

states in the stochastic models provides accurate analysis in the research. One DPM

policy named Accumulation & Fire (or A&F in short) was given a particular emphasis

in this thesis not only because it has great advantage in trading latency for power, but

also because it is easy in hardware realization.

A general architecture for STEP was developed from basic functional specifications.

Coloured Petri Nets (CPN) was used to model the architecture of the resulting virtual

self-timed block hierarchically. These CPN models focus on the concurrent

processing between different components of a STEP as well as that between a STEP

and its IP core, so as to improve system performance as well as avoid metastability.

Functional performance of a Virtual Self-timed Block was demonstrated in simulation

and verified by state space checking.

To better present SOCs composed of Virtual Self-timed Blocks, an example SOC with

four virtual self-timed blocks was built in MATLAB Simulink, whose design follows

the specification given in the previous CPN models. A “ball game” test bench

application runs on this 4-VSB system in the MATLAB environment, showing

important aspects of STEP operations such as the A&F.

1

Chapter 1

Introduction

1.1. IP Cores and GALS Architecture

Up to now, the evolution of digital microelectronics is characterized by the

exponential growth of the number of transistors per chip which results in an

exponential increase of computing power. All components of a computer system can

now be integrated into a single chip, which is called System On Chip (SOC). In order

to provide more functions to the on chip system and satisfy the fast manufacture and

update requests of the market, chip designers prefer to integrate several predesigned

and reusable hardware modules or blocks to make their new chip. These predesigned

and reusable hardware modules are called IP cores or IP blocks because they are

treated as intellectual properties and licensed to original equipment manufacturers

(OEM). Companies that supply IP Cores, like ARM, become new highlight of the IT

industry.

Although most IP Cores are still synchronously designed, more and more SOCs can

not be treated as pure synchronous systems. It is not only because integrated IP Cores

are designed to have different clock frequencies to optimize their performances, but

Chapter 1 Introduction

also because deep transistor integration makes it hard to keep an accurate global clock

system which can distribute an identical clock signal to every corner of the chip. In

this case, different IP cores can keep their own clock systems and operate

synchronously while communicate asynchronously with each other. These electronic

systems are called Globally Asynchronous Locally Synchronous (GALS for short)

systems [moor02]. The main concern of chip designers is to make sure signals and

data among different clock islands or clock domains can be exchanged correctly and

efficiently. SOC design becomes more communication centric rather than

computation centric.

IP core

I

Asynchronous Wrapper

Clock Domain I

req

ack IP core

II

Asynchronous Wrapper

Clock Domain II

req

ack

IP core

III

Asynchronous Wrapper

Clock Domain III

req

ack IP core

IV

Asynchronous Wrapper

Clock Domain IV

req

ack

ACM

Memory

ACM

Memory

ACM

Memory

ACM

Memory

SOC

Figure 1-1: SOC with the GALS Architecture

In a GALS system, an asynchronous wrapper [zhua02] is usually added to every IP

core. All synchronous signals and data generated by an IP core are first transformed

Chapter 1 Introduction

into their asynchronous counterparts by the wrapper, and then be transferred to

another IP core (Figure 1-1) using the Asynchronous Communication Mechanism

(ACM), which was first researched by Hugo Simpson [simp90] in 1990. Most studies

about GALS as well as asynchronous wrappers tried to use different sizes of buffer as

well as different types of ACM to increase the throughput of asynchronous

communication so as to reduce the latency of the entire GALS based SOC [dasg06].

1.2. Power Dissipation and Low Power Technologies

The large degree of transistor integration also made electronic equipments portable or

wearable. Statistics show a 30% decrease in the device dimensions with each

technology generation [bork99]. Portable devices such as laptops, digital cameras,

mobile phones, and iPods, bring convenience and become indispensible in our

everyday life. However, they must rely on batteries for power supply. Compared with

the exponential integration of transistors, battery capacity has improved very slowly

(a factor of two to four over the last 30 years) [simu01], which makes power the

bottleneck to improve the performance of SOCs.

Pull-up

(PMOS)

Pull-down

(NMOS)

V
dd

Cout

ishort

GND
Figure 1-2: The Structure of CMOS Transistors

In the past decades, many researches have been done to reduce the power

consumption of SOCs which are built by CMOS circuits. Figure 1-2 is the CMOS

Chapter 1 Introduction

gate structure given in [beni98]. The pull-up network, which is generally composed of

PMOS transistors, connects the output node Out to the power supply Vdd. The pull-

down network, which is generally composed of NMOS transistors, connects Out to

the ground node GND. When a transition on the inputs causes a change in the

conductive state of the pull-up and the pull-down network, electric charge is

transferred from the power supply to the output capacitance Cout or from Cout to

ground. The power dissipation caused by transition(s) in pull-up and/or pull-down

networks is called dynamic power. The measurement of dynamic power is given by

Equation 1-1:

fVCP ddeffdynamic

2= Equation 1-1

In Equation 1-1, Vdd is the supply voltage, f is the operating frequency and Ceff is the

effective switching capacitance of Cout.

Another kind of power dissipation in CMOS circuits is called short-circuit power. It

is caused by the non-zero rise/fall time in input signal change. During this time, both

the pull-down and pull-up networks are on for a short period of time and some current

is drawn from the supply and flows directly to ground. This current is called short-

circuit current and the short-circuit power is just the power consumed by the short

circuit current.

The third contributor to the power dissipation in CMOS is the leakage power, which

is mainly caused by two phenomena: 1) diode leakage current due to the reverse

saturation currents in the diffusion regions of the PMOS and NMOS transistors; 2)

sub-threshold leakage current of transistors. Therefore, the average power

dissipation in a CMOS transistor can be expressed in Equation 1-2:

Chapter 1 Introduction

leakageshortdynamicave PPPP ++= Equation 1-2

In Equation 1-2, Pdynamic, Pshort and Pleakage represent the dynamic, short-circuit and

leakage power consumptions in the transistor respectively.

Traditional low power design tries to reduce the dynamic power consumption since it

gives the main contribution to the total power consumption in CMOS circuits.

Technologies have been explored in different levels to change at least one of the three

parameters in Equation 1-1 so as to reduce dynamic power. Transistor level low

power design focuses on reducing Vth, the threshold voltage of CMOS, so that an SOC

system can be operated by a lower supply voltage Vdd. Two main low power solutions

have been given at the gate level. One is called scaling, which provides multiple Vdd

to the same CMOS circuits in different cases. A high supply voltage Vdd,H is

connected only to CMOS circuits whose operations are critical to signal propagation,

and a low supply voltage Vdd, L is used to other non-critical CMOS circuits to achieve

lower power consumption. When Vdd, L is used in oscillator circuits, the clock

frequency controlled by the oscillator circuits is reduced, and the dynamic power

dissipation of the CMOS circuits controlled by the clock signal are reduced

accordingly.

Another solution which tries to reduce the effective capacitance in switching is called

gating, which stops the propagation of input signals to some part of CMOS circuits

when the latter are not used. Since the clock signal is the most important control

signal for synchronous circuits, clock gating is the most popular and widely used

gating technology [jaco04]. Data Compression is the most popular low power

Chapter 1 Introduction

technology used at the behaviour level, which tries to reduce the number of

connecting wires among electronic components.

In the past decades, low power researchers have made lots of efforts to reduce the

supply voltage Vdd (as well as Vth) since it contributes to the power by a square factor.

However, the leakage power dissipation reduces slowly with Vdd decreasing, which

makes it play a more important or even dominant role in the power dissipation in

contemporary electric devices or chips. Furthermore, deep transistor integration

brought by advanced semiconductor technology sees an increasing proportion of the

leakage power in the total power consumption. For example, the sub-threshold

leakage current is predicted in [aydi01] to increase from 0.01 µA/µm for the 130 nm

technology to 3µA/µm for the 45 nm technology.

Figure 1-3: The Variation of Power Consumption with Vdd.

In [jiju04], the power consumption in a Transmeta Crusoe processor which is built by

0.07 µm technology is under test. Figure 1-3 shows the reduction in both dynamic

power and leakage power with the decreasing of Vdd (PAC in the legend is the dynamic

Chapter 1 Introduction

power dissipation and PDC is the leakage power dissipation. Pon is the power

consumed by transistors that cannot be turned off.). It is clear that reducing leakage

power is more important when Vdd becomes lower than 0.7V.

Because CMOS transistors with low a threshold voltage Vth have large leakage current,

multi threshold CMOS (MTCMOS) [calh03] is a popular technique at the transistor

level, which increases the Vth of CMOS transistors in a non-critical path so as to

reduce its leakage power. At the gate level, signal gating such as clock gating can stop

switching in CMOS transistors, but cannot avoid leakage current when the transistor

capacitance has been charged. Therefore, power supply gating, which cuts down Vdd

supply for the CMOS transistors [henz07] is used to reduce both dynamic and leakage

power dissipation in the gated transistors.

All these low power technologies have been widely used in IP core design. Low

power dissipation, as well as high throughput, becomes one basic performance

requirement of IP cores as well as SOCs. [yseb07] describes how to use low power

technologies at different levels to design a DSP microprocessor so as to satisfy the

low power requirement. When several low power technologies have been integrated

into the design of an IP core, operations in the IP core are changed accordingly so as

to satisfy various throughputs as well as power requirements. Therefore an IP core can

do its processing in various operation modes. For example, a sleep mode in an IP

core always means all transistors in the core have been power gated. An idle mode in

an IP core can be taken as the case when switches in transistors are stopped by clock

gating. When different supply voltages are used to drive transistor switching, the

corresponding IP core is said to use different work modes to provide service. The

more low power technologies have been integrated, the more operation modes can be

Chapter 1 Introduction

provided by an IP core. Multiple mode IP cores are widely adopted in both Hard Disk

Drivers (HDDs) (like IBM Travelstar [ibmt97], FUJI MHF 2043AT [lu00]) as well as

microprocessors (like SA1110 [sa11], Transmeta Crusoe [jiju04]). When some low

power technology is enabled or disabled, the corresponding IP core is said to switch to

another operation mode.

One thing needs to be highlighted here is that operation mode switching transitions

bring overheads in both power and latency. For example, a microprocessor entering

its sleep mode needs three steps: 1) flush to memory all system information that

should be preserved throughout the sleep period; 2) reset all internal processor register

and program wakeup events; and 3) shutdown the internal clock generator. Similarly,

three steps are taken when the processor is switching back to its work mode: 1)

turning on and stabilizing the power supply and the clock; 2) reinitializing the system;

and 3) restoring the context. The possible high overheads in mode switching means

frequent mode switching cannot benefit, and may even deteriorate an IP core in its

power dissipation. Therefore when several IP cores are integrated into one SOC, some

scheme or policy is needed at the system level to manage mode switching in all

component IP cores so as to minimize not only the power dissipation in every power

domain, but also that of the entire SOC. The group of circuits where this policy is

implemented is often called a power manager. When only one power manager is

used to control all IP cores, it is called a centre power manager. Otherwise, several

distributed power managers are used to provide power control in different power

domains.

System level low power technologies can be generally divided into two groups: one

group tries to make an IP core to carry on its operation in its full power and then

Chapter 1 Introduction

switch the latter to stay in one of its low power modes (such as sleep mode) as long as

possible. This kind of technology is often called Dynamic Power Management

(DPM). The other group of technologies tries to make an IP core do its operation as

slowly as possible. The IP core can only switch to some mode with faster operation

speed when the corresponding latency cannot be tolerated. This kind of technology is

often called Dynamic Scaling, which includes Dynamic Voltage Scaling (DVS),

Dynamic Frequency Scaling (DFS), and Dynamic Voltage and Frequency Scaling

(DVFS) depending upon which parameter(s) can be scaled. Delicate DPM/DVS

design can reduce both dynamic and leakage power in an IP core [jeju03].

However, system level power management has not been considered by SOC with

GALS architecture, although this architecture has great potential in power saving.

Without a global clock system, an SOC built in the GALS architecture can easily

power on/off an IP core or switch it to another mode without interfering with the

clock propagating to other IP cores.

Furthermore when low power dissipation is concerned, asynchronous circuits show

great advantage over synchronous ones. By eliminating the clock system, which

always has the largest capacitance and switching frequency in the chip, asynchronous

circuits can do the same operation as their synchronous counterparts with extremely

low power. That is why asynchronous technology is claimed as a “revolutionary” low

power technology in [beni98]. Therefore, an asynchronous power manager can

provide power control to its IP core with extreme low power overheads.

Chapter 1 Introduction

1.3. Event Driven System and STEP

The increase in the degree of transistor integration brings changes not only to

hardware design but also software design. On the one hand, executions in an IP core

become multiple processing. More and more tasks, which represent operation threads,

can be embedded into one IP core. On the other hand, when more and more IP cores

have been integrated into one chip, task execution in an IP core becomes

nondeterministic and concurrent. In other words, the start moment of one task’s

execution is unpredictable, and it is highly possible that two or more tasks become

ready for execution simultaneously. The concurrency in task execution brings

competition of resources, which represent limited battery energy, finite memory

space or communication bandwidth, etc. Nondeterminism in task execution brings

great challenge in the area of fast or real-time resource allocation.

In this case, event driven programming is preferred to be used in on-chip software

design. An event is modelled as something happening or happened and should be

responded to by a task. It may mean the availability of a request signal or data, or

idleness of input/output ports, or enough energy in the battery, depending on different

implementations. Therefore, event handling can be taken as resource allocation in an

SOC. After some event is handled by an IP core, its corresponding task can be carried

out.

In an event driven system, a task, when allowed to run, must return control when it

completes or when it cannot be executed further. In other words, the task cannot

perform an operation which would cause execution to suspend within that task. If the

task was half way through an operation and was waiting on more resources such as

Chapter 1 Introduction

data, it would need to remember where it was and return. When the resource that the

task was waiting on arrived, the task would then continue from where it had

previously stopped. A scheduler or dispatcher is used to allow other tasks to run when

the execution of the current task is completed or stopped.

When on chip nondeterminism and concurrency are taken into consideration, the

synchronous or software based event handler and scheduler designed by previous

research cannot satisfy the requirement of SOC.

IP core

I

STEP I

Clock/Power Domain I ACM

Memory

ACM

Memory

ACM

Memory

ACM

Memory

SOC

events tasks eventsresults
IP core

II

STEP I

Clock/Power Domain II

events tasks

events

results

IP core

III

STEP III

Clock/Power Domain III

events tasks eventsresults
IP core

IV

STEP IV

Clock/Power Domain IV

events tasks eventsresults

Virtual Self-timed Block

STEP II

Figure 1-4: Self-timed Event Processor and Virtual Self-timed Block

First of all, the operation of synchronous circuits (as well as the software running in

synchronous circuits) is controlled by clock signals. When several events come within

one clock cycle, they are taken as simultaneous by synchronous circuits and can only

be handled in the next clock cycle. If arbitration [kinn07a] involves due to the

unnecessary accumulation of events, synchronous circuits may use hundreds of clock

Chapter 1 Introduction

cycles to solve it and the corresponding latency may greatly deteriorate the

performance of IP cores as well as the entire SOC. Secondly, the nondeterminism of

event arrival means circuits for event handling cannot be powered off at any time.

Although the power consumption in these circuits may be trivial, given a high enough

frequency of the IP core and enough time, the total energy cost in these circuits cannot

be ignored.

On the other hand, asynchronous circuits have a great advantage in event handler and

scheduler design. Without clock control, an asynchronous event handler can respond

to new incoming events without delay, and the chance of metastability should be

greatly reduced. Similarly since no power is wasted in the handler (and scheduler)

when no change happens in the system, an asynchronous handler can fulfil its job

while keeps an energy hungry IP core in its sleep mode when no task is enabled.

Therefore, an asynchronous coprocessor rather than a simple asynchronous wrapper is

necessary to be used in a GALS based SOC content. This coprocessor helps IP cores

to work as event driven domains in a highly nondeterministic and concurrency

environment with limited power. This coprocessor is called a Self-Timed Event

Processor (or STEP in short) and the combination of one STEP with its processor

works as a “Virtual” Self-timed Block (or VSB in short) in the GALS architecture

(Figure 1-4). The main function modules of a STEP are as follows:

1) An asynchronous wrapper which can realize asynchronous/synchronous signal

and data conveyance

2) A power manager where a system level DPM policy is used to reduce the power

Chapter 1 Introduction

consumption while not seriously deteriorating system throughput. Since low

power technologies have been integrated into IP core design, the power manager

in a STEP provides not low power circuit realization but low power commands

to an IP core. In other words, the power manager dynamically adjusts the IP core

to use a proper operation mode according to the environment situation.

3) An event handler which can quickly respond to the incoming events and enable

their corresponding tasks. A memory about what tasks have been enabled by the

corresponding events (if it has not been executed yet) and which tasks have been

stopped due to lack of resources is kept in the handler.

4) A scheduler who chooses a task from all candidates for processing in an IP core

when the execution of the current task is completed or terminated.

The main contributions of this thesis are as follows:

1) To present the architecture of an asynchronous designed Self-timed Event

Processor where asynchronous communication, power control and event

handling are taken into consideration.

2) To obtain analytical solutions for stochastic models of DPM systems which for

the first time allow an infinite number of system states in mode switching

transitions. The achievement of an analytical solution enables a more accurate

estimation of the power/latency performance in an IP core with DPM control.

3) To present Fine Grain models for DPM systems for the first time which does not

take the cost in power manager circuits as cost free.

Chapter 1 Introduction

4) To present a thorough analysis of the implementation of Accumulation & Fire

policy with different kinds of IP cores. Both power efficiency and applicability

of this policy have been explored so as to prove its great potential in power

saving.

5) To model the structure of a Virtual Self-timed Block with the modelling tool of

Coloured Petri Net (CPN) where all nondeterministic and concurrent processing

in a VSB has been modelled and proved by simulation and state space checking.

6) To present the construction of a SOC with VSBs in MATLAB Simulink. A test

bench named as ball game was designed for the analysis of a VSB performance

in a real implementation.

1.4. Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 first categorises previous studies about DPM policies into two classes:

prediction policies and stochastic policies. When the overheads in mode switching

transitions of a processor are highlighted, a new policy named Accumulation & Fire

becomes promising to increase the power efficiency of a processor. This chapter also

introduces different modelling languages (tools) that are used in subsequent chapters

of this thesis.

Chapter 3 is about stochastic models for power-latency analysis of a VSB when

different DPM policies are used. In these models, both events incoming and task

executions of an IP core are modelled as continuous time Markov processes. The

integration of mode switching transition states in the stochastic models increases the

Chapter 1 Introduction

accuracy in our analysis. Three kinds of DPM systems, named as On-off DPM

systems, DPM systems with multiple inactive modes and DPM systems with multiple

active modes, have been modelled and analyzed. One DPM policy named as

Accumulation & Fire (or A&F in short) is highlighted in this chapter not only because

it has great advantage in trading latency for power for all DPM systems, but also

because its easy hardware realization.

Chapter 4 presents the modelling work of a VSB modelled in Coloured Petri Nets

(CPN). These CPN models focus on the concurrent processing between different

components of a STEP as well as that between a STEP and its IP core, so as to

improve system performance as well as avoid metastability. State space checking is

used to verify the correctness of CPN models.

Chapter 5 describes the implementation of an example SOC system with four virtual

self-timed blocks in MATLAB Simulink. Simulation results are provided when a test

bench named ball game is running in the model system.

Chapter 6 concludes this thesis and suggests some ideas for further studies.

16

Chapter 2

Background

2.1. Research in System-Level Dynamic Power Management

With rapid progress in semiconductor technology, portable devices are enabled with

sophisticated processing capability and can provide services that were only available

in desktop computers decades ago. However, the high frequency and chip density in

new designs not only bring fast execution performance, but also make battery-based

systems more energy hungry. Therefore, low-power design which tries to reduce the

power dissipation while still satisfying the latency requirement becomes a hot

research topic in the electronics field.

System level energy-saving technologies focus on increasing the energy efficiency in

portable devices. Dynamic Power Management (DPM) [beni98], for example,

provides power on-off control to a portable device whose computation units are event-

driven for reactive processing. These units are activated and can access the battery

power only when they are triggered by some external events to carry out the

corresponding tasks, and a so-called power management (PM) unit is added to the

system where some scheme (policy) is implemented to decide when and how to

Chapter 2 Background

shutdown or wakeup certain units. These computation units are called power

manageable components (PMCs) [beni00].

In system level, PMCs are modelled as black boxes. As an atomic block in power

management execution, the detail of task executions in a PMC is ignored by DPM

control. Instead, the (multiple) modes of operation that can be controlled for power-

latency trade-off are the fundamental characteristics of a PMC. A mode switching

transition command is issued by the PM when the current mode in the PMC cannot

minimize the power dissipation under certain latency constraints (or when the PMC

cannot minimize the latency under tolerable power dissipation). If a PMC only has

two operation modes: on and off, the corresponding mode switching transitions are

called shutdown (from mode on to off) and wakeup (from mode off to on)

respectively.

2.1.1. Cost of PMC Mode Transitions

As introduced in Section 1.2, mode switching transitions in PMCs have costs in both

power and latency. In most cases, the lower the power dissipation one mode can

provide, the longer latency and higher power dissipation are paid in the switching

transitions from/to the mode. Therefore, a switching transition to a mode with lower

power dissipation should only be carried out when the energy saved (or latency

improved) by the mode can compensate for that consumed in the corresponding mode

switching transition.

The concept of Break-Even Time (TBE) is defined in [beni00] and [lu00] to measure

the energy cost caused by a mode switching transition. The Break-Even Time for

switching from mode i to mode j in a PMC is defined as the minimum time spent in

Chapter 2 Background

mode j to compensate for the cost of entering this mode. Therefore, a switching

transition from mode i to mode j is carried out only when the PMC can spend at least

TBE in mode j.

If Tin and Tout are defined as the time cost for the switching from mode i to mode j and

visa versa respectively, TTR as the transition time is the sum of Tin and Tout.

TTR = Tin + Tout Equation 2-1

The average transition power dissipation PTR can be expressed as

TR

outoutinin
TR

T

PTPT
P

+= Equation 2-2

Pin and Pout in Equation 2-2 are the power cost spent in the transition to and from

Mode j respectively. If Pi and Pj are defined as the power dissipation of mode i and j

(Pi>Pj), TBE can be expressed as:

ji

iTR
TRTRBE

PP

PP
TTT

−
−+= if PTR>Pi Equation 2-3

TBE = TTR if PTR≤Pi

2.1.2. Predictive DPM Policies

The TBE values of a PMC are of great importance when some predictive DPM policy

is used. Predictive DPM policies turn a PMC to one mode with lower power

dissipation if the PMC is predicted to stay in the mode long enough. These policies

use “the correlation between the past history of the workload and its near future in

order to make reliable predictions about future events” [beni00].

The simplest prediction policy is called timeout policy, which does a mode switching

transition (for example, shuts down the PMC) after a fixed idle time (represented by

the parameter τ) during which no executions are carried out in a PMC. The PMC is

switched back to its previous mode when a new event arrives. This policy relies on

Chapter 2 Background

the assumption that a PMC is highly likely to remain idle if it has been idle for some

time. Although simple, this policy is widely used for many laptops and other portable

devices [lu00].

Therefore, if Tidle is the total time span of the idle period in a PMC, the timeout policy

shuts down the PMC when Tidle>τ and can only save the power of the PMC if

Tidle>τ+TBE. The choice of τ value in different PMCs relies on the conditional

probability of Q(predidleT , >τ+TBE | Tidle>τ). In order to differentiate power from

probability, alphabet P is only used for power and Q is used to represent probability

or probability distribution in this thesis. predidleT , here means the predicted length of

Tidle. If predidleT , > τ+TBE while Tidle<τ+TBE, the timeout policy increases rather than

reduce the power dissipation of a PMC. If a predicted idle period is longer (shorter)

than the actual one, it is called over-prediction (under-prediction). An over-prediction

means the corresponding DPM control worsens rather than improve the power

efficiency in a PMC, and an under-prediction means the energy saving that can be

brought by the corresponding DPM control is not fully used. In [beni00], two

measurements are used to reflect the quality of a PM when some predictive policy is

used. The concept safety is defined as the complement of the risk of making over-

predictions, and efficiency is defined as the complement of the risk to make under-

predictions. In this thesis, we redefine the two concepts to give them wider description.

The concept safety is defined as the percentage of the risk of making energy worse,

and efficiency is defined as the percentage of power saving compared with the

original power dissipation.

Chapter 2 Background

The timeout policy has two main advantages: it is general enough to be implemented

in almost all portable devices, and its prediction safety can be improved simply by

increasing the τ value. However, its limitation is obvious as well. It trades safety

against efficiency, and the power is wasted during the τ period. Therefore, advanced

prediction policies try to improve the prediction efficiency without much loss of

safety.

Some policies try to make a mode switching decision as soon as the idle period begins,

so that no energy is wasted in the τ period (since τ=0). These polices are called

predictive shutdown polices in [beni00]. If an active period is defined as the period

when a PMC is doing processing, it happens alternately with an idle period. In the end

of the (n-1)th active period, the PM makes a prediction about the length of nth idle

period based on the history data:

),,...,,,(111

_

−−−−−= kn

active

kn

idle

n

active

n

idle

n

active

n

predidle TTTTTFT Equation 2-4

Different functions F() are used by different policies to make the prediction safer or

more efficient. For example, the nonlinear regression equation in [sriv96], α

adaptation in [hwan97] and Artificial Neural Network in [lu06] are used as the F() in

their own implementations. A mode switching (shutdown) transition command is

issued when n

predidleT , >TBE.

Besides the prediction function F(), the prediction safety and/or efficiency also relies

on the amount of history data used for prediction (the parameter k in Equation 2-4).

The use of a large amount of history data makes the PM circuits’ complex, and

somehow counteracts the power saved by DPM control. A threshold method is given

by [sriv96] which shuts down a PMC when the ending active period is shorter than

Chapter 2 Background

some threshold (ThresholdT n

active <−1). This policy can only be used in PMCs whose

active periods are in L-shaped, i.e., a short active period in a PMC is often followed

by a long idle period.

Other prediction policies, which focus on wakeup transitions, are always called

predictive wakeup policies. These policies also predict the length of Tidle in Equation

 2-4, and a PMC is woken up as soon as predidleT , is reached. Compared with predictive

shutdown policies, these wakeup policies focus more on latency rather than power

dissipation in a PMC.

All these policies try to improve the power efficiency of a PMC without much

deterioration of the safety. However, there is no easy trade-off between efficiency and

safety in these policies, like the timeout policy. The prediction efficiency highly

depends on the correlation between continuous idle and active periods. Therefore,

their efficiency varies greatly in different implementations and simple variations in

parameters (like the k in Equation 2-4) do no guarantee prediction efficiency and/or

safety improvement. Therefore comparative simulation is indispensible in deciding

whether and which prediction policy can be implemented in one particular PMC.

A timer is indispensible in the PM for all kinds of prediction policies. Although the

timer is only used casually to record the time τ when the timeout policy is used, this

counter is always used to record the length of Tactive and Tidle for the predictive wakeup

policies. In these cases, the timer works as a clock in the PM, which is energy hungry

especially when an accurate record of Tactive and Tidle is needed. Besides, the PM can

hardly be taken as cost free, as claimed by most research about prediction policies.

Chapter 2 Background

2.1.3. Stochastic DPM Policies

Although highlighting the uncertainty (as well as the correlation) of the workloads,

predictive policies always assume deterministic response and transition times for a

PMC. However, the abstraction of a PMC as a black box makes this assumption

doubtful, and the other group of DPM policies, named as stochastic DPM policies,

prefers to model the execution in a PMC as a stochastic process as well. Rather than

trying to eliminate uncertainty by prediction, these policies try to take the DPM

control as an optimization problem under uncertainty. Therefore, these polices have

wider implementations in different PMCs to satisfy the power-latency trade-off

required by the environment or the users.

In most of these policies, both the workload and the PMC execution are taken as

Markov Processes and Markov Based Model is used to describe the processing in a

PMC under DPM control. The fitness of Markov Processes modelling portable

devices have been demonstrated in [simu00] where three experiments, with a hard

disk for a laptop, a personal communication interactive device and a WLAN card, are

carried out respectively.

2.1.3.1 Stochastic Model of DPM Systems

A stochastic process is a family of random variables {X(t), t≥0} where t is the time

parameter. The values assumed by the process are called the states, and the set of

possible values is called the state space. A stochastic process X(t) is called a Markov

Process if for any set of time t0<t1<…<tn<t, its conditional distribution has the

property:

Q[X(t)≤x | X(tn) = xn, …, X(t0) = x0] = Q[X(t) ≤x| X(tn) = xn] Equation 2-5

Chapter 2 Background

Where t0, t1, …, tn, t∈T and x0,x1,…,xn∈S. T and S are called the parameter space and

state space of the Markov process respectively. When both T and S belong to discrete

space, the Markov process is called the discrete-time Markov process. When T is a

continuous space and S is a discrete space, the Markov process is called the

continuous-time Markov process. A Markov model of a DPM system consists of

three parts (Figure 2-1):

Service Requestor

(SR)

Service Provider

(SP)

Power Manager

(PM)

Mode

Switching

Commands

<χ, µ, Pow,

Energy>

EQ TQ

Figure 2-1: The Architecture of a DPM system

A service requester (SR) is a Markov process with state set R which models the

arrival of service requests in the system (i.e., the workload of events).

A service provider (SP) is a Markov process which models a PMC where r operation

modes are provided. Transitions among these states are stochastic, which are

controlled by commands issued by the power manager. An SP responds to the

incoming events from the SR by execution of their corresponding tasks. All tasks

waiting to be executed are saved in a task queue (TQ) and the SP fetches new task

from the TQ by FCFS (First Come First Serve).

In [qiu99], the description of the SP has been specified as a set group <χ, µ, Pow,

Energy>. If M={Mi | i=0,1,2,…,r-1} is the operation mode set in an SP, we have:

Χ is an rr × matrix called the transition rate matrix of the SP. The χi,j (i<r, j<r)

Chapter 2 Background

component in the matrix represents the transition rate from Mi to Mj (the

transition is written as Mi,j later). Since the switching from Mi to itself is

instantaneous, χi,i is set to ∞. In case a mode Mj cannot be switched directly

from another mode Mi, the corresponding χi,j is set to 0.

Μ is an r vector and µi stands for the mean service rates of the SP when it is in

mode Mi.

Pow is an r vector and Powi is the power consumption in the SP in mode Mi.

Energy is an rr × matrix and Energyi,j indicates the energy cost of Mi,j. Energyi,i is

set to 0 because no extra energy is needed for the SP to keep in the same

mode.

A power manager (PM), which issues mode transition commands (Cmd) to the SP

following the function f: M×R→Cmd. This represents a decision process: the PM

observes the mode in the SP as well as the workload, makes a decision and issues a

command to the SP so as to control the future status of the system. The execution in

the PM is generally taken as cost free in both power and latency.

Given L is the maximum length of the TQ, vector Len={0,1,…L} represents the

variable length of the TQ. When Tr represents the set of mode switching transitions

Tr={Mi,j i≠j}, the full state space of a DPM system can be represented by

Sys=R× (M+Tr)×Len. A DPM policy π is the set of commands that is issued by the

PM when the system stays in any of its states Sys×Cmd→ π.

In a simple example, we assume that only one requesting mode exists in the SR (The

average interval time of requests generated by SR follows the exponential distribution

Chapter 2 Background

with mean value 1/λ), and the SP has two operation modes: M1 for mode on and M0

for mode off. L=1 is the maximum length of TQ, the full state space of the

corresponding DPM system has R× (M+Tr)×Len = 1× (2+2)× 2 = 8 states. We use

<Mi, n> to represent the state when the operation mode in SP is Mi and the TQ length

is n. Suppose two commands can be given by the PM: {wu, sd} (wu stands for

wakeup and sd stands for shutdown). A DPM policy can be expressed as follows:

Sys (M0,0) (M0,1) (M0,1,0) (M0,1,1) (M1,0) (M1,1) (M1,0,0) (M1,0,1)

wu 0 1 1 1 0 0 0 0

sd 0 0 0 0 1 0 1 1

2.1.3.2 The Generator Matrix and the Probability Distribution

A system generator matrix G=Sys× Sys is kept to record state transitions according to

the new arrival of events, the execution carried in the SP as well as commands given

by the policy. If)(tQ ji⇒ is the transition probability from state i to state j during time

0 to t and)(' tQ ji⇒ is its derivative, a generator matrix G is shown like below:

…………

…-σ
2,2

σ
2,1

σ
2,0

…σ
1,2

-σ
1,1

σ
1,0

…σ
0,2

σ
0,1

-σ
0,0

…………

…-σ
2,2

σ
2,1

σ
2,0

…σ
1,2

-σ
1,1

σ
1,0

…σ
0,2

σ
0,1

-σ
0,0

G =

A unit σi,j in G is called the transition rate from state i to state j which is calculated

by Equation 2-6 or Equation 2-7:

)0(
)(1

lim '

0
, ii

ii

t
ii Q

t

tQ
⇒

⇒

→
−=−=σ , i=1,2,…,Sys Equation 2-6

)0(
)(

lim '

0
, ji

ji

t
ji Q

t

tQ
⇒

⇒

→
==σ , i,j=1,2, …, Sys; i≠j Equation 2-7

According to queuing theory [klei75], for a continuous Markov process, a state i is

said to be recurrent if and only if, starting from i, eventual return to this state is

Chapter 2 Background

certain. A recurrent state is said to be positive recurrent if and only if the mean time

to return to this state is finite. A state i is said to be transient if and only if, starting

from i, there is a positive probability that the process may not eventually return to this

state.

State j is said to be accessible from state i if j can be reached from i within finite time,

which is denoted as i→j. If i→j and j→i, they are communicate, which is denoted as

i↔j. The set of all states of a Markov process that communicate with each other forms

a communicating class. If the set of all states of a stochastic process X form a single

communicating class, then X is irreducible.

If the Markov process is irreducible, the limiting distribution iit QtQ =∞→)(lim , Sysi∈ ,

exists and is independent of the initial conditions of the process. The probability

distribution among all states Sys is given by the unique solution of the equation: QG =

0 and ∑ ∈
=

Sysi iQ 1where Q= (Q0, Q1, …).

Therefore, if we use Gπ
 to indicate the generator matrix of the current DPM system

when a certain policy π is implemented, this matrix can be used to derive the

probability distribution among all states. In this case, the power cost can also be

defined as:

jiji

jiLnrji

nM

Lnri

inMpow EnergyQPowQC
jii ,,

,,,

,

,

, ,
χπ ∑∑

≠≤≤≤≤

+= Equation 2-8

In Equation 2-8, nM i
Q , and nM

ji
Q ,

,
represent the probability of state <Mi,n> and

<Mi,j,n> respectively. In many works like [beni99, qiu99, beni00, ren05], the average

length of TQ has been used as the measurement of the system latency, therefore, the

latency cost can be defined as:

Chapter 2 Background

∑∑
==

+=
L

n

nM

L

n

nMlatency
jii

nQnQC
0

,

0

,
,

π Equation 2-9

If П is the set of all possible policies π, an optimized policy πopt is a policy that can

minimize Cpow within certain latency restriction D:

Π∈≤ optpowpow CC opt ππππ
,, Equation 2-10

DC opt

latency ≤π
 Equation 2-11

This policy optimization has been described in detail when the system is modelled as

discrete Markov processes [beni99] or continuous Markov processes [qiu99]

respectively.

In all these papers, authors modelled mode switching transitions as Markov processes

in their models. It is first because these transitions are task dependent. For example,

the shutdown transition needs to save all system information to the memory before

gating the power supply to go into sleep mode. Therefore, the time and power cost in

this transition highly depends on the amount of system information involved, which

varies from task to task. This can be supported by Table 2 in [mihi04], which gives

different time costs for the shutdown and wakeup transitions (called A-S-A time in the

paper). Furthermore, the nondeterministic characteristic of an on board battery is

another important factor for the stochastic execution of mode switching transitions.

Recent papers [chia01, luci08] have disclosed that the energy consumption in a

battery is not linear, and the energy may be partially recovered after some idle period.

All these factors give a more nondeterministic character to the mode switching

transitions.

One thing that must be emphasized here is that the optimized policy chosen by this

method is highly parameter sensitive. In other words, whether the policy can achieve

Chapter 2 Background

the lowest power consumption highly depends on whether the workload parameter (λ)

as well as the SP (like µ, χ) used in the system level model is accurate or not.

Some research has been done to increase the robustness of the optimized policy. For

example, Hidden Markov Process in [tan08] and Partially Observable Markov Process

[qiu07] are used to give a better description of workloads whose variability may be

hidden or partially observable. Others [chun99] keep several optimized policies in the

PM. Each policy responds to a different group of possible parameters, and the PM can

dynamically change to a new policy when the environment varies. However,

considering circuit design and real system implementation, the robust optimized

policy achieved by these methods still faces problems in the implementation, as

shown below:

First of all, the safety of DPM policy is totally unexplored. These optimized policies

are trying to increase the power efficiency. However they do not measure the possible

unsafeness. If some unsafeness happens because of environmental changes, there is no

easy way to trade power efficiency for safety.

Secondly, it is difficult to adjust trade-off between power and latency. It is clear that

all power and latency requirements are implementation oriented and can be changed

from time to time. Therefore, the user prefers a DPM policy that can easily realize

different power latency tradeoffs without much change in the PM circuits. However,

every optimized policy is only for one particular latency (or power) restriction, and it

is not easy to find an optimized policy to fit the requirement of a new latency (or

power) restriction.

Chapter 2 Background

Thirdly, hardware circuits for the robust optimized policy may be very complex. The

more advanced Markov Processes are used to model the behaviour of a DPM system,

the more complex the corresponding circuits may be. If designers want to implement

several optimized polices for different parameter sets in their PM, the corresponding

circuits may increase in size several times since no evidence is given in these papers

that any two optimized policies have similarities.

Finally, it may involve a lot of possible redesign work for different implementations.

Since every optimized policy is effective only for one parameter set, the PM needs to

be redesigned every time the optimized policy is changed due to parameter changes.

No evidence shows this redesign work can be easily carried out.

All these reasons give us enough motivation to look for a sub optimized but easily

implemented policy for the real implementation. This policy should take both policy

efficiency and safety into consideration. It can realize an easy (online or offline)

adaptation for a new power latency trade-off. Besides, its realization in the PM should

be simple to keep the power overhead of the PM as low as possible.

2.1.4. Accumulation & Fire Policy

Generally speaking, one and only one command can be issued by the PM when the SP

is carrying out some mode transition (For example, only command wu can be issued

when the SP is carrying mode transition M0,1). Therefore, the main difference between

various policies π lies in how many tasks are in the TQ when the mode transition

commands are issued. If no less than one task is still left in the TQ when the shutdown

command is issued, it is called pre-shutdown in this thesis, and if more than one task

Chapter 2 Background

is available in the TQ before the wakeup command is issued, it is called accumulated

wakeup.

Although it may help an SP to reduce its power consumption, the pre-shutdown

method is not considered in this thesis because it may cause great latency for some

task. For example, if the PM decides to shut down its SP when the latter has no more

than two tasks in the TQ, the execution of the last two tasks must wait until the SP is

woken up again which may cause serious latency to these two tasks. Although FCFS

is considered in high level DPM model, many real systems prefer to use a priority

based policy for scheduling. In these cases, tasks with the lowest priority are

scheduled to be executed as the last one, even when they may come earlier than some

high priority task. If the pre-shutdown method is used, the low priority task may

NEVER get the chance to be executed in the SP because the SP is always shut down

before they are chosen to be executed.

Our main focus is on the accumulation wakeup method because it is similar to the

integrate and fire mechanism found in biological neural systems [buzs04]. One

biological neuron may generate its own stimulation pulse when it receives enough

stimulation pulses from other neurons. This mechanism helps many biological

creatures to complete some complex tasks with extremely low power compared with

electronic computers or chips. If this method uniquely used as a DPM policy, it is

called Accumulation and Fire policy or A&F policy in short in this thesis. This

policy is also referred as N-policy, which was first studied by Yadin and Noar

[yadi63].

Chapter 2 Background

Because of the simplicity of the A&F policy, analytical solutions for probability

distributions can be achieved even when an infinite number of states is involved.

Although the powerful calculation capability of modern computers makes the

numerical calculation involved in the QG=0 much easier than before, the analytical

solution of a Markov model (if the latter has) has a great advantage over its numerical

counterpart. First of all, the analytical solution can directly reflect the influence of

parameters on the probability distribution while the numerical solution cannot. When

multiple parameters can be changed to achieve better performance, the analytical

solution can indicate to the designer which parameter adjustment is the most effective.

Secondly, the accuracy of probability distribution calculated by the numerical method

depends on the number of states involved in the calculation. When only a small

number of states is used for calculation, the inaccuracy in the solution may be too

high to reflect the basic properties of the corresponding process. However, one can

hardly know in advance how many states are enough to reflect the properties of the

process. On the other hand, the accuracy of analytical solution is independent of the

number of states. Finally, if the numerical solution use as many as possible states for

calculation, the calculation complexity increases by n2 while that for the analytical

only increases by n where n is the number of states.

Since the A&F policy has great potential in power saving and can have analytical

solutions for more accurate analysis, many investigations have been carried out about

this policy. On the one hand, many queuing theory models have been used by

mathematical studies. To be more specific, if the SP (the server in queuing theory) can

be turned off from service providing sometimes, it is called “N-policy with single

removable server”. Hersh and Brosh [hers80] used the M/M/1 model, Teghen [tegh87]

Chapter 2 Background

used the M/G/1 model, and Wang and Huang [wang95, pear04] used the M/Ek/1

model to analyze the probability distribution in N-policy. The latest research about the

N-policy can be seen in [chou04, thom08]. Some optimization in N-policy is also

provided accordingly. However, these policies all take the server turn-on/off transition

as instantaneous and cost free, which makes their analysis of N-policy not suitable for

DPM implementations. Furthermore, all these studies limit themselves to deal with

simple SPs with only on/off modes. (Queuing theory uses T/S/N to describe different

queueing systems. T indicates the type of stochastic process for incoming customers,

S indicates the type of stochastic process for service providing and N represents the

number of servers in the system. For example, M/M/1 describes a queuing system

when both incoming customers and service in the server follows Markov Processes

and only one server exists in the system. For the meaning of other abbreviations, one

can use [klei75] for reference.)

On the other hand, electronic engineers also make attempts to implement this policy.

For example, in the ultra low power DSP processor designed for electrocardiogram

(ECG) applications [yseb07], 50 ECG samples are accumulated before activating the

DSP for processing. However, no mathematical analysis is given in the paper and the

accumulation limit of 50 is purely based on simulation results. Some models have

been built for the A&F analysis, while the models they have used seem not accurate

enough to reflect the DPM system behaviour. In the following sections, we use the

model given by [ren05] and [wang95] to demonstrate the previous research about the

A&F policy in both electronics and mathematics studies.

2.1.4.1 State Transition Diagram

Chapter 2 Background

When one and only one task is accumulated before the activation of an SP, the A&F

policy in this case is called the greedy [ren05] or eager policy [beni99], which serves

as the simplest stochastic policy of DPM. The analytical estimation of the average

power consumption for the greedy policy is given in [ren05], which is based on the

M/M/1 model [klei75] in queuing theory.

According to Section 2.1.3.2, a Markov process can be expressed by a generator

matrix. It can also be described by a state-transition diagram. Each state is denoted

by a circle (or ellipse) in the diagram and transitions among these states are

represented by arcs connecting the corresponding circles. The transition rate is

marked as an expression on the arc. An M/M/1 model describes the behaviour of a

system when there is only one server which provides service to incoming customers.

Both the execution rate (µ) in the server and the arrival rate (λ) of the customers

follow the exponential distribution.

1 2 r-1 r r+13

µ µ µµµµ

λ λ λ λ λ λ

µ

λ

0

µ

λ

Figure 2-2: The State-transition-diagram of the M/M/1 Model

Figure 2-2 is about the corresponding state-transition diagram, and the generator

matrix of the M/M/1 model is given below:

 0 1 2 3 …

0 -λ λ 0 0 …
1 µ -(λ+µ) λ 0 …
2 0 µ -(λ+µ) λ …
3 0 0 µ -(λ+µ) …
… … … … … …

As an irreducible Markov process with infinite states, the numerical solution for the

probability distribution can be achieved from the generator matrix when only n states

Chapter 2 Background

are involved in the calculation and the probability of rest states are thought to be 0. On

the other hand, an analytical solution can be found for a Markov process with infinite

states if the process satisfies two pre-requests:

1) The process has at least one delegate state. A delegate state is a state whose

probability can represent the probability of all others according to the equation

QG=0.

2) If Qd is the probability of the delegate state, the probability distribution of all

states can be expressed as a convergent serial of Qd.

Take the M/M/1 model in Figure 2-2 for example, the equation QG=0 is written as:

 -λQ0 + µQ1 = 0 Equation 2-12

λQ0 - (λ+µ)Q1 + µQ2 = 0 Equation 2-13

λQ1 - (λ+µ)Q2 + µQ3 = 0 Equation 2-14

 …

λQn - (λ+µ)Qn+1+ µQn+2 = 0 Equation 2-15

In Equation 2-12, Q0 can be used to represent Q1 as:

01 QQ
µ
λ= Equation 2-16

When Equation 2-16 is integrated into Equation 2-13, Q2 can also be represented by

Q0. The remaining probabilities can also be expressed through Q0 in Equation 2-17.

0)(QQ n

n µ
λ= Equation 2-17

Therefore, the state 0 in the M/M/1 model is a delegate state. The probability

distribution of {Q0, 0)(Q
µ
λ

, 0

2)(Q
µ
λ

, 0

3)(Q
µ
λ

,…} becomes a convergent series of Q0 if

Chapter 2 Background

and only if λ<µ. The probability distribution can be solved by introducing the

restriction equation∑ ∈
=

Si iQ 1. For the M/M/1 model, we have

∑
∞

=

=
−

=+++=
0

00

2 1

1

1
...])(1[

i

i QQQ

µ
λµ

λ
µ
λ

Equation 2-18

Therefore, the analytical solution for the M/M/1 model is given in Equation 2-19.

)1()(
µ
λ

µ
λ −= n

nQ Equation 2-19

Therefore, the probabilities of the 0 state and non-0 states in the M/M/1 model

indicate the proportion of the idle period (Tidle) with the active period (Tactive) of an SP.

2.1.4.2 Analytical Solutions for the Greedy Policy based on the M/M/1 Model

In [ren05], Twu and Tsd represent the average latency for wakeup and shutdown

transitions respectively (Tsd=1/χon,off and Twu=1/χoff,on). An idle period Tidle>0 happens

if and only if no more tasks are added to the TQ during the shutdown transition

(otherwise, a wakeup transition follows the shutdown transition immediately). When

the workload follows the Poisson distribution, the probability of non-zero idle period

can be calculated as follows:

Q(Tidle>0)=Q(no tasks arrive during Tsd)=)0(
sdT

Q = sdTe
λ− Equation 2-20

According to the greedy policy, the SP is woken up (and the idle period is terminated)

when a new workload arrives. Following the Poisson distribution, the average interval

between two continuous workloads is 1/λ and the average length of the idle period is

calculated below:

sdT

idle eT
λ

λ
−= 1

 Equation 2-21

Chapter 2 Background

With the assumption that the proportion between the average length of the non active

period (idleT +Tsd+Twu) and activeT is the same as that for idleT with activeT in the M/M/1

model, the average length of the active period is calculated below:

)
1
()(

1
wusd

T

wusdidleactive TTeTTTT sd ++
−

=++
−

= −λ

λλµ
λ

µ
λ

µ
λ

 Equation 2-22

Finally the corresponding average power dissipation P is derived in Equation 2-23.

wusdactiveidle

wuwusdsdactiveonidleoff

TTTT

TPTPTPTP
P

+++
+++

= Equation 2-23

sd

sd

T

TR

offon

T

TRonTR

on
eT

PPePPT
P λ

λ

µλµ
λλµ

−

−

+
−+−−

−=
)]()()[(

In Equation 2-23, PTR and TTR are defined in Equation 2-2 and Equation 2-1

respectively. The P in Equation 2-23 is still not accurate enough since the assumption

µ
λ
µ

λ

−
=

++ 1wusdidle

active

TTT

T
can only be satisfied when both Tsd and Twu are very small.

The inaccuracy lies in the absence of the wakeup and shutdown transitions in the

Markov model. Furthermore, this derivation of P can hardly be used for DPM

systems whose SP has multiple operation modes.

2.1.4.3 Optimal N-policy Based on the M/Ek/1 Queuing Model

In [wang95], Wang and Huang used the M/Ek/1 model to find the probability

distribution of N-policy, and optimized the parameter N accordingly. In their research,

the execution in the server is modelled as an Erlang type k process which means the

execution in the server can be divided into k independent stages and each of them

follows the exponential distribution with mean 1/kµ. A customer goes into the first

Chapter 2 Background

stage of the service (say stage k), then progresses through the remaining stages and

must complete the last stage (say stage 1) before the next customer enters the first

stage. The representations of state probabilities are defined as follows (In order to

keep the same as [wang95], P stands for probability only in this section):

0

00P The probability that there are no customers in the system and zero stages of
service when the server is turned off.

0

,knP The probability that there are n customers in the system and the customer in
service is in stage k when the server is turned off.

1

,inP The probability that there are n customers in the system and the customer in
service is in stage i when the server is turned on and in operation.

The probability distribution among all these states is given in the following equations:

0

00

0

1 PP k λλ = Equation 2-24

0

,1

0

knnk PP −= λλ (2≤n≤N-1) Equation 2-25

1

11

0

00 PkP µλ = Equation 2-26

1
1,1

1
1)(+=+ ii PkPk µµλ (1≤i≤k-1) Equation 2-27

…

The first and second equations describe the accumulation of N customers when the

server is sleeping. The service of every customer at this time is pending in stage k. In

the third equation, 1

11P indicates there is only one customer in its last service stage

(stage 1) when the server is active. If the service is completed, there is no customer

waiting for service and the server is turned off accordingly and the system moves to

the state 0

00P . Therefore, this equation indicates the shutdown transition in the server.

When no extra states are used to describe the behaviour when the server is under turn-

off transition, this research considered the shutdown (as well as wakeup) transition as

instantaneous. This assumption of instantaneous shutdown/wakeup transition derives

on even probability distribution among all inactive states,

Chapter 2 Background

i.e., 0

,1

0

2

0

1

0

00 ... knkk PPPP −==== . With the probability distribution, the service in the

system can be characterized by the following parameters:

LN is the expected number of customers in the system.

I represents the Idle Period, which is the length of time when the server is
turned off per cycle.

B represents the Busy Period, which is the length of time when the server is
turned on and in operation and customers are being served per cycle.

C represents the Busy Cycle, which is the length of time from the beginning of
the last idle period to the beginning of the next idle period.

The expected length of the idle period, the busy period and the busy cycle, are

denoted by E[I], E[B] and E[C]. All these characteristics of the service can be derived

from the probability distribution.

In order to optimize the parameter N, some cost variables are defined as follows:

Ch is the holding cost per unit time per customer present in the system.

Co is the cost incurred per unit time for keeping the server on.

Cf is the cost incurred per unit time for keeping the server off.

Cs is the start-up cost for turning the server on.

Cd is the shut-down cost for turning the server off.

With these cost definitions, the total expected cost per unit time, F(N) is given by

][

1
)(

][

][

][

][
)(

CE
CC

CE

IE
C

CE

BE
CLCNF dsfoNh ++++= Equation 2-28

The optimized value of N* can be derived by minimizing the corresponding cost

function F(N*), which satisfy:

)1*(*)()1*(−≤≥+ NFNFNF Equation 2-29

Chapter 2 Background

Although Co and Cf can be easily used to represent the power consumption for the

server (in our case, the SP) when the latter is on and off respectively, the cost of the

wakeup/shutdown transition cannot be simply represented by constants Cs and Cd

because both transitions are not carried out instantaneously. When different number of

tasks is added to the TQ during the shutdown or wakeup transitions, the power

performance of an SP varies accordingly. This variation may have great influence

about the choice of the optimized parameter N.

In conclusion, although many attempts have been made by electronics and

mathematics studies, their results are still too sketchy for the description of the

implementation of the A&F policy in a DPM system. Furthermore, these studies only

considered a SP (or server) with only two operation modes. New models need to be

built to describe the usage of the A&F policy in a DPM system whose SP has multiple

operation modes.

2.2. Coloured Petri Nets

Coloured Petri Nets (CPN), as one kind of high-level net for system modelling, is now

in widespread use for various practical purposes. This kind of high-level net model is

developed from low-level Petri Nets (PN) [pete81] for representing complex

information.

2.2.1 Petri Nets

Petri Nets, as a modelling tool for system behaviour, have been developed and

implemented for real world practice for decades. Traditionally, a PN is defined as a

tuple ∑= (P, T, A, N, M0) [alex98] where P is a finite set of places, which indicate

states of the modelled system by means of ellipses (or circles). Each place may

Chapter 2 Background

contain a dynamically varying number of small black dots, which are called tokens.

M stands for a marking, which is an arbitrary distribution of tokens on places. M0

represents the initial distribution of tokens on the places which is called the initial

marking. T is a finite set of transitions, which indicate operations in the system by

means of rectangles. The places and transitions of a PN are collectively referred to as

nodes (N). Nodes in a PN are connected by a set of directed arrows, which are called

arcs (A). Each arc connects a place with a transition or a transition with a place –but

never two nodes of the same kind. Some positive integer is attached to each arc which

is called the arc expression. If an arc points from node x to node y, node x is called an

input node of y and y is the output node of x.

If and only if each input place of one transition contains at least the number of tokens

prescribed by the expression of the corresponding input arc, the transition is enabled.

Otherwise, the transition is disabled because some of its input places lack enough

tokens. When a transition is enabled, the corresponding move may take place, which

is called the occurrence of the transition. Tokens from the input places are removed

from the input places and added to the output places after the execution of an

occurrence. With the occurrence of different transitions, tokens are moved among

different places and system processing can be modelled as a “token game”. If every

transition occurrence in the PN is called a Step, system marking is changed from M0

to M1 M2, …Mi and so on, where i is the step number of the system. If one and only

one transition is enabled in any step of the model, the corresponding system is a

sequential system. When more than one transition is enabled in some step, the

corresponding system is called a concurrent system. When several transitions are

Chapter 2 Background

enabled by Mi, the occurrence sequence of these transitions is nondeterministic, and it

may generate several different consequent markings Mi+1.

With all tokens having the same abstract meaning in Petri Nets, the system

representation of PN is limited to integer meaning by the number of tokens contained

in one place (0 means no token in the place). Therefore, two different nets have to be

used by the PN to represent two systems with many similarities. This presents no

problem in a small system, but it shows PN has limited power to describe a large real-

world system which has many similar but not identical parts. Using Petri Nets, these

parts must be represented by disjoint subnets. This not only means that the total Petri

Nets model becomes very large, but also presents difficulties to show the similarities

(and difference) between the individual subnets corresponding to similar parts.

2.2.2 Updating PN to CPN

In CPN, a more compact representation has been achieved by equipping each token

with an attached data value –– called the token colour. The data value may be of

arbitrarily complex type. For a given place, all tokens must have token colours that

belong to a specified type. This type is called the colour set of the place. Therefore,

both the number and colour of a token are used to represent the marking in the CPN.

Attaching a colour to each token and a colour set to each place allows a CPN to use

fewer places than would be needed in a PN. Tokens’ movement in a CPN becomes

more complex since enabling a transition depends not only upon token numbers from

each input place, but also upon token colours. It also means that the colours of input

tokens may determine the colours of the output tokens produced by ways of transition

occurrence. Therefore, more elaborate arc expressions are used in CPN to specify a

collection of tokens with a defined token colour.

Chapter 2 Background

With a colour set, a CPN place can represent a state of the modelled system which

must be represented by several places in a traditional Petri Net. Similarly, a CPN

transition can also represent a set of similar operations in the modelled system when

variables are used in the arc expressions surrounding a given transition. These

variables can be bound to different token colours (or values) so that arc expressions

evaluate to different values. A transition in a CPN model is enabled if and only if each

of its input places contains at least one set of tokens to which the corresponding arc

expression evaluates.

Besides arc expressions, the CPN also uses the guard of a transition to evaluate input

token values. The guard is a Boolean expression and may have variables in exactly the

same way that arc expressions have. The guard defines an additional constraint which

must be satisfied before the transition is enabled.

Similar to Petri Nets, CPN has its own mathematical definition of its syntax and

semantics. A CPN net can be defined as a set of (∑, P, T, A, N, C, G, E, I) satisfying

the requirement below [jens97]:

(i) ∑ is a finite set of non-empty types, called colour sets.

(ii) P is a finite set of places.

(iii) T is a finite set of transitions.

(iv) A is a finite set of arcs such that : φ=∩=∩=∩ ATAPTP

(v) N is a node function. It is defined from A into PTTP ×∪× .

(vi) C is a colour function. It is defined from P into ∑.

(vii) G is a guard function. It is defined from T into expressions such that:

])))((())(([: Σ⊆∧=∈∀ tGVarTypeBooleantGTypeTt

(viii) E is an arc expression function.

(ix) I is an initialization function.

Chapter 2 Background

With colours attached to tokens, and the extension in the expression of transitions and

arc expressions, CPN can represent a system with a more delicate and compact model,

or represent a system which cannot or hardly be represented by traditional PN. By

simulation of the CPN model, it is possible to investigate different scenarios and

explore the behaviours of a system.

2.2.3 CPN Tools and Example Implementation

CPN Tools [cpnt08] is the computer aid software for CPN modelling and analysis.

Users of CPN Tools work directly on the graphical representation of CPN models.

This software provides easy editing, simulation, state space analysis, and performance

analysis of CPN models.

The interface of CPN Tools can be seen in Figure 2-3 where an example CPN model

is given as well. This model is used to introduce the description and analysis functions

provided by CPN Tools.

1

2
3

Figure 2-3: The User Interface of CPN Tools

Chapter 2 Background

2.2.3.1 Color Set Description

The declaration of the example model is given in the dotted rectangle (1) in the left

side of the figure. The language used for declaration is called CPN ML. Colour sets

are declared first. Four basic colour types in Standard ML (SML) [miln90] have been

provided by the CPN Tools, which are declared in the “Standard declarations”: colour

INT (as the set of all integers), colour STRING (as the set of all text strings), colour

BOOL (as the set of Boolean values, true or false), colour E (as the set of only one

colour). Users can use any of these standard colours in their design, or declare their

implementation oriented colours. Colours below the “Standard declarations” are

colours declared by users themselves. A user defined colour can be a subset of the

three standard colours provided by the CPN Tools (INT, STRING or BOOL). For

example, the colour BIT is declared as an integer with only two values ‘0’ or ‘1’

(therefore a BIT token represents one bit of information). Users can also declare their

colours from some already declared colour sets by means of a built-in colour set

constructor ‘product’.

Variables used in the system are declared with the key word ‘var’. Each variable

declaration can introduce one or more variables with a type that has been declared

before. In the example, variable c is declared as an INT variable and a is declared as a

BIT variable.

Similar to high level languages in computer programming, a constant can also be

used in CPN models if it has been defined before. Constant declaration is similar to

variable declaration with the change of key word ‘var’ to ‘val’. For example, the

constant Threshold is declared as 5 in Figure 2-3.

Chapter 2 Background

Functions can also be declared in CPN Tools. Each function declaration introduces a

function. The function takes a number of arguments and returns a result. The

arguments and the result have a type which is either a declared colour set, the set of

all multi-sets over a declared colour set. In the example model, function P() uses the

random number generator discrete provided by CPN Tools to generate a random

number from 0 to 5.

2.2.3.2 Model Description

With the colour declaration, places can be put into the model. The name of a place is

written inside the corresponding ellipse. The colour set of the place is given in the

lower right side of the place and the initial tokens are given in the upper right side of

the place. If the upper right side of a place is empty, no initial tokens are available in

the place. Two operators ++ and ` are used for the construction of a multi-set

consisting of token colours. The infix operator ` takes a nonnegative integer to specify

the number of appearances of the element provided as the right argument. The ++

takes two multi-sets as arguments and returns their union (sum). For example,

1`1++1`0 describes two tokens with colours (values) of ‘1’ and ‘0’ respectively (In

this thesis, a pair of quotations ‘’ is used to quote a colour value when it may be

confused with the token number).

Similarly, the name of a transition is inside the rectangle and the Boolean expression

of the transition guard is given in the upper left side of the transition (sometimes the

guard is dragged to other side of the transition) within a pair of braces []. In the

example model, the transition toggle has one guard [a=0] and the transition reset has

one guard [a=1]. The expression of an arc can be found in the upper or lower side of

the arc. A simple arc expression has the format N`C (where N is the token number and

Chapter 2 Background

C is the token colour or a variable). When the number of tokens used in the arc

expression is 1, the 1` prefix can be omitted. Therefore, the expression for the arc

from the place A to the transition reset is written as a, which has the same meaning as

1`a. More complex logic expressions can also be used in arc expressions, always in

the form of “if … then… else…”. For example, the expression for the arc from the

toggle transition to the place A is written as “if c>Threshold then 1`1 else 1`0”. It

means that if the token value held in the place counter is bigger than 5 (Threshold),

one ‘1’ token is added to the A place, otherwise, one ‘0’ is added instead.

With all declarations of colours, variables, constant(s) and function(s), the model

given in the example describes a system where a counter (the place counter) is used

to update the count number with a certain frequency (the transition toggle) until some

threshold (the constant Threshold) is reached. A signal (the place A) is sent to reset

(the transition reset) the number in the counter by a random number (the function P())

and the counter starts again.

2.2.3.3 Simulation and State Space

A CPN model is built for analysis and performance testing. The most straightforward

kind of analysis is simulation, which in many respects is similar to the debugging and

execution of a program. A simulation tool palette (the dotted rectangle (2)) is used in

the CPN Tool to control the simulation. The user can choose to run the simulation by

single step or automatic multiple steps.

Figure 2-4 gives the marking of the example model in several steps of the simulation

(enabled transitions are marked in a dotted rectangle). The number of steps taken in

the simulation so far is shown in the left side of the model, just under the model name.

Chapter 2 Background

Tokens in the model change their values and places according to the model

construction until all transitions are disabled. In this way, the user can know whether

the occurrence of transitions in the model can correctly reflect the processing in the

modelled system, or whether the processing of the modelled system reflected by the

occurrence of transitions is correct or not. Therefore simulation result can help users

to update or correct their models.

Step=1 Step=6

Step=7 Step=107
Figure 2-4: Several Steps in the Example Model's Simulation

However, simulation result cannot obtain a complete proof of the properties of CPN

(Unless the nets or the properties are trivial) since the result achieved from simulation

cannot be guaranteed to cover all possible executions. The property verification is

given when full state spaces representing all possible executions of the model is

analysed. A state space tool palette (the dotted rectangle (3) of Figure 2-3) is also

provided by CPN Tools which does the state calculation, and the result is given in a

standard report as below:

Statistics
--- ------------------
Occurrence Graph Scc Graph
 Nodes: 7 Nodes: 1
 Arcs: 7 Arcs: 0
 Secs: 0 Secs: 0
 Status: Full

Chapter 2 Background

 Boundedness Properties
--- ------------------
 Best Integers Bounds Upper Lower
 Example'A 1 1 1
 Example'counter 1 1 1

 Best Upper Multi-set Bounds
 Example'A 1 1`0++1`1
 Example'counter 1 1`0++1`1++1`2++1`3++1`4++1`5

 Best Lower Multi-set Bounds
Example'A 1 empty Example'counter 1 empty

 Home Properties
--- ------------------
 Home Markings: All

 Liveness Properties
--- ------------------
 Dead Markings: None
 Dead Transitions Instances: None
 Live Transitions Instances: All

A full state space is a directed graph, where there is a node for each reachable

marking and an arc for each occurring binding element. Therefore, the first part of the

state space report is some state space statistics telling how large the state space is.

For example, the report indicates the directed Occurrence Graph uses 7 nodes and 7

arcs to show its full status. The generation of the full state spaces is in most cases

followed by the generation of the Strongly Connected Component Graph (SCC-

graph) which is derived from the graph structure of the state space.

The next two parts of the state space report contain information about the

boundedness properties. The boundedness properties tell how many (and which)

tokens a place may hold. The report clearly shows one and only one token resides in

the A and counter place of the example model respectively. The best upper integer

bounds for a place specify the maximal number of tokens that can reside on each

place in any reachable marking. For the place A, only one token can reside in the

place (as also shown in the Best Integers Bounds) which has the value either ‘0’ or

Chapter 2 Background

‘1’. For the token in the counter place, it may have five possible values from ‘0’ to

‘5’. The best lower integer bounds for a place specify the minimal number of tokens

that can reside on each place in any reachable marking.

Following the boundedness properties is the home properties, which is about the

reachable property of markings and transitions in the model. A home marking Mhome

is a marking which can be reached from any reachable marking. The report of the

example model shows all markings in the model are home markings although a

random function P() is used. A dead marking Mdead is marking which no binding

elements are enabled. For the example model, no marking is dead because all

markings can be repeated given enough simulation steps. A transition is live if from

any reachable marking we can always find an occurrence sequence containing the

transition. A transition is dead if there is no reachable marking in which it is enabled.

The report proves both transitions in the example model are live.

All this information given in the report can help users have a more specific and

thorough understanding of their models so as to correct errors which cannot be easily

found by simulation and improve the performance of the corresponding systems.

2.3. MATLAB Introduction

MATLAB is a highly versatile language for technical computing. The name stands for

Matrix Laboratory. It integrates computation, visualisation, and programming in an

easy-to-use environment where problems and solutions are expressed in familiar

mathematical notation. It is an interactive system whose basic data element is an array

that does not require dimensioning. This allows the user to solve many technical

computing problems, especially those with matrix and vector formulations, in a

Chapter 2 Background

fraction of the time it would take to write a program in a scalar non-interactive

language such as C or FORTRAN.

1

23

4 5 6

7 8 9

10

11

Figure 2-5: The GUI of MATLAB Simulink

2.3.1 Simulink

Simulink, as one important package of MATLAB, is used for modelling, simulating,

and analysis of dynamic systems. It supports linear and nonlinear systems, modelled

in continuous time, sampled time, or a hybrid of the two. Simulink provides a

graphical user interface (GUI) for building models as block diagrams (Figure 2-5).

Simulink includes a comprehensive library of sinks, sources, linear and nonlinear

components, and connectors. Such components can be easily added to the Simulink

model by click-and-drag mouse operations ((1) in Figure 2-5). Several components

which are used to build our model in Chapter 5 are listed in the right side of Figure

 2-5:

Inport components ((1) in Figure 2-5) and Outport components ((2) in Figure 2-5),

stand for the input/output port for all kinds of model systems and subsystems built by

MATLAB Simulink. When hierarchical design is implemented to build a complicated

Simulink model, modules in different level can be represented by a group of nesting

Chapter 2 Background

used subsystem components (3). When double clicked a subsystem component,

Simulink opens another window to give the detail of the subsystem.

A constant component (4) represents a constant signal or value that may be used in

the model design. A switch component (5) passes through the first (top) input or the

third (bottom) input based on the value of the second (middle) input. Some adjustable

threshold is set for each switch component. For example, when the threshold is 0, the

switch component passes on the first input if the second input is higher than 0 and

passes on the third input otherwise. A scope component (6) is used to observe the

variation of the input signal (the number of inputs is adjustable) in time (sample)

sequence.

A mux component (7) is used to merge all its inputs (the number of inputs is

adjustable) into one integrated output if the designer want to make the model more

concise. A demux component (8) is used to decompose an input to several outputs.

A memory component (9) outputs its input from the previous time step, applying a

one integration step sample-and-hold to its input signal. The memory component is

indispensible in the representation of feedback signals of a Simulink model. It is

because Simulink takes a signal propagating in any connection line (like (10) in

Figure 2-5) as instantaneous. The one sample step delay brought by every memory

component can prevent ambiguous execution order in a loop. Therefore, in our design

in Chapter 5, all memory components used for this aim are named as delay to

differentiate other subsystem components that are used for storing signals or data.

Chapter 2 Background

2.3.2 Mathematical Expression of Simulink Execution

x

(states)
u

(Inputs)
y

(Outputs)

y = f0(t, x, u)

(Update)

),,(uxtfx dc =
•

),,,(
1

uxxtfx
kk dcud =

+

where x=[xc; xd]

(Derivation)

(Outputs)

x = x0 (Initialization)

Figure 2-6: Mathematical Expression of Simulink Execution

Figure 2-6 presents the mathematical expression of a Simulink component. Vectors u

and y represent the inputs to and outputs from a Simulink component respectively.

Vector x represents the states of the component. xc and xd are used to represent the

continuous and discrete states in x respectively. If x0 represents the initial status of the

component, it is initialized to x during the initialization phase of Simulation model

execution. When the initialization completes, Simulation executes all components in

sequence according to the model’s structure/connection. For the execution of one

particular component, Simulink calculates the new output of the component based on

the current input u and state x. It calculates the component’s new state by derivation

(for a continuous system) and/or update (for a discrete system). This continues until

the simulation is complete.

Therefore, although the model built in Simulink cannot represent and simulate truly

asynchronous behaviours, because MATLAB is a synchronous platform, its

simulation result can be very close to that generated in a real asynchronous system

when the components used in the model are atomic and the sample intervals are short

enough.

Chapter 2 Background

2.3.3 Simulink S-function

When some design can not be represented by components provided by the Simulink

Library, the S-function component ((11) in Figure 2-5) can be used to describe their

design in program codes and integrate the codes with the other components in

Simulink. An S-function (system-function) is a computer language description of a

Simulink block. S-function can be written in MATLAB, C, C++, Ada, or Fortran. S-

function uses a special calling syntax that enables one to interact with Simulink

equation solvers. The form of an S-function is very general and can accommodate

continuous, discrete, and hybrid systems.

An S-function template in MATLAB language is given below (In MATLAB

programming, codes after % mark are comments). It is composed of three main

functions. Function mdlInitializeSizes is used to specify how many inputs, outputs as

well as discrete and continuous states are used in this S-function, and it also gives the

initial value of all states. The function mdlUpdate is used to realize the y=fo(t,x,u)

function introduced in Figure 2-6 to calculate the output value of y. It also specifies

the state derivation and update functions introduced in Figure 2-6. The function

mdlOutputs is used to specify which variable is used for output.

function [sys,x0,str,ts] = sfundsc1(t,x,u,flag)

switch flag,

 %%%%%%%%%
 % Initialization %
 %%%%%%%%%
 case 0,
 [sys,x0,str,ts]=mdlInitializeSizes;

 %%%%%%
 % Update %
 %%%%%%
 case 2,

Chapter 2 Background

 sys = mdlUpdate(t,x,u);

 %%%%%%
 % Output %
 %%%%%%
 case 3,
 sys = mdlOutputs(t,x,u);

 %%%%%%%
 % Terminate%
 %%%%%%%
 case 9,
 sys = [];

 otherwise
 error(['unhandled flag = ',num2str(flag)]);
end

%end sfundsc1

%==
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%==
%
function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;
sizes.NumDiscStates = 1;
sizes.NumOutputs = 1;
sizes.NumInputs = 1;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = 0;

str = [];
ts = [0, 0];
% end mdlInitializeSizes

%
%==
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step requirements.

Chapter 2 Background

%==
%
%system status

function sys = mdlUpdate(t,x,u)

sys = [x(1)];

%end mdlUpdate

%
%===
% mdlOutputs
% Return the output vector for the S-function
%===
%
function sys = mdlOutputs(t,x,u)

sys = [x(1)];

%end mdlOutputs

56

Chapter 3

Markov Models for Different DPM Systems

3.1. Power and Latency Analysis

3.1.1. Power Analysis

According to the introduction in Section 2.1.3, a stochastic model of a DPM system is

composed of three components: A service requestor (SR), a service provider (SP) and

a power manager (PM). An SP in a DPM system responds to the incoming events by

processing their corresponding tasks with one of its r operation modes in the

discipline of First-Come-First-Serve (FCFS). Some of the modes in the SP focus on

low power dissipation and do not provide a task service. These modes, like sleep, idle

or standby modes provided by many HDDs (Hard Disk Drives) and processors, are

generally called inactive modes. Other modes in the SP, which provide task execution

(but with different rates), are called active modes. If I and A are used to represent the

sets of inactive and active modes respectively, we have AIM ∪= where M={Mi |

i=0,1,2,…,r-1} is defined as the set of all operation modes in Section 2.1.3. Tasks for

their corresponding incoming events can only be executed in the SP when the latter is

in one of its active modes. Previous models in [beni99, qiu99, ren05] use the length of

the task queue (TQ) to reflect the status of a DPM system. One and only one state 0 is

provided in these models to present the status of a DPM system if the SP is inactive.

This representation may neither reflect the different inactive modes that the SP is in,

Chapter 3. Markov Models for Different DPM Systems

nor reflect transitions among these modes. When they are used for power and/or

latency estimation, they may cause great inaccuracy. For more accurate description,

the mode of an SP serves as the auxiliary index of the state in our Markov models.

In this chapter, dual indexing (n, Mi) is used to represent the states in the Markov

models. The first index n is the length of TQ and the second index is the current

operation mode chosen by the SP from its mode set M. We use Mi,j to represent the

mode switch transition from Mi to Mj, and the corresponding state index becomes (n,

Mi,j).

With dual indexes, we can describe the behaviour of a DPM system with more

accuracy. For example, when M0 and M1 are the two operation modes in the SP, state

(n, M0), (n, M1) and (n, M0,1) can represent different status of the DPM system

although the length of the TQ is the same for all these cases.

When the SP is switching among inactive modes or from an inactive mode to an

active mode or vice versa, no service is provided in the SP and the length of the TQ

increases monotonically if new events come during these transitions (suppose the

corresponding memory is unlimited). Additional states must be provided to the

Markov models to represent the change in the TQ in these cases. Otherwise the

execution of tasks which correspond to the incoming events during these transitions

can not be reflected in the model. It makes the power estimation far lower than the

real case.

Things are different for switching among active modes. DVS/DFS policies can be

regarded as implementations of active mode switching management systems within a

general DPM framework. According to [yuan05], DFS/DVS systems can be divided

Chapter 3. Markov Models for Different DPM Systems

into optimistic or pessimistic feasible systems. The former allows continuous task

execution during mode switching while the latter does not. If the DVS is pessimistic

feasible, new events incoming during ongoing DVS operations only cause an

increasing in the TQ, because the execution in the SP ceases before the complete of

the DFS/DVS transition. However, in a system with optimistic feasible DVS, all tasks,

whether they are enabled before or during the transition, are executed seamlessly

during the mode switching transitions. Therefore, these transitions can be regarded as

costing no extra energy and time [yuan05, pill01, beig08] (i.e. Energyi,i=0 for Aji ∈,)

and do not need to be modelled as explicit states. Optimistic feasible DVS is

supported in many advanced SOCs such as PowerPC 405LP [brok03] and is currently

seeing an increased representation in new research [beig08, mats08]. In this thesis we

concentrate on optimistic DVS/DFS. Not representing active to active mode switching

as explicit states makes it easy to construct models with closed-form analytical

solutions. For models of pessimistic DVS systems, additional states are needed to be

integrated in the stochastic models so as to reflect the DVS/DFS transitions and one

can seek [karg05] for detail.

In Section 2.1.3, an SP is described by a set group <χ, µ, Pow, Energy>, and two

assumptions should be emphasized here. One is that all mode switching transitions in

this chapter are assumed to be atomic, which means a mode switching transition Mi,j

cannot be replaced by two continuous mode transition like Mi,k and Mk,j. The other is

one and only one mode switching transition exists from one mode to the other. These

assumptions are satisfied by most implementations.

In this case, low power design at the gate-level or Register Transfer Level (RTL) tries

to lower the power consumption in the SP when it is processing and carrying out

Chapter 3. Markov Models for Different DPM Systems

mode transitions (i.e. reduce Powi and Energyi,j for mode Mi). High level DPM

policies, on the other hand, try to reduce the average power consumption (P) in the

SP by optimizing the latter’s distribution among all possible operation modes. The

unified expression for P is given in Equation 3-1.

∑ ∑∑ ∑
∈∈
∈∈

∈ =∈ =

+=

IjAi
orAjIi

orIji

L

n

Mnjiji

Mi

L

n

Mni

T

ji

T

i
QEnergyQPowP

,
,,

,, 0

,,,

0

, ,
χ

Equation 3-1

In the equation above, LT is the maximum length of TQ and ∑
=

T

i

L

n
MnQ

0
, represents the

sum of probabilities of all states when the SP is in state Mi. When multiplied with

Powi, the unit component ∑
=

T

i

L

n
Mni QPow

0
, represents the contribution to P when the SP

is in mode Mi. Therefore the first component of Equation 3-1 reflects the average

power consumed in the SP when it stays in any of its active or inactive modes.

Similarly, ∑
=

T

ji

L

n
MnQ

0
, ,

is the sum of probabilities of all states for mode transition Mi,j.

The product of Energyi,j and χi,j is the average power consumption of this mode

transition. Therefore the second component of Equation 3-1 represents the

contribution of none ‘active to active’ mode transitions to P . This unified equation is

used in the following sections to show the different power performance brought by

different policies.

3.1.2. Latency Analysis

Whatever policies may be implemented, the reduction in power of a DPM system may

always be at the expense of longer latency. System engineers need to balance both the

gain in power and the cost in latency before applying the proper DPM policy to the

Chapter 3. Markov Models for Different DPM Systems

PM in their systems. Previous studies [beni99, ren05, qiu99] always use the average

length of TQ as the latency measurement since it is directly reflected by the stochastic

models. However, the average length of TQ, which was used by all these models as

the measure of the system latency, is of very limited practical use. This measure has

no direct relationship to the Quality of Service (QoS) of an SP. For example for the

same SP, an increase in task queue may cause faster drop of QoS for multimedia tasks

than pure text tasks because the former tasks tend to take longer time to process. It is

much more important to know how long a task is likely to wait, than how many other

tasks are likely to sit before it in the TQ.

In system design, soft deadlines for task execution have been a popular measure for

real-world latency performance, and are widely used in many implementations like

DVS analysis [karg05]. Different from hard real-time deadlines, soft deadlines are not

compulsory. They serve more as guidelines for execution scheduling to optimize

system performance. Violation of such a deadline is not considered a catastrophe. The

quality of service in a processor can be measured by the probability of task deadline

violation. A high probability of deadline violation indicates bad QoS. The Average

Probability of Deadline Violation (APDV) for all tasks embedded in an SP is used

here as a much better measurement for the latency of different policies. This

measurement is more practically expressive to directly reflect the system latency

performance than the average length of TQ. If the APDV value for every state (n, Mi)

or (n, Mi,j) in a DPM system is known, the APDV value for the system is just the sum

of these APDV values weighted by their corresponding state’s probability.

Chapter 3. Markov Models for Different DPM Systems

For a clear representation in the APDV derivation, we can generally divide all states in

a DPM system into several groups (Table 3-1) according to the similarity in their

latency performance.

Table 3-1: The Representation of Different State Groups

Index Representation

(n, Mi) The state when the length of TQ is n and the SP is in active mode Mi.

(n*, Mi) The state when the length of TQ is n and the SP is in inactive mode Mi.

(n*, Mi,j) The state when the length of TQ is n and the SP is in transition from
inactive mode Mi to active mode Mj.

(n’, Mi,j) The state when the length of TQ is n and the SP is in transition from
active mode Mi to inactive mode Mj.

(n**, Mi,j) The state when the length of TQ is n and the SP is in transition from
inactive mode Mi to inactive mode Mj.

3.1.2.1 APDV for state (n, Mi)

Suppose an SP is in the state (n, Mi) when a new event arrives, the corresponding task

is added to TQ (the corresponding event handling is taken as instantaneously) and

there are n+1 tasks so far waiting to be executed. The task corresponding to the new

event is executed only after the completion of the previous n tasks, assuming FCFS

without losing generality (Non-FCFS execution sequences have no influence on the

average probability of deadline violation). The latency in this case is the execution

time of n+1 tasks in the SP. Suppose the n+1 tasks are executed in the same mode Mi

in the SP and the execution of each task following Poisson distribution, the execution

of n+1 tasks follows the Erlang distribution [klei75] with parameters n+1 and µi (µi is

the execution rate of mode Mi). A deadline violation happens when no more than n

tasks can be completed during DL, and the APDV(DL, n, Mi) in this case can be

expressed as Equation 3-2:

Chapter 3. Markov Models for Different DPM Systems

∑
=

=
n

k

iri kDLEMnDLAPDV
0

),;(),,(µ Equation 3-2

where DL is the mean deadline requirement of task execution.

When the SP use a serial of active modes Mc, Mc+1,…, Mi (χc≤χc+1≤…≤ χi) to execute

the n+1 tasks according to the length of the queue, we can first divide the n+1 tasks to

(i-c+1) groups Gc, Gc+1, …, Gi (Gc+Gc+1+…+Gi=n+1) according to the operation

modes that are used in their execution. Suppose mj (c≤j≤i) is the time slice given by

the system to complete the (j-c+1)th groups of tasks (Gc to Gj), a deadline violation

happens when any task group cannot be completed within its given mj time slot.

Therefore we have:

=),,(iMnDLAPDV)),;(...),;(),;(1(
111

1111 ∑∑∑
∞

=

∞

=
−−−

∞

= −−

−
Gcn

ccr

Gn

iiir

Gn

iiir nmEnmEnmE
iiii

µµµ

Equation 3-3

When only optimistic featured DVS/DFS technologies are considered, the SP can

carry out task executions during the ‘active to active’ transitions. Therefore, no extra

latency is caused by the ‘active to active’ transitions.

3.1.2.2 APDV for state (n*, Mi,j)

Similarly, if the SP is within the duration of one ‘inactive to active’ transition Mi,j

when a new event arrives, the execution of the corresponding task must first wait for

the completion of the transition Mi,j, and then the execution of the n tasks accumulated

previously. Suppose m is the time slice given to complete the Mi,j transition, the

corresponding APDV calculation is shown in Equation 3-4.

Chapter 3. Markov Models for Different DPM Systems

m

ji
jieMmAPDV ,),(,

χ−= Equation 3-4

The rest DL-m time slice is given by the SP to execute the n+1 tasks using mode Mj

(The new incoming events in the transition Mi,j or the execution in Mj does no

contribution to APDV value because FCFS). A deadline violation happens when the

transition Mi,j or the Mj execution cannot be completed in the given time. Therefore,

we have the corresponding APDV for state (n*, Mi,j) when m is integrated from 0 to

DL (Equation 3-5).

dmMmAPDVMnmDLAPDVMnDLAPDV
DL

jijji ∫ −−−−=
0

,,)),(1))(,,(1(1)*,,(

Equation 3-5

The APDV(DL-m, n, Mj) and APDV(m, Mi,j) components in Equation 3-5 come from

Equation 3-3 and Equation 3-4 respectively.

3.1.2.3 APDV for state (n*, Mi)

If an SP is in one inactive state (n*, Mi), the time spent by a task before its execution

completion can be divided into three parts.

First of all, it is the time spent before the PM issues a command to activate the SP. For

example, DPM systems with the A&F policy only activate the SP when N tasks are

accumulated in the TQ. If n<N-1, the PM only activates the SP after the other (N-n-1)

events have come. If m is the time spent in waiting for the other (N-n-1) events

coming, the corresponding APDV calculation is shown in Equation 3-6.

∫ −−= ∞
m ri dtnNtEMmAPDV),1;(),(λ Equation 3-6

After an activation decision is made, the SP starts one ‘inactive to active’ mode

transition. Finally, the execution of the example task is carried out in the SP after the

first n tasks have been executed. The corresponding APDV for the ‘inactive to active’

Chapter 3. Markov Models for Different DPM Systems

transition and the execution is given in Equation 3-5. Therefore, the APDV for the

new event cost in the three parts can be derived by the following equation.

∫ −−−−= DL
ijii dmMmAPDVMnmDLAPDVMnDLAPDV

0 ,)),(1))(*,,(1(1()*,,(

Equation 3-7

The APDV(DL-m, n*, Mi,j) and APDV(m, Mi) components in Equation 3-7 come from

Equation 3-5 and Equation 3-6 respectively.

3.1.2.4 APDV for state (n’, Mi,j)

If the SP is in an ‘active to inactive’ transition when the new event arrives, the first

part of its latency comes from the completion of the Mi,j transition. Given that m is the

time slot set for the completion of the Mi,j transition, the corresponding APDV is given

in Equation 3-4 where χi,j is the transition rate of Mi,j. When the transition is complete,

the next action of the DPM system varies according to different state (n, Mi,j). If the

PM decides to switch the SP to active mode Mk as soon as the Mi,j transition is

complete (for example, the current TQ length is longer than N in the A&F policy), the

corresponding APDV is given in Equation 3-8.

∫ −−−−= DL
jikjji dmMmAPDVMnmDLAPDVMnDLAPDV

0 ,,,)),(1))(*,,(1(1(),',(

(n≥N-1) Equation 3-8

The two APDV expressions in Equation 3-8 come from Equation 3-5 and Equation

 3-4 respectively.

On the other hand, if the PM prefers to keep the SP in the inactive mode Mj after the

Mi,j transition (for example, the current TQ length is less than N in the A&F policy),

the corresponding APDV becomes:

Chapter 3. Markov Models for Different DPM Systems

∫ −−−−= DL
jijji dmMmAPDVMnmDLAPDVMnDLAPDV

0 ,,)),(1))(*,,(1(1(),',(

(n<N-1) Equation 3-9

The two APDV expressions in Equation 3-9 come from Equation 3-5 and Equation

 3-7 respectively.

3.1.2.5 APDV for state (n**, Mi,j)

The actions in an SP when an ‘inactive to inactive’ transition takes place are similar to

that in the SP when an ‘active to inactive’ transition is carried out. Therefore, we can

use Equation 3-8 or Equation 3-9 to calculate the APDV(DL, n**, Mi,j) in this case.

3.1.2.6 APDV for an entire DPM system

With the APDV values for all state groups available, the average deadline violation for

a DPM system is the sum of these APDV values weighted by their corresponding

states’ probabilities.

∑∑∑∑
∈
∈ =∈ =

+=
Aj
Ii

L

n

jiMn

Ai

L

n

iMn

T

ji

T

i
MnDLAPDVQMnDLAPDVQDLAPDV

, 0

,*,

0

,)*,,(),,()(
,

 ∑∑∑∑
∈
∈ =∈ =

++
Ij
Ai

L

n

jiMn

Ii

L

n

iMn

T

ji

T

i
MnDLAPDVQMnDLAPDVQ

, 0

,,'

0

,),',()*,,(
,

 ∑∑
∈
∈ =

+
Ij
Ii

L

n

jiMn

T

ji
MnDLAPDVQ

, 0

,,)*,*,(
,

 Equation 3-10

3.1.3 Balance of both power and latency

In previous sections, we introduced the equations for P (the average power

consumption) and APDV (the Average Percentage of Deadline Violation). The two

variables are used to represent the power and latency features of a DPM system

respectively. System engineers may have different emphasis on power/latency of one

DPM system when it is used in different implementations. Therefore, we provide one

Chapter 3. Markov Models for Different DPM Systems

unified equation to evaluate the system performance in both power and latency so as

to help system engineers to choose correct DPM policy in their implementations.

)()1(),(DLAPDVTOL
P

P
TOLDLBalance

Max

×+×−=λ Equation 3-11

Tolerance of Latency (TOL, 0< TOL<1) in Equation 3-11 reflects how much relative

weight has been given to latency and this parameter can be adjusted by system

engineers according to their requirements. Therefore, (1-TOL) is the concern given to

the power dissipation. PMax in the equation above, as the maximum Pow value for all

SP modes, is used to normalize P and unify the dimension of the equation. Given the

value of TOL, a DPM policy which can minimize Equation 3-11 is the optimal policy

for both latency and power performance.

Furthermore, because all DPM policies can be regarded as better than others under

certain circumstances, recent research work focuses on a hierarchical architecture of

DPM design which can dynamically adapt different DPM policies to portable systems

[ren05]. A unified cost function like Equation 3-11 can serve as a standard assessment

framework of policies to allow hierarchical DPM to adjust different policies according

to the variation of environment parameters such as λ and DL.

With the measure in both power and latency, we try to model and analyze the

behaviour of different DPM systems in the following sections when different

stochastic policies have been implemented.

3.2. On-off DPM Systems

If only two modes are used in the SP (M={Mi | i=0,1}, I={M0}, A={M1}), we have an

on-off DPM system. Normally M0, M1, M0,1, M1,0 are called the sleep mode, work

Chapter 3. Markov Models for Different DPM Systems

mode, wakeup transition and shutdown transition respectively. The dual indexes

introduced in section 3.1 can be specified and simplified according to Table 3-2.

Table 3-2: Alias Index Used in On-off DPM Systems

Standard (n*, M0) (n, M1) (n*, M0,1) (n’, M1,0)

Alias n* N wu(n) sd(n)

In the following sections, two models are given about an on-off DPM System when

the greedy and the A&F policies are implemented respectively.

3.2.1. The Greedy Policy

3.2.1.1 The Description of the Markov Model

0*

1 2 3

sd0 sd1

wu1

µ µ µ

λ λ λ

µ

wu2

sd2

λ

λ

wu3

sd2
λ

λ λ

λ

λ

λ

δδδ

γ γ γγ

Figure 3-1: The Markov Model for the Greedy Policy

The transition-state-flow diagram of the Markov model for the greedy policy can be

seen in Figure 3-1. Similar to previous models [qiu99, ren05], λ and µ are used as the

arrival rate of external events from the SR and execution rate of tasks in the SP

respectively. State 0* indicates the SP is in its sleep mode (M0). When an event

arrives, the SP starts the wakeup transition (M0,1) which is represented by wakeup

states wu1, wu2 and so on. As explained in Section 2.1.3, both wakeup and shutdown

transitions are taken as Markov processes whose rates are represented by δ and γ

respectively (χ0,1=δ, χ1,0=γ) in Figure 3-1. During the wakeup transition, the system

starts in state wu1, and may then move to state 1 if the transition is completed without

Chapter 3. Markov Models for Different DPM Systems

any other events coming. Otherwise, the system may move from wu1 to wu2 and even

further if one or more event comes during the transition. In order to make our model

more general, we set LT=∞ and use an infinite number of wakeup states in Figure 3-1.

After the wakeup transition is completed (e.g. at the completion of state wu(n)), the

SP is activated and starts its execution of all n tasks in the TQ. The system is now in

(active) state n and the completion of one task enables the system to move one state to

the left side.

When the execution of the last task in the TQ is completed (system leaving state 1),

the SP starts a shutdown transition, described by shutdown states sd0, sd1 etc. If one

or more event arrives during the shutdown transition, the SP is activated immediately

on completion of the shutdown transition. Otherwise, the SP starts sleeping and

moves back to state 0*.

3.2.1.2 The Derivation of the Analytical Solution

According to the method introduced in section 2.1.3, the probability distribution in

Figure 3-1 can be solved analytically. In the derivation, (Active) state 1 is chosen as

the delegate state, and its probability (Q1) is used to represent the probabilities of the

rest states. The derivation detail is given in Appendix I, and Table 3-3 lists the group

of analytical solutions.

Table 3-3: The Analytical Solutions for the Greedy Policy

1)()(QQ n
nsd γλ

λ
γλ

µ
++

= Equation 3-12

1*0 QQ
γλ

µ
λ
γ

+
= Equation 3-13

*0

1

0

11
)()(])()[(Q

Q
Q n

n

k

knksd
nwu δλ

λ
δλ

λ
γλ

λ
δλ

γ
+

+∑
+++

=
−

=

−− Equation 3-14

Chapter 3. Markov Models for Different DPM Systems

∑ ∑∑
=

−

=

−

=

−− −=
n

k

n

k

kwu

n

ks

snk

n QQQ
1

1

1

)(

1

1

1])([)(
µ
λ

µ
δ

µ
λ

 Equation 3-15

1QSsd γ
µ= Equation 3-16

*0QSi = Equation 3-17

1QSwu δ
µ= Equation 3-18

1

2

]
)(

1[QSa γγλ
λ

δ
λ

λµ
µ

+
++

−
= Equation 3-19

]
)(

1[
)(

1
21

γγλ
λ

δ
λ

λµ
µ

δ
µ

γλλ
µγ

γ
µ

+
++

−
++

+
+

=Q
Equation 3-20

3.2.1.3 The Performance Analysis

In this chapter, we apply the greedy model in Figure 3-1 on some real example

systems. A FUJI MHF 2043AT HDD which was used in both [beni00] and [lu00]

serves as our first example whose parameters are given in Table 3-4.

Table 3-4: Parameters for a FUJI MHF 2043AT

Ps(W) Pw(W) Twu(s) Tsd(s) Pwu(W) Psd(W)

0.13 0.95 1.61 0.67 2.85 0.54

In Table 3-4, Ps, Pw, Pwu and Psd are the power consumption of the SP in its sleep

mode, work mode, wakeup transition and shutdown transition respectively. For better

presentation and comparison of the performance of different DPM systems, the

execution speed µ in the SP is normalized to 1 (for an SP with multi active modes in

the coming sections, µmax, as the fastest execution rate provided by the SP, is

normalized to 1), and the arrival rate λ and the transition rates in the matrix of χ are

normalized accordingly. Therefore, the reciprocal values of Twu and Tsd in Table 3-4

are used as δ and γ respectively. Because the overhead caused in mode switching

transitions is our main concern, we first examine the variation of mode switching

frequency.

Chapter 3. Markov Models for Different DPM Systems

P
ro
b
a
b
ili
ty

λ
Figure 3-2: The Frequency of Mode Switching Transitions

In Figure 3-2, we choose Ssd and Swu, which are the sum of probabilities of shutdown

and wakeup states respectively, as the measure of the mode switching frequency (The

calculation of Ssd and Swu are given in Equation 3-16 and Equation 3-18 respectively).

When the arrival of external events is sparse, the SP has a great chance to finish the

execution of all tasks in the TQ and be turned to sleep before one new event arrives.

Therefore, the mode switching frequency rises with λ increasing. However, when the

arrival of external events is dense, new task is added to the TQ with much faster speed

and the TQ is seldom to be empty. In this case, the mode switching frequency drops

when λ increases. Therefore, both curves in Figure 3-2 are convex with λ and the

variation in the mode switching frequency influences the power performance in the

DPM system (Figure 3-3).

When external events come sparsely (λ→0), the SP is seldom woken up and spends

most of its time in sleep. Therefore, the power curve above starts from Ps when λ→0.

With the increase of λ from the start point, P increases quickly because more and

more executions are needed in the SP.

Chapter 3. Markov Models for Different DPM Systems

λ

P
)(W

wP

SP
1λ

2λ

Figure 3-3: P in the FUJI HDD for the Greedy Policy

According to Table 3-4, the average power consumption cost in mode switching is

even higher than that consumed by the SP when it is in its active mode

(w
sdwu P
PP >+

2
), which means too frequent on-off mode switching transitions may

cause more power consumption in the system and an SP like this HDD is called a

high transition cost SP accordingly. In the figure, when the arrival rate is denser than

λ1, P becomes even higher than Pw. From then on, the power overhead brought by the

power control becomes higher than the achieved power saving in the SP (λ1 is called

the effective boundary later). This situation reaches its worst case when λ=λ2 and

decreases after that because the mode switching frequency drops. When λ→µ (µ has

been normalized to 1), the SP is kept busy doing executions and hardly shutdown.

Therefore, the power curve above ends in Pw.

In Section 2.1.3.2, we mentioned that the optimized policy given by previous study

only focuses on the energy efficiency, while it ignores the energy safety. Parameters

effective boundary and worst case are used to describe the energy safety of the greedy

policy (as well as the A&F policy in Section 3.2.2 later). These parameters indicate

Chapter 3. Markov Models for Different DPM Systems

the users how safe the corresponding DPM policy for their particular implementation

can be, and what is the worst situation caused by the policy.

In Section 2.1.4, we have introduced the equation for the average power consumption

of the greedy policy given by [ren05]. The power curves calculated from our equation

(Equation 3-1) and Ren’s equation (Equation 2-23) are compared in Figure 3-4 (‘Old

Pave’ in the legend stands for the power estimation made by Ren’s model and ‘New

Pave’ is the power estimation made by our model). Because Ren’s calculation uses

the proportion between the working period and the sleeping period (as well as the

wakeup and shutdown transitions) achieved from the M/M/1 model, its estimation of

power is higher than our estimation value and the greatest difference happens in the

middle where mode switching transitions happen frequently.

λ

P
)(W

wP

SP

Figure 3-4: Power Curves in Different Models

Another study is carried out with one IBM HDD [iran03] whose parameters are given

in Table 3-5. The IBM HDD can provide three inactive modes and one active mode in

its operation. Here, only its sleep and work modes are studied and the other modes

will be added to the investigation in the following sections. For easy calculation, we

assume both the χ and Energy matrices are symmetric for this SP, i.e. χi,j= χj,i and

Chapter 3. Markov Models for Different DPM Systems

Energyi,j= Energyj,i, which means the energy and latency cost in shutdown transition

are 4.75J and 5s respectively. We can calculate Pwu=Psd=0.95W.

Table 3-5: Parameters for IBM HDD

Mode Power (W) Start-up Energy(J) Transition Time to Active

Sleep 0 4.75 5s

Standby 0.2 1.575 1.5s

Idle 0.9 0.56 40ms

Work 1.9 0 0

Different from the parameters in Table 3-4, the average power consumption in the

mode switching transitions of IBM HDD is less than Pw (1.9W) (w
sdwu P
PP <+

2
) (an

SP like this HDD is called a low transition cost SP accordingly).

λ

P
)(W

wP

SP
Figure 3-5: P for the IBM HDD

After we normalize the wakeup and shutdown transition rates (δ=3/Twu γ=4/Tsd),

Figure 3-5 indicates the power curve does not surpass Pw in the entire variation of λ

and the greedy policy can help the SP to save power no matter how dense the external

events arrival rate may be (0<λ<µ).

In the next figure, we give the APDV value of the greedy policy in the IBM HDD

when we set the average deadline request to ten times of the average execution period

(DL=10/µ)(Figure 3-6). The lower curve shows the APDV value when there is no

Chapter 3. Markov Models for Different DPM Systems

power control in the system (the SP is always on). It can be seen that the APDV value

is not always 0 and may become very high when λ→µ. It proves that deadline

violation cannot be totally avoided even when an SP is never shut down.

The above curve in Figure 3-6 is the APDV curve for the greedy policy. The distance

between the two curves in Figure 3-6 suggests the additional latency brought by the

greedy DPM control. Figure 3-5 and Figure 3-6 clearly shows how the greedy policy

trades extension in latency for reduction in power.

A
v
e
ra
g
e
 P
e
rc
e
n
ta
g
e
 o
f
D
e
a
d
lin
e
 V
io
la
ti
o
n
 (
A
P
D
V
)

λ

Additional Latency

Figure 3-6: The APDV Value for the Greedy Policy (DL=10/µ)

Although the greedy policy is ‘to activate the SP as soon as a new event arrives’, the

APDV value for the greedy policy is not 0 when λ→0 and the SP is in the sleep mode

with almost probability 1. It is because the SP must carry on the wake up transition

before providing execution service. With the increase of λ, the SP spends more time in

the active mode, and incoming events when the SP is active do not have any wakeup

time cost in their latency. This explains the slight drop in the middle of the greedy

APDV curve. When events incoming becomes even denser, the time spent waiting for

the other tasks serve as the main reason for the extension of deadline violation and it

indicates the sharp increase in both APDV curves when λ→µ.

Chapter 3. Markov Models for Different DPM Systems

The APDV value depends not only on the policy used in the DPM system, but also on

the capacity of the SP. Given the same incoming events, their corresponding tasks can

be executed much faster in a SP with high capability than in a SP with low capability.

In this case, the deadline request of incoming events is relatively looser in a DPM

system with high capability SP than that in a DPM system with low capability SP.

This trend is clearly shown in Figure 3-7.

A
v
e
ra
g
e
 P
e
rc
e
n
ta
g
e
 o
f
D
e
a
d
lin

e
 V
io
la
ti
o
n
 (
A
P
D
V
)

λ

Figure 3-7: Different APDV Values in Different Deadline Requirements

3.2.1.4 Conclusions

The greedy policy, as the classic protocol of other advanced DPM policies, was

thoroughly studied in this section. An infinite number of states is used in the Markov

model in Figure 3-1 to represent the status of a DPM system when mode switching

transitions are carried out. This helps to make our model avoid inconsistent

representations in other models used in previous researches. Analytical solutions of

the probability distribution in the Markov model are derived, which makes the power

and latency estimation more accurate than before.

With two example SPs, the performance of the greedy policy is studied in the above

section. The property of the greedy policy to trade latency extension for power

Chapter 3. Markov Models for Different DPM Systems

reduction is clearly shown by both P and APDV curves. However, the reduction in

power consumption cannot be achieved in the full range of λ if a high transition cost

SP is used in the DPM system. The power reduced by the greedy policy is limited

especially when the deadline request is loose. All these shortcomings serve as

motivation to analyze more delicate policies which can better balance system

performance in power and latency, or trade more latency for power when needed.

3.2.2. The A&F policy

Considering the energy overhead of mode switching in an SP, a natural improvement

is to reduce the mode switching frequency. Therefore, we investigate the practice of

accumulating tasks before activating an SP for batch processing, which is the

Accumulation & Fire (A&F) policy introduced in Section 2.1.4.

In the A&F policy, an SP is not activated immediately when a new event arrives (and

its corresponding task becomes ready for processing). Instead, the SP remains inactive

while tasks accumulate in the TQ. This task accumulation continues until a certain

limit N is reached. The SP is then activated to batch process all accumulated tasks.

The moment of activation is called the fire moment in the A&F policy. The greedy

policy can be regarded as a basic A&F policy with N=1.

3.2.2.1 Markov model description

Chapter 3. Markov Models for Different DPM Systems

wu(N+1)wu(N)

sd(N-1) sd(N)

0*

1 2

1* 2*

N-1 N N+1

N-1*

sd0 sd1 sd(N+1)

λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ

µ µ µ µ µ

λ

λ

λ

λ

λ

µ

sd2

λ

µ

γ

δ

γ

δ

γγγγ

Figure 3-8: The Markov Model for the A&F policy

Figure 3-8 gives the transition-state-flow diagram of the Markov model for the A&F

policy. According to the introduction before, a sleeping SP is activated by a new

incoming event only when N-1 tasks are available in the TQ. Therefore, the TQ may

contain 0 to N-1 tasks before the SP is activated and the inactive state(s) extend from

only one state 0* in Figure 3-1 to N states (0* to (N-1)*) in Figure 3-8. The wakeup

transition only happens when there are enough tasks accumulated in the TQ.

Therefore the index of wakeup states starts from wu(N) instead of wu1 in the greedy

policy. If N=1, the A&F policy model in Figure 3-8 becomes the greedy policy model

in Figure 3-1.

Table 3-6: Analytical Solutions for the A&F Policy

1)()(QQ n
nsd γλ

λ
γλ

µ
++

= Equation 3-12

1
1

*])(1[QQ n
n

+

+
−=

γλ
λ

λ
µ

 Equation 3-21

*)1(
1

0

)(
)()(])()[(−

+−−

=

−−

+
+∑

+++
= N

Nn
Nn

k

kNnkNsd
nwu Q

Q
Q

δλ
λ

δλ
λ

γλ
λ

δλ
γ

Equation 3-22

1
1

)1()(QQ
n

k

k
n ∑=

=

−

µ
λ

 (n≤N)
Equation 3-23

∑ ∑∑
=

−

=

−

=

−− −=
n

k

n

Nk

kwu

n

ks

snk

n QQQ
1

1

)(

1

1

1])([)(
µ
λ

µ
δ

µ
λ

 (n>N)
Equation 3-24

Chapter 3. Markov Models for Different DPM Systems

1QSsd γ
µ=

Equation 3-16

1)])(1([QNS N
i γλ

λ
γ
λ

λ
µ

+
−−=

Equation 3-25

1QSwu δ
µ= Equation 3-18

1

1

]
)(

[QNS
N

N

a γγλ
λ

δ
λ

λµ
µ

+
++

−
=

+
 Equation 3-26

3.2.2.2 The Derivation of Analytical Solutions

Similarly as the derivation of the analytical solution of the greedy policy, (Active)

state 1 is chosen as the delegate state and its probability (Q1) is used to derive the

probability distribution of the entire model.

The derivation details are given in Appendix II, and Table 3-6 lists the analytical

solutions. It can be seen that these solutions become their counterparts in the greedy

policy in Table 3-3 when N=1.

3.2.2.3 The Performance Analysis

λ

P
)(W

Figure 3-9: P with Different Accumulation Limit Ns

In this section, we use the two example SPs whose parameters given in Table 3-4 and

Table 3-5 respectively to analyze the performance of the A&F policy. For the low

Chapter 3. Markov Models for Different DPM Systems

transition cost SP like the IBM HDD, the average power curves for different

accumulation limit Ns are given in Figure 3-9. It can be clearly seen that P decreases

continuously with the rise of N for all events arrival rate except the boundary values

(λ→0 and λ→µ) while the improvement extent reduces at the same time.

The A&F policy can play more important role if it is implemented in DPM systems

with high transition cost SP like the FUJI HDD. The power curves for different Ns of

the FUJI HDD are displayed in Figure 3-10.

Pon

Poff

P

λ1 λ2 λ3

λ

Figure 3-10: P for Different Ns (continue)

First of all, the increase of accumulation in this case can also reduce the average

power consumption in the SP continuously. The (N=1) curve describes the power

performance when the SP is controlled by the greedy policy. With high transition cost,

the greedy policy can only help the SP to reduce its power consumption when λ<λ1.

With the implementation of the A&F policy, the effective boundary (λ2 for N=2 and λ3

for N=3) extends greatly with the rise of N and the worse case power consumption

Chapter 3. Markov Models for Different DPM Systems

reduces as well. All these properties show that the A&F policy has great advantage in

power saving especially when implemented in the high transition cost SPs.

Figure 3-11 displays the latency performance for the IBM HDD when the A&F policy

with different Ns is implemented. The increase of N causes more deadline violations

in the system, which is just the trade-off for the corresponding reduction in power

consumption. According to the A&F policy, a new incoming event adding the nth task

to the TQ of a sleeping SP cannot activate the latter if n<N. The SP must wait for the

availability of another N-n tasks and the corresponding waiting time highly depends

on the event arrival rate λ. That explains why the APDV curves for the A&F policy

(N>1) drop sharply when λ<0.5. When λ>0.5, there are always many tasks

accumulated in the TQ, and the rise in APDV curves mainly comes from waiting for

other tasks’ execution.

A
v
e
ra
g
e
 P
e
rc
e
n
ta
g
e
 o
f
D
e
a
d
lin
e
 V
io
la
ti
o
n
 (
A
P
D
V
)

λ

Figure 3-11: APDV Values for Different Ns (DL=10/µ)

The latency performance for low transition cost SPs like the FUJI HDD can be

analyzed similarly, and the result shows a similar feature as Figure 3-11.

Chapter 3. Markov Models for Different DPM Systems

In section 3.1, we introduced the Balance variable (Equation 3-11) which estimates

both power and latency performance as a whole. When implemented in the same

DPM system, a DPM policy which can achieve the minimum Balance value is the

optimized policy for the implementation. For the A&F policy, the balance value is

also important in determining a proper value for the accumulation limit N in the

implementation.

TOL=0.6, DL=10

B
a
la
n
c
e

λ

TOL=0.4, DL=20

B
a
la
n
c
e

λ
1λ

Figure 3-12: The Balance Value for Different Ns (a) TOL=0.6 (b) TOL=0.4

Based on the power and latency analysis carried out in Figure 3-9 and Figure 3-11, we

give the balance values for the same DPM systems with different A&F limits. In

Figure 3-12, we first set TOL (Tolerance of Latency) to 0.6, which means the system

engineers care more about latency than power in the system performance. The figure

discloses that the greedy policy should be chosen as the optimized policy because it

has the shortest latency extension. Next we reduce TOL to 0.4, the result shows that

the A&F policy with large N serves as the optimized policy when λ>λ1 because it can

effectively reduce the power dissipation in the system.

As noted in Section 2.1.4, previous studies of the N-policy ignored events arrived

during mode switching transitions. Therefore, all shutdown and wakeup states are

omitted from their models. This omission not only causes inaccuracies in cost

Chapter 3. Markov Models for Different DPM Systems

estimation of mode switching transitions, but also changes the entire power estimation.

It is because the probability distribution of the entire system changes accordingly.

According to the M/Ek/1 model of N-policy in Section 2.1.4.3, the probabilities of

state 0* to (N-1)* are the same across the entire λ range (Qi*=Qj* for 0<i,j<N and

00
jkik PP = in Equation 2-25). In Figure 3-13, we compare the probabilities of states 0*,

1* and 2* (Q0*, Q1* and Q2* in the legend of Figure 3-13) for the A&F policy (N=3).

It is clear that these probabilities are different across the entire λ range, which makes

previous N-policy models inaccurate here.

λ

P
ro
b
a
b
il
it
y

Figure 3-13: The Probability of Inactive States

3.3. DPM Systems with Multi Inactive Modes

Many processors/micro controllers have some additional inactive mode(s)

(I={M0,…,Mi | i>0}) other than the sleep mode. These additional modes try to give an

SP a quicker response time to switch back to one of its active mode(s). The additional

inactive mode(s) is often called idle/standby mode. Compared with the sleep mode,

the SP in the idle mode has lower cost to switch from/to active mode(s), but consumes

more power when it is in the mode. This mode is mostly used when the SP is under

suspension and waiting to resume [beni99].

Chapter 3. Markov Models for Different DPM Systems

In the previous section, the greedy or the A&F policy is chosen to manage the wakeup

transition. With multiple inactive modes in this section, we can use different policies

or the same policy with different parameters (for example, the A&F policy with

different Ns) to switch among different modes. In this example, three modes, sleep,

idle and active, are used in an SP (M={0,1,2}, I={0,1}, A={2}), and their mode

switching transitions are shown in Figure 3-14.

active

idle sleep
shutdown

wakeupturn-on

turn-off

Figure 3-14: Mode Switching Transitions in DPM Systems with Multiple Inactive

Modes

Once the wakeup transition (M0,2) is completed, the SP starts a task execution. When

the last task in the TQ is completed, the SP first switches to the idle mode. This

transition (M2,1) is called turn-off in this section. If new events arrive when the SP is

idle, the SP switches back to the work mode for execution (the transition M1,2 is called

turn-on accordingly). Otherwise, after a Poisson time interval, the SP is shut down

(transition M1,0) and switched to the sleep mode to save power. In the example given

in Figure 3-15, the A&F policy and the greedy policy are implemented to manage the

wakeup transition (transition M0,2) and the turn-on transition (transition M1,2)

respectively.

3.3.1 Markov model description

In Figure 3-15, the turn-on (ton1, ton2 and so on) and turn-off (toff0, toff1 and so on)

states represent the corresponding transitions. Parameters α, β are used to represent

Chapter 3. Markov Models for Different DPM Systems

the normalized transition rates of turn-on (χ1,2) and turn-off (χ2,1) respectively. When

the greedy policy is implemented to control the turn on transition, only one idle state

(0*, M1) is needed to represent the case when the SP is in the idle mode.

When the TQ is empty, the SP may have low latency if it spends more time in the idle

mode than the sleeping mode. Otherwise the SP can have lower power consumption.

Therefore, different probability distributions among inactive modes can be used to

adjust the power-latency trade-off. In Figure 3-15, ε is the rate of leaving idle mode

for the sleeping mode. Large ε means short stay in idle mode and small ε means long

stay in idle mode.

wu(N+1)wu(N)

sd(N-1) sd(N)

0* 1* 2* N-1*

sd0 sd1 sd(N+1)

λ λ λ λ

λ λ λ λ λ

λ λ

λ

λ

sd2

λ

1 2 N-1 N N+1

ton1 ton2 ton3

toff1 toff2 toff3

3

idle

toff0

µ µ µµµµ

λ λ λ λ λ λ

µ

λ

λ λ λ λ

λ λ λ

β β β

α α α

µ

α

ε

λ

γ

δ

γ

δ

γγγγ

Figure 3-15: Markov Model for DPM System with Idle Mode

3.3.2 The Derivation of Analytical Solutions

Comparing Figure 3-15 with Figure 3-1 or Figure 3-8, we can find that the probability

of the idle state (Qidle), instead of Q1, serves as the delegate state. The derivation of the

Chapter 3. Markov Models for Different DPM Systems

corresponding analytical solutions is given in Appendix III. In Table 3-7, we conclude

the analytical solutions for the model in Figure 3-15.

Table 3-7: Analytical Solutions for DPM Systems with Multiple Inactive Modes

idle
n

nsd QQ)()(γλ
λ

γλ
ε

++
= Equation 3-27

idle

n

n QQ])(1[1

*

+

+
−=

γλ
λ

λ
ε

 Equation 3-28

*)1(
1

0

)(
)()(])()[(−

+−−

=

−−

+
+∑

+++
= N

Nn
Nn

k

kNnkNsd
nwu Q

Q
Q

δλ
λ

δλ
λ

γλ
λ

δλ
γ

 Equation 3-24

idle
n

ntoff QQ)()(αλ
λ

α
ελ

+
+= Equation 3-29

∑
+

+
+++

=
−

=

−−1

0

11
)()(])()[(

n

k
idle

nknktoff
nton Q

Q
Q

βλ
λ

αλ
λ

βλ
λ

βλ
α

 Equation 3-30

∑ ∑−∑=
−

= =

−−−

=

1

1 0
)(

1
1

1

0

)()(
n

k

k

s
kton

sk
n

k

k
n QQQ

µ
λ

µ
β

µ
λ

 (n≤N) Equation 3-31

∑ ∑−∑ ∑−∑=
−

= =

−−−

= =

−−−

=

1

0
)(

1
1

1 0
)(

1
1

1

0

)()()(
n

Nk

k

s
kwu

sk
n

k

k

s
kton

sk
n

k

k
n QQQQ

µ
λ

µ
δ

µ
λ

µ
β

µ
λ

 (n>N)

 Equation 3-32

∑
∞

=

==
0

)(

n

idlensdsd QQS
γ
ε

 Equation 3-33

idle

N
N

n

ni Q
N

QS]})(1[{
0

* γλ
λ

γ
ε

λ
ε

+
−−==∑

=

 Equation 3-34

idlewu QS
δ
ε= Equation 3-35

idle

n

ntofftoff QQS
2

0

)(

))((

α
αλελ ++==∑

=

 Equation 3-36

idle

n

ntonton QQS
α

εαλ
β
λ ++==∑

=0
)(Equation 3-37

22

2

)(

))((

)(

)(
]

)(

1
[{

λµα
ελαλλ

λµα
εαλλ

αβ
ελ

α
ελ

λµα
εαλ

βλµ
λ

−
++−

−
+++++++

−
+++

−
=aS

 idle
N Q]})([

γλ
λ

γ
λ

λµ
µ

δ
λ

λµ
ε

+
+

−
+

−
+ Equation 3-38

3.3.3 Performance Analysis

An example study has been carried out using the IBM HDD parameters in Table 3-5

including the idle mode. The result in Figure 3-16 shows that low power can be

Chapter 3. Markov Models for Different DPM Systems

achieved by either increasing the accumulation limit N or increasing the value of ε,

both of which can make the SP spend more time in the sleep mode than the idle mode.

However, the latency curve gives the opposite conclusion and system engineers may

end up using Equation 3-11 to balance their power & latency interests.

P
)(W

ε=0.3

λ=0.3

N

N=3

λ=0.3

ε

P
)(W

Figure 3-16: P with the Variation of N and ε

3.3.4 Further discussion

If more inactive states can be provided by an SP, the corresponding DPM system can

provide more flexible power management for transitions from different inactive

modes to the active mode, and/or for transitions among inactive modes. Besides the

power management solution given in Figure 3-15, another possible solution is to use

the A&F policy to control both the wakeup and turn-on transitions (Figure 3-17).

Different accumulation limits (N for the A&F policy in the wakeup transition and S

for that in the turn-on transition) can be implemented to control different transitions.

When S>1, tasks corresponding to incoming events must be accumulated to activate

the SP even when the latter is in its idle mode. Therefore, a group of idle states idle0,

idle1 and so on are used in Figure 3-17 to describe the behaviour of the SP in the idle

mode. The system engineers can use the same method introduced in this section to

derive the analytical solution for this model, and find the optimal value of both N and

S to achieve the optimized system performance in both power and latency.

Chapter 3. Markov Models for Different DPM Systems

wu(N+1)wu(N)

sd(N-1) sd(N)

0* 1* 2* N-1*

sd0 sd1 sd(N+1)

λ λ λ λ

λ λ λ λ λ

λ λ

λ

λ

sd2

λ

1 2 N-1 N N+1

idle1 idle2 ton(s)

toff1 toff2 toff(s)

s

idle0

toff0

µ µ µµµµ

λ λ λ λ λ λ

µ

λ

λ λ λ λ

λ λ λ

β

α α α

µ

α

ε

idle(s-1)

toff(s-1)

λ

λ

λ

λλ

µ

λ

γ γ γ γ

γ γ

δ δ

Figure 3-17: Markov Model for DPM Systems with Multi A&F Policy Control

The models given in this section can also be extended when more inactive modes are

involved. From Table 3-5, it can be seen that another inactive mode ‘standby’ can be

provided by the IBM HDD.

active

idle

sleep

s-active

pre-shutdown

turn-on
turn-off

sby

shutdownwakeup

Figure 3-18: Mode Switching in DPM System with Enabled Standby Mode

Compared with the idle mode, the HDD under its standby mode consumes even less

power while needing longer response time to be activated. Therefore, one possible

power management solution is given in Figure 3-18. Once the TQ is empty, the SP

starts a turn-off transition and move to the idle mode when the turn-off transition is

complete. When the greedy policy is implemented in the idle mode, the SP is turned

on as soon as one new event arrives. Without incoming events, the SP may be

Chapter 3. Markov Models for Different DPM Systems

switched to the standby mode (which is shown as sby in Figure 3-18) and this

transition is called pre-shutdown in our research. If the standby mode is also

managed by the greedy policy, the SP is switched to the active mode when a new

event arrives (Transition s-active), or to the sleep mode (Transition wakeup)

otherwise. Similar to previous models like Figure 3-15, the A&F policy is used to

control the wakeup transition and active the SP when enough events have been

accumulated.

If α1, β1 represent the execution rate of pre-shutdown and s-active respectively, and ε1

represents the rate of shutdown the SP to sleep mode, the Markov model for a DPM

system under the control of Figure 3-18 is given in Figure 3-19.

wu(N+1)wu(N)

sd(N-1) sd(N)

0* 1* 2* N-1*

sd0 sd1 sd(N+1)

λ λ λ λ

λ λ λ λ λ

λ λ

λ

λ

sd2

λ

1 2 N-1 N N+1

ton1 ton2 ton3

toff1 toff2 toff3

3

idle

toff0

µ µ µµµ
µ

λ λ λ λ λ λ

µ

λ

λ λ λ λ

λ λ λ

β β β

α α α

µ

α

ε

λ

γ

δ

γ

δ

γγγγ

sa1 sa2 sa3

ps1 ps2 ps3

sby

ps0

λ λ λ λ

λ λ λ
α1 α1 α1α1 λ

ε1

β1 β1 β1

Figure 3-19: Markov Model for DPM Systems with Three Inactive Modes

3.4. DPM Systems with Multiple Active Modes

If more than one active mode is enabled in the DPM system (A={Mi| i=1, 2, …, r-1}

(r>1)), the SP can choose different execution speeds to process tasks with different

Chapter 3. Markov Models for Different DPM Systems

power/latency requirements. DVS and DFS are the main techniques to switch

operation modes. As introduced in Section 3.1, [karg05] gives a stochastic model of

DVS with the pessimistic feature. In our work, we try to give the Markov model for

the DVS system with the optimistic feature, which may have much wider

implementation in real systems.

3.4.1 Markov model description

An example case is given where one sleep mode (M0) and two work modes (M1, M2)

are provided by an SP. The A&F policy is implemented to control the wakeup

transition. Once activated, the SP first uses a low execution rate µL to process tasks in

the TQ. Work mode M2 is used only when the length of TQ is longer than some

threshold H, and the SP in this case does task execution with a higher speed µH until

the length of TQ becomes shorter than H. The SP moves to sleep when the TQ is

empty and be activated until N new events are accumulated. Figure 3-20 gives the

Markov model when N≤H and the model for N>H is in Figure 3-21.

wu(N+1)wu(N)

sd(N-1) sd(N)

0*

1 2

1* 2*

N-1 N N+1

N-1*

sd0 sd1 sd(N+1)

λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ

λ

λ

λ

λ

λ

sd2

λ

µHµL µL µH µH

H-1 H

µH

λλ

µL µH

λ

µH

µL

γ

δ δ

γ

γγγγ

Figure 3-20: Markov Model for DPM/DVS System (N>H)

Chapter 3. Markov Models for Different DPM Systems

wu(N+1)wu(N)

sd(N-1) sd(N)

0*

1 2

1* 2*

N-1 N N+1

r-1*

sd0 sd1 sd(N+1)

λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ

λ

λ

λ

λ

λ

sd2

λ

µHµL µL µL µL µL

H-1 H

µL

λ

µL

λ

µH

λ

µL

γγγγ

γ γ

δ δ

Figure 3-21: Markov Model for DPM/DVS System (N<H)

3.4.2 The Derivation of Analytical Solution

Similar to the derivation in the on-off DPM system, active state 1 is chosen as the

delegate state, and the derivation of the analytical solution is given in Appendix IV. In

Table 3-8, we list the analytical solutions of the model in Figure 3-20. When H=1 and

µH = µL = µ, the equations given below becomes their counterparts in Table 3-6.

Table 3-8: Analytical Solutions for DPM Systems with Two Active Modes

1)()(QQ nL
nsd γλ

λ
γλ

µ
++

= Equation 3-39

1
1

*])(1[QQ nL
n

+

+
−=

γλ
λ

λ
µ

 Equation 3-40

*)1(
1

0

)(
)()(])()[(−

+−−

=

−−

+
+∑

+++
= N

Nn
Nn

k

kNnkNsd
nwu Q

Q
Q

δλ
λ

δλ
λ

γλ
λ

δλ
γ

Equation 3-41

∑=
−

=

−1

1
1

1)(
H

n

n

L

n QQ
µ
λ

 (n<H) Equation 3-42

21)(−− −+= n

H

n

H

L
n QQQ

µ
λ

µ
µλ

 (n=H)
Equation 3-43

∑−∑=
−−

=
−

−

=

1

0
1

0

)()(
Hn

k
H

k

HH

Hn

k
H

k

H

n QQQ
µ
λ

µ
λ

µ
λ

 (H<n≤N)
Equation 3-44

∑∑∑∑
−

=

−

=

−
−−

=
−

−

=

−−=
1 1

)(

1

0

1

0

)()()(
n

Nk

n

ks

kwu

sn

HH

Hn

k

H

k

HH

Hn

k

H

k

H

n QQQQ
µ
λ

µ
δ

µ
λ

µ
λ

µ
λ

 (n>H)

Equation 3-45

Chapter 3. Markov Models for Different DPM Systems

1QS L
sd γ

µ= Equation 3-46

1)])(1([QNS NL
i γλ

λ
γ
λ

λ
µ

+
−−= Equation 3-47

1QS L
wu δ

µ= Equation 3-48

1

)1(
1

1

2
]}

)(
1[

))((

])(1[

])(1[
)(

)1(
{ QHN

H
S

N

N

H

L

LH

H

L

L
H

LL

L

L

L
a γλγ

λ
σ
λ

λµ
µ

λµλµ
µ
λλµ

µ
λ

λµ
λµ

λµ
µ

+
+++−

−
+

−−

−
+−

−
−

−
−=

+
−

−

(λ≠µL) Equation 3-49

1

)1(

}
)(

1[
)1(

2

)1(
{ QHN

HHH
S

N

N

H

L

H

a γλγ
λ

σ
λ

λµ
µ

λµ
λ

+
+++−

−
+

−
−+−=

+

(λ=µL) Equation 3-50

For the case N<H, the derivation of Sa is more complicated. One approximate

analytical solution is just changing the position of N with H in Equation 3-49 or

Equation 3-50. This approximation does not cause much difference from the accurate

solution especially when λ<µL and we use this approximation value in our later

analysis.

3.4.3 The Performance Analysis

For DPM systems with multiple active modes, the corresponding power-saving as

well as latency depends on two parameters N and H. Large N and/or H brings low

power dissipation and long latency in different degrees. Optimized system

performance may be achieved by adjusting H as well as N.

Table 3-9: The Parameters of Example DVS System

fL(MHz) Pow1(mW) Energy0,1(mJ) χ0,1(KHz) Pow0(mW)

152 53 1.6 0.5 0

fH(MHz) Pow2(mW) Energy1,0(mJ) χ1,0(KHz)

380 500 0.6 0.5

For a case study using these models, we use an example SP whose key parameters are

given in Table 3-9. Most of these parameters are based on information from IBM

PowerPC 405LP [nowk02] in order to make the case study realistic.

Chapter 3. Markov Models for Different DPM Systems

In the study, µH is set to 1 and µL is set to 0.4 according to the relationship between fH

and fL. Figure 3-22 displays the system performance with various parameters H and N.

Figure 3-22(a) shows the power dissipation when λ=0.3, and it can be seen that the

power dissipation drops when N and/or H increase. Next, we calculated the Balance

value according to Equation 3-11 in order to find the parameter for the best

performance. According to Equation 3-11, the optimized performance comes from the

minimum value of Balance (λ, N, H, DL). Figure 3-22(b) shows the value of 1-

Balance (λ, N, H, DL) and the peak value therefore indicates the optimized

performance is achieved when H=7 and N=2 (λ=0.3, DL=20/µH, TOL=0.4). This

optimized performance varies from system to system. For example, Figure 3-22(c)

shows the optimized performance is achieved at H=3, N=2 when another group of

parameters are used (λ=0.5, DL=20/µH, TOL=0.6).

Λ=0.3,dl=20/miu2, r=2,h=7,tol=0.4

B
a
la
n
c
e

R

H

Λ=0.5,dl=20/miu2, r=2,h=3,tol=0.6

B
a
la
n
c
e

R

H

Λ=0.3

P

)(mW

N H

a b c

Figure 3-22: Analysis of DPM Systems with Multiple Active Modes

3.4.4 Further discussion

For an SP has three or more active modes, the Markov model in Figure 3-20 can be

extended, and in this case a series of H values (H1, H2,… Hr-1, r is the number of

active modes in the SP) are used and the SP changes to a new operation mode with

faster speed when it reaches these H states. Although complicated, the model with

multiple active modes can also be solved analytically.

Chapter 3. Markov Models for Different DPM Systems

In Section 3.3 and 3.4, we introduced the DPM systems with multiple inactive/active

modes respectively. They can serve as the basic models that can be extended to study

more complicated DPM systems, in other words, DPM systems with multiple inactive

and active modes. For example, the Markov model in Figure 3-23 describes DPM

systems with two inactive modes (sleep and idle) and two active modes (whose

execution rates are µL and µH respectively). The models developed from the basic

models given in Section 3.2 to 3.4 can help system engineers to do power-latency

analysis so as to optimize system performance.

wu(N+1)wu(N)

sd(N-1) sd(N)

0* 1* 2* N-1*

sd0 sd1 sd(N+1)

λ λ λ λ

λ λ λ λ λ

λ λ

λ

λ

sd2

λ

1 2 N-1 N N+1

idle1 idle2 ton(s)

toff1 toff2 toff(s)

s

idle0

toff0

λ λ λ λ λ λλ

λ λ λ λ

λ λ λ

β

α α αα

ε

idle(s-1)

toff(s-1)

λ

λ

λ

λλ

λ

γ γ γ γ

γ γ

δ δ

µL

µL µL µL µL µL µL µL
µH

Figure 3-23: DPM Systems with Multiple Inactive/active Modes

3.5. Fine Grain Model for On-off DPM Systems

All studies in this chapter so far take the control execution in the power manager (PM)

as cost free in both energy and latency. The PM, as the event/energy watch dog of the

entire DPM system, never sleeps. Although the power dissipation in the PM is small

compared with that in the SP, the former’s total energy consumption may not be

negligible given enough time accumulation. Furthermore, the control circuits of an SP

in many portable devices have extended to include some frequent routine executions

such as task scheduling. This design can first give the energy hungry SP more time to

Chapter 3. Markov Models for Different DPM Systems

sleep. Besides, because hardware scheduling can be many times faster than software

scheduling, this design can also reduce the system latency. In this case, a control unit

(CU) is employed to provide Event Handling (EH), Power Management (PM) and

Task Management (TM) to the SP. In these cases, the power consumption in a CU

cannot be simply ignored. Finally, the power consumption in a PM (or a CU) varies

with different DPM policies’ implementation. The efficiency of a DPM policy should

be judged by its power saving in the entire DPM system, not only that in an SP. All

these reasons give us enough motivation to make a new fine-grain power analysis of

DPM systems with full consideration of the cost in the CU.

3.5.1 The Fine Grain Structure of a DPM System

Service Requestor

(SR)

Service Provider

(SP)

Power Manager

(PM)

Power Control

TQ
Task Manager

(TM)

EQ

Control Unit

Operation

Modes Parameters

Event Handler

(EH)

New Task

Figure 3-24: The Fine Grain Structure of a DPM System

The nondeterministic events incoming and scheduling provides enough Markovian

characteristics to the CU, and it enables us to integrate the CU execution into our

previous stochastic models which previously only represents the SP states. In this case,

the structure of the DPM system introduced before is refined in Figure 3-24.

In such a system, events in the EQ first access the EH, where they are responded to

and released after their corresponding tasks are activated and added to the TQ. Tasks

Chapter 3. Markov Models for Different DPM Systems

in the TQ are used by the PM for the processing of a mode switching decision, and

they are also used by the TM for scheduling. A new task selected by the TM is loaded

into the SP for processing.

When considered as not cost free, a power on-off control can also be used to a CU

itself for power saving. Although the EH should be always on to respond to the

stochastically incoming events, the PM can be shut down after the SP is woken up

because no power control is needed in this case. Similarly, the scheduler in the TM

can be powered off when the SP is inactive. It is because the scheduling work has no

meaning if no task is executed in the SP. Therefore, the execution in the CU highly

depends on whether the SP is inactive or active. The length of the EQ is chosen to

represent the status of the CU in the Markov model. If m is the current length of the

EQ, symbol m is used to represent the status of the CU when the SP is active or

carrying ‘active to active’ transitions and m* is used to represent the status of the CU

when the SP is inactive or carrying non ‘active to active’ transitions. Although some

components like PM may be turned on/off during the operation of the CU for power

saving, the speed for the on/off transitions is much faster (100 times or more) than the

mode switching in the SP. Therefore, these on/off transitions are taken as

instantaneous and no more states are used to represent them in the Markov model.

Combined with the dual indexes (n, Mi,j) for SP states representation, triple indexes (m,

n, Mi,j) are used to represent the Markov states for a DPM system when the CU is not

regarded as cost free.

Chapter 3. Markov Models for Different DPM Systems

∑ ∑ ∑+∑ ∑ ∑=

∈∈
∈∈

∈ =∈ =

IjAi
orAjIi

orIji m

L

n
Mnmjiji

Mi m

L

n
Mnmi

T

ji

T

i
QEnergyQPowP

,
,,

,, 0
*,,,,

0
,, ,

χ

∑ ∑ ∑+∑ ∑ ∑+

∈∈
∈∈

∈ =∈ =

IjAi
orAjIi

orIji m

L

n
MnmCUI

Ii m

L

n
MnmCUI

T

ji

T

i
QPowQPow

,
,,

,, 0
,*,

0
,*, ,

∑ ∑ ∑+
∈ =Ai m

L

n
MnmCUA

T

i
QPow

0
,,

Equation 3-51

With the consideration of CU cost, the average power consumption (P) in Equation

 3-51 is modified from Equation 3-1.

The first two components are used to calculate the power consumption in the SP and

the rest are used to calculate the power consumption in the CU (PowCUI and PowCUA

are the power dissipation in the CU when the SP is inactive and active respectively).

The modification in latency (APDV) can be carried out similarly.

3.5.2 Fine grain Markov model for on-off DPM system

In this section, we try to extend the Markov model for on-off DPM system to integrate

executions in the CU. The alias names of states shown in the Markov model are given

in Table 3-10.

Table 3-10: Alias Index Used in Fine Grain On-off DPM Systems

Standard (m*, n*, M0) (m, n, M1) (m, n*, M0,1) (m*, n*, M1,0)

Alias mn* mn wu(mn) sd(mn)

In the example model, the A&F policy is implemented in the DPM system. With the

explicit representation of CU execution, the number of states in the Markov models

increases from n to n2. This makes it difficult to show the full model in one figure.

Therefore, each of Figure 3-25 to Figure 3-28 describes one single tile of the fine-

grain Markov model of the A&F policy.

Chapter 3. Markov Models for Different DPM Systems

Figure 3-25 shows the inactive states of the new fine-grain model. The black nodes in

the figure are the inactive states while the white nodes are the connected states in

other groups. Suppose one event comes when the system is in the state 00*. The EQ

becomes 1 and the TQ keeps 0 so the system moves to state 10*. The arrival of the

new event triggers the CU to start processing with the rate of µ1. If the processing in

the CU is completed before the arrival of the next event, the system moves to the state

01*. Otherwise, it moves to the state 20*. The more events that have been executed in

the CU, the more tasks accumulate in the TQ. Given enough time, the system may

reach state i(N-1)* (i>0), and the PM activates the SP as soon as one more task is

added to the TQ (The meaning for parameters like λ,δ,γ and so on have been

introduced in Section 3.2.1).

00* 10* 20*

λ λ

µ1 µ1

30*

λ

01* 11* 21*

µ1

31*

µ1 µ1

λ

λ λ λ λ

µ1

γ γ γ γ

sd00 sd10 sd20 sd30

γ

sd31sd21

γ

sd11

γ

sd01

γ

0(N-1)* 1(N-1)* 2(N-1)* 3(N-1)*

γ γ γ γ

sd0(N-1) sd1(N-1) sd2(N-1) sd3(N-1)

wu0N wu1N wu2N

Figure 3-25: The Tile of Inactive States

The tile of wakeup states of the model is given in Figure 3-26. Once there are N tasks

in the TQ, the SP starts its wakeup process and the PM part of the CU is shut down to

save power. At the same time, TM starts to sort tasks for the execution in the SP. The

parameter µ2 is used as the execution rate of the CU in this case. If the system is in

Chapter 3. Markov Models for Different DPM Systems

state wuij (i>0, j>N), its state movement has three possible directions: It may move to

the state wu(i+1)j when one new event comes, or move to the state wu(i-1)(j+1) when

the scheduling of j+1 tasks is complete, or move to the active state ij when the

wakeup process finishes.

wu0N wu1N wu2N

λ λ

wu3N

λ

wu0(N+1) wu1(N+1) wu2(N+1)

µ2

wu3(N+1)

λ

λ λ λ λ

γ γ γ γ

sd0N sd1N sd2N sd3N

γγγ

sd0(N+1)

γ

µ1 µ1 µ1 µ1

4(N-1)*3(N-1)*2(N-1)*1(N-1)*

δ δ δ δ

µ2 µ2
0N 1N 2N 3N

sd1(N+1) sd2(N+1) sd3(N+1)

δ δ δ δ

0(N+1) 1(N+1) 2(N+1) 3(N+1)

Figure 3-26: The Tile of Wakeup States

01 11 21

λ λ

31

λ

µ3

λ

λ λ λ λ

sd30sd20sd10sd00

12 22

λ λ

32

λ λ

02

µ3 µ3 µ3µ2 µ2 µ2

1(N-1) 2(N-1)

λ λ

3(N-1)

λ λ

0(N-1)

µ3 µ2 µ3 µ2 µ3 µ2 µ3

δ δ δ δ

1N 2N 3N0N

wu0N wu1N wu2N wu3N

µ3 µ3 µ3 µ3

Figure 3-27: The Tile of Active States

Figure 3-27 describes the behaviour of the system when the SP is active. The

parameter µ3 is used as the execution rate of the SP. The system in the state ij (i>0, j>0)

can move to one of three neighbour states: It may move to the state i(j-1) when the

execution in the SP is completed, or move to the state (i-1)(j+1) when the CU

Chapter 3. Markov Models for Different DPM Systems

completes a new task scheduling, or move to the state (i+1)j when a new event arrives

in the system. If the system moves to the state i1, the SP is shut down and move to the

shutdown state sdi0 when the execution of the last task is complete.

sd00 sd10 sd20

λ λ

sd30

λ

sd0N sd1N sd2N

µ1

sd3N

λ

λ λ λ λ

µ3 µ3 µ3 µ3

31211101

γ γ γ γ

µ1 µ100* 10* 20* 30*

wu0N wu1N wu2N wu3N

sd01 sd11 sd21 sd31

λ λ λ λ

01* 11* 21* 31*

γ γ γ γ

γγγγ

Figure 3-28: The Tile of Shutdown States

Figure 3-28 is the last tile of the system, which reflects the movement of the system

when the SP is shutting down. The TM is powered off because no more service is

provided in the SP and the PM is activated again to carry out A&F calculation.

Therefore, the execution rate in the CU becomes µ1 again. If the system is in state sdij

(j<N), it moves to inactive state ij* when the shutdown processing is complete. On the

other hand, if the system is in state sdij (j≥N), the SP is activated immediately after

the shutdown processing finishes because N or more tasks are already in the TQ.

3.5.3 The Derivation of Analytical Solutions

Different from the Markov models introduced before, no one delegate state can be

found whose probability can represent the probabilities of others. Therefore, only

numerical solutions can be achieved given the length of the TQ in the calculation.

3.5.4 Performance Analysis

Chapter 3. Markov Models for Different DPM Systems

In previous sections, we show that the A&F policy can trade more latency for power

when the CU is taken as cost free. However, when this assumption cannot be satisfied,

the analysis becomes complicated. When a simple DPM policy is implemented, the

cost in the CU is small. For example, when the greedy policy is used for the on/off

control, the PM needs no more than a group of OR gates to make the activation

decision. Both the latency and power cost in the PM is extremely small. On the other

hand, complicated computation is needed when some advanced policy is implemented.

For example, when the A&F policy is used (N>1), adders are needed in the PM

circuits to calculate the length of TQ, and arbiters [byst00] are also used to deal with

the metastability caused by simultaneous arrival of events. The complexity in PM

circuits increases both power dissipation and system latency. The fine grain model

introduced in this section can be used to balance the trade-off between the overhead in

the CU and power saving in the SP, and find the optimized policy which can reduce

the power consumption in the entire system.

To demonstrate the usage of the fine grain model, the example SP in Table 3-5 is used

again in the analysis (suppose only sleep and active modes are used). Table 3-11 gives

the parameters of the CU for different policies.

Table 3-11: Parameters of the CU

Greedy Policy

µ1 1000 µ2 100 PCU 141.6mW

A&F Policy (N=4)

µ1 100 µ2 100 PCU 200mW

In our analysis, we simply assume the maximum length of TQ (and therefore EQ) is 7

and further coming events are discarded when the TQ is full. Figure 3-29(a) describes

the power consumption in the example DPM system when the greedy policy is

implemented. When the straight line in the top of the figure stands for PW, (1) is the

Chapter 3. Markov Models for Different DPM Systems

gross power gain of the DPM system, and (2) is the net power gain of the system. The

power overhead paid in the CU is given in (3).

λ

P
)(W

1 2

3

P
CUP

SPP

λ

CUP
)(W

CUP for greedy policy

CUP for A&F policy

a b

Figure 3-29: Power Analysis of Fine Grain DPM models

Figure 3-29(b) compares the power overheads in the CU (CUP) when different

policies have been implemented. It is clear that the A&F policy CU (N=4) consumes

more power than the greedy policy CU. However, the overhead paid for the A&F

policy can be worthwhile because the P of the A&F policy is smaller than that of the

greedy policy even when the power cost in CU is taken into consideration (Figure

 3-30).

λ

P
)(W

P

P

for greedy policy

for A&F policy

Figure 3-30: Power Cost of Different Policies

Chapter 3. Markov Models for Different DPM Systems

The fine-grain model can also help analyze of the system latency. For example, as

shown in Figure 3-31, when the curve in the bottom of the figure represents the APDV

value (DL is set to 10/µ3) when the SP is always on, (1) and (2) serves as the gross and

net extra latency cost by DPM control when the A&F policy (N=4) is implemented.
T
h
e
 a
v
e
ra
g
e
 p
e
rc
e
n
ta
g
e
 o
f
d
e
a
d
lin
e
 v
io
la
ti
o
n

12

λ
Figure 3-31: The Latency Performance of A&F Policy (N=4)

Conclusions and Further Discussion

In this section, the fine grain model of an on-off DPM system was presented and

analyzed. When some advanced processor serves as the SP in a DPM system, the

execution of the PM is extended from simple on-off decisions to managing the

switching among various modes provided by the SP. Markov modelling of such DPM

systems when the PM is taken as cost free has been thoroughly explored in section

3.2.2 and section 3.2.3. The fine grain model designed for the on-off DPM systems

can be easily extended to represent DPM systems with multiple inactive and/or active

modes.

The fine-grain Markov model in this section can also help hardware designers to

improve their circuits. The same high-level DPM policy can have various

implementation circuits in the PM/TM with different power/latency parameters. The

Chapter 3. Markov Models for Different DPM Systems

analysis given in this section can help hardware designers to compare the performance

of these circuits as well as their influence on the entire system.

With DPM control, IP cores are triggered by incoming events, such as data, signal and

energy tokens. For the more explicit energy driven systems [kans03], the SP, which

stands for the main processor in the system, can provide the execution only when

enough energy is available. The CU in this case represents the energy-harvesting unit

which is always alert to the environment and carries out the harvesting execution

when the energy that can be collected is higher than that is consumed in the task

execution. Energy instead of data events is accumulated in this unit and the activation

of the main processor depends on this accumulation. We believe that our current

model, which is derived mainly with data and signal events in mind, may be further

refined and modified to better suit energy driven systems. An immediate next task is

to develop a more systematic and coherent representation of harvested energy as

atomic events as well as example models of CUs from real-world energy harvesting

systems.

104

Chapter 4

Hierarchical CPN Models for a VSB

With stochastic models built in Chapter 3, the A&F policy shown to have great

potential to reduce power consumption in all kinds of SPs (no matter how many

operation modes they have), and even when the PM (or CU) part of a DPM system is

not cost free. The Parameter N in the A&F policy can be used to trade off power

against latency. The simple A&F mechanism makes this policy easy implement in

hardware without much complexity in circuit design. Therefore, this policy is chosen

as the power management policy in the design of a Self Timed Event Processor

(STEP), which can help an IP core to work as a Virtual Self-timed Block (VSB) in an

asynchronous SOC context.

The Fine Grain model of a DPM system introduced in Section 3.4 also discloses the

high concurrency of a DPM system (now specifically a VSB). The execution of

existing events in the CU (now a STEP) may be carried out concurrently with the

handling of new incoming events. Similarly, the execution of tasks in the SP (now

specifically an IP core) may be processed concurrently with the execution of events in

the CU. When no global clock is available, a VSB has to deal with nondeterministic

Chapter 4. Hierarchical CPN Models for a VSB

cases brought not only by the asynchronous environment, but also by the

asynchronous operations in different parts of STEP and its IP core.

Therefore, the design of a reliable and high performance STEP becomes difficult if

designers go directly into hardware design in gate level, as some important interaction

patterns may be easily ignored when designing such a complex system. Some

potential flaws brought by the nondeterministic nature of the environment may not

happen frequently, but the lack of an adequate solution brings great hidden danger for

the implementation of STEP. It is essential to provide methods that enable debugging

and testing of the entire system (or at least some central parts of the system) prior to

implementation and deployment.

Coloured Petri Nets (CPN) is a language for the modelling and validation of systems

in which concurrency, communication, and synchronisation play a major role

[jens07]. The construction and analysis of CPN can be carried out in CPN Tools,

which is an industrial-strength software tool. Users can take advantage of this tool to

simulate the behaviour of the modelled system, and to verify its properties by means

of state space methods and model checking.

Modelling of a complex system is always carried out in levels. It is difficult for a

system designer to implement every detail of its system in a complex model. If some

errors are contained in the model, it is time consuming to find the real cause of an

error, because the error may have propagated through the system. Therefore, dividing

a complex system into different modules in a hierarchy and using the top-down design

flow to carry out the model design is an efficient modelling method. Besides, models

at different levels of a design hierarchy have their own usages. Models in the lower or

lowest level of the hierarchy present a clear and detailed description of executions of

Chapter 4. Hierarchical CPN Models for a VSB

the corresponding system. They can be mapped to hardware components and circuits

using direct mapping [shan02] or synthesis [sing06]. These models are

implementation oriented and must be re-designed if the corresponding implementation

is changed. Models at the higher level of the hierarchy, although abstract and having

no direct connection with hardware circuits, remain robust when the implementation

changes, and can be used for the analysis of similar systems different only in some

detail.

Although many solutions can design models in a hierarchy, CPN is chosen because it

can clearly show the concurrent execution in different parts of one model. With CPN

models, the design idea of STEP with the implementation of the A&F policy can be

realized in the form of signals and data processing. Simulations and State space

checking is used to prove the correctness of CPN models at different levels.

4.1. A top Level Model of a Virtual Self-timed Block in CPN

According to the introduction in Section 3.4, a CU (now a STEP) is roughly divided

into an Event Handler (EH) for handling stochastically incoming events, a Power

Manager (PM) which gives mode switching decisions to the IP core and a Task

Manager (TM) which selects a suitable task from the TQ and loads it to the IP core

when necessary. Although the A&F policy can be implemented into all kinds of DPM

systems, currently we assume only a simple IP core with just on/off modes to be

implemented in a VSB design. A top level CPN model (Figure 4-1) is built in this

section to show the basic connection among different parts of a VSB.

4.1.1 The Color Set Description

Chapter 4. Hierarchical CPN Models for a VSB

Three colours have been declared and used in this model. Colour BIT is declared to

have only value ‘0’ and ‘1’, which is used to indicate the signal changes in a VSB.

When the corresponding system is a hardware system, the colour BIT becomes the

fundamental colour in the CPN model, and places with the other colours used in high

level model like Figure 4-1 will be eventually decomposed into a combination of

places with BIT colour set in the lowest level model.

Figure 4-1: Top Level Model of a VSB

Colour TASK is declared to represent tasks that can be carried out in the IP core. In

the top level model, all tasks have the same abstract meaning. Therefore, the TASK

colour is declared as BIT whose token value represents whether the task is ready for

execution in the IP core (value ‘1’) or not (value ‘0’). In the lower level model, the

TASK colour should be specified when the execution of different tasks is not identical.

In this thesis, all tasks are assumed to be independent, which means any execution

sequences of these tasks are acceptable (although different execution sequence may

bring variation in system performance).

Colour EVENT is declared to represent events accessing VSBs in an SOC frame.

Similar to the declaration of colour TASK, EVENT is declared as BIT in the top level

Chapter 4. Hierarchical CPN Models for a VSB

model since all events are identical. In this thesis, an event is an open concept. It can

represent energy, data processing requests, communication requests or others.

Therefore, the abstract declaration of colour EVENT in the top level model helps the

model to have a wider representation, and the colour of EVENT can be re-declared

according to the specified concept of EVENT in different implementations. Different

from the colour TASK, an EVENT ‘1’ token represents an event arrived in the current

VSB and an EVENT ‘0’ token indicates either an event for the current VSB is not

ready, or an event that has no relationship with the current VSB.

4.1.2 The Model Description

After the introduction of the colour declaration, we can now describe the model in

Figure 4-1. Tokens in the place EQ represent all incoming events waiting to be

responded to by a STEP. Similarly, the place TQ represents the status of all tasks that

can be executed in the IP core. An initial token L`0 is attached to the TQ place. The

integer constant L is used to indicate the number of tasks embedded in the IP core of

the current VSB. The initial value ‘0’ indicates that all L tasks are not ready for

execution and waiting for the incoming of their corresponding events.

When there is at least one ‘1’ EVENT token in the EQ place and one ‘0’ TASK token

in the TQ place, the transition EH is enabled. The occurrence of this transition

removes one EVENT token from the EQ place, indicating that one incoming event

has been responded to by the STEP. At the same time, a ‘0’ token in the TQ place is

replaced by a ‘1’ token, indicating one task is ready for execution. When a VSB is

designed for data processing, the possible asynchronous/synchronous data transform

Chapter 4. Hierarchical CPN Models for a VSB

performed in an asynchronous wrapper is also represented by the occurrence of the

EH transition.

The EH transition is enabled again when further events arrive, and each occurrence

updates one ‘0’ token in the TQ place to ‘1’. When the i`1++(L-i)`0 marking shows in

the TQ place, it means that i out of L tasks in the IP core are ready for execution.

However, when no more ‘0’ tokens can be found in the TQ place, it means that all

tasks provided by the IP core are ready for execution. If new events come at this time,

they cannot be responded to by the STEP until their corresponding tasks have been

processed in the IP core. Therefore, the EH transition becomes disabled when no ‘0’

TASK token is available in the TQ place.

The place Sleep is declared as BIT colour set and its token indicates the status of the

IP core in the current VSB. By the initial token ‘1’, the IP core is indicated to be

inactive initially. When the A&F policy is implemented in the STEP, another constant

integer N is declared in the model. Therefore, the transition PM is enabled only when

there are more than N TASK ‘1’ tokens in the TQ place. The TQ place and the PM

transition are connected by a double-headed arc. A double headed arc is shorthand

for two directed arcs in opposite directions between two nodes which have the same

arc expression. The occurrence of the PM transition toggles the token value in the

Sleep place to ‘0’, which indicates the wakeup processing in the IP core. It adds one

BIT ‘1’ token to the Load place as the consequence of the completion of the wakeup

processing. As mentioned in Section 3.5, the A&F policy is only used when the IP

core is inactive and the PM circuits should be shut down to save power as soon as the

IP core is activated. This design idea is reflected by the expression of the arc directed

Chapter 4. Hierarchical CPN Models for a VSB

from the Sleep place to the PM transition, which indicates the latter transition can

only be enabled when the token value in the Sleep is ‘1’.

Although the first occurrence in the EH transition adds one ‘1’ token to the TQ place,

the TM transition is enabled only when the occurrence of the PM transition puts one

token in the Load place. It is because the TM is supposed to be powered off when the

IP core is sleeping. The availability of one token in the Load place indicates the

completion of the wakeup processing in the IP core, so the TM transition is enabled

afterwards. The occurrence of this transition consumes one ‘1’ token in the Load

place and one TASK ‘1’ token in the TQ place. It adds one TASK ‘1’ token to the

NTask (meaning New Task) place to indicate one new task chosen from all ready

tasks is loaded to the IP core for execution. At the same time, one TASK ‘0’ token is

added to the TQ place, indicating the chosen task in the NTask place is not scheduled

before its execution is completed in the IP core.

If the IP core is inactive, TASK ‘1’ tokens in the TQ place are used by the PM and

TM transitions for occurrence in sequence. However, if the IP core is active, no task

accumulation in the PM is needed and new added TASK ‘1’ token is only be used for

the enabling of the TM transition.

When three execution units EH, TM and PM in the STEP are represented by three

transitions with the same name in the model, their concurrent executions can be

clearly represented by the simultaneous enabling of these transitions. For example,

when N<L, the transition TM is enabled when a token is available in the Load place

and the transition EH may be enabled at the same time if another EVENT ‘1’ token

appears in the EQ place (Figure 4-2(b)). Concurrent executions can benefit a VSB

Chapter 4. Hierarchical CPN Models for a VSB

since parallel processing can reduce the latency of the VSB, but they may also bring

hidden dangers as well. For example, two occurrence sequences exist when both TM

and EH transitions are enabled simultaneously. If the EH transition occurs first, it

adds another task for scheduling. While the first occurrence of the TM transition

indicates the new ready task is not used during current scheduling. The random

occurrence sequences of the two transitions cause no trouble in the top level model

since all tasks are regarded identical, while they can bring hazards in the scheduling

result when tasks are thought to be different. Therefore, a low level model should

solve this hazard brought by concurrent execution in the STEP.

When one TASK token is available in the NTask place, the Execution transition is

enabled. The occurrence of this transition indicates the execution of the current task in

the IP core, and it adds one TASK ‘1’ token to the RQ (means Result Task Queue)

place. Generally speaking, the result generated by the execution of one task in the

current VSB either releases some system resources like the data bus, I/O port or

battery power, etc, or generates new data or requests. Therefore, the completion of

one task can trigger some event, so as to enable some other task to be executed.

Therefore, the post-processed TASK token in the RQ place is used to enable the

OutCt (means Output Control) transition which represents all necessary preparation

of a new event (for example, request signal generation, data path preparation,

browsing the route table to determining the destination VSBs and so on). Finally one

EVENT ‘1’ token is added to the OEQ (means Output Event Queue) place and sent to

the environment. The occurrence of OutCt transition also adds one token to the Load

place which enables the TM transition to choose another task for the IP core’s

execution.

Chapter 4. Hierarchical CPN Models for a VSB

When all TASK ‘1’ tokens have been consumed in the execution transition, the

Shutdown transition is enabled. Its occurrence toggles the token in the Sleep place to

‘1’, which means the shutdown process is completed.

Without a global clock inside the VSB, the operation in the IP core as well as in the

STEP can be carried out concurrently. This concurrent execution can also be reflected

by the simultaneous enabling of transitions in the CPN model. For example,

transitions Execution and EH may be enabled simultaneously, which means that the

STEP needs to respond to new incoming events when the IP core is processing. This

concurrent processing can improve the performance of the VSB. However, some

concurrency may also bring problems to the VSB. For example, when no more TASK

‘1’ token is in the TQ place and one EVENT ‘1’ token is in the EQ place are available,

both Shutdown and EH transitions are enabled (Figure 4-2(c)) and different

occurrences of the two transitions have different consequences. If the Shutdown

transition occurs first, the new TASK ‘1’ token added by the occurrence of the EH

transition is used in task accumulation. Otherwise, the new TASK ‘1’ token is directly

used for scheduling in the TM transition. The random occurrence of the two

transitions may bring contradictory operations in the VSB when a new task is enabled

during the shutdown processing. The IP core may be confused about whether to

continue the shutdown processing or start a new wakeup processing. This confusion

may cause data loss or even more serious consequences and should be avoided.

Therefore, some solutions should be added to the low level model of the IP core

control interface so that the shutdown processing cannot be disturbed before its

completion.

Chapter 4. Hierarchical CPN Models for a VSB

4.1.3 The Environmental Set Description

The places and transitions introduced so far construct the top level model of a Virtual

Self Timed Block. In order to check the behaviour of the model and verify its

properties, some places and transitions must be added so as to simulate the behaviour

in the environment. These places and transitions are highlighted by the dark shade so

as to differentiate from their counterparts describing the current system.

Equipped with environmental places/transitions, the model given in Figure 4-1

describes a closed system, and the event sent by the current VSB to the environment

finally stimulates some other event to come back to the current VSB. Transitions Env

and Env1 are used to describe this procedure by means of an EVENT type variable

event. Therefore, given one token in the OEQ place (no matter what value it has), the

transition Env is enabled and the occurrence of this transition indicates the

corresponding event is sent out to the environment. As the events incoming is

modelled as a stochastic (in most cases Markovian) process, how quickly the outgoing

of the event from the current VSB to the environment can stimulate an event from the

environment to the current VSB is uncertain. Therefore, a random function P() is used

in the expression of arc from the Env transition to the EQ place. The declaration of

this function is given below:

 fun P() = poisson (2.5)

This function uses the random number generator poisson provided by CPN Tools to

generate a random integer number which follows the Poisson distribution. The

number 2.5 in the function declaration is the rate λ in the Poisson distribution and can

be changed according to the features of the implementation environment.

Chapter 4. Hierarchical CPN Models for a VSB

Therefore, when the random number generated by the P() function is greater than 1,

an EVENT ‘1’ token is added to the EQ place after the occurrence of the Env

transition, which means one new event arrives at the current VSB and waits to be

responded to. When the random number generated by the P() function is no more than

1, an EVENT ‘0’ token is added to the EQ place accordingly. This means the

corresponding new event is not available for the usage in the current VSB. An

EVENT ‘0’ token enables the Env1 transition and the latter’s occurrence moves the

token to the OEQ place. Therefore the marking of i`1++j`0 in the OEQ place indicates

that there are i events ready to be sent out to the environment from the current VSB

and j events are relaying in the environment. How quickly the value of these EVENT

tokens can become ‘1’ in the EQ place is determined by the value of λ in the P()

function.

4.1.4 Initial Marking

Figure 4-1 also shows the initial marking M0 of the model. One ‘0’ token is given to

the Sleep place suggesting that the IP core is inactive in the initial state. When L is set

to 5, five ‘0’ TASK tokens are given to the TQ place, which indicate none of the five

tasks are ready for execution. Two ‘1’ EVENT tokens are set to the EQ place,

showing that two incoming events are waiting to be responded to by the STEP. Even

when the two events are responded to by their corresponding tasks, the IP core cannot

be woken up since N is set to 3. Therefore, the activation of the IP core needs the

arrival of at least one EVENT token initially in the OEQ place.

4.1.5 Simulation

Chapter 4. Hierarchical CPN Models for a VSB

With the integration of environment places and transitions, we can use the simulation

function provided by the CPN Tools to check the behaviours in the current model.

Figure 4-2 shows several segments of the model when concurrency properties in

different parts of the VSB are disclosed (Every enabled transition is highlighted by a

dotted rectangle).

Figure 4-2(a) shows the concurrent execution in the STEP (the enabling of the EH

transition) as well as that in the environment (the enabling of the Env transition).

Figure 4-2(b) presents the concurrent execution within the STEP (the enabling of both

the EH and TM transitions). Figure 4-2(c) shows the concurrent processing in the

STEP (the enabling of the EH transition) as well as in the IP core (the enabling of the

Execution transition).

(b) Step =23

(c) Step =6

(a) Step =0

Figure 4-2: Simulation of the Top Level CPN Model

The simulation can also help the designers to correct errors in their models. For

example, one double-headed arc is used to connect the Shutdown transition and the

TQ place because five ‘0’ TASK tokens are checked but not consumed by the IP core

to make shutdown decisions. However, designers can easily miss the arc from the

Shutdown transition to the TQ place (Figure 4-3(a)), and the consumption of TASK

Chapter 4. Hierarchical CPN Models for a VSB

‘0’ tokens in the occurrence of Shutdown transition makes further enabling of the EH

transition impossible.

When simulation is carried out at the top level with this error, it terminates after a

certain number of steps because in that case no more transitions are enabled (called

dead marking or dead lock). Therefore, a dead marking in the simulation is used to

detect errors in model design stage. However, because of the randomness brought by

the function P(), this simulation termination may not happen within 100 or even more

steps. Five independent simulations have been carried out when the model has the

design error. In these simulations, the CPN Tools took 103, 202, 159, 394, 941 steps

respectively to achieve the dead marking. Few designers take thousands of steps in the

simulation and if they quit in the first several hundreds steps when 941 steps are

needed to detect the error, the error is hidden in the design. Therefore, we need some

other more reliable function tool to prove the correctness of the model.

(a) Error Case A (b) Error Case B

Figure 4-3: Possible Errors in the Top Level Model

Furthermore, the exposition of some other errors cannot be detected based on

simulation termination. In Figure 4-3(b), the arc directing from the OutCt transition to

the Load place in Figure 4-1 is changed by the arc leading from the Execution

transition. This comes from the initial thought that a load requirement should be given

as soon as the execution of the current task is complete. However, if only TASK ‘0’

tokens are available in the TQ place, the Shutdown transition is enabled

Chapter 4. Hierarchical CPN Models for a VSB

simultaneously with the enabling of the OutCt transition. If the Shutdown transition

occurs first, the OutCt transition is disabled. It means no more executions for new

events preparation are forbidden because the IP core is sleeping, and the

corresponding event may be missed or duplicated sent. Unfortunately, this error

cannot be found by the method of simulation termination because the concurrent

enabling of both OutCt and Shutdown transitions does not make the model reach a

dead marking. Errors like this are more easily ignored by the designers.

4.1.6 State Space Checking

In this case, the state space checking provided by the CPN serves as a more reliable

method to find possible errors and prove the dynamic properties of the models. In our

design, the BIT colour set is the most fundamental colour which may be mapped to

electronic level or edge signals in hardware design. Therefore, no more than one BIT

token can be held in the same place under any circumstances, and multiple BIT tokens

in the same place indicate errors in the model design. The Boundedness Properties

in the state space report can be used for this check. For places with other colour set,

the Boundedness Properties shows all possible token values in one place, and the user

can check if any illegal values appear in the model.

All transitions in a CPN model should be enabled at least once (otherwise the

transition should be removed), therefore no transitions should be reported as Dead

Transitions in the Liveness Properties of the state space report. In case some Dead

Transitions are reported in the report, designers can use the Dead Markings given in

the same report to trace the possible errors. Now we try to examine the state space

report about the top level STEP model.

Chapter 4. Hierarchical CPN Models for a VSB

Statistics
--- ------------------
Occurrence Graph Scc Graph
 Nodes: 177 Nodes: 1
 Arcs: 471 Arcs: 0
 Secs: 1 Secs: 0
 Status: Full

 Boundedness Properties
--- ------------------
 Best Integers Bounds Upper Lower
 TOP'EQ 1 4 0
 TOP'Load 1 1 0
 TOP'NTask 1 1 0
 TOP'OEQ 1 4 0
 TOP'RQ 1 1 0
 TOP'Sleep 1 1 1
 TOP'TQ 1 5 5

 Best Upper Multi-set Bounds
TOP'EQ 1 2`0++4`1 TOP'Load 1 1`1
TOP'NTask 1 1`1 TOP'OEQ 1 3`0++ 4`1
TOP'RQ 1 1`1 TOP'Sleep 1 1`0++ 1`1
TOP'TQ 1 5`0++4`1

 Best Lower Multi-set Bounds
TOP'EQ 1 empty TOP'Load 1 emp ty
TOP'NTask 1 empty TOP'OEQ 1 emp ty
TOP'RQ 1 empty TOP'Sleep 1 emp ty
TOP'TQ 1 1`0

 Home Properties
--- ------------------
 Home Markings: All

 Liveness Properties
--- ------------------
 Dead Markings: None
 Dead Transitions Instances: None
 Live Transitions Instances: All

According to the report, no transition in the model is dead. The Best Integer Bounds

show all BIT places hold no more than one token at any time. Therefore the

corresponding circuits give no conflicting indications to the executions of a VSB. The

state space report can help the user to find possible errors of the model. Figure 4-3

presents two errors which may easily happen in the design and these errors are

checked out in their state space reports respectively.

Chapter 4. Hierarchical CPN Models for a VSB

When ErrorA in Figure 4-3 contains in the model, the corresponding report is shown

below (all identical items with the report of the correct model are omitted):

Statistics
--- ------------------
Occurrence Graph Scc Graph
 Nodes: 149 Nodes: 35
 Arcs: 387 Arcs: 80
 Secs: 0 Secs: 0
 Status: Full

 Boundedness Properties
--- ------------------
…

 Home Properties
--- ------------------
 Home Markings: [109]

 Liveness Properties
--- ------------------
 Dead Markings: [109]
 Dead Transitions Instances: None
 Live Transitions Instances: None

It can be seen that one Dead Marking [109] is highlighted in this report and no live

transitions exist in the model. Because no dead transitions exist in the model, it means

that all transitions can be enabled at least once. However the occurrence of some

transition causes an abnormal marking, so that no more transitions can be enabled

since then. Since the dead marking is a home marking, it means this abnormal

marking always happens no matter what occurrence sequences may happen. Therefore,

transitions that may be concurrently enabled are highly impossible to be the cause of

dead marking. This analysis can help the designer finally find the error in the arc

between Shutdown transition and the TQ place.

When ErrorB in Figure 4-3 happens, the corresponding report is shown below (all

identical items with the correct model report are omitted):

Statistics
--- ------------------
Occurrence Graph Scc Graph

Chapter 4. Hierarchical CPN Models for a VSB

 Nodes: 266 Nodes: 1
 Arcs: 757 Arcs: 0
 Secs: 0 Secs: 0
 Status: Full

 Best Upper Multi-set Bounds
 TOP'NTask 1 1`1 (Identical to the correct report)
 TOP'RQ 1 4`1

No dead marking means that the token flow can continue forever in the simulation

and the designer cannot use the simulation termination method to find the error. When

the Best Upper Multi-set Bounds are checked, it shows that the RQ places can hold at

most 4 tokens while only one token can be held in the NTask place. When a new task

suggested by the ‘1’ token is loaded into the IP core, the correct operation in the IP

core should first do the new event preparation based on the completed task, and then

try to load a new task. Therefore, the multi tokens should not happen in the RQ place.

Based on this analysis, the designer can easily find the error in the RQ place.

4.1.7 Conclusions and Further Discussion

A top level CPN model of a VSB (including a STEP and an IP core) was presented in

this section. Both simulation and state space function tools provided by the CPN

Tools were used to check the correctness of the model. The abstract declaration of

both EVENT and TASK colours make the top level model robust when events are

specified as different concepts in various implementations.

Although abstract, this model clearly shows the integration of the accumulation & fire

policy in the operation of the STEP. It also indicates the possible concurrent

executions between different parts of the STEP, or between the STEP and its

corresponding IP core. This concurrency may bring parallel processing in the VSB.

However, it may also cause hazards which may affect the VSB’s performance if no

corresponding solutions are given.

Chapter 4. Hierarchical CPN Models for a VSB

The abstraction at the top level model prevents further discussion about the influence

of concurrency to system design and gives no direct guidance to the hardware design.

In the following sections, we decompose the top level model into several connected

segments and use a lower level CPN model to specify each part in detail.

4.2. The Design of a Power Manager in CPN

In this section, we try to specify one segment of the top level model, which centres on

the EH transition (Figure 4-4). As indicated by the top level model, this segment is

mainly used to respond to incoming events and update the status of the corresponding

tasks.

Figure 4-4: The Event Handler Segment in the Top Level Model

In the top level model, every occurrence of the EH transition can only consume one

EVENT token in the EQ place. It means all incoming events must wait in a queue to

be responded to by the STEP even when they arrive simultaneously from different

directions. In this thesis, we assume that all STEPs are point-to-point connected, and

one point-to-point connection between two STEPs is called a communication

Channel. When a STEP has more than one input Channel, arbiter(s) become

indispensible to create an event queue when simultaneous events arrival occurs. The

number of arbiters used in the STEP increases with the Channels’ number in 2
nC , and

Chapter 4. Hierarchical CPN Models for a VSB

the corresponding circuits’ costs in both power dissipation and latency increase

dramatically. A better solution should enable multiple events to be responded to in

parallel.

Moreover, the occurrence of the EH transition in the top level model updates the value

of one task token from ‘0’ to ‘1’, which means every incoming event makes one

corresponding task ready for execution. However, this is not true in the

implementation of STEPs with multiple input Channels. Although events from the

same Channel always indicate different tasks in an IP core (otherwise two events can

be taken as one with doubled amount of information), events from different Channels

are highly likely to indicate the execution of the same task (but with different

parameters). In this case, the consumption of one event token may not change the

value of its corresponding task token if the latter’s value has been updated by one

previous event with the same task indication.

4.2.1 A Matrix Structure of Event Handler

When we take the two problems into consideration, a matrix structure used in the

Butler coprocessor’s design [camp97] is a good reference for the design of the EH

part in the STEP (Figure 4-5).

Suppose in the current VSB, there are M tasks embedded in the IP core and S input

Channels provided by the STEP. An M*S matrix is built and the unit Ui,j (i≤M,j≤S) in

the matrix responds to the event which comes from the jth Channel, and the processing

in this unit determines if task i is ready for the execution in the IP core. With a matrix

structure, several events coming from different Channels can be responded to in

parallel since the corresponding executions are carried out in different units.

Chapter 4. Hierarchical CPN Models for a VSB

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

W

S
&

Task1

Task2

Task3

TaskM

Channel1 Channel2 Channel3 ChannelS

OR Rdy3

Rdy1

Rdy2

RdyM

Figure 4-5: The Matrix Structure in the Butler

If there is at least one Ui,j in the i
th row of the matrix indicating the ith task is ready for

execution, a ready signal (which is written as Rdy for short in Figure 4-5) becomes

valid. All ready tasks are called candidates and the number of candidates is used in

the Power Manager of the STEP for accumulation when the IP core is inactive and

they are also used in the Task Manager for scheduling, which will be introduced in the

following sections in detail. One and only one candidate can be chosen and loaded

into the IP core for execution each time, and the ready signal of the corresponding

task is withdrawn afterwards so that the task cannot be a candidate for next scheduling.

The structure within every Ui,j relies on the implementation of the VSB. When the

VSB is used for data processing, the execution of one task needs the combination of

both operation codes and the data for operation. An incoming event in this case

indicates that the corresponding data is available. The operation codes of the

corresponding task are always ready for processing except when they are just under

processing, or they are prevented from execution by other tasks in case of suspension,

interruption or synchronization etc [masc87]. Therefore, two 1-bit variables wait and

stim (which are written as W and S for short in Figure 4-5) are used in every unit of

Chapter 4. Hierarchical CPN Models for a VSB

the matrix. The wait bit is set when the operation codes of the corresponding task are

ready for execution, and it is reset otherwise. Similarly, the stim bit is set when the

event (mainly the corresponding data) is accessible and it is reset otherwise. A task i

becomes a candidate task and its ready signal becomes valid only when at least one

Ui,j unit of the matrix has both stim and wait bits set.

The matrix structure gives high expansibility to the STEP. When used in different

environment or to cooperate with different IP cores, the parameters of the matrix M

and S may be changed accordingly. However, the Event Handler part can be easily

adjusted by adding/deleting several units in the matrix while the entire structure keeps

the same.

Figure 4-6: CPN Model of One Unit in the Event Handler

Although the matrix structure has been designed in the Butler coprocessor [camp97],

the previous design goes directly to gate level without any modelling work. For the

sake of better integration with other parts of the STEP, the model of one unit of the

matrix is designed in CPN (Figure 4-6).

Chapter 4. Hierarchical CPN Models for a VSB

4.2.2 The Color Set Description

As the implementation of the modelled VSB is specified as data processing, the

colour of EVENT and TASK in the new second level model is re-declared. In most

cases, each task is given a unique ID number which is used for the IP core to find the

start address of the corresponding codes in its memory if needed. Therefore, the

colour TASK is declared as:

color TASK = int with 0 .. Max

where Max is a constant standing for the maximum ID number used in the current

VSB.

When data is transferred among different domains with different clock frequencies,

the Asynchronous Communication Mechanism (ACM) serves as an efficient and safe

method used in many implementations and is used in the VSB design. Because the

CPN models of ACM memories has been designed in [gorg08], an abstract DATA

colour is declared as the colour string (as the set of all text strings) whose content is

used to describe the property of the corresponding data.

color DATA = string

Therefore the colour EVENT is re-declared as:

color EVENT = product TASK*DATA

This means that an EVENT token is composed of a TASK token and a DATA token.

The TASK token indicates which operation is used to process the data represented by

the DATA token. The colour BIT keeps the same declaration in this model (as well as

other models in the chapter).

4.2.3 Model Description

Chapter 4. Hierarchical CPN Models for a VSB

In Figure 4-6, the place Channel is used to hold EVENT tokens coming from one

channel. A group of Channel places from all units of the Matrix is the extension of the

EQ place in the top level model. Any EVENT token in this place enables the ACM

transition. This transition represents the data transfer/transform carried by the STEP

when ACM is used. The specification of this transition is shown in [gorg08]. The

occurrence of this transition generates a TASK token to the ID place, which indicates

the completion of the data preparation for the task suggested by the token value.

The constant ID1 in Figure 4-6 is declared as a constant integer which represents the

ID number of the task represented by the current unit. A guard [task=ID1] is attached

to the transition Sstim (means Set stim bit) to make sure the latter can only be enabled

by a TASK token (which is one part of an EVENT token) valued in ‘1’ (ID1 is

currently declared as 1). The occurrence of the Sstim transition updates the token

value in the Stim place to ‘1’, which means the data for the execution of task1 (taski

is the short expression for the task whose ID number is i) is ready for execution. With

an initial ‘1’ token available in the wait place (which means the corresponding codes

in the IP core are ready for execution), the transition Candidate is enabled and the

occurrence of this transition updates the token in the Rdy place to ‘1’ which means

task1 becomes a candidate for scheduling. A group of Rdy places from all units of the

Matrix is the extension of the TQ place in the top level model.

The token value in the place Ntask indicates which task is chosen to be loaded into

the IP core. The variable ntask represents the token value in the Ntask place. When

the token value in this place becomes ‘1’, the transition selected is enabled because

task1 is loaded into the IP core for execution. The occurrence of this transition resets

the value of the tokens in both the stim and wait places, and the transition Decand is

Chapter 4. Hierarchical CPN Models for a VSB

enabled in sequence. The occurrence of the Decand transition resets the token value in

the Rdy place to ‘0’, which means task1 is no longer a candidate for scheduling and

the corresponding ready signal becomes invalid.

4.2.4 The Environmental Set Description

Similar to the top level model in Figure 4-1, environmental places/transitions are

highlighted by a dark shade in the current model. The transition Schedule is used to

represent the scheduling processing in the STEP. This transition is enabled only when

the token in the Rdy place is ‘1’ because the scheduling result influences the current

model only when task1 is a candidate task. No matter what scheduling policy may be

implemented in the STEP, how quickly task1 can be chosen for loading after it

becomes a candidate task is nondeterministic. Therefore, a CPN function New() is

declared as follows:

 fun New()=discrete(1,5)

This function uses the random integer number generator discrete provided by CPN

Tools to generate a random integer number from 1 to 5. The generated number

indicates the ID number of the newly selected task. A guide [ntask<>ID1] (means

ntask is not equal to ID1) is attached to the Schedule transition to make sure that the

scheduling work (as well as the execution of tasks in the IP core) is carried out until

task1 is chosen (after that the scheduling result does not influence the current model

until the token value in the Rdy place becomes ‘1’ again).

The execution of the selected transition also generates two tokens: one in the new

place and the other in the new2 place. The cooperation of the place new with the

transitions env and env1 is used to simulate the stochastic generation of another event

corresponding to task1 from the same channel. The description of these places/

Chapter 4. Hierarchical CPN Models for a VSB

transitions is shown in places/transitions with the same names in the top level model

in Figure 4-1. CPN function P1() (as well as P2() in the expression of the arc from the

execution transition to the new2 place) shares the same form as the P() function in the

top level with different rate λ. The occurrence of the transition env1 represents the

incoming of another event (as well as the data) corresponding to task1 in the current

model.

Similarly, the cooperation of the place new2 with the transition execution is used to

simulate the execution of task1 in the IP core. When a ‘1’ token is generated in the

new2 place, it indicates that the execution of task1 is complete so that the wait bit is

set by the occurrence of the Swait transition.

4.2.5 Simulation and State Space

Because of the random token value arranged by functions P1() and P2(), either the

transition Sstim or Swait can be enabled first (or they are concurrently enabled),

which reflects the nondeterministic operations of the STEP. CPN simulation is used to

verify the token flow in the current model and CPN state space report is given in

Appendix V.

4.2.6 Conclusions and Further Discussion

In this section, a Matrix structure used in Butler processor was modelled in CPN for

event handling and task storage. A pair of stim and wait bits is used to judge whether

its corresponding task is ready for processing in the IP core. As soon as a task

becomes a scheduling candidate, a corresponding ready signal becomes valid and this

signal is used in other parts of the STEP for power management or task management.

Chapter 4. Hierarchical CPN Models for a VSB

Defined as a string colour, a DATA token has only an abstract meaning in the model.

When it is defined as a BIT color in a lower level model, the ACM model [gorg08]

can be integrated to the current model for hardware design.

4.3. The Design of a Power Manager in CPN

In this section, we specify the segment of the top level model which focuses on the

realization of the A&F policy (Figure 4-7).

Figure 4-7: The Segment of the PM part in the Top Level Model

According to the previous section, a ready signal becomes valid as soon as the

corresponding task becomes a candidate task. A simple A&F realization in the STEP

is to count the number of valid ready signals so as to decide whether task

accumulation is enough or not.

When tasks in an IP core are assumed to be independent, there is no pattern to indicate

how their corresponding ready signals become valid. The STEP must be alert to any

change in ready signals so as not to miss any new ones in the accumulation. On the

other hand, a valid ready signal is withdrawn by the reset in the stim & wait bits in the

Event Handler part. Since the PM part in the STEP cannot disable any ready signals

after accumulation counting, the PM needs to know which ready signal is new (not be

counted in the accumulation) and which one is old (already counted in the

accumulation) in the counting.

Chapter 4. Hierarchical CPN Models for a VSB

Furthermore, the Matrix structure used in the Event Handler enables responding to

events from different Channels in parallel, and therefore several ready signals can

become valid simultaneously. These signals need to be arbitrated before they are

counted and added to the accumulation result.

4.3.1 The Model Description

Figure 4-8: The CPN model of the PM

Figure 4-8 presents the CPN model of the PM part in a STEP where only two example

tasks are considered. Token values ‘1’ or ‘0’ in the Rdy1/Rdy2 places indicate

whether the ready signal for task1 or task2 is valid or not. A BIT token in the

En1/En2 places is used to record whether the corresponding ready token has been

used for accumulation. A ‘1’ token in En1/En2 place means that the corresponding

ready ‘1’ token has not been used for accumulation, and therefore the latter token can

enable the access1/access2 transition.

Chapter 4. Hierarchical CPN Models for a VSB

The occurrence of the access1/access2 transition updates the token value in

Irdy1/Irdy2 place to ‘1’ respectively, indicating a new ready token is ready to be

counted. The occurrence of the access1/access2 transition also toggles the token value

in En1/En2 place to ‘0’ so that a ready ‘1’ token can only access to the current model

once and duplicated counting is avoided in this model.

As demonstrated in the top level model, the task accumulation is needed only when

the corresponding IP core is inactive. Therefore, transitions access1/access2 can be

enabled only when the token value in the STEPSleep place is ‘1’.

When only one accumulation value is kept in the PM, all ready signals can be added

to the accumulation value only in sequence. Therefore arbiters are indispensible in the

current model. One easy solution is to build an arbitration array for all ready signals

like Figure 4-9(a). If M is the number of tasks, this solution uses 2
MC arbiters. Given a

big number M, the number of arbiters and corresponding logic gates increase

dramatically.

Another improved solution (Figure 4-9(b)) is inspired from the ring based arbiter

introduced in the multi arbiter systems section in the book of [kinn07b]. In this case, a

polling token circles in the arbitration system and any arbitration can only be carried

out when it gets the token. Similarly in the A&F part, a valid ready signal can be

added to the accumulation only when the polling token arrives. Therefore, no

arbitration is needed to be given to different ready signals since they do not

experience any collision during polling token accessing. Although arbiters are still

needed to solve the collision between the validation of one ready signal and the arrival

Chapter 4. Hierarchical CPN Models for a VSB

of the polling token, the number of arbiters is reduced to M. Therefore this arbitration

solution is chosen in the PM design.

A
rb
it
e
r

A
rb
it
e
r

A
rb
it
e
r

Ready1

Ready2

Ready3

Ready

Sequence
OrOr

Poll

And

And

And

A
rb
it
e
r

A
rb
it
e
r

A
rb
it
e
r

And

And

And

Ready1

Ready2

Ready3
Ready

Sequence
OrOr

a b

Figure 4-9: Two Arbitration Solutions in the PM Part

In the current CPN model, the polling token is held in the Me/Me1 places and the

variable poll is used to represent the flow of the polling token. When at least one

access transition occurs, the token in the Me place becomes ‘1’ to enable the polling

accumulation.

The pair of select1 and pass1 transitions indicates the operation of polling

accumulation of the ready signal for task1. If the token value in Irdy1 is ‘1’, the

availability of the polling token in the Me place enables the transition select1. The

occurrence of the transition first grants the ready token for accumulation, and then

passes the polling token to the Me1 place. If the token value in Irdy1 is ‘0’, the

transition pass1 is enabled accordingly and pass the polling token directly to the Me1

place. The occurrences of the pair select2 and pass2 transitions are carried out in a

similar way and they return the polling token to the Me place. After adding all current

valid ready signals to the accumulation, the polling accumulation ends after the

occurrence of select2/pass2 transition for power saving, and it begins next time when

at least one access1/access2 transition occurs.

Chapter 4. Hierarchical CPN Models for a VSB

The arbitration between a ready signal and a polling signal is modelled by the

competition of polling tokens in the Me place between the access1/access2 transition

and the select1/pass1 transition. When two (or more) tokens in the Rdyi (i=1,2) places

become ‘1’, their corresponding accessi transitions are enabled. After one accessi

transition occurs, the polling token in the place Me becomes ‘1’ and enables one of

the pair select1/pass1 transitions. Therefore, both the other accessi and one of the pair

select1/pass1 transitions are enabled concurrently. If the select1/pass1 transition

occurs first, no token is left in the Me place. The accessi transition is disabled until the

end of one round of polling accumulation. This occurrence sequence reflects the

situation when the polling token is first granted by the arbiter, and the valid ready

signal is added to the accumulation result next time when the polling token arrives.

Otherwise, if the other accessi transition occurs first, the token polling increases the

accumulation by two. This occurrence sequence reflects the situation when the valid

ready signal is first granted by the arbiter, and one round of polling realizes the

accumulation of several tasks.

The or1/or2 transitions represent the OR gate in Figure 4-9(b), and the execution of

one or1/or2 transition adds one token to the Queue place and move the polling token

to the Me/Me1 place and let the token polling continue. The colour in the place acc is

set to INT because the token held in this place represents the accumulation result. As

soon as one token is available in the Queue place, the Adder transition is enabled and

the execution of this transition increases the accumulation by 1. One guard [acc>=N]

is attached to the Fire transition to make sure one token is added to the Activation

place only when the token value in the acc place is no less than the accumulation limit

Chapter 4. Hierarchical CPN Models for a VSB

N (N is set to 2 in the current model). The occurrence of the Fire transition resets the

token value in the acc place to ‘0’ to prepare for the next accumulation processing.

4.3.2 The Environmental Set Description

The environmental transition Wakeup represents the wakeup processing in the IP

core, and its occurrence sets the token in the STEPSleep place to ‘0’ to disable all

transitions in the current model. The occurrence of this transition also sets the tokens

for both En1 and En2 places to ‘1’ so that new valid ready tokens can access the

current model when the IP core becomes inactive again.

On the left side of Figure 4-8, environmental transitions Execution1 and Execution2

represent the executions of task1 and task2 in the IP core respectively. These two

transitions may be enabled concurrently, and the random occurrences of these

transitions represent the different scheduling results generated by the STEP. The

occurrence of each Execution transition resets the token value in the corresponding

Rdy place. Assuming only two tasks are embedded in the IP core, the shutdown

transition is enabled when both tokens in the Rdyi place are ‘0’ and its occurrence

reflects the shutdown processing in the IP core when none of the tasks are ready for

execution.

Environmental transitions new1 and new2 are used to change the token values in their

corresponding Rdy1/Rdy2 places. The occurrences of these transitions reflect the

generation of new events in the environment, and the function P() (which is used in

the top level model) is used to make the generation of tokens in Rdyi place

stochastically. These environmental transitions/places generate all possible

combinations of input tokens to and consume output tokens from the current system.

Chapter 4. Hierarchical CPN Models for a VSB

The state space report in Appendix VI gives the correctness verification of the current

model.

4.3.4 Conclusions and Further Discussion

In this section, a Power Manager CPN model was built where the A&F policy is used

to give on-off control to the IP core. An enable token is used for every ready token to

avoid duplicated counting. A polling accumulation, which is inspired by ring-based

arbiters, is used in accumulation with a limited number of arbiters. Although only two

tasks are involved in the current model, the model can be easily extended to more

realistic cases when tens of tasks are embedded in an IP core.

In the current model, all tasks are thought to have the same priority since only task

numbers are accumulated. Realistic tasks always have different priorities since they

may have different deadline requirements. In this case, their priorities instead of task

numbers are accumulated in the Power Manager. Therefore, a sleeping IP core can be

activated by one high priority task or several low priority tasks in different situations.

Although the priority based A&F policy increases the complexity of the PM circuits,

it could enable the IP core to have better performance.

4.4. The Design of a Task Manager in CPN

When an IP core completes its wakeup processing, it tries to load a new task from the

accumulated ones. In this section, we try to specify one segment (Figure 4-10) in the

top level model which focuses on the scheduling execution.

Chapter 4. Hierarchical CPN Models for a VSB

Figure 4-10: The Segment of TM in the Top Level Model

4.4.1 A Priority Based Round Robin Scheduling Policy

When more than one task is ready for execution, some scheduling policy is needed for

task selection. In this section, a Priority Based Round Robin policy works as an

example scheduling policy when we build the CPN model.

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

Candidate

 Figure 4-11: The Priority Based Round Robin Policy

Figure 4-11 is the figure used in the introduction of Priority Based Round Robin

policy [camp04]. Arrows on the left of the Figure keep a list of all tasks in the IP core

sorted by priority. A dotted arrow represents an invalid scheduling candidate (the

corresponding task is not ready for execution) and a solid arrow indicates a valid

candidate. Scheduling always starts from the highest priority group towards the lowest

Chapter 4. Hierarchical CPN Models for a VSB

priority group, so as to give tasks with a higher priority more opportunity to be loaded

in the IP core. For tasks in the same priority group, the scheduler uses Round Robin

policy to choose a new task so as to give all tasks in the same group fair opportunity

to be executed in the IP core.

In each priority group, the task which has been loaded into the IP core most recently is

marked as a last task. In Figure 4-11, the last task in every priority group is pointed by

the Begin arrow. Polling scheduling starts from the next task to the last task in the

highest priority group and ends when the first valid task is found. If no valid candidate

can be found in this group, the scheduling point jumps to the last task in the second

highest priority group to carry out a similar exploration. When no valid task can be

found even in the lowest priority group, it means no task is ready for execution, and a

particular ID number (for example 0 or 255) is sent to the IP core.

4.4.2 The CPN Model of Scheduling

A CPN model (Figure 4-12) is built to show the scheduling execution of Priority

Based Round Robin policy. In Figure 4-12, tokens in places Rdyi (i=1,2,3,4)

represent the status of the corresponding ready signals. In this example, task1 and

task2 have the same priority, which is higher than that of task3 and task4. The initial

tokens in the model indicate only task3 is a valid candidate. Task1 and task3 are set as

the last task in each group because one ‘1’ token is given to places Last1 and Last3

each while the tokens in places Last2 and Last4 are ‘0’. Places Me, MeN and Mei

(i=1,2,3,4) are used to hold the polling token for round robin scheduling in each group.

A new scheduling is enabled by a ‘1’ token in the Me place, and simulation results in

Chapter 4. Hierarchical CPN Models for a VSB

Figure 4-13 show the scheduling procedure (a dotted rectangle in each figure is used

to indicate the enabled transition).

Figure 4-12: The CPN Model for Scheduling

The token in the place Me first enables the scheduling in the high priority group.

When task1 serves as the last task in this group, the transition PollStart1 is enabled.

The occurrence of this transition adds one token to the Me2 place because task2 is the

first task for checking. With the initial token ‘0’ in the Rdy2 place (indicating task2 is

not a valid candidate), the pass2 transition is enabled (Figure 4-13(a)) and the

occurrence of this transition passes the polling token to the place Me1.

As the polling token finds the last task in the group (task1) is not a valid candidate, it

means no valid candidate can be found in this group. The scheduling moves on to the

next priority group. Therefore, the NextG1 instead of pass1 transition is enabled by

the token in the Me1 place (Figure 4-13(b)).

Chapter 4. Hierarchical CPN Models for a VSB

The occurrence of the NextG1 transition generates one token to the MeN place which

enables transition PollStart3 because task3 is the last task in the group (Figure

 4-13(c)). After the occurrence of the PollStart3 transition, the polling token is moved

to the Me4 place to check the status of task4. With one ‘0’ token in the Rdy4 place,

the transition pass4 is enabled (Figure 4-13(d)) and one token is added to the Me3

place after this transition’s occurrence. Since the token value in the Rdy3 place is ‘1’,

the transition Found3 is enabled which indicates one valid candidate task is found

(Figure 4-13(e)).

g

fed

cba

g

fed

cba

Figure 4-13: Simulation Steps in the scheduling

The token in the place Ntask is used to save the scheduling result. As soon as a token

is generated in the Taski (i=1,2,3,4) place, the corresponding NTaski (i=1,2,3,4)

transition is enabled (Figure 4-13(f)). Its occurrence updates the token value in the

Chapter 4. Hierarchical CPN Models for a VSB

NTask place with the corresponding ID number of the valid candidate, and move a ‘0’

token to the Me place, which indicates the completion of scheduling (Figure 4-13(g)).

Given any combination of token values in the four Rdyi places, the scheduling flow is

similar. Next, we discuss the scheduling flow when all tokens in the Rdyi places are

‘0’. The first several steps are similar to the case introduced in Figure 4-13(a) to (d).

Since the token ‘0’ in Rdy3 place indicates task3 is not a valid candidate task, the

NextG3 transition is enabled (the dotted rectangle in Figure 4-14) because no

candidate task can be found in this priority group. Without any lower priority group

available, it means no task is ready to be executed in the IP core. Therefore, the

occurrence of NextG3 (or NextG4 when task4 is the last task in the group) resets the

token value in NTask place by ‘0’ to indicate the IP core that no more new tasks can

be loaded.

Figure 4-14: No Ready Tasks in the Scheduling

In Figure 4-14, transitions and places with the same index number (for example,

transitions PollStart1, Found1 share the same index 1) can be seen as a basic unit of

the model (the dotted cycle in Figure 4-14). Therefore, the current model can be easily

Chapter 4. Hierarchical CPN Models for a VSB

extended to represent a scheduler when more tasks are involved, or when tasks are

divided into more groups.

4.4.3 The CPN Model of the Task Manager

Although the transitions and places in Figure 4-12 can successfully carry out a priority

based round robin scheduling policy, more places and transitions are needed to

guarantee the safety and correctness of scheduling. Figure 4-15 gives one example

model of the Task Manager in the STEP and its test environment when only two tasks

(and one priority group) is used in the scheduling.

Figure 4-15: The Full CPN model for the Scheduling

The environmental place within the dotted circle is named LoadEn whose token ‘1’

represents the task loading a request from the IP core. A ‘1’ token in the LoadEn place

enables the Load transition in the right side of the Figure and the occurrence of the

Chapter 4. Hierarchical CPN Models for a VSB

transition indicates the task loading execution in the IP core. One token whose value

is the ID number of the new task is added to the Ltask (means Loaded task) place in

consequence.

Tokens in the Rdy1/Rdy2 places indicate whether task1/task2 is a valid candidate task

or not. As external events may arrive at the current VSB at any time, the two tokens in

the Rdy1 and Rdy2 places may become ‘1’ simultaneously when the Load transition

is enabled. In this case, new scheduling and task loading execution are carried out

simultaneously. Suppose the scheduling updates the token value in the Ntask place

from ‘1’ to ‘2’. Whether task1 or task2 is loaded into the IP core depends on whether

the scheduling transitions or the loading transition occurs first. This uncertainty

confuses the IP core and may cause serious consequence. A safer design enables

scheduling only when no load request is available. In Figure 4-15, transitions Access1

and Access2 can be enabled only when the token value in the LoadEn place is ‘0’.

Therefore, when the token in the LoadEn place becomes ‘1’, no further token change

in Rdy1/Rdy2 place can influence the token value in the LTask place. Another

enabling precondition of transitions access1 and access2 is the existence of a ‘0’ token

in the STEPSleep place, which means that scheduling is enabled only when the IP

core is active.

The tokens held in places Irdy1 and Irdy2 indicate the status of the ready signals for

the usage of scheduling. Variables irdy1, irdy2, rdy1 and rdy2 are used to indicate the

token value in the place with the same name respectively. With the guard

[irdy1<>rdy1] and [irdy2<>rdy2] in the access1/access2 transitions, scheduling only

begins when some changes happen to the ready signals. When at least one of these

transitions occurs, the token value in the Me place is updated to ‘1’. The scheduling

Chapter 4. Hierarchical CPN Models for a VSB

executions are modelled by places and transitions within the dotted rectangle which

has been introduced in the last section in detail.

According to the model, when more than one ready token is toggled concurrently,

some competition exists in the occurrence of the Accessi transition and some

scheduling transition within the dotted rectangle, since the occurrence of a scheduling

transition consumes the token in the Me place so as to block any further occurrence of

the access transition until the end of the scheduling. This behaviour of the model

reflects the competition between the validation of a ready signal and the arrival of the

round robin polling signal. However, given that no valid LoadEn signal is generated

from the IP core, different occurrence sequences of these transitions do no influent the

scheduling result.

The occurrence of the Load transition not only loads the ID number of the new task

into the IP core, but also updates the status in the STEP. The task loading enables the

EH to reset the wait & stim unit in the matrix. In Figure 4-15, the expression of the

arc from the transition Load to the place Rdy1 is written as “if Ntask=1 then 1`0 else

1`rdy1”. Therefore, if the token value in the place Ntask is ‘1’ (which means when

task1 is loaded to the IP core), the token value in the place Rdy1 is reset to ‘0’.

Otherwise, the token value stays the same as before. Furthermore, any token reset in

the Rdy1/Rdy2 place enables the Access1/Access2 transition when the IP core starts

executing the new task, and the token value in the LoadEn place becomes ‘0’.

Therefore, new scheduling is carried out in parallel with the execution in the IP core,

and a new task can be prepared in the Ntask place in advance of the next load request

from the IP core.

Chapter 4. Hierarchical CPN Models for a VSB

The occurrence of the Load transition also resets the last task in every priority group if

it changes. If no task is found to be ready for execution, the occurrence of the Load

transition resets the last task to its default status (for example, in the current model,

task2 is the default last task in its group).

4.4.4 Environmental Set Description

When one token is added to the Ltask place, the environment transition Start is

enabled. It indicates that the IP core starts the execution of the new task. Therefore

one token ‘1’ is given to the place current, which indicates that one task is processing.

The occurrence of the Start transition gives one ‘0’ token to the LoadEn place, which

means the task loading procedure is completed. The function P1() (which is the same

as the P1() function in the EH unit model in Figure 4-6) is used in the arc expression

from the execution transition to the current place. This function is used to simulate

the stochastic processing behaviour in the IP core. When the token value in the current

place becomes ‘0’, the current task’s execution is completed. Therefore the token

value in the LoadEn place is updated to ‘1’, and a new task is loaded afterwards. If

the taken value in the Ltask place is ‘0’ which means no more valid task has been

loaded to the IP core, the Start transition can be seen to indicate the shutdown

operation in the IP core and the execute transition can be seen to indicate task

accumulation. Similarly, the complete transition indicates the activation of the IP core

in this case.

The environmental transition Env1/Env2 uses the function P() (which has been

introduced in the top level model) to simulate the generation of a new event which in

turn validates the corresponding ready signals again.

Chapter 4. Hierarchical CPN Models for a VSB

All these environmental transitions/places generate all possible combinations of input

tokens to and consume output tokens from the current system. The state space report

in Appendix VII gives the correctness proof of the current model.

4.5. The Design of an Output Control and Interface in CPN

In this section, we try to specify the segment in the top level model which takes

charge of the wakeup/shutdown procedure and the output event control (Figure 4-16).

As introduced in Chapter 2.1.1, both shutdown and wakeup processing of an IP core

have cost in time and power. It is possible that some changes are happening in the

environment during the shutdown or wakeup transitions. For example, some new

events may arrive at the current VSB during the shutdown processing. If they are

handled by the EH, their corresponding tasks become ready and generate an activation

token in the PM part according to Figure 4-8.

Figure 4-16: The Output Control Segment in the Top Level Model

This token may confuse the IP core whether to continue the shutdown processing, or

abandon it to carry out the wakeup processing instead. One important job of the

interface part is to make sure that both shutdown and wakeup transitions in the IP core

can be carried out without being disturbed by the environment.

Chapter 4. Hierarchical CPN Models for a VSB

On the other hand, the Interface part can improve the entire VSB’s performance by

applying parallel processing in the STEP when the IP core is waking up or shutting

down. As introduced in Section 4.3 as well as in Section 4.4, the PM part is shut down

when the IP core is active and the TM part is shut down when the IP core is inactive.

In this section, we focus on whether they should be active during the wakeup and/or

shutdown processing. In our design, the PM part is activated as soon as the shutdown

transition starts (given its result does not disturb the execution of the shutdown

processing in the IP core). Therefore, events that arrive during the shutdown transition

are accumulated without delay. Similarly, the TM part is activated as soon as the

wakeup transition starts, so that task scheduling can be completed before the IP core is

ready for task processing. When these improvements are considered, the PM as well

as the TM part cannot use the Sleep token provided by the IP core to control its

execution. It is because the token in the Sleep token only toggles when the

wakeup/shutdown transition completes rather than starts. Therefore, a new token is

required to be generated from the interface to indicate the beginning of the

corresponding transitions.

As indicated in the top level model, the output controller generates a new event when

the execution of the current task is completed. If the new task stimulated by the event

generated from the output controller locates in the same VSB, the new task becomes

ready for execution much faster than the case when the new task is located in the

other VSB. It is because both asynchronous/synchronous transform and data transfer

between two VSBs are omitted. The CPN Model in this section tries to specify this

difference.

Chapter 4. Hierarchical CPN Models for a VSB

4.5.1 The Model Description

Figure 4-17 presents the CPN model of the Interface and Output Control part in the

STEP where only two example tasks are concerned. The declarations of the four token

colours involved in the figure, BIT, EVENT, TASK and DATA, are the same as those

given in the EH CPN model in Section 4.2.

I

II

Figure 4-17: The CPN Model of Output Control and Interface

The Fire transition highlighted by the dotted ellipse has been introduced in the PM

part in Section 4.3 (the accumulation limit is set to 1 to simplify the current model).

The occurrence of this transition gives one ‘1’ token to the Activation place. At the

same time, it also updates the token value in the STEPSleep place to ‘0’. The token in

this place indicates the beginning of wakeup processing when its value is ‘0’ or

shutdown processing when its value is ‘1’. Therefore, the token in this place is used in

the PM model in Figure 4-8. All transitions in the PM part are disabled immediately

without waiting for the completion of the wakeup processing in the IP core. Similarly,

Chapter 4. Hierarchical CPN Models for a VSB

the token in this place is used in the TM model in Figure 4-15 to enable task

scheduling to be carried out in parallel with the waking up of the IP core.

The availability of a ‘1’ token in the activation place enables the DoWakeup

transition and the latter’s occurrence gives a ‘1’ token to the Wu place. The enabling

of the DoWakeup transition also depends on the token value in the Sleep place. If the

token in the Sleep place is ‘0’ (which means the IP core is active), the DoWakeup

transition is not enabled even when the token in the active place is ‘1’. It means no

wakeup command is issued by the STEP when the IP core is active or shutting down,

even when enough tasks have been accumulated in the PM part. This design allows an

IP core to complete its mode switching transitions without being disturbed by the

environment.

The occurrence of the Dowakeup transition also generates one token to the LoadEn

place so that the scheduling result can be loaded to the LTask place. The states and

transitions within the dotted rectangle I represent the operations in an IP core for

wakeup, shutdown and task loading. For example, the Waking transition in the upper

left edge of Figure 4-17 is enabled when a ‘1’ token is available in both Wu and Sleep

places. Its occurrence reflects the completion of the wakeup transition in the IP core

and it toggles the token in the Sleep place to ‘0’. A ‘1’ token is also added to the Read

place, which indicates that the IP core sends a Read signal to its STEP to load the ID

number of a new task from the LTask place.

Transitions and states within the dotted rectangle II represent the task executions in

the IP core. Once the task ID number is loaded into the IP core, the IP core uses the

number to search for the corresponding codes segment. If task1 is loaded into the IP

Chapter 4. Hierarchical CPN Models for a VSB

core, transition Load1 is enabled since one guard [ntask=ID1] is attached to this

transition.

The occurrence of this transition turns the token value of the Current place to ‘1’,

which is used to indicate that task execution starts. The availability of tokens in

Mtask1 and DIN1 places represents both the codes and the data are ready so that the

transition Execute1 is enabled. The occurrence of the Execute1 transition reflects the

completion of task1’s execution in the IP core. Both the result data and ID number of

the current task are saved afterwards. Therefore, one ‘1’ token is added to the RQ

place, and one DATA token is added to the DOUT place. The expression in the arc

from the Execute2 transition to the DOUT place is written as ----

substring(data1,0,4)^ “2”, which replaces the last character of the input DATA token

to “2”, which is the ID number of task2. For example, if the input DATA token is

“DATA1”, the output DATA token in the DOUT place is “DATA2”. This arc

expression is used to simulate the data processing in the IP core. The occurrence of

the Execute1 transition also resets the token value in the Current place as the symbol

of task completion. The execution of task2 in the IP core is described by transitions of

Load2 and Execute2, whose enabling and occurrence are similar to their counterparts

introduced before.

The token toggle in the Current place activates the output control processing in the

STEP. One basic job of the output control is task routing, which means to find which

task is supposed to use the result data and in which VSB the task (called target task

later) is located. If the target task is not in the current VSB, the current VSB needs to

use the ACM method to transfer the data to the new VSB and load the ID number of

the target task into the communication channel to the new VSB. When the target task

Chapter 4. Hierarchical CPN Models for a VSB

is in the current VSB, data transfer is either avoided if the IP core can just update the

start address of the input data for the target task by that of the result data, or it can be

easily carried out within the same clock domain. In order to represent both cases, in

the model given in Figure 4-17, the target task for task1 is supposed to be task3,

which is located in another VSB and that for task2 is task1 which is in the same VSB.

Now we can continue the description of the CPN model. If the token value in the RQ

place is ‘1’ (which means the completed task is task1), the transition OutCt1 is

enabled as soon as the token in the Current place becomes ‘0’. The occurrence of this

transition adds a TASK ‘3’ token (ID3=3) as well as a “DATA1” DATA token to the

OCh3 place, which indicates the signal and data transfer taken place in the 3rd Output

Channel of the STEP. The occurrence of the environmental transition OBlock is used

to reflect the execution of task3 in another VSB which in turn generate an event to the

current VSB in the 3rd Input Channel. Therefore, a new EVENT token is available in

the Ch3 place.

If the token value in the RQ place is ‘2’ (which means the execution of task2 is just

complete), the transition OutCt2 is enabled and its occurrence moves the DATA

token in the DOUT place to the DIN1 place, which means the result data of task2 is

just ready for the execution of task1 (as the target task of task2). The token value in

the Rdy place is increased by 1, which indicates task1 is ready for scheduling.

Compared with the output control token flow for task1, the output control for task2

does not involve the occurrence of both OBlock and EH transitions. It means that one

target task can be quickly ready for execution if it is located in the same VSB as the

task who generated the input data.

Chapter 4. Hierarchical CPN Models for a VSB

The occurrence of OutCt1/OutCt2 transition adds one token to the Complete place,

which enables the LoadEn transition in sequence to load a new task. The token toggle

to ‘0’ in the Current place also enables the Next transition, whose occurrence issues a

Read token to load the task to the IP core.

If the value of the new token in the LTask place is ‘0’, it enables the DoShutdown

transition and the occurrence of this transition turns the token value in the STEPSleep

place to ‘1’ which means the transitions in the PM part is enabled (and the transitions

in the TM part is disabled) afterwards. The occurrence of the DoShutdown transition

also give one token to the Sd place, and the token in this place enables the Shutting

transition whose occurrence represents the completion of the shut down processing in

the IP core. A new wakeup command can be issued from the STEP from then on.

4.5.2 Simulation and State space

All concurrent execution between the STEP and its IP core can be seen by simulation.

For example in Figure 4-18, both Shutting and Fire transitions are enabled (All

enabled transitions are highlighted by dotted rectangles) which indicates the

concurrent processing between the PM part in the STEP and the IP core. In order not

to disturb the IP core, different occurrences of the two transitions should achieve the

same result. If the shutting transition occurs first, the token in the sleep place becomes

‘1’. The occurrence of the Fire transition afterwards gives one ‘1’ token to the

activation place which enables the Dowakeup transition. On the other hand, if the Fire

transition occurs first (Figure 4-18(b)), the ‘1’ token in the activation place cannot

enable the Dowakeup transition because the token in the sleep place is still ‘0’. The

latter is only enabled after the occurrence of the shutting transition. The same result

Chapter 4. Hierarchical CPN Models for a VSB

achieved from different occurrences indicates the Interface can protect the IP core

from environmental interruptions when a mode switching is carried on.

a b
Figure 4-18: Concurrent Operations in a VSB

More verification can be achieved from the state space report in Appendix VIII.

4.5.3 Conclusions and Further Discussion

In most cases, the function performance in a portable device is decomposed into

executions of several tasks in different computation components. The Output Control

part of the STEP is used to connect executions of these tasks in different VSBs to

fulfil the performed function. The CPN model in this section describes the structure of

the Output Control (as well as the Interface) part and highlights the different event

transfer when the target task has different locations.

The CPN model in this section is still sketchy since this part of STEP is highly

implementation oriented. For example, a more delicate route-map is needed to easily

get the location and ID number of the target task when tens or more tasks are

embedded in an IP core. When task priority instead of task number is used in the

accumulation in the PM part, the Output Control part also transfers the priority of the

target task to the new VSB (if the target task is not in the current VSB). All this

Chapter 4. Hierarchical CPN Models for a VSB

information should be implied to a lower level CPN model when the implementation

is specified.

4.6. Conclusions and Future Work

In this chapter, a top level VSB model was built in CPN, which highlighted

concurrent processing among different parts of a VSB. Four second level CPN models

were also presented, each of which focused on one key part of the STEP. These

models are used to specify executions in the STEP and avoid unnecessary

concurrency in the VSB which may do harm to the system performance. Simulation

and State space tools provided by CPN Tools have been used to prove the correctness

of these models.

If a synthesis method is considered, we may continue the design of CPN models at the

lower levels until BIT is the only colour of all places, and CPN models finally become

their counterparts in normal PN. One problem of this method is the state explosion,

since tens of BIT tokens may be needed to represent one EVENT or TASK token

shown in the top level model.

Furthermore, all CPN models given in this section involve only the minimum number

of tasks. Although this can make the model more clear for demonstration purpose, it

cannot be implemented directly on a real system since each IP core may involve tens

or more tasks in most cases. When these tasks are modelled in the CPN model of a

real system, the number of states may be out of the power of CPN state space

calculation.

Chapter 4. Hierarchical CPN Models for a VSB

Therefore, a state space check for a BIT token based CPN model which can directly

reflect the circuit design is not a practical solution. Instead, we may use the high-level

CPN models about different parts of the STEP to guide the design of these parts and

use simulation to partially prove the correctness of our model.

155

Chapter 5

The Construction of SOCs with VSBs in

MATLAB

With CPN models given in Chapter 4, all important concurrency properties of a

Virtual Self-timed Block have been demonstrated. However, the modelling work is

not carried out to the lowest level because the lowest level model depends on the

detail about the IP core that cooperates with the STEP in a VSB. On the other hand,

the power efficiency of a VSB, which is the main concern of system performance, is

not being analyzed in CPN models in Chapter 4 since the power property relies on the

implementation of a VSB for real systems.

In this chapter, an example implementation of a VSB is designed where some tasks

embedded in VSBs are designed to carry out data processing in an SOC content. This

example is used not only to demonstrate the cooperation of VSBs in an SOC, but also

provides a test bench for the power analysis of a VSB.

In Chapter 3, the A&F policy has been proven to have great potential to trade latency

for power. However, the analysis was based on Markov processes assumption. No

proof has so far been given of whether this policy can still be efficient when the

Chapter 5. The Construction of SOCs with VSBs in MATLAB

Markov assumption is weakened or not even satisfied. Actually, few users know in

advance whether their systems follow Markov process, let alone the necessary

parameters for the power/latency calculation used in Chapter 3. Therefore, the test

bench designed in this chapter has great usage for the efficiency verification of the

A&F policy in real implementations.

Ball3

Ball4

Ball2

Ball1

(PosX, PosY)

(EdgeX, EdgeY)

I II

III IV

IP CoreIP CoreIP Core

STEP

VSB IV

IP CoreIP CoreIP Core

STEP

VSB IV

IP CoreIP CoreIP Core

STEP

VSB I

IP CoreIP CoreIP Core

STEP

VSB I

IP CoreIP CoreIP Core

STEP

VSB III

IP CoreIP CoreIP Core

STEP

VSB III

IP CoreIP CoreIP Core

STEP

VSB II

IP CoreIP CoreIP Core

STEP

VSB II

Figure 5-1: The Implementation of Ball Game

The example implementation used in this chapter is called Ball Game (Figure 5-1).

Four balls of different size move in a playground with different speeds but identical

mode. The entire playground has been evenly divided into four parts, called

playground I, II, III, IV respectively. Four VSBs are employed, and each VSB is used

to control the ball movement in one playground. Four tasks are in the IP core of every

VSB whose codes provide the movement control of the corresponding balls. Different

Chapter 5. The Construction of SOCs with VSBs in MATLAB

codes may be used in the four tasks to provide random or history based movement,

but they all need to avoid ball collision (two balls are overlapping) in the movement.

When some ball moves across the border between two playgrounds, an event is

generated to hand over the control of the ball to another VSB and the parameters of

the ball is transferred to the VSB by the way of ACM.

If no balls contain in one playground (like playground III in Figure 5-1), the IP core

corresponds to the playground is shut down to save power and the playground is

patched in black colour accordingly. When and how to activate the IP core for task

processing depends on the DPM policy implemented in the STEP of each VSB.

We prefer to use MATLAB Simulink rather than CPN Tools to design models for the

example implementation of ball game. CPN Tools is good for presenting concurrent

executions, but has limited power to present the execution sequence varied with

time/sample elapsing. However, the execution property in the time dimension, which

shows the probability distribution among different operation modes of an IP core, is

of vital importance for the power analysis. On the other hand, MATLAB Simulink

provides powerful observation of signal variation in time dimension.

Secondly, the state space checking provided by CPN Tools can only deal with limited

number of states. When four VSBs with realistic IP cores are used, the total number of

states may be too big to be calculated in state space checking. On the other hand, with

the checking of state space about one VSB in chapter 4, any further state space

checking with multiple identical VSBs is not needed. Even if some errors happen in

the connection among VSBs, they can be easily found by the simulation provided by

MATLAB Simulink.

Chapter 5. The Construction of SOCs with VSBs in MATLAB

Finally, MATLAB Simulink can provide visual observation of the four VSBs’

execution by showing the ball movement on the screen while CPN Tools cannot do

this.

Therefore, MATLAB Simulink is chosen to realize the example implementation of a

ball game in this chapter. The implementation detail is as follows: A 100*100 pixels

area is used as the entire playground of the ball game. Therefore each VSB controls a

50*50 pixels area. Four squares with different sizes represent the four balls in the

game, and five parameters are used to describe one ball’s movement. PosX and PosY

are the positions of the bottom left edge of the ball on the X and Y axis respectively.

Width represents the size of the ball and Speed indicates how fast the ball moves

with each step. History remembers the direction of the ball’s last movement. Four

numbers (0,1,2,3) are used for the History information, which represent moving left,

right, up, and down respectively. Table 5-1 gives the initial parameters of all balls in

our example system.

Table 5-1: Initial Parameters of Four Balls

 PosX PosY Width Speed History

Ball1 84 54 4 4 1

Ball2 60 80 6 6 2

Ball3 20 45 8 8 3

Ball4 43 40 10 10 2

The position of the upper right edge of a ball is used to calculate if it is crossing the

border of one playground. For example in Figure 5-1, Ball4 is just crossing from

playground I to playground II, and VSB II takes control of this ball accordingly.

Chapter 5. The Construction of SOCs with VSBs in MATLAB

IP CoreIP CoreIP Core

STEP

VSB IV

IP CoreIP CoreIP Core

STEP

VSB IV

IP CoreIP CoreIP Core

STEP

VSB I

IP CoreIP CoreIP Core

STEP

VSB I

IP CoreIP CoreIP Core

STEP

VSB III

IP CoreIP CoreIP Core

STEP

VSB III

IP CoreIP CoreIP Core

STEP

VSB II

IP CoreIP CoreIP Core

STEP

VSB II

POOL

Data

Channel1

Channel2

C
h
a
n
n
e
l3

Event

Channel0

Figure 5-2: Data and Event Communication in the ball game

In the current version of the ball game, constant values are given to the width and

speed of each ball and kept in each task program in IP cores. The other three

parameters, PosX, PosY and History, are updated from time to time. When one task in

a processor tries to decide the next position of its corresponding ball, it needs to

consult all balls’ positions no matter whether they are controlled by the same

processor or not. Therefore a public POOL type ACM [xia02] (Figure 5-2) is used to

save updated position of each ball for the consultation of possible all processors in the

SOC. On the other hand, four Channel type ACM [xia02] contain in each VSB for the

event communication with other VSBs. For each VSB, Channel0 is reserved for

events sent to the same processor, while the other three Channels are used for event

communication between processors in different VSBs (Figure 5-2 only describes

Channels for VSB I, Channels for other VSBs can be built in the similar way).

Chapter 5. The Construction of SOCs with VSBs in MATLAB

According to the introduction of MATLAB Simulink in Section 2.3, a Simulink

model can be built either with the construction of basic components provided by the

Simulink Library, or by writing S-function codes. We construct the STEP of a VSB

by basic components provided by the Simulink Library while using S-function to

write task codes embedded in IP cores. This is because hierarchical design of the

STEP from basic components can provide more observable signals to show the

properties of different parts of a STEP, and it is more valuable for the real VLSI

design guidance. On the other hand, an IP core design is not part of our research, we

care only about functions rather than the circuit detail of an IP core.

PM

EH

TM

Figure 5-3: The Design of a Virtual Self-timed Block in MATLAB

Since all VSBs in the implementation are identical, Figure 5-3 gives only the

architecture of VSB I which controls the ball movement in playground I in MATLAB

Simulink. The five subsystem blocks, PM, EH, TM, Interface and Output Control, are

the five basic parts of a STEP. The IPCore block contains four tasks, each of which

controls the moving of one ball. The task programs are written as S-Functions so as to

integrate with other blocks to give a unified simulation result. In order to reduce wires

Chapter 5. The Construction of SOCs with VSBs in MATLAB

and connections in the Simulink model, multiple input/output ports are used and the

number contained with the braces [] indicates the wire indexes integrated by the port.

For example in Figure 5-3, the first input port Ch1[1:4] represents the four input

signals from input Channel 1 and the fourth input port DataIn[1:24] represents 24 data

input signals.

In the following sections, the structure of the five parts of a STEP as well as the flow

charts of the task embedded in the corresponding IP core part will be introduced in

detail. These MATLAB models can be seen as the implementation of the CPN models

in Chapter 4 and the simulation results in time/sample dimension of different signals

in each part will be displayed accordingly.

5.1. The Design of Event Handler Part in MATLAB

As four VSBs are used in the system and each VSB’s IP core contains four tasks, the

Event Handler Part of each VSB is built by 4*4 Wait&Stim nodes altogether (Figure

 5-4). The first input port Chs[1:4][1:4] is a multiplexed input port, which indicates

there are four input Event Channels, and each Channel uses one-hot coding to indicate

the ID number of the driven task. The first three Channels are used to connect with the

other three VSBs and the last Channel is used as the feedback channel to receive

events generated from the same VSB. Therefore, the event signals coming from the

Chs[1:4][1:4] port are decomposed into 16 stim signals to set their corresponding stim

bit in Nodes 1 to 16. Signals from Wait[1:4] and Reset[1:4] ports set the wait bit or

reset all Wait&Stim nodes in one column respectively. The operation in each node is

the realization of the CPN model in Figure 4-6. The subsystem block 4OR models the

Chapter 5. The Construction of SOCs with VSBs in MATLAB

logic OR gate with four inputs, and signals from the output port Ready[1:4] indicate

which task is ready for processing.

Node13

Node5

Figure 5-4: The Design of EH Part in MATLAB

According to the initial positions of the four balls indicated by Figure 5-1, both Ball3

and Ball4 are in playground I. Therefore the IP core in VSB I is activated and task3

and task4 are executed to control their corresponding balls to move one step further.

Based on their initial history parameters, Ball3 moves one step up and Ball4 moves

one step right. They are out of playground I afterwards. The IP core in VSB I is shut

down accordingly. Although short, the period presents all executions that may be

carried in one VSB. Therefore we use simulation provided by the MATLAB Simulink

to observe the signal variation in different parts during this period. The simulation

result for the EH part is given in Figure 5-5.

In Figure 5-5, Wait16 indicates the status of the wait bit of Node 16. Since no task is

processing in the IP core in the initialize stage, all wait signals keep high (1). The

initial setting generates two events in the feedback Channel to activate task3 as well

Chapter 5. The Construction of SOCs with VSBs in MATLAB

as task4. Therefore, Stim16, as the stim bit for Node 16, becomes valid. When both

the stim and wait bits of Node 16 are set, Ready4 (the 4th output signal in Ready[1:4])

becomes valid accordingly (2). After the IP core is fired (which is controlled by the

A&F part that will be introduced in Section 5.2) and task4 is chosen to be loaded into

the IP core (which is controlled by the Scheduler part that will be introduced in

Section 5.3), Reset4, as the 4th signal from input port Reset[1:4] becomes valid. This

signal clears both stim and wait bits in Node 16 (3) so that Ready4 becomes invalid

accordingly (4). After the execution of task4 in the IP core, Wait4 becomes valid

again (5) indicating the corresponding task codes can be loaded into the IP core

afterwards.

1

2

3

4

5

W
a
it
1
6

S
ti
m
1
6

R
e
s
e
t4

R
e
a
d
y
4

Figure 5-5: Simulation Result of the EH

5.2. The Design of PM Part in MATLAB

Figure 5-6 shows the design of the PM Part in a VSB which is the realization of the

CPN model of the PM in Section 4.3. Each access subsystem block is the realization

of the corresponding access transition in the CPN model of Figure 4-8. Each Polling

block is the realization of the corresponding select/pass transitions in Figure 4-8.

Chapter 5. The Construction of SOCs with VSBs in MATLAB

Figure 5-6: The Design of PM in MATLAB

The Trigger block in Figure 5-6 is based on the adder and Fire transitions in Figure

 4-8. Moreover, the weight of each task rather than the number of tasks is accumulated

in this block according to the suggestion given by the future work in Section 4.3.

Currently, fixed weight is given to each task and the realization of the trigger block is

given in Figure 5-7.

Figure 5-7: The Design of the Trigger unit in MATLAB

If any grant signal from Grants[1:4] becomes valid, the corresponding weight number

from Weight[1:4] is added to the accumulation data which is kept in the

Accumulation Memory block. Initially, weight number 5 and 3 are given to task3 and

Chapter 5. The Construction of SOCs with VSBs in MATLAB

task4 respectively. Given Threshold 6, the accumulation of these two tasks can

activate the IP core. A fire signal is sent through the output port Fire accordingly.

The simulation result of the PM part is given in Figure 5-8. The validation of Ready3

(as the 3rd signal of Ready[1:4]) disables Enable3 (as the enable signal for Ready3) so

that the corresponding weight can only be added to the accumulation once(1). Irdy3,

as the output signal of access3 in Figure 5-6, becomes valid accordingly (2). When at

least one valid ready signal is captured, the polling accumulation, which was

introduced in Section 4.3, begins. When Token3, as the 2nd input signal for Polling3

block, becomes valid, it indicates that the polling token arrives to check if Rdy3 is

valid (3).

1

2

3

4

5

7

6

R
e
a
d
y
3

R
e
a
d
y
4

8

Figure 5-8: The Simulation Result of the PM Part

Since Ready3 becomes valid earlier than Token3, the former signal is granted.

Therefore Grant3, as the 2nd output signal of Polling3 block, becomes valid (4). The

grant signal enables the corresponding weight for accumulation and Acc, as the

Chapter 5. The Construction of SOCs with VSBs in MATLAB

accumulation result, increases to 5 (5). After the accumulation in Acc, Irdy3 is

withdrawn (6) and so is Grant3. The weight of task4 can be added to the Acc

afterwards in the similar executions. When the Acc value becomes 8, the Fire signal

becomes valid accordingly (7). When the sleep signal becomes 0, both Enable3 and

Enable4 becomes valid again to cooperate with further incoming valid ready signals

(8).

5.3. The Design of TM Part in MATLAB

Figure 5-9: The Design of Scheduler in MATLAB

Figure 5-9 introduces the design of the TM part in MATLAB, which is the realization

of the CPN model of TM in Section 4.4. Each Access subsystem block is the

realization of the corresponding Access transition in the CPN model in Figure 4-15.

Similarly Each Scheduler block is the realization of the corresponding scheduling

transition group (combined by transitions Foundi, PollStarti, Passi, NextGi i=1,2,3,4)

in the CPN model of Figure 4-15. Similarly as in Figure 4-15, task1 and task2 have

higher priority than task3 and task4 in the current model. Task1 and task3 are set as

the initial last task in each task group. The scheduling result is given in the Found

output port of each scheduling block. The block named Last in Figure 4-15 is one part

Chapter 5. The Construction of SOCs with VSBs in MATLAB

of the realization of the Load transition in Figure 4-15, which is used to update the

information of the last task in each group. The NewTask block is the other part of the

realization of the Load transition in the corresponding CPN model, which focuses on

loading the ID number of the new task into the IP core.

Because of the complexity of the scheduler part, the simulation result is given in

Figure 5-10 and Figure 5-11 respectively. In Figure 5-10, Ready3 and Ready4

represent the 3rd and 4th ready signals in Ready[1:4]. When Ready3 becomes valid,

Found3 (the Found output signal of the 3rd Scheduler block) stays invalid because

scheduling is forbidden when the IP core is sleeping (1). When the sleep signal

becomes invalid, both Irdy3 and Irdy4 (as the output signals of the 3rd and 4th Access

block respectively) signals are enabled by their corresponding ready signals (2). The

Me2 signal is the input signal for both Scheduler3 and Scheduler4 blocks in their 3rd

input port. The validation of this signal indicates that neither task1 nor task2 is ready

for execution. This signal enables Found4 (as the Found output signal in the 4th

Scheduler Block) since Task3 is initially set as the last task (4). The scheduling result

is loaded into the address bus and sent to the IP core when the LoadEn signal becomes

valid (5) and the detail of task loading will be introduced in Figure 5-11. The loading

of the new task also resets the corresponding ready signal in the EH part (which is

introduced in section 5.1). When Ready4 becomes invalid, the Irdy4 becomes invalid

accordingly (6). Therefore Found3 becomes valid since Ready3 is the only valid ready

signal at this time (7).

Chapter 5. The Construction of SOCs with VSBs in MATLAB

1

2

3

4

5 6

7

L
o
a
d
E
n

Figure 5-10: The Simulation Result of Scheduling (1)

Figure 5-11 focuses on executions in the scheduler part during the task loading

processing. After the scheduling result is achieved (1), NTask4, as the 4th signal of

NewTask[1:4], becomes 1 when the LoadEn signal becomes valid (2). The LoadEn

signal is withdrawn when task4 has been loaded to the IP core. The withdrawal of this

signal updates the record of the last task in every priority group. In current case, Last4

becomes valid and Last3 becomes invalid at the same time, because task4 is carried in

the IP core (3). The withdrawal of LoadEn also triggers the Reset signal to update the

record in the Event Handler. In the current case, a pulse of Reset4, as the 4th signal of

Reset[1:4] is generated (4) to clean the Stim&Wait bits in Node 13 to Node 16 of the

EH part in Figure 5-4. This reset operation makes Ready4 in Figure 5-10 invalid, and

the change in ready signals triggers another scheduling, which chooses task3 as the

new candidate for IP core’s execution (5). This task is chosen as the new task to the IP

core when the next valid LoadEn signal is issued (6).

Chapter 5. The Construction of SOCs with VSBs in MATLAB

1

2

3 4

5

6

L
o
a
d
E
n

Figure 5-11: The Simulation Result of Scheduling (2)

5.4. The Design of Interface in MATLAB

Figure 5-12 is about the design of Interface part in MATLAB. The explanation of the

execution in this part can be found in the corresponding CPN model in Figure 4-17 for

detail.

The simulation result in this part is given in Figure 5-13. The validation of the Fire

signal from the PM part sends the wakeup signal to the IP core, given that the IP core

is sleeping (1). Although the sleep signal from the IP core cannot be toggled because

the wakeup processing in the IP core just begins, the STEPSleep signal becomes 0

without delay (2). This signal disables the execution in the PM part and enables

scheduling in the TM part. Therefore the TM can generate the scheduling result

before the IP core completes its wakeup processing. A LoadEn signal is issued

afterwards (3). Tasks, as the 4th row in Figure 5-13, is the output of the 4OR block

Chapter 5. The Construction of SOCs with VSBs in MATLAB

which is connected with NewTask[1:4]. Therefore, when the signal Tasks is 1, it

means a non-zero task ID number is loaded in the NewTask[1:4] (4).

Figure 5-12: The Design of Interface Part in MATLAB

The sleep signal becomes 0 and a Read signal is generated accordingly (5) when the

wakeup completes. This read signal reads the ID number of the new task chosen from

the STEP to the IP core. If the IP core starts executing the corresponding task, the

Current signal becomes valid (6), which withdraws the LoadEn signal (7). The

following pulses in the Read signal are generated during the execution of the current

task in the IP core. When the current task is completed, the output control unit, which

will be introduced later in Figure 5-14, decides which VSB will control the ball

movement corresponding to the current task. After the decision is made, a complete

signal is issued, and this signal triggers the issuing of another LoadEn signal (8).

According to Figure 5-1, both task3 and task4 can only be enabled once in VSB I

because their corresponding balls move outside of playground I after one step.

Therefore, the 3rd valid LoadEn signal cannot find any valid task ID number from the

TM (9). In this case, a Shutdown signal is issued to IP core to start the shutdown

processing (10). At the same time, the STEPSleep signal becomes 1 to start operations

Chapter 5. The Construction of SOCs with VSBs in MATLAB

in the PM part and disable operations in the TM part (11). However, the IP core is

woken up by the fire signal again after the shutdown processing in the IP core is

completed (12).

1

2

3

5
4

6

7

8

9

10

11

L
o
a
d
E
n

12

Figure 5-13: The Simulation Result of the Interface Part

5.5. The Design of the Output Control Part in MATLAB

Figure 5-14 shows the design of the Output Control part in MATLAB. When the

current new position of one ball is calculated, its parameters are loaded into the data

bus to be transferred to the ACM (which will be introduced in section 5.6). Therefore,

the DeMux block is used to derive the PosX and PosY information from the data bus.

Two comparators are used to calculate which VSB takes charge of the ball whose

parameters are given on the data bus. When the decision is made, the ID number of

the ball (also the ID number of the corresponding task) in the Address[1:4] port is sent

to the corresponding Output Channel (Ochi[1:4], i=0,1,2,3 and Och0[1:4] is the

Chapter 5. The Construction of SOCs with VSBs in MATLAB

feedback channel). At the same time, a Complete signal is issued to the Interface part

to enable the next task loading.

Figure 5-14: The Design of OutputControl Part in MATLAB

Figure 5-15 shows the simulation result of this part. The Enable signal is the signal in

the first input port of both the Comparator and Comparator1 blocks. EdgeX and

EdgeY is the X and Y position of the upper right edge of the current ball which is

calculated in Comparator and Comparator1 blocks. When the Enable signal becomes

1, the two position parameters are used to decide which VSB controls the current ball

(1).

2

3

1

O
C
h
1

O
C
h
2

Figure 5-15: The Simulation Result of the OutControl

Chapter 5. The Construction of SOCs with VSBs in MATLAB

Och1 in Figure 5-15 is the output signal of block 2And2 in Figure 5-14. The

validation of this signal indicates that the current task is sent out as an event from

output channel 1 (2). At the same time, the Complete signal becomes valid (1) to

enable the Interface part to start another task loading.

5.6. The Design of the IP Core Part in MATLAB

Figure 5-16 shows the design of the IP Core part in MATLAB. Two subsystem blocks

are contained in this part. One is called OS which takes charge of IP core’s

wakeup/shutdown according to the commands from the corresponding STEP. It loads

a new task ID number from the STEP. This part is designed based on the transitions

and states in the dotted rectangle I of the CPN model in Figure 4-17. The block of

Tasks is the combination of four embedded tasks which is shown in Figure 5-17, and

this block design is based on the dotted rectangle area II of the CPN model in Figure

 4-17.

Figure 5-16: The Design of IP Core in MATLAB

As discussed before, since we only care about the function of the IP core, five S-

functions are used in this part to realize both the OS block as well as the four tasks

embedded in this IP core. In Figure 5-17, four blocks Inputi (i=1,2,3,4) create input

vectors u for each task S-function. Similarly, the four blocks Outputi (i=1,2,3,4)

derive output vectors y from each task and turn them into signals that can be used in

Chapter 5. The Construction of SOCs with VSBs in MATLAB

the other parts of the MATLAB model. The four S-Function blocks named as Task i

(i=1,2,3,4) are the embedded codes for each task.

Figure 5-17: The Design of Task Subsystem Blocks in MATLAB

5.6.1 The Flow chart of the S-Function of OS

The S-function code for the OS program for VSB I is given in Appendix IX (The S-

function code for other VSBs is similar). Figure 5-18 provides the flow chart of the

program.

Initially, we assume that the IP core is sleeping. Therefore, variables Sleep and Read

in the output vector are set to 1 and 0 respectively. When the Wakeup signal from the

input vector becomes 1, the OS starts the wakeup processing. When the wakeup

processing is completed, the Sleep signal is set to 0 so as to indicate the STEP that the

IP core is ready for task processing. The Read signal is then set to 1 so as to load a

new task from the STEP. If the IP core begins executing the new task, the Current

Chapter 5. The Construction of SOCs with VSBs in MATLAB

signal in the input vector becomes 1, and it sets the Read signal in the output vector to

0.

Start

Wakeup=1?

Sleep=1, Read=0

Wakeup processing

Complete?

Sleep=0, Read=1

Current=1?

Y

N

Y

N

N

Read=0

Current=0?

N

Y

Y

Shutdown=1?

Shutdown processing

Complete?

Read=0

N

Y

Y

N

Figure 5-18: The Flow Chart of the OS program

When the Current signal becomes 0, it means that the current task is completed, and

the Read signal is set to 1 again to read another new task from the STEP. This loop

may continue several times before the shutdown signal from the input vector is

captured. In this case, the Read signal is first set to 0 since no new task is read from

the STEP, and the shutdown processing begins. When the shutdown processing is

completed, the Sleep signal is reset to 1 and the IP core starts sleeping until it is

activated again.

5.6.2 The Flow chart of the S-Function of Task4

The S-function code for task4 (since all task codes are similar) is given in Appendix X.

Figure 5-19 shows the flow chart of the code. The program starts when its ID number

(for task4, [0 0 0 1]) is loaded onto the address bus. The signal Current in the output

vector is set to 1 so as to tell the OS to withdraw the Read signal. The first step of the

Chapter 5. The Construction of SOCs with VSBs in MATLAB

task execution is to load the parameter data of all four balls from the ACM, which is

carried out by the function DataLoad in Appendix X. Using the parameters of the

previous position of Ball4, task4 can calculate the next position of the ball by the

function NextPosition. This function lets the ball to move one step (the size of the

step is determined by the speed parameter) in the direction specified by the History

parameter.

Start

Current=1, i=0

DataLoad

Loading Complete?

UpdateHistory

N

Y

NextPosition

Collision(4,i)?

i<4?

i=i+1

Y

mod(History+1, 4)

N Show the Ball

in New Position

Y

N
DataTransfer

Transfer Complete?

Current=0

N

Y

Reset DataBus

End

Figure 5-19: The Flow Chart of the Task4 program

Therefore, if the history parameter loaded from the ACM is used directly in the

NextPosition function, the new position calculated is totally determined by the current

position (unless Ball4 is knocked back by one wall of the playground or collides with

other balls which will be discussed later). The UpdateHistory function (Figure 5-20)

is used to introduce some degree of nondeterministic to the ball movement.

0 1Threshold

NHistory=History NHistory=floor(unifrnd(0,4))

s=unifrnd(0,1)
Figure 5-20: The UpdateHistory Function

Chapter 5. The Construction of SOCs with VSBs in MATLAB

This function uses the MATLAB command unifrnd to generate a random number

from 0 to 1 which follows uniform distribution. If the random number is less than

some Threshold (0≤ Threshold ≤1), the history parameter loaded from the ACM is

used to calculate a new position for the ball. Otherwise, a random integer is used to

generate the new ball position.

A different Threshold value gives different move mode to balls in the game. If only

one ball contains in the game, the larger the Threshold value is, the more deterministic

its movement becomes. However, when several balls contain in the game, the

probability of collisions between different balls (which is introduced later) also

increases with the rise of the Threshold value. Since a ball collision changes a ball’s

next movement to a random direction, what direction is chosen by the ball’s

movement and when the next collision happens are nondeterministic. Therefore when

multiple balls contain in the game, their movements are nondeterministic no matter

what Threshold value is given to each ball’s movement.

The loading of the parameters for Ball4 from the POOL typed memory is used for the

new position calculation. The loading of parameters of other three balls are used to

check if the new position calculated by the NextPosition function can have any

collision with the others. Function Collision in Appendix X takes charge of the

collision detection and Figure 5-21 indicates the mechanism used by this function.

The variable Dis_Centres calculate the distance between the two balls’ centre. If

Width1 and Width2 represent the width of the two balls separately, ball collision

happens when 22)
2

21
(2_

WidthWidth
CentresDis

+< .

Chapter 5. The Construction of SOCs with VSBs in MATLAB

2

2

2

21
2es)(Dis_Centr

 +> WidthWidth
2

2

2

21
2es)(Dis_Centr

 +≤ WidthWidth

CollisionNO Collision

Figure 5-21: The Calculation of Collision

Therefore in Figure 5-19, when the new position of ball4 is calculated, the program

checks if it has collision with other three balls in sequence (i in Figure 5-19 represents

the ball’s ID number). If any collision happens, the program changes the history

parameter and re-calculates the new position of Ball4 until no collision is found. After

collision detection, the program can safely show the ball in the new position, and then

transfer the parameters of Ball4 to the ACM. This data transfer is carried out by the

DataTransfer function in Appendix X. When the data transfer is completed, the task4

program resets the Current signal to 0 so as to tell the STEP to do output control, and

the execution is stopped after the data bus is reset.

5.7. A Test Bench of Ball Game

In our simulation, the time spent for one step movement of a ball without collision is

set as one time unit. Both wakeup and shutdown executions have been adjusted so that

their latency cost is one time unit as well. To simplify the analysis, we assume that the

power dissipation for task processing is one unit and that for wakeup and shutdown is

1.5 units. Because wire latency cannot be reflected by MATLAB Simulink, the

latency cost of a STEP model cannot be compared with that of its IP core model.

Therefore, the benchmark achieved in this section regards the STEP as cost free in

both power and latency.

Chapter 5. The Construction of SOCs with VSBs in MATLAB

With only four VSBs in the example SOC, events incoming to every VSB cannot be

taken as an ideal exponential distribution. With only four tasks embedded in every IP

core, the execution in every IP core cannot be taken as an ideal exponential

distribution either. Therefore the example SOC test bench is used to analyze the

power efficiency achieved by the A&F policy in a weak Markovian environment.

Four different DPM policies were used to control the four VSBs in different tests. The

first one is the greedy policy which means that the threshold in the A&F part in Figure

 5-7 is set to 1, therefore any ball incoming to a black playground activates the

corresponding IP core.

The A&F policy is used in our second simulation. As the priorities of the four balls

have been set as 1, 2, 3, 5 respectively, we set 5 as the threshold in every A&F part of

STEP. This means that the incoming of ball4 only or several other balls to a black

playground can activate a sleeping IP core.

The timeout policy serves as the third DPM policy in our test where we set the

timeout threshold to 5 and 10 time units in two different simulations.

The prediction policy is the fourth DPM policy that is implemented. In Section 2.1.1,

a TBE time is defined as the minimum time spent in sleeping to compensate for the

wakeup and shutdown overhead. In our case, the TBE is 3 time units according to

Equation 2-3. Furthermore, the implementation of the prediction policy needs to

predict the length of next idle period according to Equation 2-4. A linear regression

method is used in our test for idle period prediction (Equation 5-1).

Chapter 5. The Construction of SOCs with VSBs in MATLAB

321

_ *2.0*3.0*5.0 −−− ++= n

idle

n

idle

n

idle

n

predidle TTTT Equation 5-1

The prediction of the next (nth) idle period depends on the last three idle periods with

reliability of 0.5, 0.3 and 0.2 respectively. For the implementation of the Timeout or

Prediction policy, a subsystem block of state flow is used instead of the A&F part in a

STEP.

To make our test have a wide representation of real systems, we vary the threshold in

Figure 5-20 from 0 to 1 in 11 independent simulations for every DPM policy’s

implementation. The change of this threshold from 0 to 1 indicates the variation of

ball movements from pure random to mostly history based.

Figure 5-22 presents the average power dissipation of one IP core for various ball

movements when different DPM policies are used. The Timeout1 in the legend

indicates the case when Timeout parameter τ is set to 5, and Timeout2 is the case

when τ is set to 10. From this figure, it is clear that the A&F policy is more power

efficiency than the other three policies, no matter what movement the balls take.

Chapter 5. The Construction of SOCs with VSBs in MATLAB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pave

1 2 3 4 5 6 7 8 9 10 11

Threshold

Power Analysis

Series1

Series2

Series3

Series4

Series5

A&F

Greedy

Timeout1

Timeout2

Predict

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Figure 5-22: Power Analysis of Test Bench

Figure 5-23 shows the latency analysis of the test bench when the A&F policy is used.

If four tasks are ready in one IP core, 2 time units are needed by one task for

scheduling before execution in average, and 1 time unit is needed for execution at

least (suppose no collision happens). Therefore we set the deadline (DL) for every

task’s execution as 6 time units in our first simulation. It can be seen front the figure

that the A&F policy causes no more than 2.5% deadline violations on average. In

most cases, this latency is acceptable. In our second simulation, the deadline is set to 8

time units to present the case when the deadline requirement is less strict. It can be

seen that deadline violations become less accordingly.

As different priorities have been given to the four tasks, these tasks have a different

latency performance. Figure 5-24 presents the different latency performance of the

four tasks when the deadline is set to 6. It can be seen that task4, who has the highest

Chapter 5. The Construction of SOCs with VSBs in MATLAB

priority, has extremely low deadline violation cases. It is because no latency cost is

paid in task accumulation.

0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

APDV

1 2 3 4 5 6 7 8 9 10 11

Threshold

Latency

Series1

Series2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DL=6

DL=8

Figure 5-23: Latency Analysis of Test Bench

According to Figure 5-24, task2 and task3 have more frequent deadline violations

than task1, although they have a higher priority than the latter. It is mainly caused by

the parameter settings of these balls. According to Table 5-1, ball2 and ball3 have a

higher speed than ball1, which means ball2 or ball3 moves more frequently across

different playgrounds than ball1. When ball2 or ball3 moves to a new playground

whose corresponding IP core is sleeping, it needs another balls’ arrival to activate the

IP core and much latency is involved during task accumulation. On the other hand,

ball1, which has small size and low speed, always moves within one playground.

Therefore this ball pays less cost in accumulation latency than ball2 or ball3.

Chapter 5. The Construction of SOCs with VSBs in MATLAB

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

APDV

1 2 3 4 5 6 7 8 9 10 11

Threshold

APDV for different tasks

Series1

Series2

Series3

Series4

Task1

Task2

Task3

Task4

Figure 5-24: Latency Analysis for Test Bench (Continue)

5.8. Conclusions

This chapter presents an example SOC which is constructed from four VSBs in

MATLAB Simulink. All parts of a STEP that are modelled by CPN models in

Chapter 4 have been built by basic components in the Simulink Library. An example

IP core with four embedded tasks is designed in the Simulink S-function. The

example SOC is used to carry out a test bench named as a ball game in MATLAB

simulation, and the simulation result achieved from the test bench not only proves the

correctness of executions in the VSB based SOC, but also indicates the high energy

efficiency of the A&F policy even in a weak Markovian environment.

184

Chapter 6

Conclusions and Future Work

6. Conclusions and Future Work

In recent years, IP cores have been widely used in SOC design under the GALS

architecture. Asynchronous wrappers and ACMs are used to provide asynchronous

communication for IP cores belonging to different time domains. When power instead

of throughput becomes the main bottleneck of the system performance, various low

power technologies in gate and transistor levels in hardware design and event driven

programmes in software design help IP cores to reduce their power dissipation.

However, no low power consideration so far has been provided in the GALS

architecture so as to optimize system performance (mainly in power dissipation) in a

SOC scheme. In this thesis, an asynchronous coprocessor named as Self-Timed Event

Processor (STEP) is modelled and designed, which provides event handling, power

control, task scheduling as well as asynchronous communication for each IP core in

an SOC with low overheads. The combination of one IP core and its STEP forms a

virtual self-timed block (VSB) since it works as a self-timed domain in the

asynchronous environment.

Chapter 6. Conclusion and Future Work

As the demonstration of the motivation validity for such design, stochastic models in

Chapter 3 were used for the power-latency analysis of a virtual self-timed block when

different DPM policies have been implemented. Not only various modes provided by

an IP core, but also mode switching transitions have been modelled in our stochastic

(mainly Markov) models. A stochastic DPM policy named as Accumulation & Fire

(A&F) is verified to be promising in trading latency for power, and this policy has

relatively easy hardware implementation.

In Chapter 4, hierarchical CPN models were built to demonstrate and analyze a

general architecture of a STEP, following some basic functional specifications.

Concurrent processing between different components of a STEP as well as that

between a STEP and its IP core were highlighted in all CPN models, and simulation

and state space checking were used to correct possible design errors in our design.

Chapter 5 introduced an example SOC which is built by four VSBs in MATLAB

Simulink. The construction of all these VSBs follows the specification given in the

previous CPN models. A test bench named as ball game is running in the example

SOC and simulation results show the energy efficiency of our design.

Further study can be done in different aspects in the future. Since all executions in a

portable device rely on the energy stored in an on board battery, we prefer to combine

our stochastic models presented in this thesis with that for battery given in [luci08], so

as to analyze the optimized performance of an IP core (as well as a SOC) when the

nonlinear power consumption in the battery is taken into consideration.

Secondly, current STEP model only provides on-off power control to its IP core. In

the future, new CPN models of a STEP will be built to provide more delicate control

Chapter 6. Conclusion and Future Work

to use various operation modes provided by advanced IP cores to further optimize

system performance.

Finally, current STEP model needs to be implemented into VLSI design. In this case,

we can first test the power and latency of the STEP in real case, so as to prove the

A&F policy has very low overheads. Furthermore, several real IP cores can be used to

cooperate with our STEP to analyze the power efficiency of the A&F policy. The

construction of SOC with VSBs will be carried afterwards.

187

Appendix

Appendix I: Analytical Solution Derivation for the Greedy Policy in

an On-Off DPM System

In this section, we use the probability of state 1 in Figure 3-1 (Q1) to represent the

probability of other states.

The probabilities of shutdown states

If Qsd0 is the probability of shutdown state sd0, the relationship between Q1 and Qsd0 is

shown in Equation a-1.

01)(sdQQ γλµ += Equation a-1

Therefore, we can use Q1 to represent Qsd0 in Equation a-2.

10 QQsd γλ
µ
+

= Equation a-2

Qsd1 can also be represented by Q1 with the help of Qsd0 (Equation a-3).

101 QQQ sdsd γλ
λ

γλ
µ

γλ
λ

++
=

+
= Equation a-3

We can carry on the derivation for Qsd2, Qsd3 and so on. The general expression for the

probability of shutdown states Qsd(n) (n=0,1,2,…) is given in Equation 3-2 or Equation

a-4.

1)()(QQ n
nsd γλ

λ
γλ

µ
++

= Equation 3-2 or Equation a-4

Appendix

If Ssd is the sum of the probabilities of all shutdown states, we can derive

∑ +
+

+
+

+
+

==
∞

=0

21
)(...))(1(

n
nsdsd

Q
QS

γλ
λ

γλ
λ

γλ
µ

 Equation 3-16 or Equation a-5

 1
11

1

1
Q

QQ

γ
µ

γ
γλ

γλ
µ

γλ
λγλ

µ =+
+

=

+
−+

=

The probabilities of inactive states

According to Figure 3-1, only one state 0* belongs to inactive state. With the help of

Qsd0, we can represent Q0* by Q1 in Equation 3-13 or Equation a-6.

10*0 QQQ sd γλ
µ

λ
γ

λ
γ

+
== Equation 3-13 or Equation a-6

The probabilities of wakeup states

If Qwu1 is the probability of wakeup state wu1, the relationship among Qwu1, Qsd1 and

Q0* is shown in Equation a-7.

1*01)(wusd QQQ δλλγ +=+ Equation a-7

Therefore, we can derive

*011 QQQ sdwu δλ
λ

δλ
γ

+
+

+
= Equation a-8

Similarly, we have

122 wusdwu QQQ
δλ

λ
δλ

γ
+

+
+

= Equation a-9

 *0
2

2)()(QQsd δλ
λ

δλ
γ

δλ
λ

γλ
λ

δλ
γ

+
+

++
+

++
=

233 wusdwu QQQ
δλ

λ
δλ

γ
+

+
+

= Equation a-10

 *0
3

1
22)(])()()[(QQsd δλ

λ
δλ

λ
γλ

λ
δλ

λ
γλ

λ
δλ

γ
+

+
+

+
++

+
++

=

Therefore, the general expression for the probability of wakeup state Qwu(n) (n>0) is

given in Equation 3-14 or Equation a-11.

Appendix

*0

1

0

11
)()(])()[(Q

Q
Q n

n

k

knksd
nwu δλ

λ
δλ

λ
γλ

λ
δλ

γ
+

+∑
+++

=
−

=

−−

Equation 3-14 or Equation a-11

If Swu is the sum of the probabilities of all wakeup states, the calculation of Swu can be

carried out in the following steps:

First of all, we define

∑ ∑
++

=
∞

=

−

=

−−

1

1

0

1
1])()[(

n

n

k

knkX
δλ

λ
γλ

λ
 Equation a-12

And

∑
+

=
∞

=1
2)(

n

nX
δλ

λ
 Equation a-13

Therefore

*021
1

1
)(QXX

Q
QS sd

n
nwuwu +

+
=∑=

∞

= δλ
γ

 Equation a-14

X2 can be easily calculated in Equation a-15.

δ
λ

δλ
λδλ

λ
δλ

λ =

+
−+

=∑
+

=
∞

= 1

1
)(

1
2

n

nX
Equation a-15

In Equation a-12, it can be seen that all components in X1 are the functions of n and k.

For example, when n=1 and k=0, we have our first component 1. When n=2, k=0, the

second component is
γλ

λ
+

, and when n=2, k=1, we have
δλ

λ
+

.

For better understanding the relationship of all components in X1 so as to calculate the

sum of the probability of all wakeup states, we list all components in X1 in a matrix

way. The value for the (n, k) component of X1 is given in the (n, k+1) unit of the

matrix.

Appendix

X1=

 k=0 k=1 k=2 k=3 …

n=1 1

n=2 γλ
λ
+

δλ

λ
+

n=3
2)(

γλ
λ
+

δλ

λ
γλ

λ
++

 2)(
δλ

λ
+

n=4
3)(

γλ
λ
+

δλ

λ
γλ

λ
++

2)(
2)(

δλ
λ

γλ
λ

++
 3)(

δλ
λ
+

 …

… … … … … …

If Y1 is the sum of the first column of the X1 matrix (which is highlighted by the grey

shade), the result is:

γ
γλ

γλ
λ

γλ
λ

γλ
λ +=

+
=+

+
+

+
+= ∑

∞

=1

2

1)(...)(1
n

nY Equation a-16

Similarly, Y2 as the sum of the second column of the matrix, the result is:

γ
γλ

δλ
λ

γλ
λ

γλ
λ

δλ
λ +

+
=+

+
+

+
+

+
= ...])(1[2

2Y Equation a-17

The sums of the rest columns like Y3, Y4 and so on share the similar form as Equation

a-17. Now, we can derive X1 by adding all the column value together (Equation a-18).

δ
δλ

γ
γλ

δλ
λ

δλ
λ

γ
γλ ++=+

+
+

+
++=+++= ...])(1[... 2

3211 YYYX

Equation a-18

Swu can be calculated by integrating Equation a-15 and Equation a-18 into Equation

a-14, and the final result is given below.

1QSwu δ
µ= Equation 3-18 or Equation a-19

The probabilities of active states

Appendix

If Qn (n>0) is the probability of active state n, Qn can be represented by the

probabilities of neighbour states Qn-1 and Qn+1 and the connected wakeup state Qwu(n)

(Equation a-20 or Equation a-21).

112)(QQQ wu µλδµ +=+ Equation a-20

nnwunn QQQQ)()(11 λµδµλ +=++ +− (n>1) Equation a-21

The general expression for the probability of active state n is given in Equation a-22

accordingly.

∑ ∑∑
=

−

=

−

=

−− −=
n

k

n

k

kwu

n

ks

snk

n QQQ
1

1

1

)(

1

1

1])([)(
µ
λ

µ
δ

µ
λ

 Equation 3-15 or Equation a-22

In order to calculate Sa, as the sum of the probabilities of all active states, we use the

similar way as the derivation of Swu. First we define X1 and X2 in the following

equations.

∑ ∑=
∞

= =

−

1 1

1
1)(

n

n

k

kX
µ
λ

 Equation a-23

∑∑∑
∞

=

−

=

−

=

−=
2

1

1

)(

1

2)(
n

n

k

kwu

n

ks

sn QX
µ
λ

 Equation a-24

Therefore, we have

211
1

XQXQS
i

ia µ
δ−=∑=

∞

=
 Equation a-25

We rewrite X1 as a matrix according to n, k:

X1=

1

1

µ
λ

1

µ
λ
 2)(

µ
λ

1

µ
λ
 2)(

µ
λ

 3)(
µ
λ

1

µ
λ
 2)(

µ
λ

 3)(
µ
λ

 4)(
µ
λ

…

Appendix

… … … … … …

Suppose T is the total number of active states, therefore the sum of the first column is

T and the sum of the second column is
µ
λ

)1(−T . X1, as the sum of the matrix becomes:

...))(2()1(2
1 +−+−+=

µ
λ

µ
λ

TTTX Equation a-26

When X1 is multiplied by
µ
λ
, we have

...))(2())(1(32
1 +−+−+=

µ
λ

µ
λ

µ
λ

µ
λ

TTTX Equation a-27

When we subtract Equation a-27 by Equation a-26, we have

...)()()1(32
1 ++++−=−

µ
λ

µ
λ

µ
λ

µ
λ

TX Equation a-28

Therefore

21
)(λµ

λµ
λµ

µ
−

−
−

= T
X Equation a-29

Next, we rewrite X2 as a matrix according to n, k:

X2=

Qwu1

1)1(wuQ
µ
λ+ Qwu2

1
2))(1(wuQ

µ
λ

µ
λ ++ 2)1(wuQ

µ
λ+ Qwu3

… … … …

If the total number of all active states is T, then the rank of X2 should be T-1 because

the expression of Q1 does not have any Qwu(n) component. Now, we first calculate the

sum of the first column of the X2 matrix.

Appendix

...))(1()1(1
2

111 ++++++= wuwuwu QQQY
µ
λ

µ
λ

µ
λ

 Equation a-30

 1
2 ...]))(3()2()1[(wuQTTT +−+−+−=

µ
λ

µ
λ

Similarly as the calculation of X1, we multiply Y1 by µ
λ
:

1
32

1 ...]))(3())(2()1[(wuQTTTY +−+−+−=
µ
λ

µ
λ

µ
λ

µ
λ

 Equation a-31

The value of Y1 can be achieved by subtracting Equation a-30 by Equation a-31.

121]
)(

)1(
[wuQ
T

Y
λµ

λµ
λµ

µ
−

−
−
−= Equation a-32

The sum of the following columns can be computed using the similar steps as above.

For example, the expression for Y2 and Y3 are given in Equation a-33 and Equation

a-34 respectively.

222]
)(

)2(
[wuQ
T

Y
λµ

λµ
λµ

µ
−

−
−
−= Equation a-33

323]
)(

)3(
[wuQ
T

Y
λµ

λµ
λµ

µ
−

−
−
−= Equation a-34

Now, we can use Yj (j=1,2,3,…) to represent X2 in Equation a-35.

...]
)(

)2(
[]

)(

)1(
[22122 +

−
−

−
−+

−
−

−
−= wuwu Q

T
Q

T
X

λµ
λµ

λµ
µ

λµ
λµ

λµ
µ

 Equation a-35

 ...)(
)(

...])2()1[(21221 ++
−

−+−+−
−

= wuwuwuwu QQQTQT
λµ

λµ
λµ

µ

If we define

...)2()1(211 +−+−= wuwu QTQTZ Equation a-36

And

...3212 +++= wuwuwu QQQZ Equation a-37

X2 in Equation a-35 can be represented by the combination of Z1 and Z2 (Equation

a-38).

Appendix

2212
)(
ZZX

λµ
λµ

λµ
µ

−
−

−
= Equation a-38

Z2, as the sum of the probabilities of all wakeup states, has been calculated in

Equation a-19. Equation a-11gives the general expression of all wakeup states, and we

integrate this equation to Equation a-36, so we have

+
+

−= 12)1(sdQTX
δλ

γ
 *0)1(QT

δλ
γ
+

−

 +
++

−+
++

− 11)2()2(sdsd QTQT
δλ

λ
δλ

γ
γλ

λ
δλ

γ
 *0)2(QT

δλ
γ
+

−

 +
+++

−+
++

− 11

2)3()()3(sdsd QTQT
δλ

λ
γλ

λ
δλ

γ
γλ

λ
δλ

γ
…..

It can be seen that components 1)1(sdQT
δλ

γ
+

− , 1)2(sdQT
γλ

λ
δλ

γ
++

− and so on

behave like a number serial, and components 1)2(sdQT
δλ

λ
δλ

γ
++

− ,

1)3(sdQT
δλ

λ
γλ

λ
δλ

γ
+++

− behave like another serial. In order to emphasize all

number serials in the calculation, we rewrite X2 in a matrix way (all plus (+) symbols

are omitted):

Appendix

Similarly as the calculation of Z1 matrix, we do the calculation according to the

columns. If Zc1 is the sum of the first column of Z1, we have:

1
2

1 ...]))(3()2()1[(sdc QTTTZ +
+

−+
+

−+−
+

=
γλ

λ
γλ

λ
δλ

γ
 Equation a-39

The serial of Zc1 is similar to the serial of X1 in Equation a-26, and the serial of Y1 in

Equation a-31, and we can use the similar method to get the solution.

121]
)())(1(

[sdc Q
T

Z
δλ

γ
γ

γλλ
γ

γλ
+

+−+−= Equation a-40

The sum of the following columns (Zc2, Zc3 and so on) can be calculated in the similar

steps. Therefore, we have:

Zc(n)= 1
1

2
)](

)())((
[sd

n Q
nT

δλ
γ

δλ
λ

γ
γλλ

γ
γλ

++
+−+− − (n<T)

 *0
2])()1[(QT

δ
λ

δ
λ −− (n=T)

Equation a-41

If we use the Zc(i) in Equation a-41 to represent Z2, we have:

)(212 ... nccc ZZZZ +++= Equation a-42

 1
2 ...]))(3())(2()1[(sdQTTT +

+
−+

+
−+−

+
+=

δλ
λ

δλ
λ

δλ
γ

γ
γλ

 *0
2

1
2

2
])()1[(...])()(1[

)(
QTQsd δ

λ
δ
λ

δλ
λ

δλ
λ

δλ
γ

γ
γλλ −−++

+
+

+
+

+
+−

 *0
2

112
])()1[(

)(

)(
]
)())(1(

[QTQQ
T

sdsd δ
λ

δ
λ

δ
δλ

δλγ
γλλ

δ
γλλ

δ
δλ

δλ
γλ −−++

+
+−+−+−

+
+=

Using Equation a-3 and Equation a-6, we can use Q1 instead of Qsd1 and Q0* to

represent Z2.

1

2

2]
)(

)1[(QTZ
γγλ

λ
δ
λ

δ
µ

+
−−−= Equation a-43

When we integrate Equation a-19 and Equation a-43 into Equation a-38, we have

Appendix

2212
)(
ZZX

λµ
λµ

λµ
µ

−
−

−
= Equation a-44

 1

2

]
)(

)1([QT
γγλ

λ
δ
λ

λµ
λ

λµ
µ

+
++

−
+−−

−
=

When we integrate Equation a-29 and Equation a-44 into Equation a-25, we finally

achieve the equation for the Sa.

1

2

1

]
)(

1[QQS
n

na γγλ
λ

δ
λ

λµ
µ

+
++

−
=∑=

∞

=
 Equation 3-19 or Equation a-45

Now, we have used Q1 to represent the probabilities of all other states. If Q1 is known,

we can derive the probabilities of other states using the equations before. When we set

the total probability of all states to 1 (Si + Sa + Swu + Ssd =1), we can derive the value

of Q1.

]
)(

1[
)(

1
21

γγλ
λ

δ
λ

λµ
µ

δ
µ

γλλ
µγ

γ
µ

+
++

−
++

+
+

=Q
Equation 3-20 or Equation a-46

Appendix

Appendix II: Analytical Solution Derivation for the A&F Policy in an

On-Off DPM System

In this section, we use Q1 (the probability of (Active) state 1 in Figure 3-8) to

represent the probability of other states.

The probabilities of shutdown states

The relationship between the shutdown states Qsd(n) and Q1 in the A&F policy keeps

the same as its greedy counterpart. Therefore, we have:

1)()(QQ n
nsd γλ

λ
γλ

µ
++

= Equation 3-2 or Equation a-4

1QSsd γ
µ= Equation 3-16 or Equation a-5

The probabilities of inactive states

The relationship between Q1 and Q0 is given in Equation 3-13 or Equation a-6.

1*0 QQ
γλ

µ
λ
γ

+
= Equation 3-13 or Equation a-6

The probabilities of the rest inactive states Qn* can be expressed by the probability of

its left neighbour Q(n-1)* and that of the corresponding shutdown state Qsd(n) in.

)(*)1(* nsdnn QQQ γλλ += − (1<n<N) Equation a-47

When we integrate Equation 3-2 or Equation a-4 and Equation a-6 into Equation a-47,

we can derive the general expression for the inactive states.

1

1

0

0
*])(1[)(Q

Q
Q n

n

k

ksd
n

+

= +
−=

+
= ∑ γλ

λ
λ
µ

γλ
λ

λ
γ

 (n<N)

Equation 3-21 or Equation a-48

The sum of all inactive states (Si) is given in the following equation.

Appendix

1

1

0
*)])(1([QNQS N

N

n
ni γλ

λ
γ
λ

λ
µ

+
−−=∑=

−

=
 Equation 3-25 or Equation a-49

When N=1,Equation a-48 and Equation a-49 become their counterpart Equation a-6

(Because there is only one inactive state, Si=Q0*) in the greedy policy. This

characteristic can also be found in the following state groups.

The probabilities of wakeup states

As explained before, the first wakeup state changes from wu1 in the greedy policy to

wu(N) in the A&F policy. However, the basic relationship among wakeup states does

not change. We have:

)(*)1()()(NwuNNsd QQQ δλλγ +=+ − (n=N) Equation a-50

)()1()()(nwunwunsd QQQ δλλγ +=+ − (n>N-1) Equation a-51

Using the general expressions of shutdown and inactive state groups, we can derive

the general expression of the wakeup states in Equation a-52.

*)1(
1

0

)(
)()(])()[(−

+−−

=

−−

+
+∑

+++
= N

Nn
Nn

k

kNnkNsd
nwu Q

Q
Q

δλ
λ

δλ
λ

γλ
λ

δλ
γ

 (n>N-1)

Equation 3-22 or Equation a-52

The sum of the probabilities of the wakeup state Swu can be derived accordingly. For

more detailed steps, one can seek the derivation from Equation a-12 to Equation a-19

in the greedy policy. We simply give the result here.

1QSwu δ
µ= Equation 3-18 or Equation a-19

The probabilities of active states

The active state group can be divided into two sub-groups. The probabilities of active

states from 1 to (N-1) are only determined by the probability of their neighbours. It is

Appendix

because the SP is not activated when the accumulation in the TQ is not enough.

Therefore, we have:

1
1

)1()(QQ
n

k

k
n ∑=

=

−

µ
λ

 (n≤N) Equation 3-23 or Equation a-53

For active states from N, their probabilities are not only influenced by the

probabilities of their neighbour states, but also affected by the probability of the

connected wakeup state. The relationship between these states is given in Equation

a-54.

nnwunn QQQQ)()()1()1(λµδµλ +=++ +− Equation a-54

The general expression for these states is given in Equation a-55.

∑ ∑∑
=

−

=

−

=

−− −=
n

k

n

Nk

kwu

n

ks

snk

n QQQ
1

1

)(

1

1

1])([)(
µ
λ

µ
δ

µ
λ

 (n>N) Equation 3-24 or Equation a-55

In order to derive the sum of the probabilities of all active states (Sa), we first define

∑ ∑=
∞

= =

−

1
1

1

1
1)(

n

n

k

k QX
µ
λ

 Equation a-56

∑∑∑
∞

=

−

=

−

=

−−=
Nn

n

Nk

kwu

n

ks

sn QX
1

)(

1

2])([
µ
λ

µ
δ

 Equation a-57

So we have

Sa = X1 + X2 Equation a-58

The calculation of X1 is given in detail in its counterpart of the greedy policy. One can

seek the derivation from Equation a-25 to Equation a-29 for detail. Here we only give

the final result (T is the number of all active states under calculation).

121]
)(

[Q
T

X
λµ

λµ
λµ

µ
−

−
−

= Equation a-29

If we rewrite the X2 serial as a matrix by n and k, we have

X2=

Qwu(N)

Appendix

)()1(NwuQ
µ
λ+ Qwu(N+1)

)(
2))(1(NwuQ

µ
λ

µ
λ ++)1()1(++ NwuQ

µ
λ

 Qwu(N+2)

… … … …

This matrix is quite similar to its counterpart in the greedy policy, but has quite

different rank. Starting from wu(N), the rank of X2 matrix shrinks to T-N because the

calculation of the first N active states do not involve wakeup states. The value of the

matrix changes accordingly. For example, the sum of the first column becomes

)(21]
)(

)(
[NwuQ

NT
Y

λµ
λµ

λµ
µ

−
−

−
−= Equation a-59

The result of X2 is given in Equation a-60. One can seek the derivation from Equation

a-32 to Equation a-44 in the greedy policy for detail.

1

)1(

2]
)(

)([QNTX
N

N

δλγ
λ

δ
λ

λµ
λ

λµ
µ

+
++

−
+−−

−
=

+
 Equation a-60

The value of Sa is given in Equation a-61.

1

1

21]
)(

[QNXXS
N

N

a γγλ
λ

δ
λ

λµ
µ

+
++

−
=+=

+
 Equation 3-26 or Equation a-61

Appendix

Appendix III: Analytical Solution Derivation for a DPM System with

multiple inactive modes

In this section, the probability of the idle state (Qidle) in Figure 3-15 is used to

represent the probability of the remaining states.

The probabilities of shutdown states

Qsd0, as the probability of state sd0 is only determined by Qidle. Therefore, we have:

idlesd QQ
γλ

ε
+

=0 Equation a-62

The probability of the other shutdown states sd(n) is determined by the probability of

its left neighbour Qsd(n-1). Using the iteration method, we can derive the general

expression of the shutdown states and the sum of the probabilities (Ssd) in Equation a-

63 and Equation a-64 respectively.

idle
n

nsd QQ)()(γλ
λ

γλ
ε

++
= Equation 3-27 or Equation a-63

∑ ==
∞

=0
)(

n
idlensdsd QPS

γ
ε

 Equation 3-33 or Equation a-64

The two equations are similar to their counterparts in the greedy or A&F polices of

the on-off DPM system, with the change of µ to ε.

The probability of sleep states

With more than one inactive modes involved in the DPM system, states 0* to (N-1)*

cannot be called as inactive states as in the on-off DPM system. We rename these

states as sleep states because the SP is in the sleep mode when it is in any of these

states.

Appendix

In the current case, the relationship between Qsd0 and the probability of the sleep

states are the same as that in the on-off DPM system when either the greedy or the

A&F policy is implemented. Therefore, the general expressions for the probability of

sleep states and the sum of the probabilities (Si) are given inEquation 3-28 or Equation

a-65 and Equation 3-34 or Equation a-66 respectively.

idle
n

n

k
ksdn QQQ])(1[1

0
)(*

+

= +
−=∑=

γλ
λ

λ
ε

λ
γ

 (n≤N) Equation 3-28 or Equation a-65

idle

N
N

n

ni Q
N

QS]})(1[{
0

* γλ
λ

γ
ε

λ
ε

+
−−==∑

=

 Equation 3-34 or Equation a-66

The probability of wakeup states

Similar as the sleep states, the relationship between the probability of wakeup states

and shutdown/sleep states are the same as that in the on-off DPM system when either

the greedy or the A&F policy is implemented. Therefore, the general expressions for

the probability of wakeup states and the sum of the probabilities (Swu) are given in

Equation 3-24 or Equation a-55 andEquation 3-35 or Equation a-67 respectively. The

detail of Swu calculation can be found in the derivation from Equation a-12 toEquation

 3-18 or Equation a-19 in Section 3.2.1.

*)1(
1

0

)(
)()(])()[(−

+−−

=

−−

+
+∑

+++
= N

Nn
Nn

k

kNnkNsd
nwu Q

Q
Q

δλ
λ

δλ
λ

γλ
λ

δλ
γ

 Equation 3-24 or

Equation a-55

idlewu QS
δ
ε= Equation 3-35 or Equation a-67

The probability of turn-off states

The derivation of the analytical solution of the turn-off states is similar to the

derivation of the solution of shutdown states. The probability of state toff0 (Qtoff0) is

only determined by Qidle (Equation a-68).

Appendix

idletoff QQ
α

ελ +=0 Equation a-68

The probability of turn-off state toff(n) is determined by its left neighbor toff(n-1).

Using the iteration method, we can derive the general expression of the turn-off states

and the sum of the probabilities (Stoff) inEquation 3-29 or Equation a-69 and Equation

 3-23 or Equation a-70 respectively.

idle
n

ntoff QQ)()(αλ
λ

α
ελ

+
+= Equation 3-29 or Equation a-69

idletoff QS
2

))((

α
αλελ ++= Equation 3-23 or Equation a-70

The probabilities of turn-on states

The probability of state ton(n) is determined by its left neighbor ton(n-1) and the

corresponding turn-off state toff(n). Therefore, we have:

11 toffidleton QQQ
βλ

α
βλ

λ
+

+
+

= Equation a-71

)()1()(ntoffntonnton QQQ
βλ

α
βλ

λ
+

+
+

= − Equation a-72

Using the iteration method, we can derive the general expression of the turn-on states
and the sum of the probabilities (Ston) in Equationa-73 and Equation a-74 respectively.

The calculation of Ston can be referred to the calculation of Swu in the greedy policy of

the on-off DPM system for detail.

∑
+

+
+++

=
−

=

−−1

0

11
)()(])()[(

n

k
idle

nknktoff
nton Q

Q
Q

βλ
λ

αλ
λ

βλ
λ

βλ
α

Equation 3-30

or Equation a-73

idleton QS
α

εαλ
β
λ ++= Equation 3-37 or Equation a-74

The probabilities of active states

As shown in Figure 3-15, the probabilities of active state 1 to N-1 are influenced by

the probability of their neighbour active states and that of the corresponding turn-on

states. Therefore, we have

Appendix

01 toffQQ
µ

αλ += Equation a-75

)1()1()1(−− −+= ntonnn QQQ
µ
β

µ
λ

 Equation a-76

Using the iteration, the general expression of Qn (n≤N) is given in Equation a-77.

∑ ∑−∑=
−

= =

−−−

=

1

1 0
)(

1
1

1

0

)()(
n

k

k

s
kton

sk
n

k

k
n QQQ

µ
λ

µ
β

µ
λ

 (n≤N) Equation 3-31 or Equation a-77

For n>N, Qn is also affected by Qwu(n), therefore we have:

∑ ∑−∑ ∑−∑=
−

= =

−−−

= =

−−−

=

1

0
)(

1
1

1 0
)(

1
1

1

0

)()()(
n

Nk

k

s
kwu

sk
n

k

k

s
kton

sk
n

k

k
n QQQQ

µ
λ

µ
δ

µ
λ

µ
β

µ
λ

 (n>N)

 Equation 3-32 or Equation a-78

In order to calculate Sa, we first regroup all components according to Q1, Qton(n) and

Qwu(n). Therefore, we have:

∑ ∑=
∞

=

−

=1

1

0
11)(

n

n

k

kQX
µ
λ

 Equation a-79

∑ ∑ ∑−=
∞

=

−

= =

−−

2

1

1 0
)(

1
2)(

n

n

k

k

s
kton

sk QX
µ
λ

µ
β

 Equation a-80

∑ ∑ ∑−=
∞

+=

−

= =

−−

1

1

0
)(

1
3)(

Nn

n

Nk

k

s
kwu

sk QX
µ
λ

µ
δ

 Equation a-81

Sa = X1 + X2 + X3 Equation a-82

Suppose the number of the active states under calculation in Equation a-82 is T, the

value of X1 can be easily calculated in Equation a-83.

121]
)(

[Q
T

X
λµ

λµ
λµ

µ
−

−
−

= Equation a-83

The calculation of X2 and X3 can refer to the calculation of X2 in Equation a-30 to

Equation a-44 in Section 3.2.1. Now we simply give the results here.

]}
)(

1
[)1(

)(
{

2

2
2 αβ

ελ
α

ελ
λµα
εαλ

β
λ

α
εαλλ

λµ
++++

−
+++−−++

−
−= T
Q

X idle Equation
a-84

idle
N QTX])()1[(3 λµ

λ
γλ

λ
γ
λ

δ
λ

λµ
ε

−
−

+
−−−

−
−= Equation

a-85

Appendix

When we integrate Equation a-83, Equation a-84 and Equation a-85 into Equation

a-82, we can achieve the value of Sa in Equation 3-38 or Equation a-86.

22

2

)(

))((

)(

)(
]

)(

1
[{

λµα
ελαλλ

λµα
εαλλ

αβ
ελ

α
ελ

λµα
εαλ

βλµ
λ

−
++−

−
+++++++

−
+++

−
=aS

 idle
N Q]})([

γλ
λ

γ
λ

λµ
µ

δ
λ

λµ
ε

+
+

−
+

−
+ Equation 3-38 or Equation a-86

Appendix

Appendix IV: Analytical Solution Derivation for an DPM System

with Multiple Active Modes

When (Active) state 1 is chosen as the delegate state, we use Q1 to represent the

probability of the rest states. The derivation of the analytical solution for the

shutdown, wakeup and inactive states are similar to the derivation in Appendix I and

the only change is to use µL to replace µ.

The probabilities of active states

In this section, we try to derive the probabilities of active states in Figure 3-20.

For active states from 1 to H-1, Equation 3-42 or Equation a-87 gives the general

expression for the probabilities of these states.

∑=
−

=

−1

1
1

1)(
H

n

n

L

n QQ
µ
λ

(n<H) Equation 3-42 or Equation a-87

The sum of these states (X1) can be achieved in Equation a-88.

1
1

21]})(1[
)(

)1(
{ Q

H
X H

LL

L

L

L −−
−

−
−

−=
µ
λ

λµ
λµ

λµ
µ

 Equation a-88

QH, as the probability of the state H, can be represented by QH-1 and QH-2 (Equation

 3-43 or Equation a-89).

21)(−− −+= H

H

H

H

L
H QQQ

µ
λ

µ
µλ

 Equation 3-43 or Equation a-89

For active states from H+1 to N, we can use the combination of QH and QH-1 to

represent their probabilities.

∑−∑=
−−

=
−

−

=

1

0
1

0

)()(
Hn

k
H

k

HH

Hn

k
H

k

H

n QQQ
µ
λ

µ
λ

µ
λ

 (H<n≤N)

Equation 3-44 or Equation a-90

Appendix

For the rest active states, their probabilities can be expressed by the combination of

QH, QH-1 and the corresponding wakeup states.

∑∑∑∑
−

=

−

=

−
−−

=
−

−

=

−−=
1 1

)(

1

0

1

0

)()()(
n

Nk

n

ks

kwu

sn

HH

Hn

k

H

k

HH

Hn

k

H

k

H

n QQQQ
µ
λ

µ
δ

µ
λ

µ
λ

µ
λ

 (n>N)

 Equation 3-45 or Equation a-91

In order to derive the analytical solution of Sa, we reconstruct the calculation

components in the following equations.

∑ ∑=
∞

=

−

=Hn

Hn

k
H

k

H

QX
0

2)(
µ
λ

 Equation a-92

∑ ∑−=
∞

+=

−−

=
−

1

1

0
13)(

Hn

Hn

k
H

k

HH

QX
µ
λ

µ
λ

 Equation a-93

∑ ∑ ∑−=
∞

=

−

=

−

=Nn

Nn

k

Nn

ks
kwu

s

HH

QX
0

)(4)(
µ
λ

µ
δ

 Equation a-94

Sa = X1 + X2 + X3 + X4 Equation a-95

Suppose the number of active states whose index is no smaller than H is T and the

value of X2 and X3 are easily calculated in Equation a-96 and Equation a-97

respectively.

H

H

H

H

H Q
HNT

X }
)(

)(
{

22 λµ
λµ

λµ
µ

−
−

−
−+= Equation a-96

123 }
)(

)1(
{ −−

−
−

−−+−= H

H

H

H

H

H

Q
HNT

X
λµ

λµ
λµ

µ
µ
λ

 Equation a-97

If we integrate Equation a-87 and Equation a-89 into Equation a-96 and Equation a-97,

we can derive:

12

1

32]
)()(

)(

))((

))(1(

[Q
HNT

XX
H

L

H

L

LH

H

L

L

λµ
λµ

λµ
µ

λµλµ
µ
λλµ

−
−

−
−++

−−

−
=+

−

Equation a-98

The calculation of X4 can follow the steps shown in Equation a-30 to Equation a-43.

One thing needs to be paid attention to is the number of states under calculation of X4

is T-N. The result is given in Equation a-99.

Appendix

12

)1(

4]
)()(

1[QTX
H

L
N

N

H

L

λµ
λµ

γλγ
λ

δ
λ

λµ
µ

−
+

+
−−−

−
−=

+
 Equation a-99

When we integrate Equation a-88, Equation a-98 and Equation a-99 into Equation

a-95, the value of Sa is given in Equation a-100.

1

)1(
1

1

2
]}

)(
1[

))((

])(1[

])(1[
)(

)1(
{ QHN

H
S

N

N

H

L

LH

H

L

L
H

LL

L

L

L
a γλγ

λ
σ
λ

λµ
µ

λµλµ
µ
λλµ

µ
λ

λµ
λµ

λµ
µ

+
+++−

−
+

−−

−
+−

−
−

−
−=

+
−

−

(λ≠µL) Equation 3-49 or Equation a-100

Given H=1 and µL= µH= µ, the Markov model in Figure 3-20 becomes Figure 3-8,

which stands for an simple on-off DPM system, and the equations for the analytical

solutions in this section such as Equation 3-49becomes their counterparts like

Equation 3-26.

In previous sections, λ<µ serves as the basic requirement about the rate of incoming

events. Otherwise the SP may never finish the execution of tasks. When we deal with

DPM systems with multiple active modes, the system may provide a serial execution

rate µ1, µ2, … µr (suppose r is the number of all active modes, and µ1≤µ2≤ … ≤µr). In

this case, the requirement of the rate of incoming events becomes λ<µr, and for the

model in Figure 3-21, we have λ<µH. Given λ→µL, the expression of the analytical

solution is provided by or Equation a-101.

1

)1(

}
)(

1[
)1(

2

)1(
{ QHN

HHH
S

N

N

H

L

H

a γλγ
λ

σ
λ

λµ
µ

λµ
λ

+
+++−

−
+

−
−+−=

+

(λ=µL) Equation 3-50 or Equation a-101

Appendix

Appendix V: State Space Report for the Event Handler

This state space report is about the CPN model of Event Handler in Figure 4-6:

Statistics
--- ------------------
Occurrence Graph Scc Graph
 Nodes: 31 Nodes: 6
 Arcs: 44 Arcs: 5
 Secs: 0 Secs: 0
 Status: Full

 Boundedness Properties
--- ------------------
 Best Integers Bounds Upper Lower
 Matrix'Channel 1 1 0
 Matrix'NTask 1 1 1
 Matrix'Stim 1 1 1
 Matrix'Wait 1 1 1
 Matrix'new 1 1 0
 Matrix'new2 1 1 0
 Matrix'Rdy 1 1 1

 Best Upper Multi-set Bounds
 Matrix'Channel 1 1`(1,"DATA1") Matrix'Wait 1 1`0++1`1
 Matrix'Stim 1 1`0++1`1 Matrix'new 1 1`0++1`1
 Matrix'new2 1 1`0++1`1 Matrix'Rdy 1 1`0++1`1
 Matrix'NTask 1 1`1++1`2++1`3++1`4++1`5

 Best Lower Multi-set Bounds
 Matrix'Channel 1 empty Matrix'Wait 1 emp ty
 Matrix'Stim 1 empty Matrix'new 1 emp ty
 Matrix'new2 1 empty Matrix'Rdy 1 emp ty
 Matrix'NTask 1 empty

 Home Properties
--- ------------------
 Home Markings: None

 Liveness Properties
--- ------------------
 Dead Markings: None
 Dead Transitions Instances: None
 Live Transitions Instances: Matrix'env1

Appendix

Appendix VI: State Space Report for the Power Manager

This state space report is about the CPN model of the Power Manager.

Statistics
--- -----------------
Occurrence Graph Scc Graph
 Nodes: 58 Nodes: 29
 Arcs: 104 Arcs: 49
 Secs: 0 Secs: 0
 Status: Full

 Boundedness Properties
--- ------------------
 Best Integers Bounds Upper Lower
 AF'Cand 1 2 0
 AF'En1 1 1 1
 AF'En2 1 1 1
 AF'Irdy1 1 1 1
 AF'Irdy2 1 1 1
 AF'Me 1 1 0
 AF'Me1 1 1 0
 AF'Rdy1 1 1 1
 AF'Rdy2 1 1 1
 AF'Sleep 1 1 1
 AF'Wakeup 1 1 0
 AF'acc 1 1 1
 AF'grant1 1 1 0
 AF'grant2 1 1 0

 Best Upper Multi-set Bounds
AF'Cand 1 2`1 AF'En1 1 1`0++ 1`1
AF'En2 1 1`0++1`1 AF'Irdy1 1 1`0++1`1
AF'Irdy2 1 1`0++1`1 AF'Me 1 1`0++1`1
AF'Me1 1 1`1 AF'Rdy1 1 1`0++ 1`1
AF'Rdy2 1 1`0++1`1 AF'Sleep 1 1`0++1`1
AF'Wakeup 1 1`1 AF'acc 1 1`0++1`1++ 1`2
AF'grant1 1 1`1 AF'grant2 1 1`1

 Best Lower Multi-set Bounds
AF'Cand 1 empty AF'En1 1 empty
AF'En2 1 empty AF'Irdy1 1 empty
AF'Irdy2 1 empty AF'Me 1 empty
AF'Me1 1 empty AF'Rdy1 1 empty
AF'Rdy2 1 empty AF'Sleep 1 empty
AF'Wakeup 1 empty AF'acc 1 empty
AF'grant1 1 empty AF'grant2 1 empty

 Home Properties
--- ------------------
 Home Markings: None

 Liveness Properties
--- ------------------
 Dead Markings: None
 Dead Transitions Instances: None

Appendix

 Live Transitions Instances: AF'new1 AF'new2

According to the Best Integers Bounds in the report, all places other than the Cand

place contain no more than one token in any cases, which indicates the correct

operation in this part without any confusion. The availability of multiple tokens in the

Cand place happens when more than one ready signal become valid simultaneously.

The upper bound of the token in this place is M (M=2 is the number of tasks in the

model) means the accumulation of simultaneous validated ready signals has no

confliction with that of later validated ready signals.

The Best Upper Multi-set Bound of the acc place indicates the token value in this

place is no more than N (N=2 is the accumulation limit) which means the activation

signal is generated without delay when the accumulation limit is achieved. The Best

Upper Multi-set Bound of the Me place indicates only one polling accumulation is

carried out each time because it holds at most ‘1’ token. The availability of ‘0’ token

in the Me place indicates polling accumulation can have a rest when no more ready

signal becomes valid.

Appendix

Appendix VII: State Space Report for the Task Manager

This state space report is about the CPN model of the Task Manager

Statistics
--- ------------------
Occurrence Graph Scc Graph
 Nodes: 873 Nodes: 201
 Arcs: 2521 Arcs: 468
 Secs: 1 Secs: 0
 Status: Full

Boundedness Properties
--- ------------------
 Best Integers Bounds Upper Lower
 TM'Irdy1 1 1 1
 TM'Irdy2 1 1 1
 TM'Last1 1 1 1
 TM'Last2 1 1 1
 TM'LoadEn 1 1 0
 TM'Ltask 1 1 0
 TM'Me 1 1 0
 TM'Me1 1 1 0
 TM'Me2 1 1 0
 TM'NTask 1 1 1
 TM'Rdy1 1 1 1
 TM'Rdy2 1 1 1
 TM'Task1 1 1 0
 TM'Task2 1 1 0
 TM'current 1 1 0

 Best Upper Multi-set Bounds
TM'Irdy1 1 1`0++1`1 TM'Irdy2 1 1` 0++1`1
TM'Last1 1 1`0++1`1 TM'Last2 1 1` 0++1`1
TM'LoadEn 1 1`0++1`1 TM'Ltask 1 1`0++1` 1++1`2
TM'Me 1 1`0++1`1 TM'Me1 1 1` 1
TM'Me2 1 1`1 TM'NTask 1 1`0++1`1++1` 2
TM'Rdy1 1 1`0++1`1 TM'Rdy2 1 1` 0++1`1
TM'Task1 1 1`1 TM'Task2 1 1`1
TM'current 1 1`0++1`1

 Best Lower Multi-set Bounds
TM'Irdy1 1 empty TM'Last1 1 emp ty
TM'Irdy2 1 empty TM'Last2 1 emp ty
TM'LoadEn 1 empty TM'Ltask 1 emp ty
TM'Me 1 empty TM'Me1 1 emp ty
TM'Me2 1 empty TM'NTask 1 emp ty
TM'Rdy1 1 empty TM'Rdy2 1 emp ty
TM'Task1 1 empty TM'Task2 1 emp ty
TM'current 1 empty

 Home Properties
--- ------------------
 Home Markings: None

 Liveness Properties

Appendix

--- ------------------
 Dead Markings: None
 Dead Transitions Instances: None
 Live Transitions Instances: TM'execute 1

Appendix

Appendix VIII: State Space Report for Output and Interface

This state space report is about the CPN model of Output Control and Interface

Statistics
--- ------------------
Occurrence Graph Scc Graph
 Nodes: 46 Nodes: 1
 Arcs: 82 Arcs: 0
 Secs: 0 Secs: 0
 Status: Full

Boundedness Properties
--- ------------------
 Best Integers Bounds Upper Lower
 OutCt'Ch3 1 1 0
 OutCt'Complete 1 1 0
 OutCt'Current 1 1 1
 OutCt'DIN1 1 1 0
 OutCt'DIN2 1 1 0
 OutCt'DOUT 1 1 0
 OutCt'LTask 1 1 0
 OutCt'Mtask1 1 1 0
 OutCt'Mtask2 1 1 0
 OutCt'OCh3 1 1 0
 OutCt'RQ 1 1 0
 OutCt'Rdy 1 1 1
 OutCt'Read 1 1 1
 OutCt'STEPSleep 1 1 1
 OutCt'Sd 1 1 0
 OutCt'SearchEn 1 1 0
 OutCt'Sleep 1 1 1
 OutCt'Wu 1 1 0
 OutCt'activation 1 1 1

 Best Upper Multi-set Bounds
OutCt'Activation 1 1`1++1`0 OutCt'Ch3 1 1` (2,"DATA1")
OutCt'Current 1 1`0++1`1 OutCt'DIN1 1 1`"D ATA2"
OutCt'DIN2 1 1`"DATA1" OutCt'LTask 1 1`0 ++1`1++1`2
OutCt'DOUT 1 1`"DATA1"++1`"DATA2"
OutCt'LoadEn 1 1`1 OutCt'Mtask1 1 1`1
OutCt'Mtask2 1 1`2 OutCt'OCh3 1 1`(3,"DAT A1")
OutCt'RQ 1 1`1++1`2 OutCt'Rdy 1 1`0+ +1`1++1`2
OutCt'Sleep 1 1`0++1`1 OutCt'Complete 1 1`1
OutCt'Read 1 1`0++1`1 OutCt'STEPSleep 1 1`0+ +1`1
OutCt'Sd 1 1`1 OutCt'Wu 1 1`1
OutCt'Sleep 1 1`0++1`1

 Best Lower Multi-set Bounds
OutCt'Activation 1 empty OutCt'Ch3 1 empty
OutCt'Current 1 empty OutCt'DIN1 1 empty
OutCt'DIN2 1 empty OutCt'LTask 1 empty
OutCt'DOUT 1 empty OutCt'Sleep 1 empty
OutCt'LoadEn 1 empty OutCt'Mtask1 1 empty
OutCt'Mtask2 1 empty OutCt'OCh3 1 empty
OutCt'RQ 1 empty OutCt'Rdy 1 empty

Appendix

OutCt'Sleep 1 empty OutCt'Complete 1 empty
OutCt'Read 1 empty OutCt'STEPSleep 1 empty
OutCt'Sd 1 empty OutCt'Wu 1 empty

 Home Properties
--- ------------------
 Home Markings: All

 Liveness Properties
--- ------------------
 Dead Markings: None
 Dead Transitions Instances: None
 Live Transitions Instances: All

Appendix

Appendix IX: The S-function Code of OS Subsystem

function [sys,x0,str,ts] = sfundsc1(t,x,u,flag)

switch flag,

 %%%%%%%%%
 % Initialization %
 %%%%%%%%%
 case 0,
 [sys,x0,str,ts]=mdlInitializeSizes;

 %%%%%%
 % Update %
 %%%%%%
 case 2,
 sys = mdlUpdate(t,x,u);

 %%%%%%
 % Output %
 %%%%%%
 case 3,
 sys = mdlOutputs(t,x,u);

 %%%%%%%
 % Terminate%
 %%%%%%%
 case 9,
 sys = [];

 otherwise
 error(['unhandled flag = ',num2str(flag)]);
end

%end sfundsc1

%
%==
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%==
%
function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;
sizes.NumDiscStates = 3; % 3 states Sleep, Read and Now to be kept;

Appendix

sizes.NumOutputs = 2; % 2 output named as Sleep, Read;
sizes.NumInputs = 3; % 3 input Wakeup Shutdown and Current;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

%initialization
x0(1) = 1; % the initial value of Sleep
x0(2) = 0; % the initial value of Read
x0(3) = -1; % the initial value of Now

str = [];
ts = [0, 0]
% end mdlInitializeSizes

%
%==
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step requirements.
%==
%
%system status

function sys = mdlUpdate(t,x,u)

%name the three inputs from vector u
Wakeup = u(1);
Shutdown = u(2);
Current = u(3);

%name the five states from vector x
Sleep = x(1);
Read = x(2);
Now = x(3);

%the size of playboard
Board = 100;

%Initial patching the playboard I (50*50) which is controlled by VSB I in black
%color

if Now==-1
 H=[0 0 Board/2 Board/2];
 V=[0 Board/2 Board/2 0];
 patch(H,V,'k');
 drawnow;
end

Appendix

%If the IP core is sleeping and the Wakeup signal is captured, start wakeup
if (Sleep==1 & Wakeup==1)
 Now = 0;
end

%The wakeup processing is simulated by patching one stripe of playboard I
%everytime by white color. State Now is used to record %the processing degree
if (Now<=(Board/2)-1 & Now>=0 & Sleep==1)
 H=[0 0 Board/2 Board/2];
 V=[Now Now+2 Now+2 Now];
 patch(H,V,'w');
 drawnow;
 Now = Now + 2;
end

%The wakeup processing completes when all playboard I is patched by
%white color, the Sleep signal is set to 0 and a Read signal is
%sent out to load new task ID number to the IP core
if Now==(Board/2) & (Sleep==1)
 Sleep = 0;
 Read = 1;
 Now = Now + 1;
end

%If some task start processing in the IP core, the Current signal
%becomes 1 and the OS will withdraw the Read signal
if(Current==1)
 Read = 0;
end

%When Current becomes 0, it means the current task is completed, and
%the OS needs to load another task to the IP core
if(Current==0 && Sleep==0)
 Read = 1;
end

%When a Shutdown signal is captured, the OS starts the shutdown
%execution state Shutting becomes 1 to mark the shutdown is in %processing
if(Sleep==0 && Shutdown==1 && Now>Board/2)
 Now = (Board/2);
 Read = 0;
end

%The shutdown processing is simulated by patching one stripe of
%playboard I everytime by black color
if (Now<=(Board/2) && Now>=2 && Sleeping==1)
 H=[0 0 Board/2 Board/2];

Appendix

 V=[Now Now-2 Now-2 Now];
 patch(H,V,'k');
 drawnow;

 Now = Now - 2;
end

%When all playboard I have patched in black, the shutdown processing is
%completed. The Sleep signal becomes 1
if Now == 0 && Sleep==0
 Sleep = 1;
 Now = Board;
end

%Updating the system states
sys = [Sleep R Now];

%end mdlUpdate

%==
% mdlOutputs
% Return the output vector for the S-function
%==
%
function sys = mdlOutputs(t,x,u)
%Output Sleep and Read signals
sys = [x(1) x(2)]';
%end mdlOutputs

Appendix

Appendix X: The S-Function Code of Task4 in the Ball Game

function [sys,x0,str,ts] = sfundsc1(t,x,u,flag)

Task = [0 0 0 1]; % the one hot code for task4
Width = [2, 4, 6, 8]; % the width of all four balls
Speed = [2, 4, 6, 8]; % the moving speed of all four balls

switch flag,

 %%%%%%%%%
 % Initialization %
 %%%%%%%%%
 case 0,
 [sys,x0,str,ts]=mdlInitializeSizes;

 %%%%%%
 % Update %
 %%%%%%
 case 2,
 sys = mdlUpdate(t,x,u,Task, Width, Speed);

 %%%%%%
 % Output %
 %%%%%%
 case 3,
 sys = mdlOutputs(t,x,u);

 %%%%%%%%
 % Terminate %
 %%%%%%%%
 case 9,
 sys = [];

 otherwise
 error(['unhandled flag = ',num2str(flag)]);
end

%end sfundsc1

%
%==
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%==
%
function [sys,x0,str,ts]=mdlInitializeSizes

Appendix

sizes = simsizes;

sizes.NumContStates = 0;
sizes.NumDiscStates = 46;
sizes.NumOutputs = 31;
sizes.NumInputs = 30;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = zeros(1,46);

for i=43:45
 x0(i) = -1;
end

str = [];
%ts = [-1 0]; % Inherited sample time
ts = [0, 0]
% end mdlInitializeSizes

%
%==
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
%==
%
%system status

function sys = mdlUpdate(t,x,u,Task, Wide, Speed)

%specialize the input vector u
 AddressIn = u(1:4);
 DataIn = u(5:28);
 Rdy = u(29);
 Ack = u(30);

%specialize the state vector x
 Address = [x(1), x(2), x(3), x(4)];
 Data1 = [x(5), x(6), Wide(1), Speed(1), x(7)];
 Data2 = [x(8), x(9), Wide(2), Speed(2), x(10)];
 Data3 = [x(11), x(12), Wide(3), Speed(3), x(13)];
 Data4 = [x(14), x(15), Wide(4), Speed(4), x(16)];

%DataOut[1:8] represents PosX, DataOut[9:16] represents PosY,
%DataOut[17:24] represents History

Appendix

 DataOut = x(17:40);
 Read = x(41);
 Write = x(42);
 NextData = x(43);
 Stage = x(44);
 NextACM = x(45);
 Current = x(46)

%check if the ID number is matching. If so, set the Current signal to 1,and let the OS
%to withdraw the Read signal
 if(Task*AddressIn'==1)
 Current = 1;
 Stage = 1;
 end

%Load the parameters of four balls from ACM
 if(Stage==1)
 [Current, Data1, Data2, Data3, Data4, R, NextData, NextACM]
 = DataLoad(Data1, Data2, Data3, Data4,DataIn, Rdy, NextData,
 NextACM, Current, R);

 if (NextACM==4)
 Stage = 2;
 NextData = -1;
 NextACM = -1;
 end
 end

 %Calculate the new position of the corresponding ball
 if (Stage==2)
 %Load the old position
 PosX = Data4(1);
 PosY = Data4(2);
 Width = Data4(3);
 Speed = Data4(4);
 History = Data4(5);

 %erase the old mark of the ball
 H=[PosX PosX PosX+Width PosX+Width];
 V=[PosY PosY+Width PosY+Width PosY];
 patch(H,V,'w');
 drawnow;

 %update the history
 [History] = UpdateHistory(History);

 %find the new position candidate
 [NPosX, NPosY, NHistory]

Appendix

 = NextPosition(PosX, PosY, Width, Speed, History);

 %check if the new position has collision with Ball 1
 OtherX = Data1(1); OtherY = Data1(2); OtherW = Data1(3);

 [Collapse]= Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Width);

 while(Collapse==1)
 History=mod(History+1,4)
 [NPosX, NPosY, NHistory]
 = NextPosition(PosX, PosY, Wide, Speed, History);

 [Collapse] = Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Width);
 end

 %check if the new position has collision with Ball2
 OtherX = Data2(1); OtherY = Data2(2); OtherW = Data2(3);

 [Collapse] = Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Width);

 while(Collapse==1)
 History=mod(History+1,4)
 [NPosX, NPosY, NHistory]
 = NextPosition(PosX, PosY, Width, Speed, History);

 [Collapse] = Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Width);
 end

 %check if the new position has collison with Ball3
 OtherX = Data3(1); OtherY = Data3(2); OtherW = Data3(3);

 [Collapse] = Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Width);

 while(Collapse==1)
 History=mod(History+1,4)
 [NPosX, NPosY, NHistory]
 = NextPosition(PosX, PosY, Wide, Speed, History);

 [Collapse] = Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Width);
 end

 %show the new mark of the ball
 H=[NPosX NPosX NPosX+Width NPosX+Width];
 V=[NPosY NPosY+Width NPosY+Width NPosY];
 patch(H,V,'r');
 drawnow;

 %update the ball parameter

Appendix

 Data4(1)= NPosX;
 Data4(2)= NPosY;
 Data4(5)= History;
 Stage = 3;

 end

%Transfer the parameter of the new position of the ball to the ACM
 if (Stage==3)
 %Address[1:2] indicates the VSB's ID
 %and Address[3:4] indicates the ball's ID
 Address = [0 1 0 0];
 [Address, DataOut, W, NextData]
 = DataTransfer(Data4, Ack, NextData, Address, DataOut, W);

 if (NextData== -2)
 Stage = 4;
 Write = 0;
 NextData = -1;
 end
 end

 %Release the usage of the IP Core
 if (Stage==4 && Ack==0)
 Current = 0;
 Write = 1;
 Stage =5;
 end

%When the ID number in the AddressIn is changed, the Write
%signal is withdrawn
 if(Task*AddressIn'~=1)
 Address = [0 0 0 0];
 DataOut = zeros(1,16);
 Write = 0;
 Stage = -1;
 NextData = -1;

 end

Data = [Data1(1),Data1(2),Data1(5), Data2(1),Data2(2),Data2(5),
 Data3(1),Data3(2),Data3(5), Data4(1),Data4(2),Data4(5),DataOut];

sys = [Address, Data, Read, Write, NextData, Stage, NextACM];

%end mdlUpdate

%

Appendix

%==
% mdlOutputs
% Return the output vector for the S-function
%==
%
function sys = mdlOutputs(t,x,u)

sys = [x(1:4), x(17:42)]

%end mdlOutputs

%the function is about loading data to the ACM
function [Current, DataOut, W, NextData]
 = DataTransfer(Data4, Ack, NextData, Current, DataOut, W)

 PosX = Data4(1);
 PosY = Data4(2);
 Width = Data4(3);
 Speed = Data4(4);
 History = Data4(5);

 % turn the position parameter into binary
 DataOut1 = Binary (PosX);
 DataOut2 = Binary (PosY);

% if Current is 1, then output the History Parameter to
% DataOut[17:24]
 if (Current==1)
 DataOut3 = Binary (History);
 % else DataOut[17:24] is composed of the width of the ball as
 %well as the ID number of the ball. This data is used for output
 %control in the STEP
 else
 DataOut4 = Binary (Width);
 DataOut3 = DataOut4(5:8);
 DataOut3 = [DataOut3 0 0 0 1];
 end

 % Load the data to the databus, then enable the Write signal
 if (NextData==-1 && Ack==0)
 DataOut = [DataOut1, DataOut2, DataOut3];
 Write = 1;
 NextData=0;
 end

 % When Ack from the ACM is recognized, withdraw the write signal
 if (Ack==1 && NextData == 0)
 W = 0;

Appendix

 NextData = -2;
 end

 %this function is about conveying integer number to binary
function [Data] = Binary(Original)
 Data = zeros(1, 8);
 i = 7;
 x = Original;

 Data(8) = mod(x,2);
 x = floor(x/2);
 while (x>0)
 Data(i) = mod(x,2);
 x = floor(x/2);
 i = i-1;
 end

%this function is about load data of four balls in sequence from the ACM
function [Address, Data1, Data2, Data3, Data4, R, NextData, NextACM]
 = DataLoad(Data1, Data2, Data3, Data4, DataIn, Rdy,
 NextData, NextACM, Address, R)

 if NextACM ==-1
%Address[3:4]=[0 1] indicates the ACM that data for ball1 is needed
 Address3 = 0;
 Address4 = 1;
 [Address,Data1,R, NextData] = DataCome(DataIn, Data1,
 Address3, Address4, Rdy, NextData, Address, R);
 if NextData == -2
 NextACM = 1;
 NextData = -1;
 end
 end

 if NextACM == 1
 %Address[3:4]=[1 0] indicates the ACM that data for ball2 is needed
 Address3 = 1;
 Address4 = 0;

 [Address,Data2,R, NextData] = DataCome(DataIn, Data2,
 Address3, Address4, Rdy, NextData, Address, R);
 if NextData == -2
 NextACM = 2;
 NextData = -1;
 end
 end

 if NextACM == 2

Appendix

 %Address[3:4]=[1 1] indicates the ACM that data for ball3 is needed
 Address3 = 1;
 Address4 = 1;
 [Address,Data3,R, NextData] = DataCome(DataIn, Data3,
 Address3, Address4, Rdy, NextData, Address, R);
 if NextData == -2
 NextACM = 3;
 NextData = -1;
 end
 end

 if NextACM == 3
%Address[3:4]=[0 0] indicates the ACM that data for ball4 is needed
 Address3 = 0;
 Address4 = 0;
 [Address,Data4,R, NextData] = DataCome(DataIn, Data4,
 Address3, Address4, Rdy, NextData, Address, R);
 if NextData == -2
 NextACM = 4;
 NextData = -1;
 end
 end

%this function specify the parameters loading of a ball in sequence
function [Address, Data, R, NextData] = DataCome(DataIn, Data,
 Address3, Address4, Rdy, NextData, Address, R)

%When the previous loading is complete (Rdy=0), start the current
 if(NextData == -1 && Rdy == 0)
 Address = [0 1 Address3, Address4];
 Read = 1;
 NextData = 0;
 end

%When Rdy=1, it means the ACM is loading the data into the databus
 if(NextData == 0 && Rdy == 1)
 % Turn the binary information into integer
 PosX = 128*DataIn(1) + 64*DataIn(2) + 32*DataIn(3)
 + 16*DataIn(4) + 8*DataIn(5) + 4*DataIn(6)
 + 2*DataIn(7) + DataIn(8);
 PosY = 128*DataIn(9) + 64*DataIn(10) + 32*DataIn(11)
 + 16*DataIn(12) + 8*DataIn(13) + 4*DataIn(14)
 + 2*DataIn(15) + DataIn(16);
 History = 128*DataIn(17) + 64*DataIn(18) + 32*DataIn(19)
 + 16*DataIn(20) + 8*DataIn(21) + 4*DataIn(22)
 + 2*DataIn(23) + DataIn(24);
 NextData = -2;
 Address = [0, 0, 0, 0];

Appendix

 Read = 0;
 end

 Data = [PosX, PosY, Width, Speed, History];

%the function is about updating history
function [NHistory] = UpdateHistory(History)
 s=unifrnd(0, 1);
 Threshold = 0.5;
 if s>=Threshold
 History = floor(unifrnd(0,4));
 else
 NHistory = History;
 end

%the function is to calculate whether two balls have collision
function [Collapse]
 = Collision(OtherX, OtherY, OtherW, NPosX, NPosY, Wide)

 Centre1_X = NPosX+0.5*Wide;
 Centre1_Y = NPosY+0.5*Wide;
 Centre2_X = OtherX+0.5*OtherW;
 Centre2_Y = OtherY+0.5*OtherW;

 Dis_Centres = power((Centre1_X - Centre2_X), 2)
 + power((Centre1_Y - Centre2_Y), 2);

 Dis_Length = power((Wide+OtherW)*0.5, 2);

 if(Dis_Centres <2*Dis_Length)
 Collapse = 1;
 else
 Collapse = 0;
 end

%the function is to give a new position of the ball
function [NPosX, NPosY, NHistory]
 = NextPosition(PosX, PosY, Width, Speed, History)

 Board = 100;

 switch (History)
 case 0 %move left
 if PosX-Speed>0
 PosX = PosX - Speed;
 NHistory = 0;
 else
 PosX = PosX + Speed;

Appendix

 NHistory = 1;
 end

 case 1 %move right
 if PosX+Width+Speed < Board
 PosX = PosX + Speed;
 NHistory = 1;
 else
 PosX = PosX - Speed;
 NHistory = 0;
 end
 case 2 %move up
 if PosY+Width+Speed < Board
 PosY = PosY + Speed;
 NHistory = 2;
 else
 PosY = PosY - Speed;
 NHistory = 3;
 end
 case 3 %move down
 if PosY-Speed > 0
 PosY = PosY - Speed;
 NHistory = 3;
 else
 PosY = PosY + Speed;
 NHistory = 2;
 end

 end%end switch
 NPosX = PosX;
 NPosY = PosY;

230

Bibiliography

[aydi01] H.Aydin, R.Melhem, D.Mosse, P.Mejia-Alvarez, “Determining Optimal

Processor Speeds for Periodic Real-time Tasks with Different Power
Characteristics”, 13th Euromicro Conference on Real-Time Systems,
2001

[alex98] A. Yakovlev and A.M. Koelmans “Petri nets and Digital Hardware
Design” Lectures on Petri Nets II: Applications Advances in Petri Nets,
Lecture Notes in Computer Science, vol. 1492. Springer-Verlag, pp. 154-
236, 1998

[beig08] E.Beigne, F.Clermidy, S.Miermont, P.Vivet, “Dynamic Voltage and
Frequency Scaling Architecture for Units Integration within a GALS
NoC” ”, NOCS 2008.

[beni98] L Benini, G de Micheli, “Dynamic Power Management: Design
Techniques and CAD Tools” , Kluwer Academic Publishers Norwell,
USA, 1998.

[beni99] L.Benini, A.Bogliolo, G.A.Paleologo, “Policy Optimization for Dynamic
Power Management”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 1999

[beni00] L.Benini, A.Bogliolo, G. De Micheli, “A survey of Design Techniques
for System-level Dynamic Power Management” IEEE Transactions on
VLSI June 2000.

[bork99] S.Borkar, “Design Challenges of Technology Scaling”, IEEE Micro
1999

[broc03] B. Brock, K.Rajamani, “Dynamic Power management for Embedded
Systems”, IEEE SOC Conference, 2003

[buzs04] G.Buzsaki, A.Draguhn, “Neuronal Oscillations in Cortical Networks”,
Science, June 2004.

[byst00] A.Bystrov, D.Kinniment, A.Yakovlev, “Priority Arbiters”, Async 2000.

[calh03] B.H.Calhoun, F.A.Honore, A.Chandrakasan, “Design Methodology for
Fine-Grained Leakage Control in MTCMOS”, International Symposium
on Low Power Electronics and Design, 2003.

[camp04] E.Campbell, Hugo Simpson, “Butler Chip – Concept and Design”, IEE

Bibiliography

Talk, 2004

[chia01] C.-F. Chiasserini, R. Ramesh, “Energy Efficient Battery Management”,
IEEE Journal on Selected Areas in Communications, Jul 2001.

[chou04] G Choudhury, M Paul, “A batch arrival queue with an additional service
channel under N-policy”, Applied mathematics and Computation, 2004.

[chun99] E.Chung, L.Benini, A.Bogliolo, and G.De Micheli, “Dynamic Power
Management for Nonstationary Service Requests”, Design and Test in
Europe Conf., 1999.

[cpnt08] CPN Tools, http://wiki.daimi.au.dk/cpntools/cpntools.wiki

[dasg06] S. Dasgupta, A. Yakovlev, “Modelling and Performance Analysis of
GALS architectures”, SOC 2006

[gorg08] K. Gorgonio, F. Xia, “Modeling and Verifying Asynchronous
Communication Mechanisms using Coloured Petri Nets”, Technical
Report, NCL-EECE-MSD-TR-2008-127, School of EECE, Newcastle
University, March 2008

[henz07] S.Henzler, “Power Management of Digital Circuits in Deep Sub-Micron
CMOS Technologies”, Springer 2007.

[hwan97] C.-H. Hwang and A. Wu, “A predictive system shutdown method for
energy saving of event-driven computation”, Proc. Of the ICCAD, 1997.

[ibmt97] IBM Travelstar 5GS 2.5-Inch 4.4 and 5.1 GB Full Height Disk Drives,
http://www.hitachigst.com/tech/techlib.nsf/techdocs/

EBB131F7767F58CE86256E2F007F051D/$file/trav5gs.pdf

[iran03] S.Irani, S.Shukla, R.Gupta, “Online Strategies for Dynamic power
Management in Systems with Multiple Power-Saving States”, ACM
Transactions on Embedded Computing Systems, 2003.

[jaco04] H. M. Jacobson, “Improved Clock-Gating through Transparent.
Pipelining”, ISLPED04, 2004

[jeju03] R.Jejurikar, C.Pereira, R.K.Gupta, “Leakage Aware Dynamic Voltage
Scaling for Real Time Embedded Systems”, DAC, 2004

[jens97] Kurt Jensen, “Coloured Petri nets, Basic Concepts, Analysis methods
and Practical Use Volume 1”, Springer 1997

[jens07] K.Jensen, L.M.Kristensen, L.Wells, “Coloured Petri Nets and CPN Tools
for modeling and validation of concurrent systems”, International
Journal on Software Tools for Technology Transfer, 2007.

[kans03] A. Kansal, M. B. Srivastava, “An environmental energy harvesting
framework for sensor networks”, ISLPED’03, Seoul, Korea.

[karg05] M. Kargahi, A. Movaghar, “A Stochastic DVS-Based Dynamic Power
Management for Soft Real-time Systems”, International Conference on
Wireless Networks, Communication and Mobile computing, 2005.

[kinn07a] D J. Kinniment, C E. Dike, K. Heron, G. Russell and A.Yakovlev.
“Measuring Deep Metastability and Its Effect on Synchronizer

Bibiliography

Performance”, IEEE Transactions on Very Large Scale Integration
Systems 2007.

[kinn07b] D.J.Kinniment, “Synchronization and Arbitration in Digital Systems”,
John Wiley & Sons, Ltd, 2007.

[klei75] L. Kleinrock “Queuing Systems Volume I: Theory”, John Wiley & Sons,
1975.

[lu00] Y.Lu, E.Chung, T. Simunic, L. Benini, G. De Micheli “Quantitative
Comparison of Power Management Algorithms”, DATE 2000.

[lu06] H. Lu, Y. Lu, Z. Tang, S. Wang, “SOC Dynamic Power Management
using Artificial Neural Network”, ISDA 2006.

[luci08] C.Lucia, H.Boudewijn, “Quantitative Evaluation in Embedded System
Design: Predicting Battery Lifetime in Mobile Devices”, DATE 2008

[masc87] Joint, IECCA and MUF Committee, The Official Handbook of
MASCOT, 1987

[mats08] H.Matsutani, M.Koibuchi, D.Wang, H. Amano, “Adding Slow-Silent
Virtual Channels for Low-Power On-chip Networks”, NOCS 2008

[mihi04] K. Mihic, T. Simunic, G. D. Micheli, “Reliability and Power
management of Integrated Systems”, DSD 2004.

[miln90] R.Milner, M. Tofte, R.Harper, “The definition of Standard ML”, MIT
Press, 1990

[moor02] S.Moore, G.Taylor, R.Mullins, P.Robinson, “Point to Point GALS
Interconnect”, ASYNC 2002.

[nowk02] KJ Nowka, etc, “A 32-bit PowerPC System-on-a-Chip with Support for
Dynamic Voltage Scaling and Dynamic Frequency Scaling”, IEEE
Journal of Solid-State Circuits, 2002.

[ren05] Z. Ren, B.H. Krogh, R. Marculescu, “Hierarchical Adaptive Dynamic
Power Management”, IEEE Transactions on Computers, 2005.

[pear04] W.L. Pearn, Y.C.Chang, “Optimal management of the N-policy M/Ek/1
queuing system with a removable service station: a sensitivity
investigation”, Computers & Operations 2004.

[pete81] J.L. Peterson, “Petri Net Theory and the Modeling of Systems”,
Prentice Hall PTR Upper Saddle River, NJ, USA, 1981

[pill01] P. Pillai, K.G.Shin, “Real-time dynamic voltage scaling for low-power
embedded operating systems”, 18th Symposium on Operating Systems
Principles, 2001.

[qiu99] Q. Qiu, M. Pedram, “Dynamic Power Management Based on
Continuous-Time Markov Decision Processes”, DAC 1999.

[sa11] SA1110 Datasheet, http://www.chipdocs.com/datasheets/datasheet-
pdf/Intel/SA1110.html

[shan02] D.Shang, D.Sokolov, N.A.Starodoubtsev, “Asynchronous Circuit

Bibiliography

Synthesis by Direct Mapping: Interfacing to Environment”, ASYNC 2002

[simp90] H.R.Simpson, “Four-slot fully asynchronous communication
mechanism”, IEE Proceedings, Computers and Digital Techniques,
1990.

[simu00] T.Simunic, L.Benini, P.Glynn. G.de Micheli, “Dynamic Power
Management for Portable Systems”, the 6th annual international
conference on Mobile computing and networking, Boston, 2000.

[simu01] T.Simunic, L.Benini, P.Glynn. G.de Micheli, “Event Driven Power
Management”, IEEE Transactions of CAD, 2001

[sing06] G.Singh, S.K.Shukla, “Low Power Hardware Synthesis from TRS-based
Specifications”, MEMOCODE 2006.

[sriv96] M. Srivastava, A, Chandrakasan, R. Brodersen, “Predictive system
shutdown and other architectural techniques for energy efficient
programmable computation”, IEEE Transactions on VLSI Systems, 1996.

[tan08] Y.Tan, Q.Qiu, “A Framework of Stochastic Power Management using
Hidden Markov Model”, DATE 2008

[thom08] Nigel Thomas, “A PEPA Model of a Threshold Policy Sleeping Server”,
UKPEW 2008

[wang95] K. Wang, H. Huang, “Optimal Control of a Removable Server in an
M/Ek/1 Queuing System with Finite Capacity”, Microelectronics
Reliability,1995

[xia02] F. Xia, and I. Clark, “Algorithms for Signal and message Asynchronous
Communication mechanisms and their Analysis,” in Fundamenta
Informaticae, Volume 50, Issue 2, 2002

[yadi63] M. Yadin and P. Noar, “Queueing systems with a removable service
station”, Operational Research Quarterly, 4, pp. 393-405, 1963

[yseb07] L. Yseboodt, M. De Nil, J. Huisken, M. Berekovic, Q. Zhao, F.
Bouwens, and J. Van Meerbergen, “Ultra-low-power DSP design”,
http://www.mwee.com/printableArticle/?articleID=201803413

[yuan05] L. Yuan, G. Qu. “Analysis of energy reduction on dynamic voltage
scaling-enabled systems”, IEEE Transactions on CAD, Vol.24, No.12,
2005

[zhua02] S.Zhuang, W.Li, J.Carlsson, K.Palmkyist, L.Wanhammar, “An
asynchronous wrapper with novel handshake circuits for GALS
systems”, Communications, Circuits and Systems and West Sino
Expositions Conference, 2002.

