
School of Electrical, Electronic & Computer Engineering

Multi-resource arbiter decomposition

S. Golubcovs, D. Shang, F. Xia, A. Mokhov, A. Yakovlev

Technical Report Series

NCL-EECE-MSD-TR-2009-143

February 2009



Contact:

Stanislavs.Golubcovs@ncl.ac.uk

Delong.Shang@ncl.ac.uk

Fei.Xia@ncl.ac.uk

Andrey.Mokhov@ncl.ac.uk

Alex.Yakovlev@ncl.ac.uk

Supported by EPSRC grant GR/E044662/1

NCL-EECE-MSD-TR-2009-143
Copyright c© 2009 University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,
Merz Court,
University of Newcastle upon Tyne,
Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/



S. Golubcovs, D. Shang, F. Xia, A. Mokhov, A. Yakovlev: Multi-resource
arbiter decomposition

Multi-resource arbiter decomposition

S. Golubcovs, D. Shang, F. Xia, A. Mokhov, A. Yakovlev

February 2009

Abstract

This paper describes variations of multi-resource arbiter decomposition into tiled layout.
The tile is a fixed block of basic gates that has its own input and output connections providing
certain functionality.

1 Introduction

1.1 Simple 2×2 arbiter

An arbiter with active resources assumes additional resource requests that may arrive any time
and are intended to report when the resource is available. An example of simple arbiter with 2
clients and 2 resources is presented in Figure 1. Any of two clients may request a resource and
any of the resources may offer their service. Once an arbiter finds a pair, it initiates one of the
handshakes (H11, H12, H21, H22).

The arbiter is designed in a way, that a resource busy with one of the clients is not offered to
the other one. It means, that handshake H11 (first client connected with the first resource) cannot
be activated together with H21. Similarly, H11 is in conflict with H12, because a client can only
be connected with one resource at a time. However, H12 and H21 or H11 and H22 are not in
conflict because each participant has not more than one connection established. To achieve full
advantage of the active resource arbiter, it needs to support such concurrent handshakes.

C1g

C2r

R1g

R2g

C1r

C2g

R1r

R2r

H11 H21

H12 H22

H11

H22

H21
H12

C1

C2

R1

R2

Figure 1: Simple 2×2 arbiter

NCL-EECE-MSD-TR-2009-143, University of Newcastle upon Tyne 1



S. Golubcovs, D. Shang, F. Xia, A. Mokhov, A. Yakovlev: Multi-resource
arbiter decomposition

1.2 The 2×2 arbiter implementation

Figure 2 shows one possible implementation of the 2× 2 arbiter. It uses two mutual exclusion
elements and several C-gates. As the signal request propagates through the MUTEX-es, it acti-
vates one of the internal handshakes (h11, h12, h21, h22). The internal handshakes activate main
outgoing handshakes H11, H12, H21, H22 and disable their conflicting neighbours. For instance,
h11 disables h21 and h12. Because of the ME elements, only one pair of requests can be initiated
at a time. When all four requests arrive, the arbiter first matches one pair producing the first
handshake and then masks the initial requests to allow the next non-conflicting pair to be mat-
ched. Since both ME elements may be freed at different times, there is a possibility that for a short
interval there will be present old request from one side and the new request from the other side,
which would always pair in one of the conflicting handshakes. This race condition between old
and new grant signals on gci and gr j (where i is the number of the requested column and j is the
number of requested row) is eliminated by the disabling signal coming from one of the internal
handshakes, which disables wrong pairings and ensures circuit speed independence.

In this report we are going to consider a number of ways to scale such design.

C C

C C

+ +

+ +

ME
gc1

gc2

ME
gr1

gr2

H11
H12

H21
H22

H11
H21

H12
H22

C
C

C
C

H11 H21

H12 H22

C1r

C2r

R1r

R2r

C1g

C2g

R1g

R2g

h11 h21

h12 h22

Figure 2: 2×2implementation

2 Extending up to N×M arbiter

In general problem statement, the arbiter may need to support N clients and M resources. We
may lay it out as a rectangular grid of tiles implementing the functionality of C-elements in the
original design in Figure 2. An example of such layout for 4 clients and 3 resources is given
in Figure 3a. The internal resource grants r1g, r2g, r3g and client grants c1g, c2g, c3g, c4g form
three rows and four columns of the grid. Similarly to the 2×2 arbiter all conflicting neighbours
need to be disabled before the initial requests are masked to let a new requests propagate into
it. In particular, the handshake row needs to be disabled before the new client request and the
handshake column before the new resource request. As it can be seen from the figure, there are
N +M−2 conflicting neighbours for each tile.

If we use asymmetric C-elements to solve the general problem, the set phase of the gates
would have inputs from all conflicting neighbours. The speed-independent decompositions of

NCL-EECE-MSD-TR-2009-143, University of Newcastle upon Tyne 2



S. Golubcovs, D. Shang, F. Xia, A. Mokhov, A. Yakovlev: Multi-resource
arbiter decomposition

!

!

H22

3-
in

pu
t a

rb
ite

r

4-input arbiter

c1g c2g c3g c4g

r1g

r2g

r3g

C1g C2g C3g C4g

R1g

R2g

R3g

R1g

R2g

R3g

C1g C2g C3g C4g

C1r C2r C3r C4r

R1r

R2r

R3r

(a) Tiles forming the circuit

c g r g

C

Conflicting
neighbours

R rC r

lock other
neighbours

H 

x

h

ij

i j

i j

(b) Implementation of a tile

Figure 3: Schematics for the implementation of 4×3 arbiter.

the C-elements would still have gates with growing number of inputs (Fig. 3b). In practise, such
circuits are not scalable.

One of way to solve this problem is by constructing signal x by smaller gates and introducing
delay on the signal of Hi j. That would provide us with a scalable implementation in tiles with
the timing assumption, that the signal locking the other neighbours is managing on time, before
the outgoing handshake masks the x for all conflicting neighbours. In the following part of the
paper, we will discuss the alternative SI implementations for the tiles so that the complexity of
the gates used is reduced or not growing with the number of inputs.

2.1 Ring-based approach

We can try to model the behaviour of a tile, bearing in mind additional requirement that the
outgoing handshake signal happens only after all the neighbouring tiles have been disabled. The
block signal can propagate in both (column and row) directions using the ring architecture. When
the outgoing block signal returns as the input on the opposite side of the tile, it signals that all
the neighbouring tiles have been disabled. Together that would form a torus network of tiles
blocking their neighbours. The behaviour of such tile is depicted in Figure 4

To initiate the handshake (h+), the tile needs to receive the grant signals cg+ and rg+ co-
ming from N- and M-way arbiters. When both cg+ and rg+ arrive, tile knows it was chosen for
the handshake and initiates its internal variable x+. After that, before the handshake signal is
activated, the tile blocks its conflicting neighbours by bro+ and bro+. The signals bro and bco

are outgoing block signals for the row and the column. Their appearance is followed by the
incoming block signals bri and bci when the block (or unblock) signal propagates through all
conflicting tiles. When it happens, the tile is at state when it can issue the internal handshake h+.
By using a sequence of transitions, the handshake is delivered to one of the outgoing handshakes
H??+. After sending out the grant signals, it results in mask hiding the initial requests causing
signals cg− and rg− and the arbiters propagating new internal grants. The tile that produced h+

NCL-EECE-MSD-TR-2009-143, University of Newcastle upon Tyne 3



S. Golubcovs, D. Shang, F. Xia, A. Mokhov, A. Yakovlev: Multi-resource
arbiter decomposition

bro+/1

rg-/1

bci+/2

bro-/2

bci-/1

bco-/1

bco+/1 bri+/2cg+

bci+/1

bco-/2

bri-/2

bri+/1

bci-/2

rg+

bro-/1

bri-/1

bco+/2

h-

h+

bro+/2

cg-/1

rg-/2

cg-/2

x+

x-

Figure 4: Ring-based tile STG

before now needs to remove its internal handshake while making sure the row and the column
neighbours are freed only after the signals cg− and rg− have arrived. After it happens, we may
release the handshake by h−.

Since both cg+ and rg+ signals are going to propagate to each tile in certain row and column,
there will be tiles receiving only cg+ or rg+. The safe-net modelling rules require that the tokens
produced in x+ pre-set are properly propagated. For that purpose we can use block inputs bri+
/1 and bci + /2 because blocking signal according to the protocol always follows when cg+ and
rg+ pair is found. The signal sequences cg+→ bci+→ bco+→ cg−→ bci−→ bco− and rg+→
bri+→ bro+→ rg−→ bri−→ bro− will form the communication protocol of the disabled tiles.
In is important that the disabled tile never reacts with h+ and that is ensured in the given STG.

We can find the implementation of the arbiter using Petrify tool [1] directly from the modelled
STG diagram (Fig. 4). It is presented in Figure 5. Let’s consider, how it works. Initially, output
of the gate 3 is high and all other outputs are low. When high input arrives on rg and cg, it
affects gate 6 and consequently gate 4 (which is the internal x signal in the STG). The circuit is
at state to block the conflicting neighbours. The signal on gate 4 ignites gates 2 and 5 producing
outputs on bco and bro and disabling gate 6 by gate 5. Finally, as we would expect it from the
environment, bro and bco would eventually produce inputs on bri and bci which would be the a
sufficient condition to produce the output on h. The reset phase on signals rg and cg would first
disable gate 3 (the output of. gate 4 is active). Which would disable the C-element and the output
signals on bco and bro unblocking the row and the column. As soon as both the column and the
row are unblocked, the output on h will go low.

The second scenario for the signal propagation is when the tile wasn’t chosen for the hand-
shake; however, it occurred to be one of the conflicting neighbours. This is the case, when only
rg or cg arrives. It has no effect on gate 6, so the circuit does not react in producing either bco or

NCL-EECE-MSD-TR-2009-143, University of Newcastle upon Tyne 4



S. Golubcovs, D. Shang, F. Xia, A. Mokhov, A. Yakovlev: Multi-resource
arbiter decomposition

rg

h

bcicg

bco

bri bro

6

3 4

2

5

1

x

Figure 5: Tile implementing ring-based approach

bro. Nevertheless, the circuit does propagate both incoming block signals. Additionally, either
bri or bci disable the activation of gate 6 preventing circuit reaction because of the race condition
between old and new values on rg and cg.

2.2 Column/row block approach

The alternative way to distribute the block signal is by creating additional block tiles associated
with each column and row (Fig. 6a). Similarly to Fig. 4, the activation (and deactivation) of the
internal handshake h follows the change on the block signals bci and bri. Now, however, if the tile
isn’t selected by both client and resource, it is not propagating any of the incoming block signals
to the output (Fig. 6b).

!

!

H22

3-
in

pu
t a

rb
ite

r

4-input arbiter

c1g c2g c3g c4g

r1g

r2g

r3g

br1

br2!

br3

bc1 bc2! bc3 bc4

(a) Schematic diagram

bri+/2

bci-/1

bri+/1

x-

h+

bri-/2

bro+

bco-

bci-/2

bro-

bci+/2

rg-/1

h-

rg+

cg-/1

cg-/2

bri-/1

cg+

rg-/2

x+

bci+/1

bco+

(b) STG of the tile

Figure 6: Arbiter with blocking tiles

NCL-EECE-MSD-TR-2009-143, University of Newcastle upon Tyne 5



S. Golubcovs, D. Shang, F. Xia, A. Mokhov, A. Yakovlev: Multi-resource
arbiter decomposition

One possible implementation of such a tile is shown in Fig. 7. The signals bci and bri are
obtained by OR-ing all bco from the handshake column and all bro from the handshake row.

rg

bci

cg

bco

bri

bro

C+

h

C

x

Figure 7: Tile implementation for the C/R block approach

3 Conclusions

This paper considers a problem of creating the N×M arbiter with active resources. It is shown
that the initial design is not SI extendable as each additional client or resource is bound to increase
the fan-in. Two approaches are considered. The first is based on tiles being interconnected in a
ring propagating the block signal. The second and simpler approach is designed to block the
whole column/row and is expected to be faster than that ring-based solution.

References

[1] Petrify: http://www.lsi.upc.es/~jordic/petrify/petrify.html.

NCL-EECE-MSD-TR-2009-143, University of Newcastle upon Tyne 6

http://www.lsi.upc.es/~jordic/petrify/petrify.html

	Introduction
	Simple 22 arbiter
	The 22 arbiter implementation

	Extending up to NM arbiter
	Ring-based approach
	Column/row block approach

	Conclusions

