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Abstract

This paper presents a new design flow for security using 1-of-n encoding. Initially high-level
SystemC Galois descriptions are compiled into an intermediate format. The design flow passes
though several stages of refinement, including subfield-breakdown and change of basis, to gen-
erate small, regular logic blocks. These are converted into 1-of-n represention and subsequently
passed to optimization and mapping tools for mapping to a new library of power-balanced com-
ponents. The new library consists of novel mixed 1-of-2 and 1-of-4 components based on N-nary
logic. Finally logic optimization tools are applied to generate secure synchronous circuits for
layout generation. The paper shows that the circuits generated are more efficient than those
generated by alternative techniques.

Keywords: Security, Dynamic logic, 1-of-n, Power-balancing.

1 Introduction

Cryptographic devices are becoming increasingly ubiquitous and complex, and in order to satisfy
the high throughput requirements of many applications, they are often implemented by means of
VLSI devices (crypto-accelerators) [1]. The high complexity of such implementations raises con-
cerns regarding their reliability. Attacks against such cryptographic devices include those that
are signature-based [2] and those that are fault-based [3]. These side-channel attacks exploit eas-
ily accessible information like power consumption, running time, input-output behaviour under
malfunctions [4], and can be mounted by anyone using low-cost equipment.

Targetting secure systems to chips normally requires significant manual design effort. One
of the reasons for the lack of commercial tools is the level of complexity of generating secure
circuits. Research is therefore needed to develop methodologies and techniques for synthesizing
robust cryptographic systems efficiently. Recent work towards creating a VLSI design flow for
side-channel attack resistant circuits was carried out in [5]. This was primarily applied at the lower
level using a library of differential balanced cells [6] and was targetted towards power-balanced
synchronous circuits. In [7] they investigated side-channel attacks at the lower level and concluded
the best solution to power analysis is to embed countermeasures into logic cells [8] to reduce leakage
information. Here a novel logic style is proposed which relies on the use of signals with three different
possible states operating with a power consumption independent of both the logic values and the
sequence of data.

An alternative technique uses dual-rail where the logic of dual-rail provides the security because
of the 1-of-2 encoding used. Dual-rail provides in addition to security against side-channel attacks [9]
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a level of protection at the fault-level as well. Unfortunately it suffers from significant overheads in
area and power. A demonstrator chip based on an alternating spacer protocol attempts to overcome
this problem by utilizing a low-overhead dual-rail logic style [10]. The power analysis attack for this
chip was demonstrated to yield a 40 fold increase in the number of power measurements required
to crack the key. Attempts at using dual-rail for asynchronous solutions has so far proved to be
useful but unfortunately they tend to exhibit overheads which lead to inefficiencies.

The inefficiency problem of using dual-rail for synchonous power-balanced implementations
can be resolved by steering towards alternative 1-of-n circuits [11] which use dynamic logic [12].
Using dynamic logic it is possible to attain significant improvements in area and speed [13][14].
Another advantage of using 1-of-n as opposed to dual-rail encoding is that more complex codes
offer the possibility of better energy efficiency. The aim in this paper is to steer away from dual-rail
circuits and move towards general N-nary 1-of-n circuits which combine the advantages of using, in
addition to 1-of-2 circuits, direct mapping to 1-of-4 circuits [15]. In this paper we explore the Galois
design space making use of an efficient 1-of-2, 1-of-4 library and novel 1-of-n mapping techniques to
generate efficient encoded power-balanced synchronous security implementations which are more
efficient than those generated from dual-rail.

Our new design flow inputs a high-level SystemC Galois specification, optimizes and schedules
it, and translates it into an intermediate AND-XOR net representation. The specification then
undergoes various stages of refinement including refinement at the subfield level and further re-
finement using subfield breakdown or basis conversion to generate small regular sub-modules. The
sub-modules are then encoded using 1-of-n mapping and mapped to a novel logic library of specially
designed power-balanced N-nary 1-of-n gates. The gates from the new library, i.e. implicit-exor,
exorhalf-implicit, etc., have been carefully designed to help reduce the area and delay of the imple-
mentation. A mapping algorithm is employed which is used to explore the design space to generate
an optimal solution. After mapping highly optimized secure synchronous power-balanced circuits
are generated.

The remainder of this paper is organised as follows: in section 2 we present the new hardware
library; in section 3 we present the design flow mapping methodology; in section 4 we present a
synthesis example; in section 5 we provide results; in section 6 we present some conclusions.

2 Secure Gate-level library

In CMOS the use of N-nary encoding is well known where evaluations are performed in N-channel
logic. Dynamic logic requires two phases. The first phase is called the precharge phase and the
second phase the evaluation phase. There are three important benefits to N-channel only evaluation
gates relative to traditional static gates [11].

(1) The first is the elimination of P-channel devices on input signals which reduces the input
load significantly. In static gates the P-channel device tends to be significantly larger than the
N-channel device which adds to the load. Because N-channel only evaluation gates do not require
a P-channel device, their input load is reduced to one third that of a similar static gate. As a
result, dynamic logic reduces circuit area by implementing compact ’NMOS style’ gates without
the overhead of static power dissipation.

(2) The second is the elimination of the need to build the complementary function in P-channel
devices. With N-channel evaluation gates there is no need to implement the complementary func-
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tion, either in N-channel or P-channel devices. This means that the more efficient faster N-channel
gates are possible.

(3) The third advantage of N-channel only evaluation is the ability to share portions of the
evaluate ’stack’ among multiple outputs, which is not possible with static CMOS gates because it
is not possible to obtain each output’s function and complement from shared devices in both the
P and N-channel stacks.

2.1 Basic N-nary gates

Here it is shown that by applying the N-nary gate principles it is possible to generate 1-of-n gates.
As an example consider EXOR addition over GF(4). The addition table for GF(4) is shown in
Table 1 binary encoded (left), where α = 10 and β = 11, and 1-of-4 encoded (right).

Table 1: GF4 Addition Table

+ 0 1 α β + 0001 0010 0100 1000

0 0 1 α β 0001 0001 0010 0100 1000

1 1 0 β α 0010 0010 0001 1000 0100

α α β 0 1 0100 0100 1000 0001 0010

β β α 1 0 1000 1000 0100 0010 0001

GF4 has 4 states which can be represented by an encoding scheme with a balanced hamming
weight. For 1-of-4 it is assumed the value zero=0001.

Using Table 1 it is possible to derive an N-nary 1-of-4 gate-level implementation which is shown
in Fig. 1. The 1-of-4 Adder ⊕d gate has eight inputs, however, because only one of the α inputs
and only one of the β inputs can be asserted at a time, it is convenient to treat these two sets of
signals as individual inputs, each of which can represent one of four values.

α

1
ο ο

2
ο

3
ο

0

αα α α α α0 α α α α0 α α α α 00 α 1 2 3 1 3 2 2 3 1 3 2 1

0β β1 β2 β3

Driver/
Keeper

Precharger

Figure 1: 1-of-4 Adder ⊕d gate.

Thus, the ⊕d gate has an α input signal and a β input signal, the α and β input signals can
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be any integer between zero and three inclusive. The function of the gate is to add the two inputs
(GF addition) together and produce a 1-of-4 output. For the gate precharge devices are required
for each output’s evaluate node and each output has its own driver/keeper cell as depicted in Fig.
1.

Power-balancing makes use of the 1-of-4 representation as only one signal is active at a time.
For power-balancing it is important that the wires are balanced in such a gate so that capacitances
are as level as possible. This is attained by balancing wire lengths from inputs to transistor and
from transistor to outputs. This ensures that power signals are as balanced as possible. For this
reason it is important to use regular gate structures where balancing is easier.

In the 1-of-4 representation, each block of 1-of-4 data is equivalent to two binary bits. If a binary
function relies on odd data bits then bits from different data groups have to be merged together.
For example suppose in binary that α = 10 and β = 01 and we wish to merge the msb of α to the
lsb of β to get 11. In 1-of-4 this is equivalent to merging α′ = 0100 and β ′ = 0010 to get 1000.
Special merging functions are needed to implcitly merge the most significant or least significant
values from two different 1-of-4 values to create a new 1-of-4 value. A table showing combinations of
msb and lsb merge operations is shown in Table 2. The table shows the operations in terms of their
binary and 1-of-4 equivalents. The 1-of-4 values are represented in terms of bit-level equations.

Table 2: Merge operations

Operation Binary 1-of-4

mergemsbmsb α1β1

o3 (α2 + α3) · (β2 + β3)
o2 (α2 + α3) · (β0 + β1)
o1 (α0 + α1) · (β2 + β3)
o0 (α0 + α1) · (β0 + β1)

mergemsblsb α1β0

o3 (α2 + α3) · (β1 + β3)
o2 (α2 + α3) · (β0 + β2)
o1 (α0 + α1) · (β1 + β3)
o0 (α0 + α1) · (β0 + β2)

A special gate which allows for the construction of merging functions is provided in the following
subsection.

2.2 Optimized 1-of-n gates

For power-balancing regular gate structures are preferable in order that transistors and wire lengths
are matched. Optimisation is required to map to efficient gates which incorporate the above
features. Such gates are designed to better balance and reduce the size of existing gates.

One 1-of-4 gate that exhibits the above features which is presented here is the exor-implicit
gate. The exor-implicit gate is shown in Appendix A Fig. 6.

The exor-implicit gate implemements the following binary equations.
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o1 = (α1 ⊕ α0) (1a)

o0 = (β1 ⊕ β0) (1b)

As an example of its use consider the 2-bit binary signals a = {a1, a0}, b = {b1, b0}, c = {c1, c0}
and o = {o1, o0}. Assume these are related by the following binary equations:

o1 = (a1 ⊕ a0) (2a)

o0 = (b1 ⊕ b0) ⊕ (c1 ⊕ c0) (2b)

Assume also that a′, b′, c′, o′ are the corresponding 1-of-4 equivalent values. If the above
equations had to be implemented in 1-of-4 the equivalent equation using the ⊕d operation as
defined in Table 1 would be as follows:

o′ = (mergemsblsb(a′, b′ ⊕d c′)) ⊕d

(mergelsbmsb(a′, b′ ⊕d c′)). (3)

Using the ⊕i operation this can be reduced to the following more simple expression:

o′ = (a′ ⊕i (b′ ⊕i c′). (4)

It is much more efficient, therefore, to represent equations (2a, 2b) using 1-of-4 ⊕i gates. It is
also much easier to route wires into more simple regular 1-of-4 gates such as this.

Merge gates have the same structure as the ⊕i gate but they use different combinations of
inputs. For example, to implement mergemsbmsb using the ⊕i gate in Appendix A Fig. 6 the
input α3 needs to be switched with α1 and input α1 switched with α3 (similarly β1 and β3 are
switched). The corresponding mergemsbmsb gate is shown in Appendix A Fig. 7.

Various combinations of merge gates implemented using ⊕i are shown in Table 3 with the
corresponding input changes.

Table 3: Converting ⊕i to Merge gates

⊕i α0α3 α1α2 β0β3 β1β2

mergemsbmsb α0α1 α3α2 β0β1 β3β2

mergemsblsb α0α1 α2α3 β0β2 β1β3

mergelsbmsb α0α2 α1α3 β0β1 β2β3

mergelsblsb α0α2 α1α3 β0β2 β1β3

Another gate in the library is the 1-of-4 exorhalf-implicit ⊕hni gate. In binary it is used to
add 2 bits from one binary pair and merge the result to 1 bit from another binary pair e.g. ⊕h1i

implements the following binary equations
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o1 = a1 ⊕ a0 (5a)

o0 = b1 (5b)

A set of ⊕hni gates exist which are similar to ⊕h1i. Table 4 shows operations of the ⊕hni gates
in terms of their binary and 1-of-4 equivalents.

Table 4: ⊕hi operations

Operation Binary 1-of-4

⊕h1i

o3 (α1 + α2) · (β3 + β2)
o1 α1 ⊕ α0 o2 (α1 + α2) · (β0 + β1)
o0 β1 o1 (α0 + α3) · (β3 + β2)

o0 (α0 + α3) · (β0 + β1)

⊕h2i

o3 (α2 + α3) · (β1 + β2)
o1 β1 ⊕ β0 o2 (α0 + α1) · (β1 + β2)
o0 α1 o1 (α2 + α3) · (β0 + β3)

o0 (α0 + α1) · (β0 + β3)

Table 5: Converting ⊕i to ⊕hi gates

⊕i α0α3 α1α2 β0β3 β1β2

⊕h1i α0α3 α1α2 β0β1 β3β2

⊕h2i β0β3 β1β2 α0α1 α2α3

⊕h3i α0α3 α1α2 β0β2 β3β1

⊕h4i β0β3 β1β2 α0α2 α1α3

⊕hni gates also have the same structure as the ⊕i gate but they use different combinations of
inputs. Various combinations of ⊕hi gates implemented using ⊕i are shown in Table 5 with the
corresponding input changes.

Various mixed 1-of-n gates exist in the library for example gates with 1-of-2 inputs and 1-of-4
outputs or vica versa. An example of one of these is depicted in Appendix A Fig. 8. This gate
mimics the ⊕d gate shown in Fig. 1 but it takes in two inputs in dual-rail format and produces a
1-of-4 output.

Efficient mixed 1-of-n gates for the AND function can be found in conjunction with EXOR which
produce dual-rail output. For example, consider the following binary equation where o represents
a single bit.

o = (a1 · b1) ⊕ (a0 · b0) (6)

This equation gives an inefficient CMOS implementation. It is better to represent such an
equation in SOP form.
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o = (a1 · b1 · ā0) + (ā1 · a0 · b0) + (a1 · b̄1 · a0 · b0) + (a1 · b1 · a0 · b̄0) (7)

This equation can be converted to its corresponding 1-of-4 input, 1-of-2 output representation
to give the following pair of dual-rail equations.

o1 = a1b1 + a1b3 + a2b2 + a2b3 + a3b1 + a3b2 (8a)

o0 = a0b0 + a0b1 + a0b2 + a0b3 + a1b0 + a1b2+

a2b0 + a2b1 + a3b0 + a3b3

(8b)

These equations can be mapped to a 1-of-4 input, 1-of-2 output gate. The gate is implemented
in two halves. The half gates for o0 and o1 are shown in Appendix A in Fig. 9 and Fig. 10.

Here it can be seen that for each single positive term we have a transistor pair that is active in
terms of a and b. Where transistors are shown dotted they are removed. The paths are balanced
by length as depicted. In the actual cell the wire lengths are balanced as appropriate by length.

3 Security Design Flow

Fig. 2 gives a block diagram which depicts the design-flow.

Optimization

Scheduler

SystemC SPEC

BalancedLayout

Synthesis
Manual Input

Priority

Refinement
Secure
Library

PluginMapping

Stage2

Stage1

Figure 2: Diagram of design flow.

The security design flow inputs a SystemC Galois description of the cryptographic specification.
After behavioural compilation an extraction package is used to access relevant information about
the modules. The design-flow then proceeds along various refinement stages to generate small
regular blocks. A secure library of components, based on section 2, is accessible as a plugin. The
components are mapped to the sub-modules to generate a secure circuit.

3.1 Refinement

The design flow proceeds by refining the specification into smaller sub-modules. This passes through
various stages of refinement starting with stage one which creates a sub-level representation making
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use of sub-field generation [15]. It makes use of the fact that a field over GF (2n) can be formed from
a composite of fields GF (2n/2) and GF (2). The subfield mapping makes use of the notion that any
arbitrary polynomial can be represented as ax + b, given an irreducible polynomial of x2 + ax + b.
Thus, an element in GF (28) may be represented as ax + b where a and b are elements from the
field GF (24). The S-box of the AES is broken down using subfields into smaller components.

A next level of refinement is used to break the design down further. This employs either (i) the
use of further subfield refinement or (ii) transformation using bases.

(i) Further use of subfield refinement makes use of the fact that the field GF (24) is isomorphic to
the composite field GF ((22)2). This means that the field GF (28) can now be transformed into the
field GF (((22)2)2). Here GF (((22)2)2) is a field extension of degree 2 over GF ((22)2) constructed
using the irreducible polynomial x2 + ax + b where a, b ∈ GF ((22)2).

(ii) For transformation using bases use is made of the dual-basis.
As an example of transformation of basis we consider a dual-basis transformation which can

be applied to generate a 4-bit subfield multiplier. A regular polynomial-dual basis multiplier for
GF (2m) can be automatically constructed out of a number of inner products and a number of
non-symmetric additions. In [16] they describe a transformation using dual-basis where underlying
equations can be generated for the inner products and addition trees which exhibit more regularity.

As a result of the dual-basis transformation the subfield multiplier can be implemented more
efficiently using regular blocks as shown in Fig. 3. In Fig. 3 BLOCK1 implements the higher
⊕ terms and BLOCK2 implements the more regular inner product addition trees. As a result of
the more regular structure it is now more efficient to translate to a 1-of-4 representation and the
balancing of the subsequent layout becomes easier.

0..1 0

B

3 1..3

a0 b0 a1 b1 a2 b2 a3 b3

o0

a0 a1 a2 a3

o0 o1 o2

A

BLOCK1

BLOCK2 BLOCK2 BLOCK2BLOCK2

BLOCK1

BLOCK2

o3 o2 o1 o0

2..3

ANDXor

0..2

Figure 3: Multiplier Regular Implementation.
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3.2 Mapping

The 1-of-n library in section 2 is used for mapping to the refined circuit. The library is split
into two divisons: one with basic cells and one with the optimized cells shown in sub-section
2.2. Sub-modules undergo logic optimisation. Davio decomposition is first applied to generate
decision graphs. These are subsequently subject to transformations including variable ordering and
reduction. Also specific transformations are applied at this point to find the optimal alignment of
inputs for 1-of-4 representation. During optimization this aims to target the minimum conversion
which requires the least number of merge functions.

The mapping algorithm employs a greedy algorithm which inputs each sub-module and processes
each of the modules 1-of-4 outputs. A priority list of gate types is used. The gates at the head
of the list are given the highest priority. The priority list is ordered with the most complex gates
processed first. These are subsequently replaced by smaller gates during mapping to see if a more
efficient solution can be found.

It is easy to find an efficient mapping to XOR gates using 1-of-4. Thus during mapping the
XOR plane is predominantly targetted using 1-of-4 gates. For the AND-XOR plane targetting to
1-of-4 gates is not so efficient. Therefore, on switching between planes, a heuristic is adopted to
convert from 1-of-4 to dual-rail and back again. Here, where possible, trees are reconstructed to
find an efficient mapping to complex mixed 1-of-4, 1-of-2 XOR-AND and AND-XOR gates where
the planes adjoin.

Blocks are tested to see if they can be merged together to provide for a more efficient solution.
If this is feasible they are merged and optimized prior to mapping. Simple sub-modules e.g. those
which use a single layer of functionality are merged automatically prior to mapping.

Where transformation between bases is used the implementation must take into account dif-
ferences in bases between blocks which is accounted for during mapping. However, the hardware
required for this transformation is often trivial. For irreducible trinomials no extra hardware is
required to carry out the basis conversion only a reordering of coefficients.

4 Design Flow Example

The design flow example centers on the AES S-box [17]. Here we assume the specification has been
entered and compiled and is ready for refinement and mapping. The design is first refined, using
one level of subfield refinement only, converted to 1-of-n and then logic mapped to the library.

The design is initially broken down to the first level using subfield generation. The S-box is
initially refined to subfield components such as Galois multipliers, affine transformation, etc. Each
of the subfield circuit subblocks is subsequently mapped to the 1-of-n library.

The multipliers are converted using the dual basis outlined in section 3 and mapped. The
example that follows is a detailed breakdown of the multiplier outlined in sub-section 3.1. The
multiplier may be refined to the dual-basis multiplier blocks of Fig. 3, comprising BLOCKS 1 & 2,
and these are mapped to 1-of-n components and a 1-of-n circuit generated. A cross-over is made
here from 1-of-4 to 1-of-2 over the AND-XOR plane. The diagram showing the complete 1-of-n
mapping is shown in Fig. 4.

The following description details the mapping from the 4-bit multiplier in Fig. 3 to the 1-of-n
implementation shown in Fig. 4. The binary circuit for BLOCK1, shown at the bottom left of Fig.
3, takes a 4-bit input A {a3,a2,a1,a0} and produces 3 single-bit outputs. After mapping to 1-of-4
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Dual

1of4 1of4

ANDXor

b a bba3..2b

Dual

Xor−i

a3..2 a2..1 a1..0

1of4

Merge

lsb msb
a3..2 a1..0 1of4a1..0 a3..2

Xor−h1i

1of4

Xor−24 Xor−24

ANDXor ANDXor ANDXor

Xor−h2i

Figure 4: Multiplier 1-of-n implementation.

cells, BLOCK1 is shown implemented in the upper part of Fig. 4 using a combination of Merge,
XOR-implicit and XOR1/2-implicit gates. The inputs to these gates i.e. a3..2, a1..0 etc., relate
to the corresponding pairs of bits in Fig. 3 and are assumed in Fig. 4 to be in their equivalent
1-of-4 format. The inputs to the AND-XOR blocks of BLOCK2 as depicted in the top diagram of
Fig. 3 are formed from a mixed selection of the bits of the input A and various bits of the output
of BLOCK1. The outputs from the Merge, XOR-implicit and XOR1/2-implicit gates in Fig. 4
provide the equivalent 1-of-4 data representation to the 1-of-n AND-XOR cells of BLOCK2.

Using a component priority search in the mapping algorithm the AND-XOR cells of BLOCK2
are optimally mapped to the 1-of-4 input, 1-of-2 ouput AND-XOR &⊕42 circuits depicted in Ap-
pendix A Fig. 9 and Fig. 10. Each AND-XOR block in Fig. 3 is mapped to two 1-of-4 input,
1-of-2 ouput &⊕42 circuits. Finally the outputs of the AND-XOR which are in 1-of-2 format are
combined in pairs to generate 4-bit values in dual-rail format. These are input to the remaining
XOR operations of BLOCK2 which are combined in pairs and mapped to the 1-of-2 input, 1-of-4
output adder ⊕24 circuits shown in Appendix A Fig. 8.

Many parts of the S-box implementation rely on XOR gates exclusively and these are mapped
exclusively to 1-of-4 cells. For XOR blocks such as the map function or affine function the implicit-
XOR cell together with its variants in section 2 is used for mapping.

As an example consider the mapping for the affine sub-module [17]. The binary equations for
the affine transformation are as follows:

o7 = a7 ⊕ a6 ⊕ a5 ⊕ a4 ⊕ a3

o6 = a6 ⊕ a5 ⊕ a4 ⊕ a3 ⊕ a2 ⊕ 1

o5 = a5 ⊕ a4 ⊕ a3 ⊕ a2 ⊕ a1 ⊕ 1

o4 = a4 ⊕ a3 ⊕ a2 ⊕ a1 ⊕ a0

o3 = a7 ⊕ a3 ⊕ a2 ⊕ a1 ⊕ a0

o2 = a7 ⊕ a6 ⊕ a2 ⊕ a1 ⊕ a0

o1 = a7 ⊕ a6 ⊕ a5 ⊕ a1 ⊕ a0 ⊕ 1

o0 = a7 ⊕ a6 ⊕ a5 ⊕ a4 ⊕ a0 ⊕ 1 (9)
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These are decomposed using Davio decomposition and optimized and mapped using the 1-of-4
mapping technique. After applying the mapping algorithm the affine sub-module is implemented
using 1-of-4 gates as shown in Fig. 5.

Xor−h3i

Xor−i Xor−i Xor−i Xor−i

a5..4 a3..2

a7..6

a3..2 a1..0

a5..4

Xor−h3i

a7..6 a3..2

a3..2

a3..2

a1..0

a1..0 a7..6 a5..4

a7..6 a5..4

Xor−i

05..407..6

Xor−iXor−i

03..2

Xor−i

01..0

τ τ

Xor−h3i+1 Xor−h3i+1

Xor−h1i Xor−h1i Xor−h1i+1Xor−h1i+1

Figure 5: Affine implementation.

Here all gates shown are derivatives of ⊕i. It is implemented using 8 ⊕i and 8 ⊕h variants of
⊕i as depicted in Table 4. Some of the equations for the affine transformation end in ⊕1. These
parts of the equations can be mapped to ⊕hi+1 gates which are derivatives of ⊕hi gates. The affine
transformation in Fig. 5 is generated using a highly regular layout.

The remaining subfield blocks are mapped using ⊕i and its derivatives apart from the inverse
which is mapped to gates which are similar to the multiplier.

5 Results

A detailed set of results including gate-count and transistor-count time comparisons have been
made for multipliers at different refinement levels. A similar set of results has been taken for the
corresponding S-boxes using similar refinement levels. Tables 6 and 7 show comparions for our
synchronous synthesized results over power-balanced results generated for dual-rail cells using a
Synopsys 90 nm cell library.

Table 6 shows comparisons for the multipliers at different refinement levels. The results in
Table 6 are shown in 6 columns. The first depicts the level i.e. L1 represents the 1st stage of
refinement using subfield breakdown, L2.1 shows subsubfield breakdown whereas L2.2 uses dual-
basis. The second column depicts the type of implementation technology in terms of dual-rail, basic
1-of-n or optimized 1-of-n. The third and fourth columns show the number of gates and transistors
respectively. Finally the fifth and sixth column shows the area and delay.

In Table 6 it can be seen that at levels L2.1 and L2.2 a small percentage improvement in area
in terms of transistors is made for the basic 1-of-n gates over dual-rail. For level L1 there is a jump
in the gate and transistor number for the basic 1-of-n gates which is due to the large number of
1-of-4 merge functions required. These additional gates are reduced significantly when applying
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Table 6: Multiplier Comparison

Level Type Gates Transistors Area Delay

L1

Dual-rail 31 610 574 0.69ns
Basic 1-of-n 49 995 968 0.34ns

Optimized 1-of-n 22 520 488 0.17ns

L2.1

Dual-rail 35 950 812 0.74ns
Basic 1-of-n 41 897 766 0.33ns

Optimized 1-of-n 25 545 465 0.19ns

L2.2

Dual-rail 31 610 574 0.69ns
Basic 1-of-n 30 590 555 0.18ns

Optimized 1-of-n 14 350 329 0.15ns

Table 7: S-box Comparison

Level Type Gates Transistors Area Delay

L1

Dual-rail 188 4360 3934 3.66ns
Basic 1-of-n 351 6910 6234 1.22ns

Optimized 1-of-n 155 3145 2837 0.93ns

L2.1

Dual-rail 216 6010 5230 4.44ns
Basic 1-of-n 313 6468 5628 1.45ns

Optimized 1-of-n 183 3577 3112 1.18ns

L2.2

Dual-rail 188 4360 3934 3.66ns
Basic 1-of-n 294 5593 5046 1.04ns

Optimized 1-of-n 131 2635 2377 0.82ns
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the mapping algorithm to generate optimized 1-of-4 gates resulting in a corresponding smaller gate
count. There is therefore a large saving in gates made for a switch from basic gates to 1-of-n
optimized gates. At level L2.2 a large percentage saving in area in terms of transistors is made
for the optimized 1-of-n gates over dual-rail. This shows better results for gate and transistor
count were achieved using dual-basis which is due to the optimal gate mapping to larger gates.
A significant saving in delay is apparent for 1-of-n over dual-rail because of the faster N-nary
technology used. A saving in switching is estimated over dual-rail of a fair percentage.

Table 7 shows similar comparisons for the S-box for the different levels L1, L2.1 and L2.2. At
each level there is a jump in the gate and transistor number for the basic 1-of-4 gates this time
which is due to the large number of 1-of-4 merge functions required. As before these additional
gates are reduced significantly when generating optimized 1-of-n gates resulting in a corresponding
smaller gate count. In Table 7 better results are shown for the dual-basis as was the case for the
multiplier which again is due to the optimal mapping to larger gates. The reduction also results in
a corresponding smaller delay for optimized 1-of-n gates over basic 1-of-n.

6 Conclusions

This report has presented a novel way of synthesizing efficient secure circuits. A new design flow
using 1-of-n encoding is presented as a means to provide more efficient power-balanced circuits than
can be provided by dual-rail alone.

We have presented a new library of optimized power-balanced cells using N-nary 1-of-n logic
which represent an improvement over dual-rail. The cells are efficient, regular and easy to power-
balance and cover both 1-of-2 and 1-of-4. A novel synthesis design flow has been adopted. Prelimi-
nary breakdown or refinement at the subfield level to generate small regular blocks creates a suitable
platform for efficient mapping to the 1-of-n library. Preliminary results indicate improvements in
area, time and power over dual-rail for optimized 1-of-n gates for similar benefits in security at the
synchronous level.

We are looking at ways of improving the layout generation of the circuits. We are also interested
in generating more efficient layouts for our implementations.
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A Example gates from library.
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Figure 6: 1-of-4 Exor-implicit ⊕i gate.
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Figure 7: 1-of-4 mergemsbmsb gate.
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Figure 8: 1-of-2 in, 1-of-4 out Exor ⊕24 gate.
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Figure 9: AND-EXOR-half &⊕42 gate 1.
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Figure 10: AND-EXOR-half &⊕42 gate 2.
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