
School of Electrical, Electronic & Computer Engineering

Soft arbiters

Andrey Mokhov, Alex Yakovlev

Technical Report Series

NCL-EECE-MSD-TR-2009-149

August 2009



Contact:

Andrey.Mokhov@ncl.ac.uk

Alex.Yakovlev@ncl.ac.uk

Supported by EPSRC grants EP/C512812/1 and EP/F016786/1

NCL-EECE-MSD-TR-2009-149

Copyright c© 2009 University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,

Merz Court,

University of Newcastle upon Tyne,

Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/



Andrey Mokhov, Alex Yakovlev: Soft arbiters

Soft arbiters

Andrey Mokhov, Alex Yakovlev

Microelectronics System Design Group, Newcastle University, UK

Abstract

The paper proposes a new type of arbiters which we call `soft arbiters' as opposed to traditional

ones that are built with the `strict' arbitration scheme in mind: an m-of-n strict arbiter is bound

to issue exactly m grants having received n requests. Instead, behaviour of an m-of-n soft arbiter is

less restrictive: it is allowed to issue a di�erent number of grants k 6= m occasionally, as long as the

average number of active grants converges to m over time; consequently m does not necessarily have

to be an integer value.

Besides interesting theoretical properties and challenges the new type of arbiters presents, it has

certain practical application. Due to the less restrictive behaviour soft arbiters can have smaller and

faster implementation than their strict counterparts. Therefore it is bene�cial to utilise them in those

application areas which do not require the use of the strict arbitration scheme.

1 Introduction

Arbiters are basic controllers that manage concurrent access to system resources [4]. The notion of a

resource in this context should not be narrowed down to that of a shared component; other system

resources, such as energy, or processing/communication bandwidth should also be considered.

Often being on the critical path (with respect to performance) of a system arbiters have been sub-

ject to continuous optimisation attempts which led to development of di�erent arbitration schemes and

topologies: token ring [5], balanced trees [3], locking [1], �at [6], and other arbitration approaches have

been proposed since 1970s. We look at this long-standing problem from a di�erent angle. Instead of

optimisation of general arbiters, we outline a class of systems for which the traditional de�nition of an

arbiter can be relaxed thus leading to simpler circuit implementation.

Suppose there are n clients using a system resource and we want no more than m of them to access

it simultaneously. This bound on the number of concurrent accesses to the resource may come from

di�erent reasons:

1. the system cannot physically serve more than m clients, e.g. it has only m processing units;

2. we want to reduce concurrency due to power management issues (exceeding m may lead to ine�cient

energy consumption or overheat);

3. e�ciency of a Network-on-Chip reduces when the number of active connections exceeds m (oversa-

turation of the network, see [7] for analysis of this problem).

In the �rst case the bound has to be strict: granting access to m + 1 clients simultaneously leads to an

unavoidable collision of two clients trying to access the same processing unit. However, cases (2) and (3)

are more �exible by their nature: random, occasional events have little e�ect on the inertial, statistical

characteristics of power consumption and network tra�c; a system is likely to tolerate them. Therefore,

in these cases the bound may be relaxed, and granting access to more than m clients may be allowed as

long as the rate of such events is acceptable. It is undoubtedly necessary to provide formal criteria for a

rate to be `acceptable', � this issue will be addressed later.

NCL-EECE-MSD-TR-2009-149, University of Newcastle upon Tyne 1



Andrey Mokhov, Alex Yakovlev: Soft arbiters

The next section discusses modelling of strict and soft arbiters using STGs; Section 3 studies example

of a soft arbiter implementation. Opportunities for the real-time control over `softness' of an arbiter are

studied in Section 4. A summary of the presented material can be found in Section 5.

2 Model

The classic speci�cation of the strict m-of-n arbiter in the form of STG [2] is given in Figure 1. To access

the resource, the i-th client sends a request to the arbiter by raising signal ri. The clients are independent

from each other, therefore their requests can arrive concurrently. In response, the arbiter issues a grant

by raising signal gi, provided that there is at least one token in the choice place p. Initially p contains

m tokens, therefore it is guaranteed that at most m grants can be high at any time, no matter how

many requests have been received by the arbiter. Upon receipt of the grant, a client can safely use the

resource. Having �nished, the client lowers its request ri, and in response the arbiter lowers the grant gi

and returns the token to place p.

Figure 1: STG speci�cation of a strict m-of-n arbiter

To model soft arbiters it is necessary to introduce the notion of time or probability into the STG

speci�cation as shown in Figure 2. During the normal operation of the arbiter (the strict mode), m tokens

circulate between places p and q. A token from place b may be borrowed and introduced temporary into

the arbitration loop via transition ∆ which is timed, i.e. it has a certain delay ∆ associated with its

�ring (it is the only timed transition in this STG; �ring times of the other transitions are considered to

be negligible). Introduction of the (m+1)-th token into the loop turns the arbiter into the soft mode and

simultaneous issue of m+ 1 grants becomes possible. Absence of a token in place b leads to disconnection

of the route between places q and p. This forces the arbitration loop to return the borrowed token as

soon as possible. The next borrowing will be possible only after ∆ time units.

Figure 2: STG speci�cation of a soft m-of-n arbiter

This particular speci�cation has the following properties:

• The speci�ed soft arbiter acts as an [m; m + 1]-of-n soft arbiter, i.e. it issues m or m + 1 grants to

n clients. We say that m and m + 1 are lower and upper grant bounds of the arbiter.

• Events of issue of m + 1 grants simultaneously are at least ∆ time units apart. We call this class

of arbiters timed soft arbiters.

It turns out that timed soft arbiters are not easier for implementation than strict arbiters, because the

`softness' is imposed from the design point of view. As a result, one has to take implementation of a strict

arbiter and introduce some form of timed token injection into it (yet another sort of restriction!), thus

NCL-EECE-MSD-TR-2009-149, University of Newcastle upon Tyne 2



Andrey Mokhov, Alex Yakovlev: Soft arbiters

defeating the whole purpose. A proper way of obtaining an e�cient soft arbiter is to take an existing

design of a strict arbiter and try to optimise it by removing certain restrictions, not by adding them.

The next section shows an example of this approach.

3 Implementation example

Figure 3 shows implementation of the 1-of-3 �at arbiter [6]. As one can see it has a rather complicated

construction with four layers: pairwise arbitration, reset �lters, computation of the winner, and �nally

the layer of completion detection. The complexity comes from the fact that the mutual-exclusion (ME)

elements [4] in the �rst layer (boxes with labels mAB, mAC, and mBC) can resolve in a contradictory

way, and it is sometimes necessary to amend (some of) their decisions so that to detect a single winning

request (see details in [6]). More than half of the circuit area and latency is spent on handling these rare

occasions of contradictory ME elements resolution and thus guarantee the strict arbitration protocol.

Figure 3: Implementation of the 1-of-3 strict arbiter

Figure 4(a) shows the modi�ed version of the above circuit after removal of the two middle layers.

The circuit is speed-independent and conforms to the strict arbitration protocol but it has deadlocks

which occur if ME elements resolve contradictorily, e.g. ab = bc = ca = 1.

(a) Implementation with deadlocks (b) Soft implementation

Figure 4: Simpli�ed implementations of the 1-of-3 �at arbiter

The simplest way to eliminate the deadlocks is to substitute one of the C-elements with an OR-

gate as shown in Figure 4(b). As a consequence, the circuit issues either one or two grants depending

on the order of request arrival, i.e. it is [1; 2]-of-3 soft arbiter. Strictly speaking this circuit is also

NCL-EECE-MSD-TR-2009-149, University of Newcastle upon Tyne 3



Andrey Mokhov, Alex Yakovlev: Soft arbiters

not speed-independent, because grant ga can be generated in the OR-causal manner before both ME

elements connected to request ra have been resolved; the one which is still unresolved may be disabled

prematurely by event ra−. In practice it can be safely assumed that resolution of an ME element takes

less time than access of a client to a resource. If the timing assumption is not acceptable, it is possible to

�x this problem by adding the appropriate completion detection circuitry; we prefer circuit in Figure 4(b)

here as it is easier for visual comprehension.

Let us study behaviour of the obtained [1; 2]-of-3 soft arbiter. Table 1 shows which grants are issued

for a given order of requests. The last two rows correspond to those rare cases, when the result of pairwise

arbitration is contradictory, and thus the arbiter cannot principally detect the order of requests arrival; in

these cases it issues grant ga. In the other six cases the arbiter always gives the grant to the �rst request,

plus to request ra if it came second. Thus, for a single burst of incoming requests, the probability of the

arbiter to issue two grants is 1
3 (assuming the probability of a contradictory decision to be zero). On the

other hand, if there is a constant �ow of incoming requests abcabcabc... than the arbiter will be giving

one and two grants alternatingly, e�ectively behaving as an 1.5-of-3 soft arbiter (the series of grants will

be ga− gb− {ga, gc} − gb− {ga, gc} − ... etc).

Request order ab/ba ac/ca bc/cb Issued grant(s)

abc ab ac bc ga
acb ab ac cb ga
bac ba ac bc ga, gb
bca ba ca cb gb
cab ab ca cb ga, gc
cba ba ca cb gc

impossible to detect ab ca bc ga
impossible to detect ba ac cb ga

Table 1: Analysis of arbiter in Figure 4(b) with respect to request orders

The �at arbitration scheme [6] gives opportunity to build soft arbiters with the amount of `softness'

controlled in real-time as explained in the next section.

4 Real-time control

Looking at the circuits in Figure 4 one can see that the only di�erence between them is the function

of the gate generating grant ga: C-element (a) and OR-gate (b). It is possible to use a majority gate

Maj(x, y, z) = xy+xz+yz to implement both types of behaviour: function f = Maj(x, y, f) is equivalent
to the function of a C-element f = C(x, y), while g = Maj(x, y, 1) is equivalent to g = OR(x, y) as

shown in Figures 5(a, b).

(a) C-element (b) OR-gate (c) Soft arbiter with real-time softness control

Figure 5: Real-time `softness' control using majority function

NCL-EECE-MSD-TR-2009-149, University of Newcastle upon Tyne 4



Andrey Mokhov, Alex Yakovlev: Soft arbiters

Figure 5(c) shows implementation of the arbiter with real-time softness control using this idea. To

guarantee robust behaviour of the arbiter the control input must be changed only when request ra is

inactive. It is possible to `soften' other outputs as well, thereby obtaining a variety of arbiters with

di�erent bounds on softness. The most controllable one (with three control bits) behaves like a valve

which can restrict the �ow of requests to a speci�ed degree (including the scenario when it is `fully open'

or transparent to all the requests).

5 Conclusions

The paper introduced the concept of soft arbitration and outlined its application area. Implementation

of [1; 2]-of-3 soft arbiter is given and discussed. Real-time control of the arbitration `softness' is possible

on the basis of �at arbitration scheme, which is demonstrated with the example of variable 3-way soft

arbiter.

Future work is focused on development of a robust n-way arbiter with controllable softness for practical

values of n, as well as investigation of di�erent speed-independent implementations and realistic timing

assumptions that can be used to optimise them.

Acknowledgement

This work was supported by EPSRC grants EP/C512812/1 and EP/F016786/1.

References

[1] A. Bystrov, D. J. Kinniment, and A. Yakovlev. Priority arbiters. In Proc. of the 6th Internatio-

nal Symposium on Asynchronous Circuits and Systems (ASYNC'2000), page 128. IEEE Computer

Society, 2000.

[2] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and Alexandre Yakovlev.

Logic synthesis of asynchronous controllers and interfaces. Advanced Microelectronics. Springer-

Verlag, 2002.

[3] Mark B. Josephs and Jelio T. Yantchev. CMOS design of the tree arbiter element. IEEE Transactions

VLSI Syst., 4(4):472�476, 1996.

[4] David J. Kinniment. Synchronization and Arbitration in Digital Systems. John Wiley and Sons, 2008.

[5] A J Martin. The design of a self-timed circuit for distributed mutual exclusion. In Proceedings of the

1985 Chapel Hill Conference on Very Large Scale Integration, 1985.

[6] Andrey Mokhov, Victor Khomenko, and Alex Yakovlev. Flat arbiters. In Proc. of 9th International

Conference on Applicatioon of Concurrency to System Design (ACSD'09), 2009.

[7] Shufan Yang, Steve Furber, Yebin Shi, and Luis A. Plana. An admission control system for QoS

provision on a best-e�ort GALS interconnect. In Proc. of 8th International Conference on Applicatioon

of Concurrency to System Design (ACSD'08), pages 200�207, 2008.

NCL-EECE-MSD-TR-2009-149, University of Newcastle upon Tyne 5


