
School of Electrical, Electronic & Computer Engineering

Conditional Partial Order Graphs

Andrey Mokhov

Technical Report Series

NCL-EECE-MSD-TR-2009-150

September 2009

Contact:

andrey.mokhov@ncl.ac.uk

Supported by EPSRC grants EP/C512812/1 and EP/F016786/1

NCL-EECE-MSD-TR-2009-150

Copyright c© 2009 University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,

Merz Court,

University of Newcastle upon Tyne,

Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

Newcastle University

School of Electrical, Electronic and Computer Engineering

Conditional Partial Order Graphs

by Andrey Mokhov
PhD Thesis

September 2009

Contents

List of Figures viii

List of Tables xii

Acknowledgements xiv

1 Introduction 1

1.1 Methodology and contribution . 3

1.2 Organisation of the thesis . 7

2 Background 9

2.1 Asynchronous systems . 9

2.1.1 Classes of asynchronous circuits . 11

2.2 Behavioural models . 12

2.2.1 Finite State Machines . 12

2.2.2 Petri Nets . 13

2.2.3 Signal Transition Graphs . 17

3 Motivation for the new model 20

3.1 ParSeq controller . 21

3.1.1 One hot encoding . 22

3.1.2 Dual rail encoding . 23

3.1.3 Dual rail encoding (concurrency reduction) 25

3.2 n-permutators . 26

iv

CONTENTS

4 Background for CPOGs 30

4.1 Partial orders . 30

4.1.1 Total orders . 33

4.1.2 Hasse diagrams . 33

4.2 Directed acyclic graphs . 34

4.3 DAGs and partial orders correspondence . 36

5 Conditional Partial Order Graphs 37

5.1 The static model . 38

5.1.1 Projections . 42

5.1.2 Encoding conflicts . 45

5.1.3 Equivalence . 46

5.1.4 Addition . 48

5.1.5 Scalar multiplication . 52

5.1.6 Encoding conflict resolution . 52

5.2 The dynamic model . 56

5.2.1 Hierarchical static graphs composition 57

5.2.2 Dynamic CPOGs . 59

5.2.3 Behavioural semantics . 61

5.2.4 Initial states, final states and deadlocks 64

6 Verification 67

6.1 Structural properties and relations . 68

6.1.1 Well-formedness . 69

6.1.2 Equivalence . 71

6.1.3 Encoding conflicts . 71

6.2 Dynamic properties . 72

6.2.1 Trace reconstruction algorithm . 73

6.2.2 SAT formulation . 75

6.2.3 Deadlock detection . 76

v

CONTENTS

6.2.4 Invalid states reachability . 77

6.2.5 Event conflicts . 78

6.2.6 Mutual exclusion . 80

6.3 Summary . 81

7 Synthesis and optimisation 82

7.1 Synthesis . 84

7.1.1 One hot encoding scheme . 87

7.1.2 Binary encoding scheme . 88

7.1.3 Matrix encoding scheme . 89

7.1.4 Generalised synthesis problem . 91

7.2 Mapping . 93

7.3 Optimisation . 97

7.3.1 Logic minimisation . 97

7.3.2 Implicit arc exclusion . 98

7.3.3 Transitive arc reduction . 99

7.3.4 Common factors extraction . 100

7.4 Optimal encoding of partial orders . 101

7.4.1 CPOG optimality criteria . 104

7.4.2 Optimal encoding and synthesis . 106

7.5 Summary . 111

8 Application examples 113

8.1 ParSeq controllers . 114

8.1.1 One hot encoding . 114

8.1.2 Dual rail encoding . 116

8.1.3 Observations . 117

8.2 Phase encoding controllers . 118

8.2.1 Phase encoding essentials . 119

8.2.2 Phase encoding repeater . 124

vi

CONTENTS

8.2.3 Matrix phase encoder . 124

8.2.4 One hot phase encoder . 128

8.2.5 Binary phase encoder . 129

8.2.6 Speed-independent synthesis . 131

8.2.7 Benchmarks and summary . 133

8.3 Specification and synthesis of processors . 135

8.3.1 Architecture . 136

8.3.2 Design of instruction set . 137

8.3.3 Microcontroller synthesis . 141

8.3.4 Handshake management . 145

8.3.5 Further thoughts . 147

8.4 Summary . 148

9 Conclusions 149

9.1 Main contributions . 149

9.2 Future research directions . 151

A Tool support for CPOGs 154

A.1 The CPOG engine . 154

A.2 The Workcraft model . 157

A.2.1 Creating and editing a graph . 158

A.2.2 Simulation . 160

A.3 Synthesis of phase encoding controllers . 160

A.3.1 Phase encoding receivers . 160

A.3.2 Phase encoding senders . 161

Bibliography 163

vii

List of Figures

1.1 Examples of dynamically reconfigurable microcontrollers 4

1.2 CPOG-based flow for control specification and synthesis 5

2.1 Evolution cycle of a Petri Net . 14

2.2 Modelling choice and concurrency Petri Nets 15

2.3 Signal Transition Graphs . 18

3.1 ParSeq controller interface . 21

3.2 Specifications of one hot ParSeq controller 22

3.3 Specifications of dual rail ParSeq controller 24

3.4 Dual-rail ParSeq specifications after concurrency reduction 25

3.5 Timing diagrams of dual-rail ParSeq controllers 26

3.6 2-permutator controller interface . 27

3.7 STG specification of 2-permutator . 27

3.8 Optimised STG specification of 2-permutator 28

4.1 Partial order for the operation of addition Z= X+Y 31

4.2 Hasse diagram of the partial order from Figure 4.1 34

4.3 Directed acyclic graph, its transitive closure and transitive reduction 35

4.4 Possible specifications of a strict partial order using directed acyclic graphs 36

5.1 A Conditional Partial Order Graph as a superposition of partial orders . . 37

5.2 Graphical representation of Conditional Partial Order Graphs 39

5.3 Multiple DAGs contained in a single CPOG 40

viii

LIST OF FIGURES

5.4 Complete projection, operation dg, and its inverse 43

5.5 Equivalent graphs . 47

5.6 Graph addition . 51

5.7 Asymmetric addition: a false encoding conflict 54

5.8 Asymmetric addition: a true encoding conflict 55

5.9 A static CPOG with implicit control specifying diff (p, q) operation 57

5.10 Schematic view of a CPOG-based microcontroller 57

5.11 Hierarchical composition of CPOG-based microcontrollers 58

5.12 Static CPOGs for the master and slave microcontrollers 59

5.13 Microcontroller with dynamic opcode evaluation 59

5.14 Dynamic Conditional Partial Order Graph . 60

5.15 Example of dynamic CPOG evolution . 63

5.16 Final state and deadlock . 65

5.17 System evolution cycle . 66

6.1 Hierarchy of CPOG verification problems . 67

6.2 Well-formed and not well-formed graphs . 69

6.3 Dynamic CPOGs verification flow . 73

6.4 Unreachable states . 73

6.5 Example of a reachable invalid state . 77

6.6 Event conflict between events a and c . 79

6.7 Multiple action occurrence . 80

7.1 Synthesis, mapping and optimisation of CPOGs 83

7.2 CPOG synthesis example . 87

7.3 One hot CPOG synthesis . 88

7.4 CPOG-based microcontroller with request-acknowledgement event interface 94

7.5 Mapping of equivalent CPOGs into Boolean equations 95

7.6 Gate-level implementation of the mapped microcontroller 95

7.7 ‘Projections’ of the synthesised controller under different opcodes 96

ix

LIST OF FIGURES

7.8 Timing diagrams showing behaviour of the synthesised controller 96

7.9 Four DAGs specifying the given scenarios . 102

7.10 CPOGs synthesised using different encoding schemes 103

7.11 Size of specification vs number of control signals diagram 104

7.12 Conflict graph and its optimal colouring . 109

7.13 Synthesised CPOGs . 110

7.14 Extended conflict graph and its optimal colouring 111

8.1 Specification and implementation of one hot ParSeq controller 116

8.2 Specification and implementation of dual rail ParSeq controller 117

8.3 Data symbol in multiple-rail phase encoding channel 119

8.4 Numeric comparison of DI communication protocols: information efficiency 122

8.5 Phase encoding communication circuitry: n-wire channel 123

8.6 Phase encoding repeater circuitry . 124

8.7 Phase detection . 125

8.8 3-wire matrix phase encoder . 127

8.9 3-wire phase encoding repeater . 127

8.10 One hot phase encoder circuitry . 128

8.11 3-wire one hot phase encoder . 129

8.12 3-wire binary phase encoder . 130

8.13 3-wire one hot phase encoder (a speed-independent solution) 132

8.14 Architecture of example microprocessor . 136

8.15 Graph specifications of 8 instruction classes 138

8.16 CPOG synthesised using the binary encoding scheme 141

8.17 CPOG synthesised using the optimal encoding scheme 142

8.18 Gate-level implementation of the microcontroller 144

8.19 Decoupling the microcontroller from operational units 145

8.20 Handshakes merge controller . 146

8.21 Arbitrating concurrent requests to the same operational unit 147

x

LIST OF FIGURES

A.1 Creating a Conditional Partial Order Graph in WORKCRAFT 158

A.2 CPOG simulation in WORKCRAFT . 159

xi

List of Tables

5.1 Two behavioural scenarios specified as two CPOG projections 41

7.1 CPOG logic minimisation using don’t care set 98

7.2 Encoding constraints for optimal CPOG synthesis in Example 7.4 107

8.1 Four scenarios of a ParSeq controller . 114

8.2 One hot encoding of ParSeq controller scenarios 115

8.3 Dual rail encoding of ParSeq controller scenarios 116

8.4 Asymptotic characteristics of phase encoding protocol 120

8.5 Asymptotic comparison of DI communication protocols 121

8.6 Encoding of 6 scenarios of 3-wire one hot phase encoder 128

8.7 Synthesised phase encoding controllers . 133

8.8 Synthesis of matrix phase encoders: CPOGs vs STGs 134

8.9 Possible encodings of the 8 classes of instructions 140

8.10 Encoding of conditions containing dynamic variable ge 142

xii

Abstract

This work presents a new formal model for specification and synthesis of microcontrol

circuits. The model, called Conditional Partial Order Graph, captures concurrency and

choice in a system’s behaviour in a compact and efficient way. It is especially beneficial

for a class of systems which have many behavioural scenarios defined on the same set

of primitive events or actions, e.g. CPU microcontrollers. The key feature of the model

is its ability to specify systems in a compact functional form as opposed to the existing

models which either have a direct event traces representation or use an explicit notion

of states and transitions between the states.

In this approach a system is specified with a set of scenarios, each of them being a

partial order of events. The scenarios are further composed into a single graph containing

all the partial orders in a functional form. This superposition is obtained by assignment

of Boolean conditions to the events and dependencies between them, hence the name of

the model. As a result the specification has different levels of abstraction for control and

data paths: control flow is represented with partial orders of events, while data path is

modelled at the level of Boolean functions. Such separation helps to avoid exponential

explosion in the size of system specification which happens in other models.

At the stage of microcontroller synthesis the obtained graph is structurally mapped

into logic equations without the explicit exploration of the system state space, thereby

leading to algorithms with high time and memory efficiency.

The model has potential applications in the area of microcontrol synthesis and brings

new methods for modelling concurrency into the domain of modern and future proces-

sor architectures. Several application examples are presented, namely basic handshake

components and processor microcontrollers, as well as phase encoding circuits used in

digital communication channels.

As a result of this work several synthesis, verification, optimisation and mapping

tools have been developed to facilitate specification and synthesis of microcontrollers

using the proposed methodology. The tools have been successfully incorporated into the

WORKCRAFT framework for visualisation and simulation support.

xiii

Acknowledgements
Many people have contributed to this work and to my education in the area of computing

science and engineering.

My supervisor, Alex Yakovlev, introduced me to the world of asynchronous systems

and gave me invaluable guidance during my PhD research. I am also grateful to Gennady

Desyatkov, who supervised my undergraduate study and all other teachers who gave me

the background knowledge in computing science.

I would like to thank Crescenzo D’Alessandro whose research motivated me to study

the partial order theory. This eventually led to creation of Conditional Partial Order

Graphs which are the main topic of this thesis. Special thanks to Danil Sokolov, Victor

Khomenko, Fei Xia, Maciej Koutny, Alex Bystrov, and my other colleagues for educational

and inspiring discussions, necessary criticism and help.

Lastly but, perhaps, most importantly I am immensely grateful to my family for their

support and love. Many thanks to all my friends who have always been sources of

education, inspiration and motivation for me.

This research was supported by the ORS Awards Scheme grant, the EPSRC grants

EP/F016786/1 and EP/C512812/1.

xiv

Chapter 1

Introduction

Electrical engineering has come a long way in its development: from the early era when

it was easier to design a machine rather than to build it, to the modern era when the

technology is far more advanced and capable than the available design methodologies.

Charles Babbage described his Analytical Engine in detail but could not build it during

his lifetime, and many great projects of his followers (Percy Ludgate, Leonardo Torres y

Quevedo, Vannevar Bush, and others [86]) remained on paper due to difficulties in their

physical realisation. Finally, works by John von Neumann [16] and Howard Aiken [5] led

to the emergence of first computers — more than a hundred years after the Babbage’s

initial design. Although the basic architectural principles of today’s computers remain

the same, their complexity has grown enormously: transistor counts are exponentially

increasing due to smaller feature sizes and higher consumer demand for functionality [3].

System design and validation have become extremely difficult; they exceeded the bounds

of human comprehension a long time ago, thereby calling for extensive Electronic Design

Automation (EDA) support [90].

The increasing gap between manufacturing capability and ability of available EDA

tools leads to low productivity, lengthy time-to-market, costly system verification, diag-

nostics and test [3]. This creates plenty of research opportunities and challenges in the

area of design methodology and system modelling. The key point of leverage to ap-

proach these challenges concerns management of the increasing system complexity. The

1

CHAPTER 1. INTRODUCTION

efficiency of EDA tools in this respect depends more on the efficiency of the underlying

mathematical models rather than on the computational power of the machines running

them: the lack of adequate models equates the lack of adequate tools. There are a number

of requirements a model should satisfy in order to adequately describe the behaviour of

a large System-on-Chip (SoC) or Network-on-Chip (NoC): it should capture concurrency

and multiple choice, it should be expressive enough to cover a wide range of solutions

for different optimisation criteria, and yet be manageable, i.e. it should not overrefine

the specification with unnecessary details. The latter requirement becomes especially

important in designing asynchronous (or self-timed) systems [96] which do not rely on

global clocking for synchronisation, thus leading to massive parallelism and, in turn,

to difficulties in system modelling and validation (see Section 2.1 for additional details).

Long debates between the synchronous and asynchronous camps have recently came to a

peaceful resolution: modern SoCs exploit advantages of both design paradigms (a good

example is the Globally Asynchronous Locally Synchronous (GALS) architecture [17]),

hence the next requirement to the model: it should be able to handle asynchronous sys-

tems (note that synchronous systems are easier for modelling and can be considered as a

subclass of asynchronous ones when all concurrent actions are executed in single steps).

To date there are several methodologies for asynchronous systems design, e.g. [103]

and [94]. Some approaches such as Tangram (or Haste) [102][104] and Balsa [1][10] use

CSP-like hardware description languages (HDLs) and syntax-directed translation for

synthesis. They are not well suited for control logic specification because they describe

the entire system as a collection of processes and channels; control is implicit in them.

Other models such as Burst-mode Finite State Machines (FSMs) [78], as well as Petri

Nets (PNs) and Signal Transition Graphs (STGs) [25] are able to capture concurrency and

choice at a very fine level and are more suitable for control logic design: they produce

more compact and faster circuits than the methods based on syntax-directed translation

from HDLs [94] (Subsections 2.2.1-2.2.3 contain the background on FSMs and STGs).

However, these models are built on the explicit enumeration of all the event traces and

causal relations of a system and their applicability is limited to microcontrollers with a

2

CHAPTER 1. INTRODUCTION

small state space as demonstrated by a set of examples in Chapter 3.

In this thesis we present a new model and design methodology for system specification

and synthesis which is targeted at systems with many behavioural scenarios defined

on the same set of primitive events or actions, e.g. CPU microcontrollers. The key

features of the model are: ability to describe systems in a compact visual form without

the explicit listing of all its behavioural scenarios, and structural synthesis methods

which significantly improve performance of the whole design flow. These features make

the model very efficient for representation and management of causal information in

hardware and EDA software. The next section outlines the proposed methodology and

overall contribution of the thesis.

1.1 Methodology and contribution

The proposed methodology is based on the Conditional Partial Order Graph (CPOG) mo-

del introduced recently [71] which is a formalism that is capable of capturing behavioural

patterns of a system in a functional form. A CPOG is a superposition of a set of partial

orders [56] (see definition in Section 4.1) which can be extracted from it by providing

the corresponding codewords as shown in Figure 1.1 (centre). It can be regarded as a

custom associative memory for storing cause and effect relations within a predefined set

of events.

There are different kinds of systems which can be described with this model. For

example, a CPU microcontroller executes partial orders (or instructions) of primitive com-

putational steps (or microinstructions) defined on a set of data path operational units,

see Figure 1.1 (top). The order is determined by an instruction code — a combination

of logical conditions presented to the controller by the environment [62]. To this end,

the microcontroller can be seen as an entity which communicates with two parts of the

environment: one part is the source of condition signals (an instruction decoder) and the

other part is a set of controlled objects with a request-acknowledgement interface (data

path operational units which execute the microinstructions). Thus the condition signals

dynamically reconfigure the microcontroller according to the instruction being executed.

3

CHAPTER 1. INTRODUCTION

Conditional
Partial Order

Graph

010

111001

0001

Codewords
Partial orders

Processor
example

Phase encoder
example

Micro-
controller

Opcode
signals

Handshake
signals

Data path

req ack

Reg

req ack

ALUIn
st
ru
ct
io
n

d
ec
od
er

Combinatorial
codes, e.g.

binary encoded
data

Phase
encoding
controller

Scheduled
sequences
of events

000
001
010

a, b, c
a, c, b
b, a, cBinary

data
Phase
data

Figure 1.1: Examples of dynamically reconfigurable microcontrollers

Microcoded control synthesis presented in [62] is applicable to this class of systems.

However, it is based on synchronous FSMs and stores the event orders separately in

look-up tables, thus having a limited degree of parallelism and certain area penalties.

Another class of controllers suitable for CPOG specification is a family of phase en-

coders [65]. A phase encoder is a circuit that converts data between two conceptually

different information domains, see Figure 1.1 (bottom). The first one corresponds to the

combinatorial data encoding, e.g. binary or m-of-n encoded data symbols [105]. The

second domain is comprised of sequences of events ordered in time. CPOGs are capable

of specifying such controllers without the explicit representation of all the contained

behavioural scenarios thereby avoiding the combinatorial explosion of the specification.

Section 8.2 contains a detailed study of phase encoding circuits.

4

CHAPTER 1. INTRODUCTION

Conditional Partial
Order Graph

Synthesis
Section 7.1

Optimisation
Section 7.3

Mapping
Section 7.2

Microcontroller (Boolean equations)

Scenario 1 Scenario 2 Scenario N

System behavioural scenarios

0010 1111 1001

Opcodes

Automatic opcode generation
Section 7.4

Opcode assignment
Section 7.1

Scenario 1 Scenario 2 Scenario N

Encoded scenarios

0010 1111 1001

System specification

CPOG-driven
controller synthesis

Verification
Chapter 6

Custom CPOG
design

Standard circuit
optimisation flow

Chapter 5

Violation

Figure 1.2: CPOG-based flow for control specification and synthesis

Figure 1.2 shows the proposed CPOG-driven flow for automated synthesis of mi-

crocontrollers. At first, the designer has to specify all the execution scenarios of the

controller. A scenario is a schedule of basic events or actions that have cause and effect

relationships between them. Consider a simple scenario of adding two numbers which

consists of actions {a, b, c, d}:

a) Read input value X;

b) Read input value Y;

c) Compute sum Z= X+Y;

d) Store the result value Z.

5

CHAPTER 1. INTRODUCTION

One can see that action c depends on actions a and b (there is no way to compute sum

Z without having values X and Y), and action d, in turn, cannot happen until action c has

been completed. This is captured by the following diagram:

b) Read input value Y

c) Compute sum Z = X + Y

d) Store the result value Z

a) Read input value X

The diagram depicts a partial order [56], a basic precedence relation on the set of

actions. Every scenario of the system is specified independently from the others.1 This

makes our approach substantially different from the STG- or FSM-driven approaches that

require the designer to specify the controller as a whole, often resulting in complicated

and incomprehensible specifications. This is demonstrated by a simple controller with

three basic scenarios used as an example in Section 3.1.

As soon as all the scenarios of the controller have been defined the flow proceeds to

the stage of CPOG synthesis described in Section 7.1. At this stage all the scenarios are

combined within a single mathematical structure — a Conditional Partial Order Graph

(introduced formally in Chapter 5). Later on, every scenario can be extracted from this

structure by providing its opcode. Therefore it is necessary to set up a correspondence

between the scenarios and their opcodes. This correspondence is called an encoding

scheme. Sections 7.1 and 7.4 discuss several encoding schemes which are often encoun-

tered in practice, and provide an automated procedure for the optimal encoding of the

scenarios. A CPOG can also be obtained manually or by using custom synthesis methods

which do not guarantee the correctness of the synthesised CPOG. In this case the CPOG

has to be verified; automated procedures for verification of various CPOG properties are

presented in Chapter 6.
1There are cases when many scenarios match a certain pattern and can be specified together in a

functional form without their explicit enumeration as demonstrated in Subsection 8.2.3.

6

CHAPTER 1. INTRODUCTION

The obtained CPOG can be mapped into an interconnection of logic gates to produce

the physical implementation of the microcontroller as explained in Section 7.2. The area

and speed of the microcontroller depends on the size and structural properties of its

CPOG representation. Therefore a CPOG can undergo various optimisation procedures

which exploit similarities between the original scenarios and functional characteristics of

their encodings (see Section 7.3). The obtained gate-level implementation of the control-

ler can be further processed using the standard circuit design tools, e.g. it might require

technology mapping for a particular gate library, or a custom technology-dependent

performance optimisation which are out of the scope of this work.

The CPOG-based synthesis flow requires the designer’s involvement only at the stage

of system specification and scenario encoding. Therefore the rest of the stages can be

automated and the designer might even be unfamiliar with CPOGs and the underlying

theory. It is also important to note that all of the CPOG-related stages (synthesis,

optimisation, and mapping) rely only on structural methods and do not require exploration

of the entire controller state space or explicit enumeration of all its behavioural scenarios,

which results in a high efficiency of the whole design flow.

1.2 Organisation of the thesis

This thesis is organised as follows:

Chapter 1 (Introduction) outlines the motivation behind this thesis and briefly dis-

cusses its main contributions (the CPOG model and the CPOG-based design flow).

Chapter 2 (Background) describes the main classes of asynchronous circuits, and

introduces the FSM and STG models.

Chapter 3 (Motivation for the new model) presents several motivational examples

which reveal limitations of the FSM and STG models for specification and synthesis of

certain class of microcontrollers.

Chapter 4 (Background for CPOGs) gives definitions of the basic mathematical struc-

tures which form the backbone of the CPOG model: partial orders and directed acyclic

graphs.

7

CHAPTER 1. INTRODUCTION

Chapter 5 (Conditional Partial Order Graphs) gives the formal definition of the static

and dynamic CPOG models, discusses their properties, and introduces algebraic opera-

tions over CPOGs.

Chapter 6 (Verification) presents a set of SAT-based verification techniques that can

be used for analysis of systems specified with CPOGs.

Chapter 7 (Synthesis and optimisation) addresses issues of CPOG synthesis from

partial orders, optimisation of the synthesis result, and automated synthesis of instruction

opcodes in the context of microarchitecture design.

Chapter 8 (Application examples) studies several design cases which demonstrate

high efficiency of the proposed CPOG-driven methodology for specification and synthesis

of microcontrol circuits.

Chapter 9 (Conclusions) summarises contributions of the thesis and outlines areas of

future work.

Appendix (Tool) describes the set of developed software tools supporting different

stages in the CPOG-based design flow.

8

Chapter 2

Background

This chapter introduces asynchronous systems, their basic properties and classes, and

describes two models that are used for specification, verification and synthesis of asyn-

chronous circuits: Finite State Machines (Subsection 2.2.1) and Signal Transition Graphs

(Subsection 2.2.3). This chapter may be safely skipped if the reader is familiar with these

concepts.

2.1 Asynchronous systems

Asynchronous, or self-timed, systems are systems without clocks, i.e. they do not syn-

chronise all the internal events with the global clock signal. Instead, they operate under

distributed control, with concurrent hardware components communicating and synchro-

nising using local handshakes [99]. Asynchronous circuits have started to gain popularity

both in industry and academia due to the following advantages [3].

Modularity

Asynchronous systems are constructed out of modular hardware components, each

having a formally defined protocol for communication with others. The components may

be implemented using different design approaches and silicon technologies, and are al-

lowed to operate at different speeds. Due to their well-defined interfaces they can be

safely combined into a correctly working system, thus meeting the need for ‘correct by

construction’ designs of large-scale heterogeneous systems. By contrast, every part of a

9

CHAPTER 2. BACKGROUND

synchronous system is physically tethered to the same clock signal and therefore must

be fast enough to finish its computation task within a clock cycle; delay variations in any

part of a synchronous system have global implications.

Low power consumption

In traditional synchronous designs almost half of power is consumed by the clock

distribution tree leading to chip overheating and short battery life. Moreover, the power

is often wasted on unproductive clock cycles: even if a synchronous component has no

data to process in a particular clock cycle, it still dissipates dynamic power because it

is clocked (meaningless data is being propagated through the combinational logic layers

and latched in registers). Asynchronous systems have no clock tree, and they do not

perform any unneeded computation; they are event-driven, i.e. they compute only when

there is a request for that. In the absence of the requests, an asynchronous component

consumes virtually no power because there is no switching activity [100].

Average-case performance

The clock frequency of a synchronous system is determined by its slowest component,

with an added margin taking care of worst-case process, temperature, and data parame-

ters. Therefore, under the normal operating conditions the system wastes a lot of time

waiting for the current clock cycle to finish (so called worst-case performance). This pro-

blem can be alleviated to a certain extent by fine-grain partitioning of pipeline stages and

splitting the main clock cycle into several sub-cycles, however, this significantly increases

the design complexity. Asynchronous systems, on the other hand, are more flexible by

their nature: a new computational cycle may start as soon as the previous one has been

completed; there are no strict deadlines and performance of the system is determined by

the current internal and external parameters, not the worst ones. Therefore, an asyn-

chronous system may exhibit the average-case performance [11]. It should be noted that

in order to exploit the average-case performance, asynchronous data-path components

require completion detection which may be expensive in terms of area and power. Many

asynchronous data-path methodologies [37][52][112] and completion detection techniques

have been proposed [18][69][79][92].

10

CHAPTER 2. BACKGROUND

Low electromagnetic emission

Due to the absence of clock asynchronous systems have lower levels of electromagne-

tic emission in comparison with synchronous ones. Switching activity is not concentrated

near the edges of the clock signal resulting in evenly-spread, much less aggressive noise

profile. This allows a higher degree of integration, reduces the need for electromagnetic

shielding, and makes asynchronous systems advantageous for security applications (it

is easier to extract information from a synchronous device by using the distinct clock

patterns in its noise profile as a data flow reference).

Tolerance to process variation

Asynchronous systems are more tolerant to the increasing variation in process pa-

rameters caused by continuous technology scaling. Robust delay insensitive communi-

cation protocols [31][98][105] make no assumptions on the delay of wires or gates, which

represent the major concern of synchronous systems. There are many asynchronous de-

sign styles varying in terms of their robustness and performance/area characteristics;

they are discussed in the next subsection.

2.1.1 Classes of asynchronous circuits

There are several important classes of asynchronous circuits. The Delay Insensitive (DI)

class is the most robust one with respect to process and environmental variations, as it

makes no assumptions on the delay of wires or gates: DI circuits are designed to operate

correctly with the unbounded gate and wire delay models [98]. The concept of delay

insensitive circuits originates from [21]; formalisations were given in [98]. Unfortunately,

the class of DI circuits is quite limited because they are very difficult to build out of

simple gates [59] and usually have large area and performance overheads.

It is necessary to relax the DI requirements in order to build practical circuits out

of simple gates. Speed-independent (SI) circuits assume the unbounded delay model

for gates, while wire delays are considered to be negligible (or added to the gate de-

lays). This means that whenever a gate changes its output, this change is immediately

propagated along the wire [12][75].

11

CHAPTER 2. BACKGROUND

A different approach to relaxation of the DI requirements is adopted in the class of

Quasi Delay Insensitive (QDI) circuits. Instead of assuming zero wire delays, they rely

on the concept of an isochronic fork : it is assumed that the difference in delays between

the branches of a wire fork is negligible [58].

SI and QDI circuits are more practical and are widely used in asynchronous systems.

Methods for specification and approaches to synthesis of implementation of these classes

of circuits are discussed in the next section.

2.2 Behavioural models

This section introduces behavioural models used for specification of asynchronous cir-

cuits: Finite State Machines (FSMs), Petri Nets (PNs) and Signal Transition Graphs

(STGs) – a special type of PNs where events are associated with signal transitions in an

asynchronous circuit.

2.2.1 Finite State Machines

FSMs (also known as finite state automata) have been studied a long time ago [7] and

dominate the area of specification and synthesis of sequential synchronous systems [62].

They can also be applied to asynchronous systems, in particular Burst-mode FSMs [78],

however, specification of concurrent processes is very awkward and problematic with

them, because FSMs use interleaving semantics to capture concurrency.

A FSM is composed of a finite number of states, transitions between these states,

and actions. A transition indicates a state change and is described by a condition that

has to be satisfied to enable the transition. An action is a description of an activity

that is to be performed at a given moment (entering a state, executing a transition, etc).

There is a direct correspondence between the states of a FSM, and the states of the

modelled system. This often leads to problems in terms of concurrency specification. For

example, to specify n concurrent events, the designer has to specify 2n states each of them

corresponding to a state, when a subset of these n events have already happened. There

are 2n different subsets of a set of n events, hence the number of required states. This

12

CHAPTER 2. BACKGROUND

is a serious limiting factor for FSMs to be used for specification of large asynchronous

systems. Chapter 3 contains several examples, demonstrating these limitations.

Petri Nets formally introduced in the next subsection are more suitable for specifi-

cation of concurrency. They admit the true concurrency semantics, i.e. PNs can model

concurrent events directly, without considering all possible sequences of their execution.

Self-Modifying Finite Automata

Many extensions of FSMs have been introduced in order to increase their expressive

power and ease specification for certain classes of systems. One of such extensions, the

Self-Modifying Finite Automaton (SMFA) model [44][91], has an interesting relation to

this work. An SMFA is an ordinary FSM with the additional property of being able to

modify itself during a transition from one state to another, e.g. it can add/delete states

or transitions in itself. These self-modification abilities dramatically extend the model’s

expressive power but they do not help to deal with concurrency — inherently, an SMFA

describes a sequential process and the only way to model concurrent behaviour is to use

interleaving semantics. That is why they are not suitable for our purposes.

In the same way as the SMFA model is built around FSMs, the Conditional Partial

Order Graph model is built around partial orders: one can say that a CPOG is a partial

order that can be modified according to certain conditions — new events or dependencies

can be added/deleted from it. Unfortunately, it is not possible to reuse any results from

the SMFA theory in our work because of the fundamental differences between FSMs

and partial orders. However, we think that the relation between SMFAs and CPOGs is

interesting and worth mentioning.

2.2.2 Petri Nets

The Petri Net model, introduced half a century ago by Carl Adam Petri [80], is a well-

studied formalism for modelling concurrent system behaviour. PNs are particularly useful

for modelling asynchronous systems [25], because unlike FSMs they do not have the

explicit notion of a global system state, therefore being better in combating the state

explosion problem [101].

13

CHAPTER 2. BACKGROUND

p3

t1

p2

p4

t2

p1

t3

(a) Initial state

p3

t1

p2

p4

t2

p1

t3

(b) t1 has fired

p3

t1

p2

p4

t2

p1

t3

(c) t2 has fired

Figure 2.1: Evolution cycle of a Petri Net

Definition 2.1. A Petri Net is a quadruple PN(P, T , F, m0) where P and T are disjoint

finite sets of places and transitions respectively, F⊆ (P×T)∪ (T ×P) is the flow relation,

and m0 : P→Z+ is the initial marking. A PN is a directed bipartite graph [22] with nodes

P and T forming its two disjoint sets of vertices and relation F containing arcs between

them. m0(p) denotes the number of tokens that are initially contained in place p ∈ P.

Given a node x ∈ P∪ T , the set •x = {y | (y, x) ∈ F} is the preset of x, and the set

x•= {y | (x, y) ∈ F} is the postset of x.

Figure 2.1(a) depicts a simple PN consisting of four places P = {p1, p2, p3, p4}

(denoted as circles) and three transitions T = {t1, t2, t3} (denoted as boxes)

connected with a number of arcs (arrows). The initial marking is m0 = (1, 0, 1, 0):

places {p1, p3} contain tokens (a place with a token is denoted as a marked circle),

while places {p2, p4} do not. The preset of place p2 is {t1}, the postset of transition t3

is {p1, p3}, etc.

A transition t ∈ T is enabled at a marking m iff ∀p ∈ •t, m(p) > 0, i.e. every preset

place of t contains at least one token. In the PN from Figure 2.1(a) transitions {t1, t2}

are enabled, while transition t3 is not (it is disabled).

A transition enabled at marking m can fire producing a new marking m ′ such that

m ′ =m− •t+ t•, i.e. one token is consumed from each preset place and one token is

14

CHAPTER 2. BACKGROUND

produced to each postset place:

m ′(p) =


m(p)−1 if p ∈ •t\ t•

m(p) if p ∈ •t∩ t•

m(p)+1 if p ∈ t•\• t

Figure 2.1(b) shows the result of transition t1 firing: a token from place p1 has been

removed and placed into p2. Only transition t2 is enabled according to the new marking.

If t2 fires the marking changes in such a way that transition t3 becomes enabled, see

Figure 2.1(c). Its firing returns the PN into the initial state shown in Figure 2.1(a). Note

that in the initial state both transitions {t1, t2} are enabled, therefore they can fire

concurrently.

(a) Free-choice (b) Controlled-choice (c) Merge (d) Fork (e) Join

Figure 2.2: Modelling choice and concurrency Petri Nets

A place p∈ P with more than one postset transition (|p• |> 1) is called a choice place.

A choice place p is called free-choice if every transition in its postset has only one preset

place (and it is p), i.e. ∀t ∈ p•, |• t| = 1; otherwise the place is called controlled-choice.

In other words, a choice is free if it cannot be influenced by the rest of the system: once

a free-choice place gets a token all of its postset transitions become enabled and one

of them is ‘freely’ chosen to fire [32]. A place with more than one transition in its preset

(|•p| > 1) is called a merge place. A transition t ∈ T such that |t • | > 1 is called a fork,

and |• t|> 1 – a join. Figure 2.2 shows PN fragments containing choice, merge, fork and

join structures.

A marking m ′ is reachable from marking m if there exists a firing sequence (or trace

for short) of transitions (t1, t2, . . . , tn) leading from m to m ′. A reachability set of a PN is

15

CHAPTER 2. BACKGROUND

a set of all markings reachable from its initial marking m0. The reachability problem is to

decide if a given marking m belongs to the reachability set of a given PN. This problem is

very important in practice; the most efficient methods for reachability analysis are based

on the PN unfolding theory [45]. Several common reachability properties [76] of PNs are

listed below.

A deadlock is a marking which does not enable any transitions. A PN is deadlock-free

if its reachability set contains no deadlocks.

A PN is k-bounded if the number of tokens in every place does not exceed a finite

number k at any reachable marking. A 1-bounded PN is called safe.

A PN is live if for every reachable marking m and transition t it is possible to reach

a marking m ′ enabling t. In other words, every transition can always fire again. The PN

shown in Figure 2.1 is deadlock free, safe and live.

These and other properties of PNs correspond to the properties of the modelled

system. For example, normally there is a one to one correspondence between deadlocks

in a system and in its PN representation. This is why PNs are often used for model

checking and verification: if one would like to know if a certain property of a concurrent

system holds, it is easy to formulate the corresponding PN property and verify it using the

variety of available PN tools [82]. In the general case, most of the PN properties are very

expensive (in terms of computational complexity) to verify. However, there are several

subclasses of PNs that have enough expressive power yet allow simpler verification

algorithms. A survey of PN decision problems, their decidability and complexity results

can be found in [35][36]. The following are three basic subclasses of PNs.

A PN is a Marked Graph (MG) if every place has exactly one preset and one postset

transition: ∀p ∈ P, |•p| = |p• | = 1. This subclass does not allow any choice, but allows

concurrency, thus it can be used to describe deterministic concurrent systems.

A dual subclass consists of State Machines (SMs). A PN is a SM if every transition

has exactly one preset and one postset place: ∀t ∈ T , | • t| = |t • | = 1. No concurrency

can be modelled with a safe SM. This subclass represents non-deterministic sequential

systems.

16

CHAPTER 2. BACKGROUND

A PN is called a Free Choice Net (FCN) if its every choice place is free-choice [32].

This subclass of PNs is capable of modelling both concurrency and choice but does not

allow their interference, or confusion. FCNs have a good balance between the expressive

power and verification complexity.

The three most common extensions of PNs are Coloured Petri Nets which model data

using tokens of different colour [43], Timed Petri Nets which introduce the notion of time

into PNs [106], and Labelled Petri Nets which are discussed in the next subsection.

2.2.3 Signal Transition Graphs

It is often necessary to label transitions of a PN in order to attach a meaningful semantics

to them, e.g. each transition can be labelled with the name of an event in an asynchronous

system, thereby setting a direct correspondence between behaviour of the system and

that of its PN model [109].

Definition 2.2. A Labelled Petri Net (LPN) is a triple LPN(PN, Σ, λ) where

PN(P, T , F, m0) is a PN, Σ is a finite alphabet, and λ is a labelling function which

associates a label λ(t) with every transition t ∈ T of the LPN. Note that different transi-

tions can have the same label.

Labelled (or interpreted) PNs, where transitions represent changes of circuit signals,

were independently proposed in [87] and [19]. The former called the model Signal Graphs,

while the latter – Signal Transition Graphs; this name became widely adopted. Both

works proposed to label every transition in a PN with an element of X× {+, −}, where

X is the set of circuit signals and {+, −} stand for their rising and falling transitions, i.e.

event x+ means that signal x ∈ X changes from 0 to 1, while event x− corresponds to its

change from 1 to 0. Following is the formal definition of STGs.

Definition 2.3. A Signal Transition Graph (STG) is quadruple STG(PN, I, O, λ), where

PN(P, T , F, m0) is a PN, I and O are disjoint sets of input and output signals respec-

tively (their union is X = I∪O – the set of all signals of the circuit; internal signals are

traditionally included in the O set), and the labelling function λ : T → X× {+, −} labels

17

CHAPTER 2. BACKGROUND

every transition of the PN with a signal event. An STG inherits behavioural semantics

from its underlying PN, including the firing rules, the notions of concurrency, reachability,

etc. (which can be found in the previous subsection).

Figure 2.3(a) shows the STG specification of a C-element , a basic asynchronous circuit

introduced by Muller [75]. It has two inputs I= {a, b} and one output O= {c}, and behaves

in the following way. Initially all signals are 0. As soon as both inputs change to 1

(concurrent events {a+, b+}), the circuit has to acknowledge that by changing its output

to 1 (event c+) – this is the end of the set phase. The reset phase is symmetric: inputs

concurrently reset to 0 (events {a−, b−}) enabling the output reset (event c−); its firing

brings the circuit back into the initial state. According to the specification this process

continues forever.

a+

c+

a-

b-

c-

b+

(a) Full notation

a+ c+

a-

b-

c-

b+

(b) Simplified notation

Figure 2.3: Signal Transition Graphs

As STGs tend to have many ‘trivial’ places, i.e. those having exactly one preset and

one postset transition, they are often omitted for clarity as shown in Figure 2.3(b). Note

that the tokens are placed directly on the corresponding arcs in this case.

STGs are very natural for describing behaviour of small asynchronous microcontrol-

lers and they are successfully used for this purpose in the thesis (see, for example,

Subsection 8.3.4). However, the STGs describing large systems with multiple choice, or

mixed data/control path controllers can be very large and incomprehensible as will be

demonstrated in the next chapter.

There are two main approaches to synthesis of the physical implementation of an

asynchronous controller from its STG specification: logic synthesis [25][47] and direct

mapping [39][50][92]. The logic synthesis methods try to capture dependencies between

18

CHAPTER 2. BACKGROUND

signals in a circuit by analysing its STG specification which, unfortunately, requires

exploration of its complete state space. To alleviate the state explosion problem it is

possible to employ methods for efficient representation of the state space, e.g. unfol-

dings [47], or to use the STG decomposition techniques [89], or both [48]. The direct

mapping techniques, on the other hand, are based on the direct translation of the whole

STG structure into circuits using presynthesised handshake components, such as David

cells [30] (this approach is similar to the syntax-directed translation from HDLs [102]).

These methods have low algorithmic complexity and are applicable to an STG of any

size, but produce circuits that are larger and slower than those obtained using the logic

synthesis approach.

The next chapter presents several practical examples which demonstrate that the STG

model (as well as the FSM model introduced in the previous section) cannot be directly

applied to specification and synthesis of a certain class of asynchronous microcontrollers.

This provides the motivation for a new model which is formally described in Chapter 5.

In Chapter 8 the proposed model is shown to be significantly more efficient on the same

specification and synthesis examples.

19

Chapter 3

Motivation for the new model

There are many models targeted at microcontrol specification and synthesis (the most

commonly used have been addressed in the previous chapters), and a strong reason is

demanded if yet another model is to be introduced into this well-studied and establi-

shed domain. This chapter demonstrates limitations of the existing control specification

models, in particular STGs and FSMs (see Chapter 2). The limitations arise in situations

when a specified system contains a mixture of data and control path interfaces. This

leads to combinatorial explosion in the size of specification because data path modelling

requires exploration of all possible combinations of signal arrivals within a single data

codeword which in fact can be avoided by using different abstraction levels for data and

control related events. A basic example of such situation is presented in Section 3.1

outlining the first part of the motivation.

Another source of problems for the conventional approaches comes from systems ha-

ving many similar behavioural patterns, or event orders, defined on the same domain of

events. It is generally impossible to specify such systems in a functional form within the

existing models: each event order from the patterns have to be explicitly enumerated

and specified thereby blowing the specification size beyond what is practically feasible.

This issue was first addressed in [71], which also presented the Conditional Partial Order

Graph model capable of specifying such systems in a compact functional form. Section 3.2

discusses this class of systems and completes the motivation for the new model.

20

CHAPTER 3. MOTIVATION FOR THE NEW MODEL

Note that this chapter does not present any solutions to the problems discussed here.

It’s purpose is only to highlight these problems and convince the reader of the necessity

of a new approach to microcontrol specification. The corresponding solutions can be

found in Chapter 8, however, they are based on Conditional Partial Order Graphs and it

might be difficult to understand them being unfamiliar with the new model. The next two

chapters give the necessary background and the reader is advised to go through them

before viewing the solutions.

3.1 ParSeq controller

This section outlines limitations of the STG and FSM models for the specification of

systems containing a mixture of data and control path interfaces.

Consider a generalised ParSeq controller1, which manages two handshakes A =

(req_a, ack_a) and B = (req_b, ack_b) on its right side according to the operation

code (opcode) provided by an asynchronous data path interface on its left side as shown

in Figure 3.1.

ParSeq
controller

req_a
ack_a

req_b
ack_bdone

...
opcode
signalsdata path

interface
control path

interface

Figure 3.1: ParSeq controller interface

Depending on the opcode signals the handshakes are to be initiated either in parallel

(concurrent events A and B) or in sequence (in two possible event orders A→ B or

B→A), hence the name of the controller. As soon as both handshakes are completed the

controller issues signal done. The reset phase is similar but the handshakes are always

reset concurrently regardless of the opcode.

The three operational scenarios can be encoded (i.e. given distinct opcodes) in dif-

ferent ways. The following subsections demonstrate how a chosen data path encoding

affects the controller specification.
1ParSeq controller and its variations have several practical applications, e.g. in Balsa synthesis flow [10]

or in phase encoding controllers [65].

21

CHAPTER 3. MOTIVATION FOR THE NEW MODEL

x 1+ x 1-

x 2+ x 2-

x 3+ x 3

req_a+

req_a+

req_a+

req_b+

req_b+

req_b+

ack_a+

ack_b+

ack_a+

ack_b+

ack_a+

ack_b+

done+

done+

done+

-done
-ack_a

-ack_b

-req_a

-req_b

-

p q

(a) STG specification

S0 S3 S4 S5

S1 S2

S8S7S6

S9

req_a+
req_b+

req_a+

req_b+

done+

ack_a+
ack_b+

ack_a+____
req_b+

ack_b+____
req_a+

ack_b+____
done+

ack_a+____
done+

req_b
req_a

done

ack_a
ack_b

req_a
req_b

req_a
req_b

x1+
x1-
-
-

x2+ x2-
-
-

x3+ x3-
-
-

-
-

-

(b) FSM specification

Figure 3.2: Specifications of one hot ParSeq controller

3.1.1 One hot encoding

One hot encoding [105] is the most natural data path encoding in this case. It uses three

signals {x1, x2, x3} to select one of the three scenarios:

Scenario x1 x2 x3

A||B 1 0 0

A→ B 0 1 0

B→A 0 0 1

One hot
ParSeq

controllerdone

req_a
ack_a

req_b
ack_b

x1
x2
x3

Note, that combination (0, 0, 0) represents a spacer value which separates two conse-

cutive data symbols.

STG specification of a ParSeq controller with a one hot interface is shown in Fi-

gure 3.2(a). The STG has a global choice (place p) and the three scenarios are specified

as three independent branches starting with input signals x1+, x2+, and x3+. The upper

branch corresponds to parallel handshakes A||B; the two lower branches correspond to

sequential handshakes A→ B and B→ A. After the global merge (place q) the hand-

22

CHAPTER 3. MOTIVATION FOR THE NEW MODEL

shakes are reset concurrently and the system returns to the initial state. This STG seems

to be convenient, understandable and can be designed by hand but it duplicates events in

different branches which can cause exponential explosion in the size of the specification

for larger controllers. This particular issue, however, is not addressed in this section and

will be investigated in Section 3.2.

Figure 3.2(b) shows an FSM specification of one hot ParSeq controller. Its structure is

similar to the STG: it has a global choice in the initial state S0, three separate branches

describing different scenarios, and the concurrent reset of the handshakes via state S9.

Apart from the same event duplication issue, this specification is compact and can be

easily obtained manually.

The presented specifications do not exhibit any mentioned problems of data path

interface communication because of the fact that one hot encoding transfers all the infor-

mation within a single signal transition (which is the essence of one hot encoding, being

its advantage and disadvantage at the same time). Unfortunately, one hot encoding is

generally not an option for data path interfaces as it requires too many wires for data

transmission. The next subsection shows the effect of using binary (dual rail) encoding

for the opcodes.

3.1.2 Dual rail encoding

Dual rail encoding [105] uses two wires (a0, a1) for one data bit a encoding: combination

(1, 0) stands for Boolean value 0; (0, 1) represents 1; and (0, 0) is a spacer value. The

three scenarios can be encoded with two dual rail signals {a, b} as shown below:

Scenario (a0, a1) (b0, b1)

A||B (0, 1) (0, 1)

A→ B (0, 1) (1, 0)

B→A (1, 0) (0, 1)

Dual rail
ParSeq

controller
done

req_a
ack_a

req_b
ack_b

a1
b0
b1

a0

Here, bit a can be interpreted as a permission to handshake A to happen without

waiting for handshake B (bit b has a symmetric interpretation).

23

CHAPTER 3. MOTIVATION FOR THE NEW MODEL

a 1+

b 1+

a 1+

b 0+

a 0+

b 1+

a 1

b 1

a 1

b 0

a 0

b 1

-

-

-

-

-

-

req_a+

req_b+

req_a+

req_b+

req_a+

req_b+

done+

done+

done+

ack_a+

ack_b+

ack_a+

ack_b+

ack_a+

ack_b+

done-
ack_a

ack_b-

- req_a

req_b

-

-

p q

d 1

d 2

d 3

(a) STG specification

-1-0

-00-

1-10

0101 0111

100-

-010

--11

1-11

-111

-011

1-0-

0--0

1100

0-01

1101

1110

1111

-101

0-11

1010 1011

01-0

ack_a+____

____ ____

b 0+ b 0+

b 0+ b 0+

a 1+

a 1+

a 1+
a 1+

a 1+
a 1+

a 1+b 1+

b 1+

b 1+
b 1+

a 0+

a 0+
a 0+

a 0+

b 1+

b 1+ b 1+
req_a+

req_a+

req_b+

req_b+

req_b+

req_b+

req_b+

req_b+

req_a+

req_a+

req_a+

req_a+

ack_a+

ack_a+

ack_a+

ack_a+

ack_a+

ack_a+

ack_a+

ack_b+

ack_b+

ack_b+

ack_b+

ack_b+

ack_b+

ack_b+

ack_b+

done+

done+

done+

done+

done+

done+

done+

done+

done+

done+

done-

a 0-
b 1-

a 1-
b 1-

a 1-
b 0-

req_b
req_a-
-

req_b
req_a-
-

req_b
req_a-
-

ack_b
ack_a-
-

(b) FSM specification

Figure 3.3: Specifications of dual rail ParSeq controller

As can be seen from Figure 3.3(a) the STG specification changes dramatically due to

this modification of the data path interface. The reason is that the new data encoding uses

two concurrent transitions to transfer an opcode (instead of only one in one hot encoding)

and all the arrival scenarios of these two transitions have to be explicitly reflected in the

specification. Dummy events d1, d2, and d3 help to simplify the specification: they do not

correspond to any hardware signals but rather represent the choice of the environment,

e.g. arrival of signals a1+ and b1+ signifies that the environment has chosen the first

scenario associated with the d1 branch of the STG, etc. (note that signal a1+ alone is

not enough to deduce the choice).

Unexpectedly, the new STG has to model OR-causality [108]: handshake A can be

initiated as soon as at least one of signals a1+ or b0+ is received. As a result the

opcode decoding process propagates further into the controller specification and it is

already impossible to clearly separate data and control related event flows in the STG.

The situation with the FSM specification is even worse because FSMs are not well

suited for modelling concurrency in the arrival of dual rail bits, which, coupled with OR-

causal behaviour, leads to a very complicated FSM shown in Figure 3.3(b) (for convenience

24

CHAPTER 3. MOTIVATION FOR THE NEW MODEL

a 1+

b 1+

a 1+

b 0+

a 0+

b 1+

a 1

b 1

a 1

b 0

a 0

b 1

-

-

-

-

-

-

req_b+

req_a+

req_b+

req_a+

req_b+

req_a+

ack_a+

ack_b+

ack_a+

ack_b+

ack_a+

ack_b+

done+

done+

done+

done-
ack_b-

ack_a- req_a-

req_b-

p q

d 1

d 2

d 3

(a) STG specification

S0 S3 S4 S5

S1 S2

S8S7S6

S9

____ done+

ack_a+
ack_b+a 1+

b 1+
req_a+
req_b+

a 1-
b 0-

req_b
req_a-
-

a 1-
b 1-

req_b
req_a-
-

a 0-
b 1-

req_b
req_a-
-

done-
ack_b
ack_a-
-

____ack_a+
done+

____ack_b+
done+

req_b+
ack_a+

req_a+
ack_b+

a 1+
b 0+

req_a+

a 0+
b 1+

req_b+

(b) FSM specification

Figure 3.4: Dual-rail ParSeq specifications after concurrency reduction

every state is marked with a signal vector (a, b, req_a, req_b) where ’0’ stands for dual-

rail signal (1, 0), ’1’ stands for (0, 1), and ’−’ stands for the spacer (0, 0), e.g. ’1− 0−’

means that a= (0, 1), b= (0, 0), req_a= (1, 0), and req_b= (0, 0)).

3.1.3 Dual rail encoding (concurrency reduction)

In order to simplify the specification of the dual rail ParSeq controller one can try to

get rid of OR-causality by concurrency reduction [24]: the controller can be restricted

to wait for both dual rail signals to arrive before generating handshakes. This greatly

simplifies both STG and FSM specifications (see Figure 3.4) bringing their sizes back to

those of one hot controller (cf. Figure 3.2). See Figure 3.5 for timing diagrams comparing

two versions of the dual-rail ParSeq controller; note that the former one generates the

first handshake in the OR-causal manner (a1+ is enough to generate req_a+), while the

latter one does it in the AND-causal manner (req_a+ is generated only after both a1+

and b0+ have arrived).

The presented examples demonstrate a high degree of sensitivity of STG and FSM

specifications to minor changes in the data path interface protocol, yet from a high-level

25

CHAPTER 3. MOTIVATION FOR THE NEW MODEL

a 1
a 0

b 1
b 0

req_a

req_b

ack_a

ack_b

done
(a) With OR-causaility

a 1
a 0

b 1
b 0

req_a

req_b

ack_a

ack_b

done
(b) With AND-causaility (concurrency reduction)

Figure 3.5: Timing diagrams of dual-rail ParSeq controllers

designer perspective an actual data encoding may be unimportant at all, or sometimes

may even be unknown (or undecided) until the later design stages. However, even such

a simple controller with three basic behavioural scenarios becomes a real challenge for

manual design, and a subtle modification of data encoding requires its complete redesign.

This motivated the author to propose a new specification model that has different

levels of abstraction for data and control events. The model, called Conditional Partial

Order Graph, separates control event flow within scenarios from the encoding of these

scenarios and associated data path interface events. This allows specification to stay

structurally unchanged under different data encodings. Moreover, the model provides an

opportunity to synthesise encodings of the scenarios targeting various design optimality

criteria, e.g. controller latency, as explained in Section 7.4.

3.2 n-permutators

This section discusses a 2-permutator controller (a simplified version of the Par-

Seq controller without the parallel handshakes scenario) and its generalisation to n-

permutator , which reveals another weakness in the existing control specification mo-

dels [71]. n-permutators arise naturally in the context of phase encoding communication

controllers addressed in Section 8.2.

26

CHAPTER 3. MOTIVATION FOR THE NEW MODEL

2-permutator
req_a
ack_a

req_b
ack_bdone

go

x1
x2

Figure 3.6: 2-permutator controller interface

The interface of the controller is shown in Figure 3.6. Depending on the opcode

signals {x1, x2} the controller has to initiate two handshakes either in order A→ B or in

order B→A. The start of the handshake sequence is prompted by signal go and as soon

as the handshakes are completed the controller issues signal done. This leads us to

the STG shown in Figure 3.7. It has a global choice and the two scenarios are specified

as two separate branches starting with input signals x1+ and x2+. The first scenario

(the upper branch) is handshake sequence A→ B; the second one (the lower branch)

corresponds to B→ A. After the global merge the handshakes are reset concurrently

and the system returns to the initial state.

go+

req_a+ req_b+

ack_b+

go+

req_a+

ack_b-
x2-

x1-

ack_a-
go-

req_b+

done+

done-

go-

ack_b+ack_a+

ack_a+

req_b-
x2+

x1+

req_a-

done+

Figure 3.7: STG specification of 2-permutator

This straightforward STG specification has a flaw: it duplicates events in different

branches. This flaw may seem to be unimportant at the first glance, but in general there

can be exponential number of different scenarios composed of linear number of events:

for instance, we can generalise 2-permutator to control more than two handshakes, and

for n handshakes there will be n! different scenarios. It is not efficient to have an STG

27

CHAPTER 3. MOTIVATION FOR THE NEW MODEL

specification containing n! different branches and it turns from inefficient to infeasible

for large values of n.2

To specify the controller in a more compact way we can construct a behaviourally

equivalent STG without multiple event occurrences (e.g. by using PETRIFY [23] tool). The

result is shown in Figure 3.8. Such compositional STGs tend to be much more complicated

and contain a lot of additional choice places tracking the current system state. Even for

such a simple controller as a 2-permutator the obtained STG is non-trivial and difficult

for manual design. In practice the only way to produce an optimal STG specification

is to start with an inefficient global choice STG and feed it to an optimisation tool but

this is infeasible for larger controllers, because synthesis of compositional STGs involves

construction of a state graph and examining all reachable states, which is a very time

and memory consuming process.

x2-

x1+

x2+

ack_b-

done+

req_a-

req_b-

ack_a-

go-

x1-

go+

req_b+

req_a+ ack_a+

done-

ack_b+

Figure 3.8: Optimised STG specification of 2-permutator

The FSM-driven approach has the same event duplication issues. The state space

of n-permutator is huge (its size is proportional to n ·n! even if we assume that all the
2In practice, 4-permutator was the largest n-permutator controller which was possible to synthesise

using the STG-driven approach.

28

CHAPTER 3. MOTIVATION FOR THE NEW MODEL

opcode signals arrive simultaneously). An FSM specification has to explicitly list all the

states and quickly becomes impractical with the growth of n. It should be mentioned,

however, that both STG and FSM approaches produce very efficient controllers when

they manage not to run out of time and memory resources. Notably, the size of the

synthesised controllers is polynomial with respect to n, which implies that there exists

a polynomial specification as well.

This is another motivation factor behind the new Conditional Partial Order Graph

model. Chapter 8 demonstrates that it is possible to specify and synthesise ParSeq and

n-permutator controllers efficiently using techniques of polynomial complexity. The next

two chapters introduce the new model formally.

29

Chapter 4

Background for CPOGs

This chapter introduces partial orders (Section 4.1) and directed acyclic graphs (Sec-

tion 4.2) which constitute the basis for the new model. These two formalisms are compre-

hensively studied [13][22][56] and are closely related to each other as shown in Section 4.3.

4.1 Partial orders

Partial orders are widely used to formalise the intuitive concept of ordering of events (or

actions) with cause and effect relationships between them.

Definition 4.1. A strict partial order P(S, ≺) is a binary precedence relation ≺ over a set

of events S which satisfies two properties [13][56]:

1. Irreflexivity: ∀a ∈ S, ¬(a≺ a);

2. Transitivity: ∀a, b, c ∈ S, (a≺ b)∧ (b≺ c)⇒ (a≺ c).

This work focuses only on strict partial orders and from now on the qualifier ‘strict’ will

be omitted for brevity. Peculiarities of strict and non-strict partial orders are discussed

in [70].

The following example demonstrates the concept of event schedule specification by

means of a partial order.

30

CHAPTER 4. BACKGROUND FOR CPOGS

Example 4.1. Consider the operation of addition Z= X+Y. It is possible to break it into

the following four primitive actions:

a) Read input value X;

b) Read input value Y;

c) Compute sum Z= X+Y;

d) Store the result value Z.

Let us order these actions taking into account the cause and effect relationships

between them. One can see that action c depends on actions a and b (there is no way

to compute sum Z without having values X and Y; actions a and b are so-called passive,

or material causes for action c), and action d in turn cannot happen until action c is

completed. Note that although d does not depend on a and b directly, it has them

as indirect causes, what should also be reflected in the partial order. Such indirect

dependencies are called transitive (see Definition 4.2).

The above causal relationships are captured with the following partial order P(S, ≺):

P =


S= {a, b, c, d}

≺= {a≺ c, b≺ c, a≺ d, b≺ d, c≺ d}

It is possible to depict it graphically as shown in Figure 4.1. The actions are repre-

sented with boxes and the relationships between them – with arcs (the transitive ones,

namely a≺ d and b≺ d, are dashed).

b) Read input value Y

c) Compute sum Z = X + Y

d) Store the result value Z

a) Read input value X

transitive dependency

Figure 4.1: Partial order for the operation of addition Z= X+Y

31

CHAPTER 4. BACKGROUND FOR CPOGS

Depicting all the transitive dependencies on a partial order diagram is usually un-

necessary. For example, it is possible to omit transitive arcs {a≺ d, b≺ d} in Figure 4.1

without losing the essential information about the depicted partial order: one can al-

ways keep the transitivity property of partial orders in mind and realise that any two

relationships a≺ b and b≺ c in a diagram imply the transitive relationship a≺ c. Hasse

diagrams [13] are widely used as a compact way of graphical representation of partial

orders, as explained in Subsection 4.1.2.

The notions of transitive dependency and concurrent/sequential events with respect

to a partial order are introduced below.

Definition 4.2. A dependency a ≺ b between events a, b ∈ S in a partial order P(S, ≺)

is called transitive (denoted as a ≺≺ b) iff there exists an event x ∈ S such that both

conditions a≺ x and x≺ b hold:

(a≺≺ b) df
= ∃x ∈ S, (a≺ x)∧ (x≺ b)

Definition 4.3. Two events a, b ∈ S (a 6= b) are called concurrent or parallel (denoted as

a ‖ b) with respect to a partial order P(S, ≺) iff neither a≺ b nor b≺ a holds:

(a ‖ b) df
= ¬(a≺ b)∧¬(b≺ a)

Concurrent events can happen at any time independently from each other, possibly

simultaneously. The partial order from Example 4.1 has only two concurrent events: a ‖ b.

Definition 4.4. Two events a, b ∈ S are called sequential (denoted as a ∦ b) with respect

to a partial order P(S, ≺) iff either a≺ b or b≺ a holds:

(a ∦ b) df
= (a≺ b)∨ (b≺ a) = ¬(a ‖ b)

To conclude, every two events in a partial order are either sequential or concurrent.

The sequential events a ∦ b can have either direct dependency a ≺ b or an indirect

(transitive) one a≺≺ b.

32

CHAPTER 4. BACKGROUND FOR CPOGS

4.1.1 Total orders

Definition 4.5. A total order is a partial order P(S, ≺) which has an additional property

called totality: every two events a, b ∈ S (a 6= b) are sequential a ∦ b.

In other words, a total order is a partial order with no two concurrent events: all

the events are totally ordered in one of |S|! possible ways. Total orders are natural to

represent phase encoded data symbols (see Section 8.2).

Definition 4.6. A chain or a totally ordered subset C ⊆ S of a partial order P(S, ≺) is

a set of events C = {a1, a2, . . . , a|C|} such that it contains no two concurrent events:

ak ≺ ak+1, 1 6 k < |C|. It is denoted as a1 ≺ a2 ≺ ·· · ≺ a|C|.

Partial order P(S, ≺) from Example 4.1 is not total: it contains two concurrent events

a ‖ b. Subsets {a, c, d}⊂ S and {b, c, d}⊂ S, however, are totally ordered, so a≺ c≺ d

and b≺ c≺ d are chains.

4.1.2 Hasse diagrams

A partial order P(S, ≺) normally contains a lot of transitive dependencies, for instance, a

chain of n events a1≺a2≺ ·· · ≺an, ak ∈ S, k= 1 . . .n implies
(
n−1

2
)
=

(n−1)(n−2)
2 =O(n2)

transitive relationships aj ≺≺ ak, 1 6 j < k− 1 < n (a1 ≺≺ a3, a1 ≺≺ a4, a2 ≺≺ a4 etc).

So, there can be a lot more transitive dependencies than non-transitive, essential ones.

Hasse diagram [13] is a graphical representation of a partial order based on the

transitive reduction [22]: it depicts only non-transitive dependencies between the events

thereby keeping the diagram as simple as possible. One can always reconstruct all the

reduced transitive dependencies performing the transitive closure of a Hasse diagram.

The transitive reduction and closure are formally described in terms of graphs in Sec-

tion 4.2. There is also a convention of arranging the events in a Hasse diagram in such

a way that all the arrows point only downward or upward thus forming the event levels

which sometimes help understanding the depicted partial order.

Example 4.2. Hasse diagram of the partial order from Example 4.1 is shown in Figure 4.2.

Note the difference from the diagram in Figure 4.1: the transitive dependencies are

33

CHAPTER 4. BACKGROUND FOR CPOGS

reduced resulting in a clear and intuitively understandable form.

b) Read input value Y

c) Compute sum Z = X + Y

d) Store the result value Z

a) Read input value X

Figure 4.2: Hasse diagram of the partial order from Figure 4.1

4.2 Directed acyclic graphs

Definition 4.7. A directed graph is a tuple G(V , E) where V is a set of vertices (or nodes)

and E⊆ V×V is the set of ordered pairs of vertices, called arcs [22][56].

A directed graph is typically depicted as a set of labelled circles (standing for

vertices) and a set of arrows between the circles (standing for arcs). Figure 4.3(a)

shows an example of a directed graph G(V , E) containing |V | = 7 vertices and |E| = 6 arcs.

A sequence of n> 2 vertices (x1, x2, . . . , xn), xk ∈ V , k= 1...n such that (xk−1, xk) ∈

E, k = 2 . . .n is called a path from x1 (start vertex) to xn (end vertex) and is denoted as

〈x1, xn〉. The fact that graphG contains path 〈x, y〉 is denoted as 〈x, y〉 ∈G. For instance,

graph G in Figure 4.3(a) contains paths (c, d, f, g) = 〈c, g〉 ∈G and (a, b) = 〈a, b〉 ∈G

but does not contain path (d, f, e) = 〈d, e〉 /∈G because (f, e) /∈ E.

A cycle is a path 〈x, y〉 whose start and end vertices coincide: x= y.

Definition 4.8. A directed acyclic graph (DAG) is a directed graph G(V , E) that does not

contain any cycles: ∀x ∈ V , 〈x, x〉 /∈G. All the graphs in Figure 4.3 are DAGs.

Definition 4.9. The transitive closure of a graph G(V , E) is graph G∗(V , E∗) such that:

∀x, y ∈ V , 〈x, y〉 ∈G⇔ (x, y) ∈G∗

In other words graph G∗ contains arc (x, y) ∈ E∗ for every two vertices x, y ∈ V that

34

CHAPTER 4. BACKGROUND FOR CPOGS

are connected with a path 〈x, y〉 ∈G in the original graph (and vice versa). The transitive

closure of the graph from Figure 4.3(a) is shown in Figure 4.3(b).

An arc (x, y) ∈ E of a graph G(V , E) is called transitive iff

∃z ∈ V\{x, y}, 〈x, z〉 ∈G∧ 〈z, y〉 ∈G

i.e. there is an indirect path from x to y in the graph. Arcs {(c, f), (c, g), (d, g), (e, g)}

in Figure 4.3(b) are transitive.

e

a b

dc

f g

(a) Directed acyclic graph G(V , E)

e

a b

dc

f g

(b) The transitive closure G∗(V , E∗)

e

a b

dc

f g

(c) The transitive reduction G ′(V , E ′)

Figure 4.3: Directed acyclic graph, its transitive closure and transitive reduction

Definition 4.10. The transitive reduction of a graph G(V , E) is the smallest (with respect

to the number of arcs) graph G ′(V , E ′) such that:

∀x, y ∈ V , 〈x, y〉 ∈G⇔ 〈x, y〉 ∈G ′

Hence, the transitive reduction preserves all the paths in a graph but minimises the

35

CHAPTER 4. BACKGROUND FOR CPOGS

number of arcs: all the transitive arcs are reduced. Figure 4.3(c) shows the transitive

reduction of graph from Figure 4.3(a): the transitive arc (d, g) ∈ E has been removed.

4.3 DAGs and partial orders correspondence

There is a strong correspondence between partial orders and DAGs: every partial order

is a DAG, and the transitive closure of a DAG is both a partial order and a DAG itself.

The graph in Figure 4.3(b) directly matches a partial order relation E∗ over the set of

vertices V while the graph in Figure 4.3(a) does not because it violates the transitivity

condition. For instance, it contains arcs (e, f) ∈ E and (f, g) ∈ E while the corresponding

transitive arc is not present: (e, g) /∈ E.

This correspondence between partial orders and DAGs provides an intuitive way of

partial order specification. A DAG G(V , E) defines a corresponding partial order P(V , E∗).

Note that there can be more than one DAG with the same corresponding partial order. For

example, all the DAGs in Figure 4.3 have the same transitive closure and therefore they

define the same partial order. The graph in Figure 4.3(c) is the simplest, however, and

is preferable in most cases. This is equivalent to the approach used in Hasse diagrams

(see Subsection 4.1.2).

Example 4.3. Figure 4.4 shows the four possible DAG specifications of partial order from

Example 4.1. The leftmost graph is the simplest but all of them are valid. Their transitive

closure is the same and is equal to the rightmost graph.

d

b

c

a

d

b

c

a

d

b

c

a

d

b

c

a

Figure 4.4: Possible specifications of a strict partial order using directed acyclic graphs

36

Chapter 5

Conditional Partial Order Graphs

This chapter formally defines the CPOG model and algebra over well-formed CPOGs.

The model was originally introduced in [71] as a formalism that has a distinctive feature

of capturing similar behavioural patterns in a compact functional form as opposed to the

existing models1 which either have a direct event traces representation or an explicit

notion of states and transitions between the states. A CPOG is a superposition of a set

of partial orders (see Chapter 4) which can be extracted from it by providing the corres-

ponding codewords as shown in Figure 5.1. It can be regarded as a custom associative

memory for storing cause and effect relations within a predefined set of events.

Conditional
Partial Order

Graph

010

111001

0001

Codewords
Partial orders

Figure 5.1: A Conditional Partial Order Graph as a superposition of partial orders

The basic definition of the CPOG model [71] restricted a codeword to remain constant

throughout retrieval and execution of the corresponding partial order. This basic model

is therefore called static (it is defined in Section 5.1). Although it has many practical ap-

plications the class of the modelled systems is significantly limited. In order to deal with
1Chapters 2 and 3 describe the STG and FSM models and provide their comparison with CPOGs.

37

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

these limitations the model was further developed in [72] to handle the dynamic codeword

evaluation. The extended model is called dynamic and is presented in Section 5.2.

The dynamic model revealed a strong need for the verification support. SAT-based

verification methods were provided in [72] and are discussed in Chapter 6. They are com-

putationally expensive that motivated the author to introduce the algebraic approach [70]

which eliminated the need for verification in most cases, because the synthesis and op-

timisation can be based on operations which are proved to preserve the correctness of

CPOGs. These algebraic operations are common between static and dynamic CPOGs

and are presented in Section 5.1.

5.1 The static model

Definition 5.1. Conditional Partial Order Graph (further called CPOG or graph for short)

is a quintuple H(V , E, X, ρ, φ) where:

· V is a finite set of vertices which correspond to the events in the modelled system.

V defines the system’s event domain.

· E⊆ V×V is a set of arcs representing dependencies between the events.

· Operational vector X is a finite set of Boolean variables. An opcode is an assignment

(x1, x2, . . . , x|X|)∈ {0, 1}|X| of these variables. An opcode selects a particular partial

order from those contained in the graph.

· ρ ∈ F(X) is a restriction function, where F(X) is the set of all Boolean functions

over variables in X. ρ defines the operational domain of the graph: X can be

assigned only those opcodes (x1, x2, . . . , x|X|) which satisfy the restriction function,

i.e. ρ(x1, x2, . . . , x|X|) = 1. A graph is called singular iff its operational domain is

empty, i.e. function ρ is a contradiction: ρ= 0.

· Function φ : (V ∪ E)→ F(X) assigns a Boolean condition φ(z) ∈ F(X) to every

vertex and arc z ∈ V ∪E in the graph. Let us also define φ(z)
df
= 0 for z /∈ V ∪E for

convenience.

38

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

Conditional Partial Order Graphs are represented graphically by drawing a labelled

circle for every vertex v ∈ V , and drawing a labelled arrow for every arc e ∈ E.

The label of a vertex v∈V consists of the vertex name, semicolon and the vertex condition

φ(v), while every arc e ∈ E is labelled with the corresponding arc condition φ(e). The

restriction function ρ is depicted in a box next to the graph; operational variables X can

therefore be observed as parameters of ρ.

Example 5.1. Figure 5.2(a) shows an example of a graph containing |V | = 5 vertices and

|E| = 7 arcs. The restriction function is ρ(x) = 1, and the operational vector consists of

a single variable X = {x}. Vertices {a, b, d} have constant φ = 1 conditions and are

called unconditional, while vertices {c, e} are conditional and have conditions φ(c) = x

and φ(e) = x respectively. Arcs also fall into two classes: unconditional (arc (c, d)) and

conditional (all the rest). As CPOGs tend to have many unconditional vertices and arcs it

is reasonable to use a simplified notation in which conditions equal to 1 are not depicted

in the graph. This is demonstrated in Figure 5.2(b).

a: 1

d: 1

b: 1

c: x e: x
_

x

x

1

x
_

x
_

x
_

x
_

ρ(x)=1

(a) Full notation

a

d

b

c: x e: x
_

x

x

x
_

x
_

x
_

x
_

ρ(x)=1

(b) Simplified notation

Figure 5.2: Graphical representation of Conditional Partial Order Graphs

The purpose of vertex and arc conditions is to ‘switch off’ some vertices and/or arcs

in the graph according to the given opcode. This makes CPOGs capable of specifying

multiple DAGs, and consequently multiple partial orders (due to the correspondence bet-

ween DAGs and partial orders which was demonstrated in Section 4.3). Figure 5.3 shows

an example of a graph and its two projections (see Definition 5.2). The leftmost projection

is obtained by keeping in the graph only those vertices and arcs whose conditions eva-

luate to Boolean 1 after substitution of the operational variable x with Boolean 1. Hence,

39

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

a

d

b

c: x e: x
_

x

x

x
_

x
_

x
_

x
_

ρ(x)=1
a

d

b

c e

x=1

a

d

b

c e

x=0

Figure 5.3: Multiple DAGs contained in a single CPOG

vertex e disappears (denoted as a dashed circle), because its condition evaluates to

0: φ(e) = x = 1 = 0. Arcs {(a, d), (a, e), (b, d), (b, e)} disappear for the same reason

(denoted as dashed arrows). The rightmost projection is obtained in the same way

with the only difference that variable x is set to 0. Note also that although the condition

of arc (c, d) evaluates to 1 (in fact it is constant 1) the arc is still excluded from the re-

sultant graph because one of the vertices it connects (vertex c) is excluded and obviously

an arc cannot appear in a graph without one of its vertices. The restriction function of

the graph does not affect anything in this particular case because it evaluates to 1 for

both possible opcodes (x = 1 and x = 0): ρ(0) = ρ(1) = 1. Its role will be explained in

details later (in particular, see graph Hb in Example 5.3).

Each of the obtained projections can be treated as a specification of a partial order of

events in a particular behavioural scenario of the modelled system. Potentially, a CPOG

H(V , E, X, ρ, φ) can specify an exponential number of different partial orders of events

in V according to one of 2|X| different possible opcodes.

The concept of system specification with a set of partial orders contained within a

single graph is clarified with the following example.

40

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

Example 5.2. Consider a processing unit that has the accumulator register A and the

general purpose register B, and performs two different operations: addition and exchange

of two variables stored in memory. The event domain of the system consists of the

following five events:

1. Load register A from memory;

2. Load register B from memory;

3. Add a value (a constant or a value from a register) to accumulator A;

4. Save register A into memory;

5. Save register B into memory.

Table 5.1 describes the two operations. The addition operation consists of loading of

the two operands from memory (concurrent events a and b), their addition (event c), and

saving the result (event d). This is reflected in the table with the corresponding partial

order and DAG of this scenario (cf. also partial order in Example 4.1). The operation

of exchange consists of loading of the operands (concurrent events a and b), and saving

them into swapped memory locations (concurrent events d and e). Note that in order

to start saving one of the registers it is necessary to wait until both of them have been

already loaded to avoid overwriting one of the values.

Operation Addition Exchange
a) Load A a) Load A

Events b) Load B b) Load B
description c) Add B to A d) Save A

d) Save A e) Save B
Partial S {a, b, c, d} {a, b, d, e}
order ≺ {a≺ c, b≺ c, a≺ d, b≺ d, c≺ d} {a≺ d, b≺ d, a≺ e, b≺ e}

DAG specification

a

d

b

c

a

d

b

e

Table 5.1: Two behavioural scenarios specified as two CPOG projections

41

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

One can see that the two DAGs in Table 5.1 appear to be the two projections shown in

Figure 5.3. Thus both of the operations of the discussed processing unit can be specified

with the single graph. Two important characteristics of such specification are that the

common events {a, b, d} are overlaid and the choice between the two operations is

distributed in the vertex/arc conditions of the graph, i.e. there is no ‘nodal point’ of

choice which tend to appear in the alternative specification models (an STG would have

a choice place, an FSM — a choice state, and an HDL specification would describe the

two operations in two branches of a conditional statement if or case).

The rest of the section contains the formal definitions of projections and algebra over

CPOGs.

5.1.1 Projections

Definition 5.2. A projection of a graph H(V , E, X, ρ, φ) under constraint x = α (where

x∈X, α∈ {0, 1}) is denoted as H|x=α and is equal to graph H ′(V , E, X\{x}, ρ|x=α, φ|x=α)

where notations ρ|x=α and φ|x=α mean that variable x is substituted with a constant

Boolean value α in ρ and all functions φ(z), z ∈ V ∪E, which implies that ρ|x=α and

φ|x=α(z) belong to F(X\{x}).

Projection is a commutative operation, i.e. (H|x=α)|y=β = (H|y=β)|x=α, hence the

following short notation can be used without any ambiguity: H|x=α, y=β.

Definition 5.3. A complete projection of a graph H is such a projection that all the opera-

tional variables X are constrained to constants. It is denoted as H|ψ where ψ : X→ {0, 1}

is an opcode that assigns a Boolean value to every variable in X. A complete projection is

a graph whose restriction function and vertex/arc conditions are only Boolean constants

ρ|ψ and φ|ψ (either 0 or 1), and the operational vector is empty: X= ∅.

A (complete) projection is called singular iff the resultant graph is singular.

Figure 5.4(a) shows a complete projection of the graph from Example 5.1 under opcode

x = 0 in full notation. The same projection in the simplified notation (without the trivial

{0, 1} conditions) is shown in Figure 5.3 (to the right).

42

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

a: 1

d: 1

b: 1

c: 0 e: 1

1

1

1

1
0

0

1

ρ=1

(a) Complete projection H

a

d

b

e

(b) Directed graph G= dg H

a: 1

d: 1

b: 1

e: 1

1

1

1

1

ρ=1

(c) Complete projection H ′ = dg−1 G

Figure 5.4: Complete projection, operation dg, and its inverse

Definition 5.4. Given a non-singular complete projection H(V , E, ∅, 1, φ), operation

G= dg(H) generates directed graph G(VG, EG) such that2


VG = {v ∈ V , φ(v) = 1}

EG = {e= (a, b) ∈ E, φ(a) ·φ(b) ·φ(e) = 1}

In other words, G includes only those vertices and arcs whose conditions in H are

constant 1. Note that exclusion of a vertex also leads to exclusion of all its adjacent arcs.

Brackets around the operation argument may sometimes be omitted for clarity: G= dg H.

The inverse operation is H ′ = dg−1(G). Here H ′(V , E, X, ρ, φ) is defined in terms of

G(VG, EG) as follows: V =VG, E=EG, X= ∅, ρ= 1 and φ(z) = 1, z∈V∪E. Note that dg−1

is a right inverse operation i.e. dg(dg−1 G) =G but dg−1(dg H) is not necessarily equal

to H. This is demonstrated in Figure 5.4 which shows an example of complete projection

H, its conversion into directed graph G = dg H, and complete projection H ′ = dg−1 G.

One can see, that H 6=H ′ but both dg H and dg H ′ are the same and equal to G.

Definition 5.5. A complete projection H|ψ is called valid iff it is not singular and its

corresponding directed graph dg H|ψ is acyclic (DAG).

An opcode ψ is called valid with respect to a graph H iff H|ψ is valid.

2In this work symbols ‘+’ and ‘·’ are used to denote Boolean OR and AND operations, respectively.

43

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

Definition 5.6. Graph H(V , E, X, ρ, φ) is well-formed iff its every non-singular complete

projection H|ψ is valid. In other words, every opcode ψ which is allowed by the restriction

function (ρ|ψ = 1) is valid, i.e. it produces an acyclic directed graph dg H|ψ.

The set of all CPOGs is denoted as C, and the set of all well-formed CPOGs — as W.

A SAT-based approach for verification of the well-formedness of a graph is presented

in Chapter 6. It is computationally expensive so its use should be kept to a minimum by

employing the ‘safe’ operations from the CPOG algebra which are closed over the set

of well-formed graphs W (see Subsections 5.1.3 through 5.1.6). In fact, it will be shown

in Chapter 7 that it is possible to synthesise and optimise graphs without any verifica-

tion of intermediate results using only the ‘safe by construction’ techniques. However,

verification may still be required for the custom graph design/optimisation.

Definition 5.7. Given a DAG G(VG, EG) operation P = po(G) generates partial order

P(S, ≺) such that S= VG and ≺= E∗G where G∗(VG, E∗G) is the transitive closure of G.

The inverse operation is po−1: G= po−1(P). The obtained G(VG, EG) contains all the

transitive arcs from P(S, ≺): VG = S, EG =≺. As was shown in Section 4.3, a partial order

has more than one DAG specification, therefore po−1 is also a right inverse operation:

po(po−1 P) = P but po−1(po G) =G∗ and G 6=G∗ in general.

Using operations dg and po it is possible to write equations operating over CPOGs,

DAGs and partial orders. For example, the partial order defined by the rightmost pro-

jection of graph H in Figure 5.3 can be denoted as po(dg H|x=0):

po(dg H|x=0) =


S= {a, b, d, e}

≺= {a≺ d, b≺ d, a≺ e, b≺ e}

It should be noted that although a non-singular complete projection H(V , E, ∅, 1, φ)

has no operational variables (X= ∅), it still defines a partial order po(dg H). In this case

we consider the corresponding opcode ψ to be empty, i.e. an empty opcode ψ = ε does

not constrain any variable and is considered to be a valid opcode for generality.

44

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

Definition 5.8. The set of all partial orders defined by a well-formed graph

H(V , E, X, ρ, φ) is denoted as P(H) and is formally defined as

P(H)
df
= {P = po(dg H|ψ), ρ|ψ = 1}

For example, the set of all partial orders defined by graph in Figure 5.3 is

P(H) = {P1, P2} = {po(dg H|x=0), po(dg H|x=1)}

where P1 and P2 are shown in Table 5.1.

Remark 5.1. There is no restriction on the number of opcodes for a particular partial

order within a graph, i.e. more than one opcode may yield the same partial order P:

P = po(dg H|ψ1) = po(dg H|ψ2), ψ1 6=ψ2

Remark 5.2. The following identity is true for any partial order P:

P(dg−1(po−1 P)) = {P}

(by Definitions 5.4, 5.7 and 5.8). Clearly, graph H = dg−1(po−1 P) contains only partial

order P, which is induced by the empty opcode ε.

5.1.2 Encoding conflicts

Definition 5.9. Two well-formed graphs H1 and H2 are said to be in an encoding conflict

with respect to their restriction functions ρ1 and ρ2 iff ρ1ρ2 6= 0. An encoding conflict

implies the existence of an opcode ψ such that both of the restriction functions are

satisfied: ρ1|ψ = ρ2|ψ = 1. This leads to ambiguity in some cases (for instance, in case

of graph addition introduced in Subsection 5.1.4), when two graphs describe different

behaviour for the same opcode ψ. Depending on whether these two graphs actually

specify the same or different scenarios under ψ the conflict can be either true or false.

45

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

An encoding conflict is true if the partial orders generated with ψ are different:

∃ψ, (ρ1ρ2)|ψ = 1, po(dg H1|ψ) 6= po(dg H2|ψ)

Conversely, an encoding conflict is false if the partial orders generated with ψ are in

fact the same:

∀ψ, (ρ1ρ2)|ψ = 1, po(dg H1|ψ) = po(dg H2|ψ)

The verification issues of true and false conflict detection are addressed in Subsec-

tion 6.1.3. Examples 5.4 and 5.5 in Subsection 5.1.6 demonstrate both types of encoding

conflicts and ways of their resolution.

5.1.3 Equivalence

Definition 5.8 provides the background for a natural equivalence relation [56] ∼ over the

set of well-formed graphs W.

Definition 5.10. Graphs H1 ∈W and H2 ∈W are equivalent (denoted as H1 ∼H2) iff they

define the same set of partial orders:

(H1 ∼H2)
df
= P(H1) = P(H2)

Pair (W, ∼) satisfies all the required properties of an equivalence relation [56]:

· Reflexivity: ∀H ∈W, (H ∼H)

· Symmetry: ∀H1, H2 ∈W, (H1 ∼H2)⇒ (H2 ∼H1)

· Transitivity: ∀H1, H2, H3 ∈W, (H1 ∼H2)∧ (H2 ∼H3)⇒ (H1 ∼H3)

Example 5.3. Figure 5.5 shows three equivalent graphs Ha ∼ Hb ∼ Hc. Graph Ha in

Figure 5.5(a) is taken from Example 5.1. Figure 5.5(b) shows graph Hb with the modified

operational vector. It contains two variables X = {x, y} which are restricted in the one

hot manner: only encodings (0, 1) and (1, 0) are allowed with the restriction function

46

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

a

d

b

c: x e: x
_

x

x

x
_

x
_

x
_

x
_

ρ(x)=1

(a) Example graph

a

d

b

c: x e: y

x

x

ρ(x, y) = x + y

y

y

y

y

(b) Two control variables

a

d

b

c: x e: x
_

ρ(x)=1

(c) No redundant conditional arcs

Figure 5.5: Equivalent graphs

ρ(x, y) = x⊕y. Graph Hc in Figure 5.5(c) does not contain any arc conditions (which are

in fact redundant3) and also has inverted encodings compared to Ha.

In spite of the seeming difference between the three graphs, they are equivalent as

they define the same set of two partial orders P(Ha) = P(Hb) = P(Hc) = {P1, P2}:
P1 = po(dg Ha|x=0) = po(dg Hb|x=0, y=1) = po(dg Hc|x=1)

P2 = po(dg Ha|x=1) = po(dg Hb|x=1, y=0) = po(dg Hc|x=0)

Checking whether two given graphs are equivalent or not is an important practical

problem. A SAT-based solution is presented in Subsection 6.1.2.

It is useful to introduce a measure of graph complexity in order to compare them

within the same equivalence class. For instance, graph Hc in Figure 5.5 has the simpler

description in comparison with graphs Ha and Hb and is preferred in most cases.

Definition 5.11. The complexity (or size) C(H) of graph H(V , E, X, ρ, φ) is measured in

the number of literals contained in the restriction function ρ and conditions φ(z), z∈V∪E:

C(H)
df
= C(ρ)+

∑
v∈V

C(φ(v))+
∑
e∈E

C(φ(e))

where C(f), f ∈ F(X) denotes the literal count of a Boolean function f (see [107]).
3All of the arc conditions in this example are implied by the vertex conditions. See, for example, Fi-

gure 5.5(a): arc (a, c) has condition φ= x, therefore it is switched off when x= 0. However, vertex c is also
switched off when x= 0 and, as arc (a, c) cannot exist in the graph without vertex c, the arc condition can
be relaxed to φopt = 1. See Subsection 7.3.2 for a formal description of this optimisation.

47

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

Looking at the graphs in Figure 5.5 one can see that C(Ha) = 0+2+6 = 8, C(Hb) =

2 + 2 + 6 = 10, and C(Hc) = 0 + 2 + 0 = 2. So, graph Hc can be called optimal in this

context. Methods for graphs size optimisation are addressed in Section 7.3. The removal

of all redundant conditions from a graph leads to the canonical CPOG description of a

set of encoded partial orders.

5.1.4 Addition

Definition 5.12. The result of addition of two graphs H1(V1, E1, X1, ρ1, φ1) and

H2(V2, E2, X2, ρ2, φ2) is graph H(V1∪V2, E1∪E2, X1∪X2, ρ1 +ρ2, φ) where the vertex/arc

conditions φ are defined as

∀z ∈ V1∪V2∪E1∪E2, φ(z)
df
= ρ1ρ2φ1(z)+ρ1ρ2φ2(z)

Addition is denoted using the standard notation H=H1 +H2.

Remark 5.3. We consider events in V1 and V2 to belong to some universe V containing all

the events of the modelled system, so their intersection can be non-empty: V1∩V2 6= ∅;

they can also coincide V1 = V2 or be disjoint V1∩V2 = ∅. The same holds for operational

variables: X1 ⊆ X and X2 ⊆ X for some universe X of variables, and also for arcs (E1 ⊆ E

and E2 ⊆ E respectively).

Theorem 5.1. The pair (W, +) is a commutative semigroup [56], i.e. the set of well-formed

graphs W is closed under addition +, which is an associative and commutative operation.

Proof. 1) Closure: (H1 ∈W)∧ (H2 ∈W)⇒ (H1 +H2 ∈W).

Let H = H1 +H2. According to Definition 5.6, graph H is well-formed iff its every

non-singular complete projection H|ψ is valid.

Consider a non-singular complete projection H|ψ. Non-singularity implies ρ|ψ =

ρ1|ψ+ρ2|ψ = 1 which is possible in one of the following three cases:

· ρ1|ψ = ρ2|ψ = 1 (H1 and H2 are in conflict with respect to opcode ψ). In this case,

all the vertex and arc conditions φ(z) evaluate to zero: ∀z, φ(z)|ψ = (ρ1ρ2φ1(z)+

48

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

ρ1ρ2φ2(z))|ψ = 1 ·1 ·φ1(z)|ψ+1 ·1 ·φ2(z)|ψ = 0. This projection generates an empty

directed graph dg H|ψ which is obviously acyclic. Therefore, H|ψ is valid.

· ρ1|ψ = 1 and ρ2|ψ = 0. Here it is possible to show that dg H|ψ is equal to dg H1|ψ

and therefore H|ψ is valid due to the well-formedness of graph H1 and validity of

all its complete projections. For every z ∈ V1∪V2∪E1∪E2 condition φ(z)|ψ in the

complete projection H|ψ is equal to

φ(z)|ψ = (ρ1ρ2φ1(z)+ρ1ρ2φ2(z))|ψ = 1 ·0 ·φ1(z)|ψ+1 ·0 ·φ2(z)|ψ = φ1(z)|ψ

dg H|ψ has the same set of vertices and arcs as dg H1|ψ, hence H|ψ is valid.

· ρ1|ψ = 0 and ρ2|ψ = 1. This case is symmetric to the previous one: H|ψ is valid

because dg H|ψ = dg H2|ψ.

The above cases show that any non-singular complete projection H|ψ is valid, and thus

H=H1 +H2 is well-formed.

2) Associativity: ∀H1, H2, H3 ∈W, (H1 +H2)+H3 =H1 +(H2 +H3).

Follows from the associativity of set union ((V1 ∪V2)∪V3 = V1 ∪ (V2 ∪V3) etc.) and

Boolean disjunction ((ρ1 +ρ2)+ρ3 = ρ1 +(ρ2 +ρ3)). To prove associativity with respect

to conditions φ, let us define ρ ′ and φ ′ to be the restriction functions and conditions

of graph H ′ = H1 +H2: ρ ′ = ρ1 +ρ2 and φ ′ = ρ1ρ2φ1 +ρ1ρ2φ2. In the same way, let ρ

and φ denote the restriction function and conditions of the final graph H=H ′+H3. So,

ρ= ρ ′+ρ3 = ρ1 +ρ2 +ρ3 while φ is equal to

φ= ρ ′ρ3φ
′+ρ ′ρ3φ3 = (ρ1 +ρ2)ρ3(ρ1ρ2φ1 +ρ1ρ2φ2)+(ρ1 +ρ2)ρ3φ3 =

= (ρ1 +ρ2)(ρ1ρ2ρ3φ1 +ρ1ρ2ρ3φ2)+(ρ1ρ2)ρ3φ3 = ρ1ρ2ρ3φ1 +ρ1ρ2ρ3φ2 +ρ1ρ2ρ3φ3

The result remains the same if the order of addition of the three graphs is altered:

H ′ =H2 +H3, H=H1 +H ′. So, independently of the order, function φ(z) for a particular z

will eventually be equal to ρ1ρ2ρ3φ1(z)+ρ1ρ2ρ3φ2(z)+ρ1ρ2ρ3φ3(z). Observe the correct

scaling of the orthogonal coefficients from {ρ1ρ2, ρ1ρ2} to {ρ1ρ2ρ3, ρ1ρ2ρ3, ρ1ρ2ρ3}.

49

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

3) Commutativity: H1 +H2 =H2 +H1.

Follows from the commutativity of set union (V1 ∪V2 = V2 ∪V1 etc.) and Boolean

disjunction (ρ1 +ρ2 = ρ2 +ρ1 etc.) operations.

Remark 5.4. When adding more than two graphs the redundant brackets can be omitted

without ambiguity: H1 +H2 +H3.

Corollary 1. The general equation for conditions φ in graph H(V , E, X, ρ, φ) in case of

addition of n> 2 graphs Hk(Vk, Ek, Xk, ρk, φk), 1 6 k6 n is

φ=
∑

16k6n

(φkρk
∏

16j6n
j6=k

ρj)

e.g. if n= 3 the equation is φ= ρ1ρ2ρ3φ1 +ρ1ρ2ρ3φ2 +ρ1ρ2ρ3φ3.

In the same way as graphs H1 and H2 are considered to be specifications of certain

behavioural scenarios over event domains V1 and V2, graph H1 +H2 is considered to be

specification of the scenarios from both the graphs over the joint event domain V =V1∪V2.

This is formally stated in the following theorem.

Theorem 5.2. If H1 and H2 are well-formed graphs that are not in conflict then

P(H1 +H2) = P(H1)∪P(H2)

i.e. graph H1 +H2 contains partial orders from both H1 and H2.4

Proof. Let H=H1 +H2. At first let us show that P(H1)∪P(H2)⊆P(H). Consider a partial

order P∈P(H1) (the proof for the case when P∈P(H2) is similar due to symmetry between

H1 and H2). By Definition 5.8, there must exist at least one possible valid opcode ψ such

that ρ1|ψ = 1 and P = po(dg H1|ψ). It is possible to show that dg H1|ψ = dg H|ψ (and

thus H also defines P under the same assignment function):

1. The restriction function ρ2|ψ of H2 is not satisfied because H1 and H2 are not in

conflict: (ρ1ρ2)|ψ = ρ1|ψ ·ρ2|ψ = 1 ·ρ2|ψ = ρ2|ψ = 0.
4An even stronger property holds: addition preserves the initial opcodes of the partial orders.

50

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

2. The restriction function ρ of H is satisfied with ψ: ρ|ψ = (ρ1 +ρ2)|ψ = 1+0 = 1.

3. Vertex/arc conditions φ(z) for ∀z ∈ V1∪E1 in H|ψ evaluate to the same values as in

H1|ψ: φ(z)|ψ = (ρ1ρ2φ1(z)+ρ1ρ2φ2(z))|ψ = 1 ·0 ·φ1(z)|ψ+1 ·0 ·φ2(z)|ψ = φ1(z)|ψ.

4. Vertex/arc conditions φ(z) for ∀z /∈V1∪E1 in H|ψ evaluate to 0: φ(z)|ψ=φ1(z)|ψ= 0

(by Definition 5.1 of φ).

Therefore, the sets of vertices and arcs of dg H|ψ are the same as those of dg H1|ψ.

Consequently, P = po(dg H1|ψ) = po(dg H|ψ) and therefore P ∈ P(H).

Now let us prove the reverse statement: P(H) ⊆ P(H1)∪P(H2). Consider a partial

order P ∈ P(H). There must exist at least one possible valid opcode ψ such that P =

po(dg H|ψ). The restriction function ρ = ρ1 + ρ2 must be satisfied which means that

either ρ1 or ρ2 is satisfied but not both of them. Let it be ρ1: ρ1|ψ = 1 and ρ2|ψ = 0 (the

other case is again symmetric). This leads to the same conclusion as in the first part of

the proof (see points (3) and (4)): dg H1|ψ= dg H|ψ. Therefore P ∈P(H1)⊆P(H1)∪P(H2).

This completes the proof.

a

d

b

c

ρ(x)=x

(a) H1

a

d

b

e

ρ(x)=x
_

(b) H2

a

d

b

c: x e: x
_

x

x

x
_

x
_

x
_

x
_

ρ(x)=1

x

(c) H1 +H2

Figure 5.6: Graph addition

Consider an example of addition shown in Figure 5.6. Both H1 and H2 specify a single

scenario (see Table 5.1 for the details of the scenarios). The graphs are not in conflict

(ρ1ρ2 = xx= 0), the result of their addition H1 +H2 is shown in Figure 5.6(c). It contains

both of the scenarios (as was demonstrated in Figure 5.3).

51

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

5.1.5 Scalar multiplication

Definition 5.13. Graph H(V , E, X, ρ, φ) can be multiplied by a Boolean function f∈F(Y)

(which in our context can be called scalar). The resultant graph is H ′(V , E, X∪Y, fρ, φ).

The standard notation is used for scalar multiplication: H ′ = f ·H.5

Theorem 5.3. For every Boolean function f and a well-formed graph H, graph H ′ = fH

is also well-formed and P(H ′)⊆ P(H).

Proof. Every opcode ψ which is valid with respect to H is either singular with respect to

H ′ (when f|ψ = 0) or also valid (when f|ψ = 1). In the latter case the partial order P =

po(dg H|ψ) defined by ψ remains the same in H ′: P = po(dg H ′|ψ) (because conditions

φ(z) in H ′ are the same as in H). Thus, function f only ‘filters out’ some of the partial

orders defined in H by setting an additional constraint to the restriction function ρ, and

no new partial orders are introduced.

Remark 5.5. Multiplication by f= 1 does not change a graph: 1 ·H=H and P(1 ·H) = P(H).

Remark 5.6. Multiplication by f= 0 produces a singular graph: P(0 ·H) = ∅.

Definition 5.14. A linear combination of n> 1 graphs H1, H2, . . . , Hn and scalars f1, f2,

. . . , fn is ∑
16k6n

fkHk = f1H1 + f2H2 + · · ·+ fnHn

Any linear combination of well-formed graphs is also well-formed due to the closure

of addition and scalar multiplication operations over well-formed graphs (Theorems 5.1

and 5.3).

5.1.6 Encoding conflict resolution

The operation of addition introduced in Subsection 5.1.4 produces a conservative result

in case of an encoding conflict in the added graphs. In particular, if there is a false

conflict between graphs H1 and H2 for a particular encoding ψ their sum H1 +H2 does
5As usual, multiplication by juxtaposition (omitting the ‘·’) is allowed: H ′ = fH.

52

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

not contain the conflicting partial order P = po(dg H1|ψ) = po(dg H2|ψ) at all, therefore

P(H1 +H2) 6= P(H1)∪P(H2) (cf. Theorem 5.2).

In order to be able to add graphs with true and false conflicts preserving the conflicting

partial orders in the sum, the following concept of asymmetric addition is introduced.

Definition 5.15. The result of asymmetric addition of two graphs H1(V1, E1, X1, ρ1, φ1)

and H2(V2, E2, X2, ρ2, φ2) is linear combination H1~+H2
df
=H1 +ρ1H2. Asymmetric addi-

tion is a left-associative operation, i.e. it is conventionally evaluated from left to right:

H1~+H2~+H3
df
= (H1~+H2)~+H3.

Remark 5.7. Asymmetric addition is closed over well-formed graphs ((H1 ∈W)∧ (H2 ∈

W)⇒ (H1~+H2 ∈W)) but because of the asymmetry it is neither commutative (H1~+H2 6=

H2~+H1) nor associative ((H1~+H2)~+H3 6=H1~+(H2~+H3)) unlike normal addition.

Remark 5.8. It is possible to generalise the notion of linear combination for asymmetric

addition of more than two graphs. Let ρ ′ be the the restriction function of graph (H1~+H2):

ρ ′ = ρ1 + ρ1ρ2 = ρ1 + ρ2. This leads to (H1~+H2)~+H3 = (H1 + ρ1H2)~+H3 = H1 + ρ1H2 +

ρ ′H3 = H1 + ρ1H2 + ρ1ρ2H3. In general, linear combination for asymmetric addition of

n> 2 graphs Hk(Vk, Ek, Xk, ρk, φk), 1 6 k6 n is

H1~+H2~+...~+Hn =
∑

16k6n

(
∏

16j<k

ρj)Hk

Theorem 5.4. If H1 and H2 are well-formed graphs that are not in a true conflict then

P(H1~+H2) = P(H1)∪P(H2).

Proof. Let H = H1~+H2 = H1 + ρ1H2. At first, notice that graphs H1 and ρ1H2 are not

in conflict: ρ1(ρ1ρ2) = 0. According to Theorems 5.2 and 5.3, P(H) = P(H1 + ρ1H2) =

P(H1)∪P(ρ1H2)⊆ P(H1)∪P(H2).

Now, let us prove the reverse statement P(H1)∪P(H2) ⊆ P(H). Any partial order

P ∈ P(H1) must belong to P(H) = P(H1 + ρ1H2) (by Theorem 5.2). Consider a partial

order P ∈ P(H2) which has encoding ψ: P = po(dg H2|ψ). There can be two cases with

respect to ρ1|ψ value:

53

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

· ρ1|ψ = 0: P(ρ1H2) = P(1 ·H2) = P(H2) (due to Remark 5.5). So, P ∈ P(H2) also

belongs to P(ρ1H2) and thus P ∈ P(H).

· ρ1|ψ = 1, which means that ψ is a conflicting opcode. If the conflict is false, then

P = po(dg H1|ψ) and as was already shown, any partial order from graph H1 is

included into P(H).

So, both P(H1)⊆ P(H) and P(H2)⊆ P(H) hold. Together with P(H)⊆ P(H1)∪P(H2) this

proves that P(H1~+H2) = P(H1)∪P(H2).

Remark 5.9. If well-formed graphs H1 and H2 are in a true conflict with respect to ψ, i.e.

po(dg H1|ψ) 6= po(dg H2|ψ) then their asymmetric sum H1~+H2 includes po(dg H1|ψ) but

not po(dg H2|ψ).

a bx

x
_

ρ(x, y) = y
_

(a) H1

b: x

c: y

a

ρ(x, y) = x + y

(b) H2

ρ(x, y) = xy
_

a: xy
_

xy
_

b: y
_

c: xy
_

x + y

xy__

(c) H1~+H2

a

b

c

(d) (H1~+H2)|x=1, y=0

a

b

c

(e) (H1~+H2)|x=0, y=0

a

b

c

(f) (H1~+H2)|x=0, y=1

Figure 5.7: Asymmetric addition: a false encoding conflict

Example 5.4. Consider an example of asymmetric addition of two graphs with a false

encoding conflict shown in Figure 5.7. Graph H1 (Figure 5.7(a)) defines two simple

partial orders P1 = {a ≺ b} = po(dg H1|x=1, y=0) and P2 = {b ≺ a} = po(dg H1|x=0, y=0),

while graph H2 (Figure 5.7(b)) defines P1 = {a ≺ b} = po(dg H2|x=1, y=0) and P3 = {a ≺

c} = po(dg H2|x=0, y=1). One can see that ψ = (1, 0) is a conflicting opcode, but the

54

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

conflict is false, because the corresponding partial orders are equal: po(dg H1|x=1, y=0) =

po(dg H2|x=1, y=0) = P1. Asymmetric sum H1~+H2 shown in Figure 5.7(c) contains all the

three partial orders: P(H1~+H2) = {P1, P2, P3} = P(H1)∪P(H2). The corresponding pro-

jections are demonstrated in Figures 5.7(d), (e), (f).

a bx

x
_

ρ(x, y) = y
_

(a) H1

b: x

c

a: y

ρ(x, y) = x + y

(b) H2

ρ(x, y) = xy
_

a: xy
_

xy
_

b: y
_

c: xy
_

x + y

xy__

(c) H1~+H2

ρ(x, y) = xy
_

a: x
_

b: y
_

xy__

c: x + y

x + y
x + y

(d) H2~+H1

a

b

c

(e) (H1~+H2)|x=1, y=0

a

b

c

(f) (H2~+H1)|x=1, y=0

Figure 5.8: Asymmetric addition: a true encoding conflict

Example 5.5. Asymmetric addition of graphs with a true encoding conflict is demons-

trated in Figure 5.8. Graph H1 (Figure 5.8(a)) defines partial orders P1 = {a ≺ b} =

po(dg H1|x=1, y=0) and P2 = {b≺ a} = po(dg H1|x=0, y=0), while graph H2 (Figure 5.8(b))

defines P3 = {b≺ c} = po(dg H2|x=1, y=0) and P4 = {a≺ c} = po(dg H2|x=0, y=1). Conflict

under ψ = (1, 0) is true, because the corresponding partial orders are different: P1 =

po(dg H1|x=1, y=0) 6= po(dg H2|x=1, y=0) = P3. Two asymmetric sums H1~+H2 and H2~+H1

are shown in Figures 5.8(c) and (d). The difference between them is due to the different

conflict resolution choice: the former graph keeps partial order P1 = {a ≺ b} while the

latter keeps P3 = {b≺ c}. This fact is demonstrated in Figures 5.8(e) and (f) which show

the complete projections of these graphs under the conflicting opcode (x, y) = (1, 0).

So, the result of asymmetric sum depends significantly on the order of arguments:

P(H1~+H2) = {P1, P2, P4}, while P(H2~+H1) = {P2, P3, P4} (the leftmost argument has the

highest ‘priority’).

55

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

The presented set of algebraic operations (addition, scalar multiplication, and asym-

metric addition) provides the necessary toolkit for ‘safe by construction’ structural CPOG

synthesis and optimisation (see Chapter 7). The operations are also applicable to the

dynamic CPOG model introduced in Section 5.2.

5.2 The dynamic model

Conditional Partial Order Graphs introduced in Section 5.1 are static in the sense that

every behavioural scenario specified by graph H under particular opcode ψ is a partial

order po(dg H|ψ) which does not have any internal choice in its behaviour: all the choice

is embedded in the encoding ψ. Therefore, it is impossible to pass any information from

earlier events to later ones, and there is no way to specify any internally branching

process within a static CPOG model.

Example 5.6. Consider operation r= diff (p, q) of computing the difference between two

values p and q stored in memory: diff (p, q)
df
= |p− q|. The flow of execution of the

operation breaks up into the following primitive actions:

· Load register A from memory: mov A, p;

· Load register B from memory: mov B, q;

· Compute their difference and store the result in A:

– Compare registers A and B: cmp A, B;

– If (A< B) then swap the registers: swap A, B;

– Subtract B from A, store the result in A: sub A, B;

· Save register A into memory: mov r, A.

Let the result of comparison (action cmp A, B) be denoted as y: y df
= (A < B). Note

that y is used in the next conditional action of swapping swap A, B. Clearly, y is

undefined in the beginning of the computation, because values A and B can only be

compared after they have been loaded from memory. The basic CPOG model does not

56

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

mov A, p

sub A, B

swap A, B

mov r, A

mov B, q

cmp A, B

ρ=1

implicit control

Figure 5.9: A static CPOG with implicit control specifying diff (p, q) operation

allow such dynamic evaluation of variable y during the execution phase. Figure 5.9 shows

an unsophisticated workaround for the specification which uses an implicit dependency

between actions cmp A, B and swap A, B (denoted with a dash-dotted arc) that can

switch vertex swap A, B on or off according to the result of comparison. Certainly, such

an implicit specification cannot be considered acceptable.

This section introduces the extended model which supports the dynamic opcode eva-

luation (further referred to as the dynamic CPOG model). It was first presented in [72],

which addressed the limitations of the static model and provided two different approaches

to overcome them. The first one used hierarchical static graphs composition (see Subsec-

tion 5.2.1). The second approach proposed dynamic graphs as a natural generalisation

of the basic model.

The formal definition of the dynamic model is given in Subsection 5.2.2. Behaviou-

ral semantics and classification of different types of starting and terminating states of

dynamic graphs are discussed in Subsections 5.2.3 and 5.2.4.

5.2.1 Hierarchical static graphs composition

The general schematic view of CPOG-based microcontrollers is shown in Figure 5.10. A

microcontroller receives an opcode via the opcode interface and schedules the corres-

Microcontroller

done

opcode
interface

opcode

go

event
handshakes

Figure 5.10: Schematic view of a CPOG-based microcontroller

57

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

Master
microcontroller

Slave
microcontroller

comparison result

Data path units

mov A, p

mov B, q

cmp A, B

mov r, A

swap A, B

sub A, B

operational units

go'
done'

abs A, B

done

opcode

go

Figure 5.11: Hierarchical composition of CPOG-based microcontrollers

ponding partial order of events (in this example we consider the events to be data path

operational units with a request/acknowledgement interface).

It is possible to use hierarchical composition of master and slave CPOG-based mi-

crocontrollers to implement control for r = diff (p, q) operation as shown in Figure 5.11.

Three operational blocks {cmp, swap, sub} are grouped together forming an equivalent

of abs A, B operational unit. Signal go ′ for the slave microcontroller is the acknowled-

gement signal from the comparator cmp A, B which ensures that the comparison result is

already computed and the slave controller can use it as an opcode, hence staying within

the basic CPOG model. The comparison result is represented by two signals le and ge:

le = 1 (ge = 1) is set iff the value in register A is less (greater) or equal to the value in

register B. The slave microcontroller performs the actions according to these signals (it

swaps registers A and B if le = 1 and ge = 0, and executes sub A, B) and sets signal

done ′ that is used as an acknowledgement by the master microcontroller.

CPOG specifications for the master and slave microcontrollers are shown Figure 5.12.

The master graph is trivial and does not contain any conditions. The graph for the

slave controller executes either sequence of operations swap A, B→ sub A, B or just a

single operation sub A, B depending on the result of comparison. Vertex swap A, B has

condition le ·ge which is true iff value in register A is strictly less then value in register

B: le ·ge= (A6B) ·(A> B) = (A<B). Note that the slave graph has restriction function

ρ= le+ge which does not allow opcode ψ= (0, 0) because it is inconsistent (it implies

that A< B and A> B simultaneously).

58

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

mov A, p

mov r, A

mov B, q

abs A, B

ρ=1

(a) The master graph

ρ=le+ge

swap A, B: lege sub A, B
_

(b) The slave graph

Figure 5.12: Static CPOGs for the master and slave microcontrollers

Although the hierarchical approach helps to extend the range of systems modelled

with static CPOGs, it requires non-trivial decomposition of partial orders (or, sometimes,

over-structuring them at the expense of performance or area). Such decomposition is not

possible for more complicated examples. Subsection 5.2.2 presents another approach to

modelling internally branching systems with CPOGs.

5.2.2 Dynamic CPOGs

This subsection introduces the dynamic CPOG model formally. The model allows opcodes

to be dynamically evaluated during the retrieval and execution of the corresponding

partial order. Figure 5.13 shows schematic view of the microcontroller for r = diff (p, q)

operation (see Example 5.6), which uses dynamic opcode evaluation: signals {le, ge} are

considered to be a dynamic part of opcode. Their value is undefined until comparator

cmp A, B sets them according to the result of comparison.

Microcontroller

done

opcode

go

mov A, p

mov B, q

cmp A, B

swap A, B

sub A, B

mov r, A

comparison result

operational units
static variables

dynamic variables

Figure 5.13: Microcontroller with dynamic opcode evaluation

59

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

The dynamic CPOG for this microcontroller is shown in Figure 5.14. It is more natural

and understandable than the two separate CPOGs for the hierarchical design. Action

cmp A, B controls variables {le, ge} (this fact is denoted below the vertex) so that after

its execution the condition le+ ge = 1 holds. This restricts the comparison result to

meaningful combinations only (the meaningless result le= ge= 0 is forbidden). After its

execution action swap A, B is included into the current partial order only if needed.

mov A, p

sub A, B

swap A, B: le∙ge

mov r, A

mov B, q

cmp A, B

ρ = le+ge

ρ=1

_

Figure 5.14: Dynamic Conditional Partial Order Graph

Definition 5.16. Conditional Partial Order Graph H(V , E, X, ρ, φ) is dynamic if every

vertex v∈V has an ordered pair 〈Yv, ρv〉 associated with it. Yv and ρv have the following

semantics:

· Set Yv contains dynamic operational variables that are allowed to change their va-

lues during the execution of the action corresponding to vertex v. Before execution,

their values are undefined (can be either 0 or 1). Yv is called the controlled set of

v. Controlled sets of any two vertices u, v ∈ V , u 6= v do not overlap: Yu∩Yv = ∅.

· Operational variables X are called static and cannot change their values.

· Union of all the dynamic operational variables in the graph is denoted as Y:

Y
df
=
⋃
v∈V

Yv

· Function ρv ∈ F(Yv) is called the vertex restriction function. It restricts values of

the controlled variables Yv in the same way as graph restriction function ρ restricts

static variables X. Note that restriction on variables Yv comes into force only after

execution of the action associated with v.

60

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

· Domain of vertex and arc conditions φ(z), z ∈ V ∪E is extended from X to X∪Y:

φ(z)∈ F(X∪Y). In other words, the conditions can include both static and dynamic

operational variables.

The dynamic graph specifying the scenario from Example 5.6 is shown in Figure 5.14.

The graph does not have any static operational variables (X= ∅), so it specifies a single

scenario (computation of r = diff (p, q)). There are two dynamic variables Y = {le, ge}

controlled by vertex cmp A, B (the corresponding restriction function is ρ = le+ge as

shown below the vertex). The values of signals le and ge are not defined before the

execution of the comparator, which compares registers A and B and sets the signals

according to the result. Obviously, le and ge cannot be both set to 0 but the three

other combinations are meaningful, thus the restriction function should be le+ge (it is

a contradiction only when le = ge = 0). The conditional action swap A, B is executed

only if lege= 1 (this holds when A<B). Thus, the scenario can be dynamically changed

according to the outcome of the comparison.

Dynamic CPOGs have a graphical representation similar to that of static CPOGs.

In addition, vertex restriction function ρv is depicted below the corresponding vertex v

(unless the controlled set of v is empty, i.e. 〈Yv, ρv〉= 〈∅, 1〉, in which case ρv is omitted

for clarity). Variables Yv can be observed as parameters of ρv.

Subsection 5.2.3 introduces the firing rules and the notions of opcode, configuration

and state to formally describe the behaviour of a system specified with a dynamic CPOG.

5.2.3 Behavioural semantics

Definition 5.17. Opcode ψ : X∪Y→ {0, 1} assigns Boolean values to all the static and

dynamic operational variables in the graph.

The preset •ψv of a vertex v ∈ V with respect to opcode ψ is

•ψv
df
= {u ∈ V , φ(u)|ψ ·φ((u, v))|ψ = 1}

It contains all the vertices u ∈ V which precede vertex v in the partial order defined by

complete projection H|ψ.

61

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

The postset v•ψ is defined similarly:

v•ψ
df
= {u ∈ V , φ(u)|ψ ·φ((v, u))|ψ = 1}

Definition 5.18. Configuration C⊆ V is the set of vertices whose corresponding actions

have been already performed.

A configuration C is called valid with respect to opcode ψ iff

∀v ∈ C, (•ψv⊆ C)∧ (φ(v)|ψ = 1)

In other words, a valid configuration may contain only those vertices which have their

presets in C, and are present in complete projection H|ψ.

Definition 5.19. An ordered pair 〈C, ψ〉 is called a state; it fully describes the current

state of the modelled system.

A state 〈C, ψ〉 is called valid iff configuration C is valid, restriction function ρ is

satisfied (ρ|ψ = 1), and restriction functions of all the vertices in the configuration are

also satisfied (∀v ∈ C, ρv|ψ = 1).

In a given state S= 〈C, ψ〉 a vertex v ∈ V \C is enabled to fire iff

· it is present in the partial order determined by complete projection H|ψ: φ(v)|ψ = 1;

· its preset is a subset of the configuration: •ψv⊆ C.

A firing of an enabled vertex v ∈ V \C produces a new configuration C ′ =C∪ {v}. Opcode

ψ can also be affected by the firing if vertex v is associated with an action that changes

some dynamic variables. In particular, the firing of vertex v ∈ V affects variables in

its controlled set Yv such that the restriction function becomes satisfied: ρv = 1 (see

Example 5.7). Firing is considered to be an atomic event: state S is changed momentarily

into the new state S ′ = 〈C ′, ψ ′〉.

Note that every dynamic operational variable has at most one control vertex and the-

refore it can change at most once. This means that system state 〈C, ψ〉 can only change

62

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

mov A, p

sub A, B

swap A, B: le∙ge

mov r, A

mov B, q

cmp A, B

ρ = le+ge

_

(a) The initial state: mov A, p and mov B, q are
enabled to fire; le= ge= 0

mov A, p

sub A, B

swap A, B: le∙ge

mov r, A

mov B, q

cmp A, B

ρ = le+ge

_

(b) mov A, p has fired; mov B, q is still enabled

mov A, p

sub A, B

swap A, B: le∙ge

mov r, A

mov B, q

cmp A, B

ρ = le+ge

_

(c) mov B, q has fired enabling cmp A, B

mov A, p

sub A, B

swap A, B: le∙ge

mov r, A

mov B, q

cmp A, B

ρ = le+ge

_

(d) cmp A, B has fired changing (le, ge) to (1, 0);
enabled vertex swap A, B appears in the graph

mov A, p

sub A, B

swap A, B: le∙ge

mov r, A

mov B, q

cmp A, B

ρ = le+ge

_

(e) swap A, B has fired enabling sub A, B

mov A, p

sub A, B

swap A, B: le∙ge

mov r, A

mov B, q

cmp A, B

ρ = le+ge

_

(f) sub A, B and mov r, A have fired in sequence

Figure 5.15: Example of dynamic CPOG evolution

monotonically during the system evolution: once a vertex is added to a configuration it

cannot be removed (the monotonicity of configuration) and once a dynamic variable is

evaluated it remains constant (the monotonicity of control vector).

Example 5.7. Figure 5.15 shows a step by step evolution of the system specified with the

dynamic graph in Figure 5.14. At start, configuration C is empty (no actions have been

performed) and two vertices are enabled to fire: mov A, p and mov B, q (enabled vertices

are depicted as). Dynamic variables Y = {le, ge} can have arbitrary values, in this

example we assume them being equal to 0: le = ge = 0. Suppose that event mov A, p

happens first (see Figure 5.15(b)). Configuration C becomes equal to {mov A, p} (vertices

included into C are shown as filled circles). After the subsequent firing of vertex

mov B, q comparator cmp A, B becomes enabled because its preset is contained in

C. The comparator fires and changes its controlled variables according to the result of

comparison, for instance, to (le, ge) = (1, 0) signifying (A < B) outcome. This leads to

the inclusion of vertex swap A, B and its arcs into the graph and it becomes the next

63

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

enabled vertex, preventing event sub A, B from happening too early (see Figure 5.15(d)).

Any other outcome of the comparison would leave swap A, B excluded from the graph: it

would be skipped and event sub A, B would become enabled immediately. The system

evolution finishes after successive firings of vertices swap A, B, sub A, B and mov r, A

and the system comes to the final state shown in Figure 5.15(f).

Different types of states are classified in Subsection 5.2.4.

5.2.4 Initial states, final states and deadlocks

Definition 5.20. The initial state of a system is 〈∅, ψ0〉, i.e. no actions have been per-

formed (C = ∅) and all (static and dynamic) variables are set to some initial values ψ0.

Initial state 〈∅, ψ0〉 of a dynamic graph H(V , E, X, ρ, φ) is valid iff ρ|ψ0 = 1.

Starting from the initial state the system evolves by firing enabled vertices and finally

reaches a state when no vertex is enabled. Such a state can either be a final state

or a deadlock (see Definitions 5.21 and 5.22). Notice that the system must terminate

eventually because each firing adds a vertex v ∈ V \C into configuration C.

Definition 5.21. State 〈C, ψ〉 is a final state iff there is no vertex v∈ V \C that is present

in complete projection H|ψ:

∀v ∈ V \C, φ(v)|ψ = 0

Definition 5.22. State 〈C, ψ〉 is a deadlock iff there is no enabled vertex but at least one

vertex v ∈ V \C is present in H|ψ:

(∀v ∈ V \C, (•ψv 6⊆ C)∨ (φ(v)|ψ = 0))∧ (∃v ∈ V \C, φ(v)|ψ = 1)

A deadlock is a situation wherein two or more competing events are waiting for the

other to happen, and thus neither ever does. Such a situation is caused by the fact that

complete projection H|ψ contains a cycle and is therefore invalid (see Definition 5.5).

Definition 5.23. Graph H(V , E, X, ρ, φ) is called deadlock free if there is no valid

deadlock state which is reachable from any valid initial state 〈∅, ψ0〉, ρ|ψ0 = 1.

64

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

Figure 5.16 shows a graph containing both final states and deadlocks. x1 and x2 are

static variables; dynamic variables Y = {y1, y2} are controlled by vertex b. Figure 5.16(a)

shows the final state reachable through the following firing sequence. The initial state

is 〈∅, (x1 = x2 = y1 = y2 = 0)〉; b is enabled to fire. During its firing {y1, y2} change from

zeroes to (y1 = 0, y2 = 1). Then d and c fire, and the system comes to the final state:

vertex a is not present in H|ψ since φ(a)|ψ = (x1 +x2)|ψ = 0.

db

a: x1 x2+

x1 x2 y1 y2

c: y2

+y1 y2=ρbρ=1

(a) Final state. (x1, x2, y1, y2) = (0, 0, 0, 1)

db

a: x1 x2+

x1 x2 y1 y2

c: y2

ρ=1 +y1 y2=ρb
(b) Deadlock. (x1, x2, y1, y2) = (1, 0, 1, 1)

Figure 5.16: Final state and deadlock

A reachable deadlock state is shown in Figure 5.16(b): starting from 〈∅, (x1 = 1, x2 =

y1 = y2 = 0)〉 the system evolves by firing vertices a and b. Now if variables Yb = {y1, y2}

evaluate to y1 = y2 = 1 then the system comes to the deadlock state: both vertices c and

d exist in projection H|ψ but none of them is enabled to fire.

If a system does not contain any dynamic variables (Y = ∅) then the final state (or

deadlock) can be uniquely determined from the initial state. Otherwise the system can

terminate in different states according to the different dynamic variable changes during

the system evolution.

Detection of reachable deadlocks, testing reachability of a particular state, and other

dynamic CPOG verification problems are addressed in Section 6.2.

The overall system evolution cycle is shown in Figure 5.17. It has two phases: active

and reset . The active phase starts in some initial state according to the initial assignment

of operational variables; the system then goes through a sequence of states terminating

in a final state (or in a deadlock state in case of a specification or implementation error).

The reset phase consists of two concurrent processes: resetting the configuration to initial

state C= ∅ (which might involve resetting the controllers used in the active phase), and

65

CHAPTER 5. CONDITIONAL PARTIAL ORDER GRAPHS

Active phase

Deadlock state

Initial state Final state

Reset phase
Change the static variables

Reset the configuration

Figure 5.17: System evolution cycle

changing the static variables to select the scenario for the next evolution cycle (this might

be the request for the next codeword from the environment).

66

Chapter 6

Verification

The static and dynamic CPOGs introduced in Chapter 5 have many important properties

that require automated verification. Figure 6.1 shows a hierarchy of the verification

problems addressed in this chapter (the numbers in front of the problem names indicate

the corresponding subsections of the chapter). It is important to verify properties in

their hierarchic order, otherwise the results may be incorrect, e.g. detection of invalid

states in a dynamic graph makes sense only if the graph is deadlock free and well-

formed. Therefore, before verification of a particular property one has to ensure that all

the hierarchically precedent properties have been already verified.

6.1.1. Well-formed graphs

6.1.2. Equivalence

6.1.3. Encoding conflicts

6.1.3. True conflict

6.1.3. False conflict

6.2.3. Deadlock-free graphs

6.2.4. Invalid states reachability

6.2.5. Event conflicts

Dynamic
graphs

6.2.6. Mutual exclusion

Figure 6.1: Hierarchy of CPOG verification problems

Section 6.1 presents solutions to the structural CPOG verification problems which

are relevant both to static and dynamic graphs. The focus of Section 6.2, however, is

limited to the dynamic CPOG properties; they are based on the behavioural semantics

of dynamic graphs and are not applicable to the static model.

67

CHAPTER 6. VERIFICATION

It is tempting to apply comprehensively studied Petri Nets for verification of CPOGs,

i.e. to convert a given graph to the equivalent contextual Petri Net and to reuse the wealth

of existing model checking tools available for the latter (see, for example, [83] and [93]

where this approach was applied to the verification of speed-independent circuits and

static data flow structures, respectively). However, the Petri Net model is more general

and verification of most of its properties is PSPACE-complete [35]. The most efficient

verification algorithms unfold a given Petri Net and use the SAT-based NP-complete

techniques on the obtained prefix [45]. But thanks to the acyclicity of CPOGs projections

(each vertex can fire at most once in every execution run) it is possible to apply the SAT

techniques directly to a CPOG without its computationally expensive unfolding, thereby

staying within the NP complexity class.

The Boolean satisfiability problem (SAT) is to decide whether a given Boolean formula

F(x1, x2, . . . , xn) is satisfiable or not, i.e. if it is possible to find an assignment of Boolean

values (α1, α2, . . . , αn) ∈ {0, 1}n to the variables (x1, x2, . . . , xn) which makes the

formula true: F(α1, α2, . . . , αn) = 1. The SAT-based verification methods construct a

Boolean formula F that is satisfiable if and only if a particular property under verification

holds, and then give this formula to one of many available generic SAT solvers, which

have become very efficient in the recent years, e.g. [34, 74].

The SAT-based approach to the verification of CPOGs was first presented in [72], which

gave SAT characterisations for the most important properties of the dynamic model (see

Subsections 6.2.3-6.2.6). This chapter applies the same approach to the verification of the

structural properties and relations (Subsections 6.1.1-6.1.3), therefore all the techniques

presented here belong to the NP complexity class.

6.1 Structural properties and relations

This section addresses verification of structural CPOG properties and relations (graph

well-formedness, equivalence, true and false encoding conflicts), which were defined in

Section 5.1 for the static CPOG model.

68

CHAPTER 6. VERIFICATION

6.1.1 Well-formedness

According to Definition 5.6 a graph H(V , E, X, ρ, φ) is well-formed iff every opcode ψ

which is allowed by the restriction function (i.e. ρ|ψ = 1) produces an acyclic directed

graph dg H|ψ. The verification formula for this property NW (abbreviation for ‘not well-

formed’) consists of two clauses. The first clause enumerates all the allowed opcodes

ψ and coincides with the restriction function ρ. The second clause CYCLE checks if a

particular opcode ψ generates a cyclic projection H|ψ:

NW = ρ ·CYCLE

The intuition behind this SAT formulation is clarified by the following example.

a: x

b: y

c: z

ρ(x, y, z) = x+y+z
_ _ _

(a) H1

a: x

b: y

c: z

ρ(x, y, z) = x+y+z

(b) H2

Figure 6.2: Well-formed and not well-formed graphs

Example 6.1. Figure 6.2 shows two graphs H1 and H2 which differ from each other only

in their restriction functions ρ1 = x+y+ z and ρ2 = x+y+ z. The CYCLE clause for the

both graphs is the same: CYCLE = xyz. It captures the fact that the graph contains cycle

a→ b→ c→ a iff all the operational variables X = {x, y, z} are equal to 1. Hence, the

verification formula for the first graph is

NW1(x, y, z) = ρ1 ·CYCLE = (x+y+z)xyz

It is easy to see that this formula is unsatisfiable, i.e. it is impossible to find an opcode

ψ = (α, β, γ) such that NW1(α, β, γ) = 1. This means that every allowed opcode

produces an acyclic projection, thus H1 is well-formed.

69

CHAPTER 6. VERIFICATION

The situation is opposite for the second graph. The verification formula

NW2(x, y, z) = ρ2 ·CYCLE = (x+y+z)xyz

is satisfiable: NW1(1, 1, 1) = 1. This means that graph H2 is not well-formed, as it has

a cyclic complete projection induced by opcode ψ= (1, 1, 1).

There are many ways to generate the CYCLE clause for a given graph H. The method

presented here uses the fact that if a directed graph G(V , E) has a cycle then it is

possible to find a non empty set of vertices ∅ ⊂ S⊆ V such that every vertex v ∈ S has a

precedent u in this set: ∃u ∈ S, (u, v) ∈ E.

Let V = {v1, v2, . . . , v|V |}, and a Boolean variable sk, k = 1 . . . |V | equals 1 iff vk ∈ S.

Then the following Boolean formula is satisfiable iff the complete projection H|ψ has a

cycle1:

CYCLE(s1, s2, . . . , s|V |) =
∑

16j6|V |

sj ·
∏

16j6|V |

(
sj⇒ φ(vj) ·

∑
16k6|V |

sk ·φ((vk, vj))
)

The first clause ensures that set S is not empty, while the second clause checks that

every vertex in this set has a precedent. Note that opcode ψ is constrained outside of

this clause, hence for a particular ψ functions φ(z), z ∈ V ∪E are constants φ(z)|ψ and

induce a directed graph dg H|ψ.

This generic approach applied to Example 6.1 results in formula

CYCLE(s1, s2, s3) = (s1 + s2 + s3)(s1⇒ s3xz)(s2⇒ s1xy)(s3⇒ s2yz)

which is satisfiable if opcode ψ= (1, 1, 1) (cf. formula CYCLE = xyz which was obtained

manually); in this case the satisfiable assignment is s1 = s2 = s3 = 1 which means that

the cycle is formed by vertices S= {a, b, c}.
1In this work a⇒ b stands for Boolean implication indicating ‘b if a’ relation, and a⇔ b stands for

Boolean equivalence indicating ‘b if and only if a’ relation [56].

70

CHAPTER 6. VERIFICATION

6.1.2 Equivalence

This subsection provides a method to verify that two given graphs H1(V1, E1, X1, ρ1, φ1)

and H2(V2, E2, X2, ρ2, φ2) define the same set of partial orders (equivalence) and that

the opcodes for these partial orders are the same.

The first part of the verification process is to make sure that the sets of opcodes in

the given graphs coincide, i.e. that X1 = X2 and ρ1 = ρ2. The second part is to verify

that these opcodes generate the same partial orders. The corresponding SAT verification

formula NEQ (abbreviation for ‘not equivalent’) is

NEQ = ρ1 ·TC(H1) ·TC(H2) ·DIFF

Function TC(H) constructs the transitive closure tij of the DAG defined with the complete

projection H|ψ (opcodes ψ are enumerated with term ρ1), and clause DIFF searches for

a mismatch in the two transitive closures:

DIFF =
∑

16i, j6|V1∪V2|

t1ij⊕ t2ij

where t1 and t2 are the transitive closures of the first and the second graphs respectively.

If t1ij 6= t2ij for at least one pair (i, j) then DIFF evaluates to 1 making NEQ satisfiable.

To conclude, the verification function NEQ is satisfiable if there is an opcode ψ such

that partial orders defined by H1|ψ and H2|ψ are different.

6.1.3 Encoding conflicts

Checking for encoding conflicts in two graphs and detection of the conflict type (true or

false) is very similar to the verification of equivalence which was explained in the previous

subsection.

According to Definition 5.9 two graphs H1(V1, E1, X1, ρ1, φ1) and

H2(V2, E2, X2, ρ2, φ2) are in an encoding conflict iff ρ1 · ρ2 6= 0. To determine if

the conflict is true it is necessary to compare the partial orders generated by the

71

CHAPTER 6. VERIFICATION

conflicting opcodes. Formula TEC (stands for ‘true encoding conflict’) is

TEC = ρ1 ·ρ2 ·TC(H1) ·TC(H2) ·DIFF

where TC(H) and DIFF are the same as in the previous subsection: TC(H1) and TC(H2)

generate the transitive closures of dg H1|ψ and dg H2|ψ, while DIFF checks whether the

transitive closures are different or not. Clause ρ1 ·ρ2 ensures that opcode ψ is conflicting,

i.e. it belongs to both the graphs (ρ1 = 1 and ρ2 = 1).

Therefore, if TEC is satisfiable then the conflict is true, otherwise the conflict is

false, because despite the fact that ρ1 ·ρ2 6= 0 there is no difference in the partial orders

generated with the conflicting opcodes.

6.2 Dynamic properties

This section presents SAT characterisations for the dynamic CPOG properties (dead-

locks, invalid state reachability, event conflicts, and mutual exclusion), and a polynomial

algorithm that reconstructs a trace of events leading to a particular system state. Sub-

section 6.2.2 describes how to map the states of dynamic CPOGs into the domain of

Boolean functions in order to enable the use of the SAT approach.

The overall verification flow of systems specified with the dynamic CPOG model is

shown in Figure 6.3. A system is first checked for the absence of deadlocks (Subsec-

tion 6.2.3) and then for the impossibility to reach an invalid state from a valid one (Sub-

section 6.2.4). After these basic verification procedures the system can be checked for

higher level properties, e.g. event conflict freedom (Subsection 6.2.5), or if two given

events are mutually exclusive (Subsection 6.2.6). All the verification procedures provide

the error state 〈C, ψ〉 in case of an incorrect system behaviour; this state can be passed

to the trace reconstruction algorithm (Subsection 6.2.1) to obtain the trace of events lea-

ding to the failure. This information can be used to correct the given system specification

and rerun the verification.

72

CHAPTER 6. VERIFICATION

6.2.3. Deadlock detection

6.2.4. Invalid state reachability

6.2.5. Conflict detection

6.2.6. Mutual exclusion

system is deadlock free

no invalid state reachable

System specification (CPOG)

System state violating
a verification property

6.2.1. Trace reconstruction

Trace leading to
the incorrect state

(error correction)

Verification successful

no conflicts found

mutex property not violated

Figure 6.3: Dynamic CPOGs verification flow

6.2.1 Trace reconstruction algorithm

It is often important to know the trace of events leading to a particular state in the system,

e.g. to track the cause of a failure. This subsection presents a polynomial algorithm that

given a valid state S = 〈C, ψ〉 generates trace S0→ ·· · → S of valid states leading from

the initial state S0 = 〈∅, ψ〉 to S, or reports that such a trace does not exist.

Not every valid state 〈C, ψ〉 is reachable from the initial state 〈∅, ψ〉. The reason is

that configuration C can contain such a set of vertices that there is no firing sequence

leading to it. Two examples of such states are shown in Figure 6.4. Both the states have

subset {a, b} in the configuration, but the static variables x1 = x2 = 1 introduce a mutual

db

ρ=1 +y1 y2=ρb

x1 x2 y1 y2

a: x1 x2+ c: y2

(a) Valid state: (x1, x2, y1, y2) = (1, 1, 0, 1)

db

ρ=1 +y1 y2=ρb

x1 x2 y1 y2

a: x1 x2+ c: y2

(b) Deadlock: (x1, x2, y1, y2) = (1, 1, 1, 1)

Figure 6.4: Unreachable states

73

CHAPTER 6. VERIFICATION

dependency between vertices a and b: it is impossible to fire them in any order, thus

any state with configuration {a, b}⊆ C is unreachable. Moreover, one can observe that

the initial state 〈∅, x1 = x2 = 1〉 is a deadlock and it is the only reachable state provided

that x1 = x2 = 1.

The following important property of deadlock free CPOGs is exploited in the verifica-

tion algorithms presented in this paper.

Theorem 6.1. If a CPOG H is deadlock free then every valid state 〈C, ψ〉 is reachable

from the initial state 〈∅, ψ〉 through a sequence of valid states.

Proof. By induction. If C= ∅ then 〈C, ψ〉 is the initial state already, otherwise let v ∈ C

be such a vertex that configuration C does not contain any vertices of the postset of v,

i.e. C∩v•ψ = ∅. If it is impossible to select such v then C must contain a directed cycle

〈v0, v0〉 = (v0, v1, . . . , vn = v0), vk ∈ C, k = 0 . . .n which implies that the system has a

deadlock reachable from state 〈C−
⋃

06k<n vk, ψ〉. This contradicts the fact that H is

deadlock free. Thus v ∈ C, C∩v•ψ = ∅ can be selected. Now we can unfire vertex v and

obtain a valid state 〈C ′, ψ ′〉 = 〈C− v, ψ〉 from which 〈C, ψ〉 is reachable by firing of

vertex v. Note that the unfiring of vertex v does not change opcode ψ (i.e. ψ ′ =ψ). This

is allowed because before the execution of v the values of its controlled variables Yv are

undefined (by Definition 5.16) and nothing restricts them from being equal to the result

of the execution.

Configuration C ′ = C− v is smaller than C and we can conclude inductively that

eventually it becomes empty and the initial state 〈∅, ψ〉 is reached. During the process

it is possible to construct trace (〈∅, ψ〉, . . . , 〈C ′′, ψ〉, 〈C ′, ψ〉, 〈C, ψ〉) of valid states

leading from the initial state 〈∅, ψ〉 to state 〈C, ψ〉.

The proof of Theorem 6.1 is constructive and is used as a basis for the recursive algo-

rithm of trace reconstruction shown in Algorithm 1. The algorithm directly matches the

proof but it can be further optimised using the reverse topological sorting algorithm [22]

resulting in linear complexity O(|V |+ |E|).

74

CHAPTER 6. VERIFICATION

Algorithm 1 Trace reconstruction
function Trace(H, 〈C, ψ〉)
{

if (C= ∅) then return (); // empty trace

for all (v ∈ C) do

if (∀u ∈ C, φ((v, u))|ψ = 0) then

return Trace(H, 〈C−v, ψ〉) + 〈C, ψ〉;

return deadlock_found_error ; // CPOG H is not deadlock free
}

6.2.2 SAT formulation

This subsection presents a method of mapping a system state 〈C, ψ〉 into the Boolean

domain. This is needed in order to apply SAT to the dynamic CPOG verification problems.

A system state 〈C, ψ〉 is encoded with two vectors of Boolean variables:

· Configuration C is described with |V | variables confv, v ∈ V such that confv = 1 iff

vertex v is included into the configuration: v ∈ C.

· Opcode ψ is described with |X| variables valx, x ∈ X, such that valx = 1 iff ψ(x) = 1.

Notation φval(z), z ∈ V ∪E is used to denote the value of a vertex/arc condition in

complete projection H|ψ.

A SAT verification formula is a conjunction of constraints. The constraints ensure that

variables confv and valx describe a system state 〈C, ψ〉 which is relevant to a particu-

lar verification problem. For instance, if we are looking only for the states with valid

configurations then we have to use the following valid configuration constraint CONF:

CONF =

(∏
v∈V

confv⇒ φval(v)

)∏
v∈V

(
confv⇒

∏
u∈•ψv

confu

)
In accordance with Definition 5.18 it consists of two clauses which ensure that:

· a vertex v ∈ V can be in the configuration (confv = 1) only if it exists in H|ψ;

· if a vertex v ∈ V is in the configuration then all the vertices of its preset •ψv must

be in the configuration as well.

75

CHAPTER 6. VERIFICATION

Another constraint that is often used is the opcode constraint CODE:

CODE = ρ(valx1 , . . . , valx|X|
) ·

∏
v∈V

confv⇒ ρv(valy1 , . . . , valy|Yv|
)

It captures the fact that the CPOG restriction function ρ must be satisfied with values

(valx1 , . . . , valx|X|
), while the restriction function ρv of a vertex v ∈ C must be satisfied

with values (valy1 , . . . , valy|Yv|
) of its controlled set Yv.

Boolean function enabledv, v ∈ V is also introduced in order to simplify some of the

further equations:

enabledv = confv ·φval(v) ·
∏
u∈•ψv

confu

Thus enabledv = 1 iff vertex v ∈ V is enabled to fire in the current state 〈conf , val〉

according to Definition 5.19.

6.2.3 Deadlock detection

Detection of deadlocks is different from the other verification problems because the dead-

lock freedom property ensures that all the valid system states are reachable from the

initial state (see Theorem 6.1). Therefore if a deadlock verification procedure finds a

deadlock state it is quite possible that this state is not reachable. However, the beauty

of this property is that if a particular deadlock state is unreachable then there must exist

another deadlock state which is reachable and which occurs before the detected one and

prevents it from being reachable (this follows from the proof of Theorem 6.1). Therefore

the presented approach does not guarantee that the found deadlock is reachable but it

does guarantee that if it finds a deadlock then there exists a reachable deadlock in the

system. Note that the found state can be checked for reachability in polynomial time

using the trace reconstruction algorithm presented in Subsection 6.2.1.

Figure 6.4(b) shows an example of unreachable deadlock state 〈C = {a, b}, x1 =

x2 = y1 = y2 = 1〉. This deadlock is unreachable because of the existence of reachable

deadlock state 〈C = ∅, x1 = x2 = y1 = y2 = 1〉. To reach the former deadlock state the

system should somehow resolve the latter one, what can only be done by violation of one

76

CHAPTER 6. VERIFICATION

of the conflicting dependencies between vertices a and b.

The verification formula for this problem (named RD, i.e. ‘reachable deadlock’) is

conjunction of constraints CONF, CODE (which together define a valid state 〈conf , val〉)

and the following constraint DEAD which is true iff there is no enabled vertex but at

least one unfired vertex is present in H|ψ (a deadlock state by Definition 5.22):

DEAD =
∏
v∈V

enabledv ·
∑
v∈V

(
confv ·φval(v)

)
This gives us the following verification formula:

RD = CONF ·CODE ·DEAD

If a SAT solver finds such an assignment of variables confv and valx that RD = 1 then

there is a deadlock state 〈conf , val〉 in the system, otherwise the system is deadlock free.

6.2.4 Invalid states reachability

The next basic CPOG property that we are going to verify is reachability of an invalid

state from a valid one. An example of such a situation is shown in Figure 6.5. The current

system configuration is C = {a, c}, the only dynamic variable y is set to zero, and it is

controlled by vertex d (Subfigure (a)). This state is valid because vertex b is not present

in the current complete projection H|ψ: φ(b) = y = 0. However, vertex d is enabled to

fire and it can change the value of y leading to the invalid state: C = {a, c, d}, y = 1

(Subfigure (b)). This state violates validity of the configuration, because now vertex c∈C

has vertex b in its preset which is not in the configuration.

b: y

a

c d

ρ=1
ρ (y)=1d

(a) C= {a,c}, y= 0

b: y

a

c d

ρ=1
ρ (y)=1d

(b) C= {a,c,d}, y= 1

Figure 6.5: Example of a reachable invalid state

77

CHAPTER 6. VERIFICATION

Verification formula ISR (i.e. ‘invalid state reachability’) is conjunction of constraints

CONF, CODE (which together define a valid state 〈conf , val〉) and the following constraint

IS which is satisfiable if there is an invalid state 〈conf ′, val ′〉 reachable from state

〈conf , val〉:

IS =
∑
v∈V

enabledv ·FIREv ·CODE ′ ·CONF ′

where CODE ′ is the opcode constraint for variables conf ′v and val ′x (we assume that

vertex v fires correctly, i.e. it sets its controlled variables according to its restriction func-

tion and thus CODE ′ constraint is not violated); term CONF ′ ensures that the new state

〈conf ′, val ′〉 has an invalid configuration. Function FIREv constructs state 〈conf ′, val ′〉

by firing vertex v in state 〈conf , val〉:

FIREv = conf
′
v ·

∏
u6=v

conf
′
u⇔ confu ·

∏
x/∈Yv

val
′
x⇔ valx

It ensures that configuration conf ′ differs from conf only with vertex v, and the only

variables that are allowed to change are those belonging to its control set Yv.

To conclude, there is an invalid state reachable from a valid state in the given CPOG

iff the following Boolean formula is satisfiable:

ISR = CONF ·CODE · IS

For the example in Figure 6.5 a SAT solver should find the following assignment of

variables:
〈(confa = confc = 1, confb = confd = 0), (valy = 0)〉

〈(conf ′a = conf ′c = conf ′d = 1, conf ′b = 0), (val ′y = 1)〉

If ISR is unsatisfiable then there is no reachable invalid state in the system.

6.2.5 Event conflicts

Two events are said to be in an event conflict iff there is a reachable state 〈C, ψ〉 in

which both of them are enabled to fire but firing of one of them disables the other. Note

78

CHAPTER 6. VERIFICATION

that an event conflict does not necessarily leads to a deadlock or an invalid state, and

the monotonicity of configuration C and opcode ψ is not violated. Event conflicts only

affect the monotonicity of function enabledv, v /∈ C and can eventually lead to glitches

or hazards in the gate-level implementation of the controller.

ba c
y

ρ (y)=1a
ρ=1

(a) C= ∅, y= 0, enabledc = 1

ba c
y

ρ (y)=1a
ρ=1

(b) C= {a}, y= 1, enabledc = 0

Figure 6.6: Event conflict between events a and c

An example of a simple event conflict is shown in Figure 6.6. All the three vertices

{a, b, c} are enabled to fire in the initial state 〈∅, y = 0〉 (Subfigure (a)). But if vertex

a fires and sets its controlled variable y to 1 then vertex c becomes disabled due to the

appearance of arc (b, c) in the graph (see Subfigure (b)).

Verification formula EC (abbreviation for ‘event conflict’)

EC = CONF ·CODE ·CS

is constructed from the valid state constraint CONF ·CODE and constraint CS which is

satisfiable iff there is a state 〈conf ′, val ′〉 reachable from 〈conf , val〉 by firing an enabled

vertex v such that another enabled vertex u becomes disabled:

CS =
∑
v,u∈V
u6=v

enabledv ·enabledu ·FIREv ·CODE ′ ·enabled ′u

As before terms CODE ′ and enabled ′u operate on variables 〈conf ′, val ′〉 of the new

state constrained with function FIREv. The solution for the example in Figure 6.6 is:

〈(confa = confb = confc = 0), (valy = 0)〉

〈(conf ′a = 1, conf ′b = conf ′c = 0), (val ′y = 1)〉

79

CHAPTER 6. VERIFICATION

6.2.6 Mutual exclusion

A CPOG specification can contain more than one vertex corresponding to the same action

in the modelled system. Figure 6.7 shows an example of an MSP430 (a general purpose

microprocessor [2]) instruction specification. The graph represents the operational flow

for an ALU operation with addressing mode #123 to Rn/PC, e.g. addition of a constant

to a register Rn or program counter (PC). PC++ is the program counter increment, IR is

the next instruction word reading, ALU is an arithmetic operation; variable pca (program

counter access) is set to one if the second operand is PC and to zero otherwise.

ALU

PC++: pca

PC++ IR IR

Figure 6.7: Multiple action occurrence

The scenario is to increment PC (action PC++), and to load the addition constant

(which occupies the next word in the code memory after the instruction itself) into the

instruction register (action IR). After that the constant is added to the second operand

(action ALU). If the second operand is not PC then it is incremented concurrently (the

second occurrence of PC++). The last step is to load the next instruction into the

instruction register (the second occurrence of IR).

To avoid arbitration it is necessary to be sure that there are no concurrent requests

to the same action. Looking at Figure 6.7 one can easily see that the two occurrences of

actions PC++ and IR are mutually exclusive. But there can be much more sophisticated

CPOGs and an automated procedure is needed to be sure that the mutex property is not

violated for a pair of given events.

The verification formula checking the mutex property for given vertices v, u ∈ V is

MUTEX(v, u) = CONF ·CODE ·enabledv ·enabledu

It is satisfiable iff there is a valid state 〈conf , val〉 such that both vertices v and u are

enabled to fire.

80

CHAPTER 6. VERIFICATION

6.3 Summary

This chapter substantiated the use of SAT-based techniques for verification of structural

and dynamic graph properties and relations. The structural verification problems have

been addressed in Section 6.1 and are relevant for both the static and dynamic CPOG

models. These problems include checking a given graph for well-formedness, testing

equivalence, and identification of true and false encoding conflicts between given graphs

(Subsections 6.1.1 through 6.1.3). It should be noted that these verification procedures are

computationally intensive and their use should be kept to a minimum by exploiting the

algebraic properties of CPOGs, i.e. by using the ‘safe’ operations from CPOG algebra

which were formally proved to preserve the certain structural properties (e.g. well-

formedness) in the previous chapter (Section 5.1).

Section 6.2 presented verification flow for the dynamic CPOG model. The flow consists

of four verification stages (deadlocks and invalid states reachability analysis, checking

for conflicts and mutual exclusion of events), and a trace reconstruction algorithm which

generates the trace of events leading to a given system state and can be used for systems

diagnostics and correction.

The presented verification procedures are implemented as a part of the CPOG design

flow toolkit which is discussed in Appendix.

81

Chapter 7

Synthesis and optimisation

Chapter 5 demonstrated that a Conditional Partial Order Graph can specify many dif-

ferent behavioural scenarios of a system in a compact form, while Chapter 6 presented

techniques for the verification of various correctness criteria of such a specification. Ho-

wever, it still has not been shown how to build CPOGs, i.e. how to synthesise a CPOG

specification given a system described with a set of scenarios. This problem was first

addressed in [71] where the initial synthesis ideas were presented. The ideas were fur-

ther developed and formalised in [65] on the basis of algebraic CPOG operations that

guarantee the correctness of the synthesised graph [70]. Section 7.1 discusses the initial

CPOG synthesis problem and its generalisation in details.

The problem of synthesis is closely related to mapping CPOGs into Boolean equations

which is aimed to produce a physical implementation of the specified microcontroller. The

mapping procedure is fairly transparent, thus the final area and latency of the microcon-

troller strongly depend on the size and structural properties of its CPOG representation.

Therefore, it is important to use appropriate techniques during the stage of synthesis to

obtain the minimum cost microcontroller. A CPOG can also undergo various optimisation

procedures which exploit its structural and functional properties and aim to reduce its

complexity by equivalence-preserving transformations [71]. The mapping and optimisa-

tion techniques (introduced in Sections 7.2 and 7.3) are structural, i.e. they do not explore

the system state space that results in algorithms of high efficiency.

82

CHAPTER 7. SYNTHESIS AND OPTIMISATION

Conditional Partial
Order Graph

Optimisation

Synthesis
Section 7.1

Section 7.3

Mapping
Section 7.2

Microcontroller (Boolean equations)

Scenario 1 Scenario 2 Scenario N

System behavioural scenarios

0010 1111 1001

Opcodes

Automatic opcode generation
Section 7.4

Opcode assignment
Section 7.1

Scenario 1 Scenario 2 Scenario N

Encoded scenarios

0010 1111 1001

Figure 7.1: Synthesis, mapping and optimisation of CPOGs

At the stage of CPOG synthesis it is necessary to set up a correspondence between

the given scenarios and their opcodes. In this way a particular scenario can be later

extracted from the synthesised CPOG by providing its opcode (recall Example 5.2 from

Chapter 5). This correspondence is called an encoding scheme and is often given as a part

of system specification. Subsections 7.1.1 through 7.1.3 present several encoding schemes

which are often encountered in practice. There are cases, however, when a designer does

not have any requirements on the opcodes and in this case they are usually assigned

arbitrarily. This does not lead to the optimal microcontroller, because a particular opcode

assignment has a strong influence on the synthesised CPOG. The optimal assignment of

opcodes can be computed automatically using the methods presented in [66], providing

an opportunity for implementation-aware opcode synthesis discussed in Section 7.4.

Figure 7.1 shows interconnections between the different stages of CPOG-based mi-

crocontroller synthesis addressed in this chapter.

83

CHAPTER 7. SYNTHESIS AND OPTIMISATION

7.1 Synthesis

This section formally defines the problem of CPOG synthesis and solves it using a struc-

tural approach based on CPOG algebra. The initial formulation of the problem is given

below, while its generalised version is introduced in Subsection 7.1.4.

Definition 7.1. (CPOG synthesis from partial orders). Consider a system that has n

behavioural scenarios, which are specified with partial orders {P1, P2, . . . , Pn}. The

objective is to synthesise a CPOG H(V , E, X, ρ, φ) such that

P(H) = {P1, P2, . . . , Pn} (7.1)

This short formulation captures the fact that H must contain only the given scenarios,

but the opcodes of the scenarios are not specified in any way: they are implicit. If the

opcodes are given explicitly as a part of system specification, it is necessary to refine

(7.1) with an additional constraint.

Definition 7.2. (CPOG synthesis from partial orders with the opcode constraint). Let a

given system be described with a set of n pairs {(P1, ψ1), (P2, ψ2), . . . , (Pn, ψn)}, such

that scenario Pk has opcode ψk ∈ {0, 1}|X| over set X of operational variables. Then

the objective is to synthesise a CPOG H(V , E, X, ρ, φ) such that requirement (7.1) is

satisfied and the following additional constraint holds:

∀1 6 k6 n, po(dg H|ψk) = Pk (7.2)

In other words, a complete projection H|ψk must generate partial order Pk. It is

assumed that the system specification does not contain two equal opcodes, i.e. ψj 6=ψk

for any 1 6 j < k6 n.

It is easier to solve the second problem because of the smaller search space: the

opcodes are already given and cannot be changed. The first problem can be trivially

reduced to the second one with an arbitrary encoding of the scenarios but this does not

yield the optimal solution. A better approach is presented in Section 7.4 which provides

84

CHAPTER 7. SYNTHESIS AND OPTIMISATION

an algorithm for automatic optimal opcode generation. The rest of this section addresses

the constrained synthesis problem from Definition 7.2.

The key idea behind the presented synthesis approach is to represent H as the

following linear combination of complete projections Hk = dg−1(po−1 Pk):

H= f1H1 + f2H2 + ...+ fnHn =
∑

16k6n

fkHk =
∑

16k6n

fkdg−1(po−1 Pk) (7.3)

where encoding functions fk ∈F(X) are orthogonal, i.e. fjfk = 0, 1 6 j < k6n and are

not contradictions: fk 6= 0, 1 6 k6 n. This construction is substantiated by the following

proposition.

Proposition 7.1. Linear combination (7.3) satisfies the synthesis requirement (7.1).

Proof. We have to prove that P
(∑

16k6n fkdg−1(po−1 Pk)
)

= {P1, P2, . . . , Pn}. This can

be done in several steps by application of definitions and theorems from CPOG algebra.

1. Let H ′k = fkHk. Observe that graphs H ′k are well-formed (by Theorem 5.3) and

have no mutual encoding conflicts due to the orthogonality of encoding functions

fk. Therefore, P
(∑

16k6nH
′
k

)
=
⋃

16k6nP(H ′k) by Theorem 5.2.

2. Now one can see that P(H ′k) = P(fkHk) = P(Hk) because functions fk are not

contradictions and the restriction functions of graphs Hk are equal to 1 (see Defi-

nition 5.4 and Theorem 5.3).

3. The last step is to notice that P(Hk) = P(dg−1(po−1 Pk)) = {Pk} by Remark 5.2.

This completes the proof:

P

(∑
16k6n

fkHk

)
=

⋃
16k6n

P(fkHk) =
⋃

16k6n

P(dg−1(po−1 Pk)) =
⋃

16k6n

{Pk}

In order to satisfy the additional synthesis requirement (7.2) it is necessary to

constrain encoding functions fk. This is formalised in the next proposition.

85

CHAPTER 7. SYNTHESIS AND OPTIMISATION

Proposition 7.2. Linear combination (7.3) satisfies the additional synthesis require-

ment (7.2) if encoding functions fk and opcodes ψk meet the following condition:

∀1 6 k6 n, fk|ψk = 1

Proof. We have to prove that po(dg H|ψk) = Pk for every 1 6 k 6 n. Consider complete

projection H|ψk =
(∑

16j6n fjHj
)
|ψk . Due to the orthogonality of encoding functions and

the fact that fk|ψk = 1 it is possible to conclude that

H|ψk =

(∑
16j6n

fjHj

) ∣∣∣∣∣
ψk

= (0 ·H1 +0 ·H2 + · · ·+1 ·Hk+ · · ·+0 ·Hn)|ψk =Hk|ψk

Since Hk = dg−1(po−1 Pk), it is known that Hk does not contain any conditional vertices

or arcs (by Definition 5.4). Therefore projection |ψk does not affect it and Hk|ψk = Hk.

This leads us to

po(dg H|ψk) = po(dg Hk) = po(dg (dg−1(po−1 Pk))) = po(po−1 Pk) = Pk

because operations dg and dg−1 (as well as po and po−1) cancel each other. This is

true for every 1 6 k6 n, and thus (7.2) holds.

The following example demonstrates application of the proposed synthesis method to

the simple processing unit from Example 5.2.

Example 7.1. In this example the system contains two scenarios specified with partial

orders P1 and P2 shown in Figures 7.2(a, b). Opcodes ψ1 = (1) and ψ2 = (0) are also

provided; they are defined on a single operational variable X= {x}. According to (7.3) the

resultant CPOG H containing both P1 and P2 should be of the form H= f1H1 +f2H2, where

f1 and f2 are orthogonal (f1f2 = 0) encoding functions. They should also satisfy conditions

f1|x=1 = 1 and f2|x=0 = 1 in order to meet the opcode constraints (7.2). Encoding functions

f1 = x and f2 = x trivially satisfy all the requirements: x ·x= 0, x|x=1 = 1, and x|x=0 = 1.

86

CHAPTER 7. SYNTHESIS AND OPTIMISATION

a

d

b

c

(a) P1

a

d

b

e

(b) P2

=+

f1 H1 + f2 H2 = H

x

a

d

b

c

a

d

b

c: x e: x
_

x

x

x
_

x
_

x
_

x
_

ρ(x)=1

x _

a

d

b

ex

(c) Synthesis of graph containing both P1 and P2

Figure 7.2: CPOG synthesis example

Therefore, the synthesised graph H is equal to

H= f1H1 + f2H2 = x ·dg−1(po−1 P1)+x ·dg−1(po−1 P2)

This synthesis process is shown in Figure 7.2(c) together with the resultant graph H. It

can be easily checked that this graph contains both P1 and P2 as its projections under

opcodes ψ1 = (1) and ψ2 = (0) (and it has already been demonstrated in Figure 5.3).

The correspondence between system scenarios and their opcodes is called an enco-

ding scheme. Several encoding schemes are often encountered in practice, namely, one

hot, binary, and matrix encodings. The following subsections describe these schemes

and give characterisations of the synthesised CPOGs in terms of encoding functions fk.

7.1.1 One hot encoding scheme

In this scheme n operational variables X = {x1, x2, . . . , xn} are used and scena-

rios {P1, P2, . . . , Pn} are encoded with one hot opcodes [105], i.e. P1 has opcode

(x1, x2, x3, . . .) = (1, 0, 0, . . .), P2 — (x1, x2, x3, . . .) = (0, 1, 0, . . .), P3 — (x1, x2, x3, . . .) =

(0, 0, 1, . . .), etc.

Functions fk are set to

fk = xk
∏

16j6n
j6=k

xj

which are orthogonal and satisfy the opcode constraints.

87

CHAPTER 7. SYNTHESIS AND OPTIMISATION

=+

a:x1x2
_

x1x2
_

+

b: x1x2
_

x1x2
_

+

x1x2
_

x1x2
_

x1 x2ρ(,)= x1x2
_

x1x2
_

+

x1x2
_

b

a

x1x2
_

b

a

f1 H1 + f2 H2 = H

Figure 7.3: One hot CPOG synthesis

Example 7.2. Figure 7.3 shows an example of synthesis of a CPOG containing partial

orders P1 = {a ≺ b} and P2 = {b ≺ a} with opcodes ψ1 = (1, 0) and ψ2 = (0, 1). The

operational variables set is {x1, x2} and the encoding functions are f1 = x1x2 and f2 = x1x2.

The result H = f1H1 + f2H2 contains both partial orders as projections H|x1=1, x2=0 and

H|x1=0, x2=1. It is possible to optimise it reducing the literal count from 16 to 4 (see

Section 7.3 for details of the optimisation):

a: x1x2
_

x1x2
_

+

b: x1x2
_

x1x2
_

+

x1x2
_

x1x2
_

x1 x2ρ(,)= x1x2
_

x1x2
_

+

~

x1 x2ρ(,) = x1 x2+

x1 x2

a

b
(7.4)

The one hot scheme provides a simple and intuitive way of scenario encoding but

it is inefficient because of the large size of operational variables set: |X| = n. It is not

practical for synthesis of CPOGs containing a large number of scenarios.

7.1.2 Binary encoding scheme

In the binary encoding scheme onlym= dlog2ne operational variables X= {x1, x2, . . . , xm}

are used to encode n given system scenarios, and this is the theoretical minimum. The

opcodes of the scenarios are binary: ψ1 = (0, 0, 0, . . .), ψ2 = (1, 0, 0, . . .), ψ3 = (0, 1, 0, . . .),

ψ4 = (1, 1, 0, . . .), etc.

88

CHAPTER 7. SYNTHESIS AND OPTIMISATION

Let bjk denote j-th bit of integer number k. Then we define encoding functions fk as:

fk =

m∏
j=1

(xj⇔ bj(k−1))

For example, if n = 3 we get f1 = (x1⇔ 0)(x2⇔ 0) = x1x2, f2 = (x1⇔ 1)(x2⇔ 0) = x1x2,

and f3 = (x1⇔ 0)(x2⇔ 1) = x1x2 resulting in natural binary encodings of the three partial

orders: ψ1 = (0, 0), ψ2 = (1, 0) and ψ3 = (0, 1).

Application of the binary encoding scheme to the synthesis of a CPOG containing

partial orders P1 = {a ≺ b} and P2 = {b ≺ a} leads to a very compact solution (only 2

literals):

=+x
_

b

a

x

b

a a

b

x
_

x

ρ(x)=1

Observe the difference between this result and the optimised version of the one hot

solution (7.4). As one can see the selected encoding scheme does not affect the structure

of the synthesised CPOG. However, it affects the complexity of its vertex/arc conditions

and the size of the physical controller implementation.

7.1.3 Matrix encoding scheme

In this scheme the number of operational variables does not depend on the number

of scenarios. It depends only on the number of different events in the system |V |. In

particular, operational variables form operational matrix X= {xjk, j= 1 . . . |V |, k= 1 . . . |V |}.

The matrix has enough information capacity to describe any partial order P(V ′, ≺) on

a subset V ′ ⊆ {e1, e2, . . . , e|V |} of |V | events. The opcode of the scenario specified with

89

CHAPTER 7. SYNTHESIS AND OPTIMISATION

partial order P(V ′, ≺) is defined as

ψ(xjk)
j6=k

=


1 if (ej ∈ V ′)∧ (ek ∈ V ′)∧ (ej ≺ ek)

0 otherwise

ψ(xkk) =


1 if (ek /∈ V ′)

0 otherwise

(7.5)

Instead of direct application of (7.3) to this encoding scheme we can use a generic solu-

tion with its subsequent optimisation taking into account the given scenarios. Generic

solutions for systems with two and three events are given below1:

x12 x21

a:x11
_

b: x22
_

a:x11
_

b: x22
_

c: x33
_

x12
x21

x31

x13
x
32

x
23

For example, application of (7.5) to the encoding of partial orders P1 = {a ≺ b} and

P2 = {b≺ a} gives us these opcodes:

ψ1,2 =

 x11 x12

x21 x22

 : ψ1 =

 0 1

0 0

 , ψ2 =

 0 0

1 0


Diagonal elements xkk are constant zeros, and in this case the generic matrix graph

can be reduced to the one hot solution (up to variable renaming – see (7.4)):

~x12 x21

a:x11
_

b: x22
_

a

b

x12 x21

1A generic solution for an arbitrary number of events V = {e1, . . . , e|V |} is a fully connected graph K|V |

with conditions φ(ek) = xkk and φ((ej, ek)) = xjk.

90

CHAPTER 7. SYNTHESIS AND OPTIMISATION

The matrix encoding scheme is general in the sense that it can be used to encode any

possible behavioural scenario of a system with n events in a reasonably compact and

intuitive way. It is a trade-off between the one hot scheme which is straightforward but

inefficient in terms of the number of operational variables and the binary scheme which

has the least possible opcode length but more complicated encoding functions that are

not affordable in some cases. The efficiency of the matrix encoding scheme allowed us

to specify and synthesise phase encoding repeaters (see Subsection 8.2.2) for up to 10

wires having 10! = 3628800 different behavioural scenarios.

7.1.4 Generalised synthesis problem

The presented synthesis problem (Definitions 7.1 and 7.2) can be generalised: it is pos-

sible to synthesise a CPOG not only from partial orders but from a mixture of partial

orders and CPOGs. This allows the existing CPOG specifications to be reused without

their explicit decomposition into separate partial orders. Thus, one can add new beha-

vioural scenarios into the specification of a system and avoid its complete resynthesis.

Definition 7.3. (Generalised CPOG synthesis problem). Let a system be specified with a

set of partial orders {P1, P2, . . . , Pn} and a set of CPOGs {H1, H2, . . . , Hm}. The objective

is to synthesise a CPOG H(V , E, X, ρ, φ) such that

P(H) = {P1, P2, . . . , Pn}∪P(H1)∪P(H2)∪·· ·∪P(Hm) (7.6)

i.e. graph H should contain partial orders {P1, P2, . . . , Pn} and also all the partial orders

defined by graphs {H1, H2, . . . , Hm}.

It is not difficult to modify solution (7.3) to handle this generalisation. The extended

linear combination of the given partial orders and CPOGs is

H=
∑

16k6n

fkdg−1(po−1 Pk)+
∑

16k6m

Hk

where encoding functions fk must be orthogonal and not contradictions (as before) and

91

CHAPTER 7. SYNTHESIS AND OPTIMISATION

should also satisfy the following constraint:

∀1 6 j6 n, 1 6 k6m, fjρk = 0

i.e. no encoding conflicts are introduced during the synthesis.

If encoding conflicts are not a problem (for instance, if it is guaranteed that the

conflicts are false), it is possible to use asymmetric addition for their resolution2:

H=
∑

16k6n

fkdg−1(po−1 Pk) ~+

→∑
16k6m

Hk

In order to resolve true conflicts it is necessary to add the CPOGs and partial orders

in appropriate order. For example, if a system is described with two CPOGs H1 and H2

plus a single partial order P1 and we want to keep all the scenarios from H2 but would

like to substitute some scenarios from H1 with the new ones (in case of a true conflict)

then the proper order for asymmetric addition is:

H=H2 ~+ f1dg−1(po−1 P1) ~+ H1

The correctness of the presented constructions follows from Proposition 7.1 and CPOG

algebra theorems describing the properties of usual and asymmetric addition operations

(see Subsections 5.1.4 and 5.1.6).

The opcode constraints can be added to the generalised problem in the same way

as it was done for the basic synthesis case (see Proposition 7.2 for details): encoding

functions fk and opcodes ψk (if given) should satisfy condition fk|ψk = 1. This ensures

that synthesised graph H specifies partial order Pk under opcode ψk (unless there is a

true encoding conflict and opcode ψk has been redefined).

2Notation
−→∑

16k6mHk is used to denote asymmetric sum H1~+H2~+ . . . ~+Hm.

92

CHAPTER 7. SYNTHESIS AND OPTIMISATION

7.2 Mapping

As soon as the CPOG specification of a system is synthesised it can be mapped into

Boolean equations in order to produce a physical implementation of the specified micro-

controller. The mapping procedure presented below produces a set of equations whose

overall size is very similar to the size of the given CPOG, hence the size and latency

of the obtained microcontroller strongly correlates with the complexity of the original

graph. It is therefore important to optimise the CPOG specification as far as possible by

application of the CPOG optimisation techniques from Section 7.3, or by selecting the

best opcode assignment as explained in Sections 7.1 and 7.4.

According to the behavioural semantics defined in Subsection 5.2.3, a vertex v ∈ V is

enabled to fire iff

1. It belongs to the current complete projection, i.e. its condition is satisfied: φ(v) = 1;

2. All its preceding vertices have already fired, i.e. ∀u ∈ V , (u ∈ •v)⇒ fired(u).

This can be captured in terms of Boolean equations as follows:

enabled(v) = φ(v) ·
∏
u∈V

(
φ(u) ·φ((u, v))⇒ fired(u)

)
Now predicates enabled(v) and fired(v) should be replaced with real signals. This

can be done according to the microcontroller interface. For example, if the events are

controlled via a request-acknowledgement handshake interface as shown in Figure 7.4,

then we can substitute enabled(v) with signal req_v and fired(v) with signal ack_v:

req_v= φ(v) ·
∏
u∈V

(
φ(u) ·φ((u, v))⇒ ack_u

)
In other words a request for event v execution is sent as soon as acknowledgements from

the preceding events have been received. Note that the microcontroller in Figure 7.4

has also signals go and done which control its execution (the microcontroller starts

generating event handshakes only upon the receipt of signal go, and as soon as all the

93

CHAPTER 7. SYNTHESIS AND OPTIMISATION

Microcontroller

done

opcode
interface

opcode

go

event
handshakes

req_a
ack_a
req_b
ack_b

req_z
ack_z

Figure 7.4: CPOG-based microcontroller with request-acknowledgement event interface

events have been executed it issues signal done). The following set of equations captures

this fact:

req_v= go ·φ(v) ·
∏
u∈V

(
φ(u) ·φ((u, v))⇒ ack_u

)

done=
∏
v∈V

(
φ(v)⇒ ack_v

)
Notice that it is possible to treat signals go and done as events of the modelled system for

the sake of generality: event go should causally precede all the original system events,

while event done should causally follow from them. This generality helps to optimise

the final equations in a more consistent way. Formally, given a graph H(V , E, X, ρ, φ)

we extend it to graph H ′(V ′, E ′, X, ρ, φ ′) such that V ′ = V ∪ {go, done}, E ′ = E∪⋃
v∈V {(go, v)}∪

⋃
v∈V {(v, done)}, and conditions on the introduced vertices and arcs

are: φ ′(go) = φ ′(done) = 1 and φ ′((go, v)) = φ ′((v, done)) = 1 for all v ∈ V .

This is clarified with the following example.

Example 7.3. Let’s map the graph obtained in Example 7.1 (Figure 7.2) into Boolean

equations. Its extended version is shown in Figure 7.5(a): vertices {go, done} have

been added and connected to all the original vertices of the graph. It is mapped into

the following set of equations (the final equations after basic Boolean simplification are

shown in boxes):



req_a= go req_b= go

req_c= go ·x · (x⇒ ack_a) · (x⇒ ack_b) = go ·x ·ack_a ·ack_b

req_d= go · (x⇒ ack_c) · (x⇒ ack_a) · (x⇒ ack_b) = go · (x⇒ ack_c) · (x⇒ ack_a ·ack_b)

req_e= go ·x · (x⇒ ack_a) · (x⇒ ack_b) = go ·x ·ack_a ·ack_b

done= ack_a ·ack_b · (x⇒ ack_c) ·ack_d · (x⇒ ack_e)

94

CHAPTER 7. SYNTHESIS AND OPTIMISATION

a

d

b

c: x e: x
_

x

x

x
_

x
_

x
_

x
_

ρ(x)=1

x

go

done

(a) Extension of the synthesised graph

a

d

b

c: x e: x
_

ρ(x)=1

go

done

(b) Optimised graph

Figure 7.5: Mapping of equivalent CPOGs into Boolean equations

It is possible to optimise the graph by removing redundant dependencies and condi-

tions3, which results in the significantly smaller specification shown in Figure 7.5(b). The

mapping of the optimised graph into Boolean equations produces a better solution:



req_a= go req_b= go

req_c= x ·ack_a ·ack_b

req_d= (x⇒ ack_c) ·ack_a ·ack_b

req_e= x ·ack_a ·ack_b

done= ack_d · (x⇒ ack_e)

The total number of literals was reduced from 23 to 15, thus leading to the final gate-

level implementation shown in Figure 7.6. This example demonstrates that the result of

mapping significantly depends on the size of the given CPOG, thus it is necessary to

apply optimisation techniques introduced in the next section before mapping.

ack_e

ack_b
req_b

go

x
req_a
ack_a

req_c

done

req_d
ack_c

ack_d
req_e

Figure 7.6: Gate-level implementation of the mapped microcontroller
3A short clarification of the optimisation: dependency a ≺ d became unconditional because there is a

transitive dependency a ≺ c ≺ d if x = 1; dependency go ≺ c is removed because it is either transitive
(go≺ a≺ c if x= 1) or vertex c does not exist (if x= 0); etc. See Section 7.3 for more details.

95

CHAPTER 7. SYNTHESIS AND OPTIMISATION

ack_e

ack_b
req_b

go

x=0
req_a
ack_a

req_c

done

req_d
ack_c

ack_d
req_e

0

0

0

0

0

0

(a) Circuit projection under x= 0

ack_e

ack_b
req_b

go

x=1
req_a
ack_a

req_c

done

req_d
ack_c

ack_d
req_e

1

1

1

1
0

0

(b) Circuit projection under x= 1

Figure 7.7: ‘Projections’ of the synthesised controller under different opcodes

Figure 7.7 shows two ‘projections’ of the obtained controller under opcodes x= 0 and

x= 1. Note that gates generating request signals for events c and e are logically ‘swit-

ched off’ according to the given opcode; the OR-AND complex gates retained only their

AND functionality, e.g. the gate generating signal done is reduced to done=AND(req_d,

req_e) in Figure 7.7(a). It is not difficult to see that the circuit executes two partial orders

shown in Figure 7.2. See also two timing diagrams provided in Figure 7.8 that illustrate

signal switching activity in the controller.

req_a

req_b

ack_a

ack_b

done

x
go

req_d
ack_d

req_e
ack_e

(a) Timing diagram under x= 0

req_a

req_b

ack_a

ack_b

done

x
go

req_c
ack_c

req_d
ack_d

(b) Timing diagram under x= 1

Figure 7.8: Timing diagrams showing behaviour of the synthesised controller

96

CHAPTER 7. SYNTHESIS AND OPTIMISATION

7.3 Optimisation

It has been demonstrated in the previous section that the size of the physical controller

implementation is proportional to the size of its CPOG specification measured as the total

number of literals in its conditions. There are different optimisation techniques [71] which

reduce the size of a given CPOG by functional logic minimisation and/or by exploiting

structural graph properties.

All the techniques presented here preserve the equivalence class of a given CPOG (i.e.

the resultant optimised graph is equivalent to the given one) and the original encodings

of partial orders (i.e. the opcodes of scenarios remain the same).

7.3.1 Logic minimisation

The most evident optimisation opportunity comes from the fact that all vertex/arc condi-

tions φ in a CPOG H(V , E, X, ρ, φ) can be minimised by taking into account the don’t

care set [60][62][85] defined with restriction function ρ. In particular, a CPOG defines

scenarios only for those opcodes ψ which are allowed by the restriction function, i.e.

ρ|ψ = 1. Otherwise system behaviour is undefined, therefore it is not important to what

values conditions φ evaluate under disallowed opcodes ψ for which ρ|ψ = 0.

Formally, let z ∈ V ∪E be an arc or a vertex in a graph H(V , E, X, ρ, φ) having

condition f=φ(z). Then it is possible to replace function f with another (possibly simpler)

function g iff the following Boolean equation is a tautology4:

ρ⇒ (f⇔ g) (7.7)

The intuition here is that function g must evaluate to the same value as f only for valid

opcode variable assignments ψ (when ρ|ψ = 1) and is unconstrained otherwise.

Consider one hot synthesis example shown in Figure 7.3. Restriction function ρ =

x1x2 +x1x2 defines two allowed opcodes (1, 0) and (0, 1). As shown in (7.4) it is possible

to replace arc condition φ((a, b)) = x1x2 with a simpler one: φopt((a, b)) = x1. This
4A Boolean function is called tautology iff it is true under any possible assignment of its parameters [56].

97

CHAPTER 7. SYNTHESIS AND OPTIMISATION

substitution is validated by (7.7):

ρ⇒ (f⇔ g) = (x1x2 +x1x2)⇒ (x1x2⇔ x1) = x1x2 +x1x2 +x1 +x1x2 = x1 +x1 = 1

Thus, φopt((a, b)) is a correct optimisation of condition φ((a, b)). See also Table 7.1

which clarifies why this works.

A general substitution g = (ρ⇒ f) appears to be quite good in practice (function g

is forced to evaluate to 1 in all don’t care entries of the truth table thus simplifying the

min-terms). According to (7.7) it is a valid substitution, because

ρ⇒ (f⇔ g) = ρ⇒ (f⇔ (ρ⇒ f)) = ρ⇒ (f(ρ+ f)+ f(ρ+ f)) = ρ⇒ (ρ+ f) = 1

This general substitution can be applied to the same example. Function φ(a) = x1x2+x1x2

can be substituted with φopt(a) = (ρ⇒ φ(a)) = ((x1x2 +x1x2)⇒ (x1x2 +x1x2)) = 1 (this

has been demonstrated in (7.4)).

Table 7.1 shows all four possible opcodes of two variables (x1, x2) and compares

the original conditions φ(a) and φ((a, b)) with their optimised versions φopt(a) and

φopt((a, b)). Note that the conditions match under the allowed opcodes (matching

values are highlighted with a bold font).

x1 x2 ρ φ((a, b)) φopt((a, b)) φ(a) φopt(a) result
0 0 0 0 0 0 1 don’t care
0 1 1 0 0 1 1 match
1 0 1 1 1 1 1 match
1 1 0 0 1 0 1 don’t care

Table 7.1: CPOG logic minimisation using don’t care set

7.3.2 Implicit arc exclusion

Whenever a vertex is excluded from a graph all its adjacent arcs are also excluded even

if their conditions evaluate to Boolean 1. This can be exploited as follows.

Let arc e= (a, b) have condition f= φ(e) and connect vertices with conditions va =

φ(a) and vb =φ(b). It is possible to substitute function f with another function g iff the

98

CHAPTER 7. SYNTHESIS AND OPTIMISATION

following relation is a tautology:

vavbρ⇒ (f⇔ g) (7.8)

In other words, the don’t care set is extended to include those opcodes in which arc e is

implicitly excluded because of the exclusion of one of its vertices (cf. equation (7.7)).

For example, consider arc (a, c) in the CPOG from Figure 7.5(a). We would like to

substitute condition f = x with constant g = 1. However, this is not a valid substitution

according to (7.7) because f 6= g in the second scenario (x= 0). On the other hand vertex

c is excluded from the graph in this scenario, therefore the actual value of the condition

on arc (a, c) is not important. This is captured in (7.8) which considers g to be a valid

substitution of f. Similar optimisation is applicable to arcs (a, e), (b, c), (b, e), and (c, d)

of the graph.

7.3.3 Transitive arc reduction

Another optimisation opportunity is to reduce the transitive arc conditions. For instance,

dependency (a, d) in Figure 7.5(a) is transitive with respect to path a→ c→ d when

x= 1. Clearly, the existence of an indirect dependency between events a and d is enough

to establish the order relation between them, hence the condition φ((a, d)) = x can be

optimised into φopt((a, d)) = 1. Arc (b, d) can be optimised in the same way leading to

the graph shown to the right.

Formally, let arc e= (a, b) have condition f=φ(e) and a transitive path 〈a, b〉 exist

in graph H\{e} if condition t is true. Then it is possible to substitute function f with

function g iff the following relation is a tautology:

tρ⇒ (f⇔ g)

In other words all the opcodes in which the transitive path 〈a, b〉 is activated (t= 1) are

added to the don’t care set of arc (a, b). It is possible to combine this technique with

99

CHAPTER 7. SYNTHESIS AND OPTIMISATION

the previous one (7.8) to obtain the general arc optimisation equation:

vavbtρ⇒ (f⇔ g) (7.9)

This general equation captures all the optimisation techniques presented above: logic

minimisation (term ρ in the left part), implicit arc exclusion (term vavb), and transitive

arc reduction (term t). It is important that the optimisation of a particular vertex or arc

condition leaves the graph in the same equivalence class. This means that it is possible

to optimise conditions in arbitrary order without affecting the final result what leads to

efficient optimisation algorithms.

7.3.4 Common factors extraction

The three optimisation techniques presented above can be applied to every vertex or

arc independently from the others. However, the actual circuit implementation of the

controller may share the common factors (subexpressions) of conditions for the purpose

of area minimisation. This requires the joint optimisation of graph conditions, which is a

more time consuming procedure and may not be affordable for large designs.

CPOG specification5 below can serve as a simple demonstration of common factors

extraction:

A:x0 y0+ x1+ y1+

B:x0 y0+ x1+ y1+

x0y1
__

x1y0
__

~ x0y1
__

A: αβ
_

B: αβ
_

α= x1y0
__

β=

Vertex conditions φ = x0 +y0 + x1 +y1 can be expressed in terms of arc conditions

α = x0y1 and β = x1y0 as φopt = αβ leading to the equivalent CPOG shown to the

right. This optimisation technique can significantly reduce complexity of a large graph.

However, the utilisation of common factors may slow down the resultant controller in
5This is a CPOG specification of dual rail ParSeq controller which is discussed in details in Chapter 8.

100

CHAPTER 7. SYNTHESIS AND OPTIMISATION

some cases, therefore, finding an appropriate trade-off between area and performance is

necessary.

7.4 Optimal encoding of partial orders

The previous sections presented CPOG synthesis methods for systems with predefined

opcodes of scenarios. There are cases, however, when there are no requirements on the

opcodes and a designer is free to assign them arbitrarily. This section presents a method

for optimal encoding of a given set of scenarios so that a CPOG containing all of them

has the minimum complexity, thereby leading to the smallest and fastest controller [67].

The problem of optimal encoding of a set of partial orders is equivalent to that of

the synthesis of optimal instruction codes in the context of micro-architecture design.

Automated design of general purpose processing cores, application-specific instruction-

set processors (ASIPs), and distributed Systems-on-Chip has recently gained a lot of

attention from academia and industry [64]. New formalisms for data-path modelling are

proposed [93], hardware/software co-design methodology [6] is actively developed and

applied for ASIP performance improvement, more specific techniques (such as compiler-

directed instruction set optimisation [111]) are constantly introduced into the instruction

set architecture (ISA) design domain.

There are methods for automated ISA synthesis for a target platform (according to

available system resources and data-path components) and for given software requi-

rements (e.g. aimed to ease compilation or reduce program length). These methods

eventually produce a structured set of instructions satisfying certain properties (ortho-

gonality, completeness, regularity, etc.); instructions are grouped into classes and each

class is allocated a certain opcode interval within the total code space [77]. At this point

automation is typically stopped or becomes trivial: the instructions are given arbitrary

codes within the allocated intervals. This limits performance due to instruction decoder

circuitry overheads. The problem is usually approached by heuristics or application-

specific optimisation techniques (see, for example, [55]). In this section we try to solve

the general problem of optimal instruction encoding with the aid of the CPOG model.

101

CHAPTER 7. SYNTHESIS AND OPTIMISATION

Example 7.4. Consider a processing unit that has an accumulator registerA and a general

purpose register B, and computes four different arithmetic functions: (−a), (a+b), (a−b),

(−a−b). The event domain consists of the following five events:

a) Load register A from memory;

b) Load register B from memory;

c) Negate value stored in one of the registers;

d) Compute sum A+B and store the result in A;

e) Save register A into memory.

Partial orders of the four behavioural scenarios are shown in Figure 7.9. For instance,

the second scenario (computation of (a+b) shown in Figure 7.9(b)) consists of events

a and b happening concurrently (loading of registers A and B), which are followed by

event d (addition) and finally by event e (saving the result).

c
e

a

(a) (−a)

d

b

e

a

(b) (a+b)

c d

b

e

a

(c) (a−b)

c d

b

e

a

(d) (−a−b)

Figure 7.9: Four DAGs specifying the given scenarios

Before the synthesis of a CPOG H(V , E, X, ρ, φ) containing these partial orders it

is necessary to encode them, i.e. to derive a set of control signals X = {x1, x2, . . . , xm}

and a set of Boolean vectors {ψ1, ψ2, . . . , ψn}, ψk ∈ {1, 0}m (opcodes), each of them

corresponding to a particular partial order. Note that in this section restriction function ρ

is considered to be equal to the disjunction of allowed encodings for clarity. Optimisation

of ρ is a separate problem because its size does not affect the size of the specified

102

CHAPTER 7. SYNTHESIS AND OPTIMISATION

e
d: x+y

b: x+y

c: x+y

a

x

y
_

y

_

_

(a) Binary encoding

e
d: xc: x

a

x

1
_

b: x1
_

2
_

1

x3

x4

(b) One-hot encoding

e
d: x

b: x

c: y

a

z

z

_x
_

(c) Optimal encoding

Figure 7.10: CPOGs synthesised using different encoding schemes

controller, though it can be critical for verification algorithms where ρ appears as a term

in SAT instances (see Chapter 6).

Let’s examine several possible encoding schemes to see how a particular scheme

affects the resultant CPOG.

Binary encoding scheme (Subsection 7.1.2)

This scheme uses the least possible number of operational variables m= dlog2ne to

encode n given partial orders. In this example two variables X = {x, y} are used, and

the opcodes are ψ1 = (00), ψ2 = (01), ψ3 = (10), and ψ4 = (11). Figure 7.10(a) shows the

synthesised CPOG. It has been significantly optimised using the techniques presented

in the previous section; the overall number of literals in vertex/arc conditions is 9.

One hot encoding scheme (Subsection 7.1.1)

This scheme uses four variables to encode the scenarios: ψ1 = (1000), ψ2 = (0100),

ψ3 = (0010), and ψ4 = (0001). The synthesised CPOG is shown in Figure 7.10(b). Condi-

tions on vertices {b, c, d} became simpler, and the total literal count was reduced to 6.

The price for that is the increase in the number of operational variables from 2 to 4.

Optimal encoding scheme

It turns out that there is a middle-ground solution which uses the same number of

literals but only 3 variables X= {x, y, z}. The partial orders are encoded as ψ1 = (010),

ψ2 = (100), ψ3 = (111) and ψ4 = (110). The synthesised CPOG is shown in Figure 7.10(c).

We call this encoding scheme optimal, because it is better than the binary scheme (the

resultant CPOG has fewer literals which leads to a simpler controller implementation),

103

CHAPTER 7. SYNTHESIS AND OPTIMISATION

|X|

C(H)

lower bound = C(H)1

lower bound = log n
2

binary encoding

one-hot encoding

matrix encoding

|V|
2

n

optimal encoding

m-of-n encoding

H: CPOG
H : 1-restricted CPOG1
C(H): size of H
X: opcode variables
V: different events
n: number of scenarios

Figure 7.11: Size of specification vs number of control signals diagram

and it is better than the one-hot scheme (it uses fewer operational variables thus reducing

the number of opcode wires coming to the controller from environment).

Figure 7.11 shows a Pareto diagram comparing different encoding schemes according

to the number of opcode variables they use and the size of the resultant CPOG. One

can see that the matrix encoding scheme (see Subsection 7.1.3) produces CPOGs with

minimum possible size, but uses significantly more variables than the binary encoding

scheme. This section aims to reduce the number of used variables but stay on the lower

bound of CPOG complexity. In practice, the choice of a particular encoding scheme is

crucial. The resultant CPOGs (and controllers) can differ in size by several orders of

magnitude depending on the chosen opcodes of scenarios. The next subsection provides

a formal definition of CPOG optimality criteria.

7.4.1 CPOG optimality criteria

A common measure of complexity of a Boolean function f is denoted as C(f) and is defined

to be the total count of literals in it [107], e.g. C(x ·z+y ·z) = 4, C(1) = 0, etc.

Definition 7.4. A CPOG H(V , E, X, ρ, φ) is called k-restricted iff its vertex and arc

conditions φ are functions having at most k literals, i.e. ∀z ∈ V ∪E, C(φ(z)) 6 k.

Note, that this definition does not explicitly state whether H actually contains such z

104

CHAPTER 7. SYNTHESIS AND OPTIMISATION

that C(φ(z)) = k or not. If this fact needs to be emphasised we use a stronger definition.

Definition 7.5. A k-restricted CPOG is called strongly k-restricted iff there is a vertex

or an arc with condition having exactly k literals, i.e. ∃z ∈ V ∪E, C(φ(z)) = k.

A 0-restricted CPOG is therefore a DAG because it does not contain any conditional

vertices or arcs. A 1-restricted CPOG contains only functions with single literals (possibly

inverted) or constants as its vertex and arc conditions.

Section 7.2 showed that graph complexity C(H) strongly correlates with the size and

speed of the physical implementation of a controller specified with H. Hence, we use

C(H) as an adequate estimate of the efficiency of a CPOG H. The following proposition

states that any optimal (with respect to measure C) CPOG is bound to be 1-restricted.

Proposition 7.3. (Optimality). For any strongly k-restricted (k > 1) CPOG H there exists

an equivalent 1-restricted CPOG H1 such that C(H1)< C(H).

Proof. (Constructive). Let n be the number of partial orders contained in H(V , E, X, ρ, φ),

and {ψ1, ψ2, . . . , ψn} be their opcodes. It is possible to select a z+ ∈ V ∪E such that

C(φ(z+))> 1 (such z+ must exist because H is strongly restricted).

Consider a CPOG H ′(V , E, X∪ {x}, ρ ′, φ ′) with the extended opcode variables set (a

new variable x is added), where

∀z ∈ V ∪E, φ ′(z) =


φ(z) if z 6= z+

x if z= z+

In other words, we replaced function φ(z+) which had more than one literal with

function φ ′(z+) = x which consists of a single literal, thereby reducing the overall CPOG

size by C(φ(z+))−1> 0 literals.

New encodings {ψ ′1, ψ ′2, . . . , ψ ′n} are obtained by adding an extra bit ak (which is an

assignment of x in k-th partial order) to the original encoding vectors: ψ ′k = ψk ◦ak6,

where ak = φ(z+)|ψk .
6Operation ‘◦’ denotes concatenation of Boolean vectors, e.g. 1011◦0 = 10110.

105

CHAPTER 7. SYNTHESIS AND OPTIMISATION

This procedure simplifies the original graph by relaxing one of the conditions without

affecting any contained partial orders. It can be repeated iteratively until the resultant

graph becomes 1-restricted (let it be denoted as H1). Note that every iteration reduces

the size by at least 1 (because C(φ(z+))−1> 0), which proves the proposition.

Although the above proposition provides a polynomial algorithm for the reduction

of any CPOG to a 1-restricted form, it is rather naive in terms of the resultant size of

opcode variables set X. It adds as many new variables as there are ‘heavy’ (C(φ(z+))> 1)

conditions in the original CPOG. In the worst case it uses |V |2 additional variables which

can be impractical. The next subsection presents a method which uses the least possible

number of variables.

7.4.2 Optimal encoding and synthesis

On the basis of Proposition 7.3 it is possible to formulate the problem of optimal encoding

of partial orders.

Definition 7.6. (Optimal CPOG encoding and synthesis problem). Let {P1, P2, . . . , Pn}

be a given set of n partial orders. The objective is to synthesise a 1-restricted CPOG

H(V , E, X, ρ, φ) and to generate opcodes {ψ1, ψ2, . . . , ψn} such that synthesis require-

ments (7.1) and (7.2) are satisfied, i.e.

(
P(H) = {P1, P2, . . . , Pn}

)
∧

(
∀1 6 k6 n, po(dg H|ψk) = Pk

)

and the size of operational variables set |X| is minimised.

An encoding constraint e(z) ∈ {0, 1, −}n for a vertex or arc z ∈ (V ∪E) is a vector of n

elements, each corresponding to one of n given partial orders. Element e(z)[k], 1 6 k6n

is equal to 1 iff condition φ(z) should evaluate to 1 in projection H|ψk in order to produce

correct partial order Pk; e(z)[k] = 0 iff the condition should evaluate to 0; and e(z)[k] = −

iff φ(z) can evaluate either to 1 or to 0 (a don’t care value).

Table 7.2 shows all the encoding constraints for the synthesis problem from

Example 7.4. For instance, vertices a and e appear in all the four scenarios, so

106

CHAPTER 7. SYNTHESIS AND OPTIMISATION

Vertices/arcs Encoding constraint e(z) Optimal encoding φ(z)

z ∈ V ∪E (−a) (a+b) (a−b) (−a−b) w/o inversions with inversions
a, e 1 1 1 1 1 1
e≺ a 0 0 0 0 0 0
c≺ b − − 0 0 0 0

c≺ a, e≺ c 0 − 0 0 0 0
a≺ b, b≺ a,
d≺ a, d≺ b − 0 0 0 0 0
e≺ b, e≺ d
a≺ d − 1 1 1 1 1

a≺ e, b≺ e − − − − 0 0
b≺ c − − 1 − 1 1
b≺ d − 1 − 1 1 1
c≺ e 1 − − 1 1 1
d≺ e − 1 1 − 1 1
b, d 0 1 1 1 x x

c 1 0 1 1 y y

a≺ c 1 − 0 − z x

c≺ d − − 1 0 w z

d≺ c − − 0 1 z z

Table 7.2: Encoding constraints for optimal CPOG synthesis in Example 7.4

e(a) = e(e) = 1111 which means that φ(a) = φ(e) = 1. On the other hand, vertices b

and d are not present in the first scenario, and therefore their encoding constraint is

e(b) = e(d) = 0111. First 11 rows of the table contain trivial encoding constraints, i.e.

constraints which do not contain e(z)[j] = 0 and e(z)[k] = 1 simultaneously (j 6= k). Ver-

tices/arcs z ∈ V ∪ E with trivial encoding constraints can be encoded with a Boolean

constant (φ(z) = 0 or φ(z) = 1, see column ‘Optimal encoding’ in the table). Non-trivial

encoding constraints (the last 5 rows of the table) cannot be satisfied with a constant

value, and therefore we need to introduce operational variables to encode them.

Don’t care values appear in an encoding constraint in two cases:

· An arc e= (v≺ u) is not present in a partial order together with one of its vertices.

In this case function φ(e) is allowed to evaluate not only to 0 but also to 1, because

if one of its vertices is excluded from the partial order (φ(v) = 0 or φ(u) = 0) then the

arc is also excluded regardless of φ(e) value (cf. implicit arc exclusion optimisation

technique from Subsection 7.3.2).

107

CHAPTER 7. SYNTHESIS AND OPTIMISATION

· An arc e= (v≺ u) is transitive (i.e. v≺ t≺ u for some t ∈ V). In this case function

φ(e) is allowed to evaluate not only to 1 but also to 0, because the transitive

dependency v≺ t≺ u is enough to guarantee v≺ u ordering (similar to transitive

arc reduction used in Subsection 7.3.3).

Encoding constraint e(a ≺ c) = 1−0− combines these two cases. The first don’t care is

due to exclusion of vertex c in the second scenario (e(c) = 1011). And the second don’t

care is due to transitive dependency a ≺ d ≺ c in the fourth scenario (e(a ≺ d) = −111

and e(d≺ c) = −−01).

Two encoding constraints e1 and e2 are called conflicting iff

∃1 6 k6 n, (e1[k] = 1∧e2[k] = 0)∨ (e1[k] = 0∧e2[k] = 1)

In other words, it is impossible to find a Boolean vector satisfying both constraints (up

to don’t cares). For example, e(a ≺ c) = 1−0− and e(c ≺ d) = −−10 are conflicting,

because e(a ≺ c)[3] = 0 and e(c ≺ d)[3] = 1. On the other hand, e(a ≺ c) = 1−0− and

e(d ≺ c) = −−01 are not conflicting since vector 1001 satisfies both of them. It means

that they both can be resolved with the same variable (variable z in Table 7.2, see column

‘Optimal encoding w/o inversions’).

The problem of optimal encoding can now be formulated in terms of conflicting enco-

ding constraints: find an assignment of variables {x1, x2, . . . , xm} to encoding constraints

such that all pairs of conflicting constraints are assigned different variables and m is

minimised. The following proposition states that this problem is within the NP-complete

complexity class.

Proposition 7.4. (NP-completeness). Optimal encoding problem is NP-complete.

Proof. A vertex colouring of a DAG G(V , E) is an assignment clr : V → {1, 2, . . . , m}

of colours to vertices such that any two adjacent vertices have different colours, i.e.

∀(x, y) ∈ E, clr(x) 6= clr(y). The problem of finding a vertex colouring with the minimum

number of colours m is known to be NP-complete [22]. Any instance of the optimal

encoding problem is trivially an instance of the vertex colouring problem. To claim NP-

108

CHAPTER 7. SYNTHESIS AND OPTIMISATION

--01

0111

1011

1-0---10

(a) Conflict graph

--01

0111

1011

1-0---10

x

y

z zw

(b) Optimal vertex coloring

Figure 7.12: Conflict graph and its optimal colouring

completeness it is also necessary to prove the reverse statement which is done by the

following reduction.

In order to obtain an instance of the optimal encoding problem, consider an incidence

matrix M of a graph G(V , E). The size of matrix M is |V |× |E|. Thus, it has a row for

each vertex and a column for each edge. An element Mi,j indicates how a vertex vi is

incident to an arc ej (here we assume an arbitrary numbering of vertices and edges):

Mi,j =


1 if ∃x ∈ V , (vi, x) = ej

0 if ∃x ∈ V , (x, vi) = ej

− otherwise

One can see that M represents an instance of the optimal encoding problem: any

two rows i, j of M can be assigned the same variable if and only if vertices vi and vj are

not adjacent in G. So any optimal variable assignment for M induces an optimal vertex

colouring of G, and vice versa.

The described reduction uses polynomial number of steps and, therefore, proves the

NP-completeness of the optimal encoding problem.

Figure 7.12 shows the conflict graph for non-trivial encoding constraints from Table 7.2

and one of its optimal vertex colourings. It uses 4 ‘colours’ X= {w, x, y, z} and establishes

the following encoding of partial orders: ψ1 = (0011), ψ2 = (0100), ψ3 = (1110), and

ψ4 = (0111). This colouring is also given in column ‘Optimal encoding w/o inversions’ of

Table 7.2. The synthesised CPOG is shown in Figure 7.13(a); it has the same size and

109

CHAPTER 7. SYNTHESIS AND OPTIMISATION

e
d: x

b: x

c: y

a

z

w

z

(a) Optimal encoding (no inversions)

e
d: x

b: x

c: y

a

z

z

_x
_

(b) Optimal encoding (with inversions)

Figure 7.13: Synthesised CPOGs

structure as the one hot solution in Figure 7.10(b) but does not contain any negative

literals in its vertex/arc conditions.

Note that although encoding constraints e(c≺ d) = −−01 and e(d≺ c) = −−10 are

conflicting they complement each other. This opens another optimisation opportunity:

it is possible to resolve both constraints with a single variable x using conditions with

complementary literals x and x, thus potentially halving the number of used variables. In

order to exploit this, we build an extended conflict graph which contains two vertices for

every encoding constraint e(z): one for the original constraint and one for its inversion

e(z) which is defined as

∀1 6 k6 n, e(z)[k] =


0 if e(z)[k] = 1

1 if e(z)[k] = 0

− if e(z)[k] = −

Exactly one vertex of this pair {e(z), e(z)} has to be coloured. If the vertex corresponding

to an inverted constraint e(z) is chosen to be coloured with variable x it means that the

constraint is resolved with negative condition φ(z) = x. See Figure 7.14 for the extended

conflict graph of the example problem and its optimal colouring. This colouring can also be

found in column ‘Optimal encoding with inversions’ of Table 7.2. The synthesised CPOG is

shown in Figure 7.13(b) and the generated opcodes of partial orders are ψ1 = (010), ψ2 =

110

CHAPTER 7. SYNTHESIS AND OPTIMISATION

--101011

0-1-

1-0- --01

1000 0100

0111

--01 --10

x y

x

z

z

e(z)

_
e(z)

Figure 7.14: Extended conflict graph and its optimal colouring

(100), ψ3 = (111) and ψ4 = (110). This solution uses both positive and negative literals

for resolution of conflicting encoding constraints, e.g. φ(c ≺ d) = z and φ(d ≺ c) = z,

resulting in only three operational variables X= {x, y, z}. It is the optimal specification

for the processing unit from Example 7.4: there is no solution which uses fewer literals.

The vertex colouring problem can be converted into an instance of the SAT problem

for efficient solution (see Chapter 6 for SAT characterisations of other problems). An

automated tool for optimal encoding of partial orders has been developed and is presented

in Appendix.

7.5 Summary

This chapter described the stages of CPOG synthesis, mapping and optimisation that

are closely related to each other: in order to produce the optimal microcontroller it is

necessary to use the right combination of techniques available at every stage.

Several different CPOG synthesis problems have been formulated and solved in Sec-

tions 7.1 and 7.4:

· CPOG synthesis from partial orders (Definition 7.1);

· CPOG synthesis from partial orders with the opcode constraint (Definition 7.2);

111

CHAPTER 7. SYNTHESIS AND OPTIMISATION

· Generalised CPOG synthesis problem (Definition 7.3);

· Optimal encoding and synthesis problem (Definition 7.6).

The first three synthesis problems are efficiently solved using the structural techniques

based on CPOG algebra, while the fourth one belongs to the NP-complete complexity

class and can be characterised as a Boolean satisfiability problem.

As soon as a CPOG representation of a system is synthesised it can be passed on

to the stage of mapping, to generate a physical implementation of the specified micro-

controller. Section 7.2 described the process of mapping in detail and demonstrated

that in order to obtain efficient microcontroller it is necessary to apply CPOG optimi-

sation techniques which reduce complexity of a given graph by equivalence-preserving

transformations. The optimisation techniques were presented in Section 7.3.

The next chapter gives practical examples of application of the presented synthesis,

mapping and optimisation techniques while their tool support is discussed in Appendix.

112

Chapter 8

Application examples

This chapter presents three examples of application of the proposed specification and

synthesis methodology. The first section returns to ParSeq controllers which were first

discussed in Chapter 3 as a part of motivation behind the new model. It will be demons-

trated that different levels of abstraction for data- and control-related events help to

avoid combinatorial explosion in the size of system specification, something that plagues

the STG and FSM models and limits their applicability to large designs.

Section 8.2 presents a detailed study of multiple rail phase encoding protocol and

application of the CPOG model to synthesis of phase encoding controllers (they belong

to the class of n-permutator circuits introduced in Section 3.2). It should be mentioned

that these controllers gave the original inspiration for the new model because their

specification using conventional approaches led to the explicit enumeration of all the

behavioural scenarios and that was not affordable [65][71]. To deal with this problem a

generic Transition Sequence Encoder (TSE) circuit was developed [26] and a study of

its interesting properties revealed the opportunity for a novel approach to specification

and synthesis of general microcontrollers using overlaid partial orders with conditional

dependencies. This section presents an extensive set of design examples and benchmarks.

The last section of the chapter addresses the specification of a basic processor given

a set of its instructions. The processor contains branching scenarios thereby requiring

the use of the dynamic CPOG model [72] introduced in Section 5.2. Application of se-

113

CHAPTER 8. APPLICATION EXAMPLES

veral synthesis methods from the previous chapter is demonstrated and the results are

compared in terms of different criteria for the optimality of the obtained microcontroller.

This design example highlights potential of the CPOG model in the context of synthesis

of processor microarchitectures.

8.1 ParSeq controllers

In this section we finally come back to the specification and synthesis of ParSeq control-

lers introduced several chapters ago in Section 3.1, now with the decisive support of the

CPOG model.

To refresh the memory, a ParSeq controller is a circuit managing two handshakes

A = (req_a, ack_a) and B = (req_b, ack_b) that are executed either in parallel or in

sequence according to the given opcode. The event domain in this case consists of two

events V = {A, B} corresponding to the handshakes. The behavioural scenarios can be

represented with partial orders as shown in Table 8.1. Note that the spacer scenario (in

which the controller must be idle) is explicitly defined.

Scenario Partial order P(V , ≺)

V ≺ graph

Parallel A||B P1 {A, B} ∅
A B

Sequential A→ B P2 {A, B} {A≺ B}

A B

Sequential B→A P3 {A, B} {B≺A}

A B

Spacer P4 ∅ ∅ (empty)

Table 8.1: Four scenarios of a ParSeq controller

8.1.1 One hot encoding

At first, consider synthesis of a CPOG specification for a one hot ParSeq controller. The

set of operational signals is X= {x1, x2, x3}; Table 8.2 shows the one hot opcodes ψk of

partial orders Pk and the corresponding encoding functions fk. The spacer scenario is

assigned opcode (0, 0, 0), which is the spacer opcode in terms of one hot encoding [105].

114

CHAPTER 8. APPLICATION EXAMPLES

Partial order Pk P1 P2 P3 P4

Opcode ψk = (x1, x2, x3) (1, 0, 0) (0, 1, 0) (0, 0, 1) (0, 0, 0)

Encoding function fk x1x2x3 x1x2x3 x1x2x3 x1x2x3

Table 8.2: One hot encoding of ParSeq controller scenarios

Note that the four unused opcodes represent a don’t care set [62] and can be used for

logic optimisation of CPOGs and final signal equations (e.g. by using ESPRESSO [88], a

logic minimisation tool which supports don’t cares). Moreover, a restriction function ρ of

the synthesised graph describes this don’t care set in a very compact form: all encodings

ψ such that ρ|ψ = 0 are don’t cares. See Section 7.3 for details.

According to the CPOG synthesis method presented in Section 7.1, the resultant graph

is equal to linear combination H= f1H1 +f2H2 +f3H3 +f4H4 (where Hk= dg−1(po−1 Pk)).

It is shown (after logic minimisation) in Figure 8.1(a). It can now be mapped into logic

gates to produce a physical implementation of the controller as explained in Section 7.2:

req_a= (x1 +x2 +x3)((x1 +x2 +x3)x3⇒ ack_b)

req_b= (x1 +x2 +x3)((x1 +x2 +x3)x2⇒ ack_a)

which can be optimised taking into account don’t cares defined by the restriction function

ρ= x1x2 +x1x3 +x2x3:
req_a= x1 +x2 +x3ack_b

req_b= x1 +x3 +x2ack_a

This final equation is very easy to interpret: request to event A can be generated imme-

diately in the two first scenarios (A||B and A→ B) while in the third scenario (B→A) it

should happen only upon the arrival of acknowledgement from event B; opcode (0, 0, 0)

forces req_a to reset (the spacer scenario). Equation for req_b is similar, which leads

to the controller shown in Figure 8.1(b). Signal done acknowledges the completion of

both handshakes. It was verified that both PETRIFY [23] and 3D [110] synthesis tools ge-

nerate the same controller given the STG and FSM specifications from Figure 3.2, so all

the three specifications (in the STG, FSM and CPOG models) describe exactly the same

controller.

115

CHAPTER 8. APPLICATION EXAMPLES

A:

B:

x2 x3

x1 x2+ x3+

x1 x2+ x3+

ρ= x1x2
_

x1x3
_

+ x2x3
_

+
_ _ _

(a) CPOG specification

req_b

ack_a

done

ack_b

req_a

C

x3

x2

x1

one hot
opcode

interface

controlled
handshakes

(b) Gate-level implementation

Figure 8.1: Specification and implementation of one hot ParSeq controller

8.1.2 Dual rail encoding

Dual rail ParSeq controller (Subsection 3.1.2) has four opcode signals: X= {a0, a1, b0, b1}.

The encoding of the scenarios is shown in Table 8.3. Note that scenarios P2 and P3 have

more than one encoding: this reflects the fact that the controller can start generating

events after receiving only a partial opcode (OR-causality modelling has been shifted to

the stage of scenarios encoding in CPOG based synthesis flow). The graph containing

all these scenarios encoded with functions fk is shown in Figure 8.2(a).

The final equations are

req_a= a1 +b0 +(a0 +b1)ack_b

req_b= a0 +b1 +(a1 +b0)ack_a

Signal done should acknowledge the completion of both handshakes and also the

arrival of a complete opcode (this is needed because in some cases the controller can

finish the handshakes having only partial opcode information). The gate-level imple-

Pk P1 P2 P3 P4

Opcode (0, 1, 0, 1) (0, 1, 1, 0) (1, 0, 0, 1) (0, 0, 0, 0)

ψk = (a0, a1, b0, b1) (0, 0, 1, 0) (0, 0, 0, 1)

(0, 1, 0, 0) (1, 0, 0, 0)

Encoding function fk a0a1b0b1 b0 +a1b1 a0 +b1a1 a0a1b0b1

Table 8.3: Dual rail encoding of ParSeq controller scenarios

116

CHAPTER 8. APPLICATION EXAMPLES

ρ= a0b0
_

a1b0
_

+ a0b1
_

+
_ _ _

A:a0 b0+ a1+ b1+

B:a0 b0+ a1+ b1+

a0b1
__

a1b0
__

(a) CPOG specification

done

req_a

ack_b

ack_a

req_b

CC

C

a1

a0

b1

b0
dual rail
opcode

interface

co
n

tr
ol

le
d

h
an

d
sh

ak
es

(b) Gate-level implementation

Figure 8.2: Specification and implementation of dual rail ParSeq controller

mentation of the controller is shown in Figure 8.2(b). Signal done is decomposed into

several 2-input gates outlined with a dotted line. There can be several possible decom-

positions (note that complex gates generating signals req_a and req_b may have to be

decomposed as well). PETRIFY and 3D produce the same controller (without signal done

decomposition) given the corresponding specifications from Figure 3.3.

8.1.3 Observations

Let us draw some conclusions looking at the final ParSeq controller specification and

implementation.

As in the numerous examples before, the CPOG specification stays structurally un-

changed for different scenario encodings as can be seen in Figures 8.1(a) and 8.2(a).

This is a very important and convenient feature: it gives the designer an opportunity

to change encoding without graph resynthesis because it is possible to substitute ope-

rational variables with different ones and to rewrite the corresponding conditions. On

the other hand, the STG and FSM specifications show a high degree of sensitivity to

scenario encodings: a minor modification of encoding or protocol may lead to dramatic

changes in the specification as have been demonstrated in Section 3.1 (in particular, see

Figures 3.2, 3.3, and 3.4).

117

CHAPTER 8. APPLICATION EXAMPLES

The ParSeq controller example also demonstrates that the CPOG model is beneficial

for the specification and synthesis of controllers having both data and control path inter-

faces due to the different levels of abstraction used for data and control path modelling.

Data path events and all the choices taking place in a system’s behaviour are modelled

with Boolean functions, while control path events and concurrency associated with them

are modelled with partial orders. This combination of Boolean algebra and partial order

theory allows most of the powerful optimisation techniques well-studied in these theories

to be reused.

8.2 Phase encoding controllers

This section introduces a multiple rail phase encoding communication protocol and pro-

vides a scalable method for the generation of phase encoding controllers on the basis of

the CPOG model.

D’Alessandro et al. in [27] introduced the concept of phase encoding for on-chip

signalling, where the information is encoded into the sequence of events over a number

of lines: this provides a way to concentrate information in symbols in a more compact form

than by using binary encoding, with the added advantage of the reliability to single-event

upsets [26][28]. However, in these works no satisfactory method to generate encoders and

decoders for this communication scheme was provided: the presented structures were

limited to a small number of wires (rails), and the scalability of these controllers (in

terms of logic per number of wires in the channel) was not clearly described.

Phase encoding is a signalling technique that belongs to a class of self-synchronous

(cf. mesochronous [29]) protocols, where the validity of data (i.e. clocking) is transmitted

together with the data itself. The class of delay insensitive data transfer protocols [105] is

a subclass of self-synchronous schemes. Subsection 8.2.1 presents asymptotic comparison

between phase encoding and several well-known delay insensitive encodings in terms of

information capacity, power consumption, etc.

While conventional control logic specification and synthesis methods based on

STGs [25][95] or on FSMs [78] have certain advantages, they cannot be directly applied

118

CHAPTER 8. APPLICATION EXAMPLES

to the problem of synthesis of phase encoders as has been shown in Section 3.2. In

particular, the size of the specification of matrix phase encoder (see Subsection 8.2.3)

is exponential with respect to the number of output rails in these models. To overcome

this, the section defines and solves the problem of specification and synthesis of mul-

tiple rail phase encoding circuits using the CPOG model, providing efficient gate-level

implementations for the circuits.

CPOG-based methods for synthesis of the phase encoding controllers are presented

in Subsections 8.2.2 through 8.2.5. An example of the speed-independent [75] controller

synthesis within the presented methodology is studied in Section 8.2.6. It is followed by

the benchmark discussion in Section 8.2.7.

8.2.1 Phase encoding essentials

A phase encoding protocol was introduced by D’Alessandro et al. in [27]. The initial idea

was to encode an information bit into a relative phase position between two switching

signals. The idea was further extended into multiple-rail phase encoding [28], which

uses several wires for communication and data is encoded in the order of occurrence of

transitions on the communication lines. Figure 8.3 shows an example of a data symbol

transmission over a 4-wire phase encoding communication channel. The order of rising

signals on wires {a, b, c, d} indicates that permutation abdc is being sent. In total it is

possible to send n! different permutations over an n-wire channel. This makes the mul-

tiple rail phase encoding protocol very attractive for its information efficiency (provided

that the system can maintain the minimum time interval between two transitions).

a

b

c

d

Figure 8.3: Data symbol in multiple-rail phase encoding channel

Table 8.4 contains several important characteristics of multiple-rail phase encoding

protocol. The amount of information that can be sent in a symbol in n-wire channel

119

CHAPTER 8. APPLICATION EXAMPLES

number of number of bits per bits per transitions
wires permutations data symbol wire/time slot per bit

2 2 1 1/2 2
3 6 2 2/3 3/2
4 24 4 1 1
5 120 6 6/5 5/6
6 720 9 3/2 2/3

n (asymptotic) n! Θ(n log2n) Θ(log2n) Θ
(

1
log2n

)
Table 8.4: Asymptotic characteristics of phase encoding protocol

grows faster than linearly. This is due to the fact that

log2(n!) =

n∑
k=1

log2k≈
n∫
1

log2xdx= x(log2x− ln2)

∣∣∣∣n
1
=Θ(n log2n) (8.1)

We use the standard notation [22][51] for describing the asymptotic behaviour of functions:

· f(n)∈O(g(n)) means that f is bounded above by g (up to a constant factor) asymp-

totically, i.e.

∃C > 0, n0 : ∀n > n0, |f(n)| 6 |Cg(n)|

· f(n)∈Θ(g(n)) means that f is bounded both above and below by g asymptotically,

i.e.

∃C1 > 0, C2 > 0, n0 : ∀n > n0, |C1g(n)| 6 |f(n)| 6 |C2g(n)|

· f(n) ∈Ω(g(n)) means that f is bounded below by g asymptotically, i.e.

∃C > 0, n0 : ∀n > n0, |Cg(n)| 6 |f(n)|

Asymptotic behaviour of other characteristics is based on (8.1), e.g. number of bits that

can be sent in a time slot (the time separation between signals switching) is

log2(n!)
n

=
Θ(n log2n)

n
=Θ(log2n)

120

CHAPTER 8. APPLICATION EXAMPLES

Protocol number of bits per time slots bits per bits per transitions

symbols symbol per symbol wire time slot per bit

phase encoding n! Θ(n log2n) n Θ(log2n) Θ(log2n) Θ
(

1
log2n

)
dual rail 2b

n
2 c Θ(n) 1 Θ(1) Θ(n) Θ(1)

1-of-n encoding n Θ(log2n) 1 Θ
(

log2n
n

)
Θ(log2n) Θ

(
1

log2n

)
⌊
n
2
⌋
-of-n encoding

(n
bn2 c
)

Θ(n) 1 Θ(1) Θ(n) Θ(1)

Table 8.5: Asymptotic comparison of DI communication protocols

Table 8.5 shows asymptotic comparison of the characteristics of phase encoding, dual

rail and m-of-n encoding protocols [105] for n wires. You can see that phase encoding

loses only in one parameter – bits per time slot: Θ(n) (dual-rail) and O(n) (m-of-n

encoding) vs Θ(log2n) (phase encoding). This is because it needs n time slots to send

one data symbol. Phase encoding is a clear winner in all the other parameters. The last

one is particularly interesting: number of signal transitions per data bit. Phase encoding

protocol needs only Θ
(

1
log2n

)
transitions per data bit so the more wires the channel has

the cheaper (in terms of power consumption) the bits are. Theoretically if we had infinite

number of wires we could send a bit of information for free. A special case of m-of-n

encoding with m = 1 (one hot encoding [105]) also needs only Θ
(

1
log2n

)
transitions per

data bit but its information efficiency is very low, hence it is not reasonable to use it for

large values of n.

m-of-n encoding [33][105] cannot principally beat dual rail asymptotically in terms of

number of bits per symbol: it reaches its maximum information efficiency when m=
⌊
n
2
⌋
.

The number of bits in a symbol in this case is

log2

(
n⌊
n
2
⌋)= log2

(
n!⌊

n
2
⌋
!
⌈
n
2
⌉
!

)
≈ log2

(√
2πnnne−n

πnnn2−ne−n

)
= log2

(
2n√
πn
2

)
=Θ(n) (8.2)

Here we used Stirling approximation [38] of factorial n! ≈
√

2πnnne−n. Equation (8.2)

gives the upper bound of information efficiency for m-of-n encoding protocol. The lower

bound is achieved for one hot encoding and is equal to log2
(
n
1
)
= log2n. For other values

121

CHAPTER 8. APPLICATION EXAMPLES

5 10

5

10

15

phase
encoding

m-of-n
encoding

dual rail
encoding

bits per
symbol

number
of wires

(a) number of bits per symbol

5 10

5

phase
encoding

m-of-n
encoding

dual rail
encoding

bits per
time slot

number
of wires

2

(b) number of bits per time slot

Figure 8.4: Numeric comparison of DI communication protocols: information efficiency

of 0<m< n information efficiency varies but remains within Ω(log2n)∩O(n) interval1.

Therefore, asymptotically m-of-n encoding is equivalent to dual rail in terms of in-

formation efficiency, though it is better by constant factor approximately equal to 2:

lim
n→∞

log2

(
2n√
πn
2

)
log2 2b

n
2 c

= lim
n→∞ log2 2n− log2

√
πn
2

log2 2b
n
2 c

= lim
n→∞ n−Θ(log2n)⌊

n
2
⌋ = 2

In terms of power consumption m-of-n encoding can beat dual rail and approach phase

encoding. The lower bound of power consumption is achieved for one hot encoding (m= 1)

and is equal to
m

log2n
=

1
log2n

But the upper bound (when m=
⌊
n
2
⌋
) is the same as of dual rail:

m

Θ(n)
=

⌊
n
2
⌋

Θ(n)
=Θ(1)

Thus, power consumption of m-of-n encoding protocol is in interval Ω
(

1
log2n

)
∩O(1).

Interestingly the interval spans exactly between phase-encoding and dual rail protocols.

The numeric comparison of the three protocols for up to 10-wire communication chan-

nels is shown in Figure 8.4. The results of m-of-n encoding are calculated for the most
1Intersection Ω(f(n))∩O(g(n)) denotes a set of functions bounded by f(n) below and by g(n) above.

122

CHAPTER 8. APPLICATION EXAMPLES

2nn
Phase

encoding
communication

channel

Matrix
phase

encoder

Phase
detector

Order
matrix

Order
matrix

Binary to
matrix

converter

Binary
encoding

One hot to
matrix

converter

One hot
encoding

Matrix
to one hot
converter

Binary
encoding

One hot
encoding

Matrix
to binary
converter

Binary
phase

encoder

One hot
phase

encoder

2n

po
ss

ib
le

 s
ou

rc
e

en
co

d
in

gs

po
ss

ib
le

 t
ar

ge
t

en
co

d
in

gs

2n

2n

2n

2n

n

n

n

n!

n! n!

nlog(n)

nlog(n) nlog(n)

Figure 8.5: Phase encoding communication circuitry: n-wire channel

informative case when m=
⌊
n
2
⌋
. Subfigure (a) shows information efficiency with respect

to a symbol size, while Subfigure (b) – with respect to a time slot. Notice that phase

encoding is dominating on the first graph and shows rather bad results on the second.

However this should not be misleading: although n-wire phase encoding protocol needs

n time slots to send a data symbol, these time slots can be significantly shorter than

that of dual rail or m-of-n protocols because each wire switches only once in these n

time slots. Therefore the sending and receiving circuitry of a particular wire can work at

a speed n times slower than the communication channel as a whole. It allows the time

slots to be compressed much more than for dual rail and m-of-n encoding protocols and

achieve higher information density over time. To summarise, phase encoding is poten-

tially optimal in terms of area (number of bits per wire), speed (number of bits per time

interval), and power (number of signal transitions per bit).

All these comparisons are theoretical and need experimental refinement. This work

presents automated methods for generating multiple rail phase encoding receivers, sen-

ders, and repeaters. Figure 8.5 shows the overall phase encoding communication circui-

try. Rectangular boxes represent functional units for conversion between different data

encodings; the work covers the implementation of the units in highlighted boxes.

123

CHAPTER 8. APPLICATION EXAMPLES

8.2.2 Phase encoding repeater

The first multiple rail phase encoding circuit that we are going to synthesise is a phase

encoding repeater [26] – a circuit whose function is to regenerate the deteriorating phase

difference between signals in the phase encoding communication channel.

Phase encoding
 channel

Phase
detector

Order
matrix

Matrix
phase

encoder

Phase encoding
 channel

2n 2nn n

Figure 8.6: Phase encoding repeater circuitry

A phase encoding repeater consists of two functional parts: a receiver (a phase de-

tector which determines the order of the incoming transitions), and a sender (a phase

encoder generating a series of transitions in the order they were received) as shown in

Figure 8.6. It should be noted that we assume here that the phase encoded symbols

arriving via the communication channel to the repeater are correct, i.e. all transitions are

ordered with appropriate time slot condition. The issues of error behaviour and noise

tolerance have been addressed in [26].

A phase detector for an n-wire communication channel consists of
(
n
2
)

mutual-

exclusion (mutex) elements [61, 73]: each for every pair of wires. A possible implemen-

tation of a mutex is shown in Figure 8.7(a): it consists of a pair of cross-coupled NAND

gates (an SR-latch) and a simple metastability filter constructed from two inverters2. To

determine the order of n transitions it is possible to compare their arrival times pairwise

(see Figure 8.7(b) for an example of 3-wire phase detector).

The result of phase detection can be seen as an operational matrix with zero diagonal

elements. Therefore, the subsequent phase encoder should be synthesised using the

matrix encoding scheme (see Subsection 7.1.3) to avoid additional encoding conversion

circuitry, as explained in the next subsection.

8.2.3 Matrix phase encoder

Given an operational matrix X = {xjk, j = 1 . . .n, k = 1 . . .n, j 6= k}, containing pairwise

comparison of arrival times of n transitions, a matrix phase encoder should generate n
2This is the simplest way to construct a metastability filter, see [49] for more sophisticated solutions.

124

CHAPTER 8. APPLICATION EXAMPLES

a

b

a < b

b < a

a

b

a < b

b < a

(a) Mutex element

a

b

c

a < b

b < a

a < c

c < a

b < c

c < b

(b) 3-wire phase detector

Figure 8.7: Phase detection

output transitions in the specified order.

Matrix X coming from the phase detector has n! different possible value assignments

ψk : X→ {0, 1}, k = 1 . . .n!, each of them specifying a particular behavioural scenario of

the controller. CPOG H(V , E, X, ρ, φ) containing all of them as its projections has the

following generic description:

V = {ej, j= 1 . . .n}

E= {(ej, ek), j= 1 . . .n, k= 1 . . .n, j 6= k}

X= {xjk, j= 1 . . .n, k= 1 . . .n, j 6= k}

ρ=
∏

16j<k6n
xjk⊕xkj

∏
16i,j,k6n

i 6=j, i 6=k, j 6=k

xijxjk⇒ xik

φ(ej) = 1, j= 1 . . .n

φ((ej, ek)) = xjk, j= 1 . . .n, k= 1 . . .n, j 6= k

(8.3)

Complexity C(H) of this graph is dominated by the restriction function ρ which has a cubic

size with respect to the number of wires n: C(ρ) = Θ(n3). It restricts the operational

domain of the graph to n! opcodes corresponding to n! different total orders of output

transitions (see Chapter 4). However, the size of the final gate-level implementation of

matrix phase encoder is quadratic because function ρ does not participate in the mapping

(it is needed only for the purposes of synthesis and verification).

125

CHAPTER 8. APPLICATION EXAMPLES

Example of a CPOG specification of 3-wire matrix phase encoder based on (8.3) is

shown below:

e1

x12
x21

x31

x13
x
32

x
23

e2

e3

Having synthesised the CPOG we can derive Boolean equations for the controller

implementation. The controller should have n2 −n inputs X= {xjk, 1 6 j, k6n, j 6= k} and

n outputs T = {t1, t2, . . . , tn}. Output transition tk is enabled to fire if all the preceding

(with respect to the partial order specified by matrix X) transitions have already fired (cf.

Section 7.2):

tk = φ(ek) ·
∏

16j6n
j6=k

(φ(ej) ·φ((ej,ek))⇒ tj) (8.4)

This generic equation can be simplified taking into account the particular CPOG speci-

fication (8.3):

tk =
∏

16j6n
j 6=k

(xjk⇒ tj) =
∏

16j6n
j6=k

(xjk+ tj)

Another optimisation opportunity is to exploit the fact that the operational matrix X

specifies a total order. In our case it means that xjk = xkj:

tk =
∏

16j6n
j6=k

(xkj+ tj)

As the phase encoder should maintain a certain time separation ∆ between the generated

transitions it is necessary to modify the above equation to take this fact into account:

tk =
∏

16j6n
j6=k

(xkj+ t
∆
j)

where t∆j represents signal tj delayed for ∆ time units. For the purpose of resetting the

controller into the initial state after generating the desired sequence of transitions we

126

CHAPTER 8. APPLICATION EXAMPLES

should also add signal go that would serve as an initiating and resetting signal:

tk = go ·
∏

16j6n
j 6=k

(xkj+ t
∆
j)

The gate-level implementation of the controller specified with this final equation is shown

in Figure 8.8.

delay elements
go

x12
x13

x21
x23

x31
x32

t1

t2

t3

Figure 8.8: 3-wire matrix phase encoder

The implementation of the phase encoding repeater consisting of the phase detector

and phase encoder is shown in Figure 8.9. Signal go can be generated in a number

of ways depending on whether the repeater is early-propagative or not and on several

other criteria which are out of the scope of this work and are discussed in detail in [26].

a

b

c

a

b

c

go

from phase
encoding
channel

to phase
encoding
channel

Figure 8.9: 3-wire phase encoding repeater

127

CHAPTER 8. APPLICATION EXAMPLES

8.2.4 One hot phase encoder

One hot encoding can be used to specify the order of signal transitions for small values

of n (for large values of n the method is inappropriate because it needs n! wires). To

send data presented in one hot encoding it is possible to convert it first into matrix form

using a one hot code to matrix converter and then to send the result using a matrix phase

encoder. Alternatively, to avoid unnecessary conversions it is possible to send one hot

data directly using a one hot phase encoder as shown in Figure 8.10.

Phase encoding
channel

One hot to
matrix

converter
One hot
encoding

One hot
phase

encoder

Matrix
phase

encoder

Order
matrix

2n 2nn!

n! n

n

Figure 8.10: One hot phase encoder circuitry

All the n! different scenarios of n output wire transitions can be specified with n!

partial orders P = {P1, P2, . . . , Pn!}. It is possible to synthesise a CPOG containing all of

them using the one hot encoding scheme (Section 7.1.1). For example, there are 6 control

signals X = {x1, x2, x3, x4, x5, x6} and 6 partial orders corresponding to the possible

permutations of output transitions T = {a, b, c} for the case of n= 3 wires. See Table 8.6

which lists all the phase encoded data symbols, their one hot opcodes, and corresponding

partial orders.

permutation (symbol) one hot opcode partial order

1 (a, b, c) ψ1 = (1, 0, 0, 0, 0, 0)

a b c

2 (a, c, b) ψ2 = (0, 1, 0, 0, 0, 0)

a bc

3 (b, a, c) ψ3 = (0, 0, 1, 0, 0, 0)

ab c

4 (b, c, a) ψ4 = (0, 0, 0, 1, 0, 0)

ab c

5 (c, a, b) ψ5 = (0, 0, 0, 0, 1, 0)

a bc

6 (c, b, a) ψ6 = (0, 0, 0, 0, 0, 1)

abc

Table 8.6: Encoding of 6 scenarios of 3-wire one hot phase encoder

128

CHAPTER 8. APPLICATION EXAMPLES

The synthesised CPOG is shown below (to the left); it is possible to simplify it into a

slightly smaller CPOG using the transitive conditions reduction3 (to the right):

x 1
a

b

c
+
x 2+
x 5

x 3+
x 4+
x 6

x
1 + x
3+ x

4

x
2 + x
5+ x

6x1+x2+x3

x4+x5+x6

~ x1

a

b

c

+
x 5

x 3+
x 6

x
1 +x
4x
2 +x
6

x2+x3

x4+x5

The obtained optimal CPOG can be mapped into the gate-level implementation of a

3-wire one hot phase encoder shown in Figure 8.11.

a

b

c

go

x1

x2

x3

x4

x5

x6

to phase
encoding
channel

one hot
data path

Figure 8.11: 3-wire one hot phase encoder

8.2.5 Binary phase encoder

Binary encoding is traditionally used for data transmission. To send a binary encoded

symbol it is possible to convert it first into matrix form using a binary code to matrix

converter and then to send the result using a matrix phase encoder. To avoid unneces-

sary conversion we can synthesise a customised binary phase encoder using the same

principle as in the previous section for one hot encoding (cf. Figure 8.10).

The CPOG synthesis process is the same as for one hot phase encoding with the only

exception that the binary encoding scheme is used (see Section 7.1.2). For the case of
3For example, condition φ((a, b)) = x1 +x2 +x5 can be simplified to φopt((a, b)) = x1 +x5 because arc

(a, b) is transitive with respect to path a→ c→ b if x2 = 1. See Subsection 7.3.3 for details.

129

CHAPTER 8. APPLICATION EXAMPLES

3-wire binary phase encoder, the following set of Boolean equations for output signals

T = {a, b, c} is eventually derived:


a= ((x1x2x3 +x1x2x3)⇒ b∆)((x1x2x3 +x1x2x3)⇒ c∆)

b= ((x1x2x3 +x1x2x3)⇒ a∆)((x1x2x3 +x1x2x3)⇒ c∆)

c= ((x1x2x3 +x1x2x3)⇒ a∆)((x1x2x3 +x1x2x3)⇒ b∆)

Taking into account the set of binary opcodes {000, 001, 010, 011, 100, 101} the above

equations can be simplified (e.g. by using logic minimisation tool ESPRESSO [88]) into


a= x1x2 +b∆c∆+x3(b

∆+c∆)

b= x2 +x3a
∆+x3c

∆

c= x1 +a∆b∆+x3(a
∆+b∆)

These resultant equations can now be mapped to gates to produce the physical imple-

mentation of the controller as shown in Figure 8.12 (go is added for start/reset purposes).

x1

x3

x2

go

a

b

c

to phase
encoding
channel

binary
data path

Figure 8.12: 3-wire binary phase encoder

Note that the complex gates in the obtained solution may require logic decomposition

into smaller gates available in a particular technology library.

130

CHAPTER 8. APPLICATION EXAMPLES

8.2.6 Speed-independent synthesis

The method of synthesis and mapping presented in Chapter 7 produces a set of Boolean

equations as a result. In general it is not always possible to implement a large function

using a single complex gate: libraries are often limited to 2- and 3-input elementary

logic gates due to the technological constraints. This brings us to one of the key pro-

blems of circuit synthesis — the logic decomposition [25] of a given complex gate into an

equivalent network of library gates satisfying certain correctness requirements. These

requirements may vary depending on the target class of the controller being synthesised.

For example, the controllers presented in Subsections 8.2.3 through 8.2.5 are not speed-

independent [75] and operate correctly only under the timing assumptions imposed on

opcode signals X and request signal go, allowing a simpler decomposition technique to

be used. However, the presented CPOG based methodology can also be used for synthe-

sis of speed-independent controllers, provided that special care is taken while mapping

the resultant Boolean equations into the gate netlist (see [25] for a thorough analysis of

this problem arising in a similar context of STG-driven logic synthesis).

The speed-independent synthesis can be demonstrated on a 3-wire one hot phase

encoder from Subsection 8.2.4. The controller interface should be changed in order to

establish a proper speed-independent communication protocol between the controller

and the environment. Signal go is not needed anymore (the start and reset functions

are delegated to one hot control signals x1 . . .x6). Instead a new signal done should be

introduced to prompt the environment that the controller has sent the phase encoded data

and is ready for the next symbol. The delay elements should also be moved outside of

the controller and become part of the environment. The implementation of the controller

is shown in Figure 8.13 (the controller is separated from the environment with a dotted

line). The complex gates generating the output signals are decomposed into 2- and 3-

input logic gates with a subsequent negative logic optimisation4. The delayed output

transitions are synchronised with a C-element to produce signal done. The circuit is

formally verified for the compliance with the environment interface and the absence of
4A positive logic gate is constructed out of a negative logic gate plus an inverter in CMOS technology,

therefore minimisation of the number of used positive gates is often performed.

131

CHAPTER 8. APPLICATION EXAMPLES

x1x2

x3

x4x5

x6

x3x4

x1x5

x2x6

x1

x2x3

x4

x5x6

done

a

Δa

b

Δb

c

Δc

C

to phase
encoding
channel

one hot
DI opcode
interface

Figure 8.13: 3-wire one hot phase encoder (a speed-independent solution)

hazards using WORKCRAFT framework [83].

In the general case a speed-independent controller has to issue signal done only

after all the internal gates have switched and the communication with the environment

has finished. Similarly, during the reset phase, as soon as all the gates and external

handshakes have been reset to the initial states the falling transition of signal done

enables the environment to initiate the next working cycle. So, the role of signal done is

equivalent to that of a completion detection [52] signal in asynchronous data path, which

informs the control path about the completion of computation within the combinational

logic.

132

CHAPTER 8. APPLICATION EXAMPLES

8.2.7 Benchmarks and summary

This section presented a CPOG-based approach for specification and synthesis of phase

encoding controllers for different number of wires and encodings. Table 8.7 summarises

the obtained results. Four leftmost columns specify a particular synthesis problem; the

last two columns describe the solution size (in the number of literals, which closely

correlates with the area of the decomposed gate-level implementation) and the total

synthesis time (which mostly consists of logic minimisation performed by ESPRESSO [88]).

Circuit # output # data # opcode # literals synthesis
family wires symbols variables in solution time

One hot 3 6 6 21/27∗ <10 ms
phase 4 24 24 160 220 ms

encoders 5 120 120 1225 160 s
Binary 3 6 3 21 <10 ms
phase 4 24 5 107 20 ms

encoders 5 120 7 477 420 ms
3 6 3 15 <10 ms

Matrix 4 24 6 28 <10 ms
phase 5 120 10 45 <10 ms

encoders 6 720 15 66 <10 ms
7 5040 21 91 <10 ms

∗ refers to the speed-independent decomposition (Subsection 8.2.6)

Table 8.7: Synthesised phase encoding controllers

The largest synthesis instance among the presented is a 5-wire one hot phase en-

coder: it took almost 3 minutes to synthesise. This can be explained by the fact that

the controller has 5! = 120 one hot opcode variables blowing out the optimisation search

space. It is also reflected in the huge physical implementation size which makes the

controller hardly practical.

The most efficient controllers are synthesised using the matrix encoding scheme (Sub-

section 8.2.3): the size of matrix phase encoders grows quadratically with respect to the

number of wires, even though the number of behavioural scenarios grows exponentially.

Synthesis times are non-measurable because the obtained CPOGs do not require any

logical optimisation. This presents a practical justification of our theoretical claims of

the CPOG model efficiency. Note that the structural approach demonstrated here per-

133

CHAPTER 8. APPLICATION EXAMPLES

output # data STG size PETRIFY CPOG size Synthesis
wires symbols |P| |T | file size time (literals) time

3 6 71 74 1181 < 10 sec 15 < 10 sec
4 24 302 322 6185 191 sec 28 < 10 sec
5 120 1697 1812 36371 – 45 < 10 sec

Table 8.8: Synthesis of matrix phase encoders: CPOGs vs STGs

forms only a number of operations on objects of polynomial size (n×n matrices), while

application of a non-structural synthesis method would lead to exploration of the whole

state space of the controller which is huge (its size is proportional to n ·n! even if we

assume all the input signals to arrive simultaneously!). See Table 8.8 for comparison

of the CPOG-driven and STG-driven synthesis approaches on this class of circuits. It

can be observed that the size of STG specification and the time of STG-driven synthesis

(performed by PETRIFY synthesis tool [23]) grow exponentially. Moreover, the 5-wire ins-

tance of the problem is too large to be handled with STGs: the synthesis tool runs out

of memory.

The family of binary phase encoders occupies the middle-ground: the size of control-

lers and synthesis times grow linearly with respect to the number of scenarios (the num-

ber of different phase encoded symbols). Existence of a generic binary solution whose

size grows polynomially with respect to the number of wires is still an open question for

future research.

The benchmarks demonstrate that the presented generic solutions are more scalable

than those obtained without help of the CPOG model. Another advantage of the proposed

methodology is an opportunity to improve the robustness of the solution by its speed-

independent decomposition at the expense of the resultant controller area.

This section described synthesis of phase encoding controllers for only three source

data encodings: one hot, binary, and matrix. However, it is not difficult to adapt the pre-

sented techniques to any data encoding, e.g. to other practically used m-of-n encoding

communication protocols [9]: parallel 1-of-4 links [8], 2-of-7 codes [81][97], etc.

All the presented methods for synthesis of phase encoding controllers were automated

in a software toolkit discussed in Appendix.

134

CHAPTER 8. APPLICATION EXAMPLES

8.3 Specification and synthesis of processors

This section discusses the application of the CPOG-based methodology to specification

and synthesis of processor microcontrollers. We take a simple four register processor as

an example, go through all the stages of the CPOG-driven flow, and finally produce a

gate-level implementation of the central microcontroller.

Specification of such a complex system as a processor usually starts at the architectu-

ral level [42][62] which helps to deal with the system complexity by structural abstraction:

the system is divided into several communicating subsystems such that each of them can

be designed individually, thus significantly reducing the solution search space. Design

decisions which are made at this stage are crucial, and any potentially created per-

formance bottlenecks cannot be corrected afterwards. Subsection 8.3.1 describes the

architecture of the example processor.

At the next stage the processor specification is refined to the level of scenarios or ins-

tructions. Each instruction corresponds to a schedule of primitive actions such that data

transfer, arithmetic operation, memory access, etc., which are performed by operational

units – the subsystems from the previous stage. The design of instruction sets for a par-

ticular combination of operational units and software requirements is a difficult task [40];

among other optimisation objectives it contains the synthesis of instruction opcodes that

can be automated within the proposed methodology as explained in Subsection 8.3.2.

The next step is to derive the behavioural description of the instruction set, which is

conventionally done using Hardware Description Languages (HDLs), such as VHDL [57],

Verilog [20] and others: every instruction is described as a separate functional block which

are combined together using if or case branching statement. Our approach is different:

the instructions are overlaid into a functional CPOG description, which is further mapped

to Boolean equations. This final stage is addressed in Subsection 8.3.3. It is followed

by the discussion of the handshake management issues which arise in the context of a

multiresource system, e.g. arbitration of concurrent requests to the same resource, setting

a limit on the number of concurrently working different resources (due to restrictions for

overall system power consumption), etc.

135

CHAPTER 8. APPLICATION EXAMPLES

8.3.1 Architecture

More than 60 years ago Burks, Goldstine, and von Neumann published a memo [16]

which became the backbone of processor architectures for many decades. The so called

von Neumann architecture provided a simple and effective structural abstraction for a

computer design: the whole system was treated as a composition of several units: control

unit, arithmetic logic unit (ALU), and memory to hold both instructions and data. The

first working implementation of this architectural approach, the ‘Baby’ machine, was

constructed in 1948 in Manchester.

At the same time an alternative approach was already used in Harvard Mark I, a relay-

based computer engineered by Howard Aiken, which had separate storage for instructions

and data [5]. This separation principle is now referred to as Harvard architecture and

argued to be more efficient because it allows concurrent access to instructions and data,

thus eliminating the von Neumann bottleneck.

Program counter (PC)

Instruction register (IR)

Program
memory

Register A (accumulator)

Register B (address)

Instruction
fetch

unit (IFU)

Central
microcontroller

opcode

PC
increment

unit (PCIU)

Memory
access

unit (MAU)

Data
memory

register bus

go

done

execution control

Arithmetic
logic unit (ALU)

flags

Figure 8.14: Architecture of example microprocessor

Our aim in this section is to demonstrate potential of the CPOG model for speci-

fication of highly concurrent systems, therefore the example processor is built on the

basis of Harvard architecture. This can be seen in Figure 8.14, which shows separate

Program memory and Data memory blocks that are accessed via Instruction fetch (IFU)

and Memory access (MAU) operational units, respectively. The other two operational

136

CHAPTER 8. APPLICATION EXAMPLES

units are: ALU and Program counter increment unit (PCIU). The units are controlled via

request-acknowledgement interfaces (depicted as bidirectional arrows) by Central micro-

controller (further called microcontroller for brevity) which is our primary specification

and synthesis objective.

There are four registers: general purpose registers A and B, Program counter (PC)

which stores the address of the current instruction in the program memory, and Instruction

register (IR) which stores the opcode of the current instruction5. ALU has access to all

the registers via the register bus; MAU accesses only general purpose registers; IFU

reads opcode of the next instruction into IR given its address in PC; PCIU is responsible

for incrementing PC (moving to the next instruction). The microcontroller has access to

the opcode and ALU flags (information about the current state of ALU which is used in

branching instructions as explained in the next subsection). Note that ALU and MAU

units also need some (at least partial) information about the current opcode; this fact is

not reflected in the diagram for clarity.

Execution control of the microcontroller is provided via go/done handshake: signal

go prompts the microcontroller to execute one instruction, and as soon as the execution

is complete it is confirmed with signal done. The simplest way of execution control would

be an inverter and an ON/OFF switch as shown in the figure.

8.3.2 Design of instruction set

Now we have to define the set of instructions of the processor. Rather than to list every

single instruction it is easier to describe classes of instructions with the same addressing

mode [2] and partial order representation.

ALU operation Rn to Rn

An instruction from this class takes two operands stored in general purpose registers

{A, B}, performs an operation on them, and writes the result back into one of them (so

called register direct addressing mode). Examples: ADD A, B – addition A = A+B;

XOR A, A – bitwise XOR of register A with itself (this effectively resets A to zero);
5For the purpose of this example the actual width of the registers (the number of bits they can store) is

not important. Note also that different registers can have different widths.

137

CHAPTER 8. APPLICATION EXAMPLES

ALU

PCIU IFU

(a) ALU operation Rn to Rn

PCIU

ALU

IFU

PCIU/2

IFU/2

(b) ALU operation #123 to Rn

ALU IFU

(c) ALU operation Rn to PC

PCIU IFU/2IFU ALU

(d) ALU operation #123 to PC

MAU

PCIU IFU

(e) Memory access

ALU

IFUPCIU

ρ = le+ge

ALU/2: le∙ge
_

(f) Conditional ALU operation Rn to Rn

ALU

IFU: le∙ge

IFU/2PCIU/2PCIU

ρ = le+ge ALU/2: le∙ge
_

_

(g) Conditional ALU operation #123 to Rn

IFU: le∙ge

IFU/2PCIU

ALU

ALU/2: le∙ge

PCIU/2: ge

ρ = le+ge

_

_

(h) Conditional ALU operation #123 to PC

Figure 8.15: Graph specifications of 8 instruction classes

MOV B, A – assignment B = A. Figure 8.15(a) shows the corresponding partial order

of actions that have to be performed: ALU works concurrently with PC increment (PCIU)

and the next instruction fetch (IFU) actions. As soon as both concurrent branches are

completed, the processor is ready to execute the next instruction.

Note that it is not important for the microcontroller which particular ALU operation

is being executed (ADD, XOR, MOV , or any other) because the partial order of actions

is not affected by this choice. It is the responsibility of ALU to detect which operation it

has to perform according to the current opcode. Therefore, it is sufficient to specify only

8 behavioural scenarios of the microcontroller (as there are 8 classes of instructions).

138

CHAPTER 8. APPLICATION EXAMPLES

ALU operation #123 to Rn

In this set of instructions one of the operands is register and another is a constant

which is given immediately after the instruction opcode, hence the name: immediate

addressing mode. Examples: SUB A, #1 – decrement A by one; MOV B, #0 – reset

register B to zero.

Figure 8.15(b) shows the partial order of actions for this operation. At first, the

constant has to be fetched into IR (actions PCIU and IFU). Then ALU operation is perfor-

med concurrently with another increment of PC. Finally, it is possible to fetch the next

instruction opcode into IR. Note that PCIU and IFU actions have two occurrences in this

partial order. This issue is addressed later in the design flow (see Subsection 8.3.4).

ALU operation Rn to PC

This class contains operations for unconditional branching, in which PC is modified

thus altering the control flow of the program. Branching can be absolute or relative:

MOV PC, A – absolute branch6 to the address stored in register A; ADD PC, B –

relative branch to the address B instructions ahead of the current address stored in PC.

The partial order representation for this operation is very simple: ALU and IFU actions

are scheduled in sequence (see Figure 8.15(c)).

ALU operation #123 to PC

Instructions in this class are similar to those above with the exception that the branch

address is specified explicitly as a constant, e.g. SUB PC, #8 – jump to the address 8

instructions before the current one.

The actions should be scheduled in the following sequence: PCIU→IFU (to fetch the

constant) followed by ALU and finally another IFU, as shown in Figure 8.15(d).

Memory access

There are only two operations in this class: LOAD A and SAVE A. They load/save

register A from/to memory location with address stored in register B.

As can be seen from Figure 8.15(e) access to memory can be performed concurrently

with the next instruction fetch, exploiting the advantage of Harvard architecture.
6More common mnemonics for this instruction are JMP %A or JMP @A.

139

CHAPTER 8. APPLICATION EXAMPLES

Conditional ALU operations Rn to Rn, #123 to Rn, #123 to PC

These three classes of instructions are similar to their unconditional versions above

with the difference that they are performed only if the following condition is true: A<B,

i.e. register A contains a value which is less than that in register B. In order to specify

these conditional scenarios it is necessary to use the dynamic CPOG specification ex-

plained in Example 5.6. In particular, the first ALU action which is performed (comparison

of registers A and B) changes the state of ALU flags {le, ge} so as to reflect the result

of the comparison. These flags are thereafter checked by the microcontroller in order to

decide on the further scheduling of actions.

Let us discuss the most complicated scenario shown in Figure 8.15(h). The process

starts with concurrent increment of PC and comparison of registers A and B. If condition

A < B holds (i.e. le ·ge = 1) then the process is continued with the following sequence

of actions: IFU→ALU/2→IFU/2 (read the constant, perform the branch, fetch the next

instruction). Otherwise, the constant is skipped (PCIU/2) and the next instruction is

fetched (IFU/2). Scenarios in Figures 8.15(f, g) are similar.

Now the instructions have to be encoded. The simplest way to do this is to use the

binary encoding scheme, i.e. assign opcodes {000, 001, . . . , 111} to the instructions in

arbitrary order as shown in Table 8.9. This might not be optimal in terms of area and la-

tency of the final microcontroller implementation. In order to obtain the smallest possible

CPOG specification one has to apply the optimal encoding procedure from Section 7.4.

Generated opcodes have 8 bits instead of 3 (shown in the same table). Whether 8 bit

opcodes are affordable or not depends on the chosen width of instruction register IR.

Instructions class Binary encoding Optimal encoding
1 ALU operation Rn to Rn 000 00101001
2 ALU operation #123 to Rn 001 10101111
3 ALU operation Rn to PC 010 01101000
4 ALU operation #123 to PC 011 00101111
5 Memory access 100 00100001
6 Conditional ALU operation Rn to Rn 101 00111001
7 Conditional ALU operation #123 to Rn 110 11011011
8 Conditional ALU operation #123 to PC 111 01011011

Table 8.9: Possible encodings of the 8 classes of instructions

140

CHAPTER 8. APPLICATION EXAMPLES

8.3.3 Microcontroller synthesis

Now that we have specified and encoded all the behavioural scenarios of the micro-

controller it is possible to synthesise a CPOG containing all of them. Application of

synthesis and optimisation techniques from Chapter 7 to binary encoded instructions

produces graph shown in Figure 8.16; it uses three variables X = {x, y, z} and contains

35 literals.

_
MAU: xyz

_

PCIU: x+y+z
_

IFU: x+y+ge
_ _ _

xz
_

y(x+z)
_

PCIU/2: xy(z+ge)+xyz
_ __

y

ALU: x+y+z
_

y

IFU/2: xy+xz
_

z

ALU/2: xge(y+z)
_

ρ = le+ge

Figure 8.16: CPOG synthesised using the binary encoding scheme

The choice of a particular scenario within the graph is highly distributed: every

condition is responsible for rendering only a little portion of the global picture and has

a large don’t care set which leads to efficient Boolean minimisation. Note that dynamic

variable le turned out to be redundant and was removed from all the conditions. This

is because original condition le ·ge (see Figures 8.15(f, g, h)) is equivalent to ge if the

restriction function of ALU (ρALU = le+ge) is satisfied:

ge · (le+ge)⇔ le ·ge

This means that it is enough to test only one ALU flag in order to correctly schedule

all the scenarios, hence the number of wires is reduced to one, and the set of dynamic

variables is Y = {ge}.

It is interesting to observe how OR-causality is modelled in the CPOG specification.

For example, vertex PCIU has condition φ(PCIU) = x+y+ z and therefore the corres-

ponding action may happen as soon as a part of an opcode is known (x = 1, or y = 0,

or z = 1). Modelling such OR-causal behaviour using STGs or FSMs would lead to a

141

CHAPTER 8. APPLICATION EXAMPLES

MAU: e

PCIU: h

f

b

PCIU/2: a+cge

b

ALU: e

b

IFU/2: g

a

ALU/2: dge
_

ρ = le+ge

IFU: c+ge
_

_

_

_

Figure 8.17: CPOG synthesised using the optimal encoding scheme

large and unobservable specifications similar to those shown in Figure 3.3 — this is a

natural consequence of using event-based models for modelling the behaviour of data

path logic. The CPOG model, on the other hand, employs Boolean functions for that and

easily avoids such problems.

Figure 8.17 demonstrates that the optimal encoding procedure (see Section 7.4) yields

a significantly smaller CPOG containing only 16 literals (which potentially leads to a

microcontroller that is twice smaller and faster) but the price for this is 8 opcode variables

X= {a, b, c, d, e, f, g, h}; see Table 8.9 for corresponding 8-bit opcodes. Note also that

in this case it is not possible to reduce the final result to pure 1-restricted form because

the graph contains dynamic variable ge which cannot be mixed with static variables for

optimisation purposes as it is provided by ALU and can be changed during the execution

of an ALU operation. Three non 1-restricted conditions are: φ(IFU) = c+ge, φ(ALU/2) =

d ·ge, and φ(PCIU/2) =a+c ·ge. It is impossible to use fewer literals for these conditions;

this is clarified in Table 8.10: depending on the current scenario condition φ(IFU) has

Instructions class φ(IFU) φ(ALU/2) φ(PCIU/2) a c d

ALU operation Rn to Rn 1 0 0 0 1 0
ALU operation #123 to Rn 1 0 1 1 1 0
ALU operation Rn to PC 1 0 0 0 1 0

ALU operation #123 to PC 1 0 0 0 1 0
Memory access 1 0 0 0 1 0

Conditional ALU operation Rn to Rn 1 ge 0 0 1 1
Conditional ALU operation #123 to Rn ge ge 1 1 0 1
Conditional ALU operation #123 to PC ge ge ge 0 0 1

Optimal condition c+ge d ·ge a+c ·ge

Table 8.10: Encoding of conditions containing dynamic variable ge

142

CHAPTER 8. APPLICATION EXAMPLES

to evaluate either to 1 or to ge and this choice is delegated to operational variable c

such that φ(IFU) = c+ge. Condition φ(ALU/2) is similar: it must evaluate either to 0 or

to ge, hence φ(ALU/2) = d ·ge. The most complicated case is presented with condition

φ(PCIU/2) which has three possible evaluations: 0, 1, and ge. Two variables are needed

to handle this leading to φ(PCIU/2) = a+c ·ge (note how variable c is reused here in its

negated form). Optimal encoding of conditions containing dynamic variables is performed

automatically together with all other conditions, thus the optimal result (in terms of the

number of used literals) is guaranteed. See Appendix for description of the supporting

tool.

The obtained CPOG can be mapped into logic equations using the method presented

in Section 7.2:

PCIUreq = h

ALUreq = e · (f+ IFUack)

MAUreq = e

IFUreq = (c+ge) · (h+PCIUack) · (b+ALUack)

PCIU/2req = PCIUack · (a · IFUack+c ·ge ·ALUack)

IFU/2req = g ·ALUack · (PCIU/2ack+a · (f+ALU/2ack))

ALU/2req = d ·ge ·ALUack · (b+ IFUack)

The total literal count is 28; the mapping of the binary CPOG from Figure 8.16 results

in the solution with 46 literals (note how the size of the final solution correlates with

the size of the corresponding CPOG specification). Figure 8.18 shows the gate-level

implementation of the microcontroller. Signal go was added for start/reset purposes;

signal done can be implemented in different ways depending on whether it should be

early-propagative or not during the reset phase (recall that behaviour of signal done can

be easily modelled using the extended graph specification explained in Section 7.2).

The presented microcontroller is not speed-independent but can be modified accordin-

gly if needed (see Subsection 8.2.6). From the practical point of view speed-independence

143

CHAPTER 8. APPLICATION EXAMPLES

ge

ALU2_ack

g

ALU2_req

IFU_ack

ALU_ack

b

PCIU_ack

e MAU_req

PCIU2_req

c

PCIU2_ack

IFU2_req

IFU_req

go
ALU_req

a

PCIU_req

f

d

h

Figure 8.18: Gate-level implementation of the microcontroller

within the microcontroller may lead to significant penalties in area and latency and thus

become the bottleneck of the whole processor, therefore it is reasonable to keep speed-

independence only on the external level (i.e. delay-insensitive handshake communication

with operational units).

The obtained microcontroller can be further optimised and/or decomposed targeting

a particular gate library using standard CAD tools. It should be mentioned that the

presented CPOG-based synthesis flow requires the designer’s involvement only at the

stage of the instruction set specification; all the later stages can be automated and the

designer might even be unfamiliar with CPOGs and the underlying theory. The resultant

gate-level netlist can be passed on to existing tools withing the conventionally used flow

using a hardware description language, e.g. Verilog [20].

144

CHAPTER 8. APPLICATION EXAMPLES

8.3.4 Handshake management

This subsection discusses several handshake related issues that arise in the context of

processor microcontroller synthesis.

At first, notice that a CPOG-based microcontroller does not reset handshakes until

all of them are completed (i.e. a scenario is finished). This is because a high value on an

event acknowledgement wire is used as an indication of the completion of this event; the

microcontroller itself does not have any memory. This leads to two potential problems:

1) an operational unit is not allowed to be reset before a scenario is finished; 2) a 4-

phase protocol is imposed on communication between the microcontroller and operational

units. To deal with these problems it is necessary to decouple the microcontroller from

operational units. Figure 8.19(a) presents a simple solution to the first problem: this

decouple filter allows the output handshake (r_out, a_out) to be reset before the input

handshake (r_in, a_in) is reset (both are 4-phase handshakes). It was synthesised from

the STG specification shown in Figure 8.19(b) with the PETRIFY tool [23].

a_out

r_in r_out

a_in

(a) 4-phase to 4-phase decouple filter

r_in+

a_out-

r_out+

r_out-

a_in+a_out+

r_in-

a_in-

(b) 4-to-4-phase filter STG

a_out

r_in

r_out

a_in

0
1

0
1

(c) 4-phase to 2-phase decouple filter

r_in+

a_out-

r_out+

a_in-

a_in+a_out+ r_in-

a_in+ r_in+r_out-r_in-

a_in-

(d) 4-to-2-phase filter STG

Figure 8.19: Decoupling the microcontroller from operational units

Figure 8.19(c) presents a more sophisticated controller which converts 4-phase hand-

shake (r_in, a_in) into 2-phase handshake (r_out, a_out). 2-phase protocol is more

efficient in terms of latency and power consumption especially for long distance commu-

nication between the microcontroller and operational units; it also eliminates the first

145

CHAPTER 8. APPLICATION EXAMPLES

problem, because a 2-phase handshake does not require the reset phase. The STG

specification of the filter is shown in Figure 8.19(d).

The next issue to deal with is multiple occurrences of the same action in a scenario,

e.g. ALU may be called twice during the execution of a single instruction. It is easy to see

that these calls are mutually exclusive (this can also be checked automatically using the

verification procedure provided in Subsection 6.2.6), therefore no arbitration is required

for merging two requests ALUreq and ALU/2req into a single one as demonstrated in

Figure 8.20(a). A possible speed-independent implementation of the merge controller

performing this task is shown in Figure 8.20(b). It has been synthesised with PETRIFY

from the STG given in Figure 8.20(c).

Merge
controller

r1
a1

r2
a2

r
a

ALU_req
ALU_ack

ALU2_req
ALU2_ack

ALU_req
ALU_ack

to ALUto microcontroller

(a) Schematic view

r1
a1

r2
a2

r
a

(b) Implementation

r1+ a1-r1-a1+

r-

a2+ r2- a2-r2+

a+ a-r+

(c) STG specification

Figure 8.20: Handshakes merge controller

This is a 4-phase implementation. A 2-phase merge controller can also be synthesised

using the STG approach which fits perfectly for this kind of controllers. It is also possible

to generalise the merge controller for more than two requests. We omit implementation

details here as this is a very well-known specification and synthesis task [25].

146

CHAPTER 8. APPLICATION EXAMPLES

Merge
controller

r1
a1

r2
a2

r
a

req1

ack1

req2

ack2

req
ack

to shared resourceto microcontroller

ME

Figure 8.21: Arbitrating concurrent requests to the same operational unit

Merge controllers can only be used if the requests are mutually exclusive. If this is not

the case, then there are two possible solutions: duplicate the corresponding operational

unit, or set an arbiter to guard access to the unit (which in this context can be considered

a shared resource). The first solution may not always be affordable either because the

resource duplication is too expensive, or due to architectural constraints (for example, it

is not reasonable to duplicate ALU in our case, as it requires introduction of an arbiter

managing access of two ALUs to the same register bus – see Figure 8.14). Figure 8.21

shows how a merge controller can be converted into an arbiter by adding a mutex element

(see Subsection 8.2.2 for details).

8.3.5 Further thoughts

This section presented application of the CPOG-driven approach to specification and

synthesis of central processor microcontrollers. The example is purely academic, however,

it captures many important features of real processors. It has been demonstrated that

the CPOG model is capable of modelling concurrency between different subsystems and

handling multiple choice during event scheduling. One of the main directions of future

work is specification and synthesis of a real processor.

The other research directions include further development of optimisation techniques,

in particular, the final gate-level implementation of the microcontroller (Figure 8.18) still

has a room for some optimisation despite the fact that its CPOG representation has the

minimum possible size. To obtain the minimum implementation size it is necessary to

use the mapping information during automatic synthesis of instruction opcodes. This is

possible within the CPOG methodology and has to be exploited.

147

CHAPTER 8. APPLICATION EXAMPLES

8.4 Summary

This chapter provided several application examples of circuit specification and synthesis

within the CPOG methodology. The examples vary from small controllers like ParSeqs

(Section 8.1) to large control structures containing millions of behavioural scenarios like

n-wire phase encoders (Section 8.2). ParSeq and phase encoding controllers were dis-

cussed in the motivational chapter 3 which showed that they cannot be efficiently handled

with conventionally used models. This chapter demonstrated that the CPOG model is

capable of providing elegant solutions for such a class of controllers.

The processor example (Section 8.3) summarised all the presented microcontroller

specification and synthesis techniques and provided a design flow for processors, which

starts at the architectural level and goes through stages of instruction set design, opcode

generation, CPOG synthesis, circuit mapping, and handshakes management. Most of

these stages are already automated in the software tool which is described in Appendix.

The next chapter summarises the contribution of the thesis and discusses further

research directions.

148

Chapter 9

Conclusions

This thesis presented a new formal model for specification and synthesis of microcontrol

circuits in the context of asynchronous systems design. Verification, synthesis, optimisa-

tion, and mapping techniques of the proposed design flow are supported with a number of

software tools and were tested on a set of benchmarks. The obtained results demonstrate

significant improvements over the conventionally used specification models and synthesis

methods.

This chapter summarises key contributions of this thesis and outlines areas of future

research.

9.1 Main contributions

It was demonstrated in Chapters 2 and 3 that the existing approaches for specification

and synthesis of asynchronous microcontrollers are not applicable to a certain class of

systems which contain many behavioural scenarios defined on a set of common events,

because every scenario has to be explicitly defined and encoded, thereby blowing the

specification size beyond what is practically feasible. The key contributions of this the-

sis are the new model, named Conditional Partial Order Graph, and the design flow

built around it which provides an automated way to specify and synthesise microcontrol

circuits without the explicit enumeration of the system scenarios or states.

149

CHAPTER 9. CONCLUSIONS

The proposed CPOG-driven design flow consists of the following main stages.1

Specification of scenarios. In this stage the designer has to describe a system

as a set of behavioural scenarios. Importantly, this description can be either implicit

(see Subsection 8.2.3 for the implicit specification of n! scenarios of an n-wire matrix

phase encoder) or explicit (see the processor example in Section 8.3) – whichever way

is more reasonable for a particular design case. This stage relies on the graphical

representation of partial orders and the CPOG algebra introduced in Chapter 4 and

Section 5.1, respectively. Note that in some cases it is necessary to use the dynamic

CPOG model to specify an internally branching scenario as explained in Section 5.2.

Encoding of scenarios. In order to distinguish between the scenarios they are given

different encodings represented with Boolean vectors. These encodings are either pro-

vided as a part of system specification (see Subsections 7.1.1 through 7.1.3) or can be

assigned arbitrarily. Size and latency of the final microcontroller depends significantly

on the chosen encoding of the scenarios, thus arbitrary encoding may lead to non-optimal

results. Section 7.4 presented an automated procedure for the optimal encoding of a given

set of scenarios.

Synthesis. Once the system scenarios are specified and encoded it is possible to

synthesise a CPOG containing all of them using the algebraic techniques from Section 7.1.

Resolution of true and/or false encoding conflicts may be required if the given encodings

are not unique. A CPOG obtained at this stage can be regarded as an intermediate model

for a compact representation of the system behaviour which will be further mapped into

a gate-level circuit. Therefore the designer does not necessarily have to be familiar with

the CPOG theory in order to use the CPOG-driven design flow.

Verification. The algebraic synthesis approach guarantees many properties of the

synthesised CPOG automatically, therefore it is not required to verify correctness of the

result. However, in cases of the custom CPOG design or manual modification/optimisation

of the synthesis result the designer needs an automated support for verification. It is

provided in Chapter 6 and employs SAT-based reachability analysis techniques.
1This list of stages is quite flexible: in some cases certain stages can overlap; others can be omitted.

150

CHAPTER 9. CONCLUSIONS

Optimisation. Every system has an infinite number of equivalent CPOG representa-

tions which differ in terms of opcode variables, encodings, complexity, etc. Those with

the least complexity are of a particular interest because they lead to the smallest and

fastest physical implementation of the controller. Section 7.3 presented several optimisa-

tion techniques which reduce the size of a given CPOG by functional logic minimisation

and/or by exploiting the structural graph properties.

Mapping. The final stage of the CPOG-driven design flow is mapping of the obtained

CPOG representation into an interconnection of logic gates to produce a gate-level netlist

of the microcontroller. This stage is described in Section 7.2; issues of speed-independent

synthesis are addressed in Subsection 8.2.6.

The presented CPOG-based methodology was successfully applied to several design

examples including: the ParSeq controllers (Section 8.1), the phase encoding communi-

cation circuits (Section 8.2), and the central processor microcontroller (Section 8.3). The

results demonstrate that the CPOG model is beneficial for these classes of controllers.

In particular, different levels of abstraction for data- and control-related events help to

avoid combinatorial explosion in the size of system specification which is a strong limi-

ting factor for other models (such as the STG or FSM models), especially for large design

cases, such as processors, multiway routers or arbiters [68].

Extension of the CPOG model application domain and other goals of future research

are discussed in the next section.

9.2 Future research directions

The presented model is new and there are a lot of future research opportunities. They

can be divided into two main directions: extension of the CPOG model and investigation

of its derivatives, and further in depth study of the model itself as well as development

of the supporting tools.

The first direction considers applicability of the model to different classes of sys-

tems. For example, although the presented static and dynamic CPOG models have many

applications discussed in Chapter 8, they are not directly applicable to systems which

151

CHAPTER 9. CONCLUSIONS

exhibit more complex behaviour than a series of alternating active and reset phases (see

Figure 5.17 depicting a typical evolution cycle of a controller designed within the CPOG

flow). Consider a controller which computes the GCD (the greatest common divisor) of

two numbers X and Y. The simplest algorithm for GCD(X, Y) computation is due to

Euclid and is given below:

1. Read X and Y;

2. Compare X and Y:

· If X= Y then the algorithm terminates with result GCD= X;

· If X < Y then substitute Y with Y−X (i.e. Y = Y−X);

· If X > Y then substitute X with X−Y (i.e. X= X−Y);

3. Return to step 2.

It is impossible to specify this controller using CPOGs because there is an internal

loop involving steps 2 and 3 which terminates only when condition X = Y becomes true.

Partial orders are acyclic and cannot deal with repetitive actions2. In order to handle

such cyclic systems it is possible to extend the CPOG model to the Conditional Marked

Graph (CMG) model3. This greatly expands the class of the modelled systems at the

cost of significant complication of the model: SAT-based verification techniques are not

applicable to CMGs, thus PSPACE-hard [35] verification methods are required (similar to

Petri Nets verification based on unfoldings [46]). In fact, it is reasonable to study possible

‘conditional’ extensions of other models besides Marked Graphs, e.g. Static Data Flow

Structures (SDFSs) [93] or Structured Occurrence Nets (SONs) [53].

It should be mentioned, however, that the CPOG model has many useful properties

due to acyclicity of underlying partial orders, therefore investigation of its possible ex-

tensions should not stop the research and development of the model itself, hence the se-

cond research direction. For example, it is important to formalise the speed-independent
2But it is possible to add an extra circuitry restarting an acyclic microcontroller as many times as required

to satisfy a particular condition. This workaround, however, requires non-trivial design decisions and does
not fit the automated CPOG flow easily.

3See definition of Marked Graphs in Chapter 2.

152

CHAPTER 9. CONCLUSIONS

controller synthesis (see Subsection 8.2.6), as well as to develop the corresponding syn-

thesis and verification tools.

Another area of future work is further development of CPOG optimisation techniques,

such as: taking the mapping information into account during scenario encoding, synthesis

of optimal opcodes of minimal length (or required length), synthesis of variable length

opcodes based on statistical properties of scenarios using Huffman coding [41], etc.

These computationally expensive optimisation techniques may require improvement of

the data structure that is used to represent a CPOG in memory. One possible way to do

that is to employ BDDs [54] or ZDDs [63], which are well-known compact representations

of Boolean functions. They can also provide a canonical CPOG representation due to

properties of Reduced Ordered BDDs [15]. It is important to note that all the vertex/arc

conditions of a graph should be stored in a shared BDD data structure as explained

in [14], rather than separately, thereby significantly reducing memory consumption.

Finally, design and fabrication of a real processor using the CPOG methodology

should provide a rigorous practical examination of the presented automated CPOG flow.

153

Appendix A

Tool support for CPOGs

The appendix explains how to use the developed set of tools for systematic manipulation

with CPOGs, their visualisation and simulation, and synthesis of the physical circuit

implementation in structural Verilog netlist.

The overall set of tools is divided into several toolkits:

· ce – the CPOG engine, which implements the basic algebraic operations over

CPOGs, algorithms for synthesis, optimisation, verification, and mapping (Sec-

tion A.1);

· wm – the WORKCRAFT model, a set of plugins supporting the visualisation and simu-

lation functionality within the WORKCRAFT framework [82][84] (Section A.2);

· pe – the phase encoding toolkit for synthesis of multiple rail phase encoding recei-

vers, senders, and repeaters (Section A.3).

A.1 The CPOG engine

This toolkit performs operations from the CPOG algebra (projection, addition, scalar

multiplication, asymmetric addition) introduced in Chapter 5, as well as synthesis, veri-

fication, optimisation and mapping procedures described in Chapters 6-7. The tools are

implemented in C++ programming language and are listed below.

154

APPENDIX A. TOOL SUPPORT FOR CPOGS

ce_assign – given a graph H(V , E, X, ρ, φ), a variable x ∈ X, and a Boolean value
α∈ {0, 1} the tool computes the projection H|x=α (see Definition 5.2) and writes the result
to the console or the specified file.
USAGE:

ce_assign INPUT_FILE_NAME VARIABLE_NAME VALUE [-o OUTPUT_FILE_NAME]

The variable name may be enclosed within quotes if necessary. For example, the
following command reads in a graph H from file source.cpog, computes its projection
H|var=1, and writes it to result.cpog:
ce_assign source.cpog var 1 -o result.cpog

ce_add – given two graphs H1 and H2 the tool computes their sum H1 +H2 (see
Definition 5.12) and writes the result to the console or the specified file.
USAGE:

ce_add INPUT_FILE_NAME1 INPUT_FILE_NAME2 [-o OUTPUT_FILE_NAME]

For example, the following command reads in two graphs from files source1.cpog and
source2.cpog, computes their sum and writes it to result.cpog:
ce_add source1.cpog source2.cpog -o result.cpog

ce_mult – given a graph H and a Boolean function f the tool computes the scalar
multiplication f ·H (see Definition 5.13) and writes the result to the console or the spe-
cified file.
USAGE:

ce_mult INPUT_FILE_NAME FUNCTION [-o OUTPUT_FILE_NAME]

The function may be enclosed within quotes if necessary. For example, the following
command reads in a graph H from file source.cpog, computes the scalar multiplication
(x+y)H and writes it to result.cpog:
ce_mult source.cpog �(x + y)� -o result.cpog

ce_asym_add – given two graphs H1 and H2 the tool computes their asymmetric sum
H1~+H2 (see Definition 5.15) and writes the result to the console or the specified file.
USAGE:

ce_asym_add INPUT_FILE_NAME1 INPUT_FILE_NAME2 [-o OUTPUT_FILE_NAME]

For example, the following command reads in two graphs from files source1.cpog and
source2.cpog, computes their asymmetric sum and writes it to result.cpog:
ce_asym_add source1.cpog source2.cpog -o result.cpog

ce_synthesise – given a set of partial orders the tool synthesises their CPOG compo-

sition using a chosen encoding scheme (see Section 7.1 for details) and writes the result

to the console or the specified file.

155

APPENDIX A. TOOL SUPPORT FOR CPOGS

USAGE:

ce_synthesise INPUT_FILE_NAME ENCODING_SCHEME [-o OUTPUT_FILE_NAME]

ENCODING SCHEMES:

. one-hot – the one-hot encoding scheme (see Subsection 7.1.1);

. binary – the binary encoding scheme (see Subsection 7.1.2);

. matrix – the matrix encoding scheme (see Subsection 7.1.3);

. optimal – the optimal encoding scheme (see Section 7.4).
For example, the following command reads in a set of partial orders from file

source.cpog, encodes them using the binary encoding scheme, synthesises their compo-
sition and writes the obtained graph to result.cpog:
ce_synthesise source.cpog binary -o result.cpog

ce_verify – given a graph (or two) and a property to verify, the tool performs the

verification and reports the result.

USAGE:

ce_verify INPUT_FILE_NAME1 PROPERTY [INPUT_FILE_NAME2] [EVENT_NAME1 EVENT_NAME2]

PROPERTIES:

. well-formed – checking well-formedness of the given graph (see Definition 5.6);

. equivalent – checking equivalence of two given graphs (see Definition 5.10);

. encoding-conflict – checking for encoding conflicts (see Definition 5.9);

. deadlock-free – checking if the given graph is deadlock-free (see Subsection 6.2.3);

. invalid-states – checking reachability of an invalid state (see Subsection 6.2.4);

. event-conflict – checking for event conflicts in the given graph (see Subsection 6.2.5);

. mutual-exclusion – checking for mutual exclusion (see Subsection 6.2.6).

The event names may be enclosed within quotes if necessary. Consider several
examples. The following command reads in a graph from file source.cpog and reports if
it is well-formed:
ce_verify source.cpog well-formed

The next command reads in two graphs from files source1.cpog and source2.cpog,
and reports if they are equivalent taking into account their encodings (see Subsec-
tion 6.1.2 for details):
ce_verify source1.cpog equivalent source2.cpog

156

APPENDIX A. TOOL SUPPORT FOR CPOGS

Mutual exclusion of events ALU and ALU/2 in a graph described with file source.cpog

can be verified using the following command:
ce_verify source.cpog mutual-exclusion ALU �ALU/2�

Note that the second event name is enclosed within quotes to avoid a possible confu-

sion of a command-line interpreter due to the forward slash ‘/’ symbol.
ce_optimise – given a graph the tool tries to reduce its complexity using the CPOG

optimisation techniques introduced in Section 7.3, and writes the result to the console
or the specified file.
USAGE:

ce_optimise INPUT_FILE_NAME [-o OUTPUT_FILE_NAME]

For example, the following command reads in a graph from file source.cpog, and
writes its optimised version into result.cpog:
ce_optimise source.cpog -o result.cpog

ce_map – given a graph the tool maps it into Boolean equations as explained in
Section 7.2, and writes the equations to the console or the specified file.
USAGE:

ce_map INPUT_FILE_NAME [-o OUTPUT_FILE_NAME]

For example, the following command reads in a graph from file source.cpog and
writes the generated equations into result.eqn:
ce_optimise source1.cpog -o result.eqn

A.2 The Workcraft model

The WORKCRAFT framework [82][84] is a collection of tools designed to provide a flexible

common environment for development of Interpreted Graph Models [82], including visual

editing, (co-)simulation and analysis. The framework is platform-independent, highly

customisable by means of plugins, and is freely available for academic use at [4].

This section explains how to use the WORKCRAFT framework for visual editing and

simulation of CPOGs. Subsection A.2.1 describes the process of creating a new graph

and editing it, while Subsection A.2.2 addresses the process of a CPOG simulation.

157

APPENDIX A. TOOL SUPPORT FOR CPOGS

A.2.1 Creating and editing a graph

To create a new graph, start the WORKCRAFT framework, select New... in the File menu

(or use Ctrl-N keyboard shortcut), highlight the Conditional Partial Order Graph list

item in the New model dialogue, and press OK (see the corresponding screenshot in

Figure A.1). The list of available components (the leftmost panel) should update itself

and contain vertex and variable components. To add a new vertex or a new variable

to the graph (which is initially empty), drag the corresponding component to the main

working area (or use keyboard shortcuts V or X respectively). A vertex is depicted as a

circle, while a variable – as a box with its current Boolean value inside.

Figure A.1: Creating a Conditional Partial Order Graph in WORKCRAFT

To connect any two vertices with an arc, click button Connect (or press keyboard

shortcut C) and then click on the two vertices in the appropriate order. To change the

name, the label, the condition, or any other property of a vertex, arc, or variable, click on

it and edit the corresponding field in the property editor window (the rightmost panel).

Initially, all the created variables are static (see Definition 5.16); to make a variable

158

APPENDIX A. TOOL SUPPORT FOR CPOGS

Figure A.2: CPOG simulation in WORKCRAFT

dynamic connect it to its master vertex. The framework provides all the basic visual

editing features, e.g. moving the created components around the working area (left click

and drag), zooming in and out (mouse wheel), panning (right click and drag), etc.

At any moment of time it is possible to save the graph into a file (File → Save/Save

as...), or to export it (File → Export) into one of the available graphical vector formats,

including SVG (Scalable Vector Graphics), EPS (Encapsulated PostScript), PDF (Por-

table Document Format), and others. To load a graph from the previously saved file use

the File → Open command.

159

APPENDIX A. TOOL SUPPORT FOR CPOGS

A.2.2 Simulation

To enter the simulation mode select Simulation tab in the bottom panel and click Start.

See the screenshot in Figure A.2 which captures a moment in simulation of the CPOG

describing the example processor from Chapter 8 (the CPOG can be found in Figure 8.16).

During the simulation, vertices that are enabled to fire are highlighted with blue (e.g.

vertex PCIU in the screenshot), inactive vertices and arcs are grey (e.g. vertex MAU , arc

ALU → IFU , etc.). To fire an enabled vertex click on it, or use the automatic means of

simulation provided in the simulation tab: step-by-step simulation (a random enabled

vertex is chosen and fired), automatic mode with controllable simulation speed, etc. To

reset the graph into the initial state use button Reset.

A.3 Synthesis of phase encoding controllers

This section describes the tools developed for synthesis of multiple rail phase encoding

controllers, which are divided into two packages: phase encoding receivers (Subsec-

tion A.3.1) and phase encoding senders (Subsection A.3.2).

A.3.1 Phase encoding receivers

This package contains a set of tools for automated synthesis of phase encoding receivers

with different parameters. The tools are combined within pe_recv command-line wrapper

described below.
USAGE:

pe_recv -o OUTPUT_FILE -w NWIRES -p PHASE -lib LIBRARY [-neg] -f FORMAT [-c] [-h]

The parameters are:

· -o OUTPUT_FILE – name of the output file, if omitted the tool prints the result to the

console.

· -w NWIRES – specifies the number of wires in the phase encoding channel (default

value: 2).

160

APPENDIX A. TOOL SUPPORT FOR CPOGS

· -p PHASE – specifies the working phase of the receiver. Supported values are: the ri-

sing phase (-p rise) which is the default, the falling phase (-p fall), or both (-p both).

· -lib LIBRARY – specifies the gate library for technology mapping. Supported values

are: -lib abstract (default) and -lib ams035.

· -neg – performs negative logic optimisation if possible.

· -f FORMAT – specifies the output format. Supported values are: -f verilog (default)

and -f xml.

· -c – compresses the resultant netlist by shortening all the internal wire names.

· -h – prints out all these options.

For example, the following command synthesises a 5-wire phase encoding receiver cir-
cuit operating on the rising signal edge, maps it to the AMS 0.35µ technology library,
compresses the final Verilog netlist, and writes it to receiver5.v:
pe_recv -o receiver5.v -w 5 -c -lib ams035

To produce the same controller implemented with abstract (unmapped) gates and save
it in XML format with no compression use the following command:
pe_recv -o receiver5.xml -w 5 -f xml

A.3.2 Phase encoding senders

This package contains a set of tools for automated synthesis of phase encoding senders

with different parameters. The tools are combined within pe_send command-line wrapper

described below.
USAGE:

pe_send -o OUTPUT_FILE -w NWIRES -p PHASE -lib LIBRARY [-neg] -f FORMAT [-c] [-h]

The parameters are:

· -o OUTPUT_FILE – name of the output file, if omitted the tool prints the result to the

console.

· -w NWIRES – specifies the number of wires in the phase encoding channel (default

value: 2).

161

APPENDIX A. TOOL SUPPORT FOR CPOGS

· -p PHASE – specifies the working phase of the receiver. Supported values are: the

rising phase (-p rise) which is the default, and the falling phase (-p fall).

· -lib LIBRARY – specifies the gate library for technology mapping. Supported values

are: -lib abstract and -lib ams035 (default).

· -neg – performs negative logic optimisation if possible.

· -f FORMAT – specifies the output format. Supported values are: -f verilog (default)

and -f xml.

· -c – compresses the resultant netlist by shortening all the internal wire names.

· -h – prints out all these options.

For example, the following command synthesises a 4-wire phase encoding sender circuit
operating on the falling signal edge, maps it to the AMS 0.35µ technology library, applies
negative logic optimisation, and writes it to sender4.v:
pe_send -o sender4.v -w 4 -p fall -lib ams035 -neg

To produce the same controller implemented with abstract (unmapped) gates and save

it in XML format without the negative logic optimisation use the following command:

pe_send -o sender4.xml -w 4 -p fall -f xml

162

Bibliography

[1] Balsa project homepage. http://intranet.cs.man.ac.uk/apt/projects/tools/balsa/.

[2] MSP430x4xx Family User’s Guide. Texas Instruments.

http://focus.ti.com/lit/ug/slau056i/slau056i.pdf.

[3] International Technology Roadmap for Semiconductors (ITRS’07).

http://www.itrs.net/Links/2007ITRS/Home2007.htm, 2007.

[4] The Workcraft framework homepage. http://www.workcraft.org, 2009.

[5] Howard H. Aiken and Grace M. Hopper. The automatic sequence controlled calcu-

lator. Electrical Engineering, Vol. 65; No. 8-9: pp. 384-391 (Aug 1946); No. 10: pp.

449-454 (Oct 1946); No. 11: pp. 522-528 (Nov 1946).

[6] A. Alomary, T. Nakata, Y. Honma, J. Sato, N. Hikichi, and M. Imai. PEAS-I: A hard-

ware/software co-design system for ASIPs. In Proc. of European Design Automation

Conference (EURO-DAC), pages 2–7, 1993. ISBN: 0-8186-4350-1.

[7] Michael A Arbib. Theories of abstract automata (Prentice-Hall series in automatic

computation). Prentice-Hall, Inc., 1969. ISBN: 0139133682.

[8] W. J. Bainbridge and S. B. Furber. Delay insensitive system-on-chip interconnect

using 1-of-4 data encoding. In ASYNC ’01: Proceedings of the 7th International

Symposium on Asynchronous Circuits and Systems, page 118. IEEE Computer So-

ciety, 2001. ISBN: 0-7695-1034-5.

163

BIBLIOGRAPHY

[9] W. J. Bainbridge, W. B. Toms, David A. Edwards, and Stephen B. Furber. Delay-

Insensitive, Point-to-Point Interconnect Using M-of-N Codes. In Proc. of Interna-

tional Symposium on Advanced Research in Asynchronous Circuits and Systems

(ASYNC’03), pages 132–140, 2003.

[10] Andrew Bardsley and Doug Edwards. The Balsa asynchronous circuit synthesis

system. In Forum on Design Languages, 2000.

[11] P. A. Beerel, K. Y. Yun, and W. C. Chou. Optimizing average-case delay in technology

mapping of burst-mode circuits. In Proceedings of the 2nd International Symposium

on Advanced Research in Asynchronous Circuits and Systems (ASYNC’96), page 244.

IEEE Computer Society, 1996.

[12] Peter A. Beerel and Teresa H.-Y. Meng. Automatic gate-level synthesis of speed-

independent circuits. In Proceedings of the 1992 IEEE/ACM international confe-

rence on Computer-aided design (ICCAD’92), pages 581–586. IEEE Computer So-

ciety Press, 1992.

[13] G. Birkhoff. Lattice Theory. Third Edition, American Mathematical Society, Provi-

dence, RI, 1967. ISBN: 0821810251.

[14] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation of

a BDD package. In DAC ’90: Proceedings of the 27th ACM/IEEE Design Automation

Conference, pages 40–45. ACM, 1990. ISBN: 0-89791-363-9.

[15] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Trans. Comput., 35(8):677–691, 1986. ISBN: 0018-9340.

[16] A W Burks, H H Goldstein, and John von Neumann. Preliminary discussion of the

logical design of an electronic computing instrument. Institute for Advanced Study,

1946.

[17] Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous systems. PhD

thesis, Stanford University, 1984.

164

BIBLIOGRAPHY

[18] Fu-Chiung Cheng. Practical design and performance evaluation of completion detec-

tion circuits. In IEEE International Conference on Computer Design (ICCD), pages

1063–6404, 1998. ISBN: 0-8186-9099-2.

[19] Tam-Anh Chu. Synthesis of self-timed VLSI circuits from graph-theoretic specifica-

tions. PhD thesis, MIT Laboratory for Computer Science, 1987.

[20] Michael D. Ciletti. Advanced Digital Design with the VERILOG HDL. Prentice Hall

PTR, 2002. ISBN: 0130891614.

[21] Wesley A. Clark. Macromodular computer systems. In AFIPS ’67 (Spring): Pro-

ceedings of the April 18-20, 1967, spring joint computer conference, pages 335–336,

New York, NY, USA, 1967. ACM.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

MIT Press, 2001. ISBN: 0262031418.

[23] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify:

a tool for manipulating concurrent specifications and synthesis of asynchronous

controllers. IEICE Transactions on Information and Systems, E80-D(3):315–325,

1997.

[24] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and Alex

Yakovlev. Automatic handshake expansion and reshuffling using concurrency reduc-

tion. In Proceedings of HWPN’98, 1998.

[25] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and

Alexandre Yakovlev. Logic synthesis of asynchronous controllers and interfaces.

Advanced Microelectronics. Springer-Verlag, 2002. ISBN: 3540431527.

[26] Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, and Alex Yakovlev. De-

lay/Phase Regeneration Circuits. In Proc. of International Symposium on Advanced

Research in Asynchronous Circuits and Systems (ASYNC), pages 105–116, 2007.

165

BIBLIOGRAPHY

[27] Crescenzo D’Alessandro, Delong Shang, Alexandre V. Bystrov, and Alexandre Ya-

kovlev. PSK signalling on NoC buses. In PATMOS, pages 286–296. Springer, 2005.

[28] Crescenzo D’Alessandro, Delong Shang, Alexandre V. Bystrov, Alexandre Yakovlev,

and Oleg V. Maevsky. Multiple-rail phase-encoding for NoC. In Proc. of International

Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC),

pages 107–116, 2006.

[29] William J. Dally and John W. Poulton. Digital systems engineering. Cambridge

University Press, New York, NY, USA, 1998. ISBN: 0-521-59292-5.

[30] René David. Modular design of asynchronous circuits defined by graphs. IEEE

Trans. Computers, 26(8):727–737, 1977.

[31] A. Davis and S. Nowick. An introduction to asynchronous system design. Technical

report, University of Utah, September (UUCS-97-013) 1997.

[32] Jorg Desel and Javier Esparza. Free choice Petri nets. Cambridge University Pres,

1995. ISBN: 0521465192.

[33] Victor I. Varshavsky (Editor). Self-Timed Control of Concurrent Processes. Kluwer

Academic Publishers, 1990. ISBN: 0792305256.

[34] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. Theory and Applica-

tions of Satisfiability Testing, pages 333–336, 2004. ISBN: 978-3-540-20851-8.

[35] J. Esparza. Decidability and Complexity of Petri Net Problems - an Introduction. In

Lectures on Petri Nets I: Basic Models, W. Reisig and G. Rozenberg (Eds.)., pages

374–428, 1998. ISBN: 3-540-65306-6.

[36] Javier Esparza and Mogens Nielsen. Decidability Issues for Petri Nets. Petri nets

newsletter, 52:245–262, 1994.

[37] K. Fant and S.A. Brandt. Null conventional logic: A complete and consistent logic

for asynchronous digital circuit synthesis. In Proc. Int’l Conf. Application-Specific

166

BIBLIOGRAPHY

Systems, Architectures, and Processors (ASAP 96), volume 19, pages 261 – 273,

1996.

[38] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics:

A Foundation for Computer Science. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1994. ISBN: 0201558025.

[39] Lee A. Hollaar. Direct implementation of asynchronous control units. IEEE Trans.

Computers, 31(12):1133–1141, 1982.

[40] Bruce Kester Holmer. Automatic design of computer instruction sets. PhD thesis,

1993. Co-Chair-Culler, David E. and Co-Chair-Despain, Alvin M.

[41] D. A. Huffman. A method for the construction of minimum-redundancy codes. Pro-

ceedings of the IRE, 40(9):1098–1101, 1952.

[42] B. Robic J. Silc, T. Ungerer. A survey of new research directions in microprocessors.

Microprocessors and Microsystems, pages 175–190, 2000.

[43] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical

Use. Springer-Verlag, 1997. ISBN: 3540582762.

[44] Ka-Ming Keung and Akhilesh Tyagi. State space reconfigurability: an implemen-

tation architecture for self modifying finite automata. In CASES ’06: Proceedings

of the 2006 international conference on Compilers, architecture and synthesis for

embedded systems, pages 83–92. ACM, 2006. ISBN: 1-59593-543-6.

[45] Victor Khomenko. Model Checking Based on Prefixes of Petri Net Unfoldings. PhD

thesis, University of Newcastle upon Tyne, School of Computing Science, 2003.

[46] Victor Khomenko, Maciej Koutny, and Alex Yakovlev. Detecting State Coding

Conflicts in STG Unfoldings Using SAT. In Proceedings of the Third International

Conference on Application of Concurrency to System Design (ACSD’03), page 51,

2003. ISBN: 0-7695-1887-7.

167

BIBLIOGRAPHY

[47] Victor Khomenko, Maciej Koutny, and Alexandre Yakovlev. Logic synthesis for asyn-

chronous circuits based on petri net unfoldings and incremental sat. In Procee-

dings of International Conference on Applicatioon of Concurrency to System Design

(ACSD’04), pages 16–25, 2004.

[48] Victor Khomenko and Mark Schäfer. Combining decomposition and unfolding for

stg synthesis. In Proc. of 28th International Conference on Applications and Theory

of Petri Nets and Other Models of Concurrency, pages 223–243, 2007.

[49] David J. Kinniment. Synchronization and Arbitration in Digital Systems. John Wiley

and Sons, 2008. ISBN: 978-0-470-51082-7.

[50] Michael Kishinevsky, Alex Kondratyev, Alexander Taubin, and Victor Varshavsky.

Concurrent hardware: the theory and practice of self-timed design. John Wiley

& Sons, Inc., 1994. Translator-Yakovlev, Alex and Translator-Napelbaum, Eric and

Translator-Reva, Olga. ISBN: 0-471-93536-0.

[51] Donald E. Knuth. Big Omicron and big Omega and big Theta. SIGACT News,

8(2):18–24, 1976. ISSN: 0163-5700.

[52] Alex Kondratyev and Kelvin Lwin. Design of asynchronous circuits using synchro-

nous CAD tools. IEEE Design & Test of Computers, 19(4):107–117, 2002.

[53] Maciej Koutny and Brian Randell. Structured Occurrence Nets: A formalism for ai-

ding system failure prevention and analysis techniques. Technical report, Newcastle

University, August 2009.

[54] C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell

Systems Technical Journal, 38:985–999, 1959.

[55] J. Lee, K. Choi, and N. Dutt. Efficient instruction encoding for automatic instruc-

tion set design of configurable asips. In Proc. of the International Conference on

Computer-aided Design (ICCAD), pages 649–654, 2002.

168

BIBLIOGRAPHY

[56] Art Lew. Computer Science: A Mathematical Introduction. Prentice-Hall, 1985.

ISBN: 0-13-164252-9.

[57] Roger Lipsett, Cary A. Ussery, and Carl F. Schaefer. VHDL, Hardware Description

and Design. Kluwer Academic Publishers, 1993. ISBN: 9780792390305.

[58] Alain J. Martin. Compiling communicating processes into delay-insensitive vlsi cir-

cuits. Technical report, California Institute of Technology. [CaltechCSTR:1986.5210-

tr-86], 1986.

[59] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In

Proceedings of the sixth MIT conference on Advanced research in VLSI, pages 263–

278. MIT Press, 1990.

[60] E. L. McCluskey. Minimization of boolean functions. Bell System Technical Journal,

pages 149–175, 1959.

[61] Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1979. ISBN: 0201043580.

[62] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill

Higher Education, 1994. ISBN: 0070163332.

[63] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial

problems. In DAC ’93: Proceedings of the 30th international Design Automation

Conference, pages 272–277. ACM, 1993. ISBN: 0-89791-577-1.

[64] P. Mishra and N. Dutt. Processor Modelling and Design Tools, Chapter 8 in ‘EDA

for IC Systems Design, Verification, and Testing’ by L. Sheffer, L. Lavagno, and G.

Martin. Taylor and Francis Group, 2006. ISBN: 0849379237.

[65] Andrey Mokhov, Crescenzo D’Alessandro, and Alex Yakovlev. Synthesis of multiple

rail phase encoding circuits. In Proc. of International Symposium on Advanced Re-

search in Asynchronous Circuits and Systems (ASYNC), pages 95–104. IEEE Com-

puter Society, 2009. ISBN: 978-0-7695-3616-3.

169

BIBLIOGRAPHY

[66] Andrey Mokhov, Ulan Degenbaev, and Alex Yakovlev. Optimal Encoding of Partial

Orders. Technical report, Newcastle University, February 2009.

[67] Andrey Mokhov, Ulan Degenbaev, and Alex Yakovlev. Synthesis of instruction codes

in the context of asynchronous microcontrol design. In UK Asynchronous Forum,

2009.

[68] Andrey Mokhov, Victor Khomenko, and Alex Yakovlev. Flat arbiters. In Proc. of 9th In-

ternational Conference on Applicatioon of Concurrency to System Design (ACSD’09),

pages 99–108, 2009.

[69] Andrey Mokhov, Danil Sokolov, and Alex Yakovlev. Completion detection optimisa-

tion based on relative timing. In UK Asynchronous Forum, 2006.

[70] Andrey Mokhov and Alex Yakovlev. Conditional partial order graphs algebra. Tech-

nical report, Newcastle University, September 2008.

[71] Andrey Mokhov and Alex Yakovlev. Conditional Partial Order Graphs and Dynami-

cally Reconfigurable Control Synthesis. In Proceedings of Design, Automation and

Test in Europe (DATE) Conference, pages 1142–1147, 2008. ISBN: 978-3-9810801-

3-1.

[72] Andrey Mokhov and Alex Yakovlev. Verification of conditional partial order graphs.

In Proc. of 8th Int. Conf. on Application of Concurrency to System Design (ACSD’08),

pages 128–137, 2008. ISBN: 978-1-4244-1838-1.

[73] Charles E. Molnar and Ian W. Jones. Simple circuits that work for complicated rea-

sons. In ASYNC ’00: Proceedings of the 6th International Symposium on Advanced

Research in Asynchronous Circuits and Systems, page 138, Washington, DC, USA,

2000. IEEE Computer Society. ISBN: 0-7695-0586-4.

[74] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering

an efficient SAT solver. In Design Automation Conference, pages 530–535, 2001.

170

BIBLIOGRAPHY

[75] D. Muller and W. Bartky. A Theory of Asynchronous Circuits. In Proc. Int. Symp. of

the Theory of Switching, pages 204–243, 1959.

[76] Tadao Murata. Petri Nets: Properties, Analysis and Applications. In Proceedings

of the IEEE, volume 77, 1989.

[77] A. Nohl, V. Greive, G. Braun, A. Hoffman, R. Leupers, O. Schliebusch, and H. Meyr.

Instruction encoding synthesis for architecture exploration using hierarchical pro-

cessor models. In Proc. of the 40th annual Design Automation Conference (DAC),

pages 262–267. ACM, 2003.

[78] Steven Nowick. Automatic Synthesis of Burst-Mode Asynchronous Controllers. PhD

thesis, Stanford University, 1993.

[79] Steven Nowick, Kenneth Yun, Peter Beerel, and Ayoob Dooply. Speculative com-

pletion for the design of high-performance asynchronous dynamic adders. In Proc.

of International Symposium on Advanced Research in Asynchronous Circuits and

Systems (ASYNC), page 210, 1997. ISBN: 0-8186-7922-0.

[80] Carl Adam Petri. Kommunikation mit automaten (Communicating with automata).

PhD thesis, University of Bonn, 1962.

[81] Luis A. Plana, Steve B. Furber, Steve Temple, Mukaram Khan, Yebin Shi, Jian Wu,

and Shufan Yang. A GALS Infrastructure for a Massively Parallel Multiprocessor.

IEEE Design and Test, 24(5):454–463, 2007.

[82] Ivan Poliakov, Victor Khomenko, and Alex Yakovlev. Workcraft – A Framework for

Interpreted Graph Models. In Proceedings of the 30th International Conference on

Applications and Theory of Petri Nets, pages 333–342, 2009.

[83] Ivan Poliakov, Andrey Mokhov, Ashur Rafiev, Danil Sokolov, and Alex Yakovlev. Au-

tomated Verification of Asynchronous Circuits Using Circuit Petri Nets. In Proc.

of International Symposium on Advanced Research in Asynchronous Circuits and

Systems (ASYNC), pages 161–170, 2008. ISBN: 978-0-7695-3107-6.

171

BIBLIOGRAPHY

[84] Ivan Poliakov, Danil Sokolov, Andrey Mokhov, and Alex Yakovlev. Workcraft: a

static data flow structure editing, visualisation and analysis tool. In Proceedings of

the 28th International Conference on Applications and Theory of Petri Nets, pages

505–514, 2007.

[85] W. V. Quine. A way to simplify truth functions. The American Mathematical Monthly,

62(9):627–631, 1955. ISSN: 00029890.

[86] Brian Randell. From Analytical engine to electronic digital computer: the contri-

butions of Ludgate, Torres, and Bush. IEEE Annals of the History of Computing,

4(4):327–341, 1982.

[87] Leonid Rosenblum and Alexandre Yakovlev. Signal graphs: From self-timed to timed

ones. In Proceedings of International Workshop on Timed Petri Nets, pages 199–206,

1985.

[88] Richard L. Rudell and Alberto L. Sangiovanni-Vincentelli. Multiple-Valued Mini-

mization for PLA Optimization. IEEE Trans. on CAD of Integrated Circuits and

Systems, 6(5):727–750, 1987.

[89] Mark Schaefer, Dominic Wist, and Ralf Wollowski. Desij - enabling decomposition-

based synthesis of complex asynchronous controllers. In Proc. of 9th International

Conference on Applicatioon of Concurrency to System Design (ACSD’09), pages

186–190, 2009. ISBN: 1550-4808.

[90] Louis Scheffer, Luciano Lavagno, and Grant Martin. EDA for IC Systems Design,

Verification, and Testing. Taylor and Francis Group, 2006. ISBN: 0849379237.

[91] J. Shutt and R. Rubinstein. Self-modifying finite automata: An introduction. Infor-

mation Processing Letters, 56(4 (24 November)):185–190, 1995.

[92] Danil Sokolov. Automated synthesis of asynchronous circuits using direct mapping

for control and data paths. PhD thesis, Newcastle University, 2005.

172

BIBLIOGRAPHY

[93] Danil Sokolov, Ivan Poliakov, and Alex Yakovlev. Analysis of static data flow struc-

tures. Fundamenta Informaticae, 88(4):581–610, 2008.

[94] Danil Sokolov and Alex Yakovlev. Clock-less circuits and system synthesis. In IEE

Proceedings, Computers and Digital Techniques, volume 152, pages 298–316, 2005.

ISBN: 1350-2387.

[95] Jens Sparsø and Steve Furber. Principles of Asynchronous Circuit Design: A Sys-

tems Perspective. Kluwer Academic Publishers, 2001. ISBN: 0792376137.

[96] Alexander Taubin, Jordi Cortadella, Luciano Lavagno, Alex Kondratyev, and Ad M. G.

Peeters. Design automation of real-life asynchronous devices and systems. Foun-

dations and Trends in Electronic Design Automation, 2(1):1–133, 2007.

[97] W. B. Toms, D. A. Edwards, and A Bardsley. Synthesising heterogeneously encoded

systems. In ASYNC ’06: Proceedings of the 12th IEEE International Symposium on

Asynchronous Circuits and Systems, page 138. IEEE Computer Society, 2006. ISBN:

0-7695-2498-2.

[98] Jan Tijmen Udding. Classification and Composition of Delay-Insensitive Circuits.

PhD thesis, Eindhoven University of Technology, Department of Computing Science,

1984.

[99] Stephen H. Unger. Asynchronous Sequential Switching Circuits. Wiley-Interscience,

John Wiley and Sons, Inc., New York, 1969. ISBN: 0471896322.

[100] K. v. Berkel, H. van Gadeldonk, J. Kessels, C. Niessen, A.Peeters, M. Roncken, and

R. van de Wiel. Asynchronous does not imply low power, but... In Low Power CMOS

Design. IEEE Computer Society, 1998.

[101] Antti Valmari. The state explosion problem. Lecture Notes in Computer Science.

Lectures on Petri Nets I: Basic Models (Edited by W. Reisig and G. Rozenberg),

1491:429–528, 1998. ISBN: 3-540-65306-6.

173

BIBLIOGRAPHY

[102] Kees van Berkel. Handshake circuits: an asynchronous architecture for VLSI pro-

gramming. Cambridge University Press, 1993. ISBN: 0521617154.

[103] Kees van Berkel, Mark Josephs, and Steven Nowick. Scanning the technology:

applications of asynchronous circuits. In Proceedings of the IEEE, pages 223–233,

1999.

[104] Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits Schalij. The

VLSI-programming language Tangram and its translation into handshake circuits.

In Proc. European Conference on Design Automation (EDAC), pages 384 – 389, 1991.

ISBN: 0-8186-2130-3.

[105] Tom Verhoeff. Delay-insensitive codes - an overview. Distributed Computing, 3(1):1–

8, 1988.

[106] Jiacun Wang. Timed Petri nets: theory and application. Springer, 1998. ISBN:

0792382706.

[107] Ingo Wegener. The Complexity of Boolean Functions. Johann Wolfgang Goethe-

Universitat, 1987. ISBN: 0471915556.

[108] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and M. Pietkiewicz-Koutny.

On the models for asynchronous circuit behaviour with OR causality. Formal Me-

thods in System Design, pages 189–234, 1996.

[109] Alexandre Yakovlev, Albert Koelmans, and Luciano Lavagno. High-Level Modeling

and Design of Asynchronous Interface Logic. IEEE Design & Test of Computers,

12(1):32–40, 1995.

[110] Kenneth Y. Yun, David L. Dill, and Steven M. Nowick. Synthesis of 3D Asynchronous

State Machines. In In Proc. International Conf. Computer Design (ICCD, pages 346–

350. IEEE Computer Society Press, 1992.

174

BIBLIOGRAPHY

[111] Qin Zhao, Bart Mesman, and Twan Basten. Practical instruction set design and

compiler retargetability using static resource models. In Proc. Design, Automation

and Test in Europe (DATE), page 1021, 2002.

[112] Yu Zhou, Danil Sokolov, and Alex Yakovlev. Cost-aware synthesis of asynchronous

circuits based on partial acknowledgement. In Proceedings of the 2006 IEEE/ACM

international conference on Computer-aided design (ICCAD’06), pages 158–163.

ACM, 2006.

175

Index

addition, 48

addressing mode, 137

arc, 34, 38

conditional, 39

unconditional, 39

asymmetric addition, 53

asynchronous system, 9

average-case performance, 10

Boolean satisfiability problem, 68

C-element, 18

canonical CPOG description, 48

causality, 24, 31

chain, 33

choice, 15

complete projection, 42

concurrency, 32

concurrency reduction, 25

condition, 38

Conditional Marked Graph, 152

Conditional Partial Order Graph, 3, 38

complexity, 47

deadlock free, 64, 74

definition, 38

dynamic, 38, 56, 60, 140

equivalent, 46

k-restricted, 104

optimisation, 48

properties, 72

singular, 38

static, 37

strongly k-restricted, 105

well-formed, 44, 69

configuration, 61, 62, 75

valid, 62

confusion, 17

constraint, 75

deadlock, 77

encoding, 106

encoding conflict, 71

event conflict, 78

invalid state, 78

mutual exclusion, 80

non-trivial, 107

opcode, 76

trivial, 107

valid configuration, 75

controlled choice, 15

cycle, 34

176

INDEX

deadlock, 16

delay insensitive, 11, 118

delay model, 11

direct mapping, 18

directed acyclic graph, 34

don’t care, 97, 107, 115

dual rail encoding, 23

encoding conflict, 45, 52, 71, 92

false, 46, 54

resolution, 52

true, 46, 53, 55

encoding constraint, 106

encoding function, 85

encoding scheme, 6

binary, 88, 103

dual rail, 23

matrix, 89

one hot, 22, 87, 103

optimal, 103

equivalence, 46, 71

event conflict, 78

event domain, 38

firing rules, 14, 61

free choice, 15

Free Choice Net, 17

graph, 34, 38

directed acyclic graph, 34

directed graph, 34

Hasse diagram, 32, 33

instruction, 3, 137

interleaving semantics, 12

Interpreted Graph Models, 157

isochronic fork, 12

label, 17

Labelled Petri Net, 17

labelling function, 17

linear combination, 52, 85

logic decomposition, 131

logic synthesis, 18

Marked Graph, 16

marking, 14

microinstruction, 3

model

Conditional Marked Graph, 152

Conditional Partial Order Graph, 3, 38

Free Choice Net, 17

Labelled Petri Net, 17

Marked Graph, 16

partial order, 6, 30

Petri Net, 13

Signal Transition Graph, 17

State Machine, 16

monotonicity, 63

multiplication, 52

mutual exclusion, 80, 124, 146

one hot encoding, 22

177

INDEX

opcode, 6, 21, 38, 61, 140

operation, 41, 137

dg, 43

dg−1, 43

po, 44

po−1, 44

addition, 48

asymmetric addition, 53

linear combination, 52

scalar multiplication, 52

operational domain, 38

operational unit, 135

operational vector, 38

OR-causality, 24

order

partial, 6, 30

strict partial, 30

total, 33

orthogonality, 85

ParSeq controller, 21, 114

partial order, 6, 30

path, 34, 99

permutator, 26

Petri Net, 13

deadlock-free, 16

Free Choice Net, 17

k-bounded, 16

Labelled Petri Net, 17

live, 16

Marked Graph, 16

safe, 16

Signal Transition Graph, 17

State Machine, 16

phase

active, 65

reset, 18, 65

set, 18

phase encoding, 26, 118

binary phase encoder, 129

matrix phase encoder, 124

one hot phase encoder, 128

phase detector, 124

phase encoder, 124

repeater, 124

place, 14

postset, 14, 62

preset, 14, 61

projection, 39, 42

complete, 42

singular, 42

valid, 43

quasi delay insensitive, 12

reachability problem, 16

reachability set, 15

relation, 30

restriction function, 38, 97

semigroup, 48

178

INDEX

signal, 17

Signal Transition Graph, 17

singular graph, 38

spacer, 22, 114

speed-independent, 11, 131

state, 61, 62

deadlock, 64

final, 64

initial, 64

invalid, 77

valid, 62

State Machine, 16

strict partial order, 30

synthesis, 84, 141

from partial orders, 84

generalised problem, 91

optimal instruction encoding, 101, 142

speed-independent, 131

with opcode constraint, 84

token, 14

total order, 33

trace, 15

trace reconstruction algorithm, 73

transition, 14

Transition Sequence Encoder, 113

transitive closure, 33, 34

transitive dependency, 31, 32, 35

transitive reduction, 33, 35

true concurrency semantics, 13

variable, 38, 60

dynamic, 60

static, 60

vertex, 34, 38

conditional, 39

controlled set, 60

enabled, 62

firing, 62

restriction function, 60

unconditional, 39

well-formedness, 44, 69

Workcraft framework, 132, 154, 157

worst-case performance, 10

179

