
POWER ELASTIC SYSTEMS: DISCRETE EVENT CONTROL, CONCURRENCY REDUCTION AND HARDWARE
IMPLEMENTATION

1

Power Elastic Systems: Discrete Event
Control, Concurrency Reduction and

Hardware Implementation

Andrey Mokhov, Delong Shang, Danil Sokolov, Fei Xia, Alex Yakovlev, Yu Zhou

Technical Report Series

NCL-EECE-MSD-TR-2009-151

September 2009

POWER ELASTIC SYSTEMS: DISCRETE EVENT CONTROL, CONCURRENCY REDUCTION AND HARDWARE
IMPLEMENTATION

2

Contact: fei.xia@ncl.ac.uk

NCL-EECE-MSD-TR-2009-151
Copyright c 2007 Newcastle University
School of Electrical, Electronic & Computer Engineering
Merz Court, Newcastle University
Newcastle upon Tyne, NE1 7RU
UK
http://async.org.uk

mailto:fei.xia@ncl.ac.uk
http://async.org.uk/

POWER ELASTIC SYSTEMS: DISCRETE EVENT CONTROL, CONCURRENCY REDUCTION AND HARDWARE IMPLEMENTATION

1

Power Elastic Systems: Discrete Event Control,
Concurrency Reduction and Hardware

Implementation
Andrey Mokhov, Delong Shang, Danil Sokolov, Fei Xia, Alex Yakovlev, Yu Zhou

Abstract—The design of microelectronic systems becomes
increasingly power-driven, moving towards systems where power
and energy appear as dynamic resources. This paper focuses on
the aspect of power-adaptive and power-resilient systems, with
the property that is collectively called here Power Elasticity,
centered on the concept of treating power as a quantifiable
system resource. A new approach to power elasticity is proposed
based on discrete event control, conveniently represented in a
Petri net modeling framework. A simple mechanism aimed at
reducing power stressing by using concurrency reduction and an
efficient technique for its implementation, the entirely novel idea
of ‘soft arbitration’, are presented. Our approach paves the way
for designing systems with fine granularity of power and timing
control, thus significantly more robust and better optimized to
the operational conditions in a wide variety of applications.

INTRODUCTION

Microelectronic system design is becoming more energy
conscious, because of limited energy supply (scavenged energy
or low battery) and excessive heat with associated thermal
stress and device wear-out. At the same time, the high density
of devices per die and the ability to operate with a high degree
of parallelism, coupled with environmental variations, create
almost permanent instability in voltage supply (cf. Vdd droop),
making systems highly power variant. In the not so long past
low power design was targeted merely at the reduction of
capacitance, Vdd and switching activity, whilst maintaining the
required system performance. In many current applications, the
design objectives are changing to maximizing the performance
within the dynamic power constraints from energy supply and
consumption regimes. Such systems can no longer be simply
regarded as low power systems, but rather as power-adaptive or
power-resilient systems. It is also possible now to imagine
designs where systems are optimized to work under both
dynamic power and performance constraints.
When systems are subjected to varying environmental

conditions, with voltage and thermal fluctuations, timing tends
to be the first issue affected. Most systems are still designed
with global clocking and the design is often made overly
pessimistic to avoid failures due to timing variations. To reduce
these margins designers now consciously allow parts of the
system to fail, albeit rarely, to maintain the overall balance
between the increased performance gains due to margin cuts
and reasonably low error rate [1 , 2], often combined with
dynamic frequency and voltage scaling. Elsewhere designers
are moving towards timing elasticity and a wider use of
asynchronous design methods. It has been shown that the latter,
materialized into the so called elastic voltage scaling, can lead
to 30-40% average power savings under the same level of

performance [3]. The former technique may be well suited for
CPU pipelines but the latter seems to be more universal and
appropriate for more heterogeneous systems such as SOCs and
even 3D die-stacks. This trend is set to continue in a widening
scope of embedded applications and systems with multiple
cores and heterogeneity. These methods have so far been
developed based on the assumption of a relative rigidity of
energy supply levels. Computations tend to be scheduled based
on a prior knowledge of the energy requirements. Vdd droops
are usually accommodated through reliable operation.
However, the notion of elasticity can be taken further than
simply stretching delays to accommodate varying conditions.
We would like to investigate elasticity in terms of energy

supply and consumption. The ultimate goal is to design systems
in such a way that, while maintaining functionality
requirements and preserving behavioral equivalence in
computation, the computational execution can be altered so as
to meet the energy mode requirements. This concept of systems
being limited by applicable power and designing systems
according to such limitations (called power-elastic design in
this paper) is different from conventional low power design [4].
We believe that this problem cannot be solved in its entirety

without actually introducing a measure of energy (or power)
into the deep levels of the system design abstraction, for
example in the form of quantized resources. We also believe
that this can be done very elegantly within the computational
and behavioral models based on token games, such as Petri
nets. Given that there exist powerful methods for the analysis
and synthesis of Petri nets, as well as their mapping into logic
circuits, the overall prospects of achieving an algorithmic and
potentially automated way of obtaining efficient power controls
and their hardware implementation are realistic. The overall
discipline of designing systems with dynamic power allocation
is called here power elasticity. In this paper we develop an
approach to power elasticity suitable for deriving simple and
low-cost hardware for fast response control of energy use. This
complements the existing concept of timing elasticity based on
dynamic adjustment of computational delays, also at the fine
grain level, using asynchronous logic techniques. Together they
pave the way for designing systems with fine granularity of
power and timing control, and thereby being significantly more
robust and better optimized to the operational conditions in a
wide variety of (mostly embedded) applications.

Contributions and organization of this paper
The main contributions of this paper are the proposal of the

power elastic view of system design and specific power elastic
design and implementation techniques, including especially
concurrency reduction modeling, analysis and design as well as

POWER ELASTIC SYSTEMS: DISCRETE EVENT CONTROL, CONCURRENCY REDUCTION AND HARDWARE IMPLEMENTATION

2

soft arbitration. The rest of this paper is organized as follows:
In Section 2 we will review existing techniques available for
use at the front-line of power management and control, namely
the “actuator and sensor” mechanisms a power controller needs
for monitoring and manipulating system power behavior. In
Section 3 we will describe our automatic power control regime
based on power profiling and feedback control concepts. In
Section 4 we will explore Petri net techniques and describe
initial investigations of power elastic design based on
concurrency reduction and soft arbitration techniques. Then
discussions and future work vision conclude the paper.

EXISTING POWER CONTROL MECHANISMS

A handful of front-line power saving mechanisms has been
used by the semiconductor industry to reduce circuit power
consumption [5]. These techniques can be divided by the type
of power consumption they address (dynamic power or static
power) and by the stage of circuit life during which they are
employed (design time or run time), as shown in FIGURE 1.

voltage domains power gating

clock gatinggate sizing

stack forcing

st
at

ic
 p

ow
er

dy
na

m
ic

 p
ow

er

design−time computation−time

multi−threshold

gate layout

self−timed design

desynchronisation

voltage scaling

frequncy scaling

FIGURE 1 POWER CONTROL MECHANISMS

In clock gating, registers whose stored values do not change
for several computation cycles are isolated from their clock,
thus reducing switching activity of the registers and the clock
tree which cause up to 30% of dynamic power consumption.
There is a trade-off between the granularity of the clock gating
and the area overheads introduced by the gating logic.
For reducing both switching and leakage power, a concept

of voltage domains is often employed. For this a circuit is
partitioned into islands with independent power supplies. The
islands may consist of several computation blocks or
correspond to IP cores. The speeds of the blocks outside the
critical path can be individually traded for power savings.

Voltage scaling utilizes the over-conservative margins used
to contain process variation and variable operating conditions.
The clock period is calculated for the worst-case conditions,
however, most of the time the circuit operates in normal
conditions and can run faster. Therefore, supply voltage can be
safely reduced while the circuit still runs within the given clock
period. Voltage scaling is often combined with circuit
partitioning into multiple voltage domains to provide more
flexibility and granularity in power control.
Leakage current is eliminated completely by the power

gating approach, where the power supply is disconnected from
a computation block if it stays inactive for extended period of
time. Certain precautions need to be taken to retain the correct
values on the interface of un-powered block for recovery.
Voltage scaling can be naturally integrated with self-timed

or asynchronous circuits. These circuits are free of a rigid clock
and function at the best possible speed for given operating
conditions. There are several approaches to synthesis of self-
timed systems [6], however they require significant changes to
the conventional design flow. Recently a less intrusive
desynchronization technique found its way to commercial
products [3]. It introduces elements of self-timed designs into
synchronous circuits at the late stage of conventional design
flow, thus re-using the time-proved synchronous EDA tools.
Many low-level optimization techniques are applied at the

circuit synthesis stage and cannot be controlled later on [5]. For
example, gate sizing allows decreasing the number of hazards,
which cause up to 20% of dynamic power consumption, by
carefully adjusting the arrival time of gate inputs causing the
glitch. Leakage current can be effectively reduced with the
stack forcing technique where extra transistors are inserted in
series to the short transistor stacks. When doing technology
mapping, often a library with two implementations of gates are
used, standard and low-power. At the lithography stage, the
mask data of individual gates can be tweaked to reduce leakage
current. These low-level power optimization techniques reduce
the speed of the gate, and are therefore usually applied to gates
outside the critical path.
All of these techniques can be regarded as providing

multiple discrete operation modes for parts of a system with
various degrees of power consumption and performance.

POWER ELASTIC BASICS

Here we explore the basic concept of a feedback control
strategy with the optimal use of applicable power as its goal.
The ultimate aim is to derive and implement at low cost an
appropriate power elastic control law for any given system.

Power profiling
Applicable power is the quantity of power that can be

applied, determined by two factors. One is the availability of
power from energy source(s), especially important in the case
of variable and non-deterministic sources such as batteries and
scavengers. The second factor is other limitations on power
application. For example, under a stable power supply, the
operating temperature may restrict the quantity of power
applicable. Applicable power can be characterized as the upper
bound of power as a function depending on time and space:

Bp = Bp(x, y, z, t) = Bp(S, t)
is the upper bound of applicable power at a particular location
on chip at a particular time, where x, y, and z are the 3-
dimensional indexes of location which can be unified into a
general space index S and t is time. The space factor may
represent the fact that different parts of a chip may have
different temperature characteristics thus different applicable
power bounds. In cases of on-chip VLSI, the Newtonian view
of the space factor being continuous is not realistic, as existing
and future implementable power control mechanisms do not
support the infinitesimal fine grain manipulation of power in
space. In general, chips are divided into a finite number of
areas or blocks based on a finite set of discrete functions and a
finite set of discrete engineering implementation techniques.
There is always a lower bound for block size for power control
beyond which further block division is technically unrealistic
or provides no benefit. This lower bound of block size and
finite chip size imply an upper bound for the number of blocks.

POWER ELASTIC SYSTEMS: DISCRETE EVENT CONTROL, CONCURRENCY REDUCTION AND HARDWARE IMPLEMENTATION

3

The space factor can then be simplified to an integer index:
Bp = Bp(i, t)

is the upper bound of applicable power for the ith block, where
i is the integer index of discrete blocks.
Existing power control mechanisms in general implement

coarse grain power manipulation through the use of a limited
set of operating modes. Switching among these modes is not
usually applied very frequently in time. Switching between
different power modes too frequently implies very short stable
stays in any mode and risks negating any benefit by the
overhead of mode switching. In other words, both the values of
t and Bp are also in the discrete domain and thus the operation
of power control via switching among multiple power modes is
a discrete event system. FIGURE 2 illustrates Bp(i, t) as continuous
and discrete concepts.

 Bp

t

Continuous Bp

Discrete Bp with
5 power levels

FIGURE 2 CONTINUOUS AND DISCRETE POWER BOUNDS

A description of applicable power in time and space in the
form of FIGURE 2 is known here as a power profile. Many
techniques can be used to obtain power profiles for the purpose
of power control system design. These can be static methods
including energy source and computation intensity predictions,
or dynamic based on sensor data in real time.

Architecture for power elastic circuits

sensor
data

control
events

co
m

pu
ta

tio
n

re
qu

es
t

co
m

pu
ta

tio
n

co
m

pl
et

io
n

powercausality

interpreterscheduler

profileinformation

informationcomputation
model model

power
consumption

main
system

in out

cl
oc

k
ga

tin
g

po
w

er
 g

at
in

g

power control

te
m

pe
ra

tu
re

sensor

tim
in

g
di

ff
.

ev
en

t c
ou

nt

ev
en

t o
rd

er

interfaceinterface

fr
eq

ue
nc

y
sc

al
in

g

vo
lta

ge
 s

ca
lin

g

(PEC)
discrete event Power Elastic Controller

FIGURE 3 POWER ELASTIC ARCHITECTURE

The generic architecture for power-elastic circuits is
depicted in FIGURE 3. Its idea is to extend a circuit with a discrete
even Power Elastic Controller (PEC) which ensures the power
profile is kept within a given boundary by, for example,
reducing the concurrency of the circuit whist preserving
behavioral equivalence. The PEC decides which computational
blocks of the circuit should operate to maintain the required
power consumption and regulates the clock gating, power
gating and voltage scaling interfaces. This decision is made
based on a set of power consumption rules, data from the
sensors, such as temperature, delay difference, switching
activity, etc. Optionally, causality information can be derived

from the computation model and used to schedule the
activation of the circuit components in the optimal order.

Power elastic transformation
The PEC is at the centre of the power elastic approach. It is

therefore of paramount importance a method of synthesizing
such a controller for any given system be developed. The
synthesis process of the PEC should take characterization input
from the system power and computation models. Here the
power model describes system power profiles, and the
computation model is a reduced representation of the functional
computation behavior of the controlled system/circuit,
concentrating on the control path. With these as inputs, the
synthesis process carries out a power elastic transformation
which finds a concrete implementation computation control
model. This is then applied through the PEC, resulting in a
sequence of execution which satisfies the power profiles
without losing equivalence to the functional computation
model. This concept is illustrated in FIGURE 4.

power−elastic
transformation

core model of
computation

Petri net models

dynamic elements
static elements

concrete model

computation power
modelmodel

interpreterscheduler
PEC

control sensors
power system

main

FIGURE 4 PEC SYNTHESIS

A unified method of modeling needs to be developed to
make this process of power elastic transformation systematic.
Petri nets have been used to represent discrete event systems
for the purpose of their analyses and synthesis for a long time
[7, 8]. Petri net models can be used to directly represent such
issues as causality, concurrency and synchronization. The flow
relations in Petri nets can be used to represent the relations
between such computation elements as tasks and threads,
including their relative concurrency and cross-dependencies
determined by the computation and communication relations
and information events. The execution semantics [8, 9] readily
derivable from a Petri net core computation model can be used
in the process of a power elastic transformation which
preserves equivalences. In power models, power profiles can
for example be represented by quantizing Bp(i, t) into the
number of tokens in a power place. This concept is
demonstrated through stochastic modeling and analyses in [10].
The PEC for a block does not have to be a centralized

processor with relatively high power and communication cost.
Petri net modeling of discrete event control and asynchronous
circuits allow the PEC to be implemented from a collection of
small circuits distributed spatially within a block to reduce
operational cost and communication bandwidth needs. And
generic methods of direct mapping of Petri nets to circuits [6]
facilitate this spatial distribution of the PEC.
The process of power elastic transformation can be either

static (design time), where a non-variable PEC is synthesized
once for a system, or dynamic, where the PEC is tuned during
run time, or hybrid, where the PEC synthesis will have both
dynamic and static elements. Discussions on these choices are
outside the scope of this paper. Here we present relevant and

POWER ELASTIC SYSTEMS: DISCRETE EVENT CONTROL, CONCURRENCY REDUCTION AND HARDWARE IMPLEMENTATION

4

useful techniques for all these choices.

POWER ELASTIC TECHNIQUES

We have developed power elastic techniques mainly based
on concurrency reduction. In this first attempt at investigating
power elasticity, we have concentrated on the simplest form of
power profile, i.e. Boolean power modes. A block is either on
or off; a thread or task is either started or paused; and only such
Boolean power control mechanisms as power and clock gating
are envisaged. Generalizing these techniques to more complex
operation modes is a subject for future exploration.

task_3

task_4

task_5

virtual computation step

timeresources
power

resources
computation

task_2

task_1

FIGURE 5 CONCURRENCY REDUCTION

The concept of concurrency reduction is illustrated in
FIGURE 5. The member tasks within a logically atomic
computation step could be executed fully concurrently if
resources permit this. However, when a resource like power is
in short supply or being regulated to avoid Vdd droop, as in the
example in FIGURE 5 where no more than two tasks can be
executed simultaneously, the system may choose to execute
some of the tasks sequentially, thus trading latency for power.

Concurrency relations and concurrency reduction
As an intuitive concurrency reduction example, FIGURE 6(a)

depicts a Petri net core computation model consisting of three
concurrent threads (i.e., a, b, and c). Each thread involves the
sequential execution of two tasks, e.g., a.1 and a.2 for thread a.
Cross-dependency relations exist between (a.1, b.2) and (b.1,
c.2). Suppose, from the power model, applicable power is
quantized into two power units, and the execution of a task
requires one power unit. The concrete control model in FIGURE
6(b) illustrates dynamic scheduling based on arbitration,
whereby at most two tasks can be scheduled simultaneously,
and the scheduling result is only determined during run time.

1

7

2

8

a.1

a.2

b.1

b.2 c.2

3

c.1

9

10 1154 6

 (a)

a.2 b.2 c.2

a.1 b.1 c.1

 (b) (c)

{7,10,5,11,6}

{4,10,5,11,3}

{4,8,11,3}

{4,10,5,11,6}

{1,5,11,3}

{1,5,11,6}

b.1

{4,10,2,3} {7,10,2,3}a.2a.1{1,2,3}

{4,10,2,6}

{4,8,11,6}

{7,8,11,3}

{4,8,9}

c.1

{1,5,9} {4,10,5,9}

c.2

{1,2,6}

{7,10,5,11,3}

b.2

{7,8,9}

{7,10,5,9}

{7,10,2,6}

FIGURE 6 CORE PN MODEL (a), ITS RG (c), AND A CONTROL MODEL (b)

The behavior or execution semantics of a Petri net system
can be described by its Reachability Graph (RG) where RG=(S,
T, F, M0). S is the set of all possible markings of the net; T is

the set of the transitions when considering both interleaving
and step firing semantics; F are the transition functions (or
next-state functions) of),(' tsfs = where Sss ∈,' and Tt∈ ; and
M0 is the initial marking of the net. FIGURE 6(c) shows the RG of
the example net. In the example, the marking {1,5,11,6} is
reachable from the initial marking {1,2,3}, following the
interleaving transition sequences of (b.1,c.1) or (c.1,b.1), or a
step transition of {b.1,c.1}. Other "step" arcs are not explicitly
marked in the diagram to reduce clutter.
For two transitions t1 and t2, t1< t2 if t1 precedes t2 in every

transition sequence of the RG. An N-ary concurrency relation
upon T is defined as the set of N-tuples, where for each tuple, �� t1< t2) holds for every pair of tuple elements t1 and t2 (t1 � t2).
This example has a highest concurrency relation arity of
ternary. This highest arity may represent the maximum number
of simultaneously active blocks or tasks in a system.
An N-ary concurrency relation recursively implies M-ary

concurrency relations for all M�N, on all M-tuples that are
subtuples of an N-tuple belonging to the N-ary relation. For
example, the ternary relation tuple (a.1,b.1,c.1) implies three
binary concurrency tuples, i.e., (a.1,b.1), (a.1,c.1), and (b.1,c.1).
Concurrency relations of the example include 4 ternary tuples
and 9 binary tuples, as listed in TABLE 1. The generalization of
this property is only true in both directions for a subclass of
systems with distributive concurrency, as pointed out in [11].

TABLE 1 CONCURRENCY RELATIONS IN THE SYSTEM OF FIGURE 6

Ternary concurrency {(a.1,b.1,c.1),(a.2,b.1,c.1),(a.2,b.2,c.1),
(a.2,b.2,c.2)}

Binary concurrency {(a.1,b.1),(a.1,c.1),(b.1,c.1),(a.2,b.1),(a.2,c.1),
(a.2,b.2), (b.2,c.1),(a.2,c.2),(b.2,c.2)}

Concurrency reduction means the removal of a subset of the
N-tuples from an N-ary concurrency relation. The removal of a
tuple will remove all its supertuples. For example, the removal
of (b.1,c.1) eliminates its parent tuples of (a.1,b.1,c.1) and
(a.2,b.1,c.1) in the concurrency relation list.

a.1

b.1

c.1

b.1a.1

c.1

a.1 b.1

c.1

a.1 b.1 c.1

 (a) (b) (c) (d)

FIGURE 7 CONCRETE CONTROL MODELS TO ELIMINATE (a.1,b.1,c.1): SUPER-
LINEAR (a), AND-CAUSALITY (b), OR-CAUSALITY (c) AND ARBITRATING (d)

Both static and dynamic control mechanisms are discussed
in this section for concurrency reduction. The difference is that
static control applies a single partial order to the tuple elements
(i.e., execution of tasks) whereas dynamic control applies
multiple orders (which one of the orders takes place is only
determined during run time). Static control is further divided
into super-linear and and-causal cases, whereas dynamic
control is divided into or-causal and arbitrating ones. FIGURE 7
lists these control structures by Petri net models in reducing the
highest concurrency relation arity of (a.1,b.1,c.1) to binary.

Super-linear control imposes a complete order on the tuple
elements. With this control, the state cube formed by a.1, b.1,

POWER ELASTIC SYSTEMS: DISCRETE EVENT CONTROL, CONCURRENCY REDUCTION AND HARDWARE IMPLEMENTATION

5

and c.1 in FIGURE 6(c) is replaced by the local RG in FIGURE 8(a).
As a result, all the local binary concurrency tuples incurred by
(a.1,b.1,c.1) are eliminated.

And-causal control expresses an AND enabling condition
for a task’s execution. With FIGURE 7(b), c.1 is enabled when
both a.1 and b.1 have fired. The partial order in this example is
{(a.1,c.1),(b.1,c.1)}, and the corresponding local RG is shown
in FIGURE 8(b). With and-causality, only one local binary
concurrency tuple is maintained, i.e., (a.1,b.1).

{1,2,3}

a.1

b.1

c.1

{4,10,5,11,6}

b.1

a.1{1,2,3}

{4,10,5,11,6}

c.1

{4,10,5,11,3}

{1,2,3}

{4,10,5,11,6}

b.1

a.1

c.1

b.1

{1,2,3}

{4,10,5,11,6}

a.1

c.1

(a) (b) (c) (d)

FIGURE 8 LOCAL RGS AFTER CONCURRENCY REDUCTION: SUPER-LINEAR
CONTROL (a), AND-CAUSALITY (b), OR-CAUSALITY (c), AND ARBITRATION (d)

Or-causal control [12] expresses an OR enabling condition
for a task’s execution. With FIGURE 7(c), c.1 is enabled when
either a.1 or b.1 has fired. The speciality of or-causality is that
it imposes two (mutually exclusive) partial orders: {(a.1,c.1)}
and {(b.1,c.1)}. It is only known at run time which order takes
place. The local RG with or-causal control is shown in FIGURE
8(c), where all local binary concurrency tuples are maintained.
Finally, with the arbitrating control of FIGURE 7(d) (a 2-of-3

arbitration), all three tasks are enabled, but at most two of them
can be executed simultaneously. FIGURE 8(d) shows the local RG,
by which it is evident that all the three binary tuples are
maintained. In addition, all three “step” arcs corresponding to
the tuples are enabled at the initial state, whereas only one
“step” arc is allowed in the or-causal control.
Dynamic control based on arbitration preserves system

concurrency the best, followed by or-causal control, whereas
static control has a high reduction of concurrency.
Concurrency reduction causes performance degradation.

This is because of two factors: the stretched execution time as a
direct consequence of concurrency reduction, and the extra
delays incurred by concurrency control (i.e. PEC). The former
factor can be determined from the Petri net control structures,
whereas the latter is related to the controller implementation.
Suppose the execution delays of tasks a.1, b.1, and c.1 are

ta1, tb1 and tc1, respectively (assuming positive and bounded
delays). Further suppose that the delays required by
implementing the super-linear, and-causal, or-causal, and
arbitrating controllers are dsl, dac, doc, and dab, respectively.
Before concurrency reduction, the triple tasks in the

example can be executed within a period of max(ta1,tb1,tc1).
With super-linear control, the execution period is
ta1+tb1+tc1+dsl. With and-causal control, the execution period is

max(ta1,tb1)+tc1+dac. With or-causal control, the execution time
is max(min(ta1,tb1)+tc1,max(ta1,tb1))+doc, which can be further
refined to max(ta1+tc1,tb1)+doc should the run-time order is
{(a.1,c.1)}, or otherwise to max(tb1+tc1,ta1)+doc.
Similar to or-causal control, arbitration-based control has an

execution period dependent on run time token-game results. If
the imposed partial order turns out to be {(a.1,b.1)} (or
{(b.1,a.1)}) during run time, the execution time is
max(ta1+tb1,tc1)+dab. Other cases can be similarly derived.
Not considering controller delays, static controls degrade

performance more than dynamic controls. Arbitration-based
control has a superset of execution paths of the or-causal
control and can render even lower performance degradation.
The control mechanisms are compared in Table 2, in an

N-ary to M-ary reduction. Here the control structures, the
orders they impose on the tuple elements, and the effects on
concurrency relations and performance degradation (without
controller delays) are described.
In the context of FIGURE 3 and FIGURE 4, the highest

concurrency arity M would be derived from the power model
and direct power place modeling exists in the arbitration case.
Petri net techniques are used to derive concrete models for the
PEC in the form of FIGURE 7 from core computation models in
the form of FIGURE 6(a). More details, including discussions on
the distribution of concurrency reducing PEC algorithms
among small circuits across a block, can be found in [13].

Soft arbiters
Arbitration-based concurrency reduction has been shown to

be simple to design and potentially efficient in operation in the
example above. However, with current and future on-chip and
3D systems likely to have high degrees of concurrency and
complex relations among concurrent blocks and threads, large
M and N numbers are likely prevalent in real systems. This
could make PEC’s using other (such as static) concurrency
reduction techniques more attractive because of comparatively
lower implementation and operational costs, unless efficient
multi-client, multi-resource arbiters can be found. We
demonstrated a distributed arbiter architecture for large (10×10)
implementations with good scalability in [14], but issues like
performance and cost persist.
Fortunately, unlike hard enumerable resources such as

software threads and hardware blocks, power resource is
different in that it allows a degree of softness in arbitration.
Suppose N clients need a system resource and no more than M
of them can access it simultaneously, because e.g.
1. the system does not have enough hard resources to

serve more than M clients, e.g. it has only M
processing units;

2. we want to reduce concurrency for power management
issues (exceeding M may lead to inefficient energy
consumption or overheating).

Control Scheme Structure Partial Order Im posed Concurrency R eduction E ffects Performance
degradation

super-linear M ! arrangements single total order all relati ons removed largest

and-causal

And enab ling cond itions b etween










M
N

groups of M -ary subtup les
single p artial order
between Groups

up to M -ary relations m aintained
bu t restr icted to within a group second largest

o r-cau sal Or condition s on a M -ary subtuple t o
enable the n ext new tuple element multip le all M -ary relations maintain ed dynamic, smaller th an

static con tro ls

arbitrating M -of-N arb itration multip le all M -ary relations maintain ed dynamic, m ore f lexib le
than o r-cau sal con tro l

TABLE 2 COMPARISON OF DIFFERENT CONTROL MECHANISMS FOR CONCURRENCY REDUCTION

POWER ELASTIC SYSTEMS: DISCRETE EVENT CONTROL, CONCURRENCY REDUCTION AND HARDWARE IMPLEMENTATION

6

In case 1 the bound has to be strict. Simultaneously
granting M+1 clients inevitably leads to at least one clash of
two clients at the same hard resource, leading to logical errors
and system failure. However, case 2 is more flexible by nature.
Random, occasional events have little effect on the inertial,
statistical characteristics of power consumption. Therefore, in
this case the bound may be relaxed and granting access to more
or less than M clients may be allowed as long as the rate of
such imprecise granting is acceptable. We call arbiters with
relaxed bounds on the number of issued grants soft arbiters.

Completion
detection

Reset
filter

gbc

oC

dbc

fba
dac

fca

wB

rb

rc

oB

gac

fbc

ga

fcb

oA

mAC

ME

gc

gb

mAB

ME

fab

ra

mBC

ME

wA

fac

Pairwise
arbitrations

Computation of the
winner

S

R
Q

S

R
Q

FIGURE 9 STRICT 1-OF-3 ARBITER

Implementations of soft arbiters can in general be smaller
and faster than strict ones. For example, the implementation of
a 1-of-3 strict arbiter presented in [15] is given in FIGURE 9. It
has a construction with four layers: pair-wise arbitration, reset
filters, computation of the winner, and finally the layer of
completion detection. But if it is allowed to issue two grants
occasionally (instead of at most one) then its implementation
can be simplified dramatically as shown in FIGURE 10. Details of
this simplification process are discussed in [16].

ME

ra

rc
gc

ME

rb

ME
ga

gb

ab
ba

ac
ca

bc
cb

FIGURE 10 SOFT 1-OF-3 ARBITER

Let us study the behavior of the simplified arbiter. Table 3
shows the grants issued for given orders of requests. The
arbiter always gives the grant to the first request, plus to
request ra if it came second. Thus, for a single burst of
incoming requests, the probability for the arbiter to issue two
grants is 1/3. On the other hand, if there is a constant flow of
incoming requests abcabcabc... then the arbiter will be giving
one and two grants in an alternating fashion, effectively
behaving as an 1.5-of-3 soft arbiter (the series of grants will be
ga-gb-{ga, gc}-gb-{ga, gc}-... etc).
Soft arbitration provides an opportunity to build small and

fast arbiters for power-related concurrency management.
Modeling issues and the implementation of soft arbiters with
real-time control over the degree of softness are discussed in
detail in [16]. Also shown in [16], it is possible to implement
real-time adaptive thresholding for variable M values in soft
arbiters to support dynamically variable power profiles.

TABLE 3 ANALYSIS OF SOFT ARBITER WITH RESPECT TO REQUEST ORDERS

Request order ab/ba ac/ca bc/cb Issued grant(s)
abc ab ac bc ga
acb ab ac cb ga
bac ba ac bc ga, gb
bca ba ca bc gb
cab ab ca cb ga, gc
cba ba ca cb gc

DISCUSSIONS AND FUTURE WORK

In this paper we presented the concept and general method
of power elastic design and initial explorations on concurrency
reduction, a method of power elastic control, and soft arbiters, a
promising technique for concurrency reduction.
This article is aimed to serve as a position paper to lead the

way for a series of systematic developments for Power Elastic
Control, including modeling (deterministic and stochastic),
adaptive discrete event control/policy algorithms, interfaces
with the sensors and actuators, architectures, and hardware-
software implementations. These provide rich future research
opportunities especially towards finding systematic methods,
for which our chosen formalism, Petri nets, has great potential.
Initial steps in this research have already been taken [10, 13,
14, 15, 16]. A large portion of this research is in the domain of
developing power elastic electronics for energy harvesting
environments.
The concepts of concurrency regulation and soft arbitration

have significance outside the domain of power control. For
instance, network bandwidth is a resource with similar inertial,
statistical properties to power, and thus suitable to be managed
through concurrency regulation with soft arbitration [17].

REFERENCES
[1] S. Das, et al., “Razor II: In Situ Error Detection and Correction for PVT

and SER Tolerance”, IEEE J. Solid-State Circuits, pp.32-48, Jan. 2009.
[2] K. Bowman, et al., “Circuit Techniques for Dynamic Variation

Tolerance”, DAC’09, July 2009.
[3] E. Tuncer, J. Cortadella, L. Lavagno, “Enabling adaptability through

elastic clocks”, DAC’09, pp. 8-10, July 2009.
[4] J. Liu et. al., “Power-aware scheduling under timing constraints for

mission-critical embedded systems,” DAC 2001.
[5] S. Henzler, Power Management of Digital Circuits in Deep Sub-Micron

CMOS Technologies, Springer-Verlag, 2006.
[6] CDT paper on synthesis (title withheld for blind review)
[7] A. Benveniste et al., “Diagnosis of Asynchronous Discrete Event

Systems, A Net Unfolding Approach”, IEEE Trans. Auto. Control, vol.
48, pp. 714-727, 2001.

[8] Ph. Darondeau, et al., “Synthesis of Nets with Step Firing Policies”,
Fundamenta Informaticae, vol. 94, 2009.

[9] E. Best and M. Koutny, “Petri Net Semantics of Priority Systems”, TCS-
96(1), pp. 175-216, 1992.

[10] Stochastic analyses technical report (title withheld for blind review).
[11] Concurrency semantics (title withheld for blind review).
[12] Or causality (title withheld for blind review).
[13] Concurrency reduction report (title withheld for blind review).
[14] NxM arbiters (title withheld for blind review).
[15] Multi-way arbitration (title withheld for blind review).
[16] Soft arbitration technical report (title withheld for blind review).
[17] S. Yang, S. Furber, Y. Shi, L. A. Plana, “An admission control system

for QoS provision on a best-effort GALS interconnect”, ACSD'08, 2008.

