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Modified Bisection Search for Faster Metastability
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Ghaith Tarawneh, Member, IEEE, Alex Yakovlev, Senior Member, IEEE

Abstract—Circuit state bisection is a robust technique to
characterize the performance of multi-stage synchronizers. The
passage of metastability between synchronizer stages introduces
effects that are not captured by small-signal models and thus
numerical integration remains the most reliable method for
characterizing this behavior. However, the large number of
transient simulations required to characterize one circuit through
bisection makes it very difficult to use this technique to run
variability analysis or parametric optimization on synchronizer
circuits. We present a modified bisection search algorithm that
performs 2.5 to 3.2 times faster than conventional bisection
without any loss of accuracy. Our method is not restricted to any
latch topology or behavior and can safely replace conventional
bisection for characterizing any synchronizer circuit.

Index Terms—synchronizers, metastability, bisection.

I. INTRODUCTION

Synchronizers play an important role in regulating the

passage of data between systems operating in different clock

domains. The increasing scale of device integration and the

usage of IP blocks in designs are creating multiple clock do-

mains even within single chips. Synchronizers are thus starting

to have a larger impact on within-system communication links

and overall system performance.

The arrival of data from a different clock domain often brings

the cross-coupled gates in a synchronizer latch to a logically-

invalid metastable state that can take a long time to resolve[1].

If such states were not resolved before the arrival of the

following clock edge, metastability can cross to other circuits

resulting in unpredictable behavior and possible system failure.

The probability of this is greatly diminished by cascading a

number of latches in a synchronizer to allow any occurrence

of metastability to resolve before reaching other logic circuits.

However, this introduces latency and adversely affects the

performance of the communication link. Since it is impossible

to completely prevent metastability, it is important to decide

how much time to allow for the synchronizer to settle to meet

performance requirements while reducing the probability of

synchronization failure to an acceptable level.

Every synchronizer has an absolute metastability point the

closer the input to which causes the synchronizer to take longer

and longer times to resolve. To characterize the performance

of a synchronizer circuit, it is necessary to evaluate how much

does its settling time (ts) increase as the difference (denoted

the input window size ∆Tin) between the input event time

and the absolute metastability point gets smaller. Typically, the

design must satisfy a predefined Mean Time Between Failures

(MTBF) which corresponds to a certain ∆Tinvalue such that:

MTBF =
1

∆Tin × fc × fd
(1)

Where fc is the clocking frequency for the synchronizer and

fd is the data transfer rate.

Previous synchronizer characterization methods involved on-

chip measurement techniques such as the ones used in [2], [3]

and [4], where the rate of metastable events was ”amplified”

using control circuitry. Such methods have allowed very rare

deep metastable events to be reproduced experimentally but

still do not provide sufficiently large MTBF estimates. De-

signers have thus been relying on small signal models of latch

circuits to guide their designs. Using small-signal modeling, it

has been established that ts increases exponentially as ∆Tin

gets smaller. More formally, their relationship is governed by:

∆Tin = Tw.e
−ts

τ (2)

Where ∆Tin and τ are circuit parameters.

The behavior of single-latch synchronizers adheres closely

to this model and different synchronizer circuits are often

compared according to their τ values which can be obtained

by simulation[3]. However, this model does not account for

changes in input signals or for large swings that occur as

metastability transitions from one stage to another in multi-

stage synchronizers. These factors can cause unexpected be-

havior in multi-stage synchronizers and their effects are not

yet fully understood[5]. Measurements on multi-stage synchro-

nizer circuits have shown that the actual MTBF values can

be significantly different that those predicted by small-signal

models[6][4].

Numerical integration remains the most reliable method to as-

sess the behavior of synchronizer circuits. Typically, two initial

input transition times are located such that the synchronizer

settles high for one and low for the other. Bisection search is

then used to minimize this input timing interval around the

synchronizer’s absolute metastability point, obtaining progres-

sively smaller window sizes and their corresponding settling

times. This method is very reliable but can’t be continued for

long as the numeric resolution of the input time and node

voltages’ representation is soon breached and the two states

become indistinguishable. In double-precision floating-point

representation, this occurs around ∆Tin = 10−20 seconds. For

fc=fd=1Ghz, this is enough to characterize the synchronizer

up to a MTBF of only 100 seconds which is well short of

common requirements.

II. OVERVIEW OF CIRCUIT STATE BISECTION

Reference [7] has provided a method to overcome the limi-

tations of both small signal analysis and numerical integration

in simulating synchronizers in deep metastable states. Their

method is based on the observation that a circuit’s dynamic
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Fig. 1. Circuit State Bisection

state can be accurately estimated using a linear model when

the circuit is operating sufficiently close to a metastable state.

A small input time window [tL,tH ] is first located such that

the synchronizer falls in metastability but resolves low when

simulated with tL input delay and high when simulated with

tH . Subsequently a time t1 is chosen such that the circuit isn’t

far from metastability in both tL and tH simulations, but far

enough so that the two sets of simulation traces are clearly

distinguishable by the numeric resolution of the integrator. It

is then assumed that the difference between the voltage states

obtained by the two simulations at t1 (|VL−VH |) corresponds

to the input window size (|tL − tH |).
Following that, circuit voltage states between VL and VH are

interpolated, simulated and their settling times recorded. The

associated window sizes for these setting times are obtained by

mapping voltage states back to the original window [VL,VH ]

whose time length is assumed equal to |tL − tH | in seconds.

The interpolation is done through bisection; at every iteration,

the middle point of [VL,VH ] is simulated and becomes either

the new VL or the new VH . When the difference between

the states VL and VH becomes too small, they are allowed to

diverge and are then captured at a later time t2. Bisection then

proceeds on these more clearly separated states. This process

is carried on until a ∆Tin corresponding to a sufficiently

large MTBF is reached. Figure 1 shows an illustration of this

algorithm. This method overcomes the problem of representing

the extremely tiny differences between the interval ends of

the input window. This is achieved by mapping this difference

to a difference in the circuit’s voltage states which can be

continuously amplified. Using this approach, it is possible to

characterize a synchronizer down to extremely small ∆Tin

corresponding to MTBF values of hundreds of years.

It is possible to implement this method in current simulation

tools to compare different synchronizer designs. It can also be

used to perform parametric analysis to establish the effects

of transistor sizes and various parameters on the behavior

of synchronizer circuits. Unfortunately, the production of a

single ∆Tin vs. ts plot requires a large number of transient

simulations. The reduction of an initial input window of 1ns

to 10−50 seconds requires log2(10
41) or about 137 transient

simulations. This is a considerable processing effort even for

modern computers. Since varying one circuit parameter can

shift the absolute metastability point and change the behavior

of the circuit, it is necessary to repeat the bisection procedure

for every varied copy of the circuit which sometimes cannot be

afforded. Furthermore, designers need to know how much time

 P
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Fig. 2. Bisection Interval

to allow for synchronizers to settle in order to meet a certain

MTBF requirement. They are therefore most interested in the

bottom end of the ∆Tin vs. ts plot. However, it is impossible

to generate one portion of the plot without having to perform

all preceding simulations.

These difficulties make it computationally expensive to use

this technique to perform parametric optimization and/or vari-

ability analysis. We present a novel method to speed up this

technique by a factor of 2.5 to 3.2 without any loss of accuracy,

reducing its processing overhead and allowing it to be used to

carry intensive circuit analysis.

Our technique makes use of a modified bisection search algo-

rithm taking advantage of our knowledge of the exponential

relationship between ∆Tin and ts to increase the convergence

speed of bisection.

III. ILLUSTRATION OF PROPOSED TECHNIQUE

A. Modified Bisection

In half-interval bisection, the search interval is downsized

to one quarter of its size every two successive rounds. The

interval mid-point is the optimum choice for bisection in the

absence of any additional knowledge about the position of

the convergence point (α). Bisecting on points other than the

interval mid-point is risky as it can achieve larger or smaller

convergence depending on whether the further or the closer

interval end is relocated to the bisected point. For example, if

the bisected point is chosen very close to the Low end of the

interval and simulation proved this point to resolve High, it

will become the new High end and the interval size is reduced

considerably. However, if this point resolves Low, the Low

end of the interval will be relocated by a minor amount which

will have a small effect on the interval size. Generally, as

the bisected point lies further away from the centre of the

interval, greater reduction in interval size is possible but at

an increasingly lower probability and much less reduction

becomes much more probable.

If an estimate about the position of α can be made, however,

this can be used to speed up the convergence speed of

bisection. To illustrate this, consider Figure 2 which represents

a single bisection round to find the convergence point α in an

input time interval [V,W]. Suppose at each round we obtain a

rough estimate of α which we call (αP ) whose absolute mean

error relative to the interval size is (δ) and is small compared

to the interval size. We can assume that each end of the search

interval moves independently towards α. We label the points
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generated by the ith relocation of each of the ends V and W:

Vi and Wi respectively. The ith nested interval [Vi,Wi] may

form over two or more bisection rounds and is smaller than

its predecessor. We can calculate the ith reduction factor per

interval (λi) as:

λi =
|Vi −Wi|

|Vi−1 −Wi−1|
=

|Vi − α|+ |Wi − α|
|Vi−1 −Wi−1|

(3)

We assume Vi is obtained after Wi without any loss of

generality. Since nested intervals are progressively smaller

than their predecessors, Vi is much closer to α than Wi such

that |Vi −α| << |Wi −α| and equation (3) can be simplified

to:

λi =
Wi − α

Vi−1 −Wi−1

≈ δ (4)

Therefore we can assume that the size of each nested interval

is on average equal to δ times the size of its parent.

Assuming the PDF for αP is symmetric, the probabilities of

αP falling either side of α are equal. Therefore, for n bisection

rounds we expect to obtain n/2 nested intervals. The reduction

factor per single bisection round is thus approximately
√
δ as

opposed to 0.5 for conventional bisection. If a predictor can

provide an estimate αP with sufficiently small δ, bisecting on

αP would downsize the interval at a rate of 0.5/
√
δ faster

than conventional bisection. Since the number of simulations

required to shrink ∆Tin below a certain threshold depends

on the gradient of the logarithm of ∆Tin, the speedup in

simulation count is log(
√
δ)/log(0.5).

B. The Predictor

To create a predictor for our metastability bisection search,

we exploit our knowledge of the exponential nature of the

function under bisection. At each bisection round, we use N
samples of ts obtained by previous bisections to calculate

a time tP in our current interval around which the samples

appear to have exponentially lower values with increasing

∆Tin. The exponential behavior around any time point t is

evaluated by calculating the correlation between ts and the

logarithm of ∆Tin measured relative to t for the previous N
samples as follows:

feval(t) = Corr(log(∆Tin(t)), ts) (5)

In theory, if t equals the absolute metastability point, the

relationship between log(∆Tin(t)) and ts will be perfectly

linear with a negative gradient yielding a correlation coefficient

of -1. Thus the closer feval(t) to -1 the better our candidate t
appears to be the absolute metastability point. Since correlation

coefficients fall in the range [-1,1], this means that the best t
will also yield the minimum correlation coefficient. Therefore,

we choose tp = t such that feval(t) is minimized across our

interval.

In our implementation, we have utilized Pearson’s product-

moment correlation coefficient which for any two variables

can be calculated as:

Corr(X,Y ) =

∑n

i=1
(Xi − X̄)(Yi − Ȳ )

σxσy

(6)

αi

f e
v
a
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-0.998
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Fig. 3. Illustrative Plot of feval(alpha)

Instead of calculating ∆Tin values directly (which requires

back mapping of voltage states to the original time window),

we express time values relative to the (N − 2)th preceding

interval and call these α values. The (N − 2)th peceeding

interval is the smallest that contains the previous N samples

at any bisection round. This is because the current interval

always contains two ts samples (the interval ends) and each

preceeding interval contains all samples of enclosed intervals

plus an additional sample. Since correlation is insensitive to

scaling, we can safely substitute ∆Tin for ∆α in equation

(5). Figure 3 shows an illustrative plot of feval(α) across

an interval [αL, αH ]. To obtain αP (corresponding to tP ),

it is necessary to iterate through all possible α values in our

current interval and find the one that minimizes feval. It is

also necessary to do so with a very small resolution (less

than 1/10k of the current interval length in our implemen-

tation) because tiny α differences can result in considerable

logarithmic differences and can thus vary our choice of αP

considerably. However, evaluating 10k correlation coefficients

per bisection round is computationally intensive and can waste

the time savings achieved by this technique. To address this,

we make use of the fact that feval is practically single-peaked

and use progressively-increasing resolutions to locate its tip.

The algorithm we use is presented below:

αL = low end of current interval relative to the (N − 2)th

preceding interval

αH = high end of current interval relative to the (N − 2)th

preceding interval

while resolution target not met do

STEP = (αH − αL)/M
αi = Generate points in [αL, αH ] with STEP increments

αP = αj such that feval(αj) ≤ feval(αi) for every i
αL = αP−STEP

αH = αP+STEP

end while

For M=25, it is sufficient to iterate through this loop four

times to obtain the best αP down to a resolution of less

than 1/10k of the current interval using only 100 iterations.

Smaller values of M will increase the savings achieved by this

method but at the expense of increased probability of missing

the function’s peak. In our simulations, M=25 proved to be

sufficiently small and yet safe to use.

IV. IMPLEMENTATION CHALLENGES

Our technique relies on the exponential rising nature of ts as

∆Tin gets smaller. There are circumstances, however, where
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this exponential nature can be interrupted for a number of

simulations or worse become totally absent. Predictions can

then be inaccurate at best, or become completely unreliable. In

these cases, bisection will proceed at a very low pace or can be

stalled for a number of iterations without progress. Therefore,

it is important to detect these states and take suitable measures.

In this section, we discuss the two prominent states where the

∆Tin vs. ts plot does not abide by the small-signal exponential

model and present solutions to overcome them.

A. Concealed Metastability

In a multi-stage synchronizer, metastability is first observed

when the pre-final latch becomes opaque and the final latch

becomes transparent. Up until this happens, metastability will

propagate through the first stages of the synchronizer without

affecting the settling time of the final latch. On a ∆Tin vs.

ts plot, this time period appears as a vertical line extending

down to a certain ∆Tin value where metastability first appears

at the synchronizer output. Since the settling times of the final

latch do not change during this period, it is impossible to

use them to predict αP values for bisection. In a multi-stage

synchronizer, this segment represents a major part of the plot

and without being able to utilize the technique in this part the

overall speedup is greatly reduced.

To overcome this, we track metastability as it propagates

through the stages of the synchronizer and use intermedi-

ate settling times of stages to make our predictions. While

metastability in stage 1 of the synchronizer is not visible on

the output of stages 3 and after, it still affects the settling times

of stages 1 and 2. Instead of recording the settling time of the

final stage, we do so for all stages in every bisection round.

We maintain a table of settling times and use it along with the

input clock timings to determine which stages have become

metastable. Samples from metastable stages are then used to

calculate our αP values.

In our simulations, we have found that a near-perfect

metastable state in one latch does not induce metastability

in the next. Instead, metastability is propagated when the

previous latch begins to resolve just before the clock edge.

The dynamics of the preceding latch (which may have diverged

sufficiently from metastability) just at the arrival of the clock

edge control the passage of metastability to the next stage

together with how long it lasts. Therefore, continuous bisection

on the state of the final latch of the synchronizer converges on

the input time instance where intermediate stages resolve in a

perfect timing to induce the longest possible metastable state in

the last stage. This input time instance is different from these

which cause the intermediate stages to remain in metastability

for longer times and so every latch in the synchronizer has its

own absolute metastability point.

The decision of which interval end to relocate to the bisected

point must depend on resolving state of the final stage. This

is necessary to ensure that the algorithm will converge on

the absolute metastability point of the final stage and not on

those of previous stages. Using the ts samples obtained from a

stage K, predictions will point towards the metastability point

(which is a resolution-limited representation of the absolute

ts (seconds)

∆
T
in
(s
e
c
o
n
d
s
)

Stage 1

Stage 2

Stage 3

Tail of Stage 1

Tail of Stage 2

Fig. 4. Curving Down of Settling Times for Intermediate Latch Stages

metastability point) of stage K. However, this point will be

the same as the metastability point of the final stage up until

metastability propagates to stage K+1. In other terms, the

absolute metastability point of stage K is indistinct from that

of the last stage down to the resolution of ∆Tin at which

metastability propagates to stage K+1. As bisection on the

state of the final stage continues, the High and Low interval

ends start to make stage K resolve to the same state (either

High or Low) and the settling times observed at this stage

reach a maximum (tmax(K)). Since circuit state bisection is

regularly advanced to new times in the transient simulation, it

becomes impossible to observe the settling time for stage K

when the transient simulation is started from time instances

exceeding tmax(K). On a ∆Tin vs. multi ts plot (where

∆Tin is measured relative to the absolute metastability point

of the final stage), the settling times for intermediate stages

curve downwards approaching their maximum values before

disappearing as metastability transitions to the next stages.

This effect is portrayed in Figure 4.

B. Clock Back Edge Effect

The crossing of metastability from one stage of the synchro-

nizer to another tends to introduce an offset in settling time.

This was first observed by Kinniment [2] and is called the

clock back edge effect. The offset creates a short disruption

in the exponential rising nature of settling times and therefore

momentarily decreases the accuracy of the predictor.

Furthermore, the behavior of synchronizers during the oc-

currence of such disruptions cannot be predicted accurately.

Depending on the circuit topology, it may not be possible to

observe metastability when the latch state does not change

and before the latch falls in deep metastability. This usually

happens whenever metastability crosses to a new stage and is

joined by the settling times for the previous stage reaching

their maximum. In such scenarios, the settling times for

the non-changing state of both the current and next latches

cannot be recorded, and no enough samples exist to form our

prediction. We temporarily disable the prediction routine as

soon as we detect this and resort to half-interval bisections

for few rounds. This bypasses the hazardous region and then

prediction can be resumed.

V. SIMULATION RESULTS

We have created an automatic tool for the purpose of

investigating this technique. While the authors in the original
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TABLE I
SIMULATION RESULTS FOR TYPICAL LATCH SYNCHRONIZERS

Number

of Stages

Transient Simulation Count Speed

Improvement
Conventional

Bisection

Modified

Bisection

1 242 76 3.18x

2 238 86 2.77x

3 241 86 2.80x

4 242 93 2.60x

implementation used simple transistor models in MATLAB

to perform numerical integration, our tool creates SPICE

simulation jobs and uses NGSPICE to simulate synchronizer

circuits with more realistic 45nm BSIM4 predictive technology

models[8]. Our tool is fully automated and is not restricted to

any circuit topology or model technology.

We have applied our technique to circuits consisting of dif-

ferent numbers of latch stages. In our analysis, we used two

types of latches; a typical latch and one that is fitted with

a metastability filter. We cascade a number of these latches

to form our synchronizers and simulate them by applying

separate clock pulses to every stage, each 1ns wide with 50ps

falling and rising times.

For each bisection run, our tool first uses typical input time

bisection to locate an initial input time window whose length

is 1ps. Bisection is then transformed into the circuit state space

and continued till the settling time for the synchronizer is

extended to 6ns. Our tool records the settling times of all

latch stages during the simulation and uses these of metastable

latches to calculate predictions for bisection. In the absence of

enough samples to form a prediction (which happens around

clock edges), the tool automatically switches to half-interval

bisection till a sufficient number of samples is recollected.

At the end of bisection, the number of transient simulations

performed during the analysis is noted. We have repeated

this procedure for synchronizer circuits with different number

of stages using both conventional bisection and our modified

bisection algorithm.

A. Typical Latch Synchronizers

Figure 5 shows the circuit diagram for a typical latch stage.

At the start of the simulation, the cross coupled inverters are

pulled into a known state by the RESET signal. The latch is

CLKCLK

D D#

RESET

A# A
Q

Q#

 

Fig. 6. Schematics for a Filtered Latch

TABLE II
SIMULATION RESULTS FOR TYPICAL FILTERED SYNCHRONIZERS

Number

of Stages

Transient Simulation Count Speed

Improvement
Conventional

Bisection

Modified

Bisection

1 254 79 3.22x

2 247 89 2.78x

3 243 99 2.45x

4 241 97 2.48x

then brought into a metastable state by adjusting the arrival of

a rising D signal relative to the falling edge of CLK.

The results of performing bisection on synchronizers com-

posed of this latch stage are summarized in Table I.

B. Filtered Latch Synchronizers

We repeated the same analysis for synchronizers composed

of latch stages which were fitted with metastability filters[9].

Figure 6 shows the circuit diagram for one such latch. The

results for performing bisection on synchronizers made of this

latch stage are summarized in Table II.

The average speed up for this circuit is slightly less than that

of typical-latch circuits, with the difference becoming more

noticeable for the 3 and 4-stage synchronizers. The simulation

logs generated by our tool indicated that the settling times of

the transparent metastable latches could not be observed when

their states did not change. This forced the tool to disable

the prediction routine around every clock edge, thus reducing

the speedup of the algorithm. The invisibility of metastability

when the latches’ states were not changed is attributed to the

use of the metastability filters.

C. Predictor Performance

To evaluate the performance of our predictor, we calculate

the position of the final interval relative to all proceeding

intervals and call these the actual α values. Since the final

interval is much closer to the absolute metastability point

than all previous intervals, it would be safe to assume that

the actual α values represent the ideal predictions. Therefore

we use these as a reference to calculate the predictor’s error.

Figure 7 shows a plot of αP versus actual α for bisection

on a single stage synchronizer. The predictions are noticeably

close to the actual α values demonstrating a good predictor
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performance. The α values are also more condensed near the

interval ends which indicates that modified bisection has been

relocating the interval ends very close to the metastability point

at every round. This shows that the algorithm is performing

much better than conventional bisection. The absolute mean

error of prediction for our single-stage synchronizer is 0.009

relative to the interval size. Using the expression we derived

in Section 3, the transient simulation count speedup can be

approximated at log(
√
0.009)/log(0.5) ≈ 3.4x which matches

the speedup obtained in our simulation for a single-stage

synchronizer (3.18x).

In multi-stage synchronizers, the actual speedup is determined

by the ratio of bisection rounds where the prediction routine

cannot be used to the total number of rounds. Therefore,

for circuits with longer clock pulses and lower clock back

edge delays, the algorithm speedup will be more closer to the

theoretical speedup of log(
√
δ)/log(0.5).

To maximize the benefit of our technique, it is important to

optimize the performance of the predictor. The most dominant

factor in this regard is the number of samples N to include in

computing feval. Larger N values will produce better averages

and reduce the effects of spurious samples. However, as more

distant samples are included, our choice of αP in the current

interval will appear to have less effect on the correlation

coefficients. This is because intervals shrink exponentially, so

for a nested interval i, all points within the nested interval

i+10 for example will appear to be equally suitable to be the

exponential curve’s center points. If an excessively large N is

used, feval will have a wide peak whose tip is hard to locate.

The choice of N is thus a tradeoff between better averaging

and a sharper indication of αP by feval. These effects are

portrayed in the plots in Figure 8.

It is hard to determine a generally optimal N value as this

depends on the details of each implementation. In our own,

we have found an N value of 7 to produce the most accurate

predictor.

VI. CONCLUSIONS

We have presented a novel algorithm that is able to charac-

terize the performance of synchronizer circuits with 2.5 to 3.2

times less transient simulation effort. Our method exploits the

exponential nature of the relationship between settling times

αi

f e
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Actual α
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v
a
l
(α

i)

N=7

Actual α

αi

f e
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i)

N=15

Actual α

Fig. 8. Effect of choice of N on feval

and input window sizes to speed up the convergence speed of

bisection. We have shown that bisecting on relatively accurate

predictions of the location of the convergence point increase

the speed of convergence and that the amount of speedup is

directly related to the accuracy of the predictor.

We have used our algorithm to analyze a number of syn-

chronizers composed of two latch stages that exhibit slightly

different behavior. In the course of developing our metasta-

bility tracking algorithm, we analyzed the behavior of latches

as metastability crosses from one to another. Our simulations

have shown that bisection on the resolving state of the final

stage of synchronizers tends to bring every pre-final latch to

resolve just before the clock edge on which the following latch

becomes opaque. Therefore, a distinct absolute metastability

point exists for every latch in a synchronizer. However, each

of these metastability points is indistinguishable from that of

the last latch down to the size of input window that cause

metastability to cross to the following latch. We exploit this

relationship to direct our bisections to the absolute metasta-

bility point of the final latch in the absence of changes in its

settling time.

Our method is not restricted to any latch topology or behavior

and can be improved by enhancing the predictors accuracy.

We aim to utilize this method to aid us in carrying more

comprehensive investigations of multi-stage synchronizers in

the future.
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