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Abstract

Power constrained systems, di�erent from traditional low power systems, are becoming more

recognized. The operation of these systems is not constrained only by the availability of traditional

resources such as software or hardware, but is limited by applicable power. Designing such systems

poses new challenges. We meet these challenges by departing from the classical low power design

approach and taking a power elastic system view.

In this paper we present an architectural level solution based on real-time feedback control to

�t system operation into power constraint pro�les. Investigations into concurrency management as

the main method for such real-time control are carried out. As part of this methodology we present

a new approach, called `soft arbitration', which can be applied to solving the problem of energy

resource allocation and power capping. This work provides a concrete foundation for the power elastic

methodology through developing a set of modelling, analysis, design and implementation techniques

covering both theoretical and practical issues.

1 Introduction

Microelectronic system design is becoming more energy conscious, because of limited energy supply

(scavenged energy or low battery) and excessive heat with associated thermal stress and device wear-out.

At the same time, the high density of devices per die and potentially high parallelism, coupled with

environmental variations, create almost permanent instability in voltage supply (cf. Vdd droop), making

systems highly power variant. Conventional low power design was targeted merely at the reduction

of capacitance, Vdd and switching activity, whilst maintaining the required system performance. In

many current applications, the design objectives are changing to maximising the performance within the

dynamic power constraints from energy supply and consumption regimes. Such systems can no longer be

simply regarded as low power systems, but rather as power-adaptive or power-resilient systems.

Under varying environmental conditions, with voltage and thermal �uctuations, timing tends to be the

�rst issue a�ected. Most systems are still designed with global clocking and are overly pessimistic to avoid

failures due to timing variations. To reduce these margins designers now consciously allow parts of systems

to fail, albeit rarely, to maintain the overall balance between performance gains and reasonably low error

rate [6][12]. Elsewhere designers are moving towards timing elasticity and a wider use of asynchronous

design methods. It has been shown that the latter, materialised into `elastic voltage scaling', can lead to

30-40% average power savings under the same level of performance [22]. The former technique suits CPU

pipelines but the latter seems to be more universal and appropriate for more heterogeneous systems such

as SoCs and 3D die-stacks. This trend is set to continue in a widening scope of embedded applications

and multi-core and heterogeneous systems. These methods are generally based on the assumption of

relatively rigid energy supply levels. Computations tend to be scheduled based on a prior knowledge

NCL-EECE-MSD-TR-2010-155, University of Newcastle upon Tyne 1



Fei Xia, Andrey Mokhov, Yu Zhou, Yuan Chen, Isi Mitrani, Delong Shang, Danil Sokolov, Alex
Yakovlev: Towards Power Elastic Systems through Concurrency Management

of the energy requirements, with Vdd droops accommodated through reliable operation. However, the

notion of elasticity can be taken further than simply stretching delays to accommodate varying conditions.

We propose to investigate elasticity in terms of energy supply and consumption. The ultimate goal is

to design systems that, under energy supply variations, alter execution to meet energy mode requirements,

while maintaining functionality requirements and preserving behavioural equivalence. This concept of

systems being limited by applicable power and designing systems according to such limitations (called

power-elastic design in this paper) is di�erent from conventional low power design [14]. This is becoming

more widely recognised, e.g.:

�Systems tend to be designed and optimized for peak performance. In reality, most com-

putation nodes, networks and storage devices typically operate at a fraction of the maximum

load, and do this with surprisingly low energy e�ciency. If we could design systems that do

nothing well (as phrased by David Culler), major energy savings would be enabled. Accom-

plishing energy-proportional computing requires a full-�edged top-down and bottom-up

approach to the design of IT systems.�

(from Jan Rabaey's lecture `The Art of Green Design: Doing Nothing Well' � March 2010 )

We believe that this problem cannot be solved in its entirety without introducing a measure of energy

(or power) into the system design abstraction, e.g. in the form of quantised resources. We also believe

that this can be done very elegantly within the computational and behavioural models based on token

games, such as Petri nets. Given that there exist powerful methods for the analysis and synthesis of Petri

nets, as well as their mapping into logic circuits, the prospects of achieving an algorithmic and potentially

automated way of obtaining e�cient power controls and their hardware implementation are realistic. This

discipline of designing systems with dynamic power allocation is the essence of power elasticity. In this

paper we develop an approach to power elasticity suitable for deriving simple and low-cost hardware for

fast response control of energy use, through the management of system concurrency. This complements

the existing concept of timing elasticity based on dynamic adjustment of computational delays, also at

the �ne grain level, using asynchronous techniques. Together they pave the way for designing systems

with �ne granularity of power and timing control, and thereby being signi�cantly more robust and better

optimised to the operational conditions in a wide variety of (mostly embedded) applications.

1.1 Contributions and organisation of this paper

In this paper we propose the power elastic view on system design and develop speci�c power elastic

design and implementation techniques. These include concurrency management modelling, analysis and

design as well as soft arbitration. The rest of this paper is organised as follows. In Section 2 we will

review existing front-line techniques for power management, namely the 'actuator' mechanisms a power

controller needs for monitoring and manipulating system power behaviour. In Section 3 we will describe

our automatic power control regime based on power pro�ling and feedback control concepts. In Section 4

we will model and analyse system power and latency behaviour relating to the degree of concurrency. In

Section 5 we will describe investigations of power elastic design based on concurrency reduction and soft

arbitration techniques; discussions and future work vision will conclude the paper in Section 6.

2 Existing power control mechanisms

A handful of front-line power saving mechanisms has been used by the semiconductor industry to reduce

circuit power consumption [13]. For many years dynamic power has been dominating CMOS logic.

In synchronous circuits up to 30-40% of this power goes to global clock distribution across the chip.

This became the primary target for power saving in clock gating techniques, where clock switching is

suppressed for inactive parts of the system.
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In deep sub-micron technologies the trend has changed and static power is no longer negligible - up

to 40% of the total power is due to leakage. This is usually resolved by power gating, where the voltage

source is disconnected from those parts of the circuit which are inactive for extended periods of time.

Over-conservative variation margins on the clock period are utilised in the voltage scaling approach,

where the unused speed of a circuit is converted into power saving by automatically reducing its supply

voltage. There are several low-level techniques for decreasing the leakage of the cells outside the speed-

critical paths either by using a special low-leakage technology library or by adjusting their lithography

mask data.

The voltage scaling mechanism naturally couples with self-timed circuits [21][20] making them very

attractive for low-power design. Self-timed circuits are free from a rigid clock and function at the best

speed for given conditions, e.g. supply voltage. Unfortunately, synthesis of self-timed circuits is still more

an academic exercise than the mainstream of semiconductor industry, partially due to incompatibility

with the accepted design practices. Recently a less intrusive desynchronisation technique [9] found its

way to commercial products [22]. It introduces elements of self-timed designs into synchronous circuits

at the late stage of conventional design �ow, thus re-using the time-proved synchronous EDA tools.

All of these techniques can be regarded as providing multiple discrete operation modes for parts of a

system with various degrees of power consumption and performance.

3 Power elastic basics

Here we explore a feedback control strategy with the applicable power as the main constraint. The aim

is to derive and implement at low cost an appropriate power elastic control law for any given system.

3.1 Power pro�ling

Applicable power is the quantity of power that can be applied, determined by two factors. One is

the availability of power from energy source(s), especially important with variable and non-deterministic

sources such as batteries and scavengers. The second factor is other limitations on power application

such as the operating temperature. Applicable power can be characterised as the upper bound of power

as a function depending on time and space:

Bp = Bp(x, y, z, t) = Bp(S, t)

where x, y, and z are the 3-dimensional indexes of location which can be uni�ed into a general space

index S and t is time. The space factor may represent that di�erent parts of a chip may have di�erent

temperature characteristics. In on-chip VLSI, the space factor is not continuous. In general, chips are

divided into discrete areas or blocks. There is always a lower bound for block size. This block size lower

bound and �nite chip size imply an upper bound for the number of blocks. The space factor can then be

simpli�ed to an integer index:

Bp = Bp(i, t)

is the upper bound of applicable power for the i-th block.

Existing power control mechanisms in general implement coarse grain power manipulation through a

limited set of operating modes. Switching among these modes is not usually applied very frequently in

time because of mode switching overheads. In other words, both the values of t and Bp are also discrete.

Therefore power control through switching among multiple power modes is a discrete event system.

Figure 1 illustrates Bp(i, t) as continuous and discrete concepts.

A description of applicable power in time and space like Figure 1 is known as a power pro�le. Many

techniques can be used to obtain power pro�les. These can be static methods including energy source
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and computation intensity predictions, or dynamic ones based on sensor data in realtime.

3.2 Architecture for power elastic circuits

Figure 2 depicts the generic architecture for power-elastic systems. Its idea is to extend a system with a

discrete even Power Elastic Controller (PEC) which ensures that power consumption is kept within a given

pro�le by, for example, reducing the concurrency of the system whist preserving behavioural equivalence.

The PEC decides which computational blocks should operate to maintain the required power consumption

and regulates the clock gating, power gating and voltage scaling interfaces. This decision is made based on

a set of power consumption rules, data from the sensors, such as temperature, delay di�erence, switching

activity, etc. Optionally, causality information can be derived from the computation model and used to

schedule the activation of the circuit components in the optimal order.

3.3 Power elastic transformation

Synthesising the PEC is of vital importance to power elastic system design. This synthesis process should

take characterisation input from the computation and power models of the system. Here the power model

describes system power pro�les and consumption properties, and the computation model is a reduced

representation of the functional computation behaviour of the controlled system, concentrating on the

control path. With these inputs, a power elastic transformation �nds a concrete implementation for the

computation control model. This is then applied through the PEC, resulting in a sequence of execution

which satis�es the power pro�les and preserves computational equivalence (Figure 2).

A uni�ed method of modelling is needed for systematic power elastic transformations. Petri nets have

been used to represent discrete event systems for their analysis and synthesis for a long time [4][10]. Petri

net models can be used to directly represent such issues as causality, concurrency and synchronisation.

The �ow relations in Petri nets can be used to represent the relations between such computation ele-

ments as tasks and threads, including their relative concurrency and cross-dependencies. The execution

semantics [10][5] readily derivable from a Petri net core computation model can be used in the process

of a power elastic transformation which preserves equivalences. In power models, power pro�les can be

represented by quantising Bp(i, t) into the number of power tokens in a power place. This concept

is demonstrated in the following sections.

Petri net modelling of discrete event control and asynchronous circuits allows PECs to be implemen-

ted from a collection of small circuits distributed spatially within a block to reduce operational cost

and communication bandwidth needs. Generic methods of direct mapping of Petri nets to circuits [20]

facilitate this spatial distribution of the PEC.

The process of power elastic transformation can be either static (design time), where a PEC is syn-

thesised once for a system, or dynamic (run time), where the PEC is tuned during operation, or hybrid,

where the PEC synthesis will have both dynamic and static elements. Here we present relevant and useful

techniques for all these choices.

4 Relating power to concurrency

Increasing concurrency can sometimes be used to reduce power consumption if one could reduce Vdd

and/or clock frequency at the same time [13]. However, for ultra-low average power operations it is

generally better to 'run fast then sleep' because of leakage issues [1]. In this context, power may become

the limiting factor on run-time concurrency. The degree of run-time concurrency may in turn be used

to control system power consumption to �t power pro�les, e.g. in [11] the authors implement power

management by the adaptive control of pipeline depth.

In this section we develop a general modelling approach where the system degree of concurrency is

quantitatively related to power and latency performance. Such a modelling method supports qualitative
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and quantitative analysis of power-elastic systems for designers who may want to compare di�erent power

management algorithms under di�erent operational situations.

Here we assume a system consisting of service providers (SPs) dealing with incoming service requests

(SRs). A task is executed in an SP (usually a computing block) to serve an SR and the SP only consumes

power when it contains at least one active task.

Markovian methods have been used to model such systems for decades [8][3][17] when multiple tasks

are provided by an SP to deal with nondeterministic SR arrivals. Independence is assumed across requests

and tasks. Normally, λ denotes the rate of request arrival, µ stands for the rate of task completion, and P

represents the power consumption when an SP is on. Because this kind of modelling relates the average

power consumption Pave and latency L of hardware/software designs to parameters λ, µ, and P , it can

help derive optimal power-latency design tradeo�s.

Much research, such as discrete-time [3] and continuous-time Markov processes [17] and �ne-grain

Markov models [8] exist for such modelling and analysis covering only single-SP cases. Here we consider

the multi-SP case and investigate the optimised or permitted concurrency degree for a certain power-

latency consideration.

For simplicity, we assume that the system being controlled consists of identical SPs which can be

independently woken up or shut down and a number of them can be run concurrently. When an SR

arrives, the corresponding task in an SP is activated to service the SR. Given the applicable power pro�le,

at most M (1 ≤ M ≤ N) SPs can be on at the same time � the maximum applicable concurrency

degree is M or there are M power tokens in the system. In other words, M power tokens are available

from Bp(i, t). These assumptions mean that we are concentrating on the simplest (Boolean) form of

power control of the computational blocks.

Assume there are N independent tasks in the system. Because of task independence, multiple tasks

can be active (including waiting) at the same time. We use j (0 ≤ j ≤ N) to indicate the number of

idle tasks (tasks whose corresponding SRs have not arrived) in the system. Without losing generality

we assume the system has N SPs available. Thus the maximum degree of concurrency is N . With

unlimited power and unlimited number of SRs the system can run N concurrent tasks at the same time

(M = N).

The concept of concurrency being limited by power pro�le is illustrated in Figure 3. The tasks

within a logically atomic computation step could be executed fully concurrently given enough resources.

However, when a resource, like power, is limited, tasks can be executed sequentially to trade latency for

the resource. In this example N = 5 and M = 2.
If no more than M tasks are active (N − j < M), only N − j SPs are needed for task execution.

The other M − N + j SPs can be powered o� for power saving. After the completion of execution, a

task becomes idled again. If at least M tasks are active (N − j ≥ M), the system must operate at the

maximum applicable degree of concurrency. However, the other N − j−M tasks have to wait in a queue

until some SPs have been released on task completion.

4.1 Modelling of the degree of concurrency

Figure 4 is the stochastic model for the type of system investigated in this work. In this model, the

number of idle tasks is the state variable. For example, in the state N , all tasks are idle and all SPs are

powered o�. Since the system moves from the state N to N −1 when any one of the N tasks is activated,

the corresponding transfer rate is Nλ (each idle task leaves the idle state at the same rate λ). A task is

executed in an SP with the completion rate µ (a task in execution leaves the execution/active state and

becomes idle at the rate of µ). Both the power on and o� mode switches for an SP are taken as cost

free in both time and power (with a rate of in�nity and delay of zero).

If one of the other N−1 tasks becomes active before the execution of the �rst active task is completed,

the system moves to the state N − 2, and another SP is powered on. With two tasks being executed,
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the rate of one of them leaving execution and becoming idle is 2µ. When the system is in the state j = i

(N −M < i < N), there are N − i active tasks being executed, and it may move to the state i− 1 with

the transfer rate i× λ. With N − i SPs on for processing in the state j = i, the execution rate becomes

(N − i)µ.
When the system is in the state j = i (i ≤ N −M), all M SPs are already on, and the corresponding

transfer rate from the state j = i to j = i+ 1 is constant Mµ.

4.2 Power, latency and combined analysis

To di�erentiate power from probability distribution, we use Qj to stand for the probability when the

system is in state j (j ≤ N), and P as one SP's power consumption. In this high level model, we simply

assume that an SP consumes full power P when it is on and zero power when it is o�. Therefore, the

power dissipation when the system in the state j = i is (N − i)P when N −M < i < N or MP when

i ≤ N −M . The average power consumption of the system Pave(M) is presented in (1).

Pave(M) = P (M
N−M∑
i=0

Qi + (M − 1)QN−M+1 + · · ·+ 2QN−2 +QN−1)

= P (M
N−M∑
i=0

Qi +
M−1∑
k=1

kQN−k) (1)

where the probabilities can be expressed in the rates of the system (λ and µ) by �rst expressing all Qi in

terms of Q0:

Qi =


(Mµ)i

i!λi Q0 0 ≤ i < N −M

MN−Mµi

i−N−M∏
k=1

(M − k)

i!λi Q0 N −M < i ≤ N

then �nding Q0 by setting the sum of all Qi to 1:

N∑
i=0

Qi = 1

For the measure of latency, we use W , the average time spent by a task in both waiting and execution

stages, i.e. between activation and becoming idle again. It can be derived as follows. First, if L = Ave(j)
is the average number of idle tasks, it can be calculated using (2):

L =
N∑
i=1

iQi (2)

The average number of active tasks is then N −L. Meanwhile, the arrival rate into active states is given

by λL. The average latency W (M) is thus described in (3) where T is the average time for executing a

single task:

W (M) =
N − L
λL

T (3)

If power is not a hard limiting constraint, but a factor that can be balanced with performance, an

optimum M may be found for any particular power and latency balance. This type of optimisation can

be described as follows.

Given a certain weight C (0 ≤ C ≤ 1), for any possible concurrency degree M (1 ≤ M ≤ N), the

one which can minimise CPave(M) + (1 − C)W (M) is the optimised M (Mopt). In other words, Mopt

satis�es:

Mopt = arg
M

min CPave(M) + (1− C)W (M) (4)
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This kind of analysis can be done at design time for power-elastic systems so that at run time, power

pro�le permitting, the concurrency degree can be set close to Mopt.

Here we use an example with N = 15 and normalised P , T and µ of 1 (each SP consumes one unit of

power in execution at the completion time and rate of 1) to illustrate the method. Figure 5 describes the

power performance for various values of M . Latency behaviour can be similarly plotted [7]. In general,

with larger M the power consumption is higher and the latency is lower. When balancing these two, it

is possible to �nd some optimal M for some weighting factor C. When the system is saturated with high

λ values, the power consumption is asymptotically MP .

4.3 Uncertainty in M

It is evidently possible to control the power consumption of power elastic systems to �t power pro�le

requirements Bp(i, t) by adjusting the system degree of concurrency M . When a system is operating

under very limited power which does not allow a high degree of concurrency and M is relatively small, it

is usually quite straightforward to implement concurrency managers with simple arbitration. Hardware

arbiters requiring little operating power can be designed to manage a small number of resources. For

such simple arbitration cases the models above are su�cient for analysis.

With large M however the arbiters can become complex with performance and cost penalties. For-

tunately, unlike hard enumerable resources such as software threads and hardware blocks, power allows

a degree of softness in arbitration. Power tokens are discretised from an ultimately analogue value and

a degree of imprecision in M (occasionally allowing more than M SPs to run at the same time) may

be tolerable, causing a slowdown but not a catastrophic failure. This permits the use of soft arbiters

which are much cheaper to implement and run [16].

However, whether this kind of intuitive reasoning will be applicable for any system needs to be

investigated and analysed at design time. Here we extend the model to cover softness in M .

Figure 6 includes representation for cases where, at a probability of 1 − α, soft arbitration allows

M + 1 SPs to execute at the same time. The *-marked branch can have its own rate of execution (µ∗)

and power cost (P ∗) because of potential Vdd droop in such cases. The average power consumption can

be calculated as:

Pave =
N−M−1∑
j=0

P ∗(M + 1)Qj∗ +
N−M−1∑
j=0

PMQj +
N∑

j=N−M
P (N − j)Qj (5)

In (5), we use Qj and Qj∗ to represent the probabilities when the system is in the states j or j∗. Latency

behaviour can be similarly derived.

Extending the model with µ rates and P quantities not as constants but as functions of the number

of running SPs can better re�ect the e�ect on latency and power by allowing di�erent degrees of power

token over�ow. Such functions can be established with design-time analysis. These models can also be

extended to cover the cases where the wakeup and shutdown transitions are not overhead-free [7].

With these types of analysis, system designers can discover such operating conditions and incorporate

allowances for them when designing power control algorithms. High-level design time explorations using

the modelling and analysis techniques presented in this section should ultimately help reduce the design

e�ort.

These modelling and analysis methods can be generalised further to cover more complex and non-

Boolean power control modes such as DVS and DFS. This may however make closed-form solutions

impossible, although numerical analysis will still be straightforward.
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5 Power elasticity through concurrency management

Here we further investigate power elastic techniques based on concurrency reduction and the simplest

form of power control � Boolean power modes for threads and blocks. Generalising these techniques to

more complex operation modes is a subject for future exploration.

5.1 Concurrency relations and concurrency reduction

As a concurrency reduction example, Figure 7(a) depicts a Petri net core computation model consisting

of three concurrent tasks a, b, and c. Each task involves the sequential execution of two subtasks, e.g.

a.1 and a.2 for task a. Cross-dependency relations exist between (a.1, b.2) and (b.1, c.2). Suppose that
applicable power is quantised into two power tokens, and the execution of a task requires one power

token. The consumption of power, di�erent from energy consumption, is a temporary occupation of a

resource. Once the task is completed the power token is recycled to the system. The concrete control

model in Figure 7(b) illustrates dynamic scheduling based on arbitration, whereby at most two tasks can

be scheduled simultaneously during run time.

The behaviour semantics of a Petri net can be described by its Reachability Graph (RG): RG =
(S, T, F, M0). S is the set of all possible markings of the net; T is the set of transitions when considering

both interleaving and step �ring semantics; F are the transition (or next-state) functions of s′ = f(s, t)
where s′, s ∈ S and t ∈ T ; and M0 is the initial marking of the net. Figure 7(c) shows the RG of the

example net. The marking {1, 5, 11, 6} is reachable from the initial marking {1, 2, 3}, following the

interleaving transition sequences of (b.1, c.1) or (c.1, b.1), or a step transition of {b.1, c.1}. Other `step'
arcs are not explicitly shown to reduce clutter.

For two transitions t1 and t2, t1 < t2 if t1 precedes t2 in every transition sequence of the RG. An N -ary

concurrency relation upon T is de�ned as the set of N -tuples, where for each tuple, ¬(t1 < t2) holds
for every pair of tuple elements t1 and t2 (t1 6= t2). In this example the highest number of concurrent

tasks is three, hence N = 3.
An N -ary concurrency relation recursively implies M -ary concurrency relations for all M ≤ N , e.g.

the ternary relation tuple (a.1, b.1, c.1) implies three binary tuples (a.1, b.1), (a.1, c.1), and (b.1, c.1).
Our example contains 4 ternary and 9 binary relations, as listed in Table 1. The generalisation of this

property is only true in both directions for a subclass of systems with distributive concurrency [18].

Concurrency reduction means the removal of a subset of the N -tuples from an N -ary concurrency rela-

tion. Removing a tuple eliminates all its supertuples, e.g. removing (b.1, c.1) eliminates its parent tuples

of (a.1, b.1, c.1) and (a.2, b.1, c.1) in the concurrency relation list. Our task is to derive concurrency

reductions in the system with N = 3 when only two power tokens (M = 2) exist.
Here we condider both static and dynamic control mechanisms. Static control establishes a single

partial order over the tuple elements (i.e. execution of tasks) whereas dynamic control permits multiple

orders (the actual order is only determined during run time). Static control is further divided into super-

linear and and-causal cases, whereas dynamic control is divided into or-causal and arbitrating ones.

Figure 8 lists these control structures by Petri net models in reducing the applicable degree of concurrency

of (a.1, b.1, c.1) to binary.

Super-linear control imposes a complete order on the tuple elements. With this control, the state cube

formed by a.1, b.1, and c.1 in Figure 7(c) is replaced by the local RG in Figure 9(a). As a result, all the

local binary concurrency tuples incurred by (a.1, b.1, c.1) are eliminated. This complete sequentialisation

is suitable for any situation where there is at least a single power token (i.e. M > 0).
And-causal control expresses an AND enabling condition for a task. With Figure 8(b), c.1 is enabled

when both a.1 and b.1 have �red. The partial order in this example is {(a.1, c.1), (b.1, c.1)}, and the

corresponding local RG is shown in Figure 9(b). With and-causality, only one local binary concurrency

tuple is maintained, i.e., (a.1, b.1).
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Or-causal control [23] expresses an OR enabling condition for a task. With Figure 8(c), c.1 is enabled

when either a.1 or b.1 has �red. Or-causality imposes two (mutually exclusive) partial orders: (a.1, c.1)
and (b.1, c.1). It is only known at run time which order takes place. The local RG with or-causal control

is shown in Figure 9(c), where all local binary concurrency tuples are maintained.

Finally, with the arbitrating control of Figure 8(d) (2-of-3 arbitration), all three tasks are enabled,

but at most two of them can be executed simultaneously. Figure 9(d) shows the local RG with all three

binary tuples maintained. In addition, all three `step' arcs corresponding to the tuples are enabled at the

initial state, whereas only one `step' arc is allowed in the or-causal control.

Concurrency reduction causes performance degradation because of two factors: the stretched

execution time (a direct consequence), and the extra delays incurred by concurrency control (i.e. PEC).

The former factor can be determined from the Petri net control structures, whereas the latter is related

to the controller implementation.

Suppose the execution delays of tasks a.1, b.1, and c.1 are ta1, tb1 and tc1, respectively, while the

delays of the super-linear, and-causal, or-causal, and arbitrating controllers are dsl, dac, doc, and dab,

respectively.

Before concurrency reduction, the tasks in the example can be executed within a period of

max(ta1, tb1, tc1). With super-linear control, the execution period is ta1+tb1+tc1+dsl. With and-causal

control, the execution period is max(ta1, tb1) + tc1 + dac. With or-causal control, the execution time is

max(min(ta1, tb1) + tc1, max(ta1, tb1)) + doc, which can be further re�ned to max(ta1 + tc1, tb1) + doc

should the run-time order be (a.1, c.1), or otherwise to max(tb1 + tc1, ta1) + doc.

Arbitration-based control also has an execution period dependent on run time token-game results. If

the imposed partial order turns out to be (a.1, b.1) or (b.1, a.1) during run time, the execution time is

max(ta1 + tb1, tc1) + dab. Other cases can be similarly derived.

Not considering controller delays, static controls degrade performance more than dynamic controls.

Arbitration-based control has a superset of execution paths of or-causal control and can render even lower

performance degradation. The control structures, the orders they impose, and the e�ects on concurrency

relations and performance degradation are described in Table 2.

In the context of Figure 2, M would be derived from the power model and direct power place/token

modelling exists in the arbitration case. Petri net techniques can be used to derive concrete models for

the PEC in the form of Figure 8 from core computation models in the form of Figure 7(a). More details,

including discussions on the distribution of concurrency reducing PEC algorithms among small circuits

across a block, can be found in [24].

5.2 Soft arbiters

The previous section demonstrated that arbitration-based concurrency reduction is simple to design and

potentially e�cient in operation. However, as current and future on-chip and 3D systems are likely to be

highly concurrent, large M and N numbers will prevale in real systems. This could prohibit the use of

dynamic concurrency reduction for cost reasons, unless e�cient multi-client, multi-resource arbiters are

found. We demonstrated a distributed arbiter architecture for large (10x10) implementations with good

scalability in [19], but issues like performance and cost persist.

Power, unlike hard enumerable system resources, can occasionally be shared among more than M

blocks or threads without catastrophic failure. This fact may be used to simplify the problem of arbiter

design, resulting in cheaper and faster arbiters.

The classical case of `hard' arbitration is when a system does not have enough hard resources to

serve more than M clients, e.g. it has only M processing units. However, power resource allows more

�exibility: random, occasional events have little e�ect on the inertial, statistical characteristics of power

consumption. Therefore, in this case the bound may be relaxed and granting access to more or less than

M clients may be allowed as long as the rate of such imprecise granting is acceptable. We call arbiters
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with relaxed bounds soft arbiters.

Implementations of soft arbiters can in general be smaller and faster than strict ones. For example,

the implementation of a 1-of-3 strict arbiter presented in [15] is given in Figure 10. It has a construction

with four layers: pair-wise arbitration, reset �lters, computation of the winner, and �nally completion

detection. But if it is occasionally allowed to issue two grants (instead of always at most one) then its

implementation can be simpli�ed [16] dramatically as shown in Figure 11.

Let us study the behavior of the simpli�ed arbiter. Table 3 shows the grants issued under di�erent

request orders. The arbiter always gives the grant to the �rst request, plus to request ra if it came second.

Thus, for a single burst of incoming requests, the probability for the arbiter to issue two grants is 1/3.

On the other hand, if there is a constant �ow of incoming requests abcabcabc... then the arbiter will give

one and two grants in an alternating fashion, e�ectively behaving as an 1.5-of-3 soft arbiter on average

(the series of grants will be ga− gb− {ga, gc} − gb− {ga, gc} − ... etc).

5.3 Realtime control of softness

It is possible to build soft arbiters that have a variable soft bound on the number of issued grants,

e�ectively making them behave like a valve which can restrict the �ow of requests to a speci�ed degree

(including the scenario when it is `fully open' or transparent to all the requests). At any moment of time

such an arbiter lets a discrete number of requests through but using a feedback control from the PEC it

is possible to obtain continuous transmission characteristics.

Figure 12 shows a possible implementation of such an arbiter. It is built on the same principle as the

previously described 3-way soft arbiter but instead of using either C-element or OR-gate as a threshold

element we use a generic threshold gate [2] with some of its inputs controlled by the softness control

register (SCR)1. The layer of ME-elements provides pairwise ranking of the arrived requests, while the

threshold layer decides how many wins a particular request must collect to be granted. For example,

if SCR=10101010 then a request has to win against at least two other requests, thereby resulting in a

2-of-4 soft arbiter as demonstrated in Table 4. The arbiter can issue 3 grants only if all the requests

arrive simultaneously so that the layer of ME-elements cannot decide between them, producing a random

ranking table. There are 64 di�erent ranking tables and only 8 of them have such cyclic ranking that 3

requests are granted. Therefore only in 12.5% of the problematic cases (which are very rare themselves)

the arbiter is 3-of-4 and in other 87.5% it is 2-of-4.

6 Conclusions

In this paper the power elastic view of system design is proposed. These systems are based on a real-

time feedback control architecture around the Power Elastic Controller, where the main technique for

�tting a power pro�le is concurrency management. Methods for modelling, analysis and design of concur-

rency management systems have been developed and described in this paper. In particular, a promising

implementation technique, soft arbitration, has been discussed in detail.

These components and theoretical basis will facilitate the further development of a complete metho-

dology for power elastic design. We are currently further developing and applying these methods in the

context of energy harvesting systems.
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Tables

Ternary concurrency (a.1, b.1, c.1), (a.2, b.1, c.1)
(a.2, b.2, c.1), (a.2, b.2, c.2)

(a.1, b.1), (a.1, c.1), (b.1, c.1)
Binary concurrency (a.2, b.1), (a.2, c.1), (a.2, b.2)

(b.2, c.1), (a.2, c.2), (b.2, c.2)

Table 1: Concurrency relations in the system of Figure 7

Control Scheme Structure Partial Order Concurrency Reduction Performance

Imposed E�ects degradation

super-linear M ! arrangements single total order all relations removed largest

AND enabling conditions single partial order up to M -ary relations

and-causal between
⌈

N
M

⌉
groups between groups maintained but restricted second largest

of M -ary subtuples to within a group

OR conditions on a M -ary multiple all M -ary relations dynamic, smaller than

or-causal subtuple to enable the maintained static controls

next new tuple element

arbitrating M -of-N arbitration multiple all M -ary relations dynamic, more �exible

maintained than or-causal control

Table 2: Comparison of di�erent control mechanisms for concurrency reduction

Request order ab/ba ac/ca bc/cb Issued grant(s)

abc ab ac bc ga
acb ab ac cb ga
bac ba ac bc ga, gb
bca ba ca bc gb
cab ab ca cb ga, gc
cba ba ca cb gc

Table 3: Analysis of 3-way soft arbiter with respect to request orders

Number of wins Combinations Number of issued grants

3, 2, 1, 0 4! = 24 2
(total order) 37.5% (2-of-4 arbitration)
3, 1, 1, 1 4× 2 = 8 1

(one winner, one 3-cycle) 12.5% (1-of-4 arbitration)
2, 2, 2, 0 4× 2 = 8 3

(one loser, one 3-cycle) 12.5% (3-of-4 arbitration)
2, 2, 1, 1 4! = 24 2

(one 4-cycle) 37.5% (2-of-4 arbitration)

Total 26 = 64 2 (average)
100% (2-of-4 soft arbitration)

Table 4: Analysis of 2-of-4 soft arbiter with respect to request orders
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Figures

Figure 1: Continuous and discrete power bounds
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Figure 4: System Markov chain model

Figure 5: Power related to the degree of concurrency
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Figure 6: Uncertainty in M

Figure 7: Core PN model (a), its RG (c), and a control model (b)

Figure 8: Concrete control models to eliminate (a.1, b.1, c.1): super-linear (a), and-causality (b), or-
causality (c), and arbitrating (d)

Figure 9: Local RGs after concurrency reduction: super-linear control (a), and-causality (b), or-causality
(c), and arbitration (d)
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Figure 10: Strict 1-of-3 arbiter
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Figure 11: Soft 1-of-3 arbiter

Figure 12: 2-of-4 soft arbiter with real-time control of softness
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