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A Design Methodology for Transient Peak Power Modulation

in Energy Harvesting Circuits

Yu Zhou, Terrence Mak, and Alex Yakovlev

Abstract

An energy harvesting system (EHS) delivers a non-deterministic power density over a range of explicit

environmental conditions. The computational architecture is required to be tunable and optimized at run-

time in order to adapt the power supply and, simultaneously, deliver optimal performance. In this paper, an

important aspect of the supply-consumption relation in EHS is considered, that the transient peak power

consumption of the load should be bounded by the energy supply rate, yet the average power utilisation

should be maximised. A design flow is proposed in this paper for adjusting the concurrency degree of

a system according to the available power, and choosing a run-time schedule for an EHS satisfying the

optimisation purpose. In particular, the concept of a scheduling decision graph has been introduced for

dynamic scheduling and power adaptation. Algorithms for deriving this graph from a system’s data flow

relations are proposed. A run-time schedule for the system is then extracted from the decision graph,

using a proposed simple and optimal method. Finally, the effects of our design flow is demonstrated on

modulating the average/peak power consumption by a FIR filter circuit implemented in FPGA.

1 Introduction

Traditional battery-powered system works under limited energy supply. For applications that require long

working duration, energy becomes a critical bottleneck and much effort has been devoted to energy efficient

or low-power system design [4, 7]. With advances in microelectromechanical (MEMS) technology, it is

possible to implement a self-powered system that harvests ambient energy from the environment [6, 12, 10,

1]. Several different ambient sources have been exploited, including solar [6], electromagnetic [12] and

mechanical piezoelectric vibration [8, 2]. Such energy harvesting system provides a promising alternative

to battery-powered system and creates an opportunity for architecture and design method innovation for the

exploitation of ambient energy source.

The design criteria for systems in using an energy harvesting source are fundamentally different from that

in using a battery. The battery-based system benefits from a relatively predictable metric of energy residual,

suffices to characterize the energy availability, and is seemingly an unbounded power supply. Traditional

low-power system design aims to minimize the average power dissipation in order to increase the power-up

duration of the device. For energy harvesting systems, rather than a limited energy supply, it has a limit on

the power at which the energy can be used. Also, the harvested energy supply from the ambient sources is

stochastic in nature and, thus, a more sophisticated characterization and design metric are required for the

energy harvesting circuits.

An energy harvesting system presents a different specification and the system design goal should be

aiming at a perennial operation of utilizing the harvested energy at an appropriate rate. Transducer in such a

system is employed to maximize the power transfer from the ambient energy sources to the loads, by opti-

mizing the apparent impedance of the load presented to the harvesters. Although it is challenging to achieve
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Figure 1: Power profile of an arbitrary computational electronic. The transient peak power corresponds to a
large number of simultaneous activities in high degree of concurrency. The average power is a lump statistics
of the power usage over a long period of time.

perfect compatibility between the output of the transducer and load electronics, various power electronic

techniques, such as rectifier [14] and charge pump [15] design, and impedance matching tuning [9], have

been proposed to maximize the power transfer. However, researchers have only been using simple resistive

load model, such as simple resistors and capacitors [8], to determine and optimize the transducer design.

Computational architectures such as Field Programmable Gate Arrays (FPGAs) have a much more compli-

cated load structure with temporal and dynamic power requirements that presents a challenge to the optimal

design specification for energy harvesting circuits. The power supply from energy harvesters is limited and

varies with time. Although power regulators aim to stabilise and deliver a constant power supply, there is an

upper bound for the transient power delivered to the computational electronics. Transient peak power (see

Fig. 1) extracted from the harvester that is over the upper bound of the harvested power would result in a

synchronization failure as a consequence of the momentary voltage drop and deceleration of the arithmetic

operations. Moreover, the temporal energy buffer or storage in an energy harvester is usually limited. In

contrast to low-power circuit design principles, the computational load in an energy harvesting circuit con-

sumes energy at an appropriate rate that is compatible to the harvester, or namely energy-neutral operation

[6], in which both the computational performance and energy buffering is optimized.

In this paper, we propose a design methodology based on dynamic scheduling that enables a run-time

concurrency adjustment subjected to the power supply upper bound of the harvester. By tuning the degree

of concurrency or parallelization in a computational architecture, the transient peak power consumption of

the computational electronic can be readily controlled to maintain a reliable computation and to maximize

the compatibility of the harvester.

Conventional dynamic methods of modulating power consumption include dynamic voltage frequency

scaling (DVFS[5]). In energy harvesting systems, however, voltages are subject to instability in spite of the

existence of power/voltage regulators, and scaling of voltages may be restricted in practice. As a result,

this paper considers voltages as not adjustable at run-time, and rather, investigates on the effects of dynamic

tuning of the concurrency degrees which is directly related to the capacitive loads in a system.

Adjustment of clock periods in a system (frequency scaling, or duty cycling) can also modulate the

average power consumption of a system. However, we argue that its ability to modulate the peak power is

limited when voltage is not adjustable. This is intuitively because when the average power is reduced by

stretching the clock period, the peak power consumption in a clock cycle is still determined by the number

of active components (operations) in a system, which is fixed with a particular concurrency degree. In

contrast, dynamic scheduling can adjust the number of active components executed in a clock cycle, and

thus modulates the peak power consumption more effectively.

The major contributions of this paper are:
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1. A design flow for modulating the average and peak power consumption of an EHS system, through

run-time adjusting of the concurrency degree of a system using dynamic scheduling methods is pre-

sented. With the flow, the data flow graph (DFG) representing a system’s high-level behaviour is

transformed into a scheduling decision graph (SDG), which provides the different feasible schedules

available in a system. Then a run-time schedule can be selected, based on the decision graph and

according to the real-time power constraints.

2. Algorithms have been proposed to transform a DFG into its corresponding SDG. Two types of trans-

formation algorithms are considered: a complete one which can produce all the possible schedules of

a system, and a truncated one which only generates selected schedules according to certain scheduling

policies.

3. An algorithm for run-time scheduling based on a SDG is presented. With the algorithm, an opti-

mal schedule for the system can be selected during run-time which meets the transient peak power

requirement and maximises the average power utilisation.

4. The design flow is exemplified using a simple DSP algorithm.

5. The power dissipation and performance of a FIR filter circuit is evaluated using the dynamic schedul-

ing approach, and comparisons are made with the results using duty cycle adjustment.

2 Preliminary

2.1 Problem formulation

The power adaptive problem can be expressed in the form of a constrained optimization problem. In order to

maximize the utilization of the available harvested energy, the optimization objective is to minimize latency

of the computation. Also, the transducer with temporal energy storage can provide power supply up to a

certain transient maximum. For a computational power demand that is larger than the transient maximum

point, the transducer and the computational architecture could be prompted to an error. Therefore, it is

important to control the computational load that the power usage at each time stamp is less than the transient

maximum power supply.

Suppose that the maximum transient power supply at time t from the transducer can be measured and

this value is denoted by P(t). Also suppose that a computational task involves N arithmetic operations,

αi, i = 1, 2, ..., N . For each operation, it can be realized with different degree of concurrency, ci, that

will result in different delay and power dissipation. The corresponding power dissipation for each of the

operations with a specific concurrency degree is denoted by Q(αi, ci). Thus, the optimization constraint

becomes, Q(αi, ci) ≤ P(t),∀i = 1, 2, ..., N . Also consider that an energy harvesting system usually has a

limited energy buffer and it will be wasteful if the harvested energy is not utilized. It is, therefore, sensible

to minimize the overall computational delay given the peak power constraint is satisfied. Given the delay of

the i-th operation is denoted by d(αi, ci), the transient peak power constrained delay optimization problem

can be expressed as

minimize
N∑

i

d(αi, ci)

subject to Q(αi, ci) ≤ P(t),∀i = 1, 2, ..., N

NCL-EECE-MSD-TR-2010-156, University of Newcastle upon Tyne 3
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where ci is a variable in the optimization problem that specifies the degree of concurrency to realize the

arithmetic operation.

There are different approaches to realize the degree of concurrency, ci, such that the overall delay can be

minimized. However, most of the existing approaches are based on design-time optimization schemes. Since

the power constraint, P(t), can only be obtained at run-time, a run-time enabled optimization scheme is

required. In this paper, we propose an approach that enables run-time modification of degree of concurrency

by modifying the number of active components that are working simultaneously. The transient power has a

direct and linear relationship with the number of identical operation working at the same time. By varying

the degree of concurrency, the power constraint can be satisfied. Besides, the computational steps with

different concurrency levels need to be rescheduled. Dynamic scheduling is, therefore, mandatory to enable

such a run-time concurrency tuning scheme. In the following, we present a method to enable run-time delay

optimization and satisfy the transient peak power supply constraint.

2.2 The concurrency tuning design flow

Data flow graph

Transformation 
methods

Scheduling decision 
graph

Dynamic scheduling

Run-time schedules

Design time

Run time

This paper

Peak power 
constraints

Power and latency 
models

 

Figure 2: Design flow of an adaptive system comprising of different steps at design-time and run-time.

The objective of the design flow is to enable run-time adjustment of the concurrency degree of a system

such that the peak power requirement for the computation is smaller than the maximum tolerable value.

Especially, the idea of concurrency adjustment can be applied to different granularities including bit and

operator level with different trade-offs in the control efficiency and hardware overhead. As a first attempt,

we consider arithmetic operators as the basic unit in concurrency tuning which would provide a reasonable

granularity in FPGAs to trade-off the control overhead.

An overview of the design flow for a run-time concurrency tuning system based on dynamic scheduling

is illustrated in Fig. 2. The idea is that a computational algorithm in terms of a data flow graph (DFG) is

transformed to a scheduling decision graph (SDG), which is a state-based graphic data structure providing

different schedules of a system with different degrees of concurrency. A path from the SDG corresponds

to a schedule to realize the algorithm subject to certain run-time constraints. During run-time, dynamic

scheduling is applied to the SDG to produce a run-time schedule that minimizes delay subject to the power

constraints.

The main focus of this paper, shown in the dotted box in Figure 2, is on the scheduling decision graph,

and a transformation process to derive a SDG from the corresponding DFG. In particular, algorithms for

the transformation process have been proposed. A transformation can be a complete one if all the possible
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Figure 3: Impact of duty cycling (b) and dynamic scheduling (c) on the average and peak power modulation
of the initial circuit (a)

schedules in the system are derived, or it can be a truncated one if only selected schedules are chosen.

Truncated transformation based on heuristic scheduling policies reduces the complexity of a complete graph,

but at a cost of optimality.

This paper also discusses how to perform dynamic scheduling based on SDGs, and in particular, an algo-

rithm has been proposed for finding the run-time optimal schedule under power constraints. The algorithm

has been applied to an intuitive example. The hardware/software implementation of the dynamic scheduling

methods for EHS based on the decision graphs is out of the scope of this paper and will be investigated in

the future.

2.3 Dynamic scheduling versus duty cycling

Figure 3(a) illustrates the average power (real curve) and transient power (dotted line) consumption of the

initial system with the clock period of T , and a particular level of concurrency degree, i.e., a fixed number

of operations that are allowed to run in the same cycle. The cross-bars represent peak power values in each

clock cycle.

Figure 3(b) shows the effects on power modulation by stretching the clock period to 2×T , but remaining

the same concurrency degree as the initial circuit. The average power consumption is reduced compared with

the initial system, as the idle time is increased. The peak power value, however, remains relatively the same

because stretching of clock periods has little impact on the number of simultaneous operations during a clock

cycle.

Figure 3(c) illustrates the influence on power modulation by reducing the concurrency degree of the

initial system, i.e., re-scheduling the original schedule to a less concurrent (or equally, more sequential) one

such that fewer number of operations is allowed to execute in the same clock cycle (the clock period remains

T ). As a result of this, both the average and peak power values are reduced compared with the original

design.
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3 From data flow graphs to scheduling decision graphs

Data flow graphs (DFG) have been vastly used for modelling and synthesising electronic systems as a high-

level behavioral model. A DFG describes the data flow relations in a system, whereas for our purpose

of dynamically finding the optimal schedules of a system, another type of graph (data structure) is more

favorable. Scheduling decision graph (SDG) is proposed to this end, which stores the possible schedules

of a system in a compact form that is determined at synthesis time. This section discusses the concept of

scheduling decision graph (SDG), and a way of how to construct a SDG from a corresponding Data Flow

Graph. Firstly, DFGs and its use in high-level scheduling are briefly reviewed.

A DFG = (V,E) is a directed and acyclic graph. The vertex set V = {vi; i = 0, 1, ..., n} is in one-to-

one correspondence with the set of operations in a system and the edge set E = {(vi, vj); i, j = 0, 1, ..., n}

represents data dependencies among the operations. Following the conventions in [3], each graph has a

source node v0 and sink node vn. The source is the tail of directed edges to all those vertices representing the

initial operations and the sink is the head of directed edges from all those representing the final operations.

The operation set in a data flow graph has the labellings of D and P . D = {d i; i = 0, 1, ..., n} is the integer

delay set where di is the delay of executing vi on an appropriate resource type. P = {pi; i = 0, 1, ..., n} be

the set of power consumption values associated with the operations. 1

Conventional scheduling methods in high-level synthesis, such as as-soon-as-possible (ASAP), list

scheduling [11], and force-directed scheduling [13], find one particular schedule subject to resource or tim-

ing constraints. A schedule labels the vertex set of a DFG with T = {ti; i = 0, 1, ..., n}, which is the

start times of the operations, i.e., the clock cycles in which the operations start. The latency of a schedule,

L, is the number of cycles to execute the entire tasks, i.e., L = tn − t0. The average power consumption

corresponding to L is
P

i
(pi×di)

L
.

In contrast to the conventional scheduling methods which provide only one schedule, multiple schedules

are available from a scheduling decision graph. The multiplicity comes from the choices of concurrency

degree in executing the operations in a system, i.e., the number of operators that are scheduled in a clock

cycle, and/or their different combinations.

3.1 Scheduling Decision Graphs

A Scheduling Decision Graph SDG = (V,E, F ) is a bi-polar directed acyclic graph (DAG), where V is the

vertex set. Each v ∈ V corresponds to a schedule state labelled by an integer set of timing stamps t(v). A

schedule state consists a set of sub-operations, which are defined as follows.

A sub-operation vk
i is a multi-cycle operation vi ∈ DFG.V whose first k cycles have been executed at

a particular time, where 0 ≤ k ≤ di. Trivially, vi = v0
i .

A schedule state is a set of sub-operations that can be scheduled beginning from a clock cycle l ∈ t(v).

This indicates that any sub-operation vk
i belonging to a schedule state v1 ∈ SDG.V must have its data-

dependency relation satisfied, i.e., ∀vj : (vj , vi) ∈ DFG.E and t1 ∈ t(v1), the execution of vj finishes by

t1, so does the first-k cycles of vi.

The source vertex of a SDG is the initial schedule state with t(v) = {0}, and the destination of a SDG

contains no operations and is referred to NULL.

E is the edge set of a SDG where e ∈ E represents a schedule step. A schedule step is a 3-tuple

< s(e), λ(e), p(e) >, where s(e) is the sub-operations arranged in a the step for execution, λ(e) is the step

length in terms of clock cycles, and p(e) is the corresponding power consumption. A schedule step is a

1In general, D and P can have data-dependent values. In this paper, they are assumed not dependent on data for the sake of
simplicity, and, in particular, source and sink nodes have zero delay and power consumption.
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decision at a particular state to schedule s(e) for a period of λ(e), with power consumption of p(e). The

concurrency degree of a schedule step is the number of operations (or operations of a particular resource) in

s(e).

Flow of a SDG is expressed by F ⊆ {(V ×E)∪ (E×V )}. In particular, (v1, e)∪ (e, v2) ⊆ F , where e

is an output arc from state v1 (e ∈ o(v1)) and input arc to v2 (e ∈ i(v2)), indicates the following conditions

(1)-(5).

(1) s(e) ⊆ v1;

(2) λ(e) ≤ dk
i , ∀vk

i ∈ s(e). dk
i is the execution delay of vk

i , and dk
i = di − k;

(3) If λ(e) = dk
i , then vk

i /∈ v2;

(4) If λ(e) < dk
i , then v

k+λ(e)
i ∈ v2;

(5) ∀t1 ∈ t(v1),∃t2 ∈ t(v2) : t2 = t1 + λ(e).

Condition (1) and (2) ensure that s(e) is a sub-set of the sub-operations in a schedule state v1, and that

the schedule step is bound from above by the sub-operation with the shortest delay, respectively. A schedule

step e ∈ o(v1) satisfying (1) and (2) is called a legal step at state v1. Further, conditions (3)-(5) provide

properties that must be satisfied when determining the output state of v2 from v1 via e.

SDG provides a graphical means for finding the possible schedules of a system. A schedule s is defined

as chain of schedule steps of any path from the initial state s0 to NULL in a SDG, i.e., s =< e0, e1, ..., en >

where e0 ∈ o(s0) and en ∈ i(NULL), and ∃v ∈ SDG.V : ei ∈ i(v) ∧ ei+1 ∈ o(v), ∀i = (0, 1, ..., n− 1).

The latency of s is
∑n

i=0 λ(ei), and the average power consumption corresponding to s is
P

n

i=0
p(ei)×λ(ei)

P

n

i=0
λ(ei)

.

The total number of schedules in a SDG is determined by the number of different paths from s0 to

NULL, and the number of schedules with distinct latency is determined by |t(NULL)|.

3.2 Transformation from DFGs to SDGs

The transformation from a DFG to the corresponding SDG is complete, if all the legal schedule steps are

formed at each schedule state when constructing the SDG. Algorithm 1 describes a complete transformation

method. The method recursively generates the schedule states in a depth-first manner, beginning from the

initial state s0, which consists of the operations in a DFG without data dependency on others. The SDG is

constructed when explore(s0) returns successfully. In the algorithms, v.scheduled_ops denotes the set of

sub-operations that have been scheduled at a state v.

In Algorithm 1, the recursive subroutine explore(v) determines all the legal schedule steps from a state v.

explore(v) works as follows. The power-set of the sub-operations in v, 2v is calculated. Each schedule step

e from v corresponds to an ops ∈ 2v , 2 and is formed by setting s(e) = ops, λ(e) = min(dk
i : vk

i ∈ ops),

and p(e) =
∑

i(pi : vk
i ∈ ops). explore(v) returns either when all the legal steps of v are visited and their

output states explored, or when NULL is reached.

Once a schedule step e is determined, the output state from v via e, v′, is computed by function

next_state(v, e), according to Algorithm 2. The sub-operations in v′ include those belonging to v but

not scheduled in e (line 2 in Algorithm 2), the updated sub-operations in e with longer execution delays than

the step length (line 7-10), and the operations whose data dependencies have been newly satisfied with e

(line 13). next_state(v, e) also updates v′.schedule_ops (line 4-5), and t(v′) (line 14-17).

A SDG generated by a complete transformation produces all possible schedules of a system considering

all different concurrency degrees, as well as the different combinations of the operations in a certain degree.

This is reflected by the decision steps formed by the power-set of the operations at a schedule state. This

exponential increase of arc and state numbers will however cause state explosion and make the transforma-

tion methods and SDGs intractable for even modest graph size. To control the complexity, policies can be

2Without loss of generality, an ops = ∅ corresponds to a self-loop step at v with 0 delay and power.
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Algorithm 1 Complete transformation from a DFG to its SDG

1: Inputs: A DFG = (V,E)
2: Outputs: A SDG = (V,E, F )
3: Main:
4: s0 ← {vi ∈ DFG.V : @vj : (vj , vi) ∈ DFG.E}
5: SDG.V ← SDG.V ∪ s0

6: SDG.E ← ∅, SDG.F ← ∅,
7: t(s0) = {0}
8: s0.scheduled_ops← ∅
9: explore (s0)

10: End Main
11: Subroutine explore (v) where v ∈ SDG.V
12: if v = NULL then
13: return
14: else
15: for all ops ∈ power-set(v) do
16: form the legal schedule step e based on ops
17: SDG.E ← SDG.E ∪ e
18: v′ = next_state(v, e)
19: SDG.F ← SDG.F ∪ (v, e) ∪ (e, v′)
20: if v′ /∈ SDG.V then
21: SDG.V ← SDG.V ∪ v′

22: explore(v′)
23: end if
24: end for
25: return
26: end if

introduced during a truncated transformation methods where only certain concurrency degrees or operation

combinations are allowed for the schedule steps.

For truncated transformation methods, only a subset of 2v are selected at a schedule state v for construct-

ing possible schedule steps, according to scheduling policies. An algorithm for truncated transformation

replaces line 15 in algorithm 1 with

Select ops ∈ 2v according to the scheduling policies.

In particular, for each type of computation resource in a DFG/SDG, the following two constraints are

considered for the scheduling policies in this paper.

(1) constraints on concurrency degrees. The number of operations belonging to a particular resource

type that can be scheduled in a step equals the specified concurrency degree for that type.

(2) constraints on combinations. For a concurrency degree, only the specified combinations of opera-

tions are allowed to be scheduled in a step.

Example 1 Truncated transformation of an intuitive example

Figure 4 depicts a DFG of a simple algorithm for DSP, where C1 = A1 ∗ B1 + A2 ∗ B2, and C2 =

A3 ∗ B1 + A4 ∗ B2. In the DFG, multiplication (1-4) is assumed to take 2 units of delay and 10 units of

power, and addition (5-6) takes 1 unit of delay and power, when implemented on hardware resources. Since

the power consumption of addition is trivial compared with that of multiplication, we decide to define the

concurrency degree purely based on the number of multiplications that can be scheduled in the same step.

The following three policies are adopted when transforming the DFG into a truncated SDG.

(1) The output steps from a schedule state v should reflect all possible concurrency degrees allowed at

v. If vmax is the maximum number of multiplications in v, then for each 1 ≤ i ≤ vmax, there should exist

NCL-EECE-MSD-TR-2010-156, University of Newcastle upon Tyne 8
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Algorithm 2 v′ = next_state(v, e)

1: v′.scheduled_ops← v.scheduled_ops
2: v′ ← v − s(e)
3: for all vk

i ∈ s(e) do
4: if dk

i = λ(e) then
5: v′.scheduled_ops← v′.scheduled_ops ∪ vi

6: else
7: if dk

i > λ(e) then
8: v′ ← v′ ∪ v

k+λ(e)
i

9: d
k+λ(e)
i ← dk

i − λ(e)
10: end if
11: end if
12: end for
13: v′ ← v′ ∪ {vi ∈ DFG.V : ∀(vj , vi) ∈ DFG.E : vj ∈ v′.scheduled_ops ∧ vi /∈ v′.scheduled_ops}
14: if v′ /∈ SDG.V then
15: t(v′)← ∅
16: end if
17: t(v′)← t(v′) ∪ (t + λ(e)),∀t ∈ t(v)

+5 +6

*1 *2 *4*3

A1 B1 A2 B2 A3 A4

C1 C2

Figure 4: DFG of an intuitive DSP algorithm

exactly one output edge e from v with i multiplication scheduled, i.e., |s(e)| = i. If vmax = 0, then s(e)

includes all the sub-operations in v.

(2) The choice of the combination of i multiplications from vmax ones in a schedule step e , where

|s(e) = i| and i = 1, 2, ..., vmax, is according to the numerically increasing (lexicographical) order of the

operations.

(3) s(e) of an output edge e from v includes all the addition in v.

Following the transformation algorithms, the SDG of the example is derived and illustrated in Figure 5.

In the SDG, each node is a schedule state labelled by the a set of sub-operations. In particular, operations

{1, 2, 3, 4} do not depend on other operations, and therefore form the initial state s0 with the start-time

stamp of t = 1. The four output edges from s0 represent the 4 different concurrency degrees (1-4) at that

state. For example, the right most output arc from s0, representing concurrency degree 2, indicates the

decision of scheduling s(e) = {1, 2} for a length of λ(e) = 2, with a peak power consumption of p(e) = 20.

Note that according to policy (2), multiplication 1 and 2 are selected rather than other pairs. Following this

decision, a schedule state of {3, 4, 5} is reached with t = 3 , including both the unscheduled operations from

previous state and the operation (5) whose data dependency is newly satisfied with that decision step.

A path from s0 to NULL forms a schedule of the system. For example, < (1, 2, 3, 4)/2/40, (5, 6)/1/2 >

is one possible schedule, where {1, 2, 3, 4} are scheduled for the first 2 cycles and {5, 6} scheduled for the

last one. This schedule, with latency of 3 and average power of 27.3, happens to be the shortest schedule
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since no other paths in the SDG have smaller latency.

{3 ,4 }

{4}

{5,6}

{4 }

{2,3,4}

{3,4,5}

{1,2,3,4}

(3,4,5)/1/21

(3 )/1/10
(3 ,4 )/1/20

(2)/2/10

{4,5}

{6}

(4)/2/10

NULL

(6)/1/1

(1,2,3)/2/30

(2,3,4)/2/30
(3,5)/1/11

(3 )/1/10

(4,5)/1/11
(5,6)/1/2

{3 ,4}

(3 ,4)/1/20

1 1 1

1

1

1

1

1 1

1(4 )/1/10

(1)/2/10
(1,2,3,4)/2/40

(1,2)/2/20

(2,3)/2/20

Figure 5: A SDG of the intuitive example (DFG in Figure. 4)

4 Dynamic scheduling based on SDGs

In an energy harvesting system, the available peak power P (t) is a function of time, depending on the rate

of harvested energy from the environment, as well as the energy buffered in a battery or capacitor, if there is

one. In this paper, dynamic scheduling is considered on time slots ts, where P (ts) is assumed to be constant.

In addition, we assume that the interval of ts is a multiple of the path latencies in the SDG of a system.

Given the SDG of a system, and the power constraints P (t), the task of dynamic scheduling for the

system can be described as the following time-slot oriented run-time optimisation problem:

Find a schedule corresponding to a path s of the SDG during a time slot ts, such that the power con-

sumption of each step in the path, p(e) where e ∈ s, is bounded from above by P (ts), and the latency of s

is minimal.

4.1 An optimal dynamic scheduling method based on truncated SDG

A dynamic scheduling method for deriving an optimal schedule of a time slot is described in Algorithm 3.

This method first prunes all the edges in a SDG with p(e) > P (ts), and then find the path in the pruned SDG

with the shortest latency, which is the well established shortest-path problem. The schedule corresponding

to the shortest path is then adopted as the run-time schedule for the time slot. This method has a complexity

of O(|E|+ |E′|+ |V ′|), where E′ and V ′ are the edge and vertex sets of the pruned SDG, respectively.

Example 2 For the intuitive example 1, application of algorithm 3 to a time-slot with P (ts) = 22 units

will have three edges pruned. The pruned edges are (1, 2, 3)/2/30, (2, 3, 4)/2/30, and (1, 2, 3, 4)/2/40.

As a result of the pruning, no more than 3 multiplications can be scheduled in the same step, and the

maximum concurrency degree is restricted to 2. The path with the shortest latency in the pruned graph
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Algorithm 3 run-time heuristic scheduling with SDG

1: Inputs: A SDG = (V,E, F ) and P (ts)
2: Outputs: An optimal schedule for ts

3: prune the edges e in SDG with p(e) > P (ts)
4: find the path s in the pruned SDG with the shortest latency, i.e., min(

∑n

i=0 λ(ei) : ei ∈ s)
5: form the schedule according to s

Table 1: Optimal schedules of the intuitive example under different p(ts)
p(ts) D optimal schedules L Pave

≥ 40 4 < (1, 2, 3, 4), (5, 6) > 3 27.3

[30, 40) 3
< (1, 2, 3), (4, 5), (41), (6) >, or

< (1, 2), (3, 4, 5), (31, 41), (6) >
5 16.4

[21, 30) 2 < (1, 2), (3, 4, 5), (31, 41), (6) > 5 16.4

20 2 < (1, 2), (3, 5), (31, 4), (41), (6) > 6 13.7

[10, 20) 1 < (1), (2), (3, 5), (31), (4), (6) > 9 9.1

[0, 10) 0 N/A N/A N/A

is then < (1, 2)/2/20, (3, 4, 5)/1/21, (31, 41)/1/20, (6)/1/1 >. When this path is chosen as the optimal

run-time schedule, it has a latency of 5 and average power consumption of 16.4.

Table 1 summarises the optimal schedules including their latency (L) and average power(Pave) for the

example, considering different ranges of P (ts). Also listed in the table is the maximum concurrency degree

(D) in terms of the number of multiplications that can be scheduled in the same clock cycle, given the power

budget. Schedules listed in the table only contain the operations ID in each schedule step, for the sake of

simplicity.

Note that first from this table, two different levels of P (ts), e.g., within power ranges of [30, 40) and

[21, 30), can lead to optimal schedules with the same latency, though the former one allows one more can-

didate schedule. Whether this is true in general depends on the power of the schedule steps in a SDG under

consideration. Second, the same maximum concurrency degree (e.g., 2) can incur schedules with different

latency (e.g., for power ranges of [21, 30) and 20). This is the result of defining the concurrency degree

purely based on one type of computation resource (i.e., multiplication) and ignoring the power contribution

of the other (i.e., addition).

5 Experimental results

To examine the effects of dynamic scheduling on modulating the average and peak power consumption of a

circuit corresponding to power constraints from harvesters, a 4-tap 64-bit FIR filter (basic operations include

multiplication and addition) has been implemented and mapped to a Xilinx Virtex-6 FPGA (xc6vsx315t-

3ff1156) for timing and power analysis, using Xilinx tools SystemGenerator and Xpower, respectively.

Different schedules for the Filter example have been tested, varying from the most concurrent case of

running to the most sequential one. The clock rate for all schedules is 76.9 Mhz. In the most concurrent

case, all the 20 multiplications are executed in the same schedule step, and a minimum latency of 7 cycles is

required to finish the functional loop. In the most sequential case, only one multiplication can be scheduled

in a step, and the latency is up to 100 cycles (with a further 2 idle cycles padded between multiplication

operations). Other schedules are selected by trading off the concurrency degree in terms of multiplications

scheduled in the same step and the total latency.

Figure 6 plots the average and peak power consumption corresponding to the different schedules of the
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Figure 6: Power-delay curve of the FIR filter using dynamic scheduling
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Figure 7: Power-delay curve of the FIR filter using duty cycling

FIR filter. For the estimation of peak power consumption, we first amortise the circuit energy consumption

into the multipliers to calculate the average power per multiplier, using formula (1).

Pmult =
Pave × L

M ×Dmult

(1)

where Pave is the power consumption of the filter circuit corresponding to a schedule with latency L. M and

Dmult are the number of multiplications in the filtering task, and the latency of a multiplication, respectively.

The peak power consumption of the circuit is estimated using formula (2),

Ppeak = Pmult ×D, (2)

NCL-EECE-MSD-TR-2010-156, University of Newcastle upon Tyne 12



Y. Zhou, T. Mak, and A. Yakovlev: A Design Methodology for Transient Peak Power Modulation in
Energy Harvesting Circuits

where D is the maximum concurrency degree of a schedule. Note that the peak power presented here is

an estimation based on the equations 1 and 2. These values are average peak power rather than the peak

power. We assume that the multiplication operation produce the peak power consumption in the type of

resource-dominated circuit such as an FIR filter.

From Figure 6, the average power consumption of the circuit decreases monotonically with the reduction

of the concurrency degrees, i.e., with the increase of the latencies of the schedules. The trend of the peak

power reduction is similar, capping the average power at each schedule decision point.

To compare with the dynamic scheduling approach, duty cycle adjustment of the FIR circuit is also

implemented based on the most concurrent case of running. Figure 7 shows the peak and average power

for duty cycling, the points are chosen to have clock period adjusted to meet the same latencies of the

schedules in Figure 6, in a one-to-one correspondence following the order on x-axis. From the results of the

filter example, duty cycle adjustment can reduce more average power consumption compared with dynamic

scheduling when the latency is same, but has little impact on the peak power consumption, which remains

constant as the concurrency degree remains the same regardless of the clock rates.

6 Conclusion and Future work

This paper proposes a design methodology and flow for energy harvesting circuit. With this flow, the

peak power consumption of a system can be modulated by adjusting its concurrency degree using dynamic

scheduling, so that the power constraints from the harvesters can be satisfied. This paper discusses the

concept of scheduling decision graph, which is novel to the best of the authors’ knowledge. Algorithms

have been proposed to derive a decision graph from a system’s data flow behaviour. In using the decision

graph for dynamic scheduling purpose, an algorithm has been reported which can find the run-time optimal

schedule of a system according to the peak power constraints. Finally, the effects of dynamic scheduling on

the power-delay characteristics have been examined using a FIR filter circuit, and compared with those by

duty cycling. In future research, the authors plan to implement the software/hardware framework using this

design flow for energy harvesting systems, and explore the different trade-offs in generating the decision

graphs and choosing the design granularities for self-tuning. These explorations will enable us to find the

optimal design points when considering the overheads of the controlling schemes themselves.
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