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Abstract— In energy-aware design, especially for systems with 

uncertain power sources, asynchronous computation loads which 

can function under variable power supply have many potential 

advantages. Fully safe asynchronous loads based on delay 

insensitivity (DI), however, tend to suffer power and size 

penalties. As a compromise, delay bundling has been widely used 

in asynchronous computation, but traditional delay elements 

have been shown to be unsuitable for bundling memory 

components, whose latency behaviour varies differently under 

variable Vdd from other types of logic. This paper proposes an 

intelligent delay bundling method for SRAM working under Vdd 

which unpredictably varies over a wide range (e.g. 200mV to 1V 

for 90nm technology), based on the principle of using matching 

delay bundling elements. A fully speed independent (SI) SRAM 

design is investigated in depth and a self-timed SRAM 

architecture using such SI SRAM cells as delay bundling 

elements is demonstrated through comprehensive analysis. 

Keywords-component; SRAM, failure rate, energy harvesting 

systems, timing variations. 

I.  INTRODUCTION 

Energy harvesting (EH) has emerged as an alternative 

power source to batteries and EH systems continue to grow at 

a rapid pace. Such self-powered systems can be used where 

maintaining and replacing batteries are impossible, 

inconvenient, costly or hazardous. While EH systems 

overcome difficulties associated with batteries, they pose new 

challenges in the process of power delivery and management. 

Normally, in battery powered systems, where the supply 

voltage is relatively constant but ultimate energy is limited, 

the strategy is the traditional low-power systems approach, i.e. 

to decrease the power dissipation whilst maintaining the target 

system performance. However in EH systems, energy is 

infinite but power and voltage nondeterministic. The strategy 

is to maximize the performance for the supplied amount of 

energy and under all circumstances not consuming more than 

the harvested energy. Such a system must have the ability to 

work under a wide range of supply voltage since the harvester 

supplies nondeterministic power and Vdd which depends not 

only on the specification of the harvester but also on the 

amount of energy that can be harvested from the environment 

which varies from one place to another and even from time to 

time. Systems with these features can be called energy 

adaptive rather than low-power. 

When the high variability of the harvester supply voltage is 

combined with process variations, which is becoming a 

significant factor in VLSI ‎[1], timing variations would 

normally follow which could cause system malfunctions. 

In on-chip computation systems, SRAM tends to occupy the 

majority, e.g. more than 90%, of the die area, and this trend is 

continuing as predicted by the ITRS ‎[1]. It therefore has a 

great impact on the power, area, reliability and performance of 

almost all digital systems ranging from handheld devices to 

high-performance processors. 

Normally SRAM works based on timing assumptions where 

the timing control block is in charge of regulating the timing 

relationship between different blocks in the SRAM system 

(memory cells, precharger, write driver, sense amplifier, row 

decoder and column multiplexer) to guarantee safe and 

successful reading and writing operation. Some examples of 

the timing hazards that may cause functional failures in the 

memory systems are: 1) if, during reading, the precharger has 

not been deactivated before opening the access transistor, the 

data in the memory cell may be upset, ending up with reading 

failure; 2) if, during writing, the access transistors have been 

de-asserted before flipping the data in the cell, writing failure 

occurs; 3) if, during reading, the access transistors have been 

turned off before one of the bit lines is discharged to the 

threshold values, access time failure occurs. 

In general, the timing control block is built from basic 

gates, where functions and latencies depend on the switching 

of both the NMOS and PMOS devices. In contrast, the 

operation of the memory depends only on the NMOS device 

during reading to discharge one of the bit lines and on the 

PMOS device during writing to flip the memory cell ‎[2]. This 

difference in operation dependency on the NMOS and/or 

PMOS devices makes the memory cells and the timing control 

block change in different ways with variations of the supply 

voltage. Other factors which exist in the SRAM but not in 

normal logic gates also contribute to this mismatch. These 

include the number of cells connected to the bit lines and the 

data values (0 or 1) in these cells. The worst case scenario 

happens when the data stored in all cells along the same bit 

line is opposite to the data in the cell being read or written, the 

leakage currents of all these other cells may decrease the level 

of Ion of the cell under operation, and make it indistinguishable 

from the level of Ioff ‎[17]. As the number of cells in the bit line 
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increases the problem gets worse. This discrepancy increases 

under PROCESS variations and becomes significant under the 

high variations of the supply voltage in the EH environment 

[11]. 

In synchronous systems, the timing control block of the 

memory system needs to be calibrated to work under the worst 

case conditions in order to eliminate the effect of the timing 

hazard ‎[2]. Intuitively, a wide operational voltage range will 

result in a large difference between the worst and best case 

conditions. This in turn will lead to a significant conflict 

between safety and performance, where safe designs must 

incur heavy performance penalties.  

In systems employing dynamic voltage scaling (DVS), 

voltage changes are fully under control. In such systems 

timing control blocks may be pre-programmed to change the 

clock frequencies according to the operating voltage carefully 

so that different worst cases are used for different voltage 

modes. For systems where the change of voltage is not fully 

under control but depends on the environment (e.g. EH 

systems), however, effectively determining the appropriate 

worst case dynamically in real time is needed. Moreover, in 

general, synchronous designs are not best suited for systems 

experiencing Vdd variable over a wide range not because of 

environmental factors. 

On the other hand, asynchronous systems can potentially 

tolerate Vdd variations over a wide range, by trading speed for 

correctness automatically so that, in the long run, the systems 

demonstrate average case performance whilst maintaining 

correctness. However, for memory circuits there are additional 

complications.  

The safest asynchronous circuits are delay-insensitive (DI) 

where the systems work correctly irrespective of latency 

behaviours of any component, including logic and wires. Such 

systems should in general work correctly under 

nondeterministic Vdd variations with average case 

performance. However, DI techniques usually require 

complex coding (e.g. dual-rail) and have power and size 

disadvantages ‎[4]. For memory such as on-chip SRAM, even 

small unit penalties will get multiplied to intolerable scales. In 

any case, for many applications, DI solutions cannot be 

found ‎[5]. 

Various approximations to true DI have been proposed. For 

instance, if the delays on wires are assumed to be zero or do 

not matter, systems can be designed so that any delay 

variations in the gates do not compromise correctness. 

Systems designed in this way are known as speed-independent 

(SI). SI systems tend to be easier and cheaper to design and 

implement than DI ones but in general still incur significant 

overheads. In addition, circuits of significant size usually 

include long wires whose latencies cannot be ignored, making 

SI only practical for small components. 

A cheaper still approach to this problem is through delay-

bundling, by making the latencies of timing control blocks 

automatically track the latencies of bundled logic when 

voltages change. This, the bundled data approach, is a 

standard method in computation logic design ‎[6]. The 

common technique in bundled data design is to use 

conventional delay elements, such as inverter chains, for 

timing control. As delay elements usually consist of basic 

gates, similar to computation logic, the timing control blocks 

slow down or speed up more or less at the same rate as the 

bundled logic when Vdd changes. This ensures correct system 

operation over a potentially wide Vdd variation range. 

In order to use delay bundling for memory systems, timing 

control blocks need to slow down or speed up at the same rate 

as memory cells when Vdd changes. Because of the 

operational discrepancy between normal logic gates and 

memory, such timing control blocks cannot be constructed 

entirely from basic gates. Alternative solutions have been 

proposed to improve the latency tracking for memory ‎[2]‎[3]. 

These employ a redundant column of memory cells, which are 

the same as the cells in the main memory bank, and use the 

signals generated from the cells in this column to enable and 

disable the sense amplifier and the row decoder to avoid 

timing hazards in the memory system. Although these 

solutions have shown good timing tracking, they have only 

addressed the timing hazards during the reading operation, 

leaving the writing timing hazard problem open. This is 

because generating completion signals for writing in SRAM 

type cells was assumed to be impractical. 

Asynchronous design methods have been applied to SRAM 

design so that the latter can operate under a wide range of 

Vdd ‎[3]‎[7]‎[8]‎[9][11]. These designs implement various 

degrees of approximation to true DI with different degrees of 

success in reducing timing assumptions. The safest is the 

design proposed in [11] which resulted in a fully SI SRAM 

solution based on the standard 6T SRAM cell. This design has 

been shown to work correctly under a wide range of Vdd 

without timing assumptions. Since each SRAM cell is of 

limited size whose technology and layout are under the full 

control of the designer who can therefore easily keep wire 

delays predictable, SI approximates DI well in this 

application. 

Failure rates of synchronous SRAM have been analyzed 

comprehensively in the literature ‎[13]‎[14]. However, all these 

analyses investigate the failure rate of the SRAM cell alone 

without including its timing control block because this is not 

needed under assumptions of synchronous operation. For 

asynchronous SRAM such combined system analysis is 

necessary, but such analysis was not carried out in [11].  

Fully SI SRAM banks of large size multiply the overheads 

of SI, resulting in size costs not usually acceptable for energy 

adaptive systems.  

This paper describes a smart latency bundling approach to 

asynchronous SRAM using fully SI SRAM cells as latency 

bundling elements for memory banks consisting of normal 

SRAM cells. The SI SRAM cells provide full completion 

detection capability for both reading and writing operations. 

This makes it possible to provide full latency bundling and 

completely remove the need for timing assumptions, resulting 
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in a fully self-timed SRAM with minimal overheads.  

The contributions of this work are: 1) the SI SRAM design 

in [11] is thoroughly analysed under different values of Vdd; 

this analysis includes behaviour studies under all process 

corners, as well as failure rate investigations under PROCESS 

VARIATION assumptions, compared with its conventionally-

bundled counterpart; 2) the validity and advantages of this 

type of SI SRAM having been demonstrated in the previous 

studies, a new self-timed SRAM system using it in an 

intelligent latency bundling scheme is designed and 

implemented; 3) the new self-timed SRAM method is 

demonstrated through further comparative studies. 

II. SELF-TIMED SRAM WITH SMART LATENCY BUNDLING 

In general, for bundled data designs, the timing control 

circuits which provide the latency bundling tend to be much 

smaller than the bundled logic; otherwise the designer might 

as well choose to implement the main logic directly in SI or 

even DI. Conventional latency bundling elements are therefore 

usually based on the lightest possible basic logic units such as 

inverters. In memory banks, reading and writing operations 

usually involve multiple cells each time along an entire row. 

This can be bundled using a single memory cell in the timing 

control block. This is schematically shown in Figure 1. In this 

scheme, although the timing control block is heavier than one 

regular memory cell, it is much lighter than the entire row in 

memory banks with reasonable word lengths. This latency 

bundling‎method‎is‎“smart”‎or‎“intelligent”‎because‎it‎is‎based‎

on extracting the relevant latencies in the most accurate 

manner possible – from components of exactly the same type 

as the bundled logic. 

 

…‎…‎…‎…‎ 

row of regular SRAM cells 

in memory bank 

write  read  

timing control 

with latency 

bundling cell 
 

Figure 1.  Timing control of SRAM row using latency bundling cell. 

III. SI SRAM CELL OPERATIONS 

The SRAM cell used for latency bundling in the timing 

control block needs to provide completion signals for all row 

operations, i.e. both reading and writing. Those used 

previously cannot generate writing completion ‎[2]‎[3] therefore 

writing had to depend on timing assumptions. The SRAM 

design in [11] is fully SI, making it possible to extract all 

relevant completion information from such a cell.  

An example of SI SRAM with a normal 6T cell controlled 

by an SI controller is shown in Figure 2. It consists of a 

conventional 6T SRAM cell with writing and reading 

operations all controlled by an SI asynchronous controller.  

The signal transition graph (STG) ‎[10] specifications for 

reading and writing operations of the SI asynchronous 

controller are shown in Figures 3 and 4 respectively. These 

STGs specify completely sequential operations for both 

reading and writing, which are directly translated from 

synchronous SRAM operations by replacing clock signals 

with the appropriate corresponding handshakes. 

 

Figure 2.  6T SRAM cell with fully SI controller. 

 

Figure 3.  STG specification of the reading operation. 

 

Figure 4.  STG specification of the writing operation. 

One of the possible realizations of the previous STGs is 

shown in Figure 5.  

 

Figure 5.  Possible realization of the controller.  

A fully SI SRAM bank can be implemented by using one 

such controller to manage the whole SRAM bank. Normally 

the cells in each row form a word, which are usually written 

and read together. So, to control each row (word), an amended 

decoder is required which is a normal address decoder 
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triggered by WL to generate each individual word selection 

signal. The block diagram of the whole system is shown in 

Figure 6. As the address is stable during reading and writing, 

the change does not affect the SI property of the entire circuit. 

In addition, as each word contains multiple bits, gate 1 needs 

to be replicated. The number of the replication equals the 

number of bits in a memory word (the number of cells in a 

row). The inputs of each replicated gate are a pair of bit lines 

corresponding to each bit of the memory word. All outputs of 

the replicated gates 1 are collected in a C element. The output 

of the C element is used to replace signal x4. Gate 5 is also 

replicated. All outputs of these replicated gates are collected in 

another C element and the output of this C element is the new 

Wa signal. In this way complete reading and writing cycles are 

controlled in a closed-loop fashion with the bit lines from the 

SRAM cells serving as feedback signals into the controller. 

 

Figure 6.  Possible realization of the system.  

All descriptions in this section are adapted from [11]. 

IV. CORNER ANALYSIS OF THE SI SRAM 

In this section we further explore the behaviours of this SI 

SRAM design in the context of constructing completely SI 

SRAM banks, because detailed analysis is lacking in [11]. 

This is done by implementing a fully SI SRAM bank and 

setting it into a testing chip. The structure of the chip is shown 

in Figure 7. The general function of this chip is to write, read 

and compare the written data with the read data in an 

asynchronous and autonomous manner without any 

interactions with the user or environment. 

The design of this testing chip facilitates on-chip self test or 

prototyping where the SI SRAM may be tested on the same 

chip with other circuits, reducing the availability of input and 

output pins. In addition, the testing may be run at a wide range 

of Vdd variance, where the tested circuits could distribute a 

wide range of speed changes, making it impractical to depend 

on input and output pins to extract all the information. In this 

design, therefore, the tested RAM is surrounded with its entire 

test operating environment on the same chip. 

This chip contains a couple of asynchronous counters to 

generate address and data and three D elements to manage the 

write and read cycle handshakes. The D element is a popular 

handshake interface circuit, which encloses a slave handshake 

inside a master one ‎[12]. The self-timed counters are based on 

the design found in ‎[12]. There is also a comparator, based on 

an XOR gate triggered by the a1 signal of the second D 

element, which determines the consistency or the lack thereof 

between the written and read data. The outputs of all XOR 

gates are combined by a C element to provide the consistency 

confirmation signal. If there is at least a single bit of 

disagreement, a negative result is returned. 

 

   

Figure 7.  SRAM testing chip. 

The signal flow of the chip is as follows: The first counter 

generates the address and sends its acknowledgement signal to 

the C element. The second counter generates the data and 

sends its acknowledgement signal to the C element. Once both 

counters settle, the C element sends its acknowledgement 

signal to the first request (r1) of the first D element. The first 

D element working as a writer sends the Wr signal to the 

controller in the SRAM to request writing. Once writing is 

finished, the controller sends the Wa signal to the first D 

element. The first D element withdraws the Wr signal and 

sends a request signal to the second D element. The second D 

element as a reader sends an Rr signal to the controller in the 

SRAM to request reading. Once reading is finished, the 

controller sends its Ra signal (see Figure 5) to download the 

data to the reading SI-latches. Here the third D element is used 

for this data download to guarantee the data is stable during 

processing. The reading SI-latches latch the data from the 

SRAM and then the third D element passes the control (Ra’s 

acknowledgement) to the second D element to report the 

completion of reading. The second D element withdraws the 

Rr signal and sends a request signal to the comparator. The 

comparator compares the data from the SI latches with the 

data from the second counter and if they are equal, it sends an 

acknowledgment signal Ca to the counters to start another 

round. This means that a round of writing following by 

reading has been performed correctly as the data written was 

correctly read. If an inconsistency is discovered, however, the 

entire circuit stops at the comparator. The testing chip 

operation is captured in the STG in Figure 8. 

This chip has been implemented in UMC90nm process 

technology and tested under all process corners and a wide 



Self-Timed SRAM with Smart Latency Bundling 

range of supply voltages from 1V down to 400mV. 

Meanwhile the latency of writing, reading and checking, of the 

whole memory bank 1kbit (64x16), has been measured and the 

results are shown in Figure 9. In terms of latency the order of 

the worst corners is: SS (slow NMOS, slow PMOS), SNFP 

(slow NMOS, fast PMOS), FNSP (fast NMOS, slow PMOS), 

TT (typical NMOS, typical PMOS) and FF (fast NMOS, fast 

PMOS). 

 

Figure 8.  STG specification of the SRAM testing chip. 

 
Figure 9.  Corner analysis of the SRAM chip.  

At 1V the chip can write, read and check the whole memory 

bank in 1.1µsec, 662nsec and 836nsec for the worst, best and 

typical cases respectively. At 400mV these operations can be 

completed in 51µsec, 3.2µsec and 9.2µsec for the worst, best 

and typical corner respectively. 

Under these testing conditions, all simulation cycles 

completed without incident. This demonstrated that such an SI 

SRAM bank works correctly under all process corners across a 

wide range of Vdd variance. 

The SI SRAM is further compared with two other types of 

SRAM, both of the same 6T basic structure. One is a 

conventionally bundled SRAM whose timing is controlled by 

a chain of inverters. The other is a fully synchronous SRAM 

controlled by a clock. Write (Figure 10) and read (Figure 11) 

energy consumptions are compared among the three SRAM 

banks. The amounts of energy reported pertain to single write 

and read operations on a single row of cells and the figures are 

in logarithmic scale. Clearly the SI SRAM shows great 

advantages over the other technologies in terms of energy 

consumption under all Vdd values.  

The high energy consumption of the conventionally bundled 

synchronous SRAM partially results from the bundling 

inverter chain timing control being designed to work under the 

worst case appropriate for 190mV, thus being far from 

optimized at higher Vdd values. The even higher energy 

consumption of the fully synchronous SRAM is the result of 

running it always under a clock frequency suitable for the 

worst case of 190mV, which means that its operations take a 

much longer time to complete at higher Vdd than both of the 

other SRAM solutions (in comparison, the frequencies of 

conventionally bundled SRAM are 250KHz for 190mV and 

125MHz for 1V, in other words it was able to run much faster 

at higher Vdd). This is the only way in which the three 

solutions can be fairly compared, i.e. all three have to work 

across the entire Vdd range without modifications half way 

through the simulation.  

 

Figure 10.  Write energy consumption comparison between SI and 

conventionally bundled synchronous SRAM banks. 

 

Figure 11.  Read energy consumption comparison between SI and 

conventionally bundled synchronous SRAM banks. 

All simulations in this paper, unless otherwise noted, are 

carried out in the following manner. For one round of writing, 

initial data values are stored in the memory bank and the entire 
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bank is written once, i.e. every word (row) is written once, 

with inverse data obliging the flipping of bits in every cell. For 

one round of reading, initial data values are stored in the 

memory bank and the entire bank is read once. Multiple 

rounds of writing and reading may be run in each simulation, 

especially in Monte Carlo analysis. Per row data, if presented, 

are the appropriate statistical mean values. Different initial 

data values are chosen and the worst case results reported, if 

experiments show dependencies to initial values. In general, it 

has been found that initial data values make very little 

difference (always less than 5%) to the numerical results. 

V. FAILURE RATE ANALYSIS OF SI SRAM AND 

COMPARISONS WITH SYNCRHONOUS SRAM 

A fully SI SRAM bank requires complex C elements with 

large numbers of inputs for the timing controller managing the 

timing of each row. These in turn potentially require large 

numbers of wires with significant and different lengths. The 

complex C element completion indication may cause 

significant latency penalties for the SRAM and the long and 

diverse wires may cause poor approximation to DI with safety 

penalties. On the other hand, a single fully SI SRAM cell does 

not need complex C elements or long wires and could be 

implemented compactly to achieve good DI approximation. 

Such a cell, from which completion information of all write 

and read steps can be easily extracted, can serve as the timing 

control block in the scheme of Figure 1.  

Whether this SI SRAM design is suitable for use in this 

way, however, depends on its robustness and completion 

indication performance under target operating conditions. The 

soundness of this design can be seen from the results from the 

previous section, but a single cell should perform better than 

an entire bank, given the compromises required in the 

complex indication of the latter. For instance, the corner 

analysis in the previous section showed that the SI SRAM 

bank stopped fully working below 400mV, which casts some 

doubt as to whether bundling with this type of cell can work 

into the subthreshold region. As in-depth analysis of this 

design is lacking in [11], here further investigations are carried 

out before it is put to use in latency bundling. 

The key aspect of SRAM operation is the timing 

relationship between the SRAM cells and the timing control 

block. For instance, in a fully SI SRAM bank, the feedback 

mechanism between the SRAM cells and the timing controller 

means that a full cyclic control is implemented and all 

temporal manifestations of process variation should be 

tolerated in theory. In synchronous SRAM solutions, however, 

there is no feedback and the system works in open loop. 

Variations need to be tolerated by worst-case condition 

estimations. In the scheme of Figure 1, the system works 

partially in closed loop. The bundling will fail if the timing 

control cell fails. The integrity of the timing control cell is 

therefore crucial.  

In contrast to conventional SRAM analysis in the literature, 

where cells are tested under fixed clock inputs ‎[13]‎[14], here 

we investigate the entire SI SRAM cell including the 6T cell 

itself and the timing controller together. In keeping with 

conventional SRAM cell analysis and with the vision of 

Figure 1, the studies in this section cover a single cell only. A 

single cell in this context is the 6T SI SRAM cell in the form 

of Figure 2 where the timing controller is in the form of Figure 

5, which is not shared with any other cells. Since the controller 

only needs to manage a single cell rather than an entire row, 

no replication of gates and complex C elements are needed. 

This section concentrates on the investigation of failure 

rates of such an SI SRAM cell compared with those of a 

corresponding conventionally-bundled 6T SRAM cell. In a 

conventionally-bundled 6T SRAM the timing control block 

consists of a chain of inverters where the timing relationships 

between different blocks may rely either on the clock phases 

or on several delay lines triggered by the same clock phase. 

Here we chose to build our timing control block based on the 

clock phases.  

Both cells are constructed in UMC90nm process technology 

using the same logic when applicable and have been tested 

under process variations of 6-σ (which covers 99.99% of the 

entire variation distribution) at different supply voltages using 

Monte Carlo methods with a thousand samples. Instead of 

showing the failure rate of the reading and writing operation, 

we define the functional yield as the proportion of non-failure 

occurrences from the distribution. Here, if the functional yield 

of the operation is below the constraint of 99.9%, the 

operation is regarded as a failure. 

In order to provide fair comparative analysis the timing 

control block of the conventionally-bundled SRAM has been 

calibrated to work in the same range of supply voltage as the 

SI SRAM, from 190mV up to 1V. This calibration causes the 

bundling inverter chain to fit the worst case (at the lowest 

Vdd) and increases the average operation time, thus reducing 

the failure rate. In spite of this the SI SRAM shows better 

functional yield results than its conventionally-bundled 

counterpart. The numerical results are described in the 

following sub sections. 

A. Reading Failure Rate Analysis of the SRAM cells  

The reading operation consists of two consecutive 

processes, precharging the bit lines and opening the access 

transistors to discharge one of the bit lines. The results of the 

Monte Carlo analysis are shown in Table I for the 

conventionally-bundled and SI SRAM cells. 

The data shows that the reading operation in the 

conventionally-bundled SRAM fails for all Vdd values lower 

than 600mV. However, in the SI SRAM the reading operation 

works from 1V down to 300mV with a functional yield of 

99.9% and failure happens in the very low Vdd region of 

200mV or below. This demonstrates the suitability of the SI 

SRAM for working under low Vdd into the subthreshold 

region. The minimum energy per operation point, which is 

very important for energy adaptive computing, can usually be 

found between 300mV and 500mV ‎[15], where the SI SRAM 
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works fine whilst the conventionally-bundled SRAM does not. 

TABLE I.  FUNCTIONAL YIELD OF THE SRAM DURING READING 

VDD(V) 
Functional Yield % 

Bundled SI 

1.00 99.9 99.9 

0.90 99.9 99.9 

0.80 99.9 99.9 

0.70 99.9 99.9 

0.60 99.9 99.9 

0.50 99.8 99.9 

0.40 98.1 99.9 

0.30 90.5 99.9 

0.20 81.7 94.8 

0.19 80.7 86.2 

B. Writing Failure Rate Analysis of the SRAM cells  

Writing operation consists of three processes, precharing 

the bit lines, opening the access transistors to enable the write 

driver to discharge one of the bit lines, and flipping the cell.  

Table II shows the results of the Monte Carlo analysis of 

the SRAM writing function yield for the conventionally-

bundled and SI SRAM cells. 

TABLE II.  FUNCTIONAL YIELD OF THE SRAM DURING WRITING 

VDD(V) 
Functional Yield % 

Bundled SI 

1.00 99.9 99.9 

0.90 99.9 99.9 

0.80 99.9 99.9 

0.70 99.9 99.9 

0.60 99.9 99.9 

0.50 99.7 99.9 

0.40 97.6 99.9 

0.30 87.9 93.7 

0.20 72.8 58.0 

0.19 71.8 51.0 

Again whilst the conventionally-bundled SRAM stopped 

successful writing below 600mV, the SI SRAM continues 

down to the subthreshold region and the minimum energy per 

operation point. Under very low Vdd values (190~200mV), it 

was found that the SI cell fails more often because it is not 

able to generate the appropriate acknowledgement signals 

after writing, partly because of the uncertain effects from long 

vertical bit lines. Up to the writing of the data bit, it leads the 

conventionally bundled design in the rate of success. 

This has interesting implications to the problem of 

reliability. Reliability is not an issue for either conventionally 

bundled or SI SRAM when Vdd is high. When Vdd is in the 

middle of the working range, down to about the minimum 

energy per operation point, the SI SRAM has clear advantages 

over the conventionally bundled design. Lower down still, the 

situation is reversed with the conventionally bundled SRAM 

showing an advantage over the SI solution. Interestingly, this 

lack of reliability at very low Vdd has nothing to do with the 

main function of memory, which is to maintain data storage. 

The reliability is affected by an inability to indicate successful 

writing after the fact.  

In general, open-loop systems have higher reliability than 

closed-loop ones simply because the latter depend on feedback 

indication to progress, adding one element which can fail and 

whose failure causes catastrophic consequences (the system 

stops in the case of fully closed-loop implementations). The SI 

SRAM‎is‎“caught‎out”‎by‎this‎dependency‎on‎feedback‎which‎

fails earlier than the main function. On the other hand, in 

engineering implementations, some mechanism of optionally 

breaking the dependency on feedbacks (e.g. stop listening to 

acks when Vdd drops beyond some value or stop waiting after 

some set time) can be used to eliminate complete system 

stoppages because of indication failure.  

Although a full SI SRAM bank may not work properly 

under all variation conditions when Vdd goes below 400mV, a 

single cell is shown to be more robust. 

VI. SMART LATENCY BUNDLING FOR SELF-TIMED SRAM  

The in-depth investigations in the previous sections showed 

that the SI SRAM design, especially in single-cell form, robust 

under a wide range of Vdd and wide process variation 

assumptions. Therefore a single SI SRAM cell of this design is 

suitable as timing control for a self-timed SRAM of the form 

of Figure 1 to supply the latency bundling.  

A bank of such a self-timed SRAM bundled with SI cells 

will include one bundling cell in each row. For consistency, 

implementation and layout practicality, and to compensate for 

the effect of leakage currents through the bit lines, these 

timing control cells should be put to the same position in each 

row. In other words, in a bank of such memory, one of the 

columns should be designated the timing control / latency 

bundling column. The delays of cells in this column must 

correctly bundle the delays of the whole memory bank under 

all conditions. It has been shown in ‎[16] that due to 

interconnect latencies the furthest column from the decoder is 

slower than the other columns. This fact suggests that the 

furthest data column may be implemented with SI cells to 

serve both as the far end bits of memory words and as the 

timing control units. This approach is valid in purely timing 

assumption based design, as timing assumptions can be made 

data-independent. 

However, in self-timed design, data independence cannot be 

assumed and needs to be verified. Intuitively, the worst case, 

where writing takes the longest time, is when the data in the 

memory cell needs to be flipped. An experiment is designed to 

clarify this matter. In this experiment, one normal SRAM cell 

is compared with one fully SI SRAM cell. The latency 

between writing start and data fully settling in the normal 

SRAM and the latency between writing request and writing 

acknowledgement in the SI SRAM are compared. In the 

bundling approach in the form of Figure 1, the writing 

acknowledgement in the SI SRAM is used to indicate the 

completion of writing, thus implying that data has settled in 

the row, including in the other normal cells. Experiments 

across all process corners were carried out for all data 

combinations. 

Unfortunately, it has been found in these experiments that 
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when the normal cell has a bit flipping in writing and the SI 

cell does not, the writing acknowledgement signal from the SI 

cell comes before the written bit in the normal cell settled in 

all process corners at room temperature, and the difference in 

time cannot be covered by the additional interconnect delay of 

the longer wires. This means that bundling fails when the SI 

cell used for bundling does not experience bit flipping under 

writing. These experiments have also shown that when the SI 

cell experiences bit flipping, its acknowledgement signal 

always comes a safe distance after the data in the normal cell 

has settled. 

These experiments highlight an important issue in the 

philosophy of bundling. The proposal of Figure 1 specifies 

that the bundling unit should be structurally equivalent to the 

bundled units. In fact it must exhibit behavioural equivalence 

in addition to structural equivalence. As a result so long as at 

least one of the cells in a word write flips (a high probability 

event in an SRAM row with a large number of bits), the 

bundling cell must display this behaviour and flip too. 

However, data dependency means that this is very unlikely.  

Our solution is to construct the entire data memory from 

normal cells, and append an additional column of 

“professional”‎ latency bundling SI cells to the far side of the 

furthest data column in the bank, where the bundling column 

will have the longest interconnect from the decoder. In this 

timing control column, whose stored data values have no 

operational functionality, alternating bit values are always 

written to cells to ensure that bit flipping happens in every 

write. To do that we need to read the data from the column, 

invert the data and then write it back to the column. 

Fortunately, the asynchronous controller in Figure 2 

incorporates a reading action in its writing process (cf. Figures 

3 and 4). Therefore there is no need to change the main parts 

of the controller, but the writing STG specification must be 

modified from the shape in Figure 4 to that shown in Figure 

12 for the following reasons. 

The STG in Figure 4, although correct for use in a system 

where all cells are SI, is not suitable for a bundling cell. For 

example, if the data being written into a memory cell is the 

same as the data already stored in the cell, according to the 

specification of the STG in Figure 4, as a round of reading is 

included in the writing process, so the (BL, BLb) presents the 

data stored in memory. As a result, the Wa+ signal will be 

generated as quickly as possible, and then the other control 

signals, such as WL, WE, will be withdrawn. This maximizes 

speed and reduces energy consumption, as the actual writing 

of a bit into the cell is not performed in such a case, but for a 

bundling cell, this speed-up is inappropriate. 

 

Figure 12.  Writing sequence STG for latency bundling cell. 

As a result the specification for a bundling cell timing 

controller, derived from Figure 4, is developed (Figure 12). 

Here a forced writing of a different data bit is used to 

eliminate temporal inconsistencies. After the reading action in 

the writing process is complete (indicated by WE+), the data 

just read (the current stored data in the memory) is written into 

a storage, for example an SI latch, by Lr+, and after this 

writing to a latch is completed, La+ is generated. The resets of 

La and Lr immediately follow, and the complementary bit in 

the SI latch, which is the inverse of the original data bit, is 

written back into the cell as new data. This makes the data 

being written permanently different from the data stored in the 

cell. As the data being written into the latch needs to be stable 

during write back, the Lr and La signals should be reset before 

data writing. This is as shown in Figure 12, Lr+ followed by 

La+ and Lr-, and La-. 

Based on this STG the controller must be updated as shown 

in Figure 13 with additional components. As the additional 

requirements do not affect the main part of the control, we 

have retained the design in Figure 5 and manually introduced 

the additional components to cover the difference between 

Figure 4 and Figure 8. These include a D element to manage 

the handshakes and an SI latch to store and invert the bit data. 

For the D element, {WE, WE1} is the master handshake and 

{Lr, La} is the slave handshake. The D element implements 

the WE+‎→ Lr+‎→‎La+‎→‎Lr- → La-→‎WE1+‎→‎WE- →‎

WE1- handshake sequence. 

 

Lr La 

 
Figure 13.  Latency bundling cell controller design. 

The new controller is implemented in UMC 90nm CMOS 

technology in the Cadence toolkits. The operation of the new 

controller has been verified by SPECTRE simulation and it is 

fully functional from 1V down to 190mV.  

The scheme of Figure 1 is designed for a bundling cell with 

a controller to manage the timing of a single row. In a multi-

row bank, where only one row can be written or read at any 

moment in time, only a single bundling cell may be working at 

any time. This means that, whilst the bundling 6T cell should 

reside next to the row bundled by it for best layout consistency 

in latency, the timing controller in Figure 13 does not need to 

be replicated for every row. This is similar to the arguments 

leading to Figure 6. 

A 1Kb (6416b) bundled SRAM bank is implemented 

using one extra bundling SRAM per row as timing control 

blocks in the scheme of Figure 14. Each row in this bank 

therefore consists of 16 regular 6T SRAM cells plus one 

latency bundling SI SRAM cell at the far end. The latency 

bundling SI SRAM cells are controlled by the new controller 
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in Figure 12, with a single controller serving all 64 bundling 

cells. The size overhead compared with normal synchronous 

SRAM is therefore minimal. 

 

…‎…‎…‎…‎ 

rows of regular SRAM cells 

in memory bank 

write  read  

timing controller 

for a column of 

latency bundling 

cells 

…‎…‎…‎…‎ 

…‎…‎…‎…‎ 

…‎…    ‎‎‎‎…‎…‎‎‎‎‎… 

 

Figure 14.  Smart-bundled self-timed SRAM bank. 

A comparison is made between this bundled SRAM bank 

and a fully SI 1Kb SRAM bank which is constructed using the 

previous controller.  

TABLE III.  PERCENTAGES OF LATENCY AND ENERGY SAVED BY USING 

THE NEW TECHNIQUE 

VDD(V) 
Time Saving % Energy Saving % 

Writing zero Writing one Writing zero Writing one 

1.00 6.07 10.31 13.39 14.00 

0.90 7.40 12.14 13.38 14.85 

0.80 10.27 14.04 14.57 14.68 

0.70 12.74 16.04 14.48 15.56 

0.60 15.76 18.94 15.31 15.76 

0.50 19.61 22.45 16.92 16.71 

0.40 25.17 28.18 23.71 24.88 

0.30 33.83 34.66 39.24 39.88 

0.20 33.52 29.23 34.52 30.72 

0.19 42.27 36.78 43.04 38.06 

 

VDD(V) 
Time Saving % Energy Saving % 

Reading zero Reading one Reading zero Reading one 

1.00 20.99 21.56 22.15 23.72 

0.90 22.01 20.72 22.65 21.32 

0.80 22.11 22.16 21.79 23.17 

0.70 22.71 22.69 22.48 22.35 

0.60 23.50 23.60 21.13 23.30 

0.50 25.29 24.81 23.45 22.97 

0.40 28.67 27.74 24.88 25.02 

0.30 31.87 35.32 31.49 33.23 

0.20 42.78 41.63 43.86 42.83 

0.19 48.44 50.95 49.61 52.00 

The latency and energy consumption of SRAM banks using 

the new and old controllers have been measured and the 

figures in Table III show the percentages of latency and 

energy savings the bundled technique can save over the fully 

SI method across different values of Vdd. 

Under high voltage, the smart bundled self-timed SRAM 

can save up to 6% of the writing time and 13% of the writing 

energy. This saving increases as Vdd decreases to reach up to 

30% of the writing time and 40% of the energy in the 

subthreshold region. The reading savings are even greater 

across the board. In view of Figures 10 and 11 which showed 

massive energy savings realized by the fully SI SRAM over 

SRAM with higher degrees of synchrony, these data represent 

further savings realized by the smart bundled self-timed 

design, and demonstrate the suitability of its use in energy 

adaptive systems across a wide voltage range extending to the 

subthreshold region. 

VII. CONCLUSION AND FUTURE WORK 

Computation loads which work based on absolute timing 

assumptions, such as synchronous systems, have difficulties 

when powered by nondeterministic power supplies and under 

process variations. This is because worst-case assumptions 

needed to ensure correctness imply operational inefficiencies. 

In contrast, fully asynchronous designs, for instance DI or 

approximately DI ones, by removing timing assumptions and 

regulating the data flow of the circuits based on the actual 

speed, work well under nondeterministic power supplies and 

in the face of temporal manifestations of process variations. 

DI and its best approximation, SI, however, usually imply 

high costs and other limitations on the type of designs they can 

cover. For such systems as memory this problem is most 

acute, as memories have large numbers of replicated units 

where unit overheads are multiplied. Memories also 

necessitate long wires of different lengths, making SI designs 

problematic. 

Latency bundling based on relative timing is a practical 

compromise between fully synchronous and fully SI or DI 

designs and has been widely used in asynchronous 

computation systems. In order for such a scheme to work well, 

the latency bundling timing control circuitry need to behave 

similarly to the main system whose timing is being bundled. 

For regular computation logic simple delay elements such as 

inverter chains work well as latency bundling elements 

because both are based on basic logic gates.  

Memories such as SRAM present a special challenge to this 

approach because it by and large does not behave similarly to 

basic gates under nondeterministic power supply and process 

variations.  

In this paper we propose an intelligent or smart latency 

bundling philosophy which dictates that the latency bundling 

units need to be chosen for appropriate equivalent behaviour 

when the operation environment changes. For SRAM the best 

latency bundling element should be SRAM. 

A fully SI SRAM design is explored in detail demonstrating 

its capabilities of working under a wide range of Vdd and 
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process variation conditions. An on-chip testing method for 

asynchronous memories is developed and demonstrated in this 

study of the fully SI SRAM. The fully SI SRAM is 

demonstrated to consume significantly less energy in both 

writing and reading operations compared with its fully 

synchronous counterpart.  

A smart latency bundling unit, based on a single cell of such 

SI SRAM suitable for use in self-timed SRAM banks, is 

designed and comprehensively verified. A new self-timed 

SRAM design, using such bundling units for both reading and 

writing operations, is developed and thoroughly analysed. 

Comparative studies are carried out with fully SI and smart 

bundled solutions which demonstrate that the self-timed smart 

bundled design can realize additional energy and performance 

advantages over the fully SI solution. 

The smart bundling method solves the problem of wrapping 

the latencies along horizontal rows. On the other hand, the 

charging and discharging of vertical bit lines could affect 

indication reliability at very low Vdd. This remains an 

interesting problem for further study. 

The results of this paper represent significant advances 

towards the application of the practical method of latency 

bundling for asynchronous SRAM. 
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