
Self-Timed SRAM with Smart Latency Bundling

Self-Timed SRAM with Smart Latency

Bundling

Abdullah Baz, Delong Shang, Fei Xia, Reza Ramezani, Robin Emery,

Alex Yakovlev

Technical Report Series

NCL-EECE-MSD-TR-2010-161

November 2010

Self-Timed SRAM with Smart Latency Bundling

Contact: abdullah.baz@ncl.ac.uk

NCL-EECE-MSD-TR-2010-161

Copyright c 2010 Newcastle University

School of Electrical, Electronic & Computer Engineering

Merz Court, Newcastle University

Newcastle upon Tyne, NE1 7RU

UK

http://async.org.uk

mailto:abdullah.baz@ncl.ac.uk

Self-Timed SRAM with Smart Latency Bundling

Self-Timed SRAM with Smart Latency Bundling

Abdullah Baz, Delong Shang, Fei Xia, Reza Ramezani, Robin Emery, Alex Yakovlev

Microelectronic System Design Group, School of EECE

Newcastle University

Newcastle Upon Tyne, United Kingdom

{Abdullah.baz,delong.shang,fei.xia,reza.ramezani,r.a.emery,alex.yakovlev}@ncl.ac.uk

Abstract— In energy-aware design, especially for systems with

uncertain power sources, asynchronous computation loads which

can function under variable power supply have many potential

advantages. Fully safe asynchronous loads based on delay

insensitivity (DI), however, tend to suffer power and size

penalties. As a compromise, delay bundling has been widely used

in asynchronous computation, but traditional delay elements

have been shown to be unsuitable for bundling memory

components, whose latency behaviour varies differently under

variable Vdd from other types of logic. This paper proposes an

intelligent delay bundling method for SRAM working under Vdd

which unpredictably varies over a wide range (e.g. 200mV to 1V

for 90nm technology), based on the principle of using matching

delay bundling elements. A fully speed independent (SI) SRAM

design is investigated in depth and a self-timed SRAM

architecture using such SI SRAM cells as delay bundling

elements is demonstrated through comprehensive analysis.

Keywords-component; SRAM, failure rate, energy harvesting

systems, timing variations.

I. INTRODUCTION

Energy harvesting (EH) has emerged as an alternative

power source to batteries and EH systems continue to grow at

a rapid pace. Such self-powered systems can be used where

maintaining and replacing batteries are impossible,

inconvenient, costly or hazardous. While EH systems

overcome difficulties associated with batteries, they pose new

challenges in the process of power delivery and management.

Normally, in battery powered systems, where the supply

voltage is relatively constant but ultimate energy is limited,

the strategy is the traditional low-power systems approach, i.e.

to decrease the power dissipation whilst maintaining the target

system performance. However in EH systems, energy is

infinite but power and voltage nondeterministic. The strategy

is to maximize the performance for the supplied amount of

energy and under all circumstances not consuming more than

the harvested energy. Such a system must have the ability to

work under a wide range of supply voltage since the harvester

supplies nondeterministic power and Vdd which depends not

only on the specification of the harvester but also on the

amount of energy that can be harvested from the environment

which varies from one place to another and even from time to

time. Systems with these features can be called energy

adaptive rather than low-power.

When the high variability of the harvester supply voltage is

combined with process variations, which is becoming a

significant factor in VLSI ‎[1], timing variations would

normally follow which could cause system malfunctions.

In on-chip computation systems, SRAM tends to occupy the

majority, e.g. more than 90%, of the die area, and this trend is

continuing as predicted by the ITRS ‎[1]. It therefore has a

great impact on the power, area, reliability and performance of

almost all digital systems ranging from handheld devices to

high-performance processors.

Normally SRAM works based on timing assumptions where

the timing control block is in charge of regulating the timing

relationship between different blocks in the SRAM system

(memory cells, precharger, write driver, sense amplifier, row

decoder and column multiplexer) to guarantee safe and

successful reading and writing operation. Some examples of

the timing hazards that may cause functional failures in the

memory systems are: 1) if, during reading, the precharger has

not been deactivated before opening the access transistor, the

data in the memory cell may be upset, ending up with reading

failure; 2) if, during writing, the access transistors have been

de-asserted before flipping the data in the cell, writing failure

occurs; 3) if, during reading, the access transistors have been

turned off before one of the bit lines is discharged to the

threshold values, access time failure occurs.

In general, the timing control block is built from basic

gates, where functions and latencies depend on the switching

of both the NMOS and PMOS devices. In contrast, the

operation of the memory depends only on the NMOS device

during reading to discharge one of the bit lines and on the

PMOS device during writing to flip the memory cell ‎[2]. This

difference in operation dependency on the NMOS and/or

PMOS devices makes the memory cells and the timing control

block change in different ways with variations of the supply

voltage. Other factors which exist in the SRAM but not in

normal logic gates also contribute to this mismatch. These

include the number of cells connected to the bit lines and the

data values (0 or 1) in these cells. The worst case scenario

happens when the data stored in all cells along the same bit

line is opposite to the data in the cell being read or written, the

leakage currents of all these other cells may decrease the level

of Ion of the cell under operation, and make it indistinguishable

from the level of Ioff ‎[17]. As the number of cells in the bit line

Self-Timed SRAM with Smart Latency Bundling

increases the problem gets worse. This discrepancy increases

under PROCESS variations and becomes significant under the

high variations of the supply voltage in the EH environment

[11].

In synchronous systems, the timing control block of the

memory system needs to be calibrated to work under the worst

case conditions in order to eliminate the effect of the timing

hazard ‎[2]. Intuitively, a wide operational voltage range will

result in a large difference between the worst and best case

conditions. This in turn will lead to a significant conflict

between safety and performance, where safe designs must

incur heavy performance penalties.

In systems employing dynamic voltage scaling (DVS),

voltage changes are fully under control. In such systems

timing control blocks may be pre-programmed to change the

clock frequencies according to the operating voltage carefully

so that different worst cases are used for different voltage

modes. For systems where the change of voltage is not fully

under control but depends on the environment (e.g. EH

systems), however, effectively determining the appropriate

worst case dynamically in real time is needed. Moreover, in

general, synchronous designs are not best suited for systems

experiencing Vdd variable over a wide range not because of

environmental factors.

On the other hand, asynchronous systems can potentially

tolerate Vdd variations over a wide range, by trading speed for

correctness automatically so that, in the long run, the systems

demonstrate average case performance whilst maintaining

correctness. However, for memory circuits there are additional

complications.

The safest asynchronous circuits are delay-insensitive (DI)

where the systems work correctly irrespective of latency

behaviours of any component, including logic and wires. Such

systems should in general work correctly under

nondeterministic Vdd variations with average case

performance. However, DI techniques usually require

complex coding (e.g. dual-rail) and have power and size

disadvantages ‎[4]. For memory such as on-chip SRAM, even

small unit penalties will get multiplied to intolerable scales. In

any case, for many applications, DI solutions cannot be

found ‎[5].

Various approximations to true DI have been proposed. For

instance, if the delays on wires are assumed to be zero or do

not matter, systems can be designed so that any delay

variations in the gates do not compromise correctness.

Systems designed in this way are known as speed-independent

(SI). SI systems tend to be easier and cheaper to design and

implement than DI ones but in general still incur significant

overheads. In addition, circuits of significant size usually

include long wires whose latencies cannot be ignored, making

SI only practical for small components.

A cheaper still approach to this problem is through delay-

bundling, by making the latencies of timing control blocks

automatically track the latencies of bundled logic when

voltages change. This, the bundled data approach, is a

standard method in computation logic design ‎[6]. The

common technique in bundled data design is to use

conventional delay elements, such as inverter chains, for

timing control. As delay elements usually consist of basic

gates, similar to computation logic, the timing control blocks

slow down or speed up more or less at the same rate as the

bundled logic when Vdd changes. This ensures correct system

operation over a potentially wide Vdd variation range.

In order to use delay bundling for memory systems, timing

control blocks need to slow down or speed up at the same rate

as memory cells when Vdd changes. Because of the

operational discrepancy between normal logic gates and

memory, such timing control blocks cannot be constructed

entirely from basic gates. Alternative solutions have been

proposed to improve the latency tracking for memory ‎[2]‎[3].

These employ a redundant column of memory cells, which are

the same as the cells in the main memory bank, and use the

signals generated from the cells in this column to enable and

disable the sense amplifier and the row decoder to avoid

timing hazards in the memory system. Although these

solutions have shown good timing tracking, they have only

addressed the timing hazards during the reading operation,

leaving the writing timing hazard problem open. This is

because generating completion signals for writing in SRAM

type cells was assumed to be impractical.

Asynchronous design methods have been applied to SRAM

design so that the latter can operate under a wide range of

Vdd ‎[3]‎[7]‎[8]‎[9][11]. These designs implement various

degrees of approximation to true DI with different degrees of

success in reducing timing assumptions. The safest is the

design proposed in [11] which resulted in a fully SI SRAM

solution based on the standard 6T SRAM cell. This design has

been shown to work correctly under a wide range of Vdd

without timing assumptions. Since each SRAM cell is of

limited size whose technology and layout are under the full

control of the designer who can therefore easily keep wire

delays predictable, SI approximates DI well in this

application.

Failure rates of synchronous SRAM have been analyzed

comprehensively in the literature ‎[13]‎[14]. However, all these

analyses investigate the failure rate of the SRAM cell alone

without including its timing control block because this is not

needed under assumptions of synchronous operation. For

asynchronous SRAM such combined system analysis is

necessary, but such analysis was not carried out in [11].

Fully SI SRAM banks of large size multiply the overheads

of SI, resulting in size costs not usually acceptable for energy

adaptive systems.

This paper describes a smart latency bundling approach to

asynchronous SRAM using fully SI SRAM cells as latency

bundling elements for memory banks consisting of normal

SRAM cells. The SI SRAM cells provide full completion

detection capability for both reading and writing operations.

This makes it possible to provide full latency bundling and

completely remove the need for timing assumptions, resulting

Self-Timed SRAM with Smart Latency Bundling

in a fully self-timed SRAM with minimal overheads.

The contributions of this work are: 1) the SI SRAM design

in [11] is thoroughly analysed under different values of Vdd;

this analysis includes behaviour studies under all process

corners, as well as failure rate investigations under PROCESS

VARIATION assumptions, compared with its conventionally-

bundled counterpart; 2) the validity and advantages of this

type of SI SRAM having been demonstrated in the previous

studies, a new self-timed SRAM system using it in an

intelligent latency bundling scheme is designed and

implemented; 3) the new self-timed SRAM method is

demonstrated through further comparative studies.

II. SELF-TIMED SRAM WITH SMART LATENCY BUNDLING

In general, for bundled data designs, the timing control

circuits which provide the latency bundling tend to be much

smaller than the bundled logic; otherwise the designer might

as well choose to implement the main logic directly in SI or

even DI. Conventional latency bundling elements are therefore

usually based on the lightest possible basic logic units such as

inverters. In memory banks, reading and writing operations

usually involve multiple cells each time along an entire row.

This can be bundled using a single memory cell in the timing

control block. This is schematically shown in Figure 1. In this

scheme, although the timing control block is heavier than one

regular memory cell, it is much lighter than the entire row in

memory banks with reasonable word lengths. This latency

bundling‎method‎is‎“smart”‎or‎“intelligent”‎because‎it‎is‎based‎

on extracting the relevant latencies in the most accurate

manner possible – from components of exactly the same type

as the bundled logic.

…‎…‎…‎…‎

row of regular SRAM cells

in memory bank

write read

timing control

with latency

bundling cell

Figure 1. Timing control of SRAM row using latency bundling cell.

III. SI SRAM CELL OPERATIONS

The SRAM cell used for latency bundling in the timing

control block needs to provide completion signals for all row

operations, i.e. both reading and writing. Those used

previously cannot generate writing completion ‎[2]‎[3] therefore

writing had to depend on timing assumptions. The SRAM

design in [11] is fully SI, making it possible to extract all

relevant completion information from such a cell.

An example of SI SRAM with a normal 6T cell controlled

by an SI controller is shown in Figure 2. It consists of a

conventional 6T SRAM cell with writing and reading

operations all controlled by an SI asynchronous controller.

The signal transition graph (STG) ‎[10] specifications for

reading and writing operations of the SI asynchronous

controller are shown in Figures 3 and 4 respectively. These

STGs specify completely sequential operations for both

reading and writing, which are directly translated from

synchronous SRAM operations by replacing clock signals

with the appropriate corresponding handshakes.

Figure 2. 6T SRAM cell with fully SI controller.

Figure 3. STG specification of the reading operation.

Figure 4. STG specification of the writing operation.

One of the possible realizations of the previous STGs is

shown in Figure 5.

Figure 5. Possible realization of the controller.

A fully SI SRAM bank can be implemented by using one

such controller to manage the whole SRAM bank. Normally

the cells in each row form a word, which are usually written

and read together. So, to control each row (word), an amended

decoder is required which is a normal address decoder

Self-Timed SRAM with Smart Latency Bundling

triggered by WL to generate each individual word selection

signal. The block diagram of the whole system is shown in

Figure 6. As the address is stable during reading and writing,

the change does not affect the SI property of the entire circuit.

In addition, as each word contains multiple bits, gate 1 needs

to be replicated. The number of the replication equals the

number of bits in a memory word (the number of cells in a

row). The inputs of each replicated gate are a pair of bit lines

corresponding to each bit of the memory word. All outputs of

the replicated gates 1 are collected in a C element. The output

of the C element is used to replace signal x4. Gate 5 is also

replicated. All outputs of these replicated gates are collected in

another C element and the output of this C element is the new

Wa signal. In this way complete reading and writing cycles are

controlled in a closed-loop fashion with the bit lines from the

SRAM cells serving as feedback signals into the controller.

Figure 6. Possible realization of the system.

All descriptions in this section are adapted from [11].

IV. CORNER ANALYSIS OF THE SI SRAM

In this section we further explore the behaviours of this SI

SRAM design in the context of constructing completely SI

SRAM banks, because detailed analysis is lacking in [11].

This is done by implementing a fully SI SRAM bank and

setting it into a testing chip. The structure of the chip is shown

in Figure 7. The general function of this chip is to write, read

and compare the written data with the read data in an

asynchronous and autonomous manner without any

interactions with the user or environment.

The design of this testing chip facilitates on-chip self test or

prototyping where the SI SRAM may be tested on the same

chip with other circuits, reducing the availability of input and

output pins. In addition, the testing may be run at a wide range

of Vdd variance, where the tested circuits could distribute a

wide range of speed changes, making it impractical to depend

on input and output pins to extract all the information. In this

design, therefore, the tested RAM is surrounded with its entire

test operating environment on the same chip.

This chip contains a couple of asynchronous counters to

generate address and data and three D elements to manage the

write and read cycle handshakes. The D element is a popular

handshake interface circuit, which encloses a slave handshake

inside a master one ‎[12]. The self-timed counters are based on

the design found in ‎[12]. There is also a comparator, based on

an XOR gate triggered by the a1 signal of the second D

element, which determines the consistency or the lack thereof

between the written and read data. The outputs of all XOR

gates are combined by a C element to provide the consistency

confirmation signal. If there is at least a single bit of

disagreement, a negative result is returned.

Figure 7. SRAM testing chip.

The signal flow of the chip is as follows: The first counter

generates the address and sends its acknowledgement signal to

the C element. The second counter generates the data and

sends its acknowledgement signal to the C element. Once both

counters settle, the C element sends its acknowledgement

signal to the first request (r1) of the first D element. The first

D element working as a writer sends the Wr signal to the

controller in the SRAM to request writing. Once writing is

finished, the controller sends the Wa signal to the first D

element. The first D element withdraws the Wr signal and

sends a request signal to the second D element. The second D

element as a reader sends an Rr signal to the controller in the

SRAM to request reading. Once reading is finished, the

controller sends its Ra signal (see Figure 5) to download the

data to the reading SI-latches. Here the third D element is used

for this data download to guarantee the data is stable during

processing. The reading SI-latches latch the data from the

SRAM and then the third D element passes the control (Ra’s

acknowledgement) to the second D element to report the

completion of reading. The second D element withdraws the

Rr signal and sends a request signal to the comparator. The

comparator compares the data from the SI latches with the

data from the second counter and if they are equal, it sends an

acknowledgment signal Ca to the counters to start another

round. This means that a round of writing following by

reading has been performed correctly as the data written was

correctly read. If an inconsistency is discovered, however, the

entire circuit stops at the comparator. The testing chip

operation is captured in the STG in Figure 8.

This chip has been implemented in UMC90nm process

technology and tested under all process corners and a wide

Self-Timed SRAM with Smart Latency Bundling

range of supply voltages from 1V down to 400mV.

Meanwhile the latency of writing, reading and checking, of the

whole memory bank 1kbit (64x16), has been measured and the

results are shown in Figure 9. In terms of latency the order of

the worst corners is: SS (slow NMOS, slow PMOS), SNFP

(slow NMOS, fast PMOS), FNSP (fast NMOS, slow PMOS),

TT (typical NMOS, typical PMOS) and FF (fast NMOS, fast

PMOS).

Figure 8. STG specification of the SRAM testing chip.

Figure 9. Corner analysis of the SRAM chip.

At 1V the chip can write, read and check the whole memory

bank in 1.1µsec, 662nsec and 836nsec for the worst, best and

typical cases respectively. At 400mV these operations can be

completed in 51µsec, 3.2µsec and 9.2µsec for the worst, best

and typical corner respectively.

Under these testing conditions, all simulation cycles

completed without incident. This demonstrated that such an SI

SRAM bank works correctly under all process corners across a

wide range of Vdd variance.

The SI SRAM is further compared with two other types of

SRAM, both of the same 6T basic structure. One is a

conventionally bundled SRAM whose timing is controlled by

a chain of inverters. The other is a fully synchronous SRAM

controlled by a clock. Write (Figure 10) and read (Figure 11)

energy consumptions are compared among the three SRAM

banks. The amounts of energy reported pertain to single write

and read operations on a single row of cells and the figures are

in logarithmic scale. Clearly the SI SRAM shows great

advantages over the other technologies in terms of energy

consumption under all Vdd values.

The high energy consumption of the conventionally bundled

synchronous SRAM partially results from the bundling

inverter chain timing control being designed to work under the

worst case appropriate for 190mV, thus being far from

optimized at higher Vdd values. The even higher energy

consumption of the fully synchronous SRAM is the result of

running it always under a clock frequency suitable for the

worst case of 190mV, which means that its operations take a

much longer time to complete at higher Vdd than both of the

other SRAM solutions (in comparison, the frequencies of

conventionally bundled SRAM are 250KHz for 190mV and

125MHz for 1V, in other words it was able to run much faster

at higher Vdd). This is the only way in which the three

solutions can be fairly compared, i.e. all three have to work

across the entire Vdd range without modifications half way

through the simulation.

Figure 10. Write energy consumption comparison between SI and

conventionally bundled synchronous SRAM banks.

Figure 11. Read energy consumption comparison between SI and

conventionally bundled synchronous SRAM banks.

All simulations in this paper, unless otherwise noted, are

carried out in the following manner. For one round of writing,

initial data values are stored in the memory bank and the entire

Self-Timed SRAM with Smart Latency Bundling

bank is written once, i.e. every word (row) is written once,

with inverse data obliging the flipping of bits in every cell. For

one round of reading, initial data values are stored in the

memory bank and the entire bank is read once. Multiple

rounds of writing and reading may be run in each simulation,

especially in Monte Carlo analysis. Per row data, if presented,

are the appropriate statistical mean values. Different initial

data values are chosen and the worst case results reported, if

experiments show dependencies to initial values. In general, it

has been found that initial data values make very little

difference (always less than 5%) to the numerical results.

V. FAILURE RATE ANALYSIS OF SI SRAM AND

COMPARISONS WITH SYNCRHONOUS SRAM

A fully SI SRAM bank requires complex C elements with

large numbers of inputs for the timing controller managing the

timing of each row. These in turn potentially require large

numbers of wires with significant and different lengths. The

complex C element completion indication may cause

significant latency penalties for the SRAM and the long and

diverse wires may cause poor approximation to DI with safety

penalties. On the other hand, a single fully SI SRAM cell does

not need complex C elements or long wires and could be

implemented compactly to achieve good DI approximation.

Such a cell, from which completion information of all write

and read steps can be easily extracted, can serve as the timing

control block in the scheme of Figure 1.

Whether this SI SRAM design is suitable for use in this

way, however, depends on its robustness and completion

indication performance under target operating conditions. The

soundness of this design can be seen from the results from the

previous section, but a single cell should perform better than

an entire bank, given the compromises required in the

complex indication of the latter. For instance, the corner

analysis in the previous section showed that the SI SRAM

bank stopped fully working below 400mV, which casts some

doubt as to whether bundling with this type of cell can work

into the subthreshold region. As in-depth analysis of this

design is lacking in [11], here further investigations are carried

out before it is put to use in latency bundling.

The key aspect of SRAM operation is the timing

relationship between the SRAM cells and the timing control

block. For instance, in a fully SI SRAM bank, the feedback

mechanism between the SRAM cells and the timing controller

means that a full cyclic control is implemented and all

temporal manifestations of process variation should be

tolerated in theory. In synchronous SRAM solutions, however,

there is no feedback and the system works in open loop.

Variations need to be tolerated by worst-case condition

estimations. In the scheme of Figure 1, the system works

partially in closed loop. The bundling will fail if the timing

control cell fails. The integrity of the timing control cell is

therefore crucial.

In contrast to conventional SRAM analysis in the literature,

where cells are tested under fixed clock inputs ‎[13]‎[14], here

we investigate the entire SI SRAM cell including the 6T cell

itself and the timing controller together. In keeping with

conventional SRAM cell analysis and with the vision of

Figure 1, the studies in this section cover a single cell only. A

single cell in this context is the 6T SI SRAM cell in the form

of Figure 2 where the timing controller is in the form of Figure

5, which is not shared with any other cells. Since the controller

only needs to manage a single cell rather than an entire row,

no replication of gates and complex C elements are needed.

This section concentrates on the investigation of failure

rates of such an SI SRAM cell compared with those of a

corresponding conventionally-bundled 6T SRAM cell. In a

conventionally-bundled 6T SRAM the timing control block

consists of a chain of inverters where the timing relationships

between different blocks may rely either on the clock phases

or on several delay lines triggered by the same clock phase.

Here we chose to build our timing control block based on the

clock phases.

Both cells are constructed in UMC90nm process technology

using the same logic when applicable and have been tested

under process variations of 6-σ (which covers 99.99% of the

entire variation distribution) at different supply voltages using

Monte Carlo methods with a thousand samples. Instead of

showing the failure rate of the reading and writing operation,

we define the functional yield as the proportion of non-failure

occurrences from the distribution. Here, if the functional yield

of the operation is below the constraint of 99.9%, the

operation is regarded as a failure.

In order to provide fair comparative analysis the timing

control block of the conventionally-bundled SRAM has been

calibrated to work in the same range of supply voltage as the

SI SRAM, from 190mV up to 1V. This calibration causes the

bundling inverter chain to fit the worst case (at the lowest

Vdd) and increases the average operation time, thus reducing

the failure rate. In spite of this the SI SRAM shows better

functional yield results than its conventionally-bundled

counterpart. The numerical results are described in the

following sub sections.

A. Reading Failure Rate Analysis of the SRAM cells

The reading operation consists of two consecutive

processes, precharging the bit lines and opening the access

transistors to discharge one of the bit lines. The results of the

Monte Carlo analysis are shown in Table I for the

conventionally-bundled and SI SRAM cells.

The data shows that the reading operation in the

conventionally-bundled SRAM fails for all Vdd values lower

than 600mV. However, in the SI SRAM the reading operation

works from 1V down to 300mV with a functional yield of

99.9% and failure happens in the very low Vdd region of

200mV or below. This demonstrates the suitability of the SI

SRAM for working under low Vdd into the subthreshold

region. The minimum energy per operation point, which is

very important for energy adaptive computing, can usually be

found between 300mV and 500mV ‎[15], where the SI SRAM

Self-Timed SRAM with Smart Latency Bundling

works fine whilst the conventionally-bundled SRAM does not.

TABLE I. FUNCTIONAL YIELD OF THE SRAM DURING READING

VDD(V)
Functional Yield %

Bundled SI

1.00 99.9 99.9

0.90 99.9 99.9

0.80 99.9 99.9

0.70 99.9 99.9

0.60 99.9 99.9

0.50 99.8 99.9

0.40 98.1 99.9

0.30 90.5 99.9

0.20 81.7 94.8

0.19 80.7 86.2

B. Writing Failure Rate Analysis of the SRAM cells

Writing operation consists of three processes, precharing

the bit lines, opening the access transistors to enable the write

driver to discharge one of the bit lines, and flipping the cell.

Table II shows the results of the Monte Carlo analysis of

the SRAM writing function yield for the conventionally-

bundled and SI SRAM cells.

TABLE II. FUNCTIONAL YIELD OF THE SRAM DURING WRITING

VDD(V)
Functional Yield %

Bundled SI

1.00 99.9 99.9

0.90 99.9 99.9

0.80 99.9 99.9

0.70 99.9 99.9

0.60 99.9 99.9

0.50 99.7 99.9

0.40 97.6 99.9

0.30 87.9 93.7

0.20 72.8 58.0

0.19 71.8 51.0

Again whilst the conventionally-bundled SRAM stopped

successful writing below 600mV, the SI SRAM continues

down to the subthreshold region and the minimum energy per

operation point. Under very low Vdd values (190~200mV), it

was found that the SI cell fails more often because it is not

able to generate the appropriate acknowledgement signals

after writing, partly because of the uncertain effects from long

vertical bit lines. Up to the writing of the data bit, it leads the

conventionally bundled design in the rate of success.

This has interesting implications to the problem of

reliability. Reliability is not an issue for either conventionally

bundled or SI SRAM when Vdd is high. When Vdd is in the

middle of the working range, down to about the minimum

energy per operation point, the SI SRAM has clear advantages

over the conventionally bundled design. Lower down still, the

situation is reversed with the conventionally bundled SRAM

showing an advantage over the SI solution. Interestingly, this

lack of reliability at very low Vdd has nothing to do with the

main function of memory, which is to maintain data storage.

The reliability is affected by an inability to indicate successful

writing after the fact.

In general, open-loop systems have higher reliability than

closed-loop ones simply because the latter depend on feedback

indication to progress, adding one element which can fail and

whose failure causes catastrophic consequences (the system

stops in the case of fully closed-loop implementations). The SI

SRAM‎is‎“caught‎out”‎by‎this‎dependency‎on‎feedback‎which‎

fails earlier than the main function. On the other hand, in

engineering implementations, some mechanism of optionally

breaking the dependency on feedbacks (e.g. stop listening to

acks when Vdd drops beyond some value or stop waiting after

some set time) can be used to eliminate complete system

stoppages because of indication failure.

Although a full SI SRAM bank may not work properly

under all variation conditions when Vdd goes below 400mV, a

single cell is shown to be more robust.

VI. SMART LATENCY BUNDLING FOR SELF-TIMED SRAM

The in-depth investigations in the previous sections showed

that the SI SRAM design, especially in single-cell form, robust

under a wide range of Vdd and wide process variation

assumptions. Therefore a single SI SRAM cell of this design is

suitable as timing control for a self-timed SRAM of the form

of Figure 1 to supply the latency bundling.

A bank of such a self-timed SRAM bundled with SI cells

will include one bundling cell in each row. For consistency,

implementation and layout practicality, and to compensate for

the effect of leakage currents through the bit lines, these

timing control cells should be put to the same position in each

row. In other words, in a bank of such memory, one of the

columns should be designated the timing control / latency

bundling column. The delays of cells in this column must

correctly bundle the delays of the whole memory bank under

all conditions. It has been shown in ‎[16] that due to

interconnect latencies the furthest column from the decoder is

slower than the other columns. This fact suggests that the

furthest data column may be implemented with SI cells to

serve both as the far end bits of memory words and as the

timing control units. This approach is valid in purely timing

assumption based design, as timing assumptions can be made

data-independent.

However, in self-timed design, data independence cannot be

assumed and needs to be verified. Intuitively, the worst case,

where writing takes the longest time, is when the data in the

memory cell needs to be flipped. An experiment is designed to

clarify this matter. In this experiment, one normal SRAM cell

is compared with one fully SI SRAM cell. The latency

between writing start and data fully settling in the normal

SRAM and the latency between writing request and writing

acknowledgement in the SI SRAM are compared. In the

bundling approach in the form of Figure 1, the writing

acknowledgement in the SI SRAM is used to indicate the

completion of writing, thus implying that data has settled in

the row, including in the other normal cells. Experiments

across all process corners were carried out for all data

combinations.

Unfortunately, it has been found in these experiments that

Self-Timed SRAM with Smart Latency Bundling

when the normal cell has a bit flipping in writing and the SI

cell does not, the writing acknowledgement signal from the SI

cell comes before the written bit in the normal cell settled in

all process corners at room temperature, and the difference in

time cannot be covered by the additional interconnect delay of

the longer wires. This means that bundling fails when the SI

cell used for bundling does not experience bit flipping under

writing. These experiments have also shown that when the SI

cell experiences bit flipping, its acknowledgement signal

always comes a safe distance after the data in the normal cell

has settled.

These experiments highlight an important issue in the

philosophy of bundling. The proposal of Figure 1 specifies

that the bundling unit should be structurally equivalent to the

bundled units. In fact it must exhibit behavioural equivalence

in addition to structural equivalence. As a result so long as at

least one of the cells in a word write flips (a high probability

event in an SRAM row with a large number of bits), the

bundling cell must display this behaviour and flip too.

However, data dependency means that this is very unlikely.

Our solution is to construct the entire data memory from

normal cells, and append an additional column of

“professional”‎ latency bundling SI cells to the far side of the

furthest data column in the bank, where the bundling column

will have the longest interconnect from the decoder. In this

timing control column, whose stored data values have no

operational functionality, alternating bit values are always

written to cells to ensure that bit flipping happens in every

write. To do that we need to read the data from the column,

invert the data and then write it back to the column.

Fortunately, the asynchronous controller in Figure 2

incorporates a reading action in its writing process (cf. Figures

3 and 4). Therefore there is no need to change the main parts

of the controller, but the writing STG specification must be

modified from the shape in Figure 4 to that shown in Figure

12 for the following reasons.

The STG in Figure 4, although correct for use in a system

where all cells are SI, is not suitable for a bundling cell. For

example, if the data being written into a memory cell is the

same as the data already stored in the cell, according to the

specification of the STG in Figure 4, as a round of reading is

included in the writing process, so the (BL, BLb) presents the

data stored in memory. As a result, the Wa+ signal will be

generated as quickly as possible, and then the other control

signals, such as WL, WE, will be withdrawn. This maximizes

speed and reduces energy consumption, as the actual writing

of a bit into the cell is not performed in such a case, but for a

bundling cell, this speed-up is inappropriate.

Figure 12. Writing sequence STG for latency bundling cell.

As a result the specification for a bundling cell timing

controller, derived from Figure 4, is developed (Figure 12).

Here a forced writing of a different data bit is used to

eliminate temporal inconsistencies. After the reading action in

the writing process is complete (indicated by WE+), the data

just read (the current stored data in the memory) is written into

a storage, for example an SI latch, by Lr+, and after this

writing to a latch is completed, La+ is generated. The resets of

La and Lr immediately follow, and the complementary bit in

the SI latch, which is the inverse of the original data bit, is

written back into the cell as new data. This makes the data

being written permanently different from the data stored in the

cell. As the data being written into the latch needs to be stable

during write back, the Lr and La signals should be reset before

data writing. This is as shown in Figure 12, Lr+ followed by

La+ and Lr-, and La-.

Based on this STG the controller must be updated as shown

in Figure 13 with additional components. As the additional

requirements do not affect the main part of the control, we

have retained the design in Figure 5 and manually introduced

the additional components to cover the difference between

Figure 4 and Figure 8. These include a D element to manage

the handshakes and an SI latch to store and invert the bit data.

For the D element, {WE, WE1} is the master handshake and

{Lr, La} is the slave handshake. The D element implements

the WE+‎→ Lr+‎→‎La+‎→‎Lr- → La-→‎WE1+‎→‎WE- →‎

WE1- handshake sequence.

Lr La

Figure 13. Latency bundling cell controller design.

The new controller is implemented in UMC 90nm CMOS

technology in the Cadence toolkits. The operation of the new

controller has been verified by SPECTRE simulation and it is

fully functional from 1V down to 190mV.

The scheme of Figure 1 is designed for a bundling cell with

a controller to manage the timing of a single row. In a multi-

row bank, where only one row can be written or read at any

moment in time, only a single bundling cell may be working at

any time. This means that, whilst the bundling 6T cell should

reside next to the row bundled by it for best layout consistency

in latency, the timing controller in Figure 13 does not need to

be replicated for every row. This is similar to the arguments

leading to Figure 6.

A 1Kb (6416b) bundled SRAM bank is implemented

using one extra bundling SRAM per row as timing control

blocks in the scheme of Figure 14. Each row in this bank

therefore consists of 16 regular 6T SRAM cells plus one

latency bundling SI SRAM cell at the far end. The latency

bundling SI SRAM cells are controlled by the new controller

Self-Timed SRAM with Smart Latency Bundling

in Figure 12, with a single controller serving all 64 bundling

cells. The size overhead compared with normal synchronous

SRAM is therefore minimal.

…‎…‎…‎…‎

rows of regular SRAM cells

in memory bank

write read

timing controller

for a column of

latency bundling

cells

…‎…‎…‎…‎

…‎…‎…‎…‎

…‎… ‎‎‎‎…‎…‎‎‎‎‎…

Figure 14. Smart-bundled self-timed SRAM bank.

A comparison is made between this bundled SRAM bank

and a fully SI 1Kb SRAM bank which is constructed using the

previous controller.

TABLE III. PERCENTAGES OF LATENCY AND ENERGY SAVED BY USING

THE NEW TECHNIQUE

VDD(V)
Time Saving % Energy Saving %

Writing zero Writing one Writing zero Writing one

1.00 6.07 10.31 13.39 14.00

0.90 7.40 12.14 13.38 14.85

0.80 10.27 14.04 14.57 14.68

0.70 12.74 16.04 14.48 15.56

0.60 15.76 18.94 15.31 15.76

0.50 19.61 22.45 16.92 16.71

0.40 25.17 28.18 23.71 24.88

0.30 33.83 34.66 39.24 39.88

0.20 33.52 29.23 34.52 30.72

0.19 42.27 36.78 43.04 38.06

VDD(V)
Time Saving % Energy Saving %

Reading zero Reading one Reading zero Reading one

1.00 20.99 21.56 22.15 23.72

0.90 22.01 20.72 22.65 21.32

0.80 22.11 22.16 21.79 23.17

0.70 22.71 22.69 22.48 22.35

0.60 23.50 23.60 21.13 23.30

0.50 25.29 24.81 23.45 22.97

0.40 28.67 27.74 24.88 25.02

0.30 31.87 35.32 31.49 33.23

0.20 42.78 41.63 43.86 42.83

0.19 48.44 50.95 49.61 52.00

The latency and energy consumption of SRAM banks using

the new and old controllers have been measured and the

figures in Table III show the percentages of latency and

energy savings the bundled technique can save over the fully

SI method across different values of Vdd.

Under high voltage, the smart bundled self-timed SRAM

can save up to 6% of the writing time and 13% of the writing

energy. This saving increases as Vdd decreases to reach up to

30% of the writing time and 40% of the energy in the

subthreshold region. The reading savings are even greater

across the board. In view of Figures 10 and 11 which showed

massive energy savings realized by the fully SI SRAM over

SRAM with higher degrees of synchrony, these data represent

further savings realized by the smart bundled self-timed

design, and demonstrate the suitability of its use in energy

adaptive systems across a wide voltage range extending to the

subthreshold region.

VII. CONCLUSION AND FUTURE WORK

Computation loads which work based on absolute timing

assumptions, such as synchronous systems, have difficulties

when powered by nondeterministic power supplies and under

process variations. This is because worst-case assumptions

needed to ensure correctness imply operational inefficiencies.

In contrast, fully asynchronous designs, for instance DI or

approximately DI ones, by removing timing assumptions and

regulating the data flow of the circuits based on the actual

speed, work well under nondeterministic power supplies and

in the face of temporal manifestations of process variations.

DI and its best approximation, SI, however, usually imply

high costs and other limitations on the type of designs they can

cover. For such systems as memory this problem is most

acute, as memories have large numbers of replicated units

where unit overheads are multiplied. Memories also

necessitate long wires of different lengths, making SI designs

problematic.

Latency bundling based on relative timing is a practical

compromise between fully synchronous and fully SI or DI

designs and has been widely used in asynchronous

computation systems. In order for such a scheme to work well,

the latency bundling timing control circuitry need to behave

similarly to the main system whose timing is being bundled.

For regular computation logic simple delay elements such as

inverter chains work well as latency bundling elements

because both are based on basic logic gates.

Memories such as SRAM present a special challenge to this

approach because it by and large does not behave similarly to

basic gates under nondeterministic power supply and process

variations.

In this paper we propose an intelligent or smart latency

bundling philosophy which dictates that the latency bundling

units need to be chosen for appropriate equivalent behaviour

when the operation environment changes. For SRAM the best

latency bundling element should be SRAM.

A fully SI SRAM design is explored in detail demonstrating

its capabilities of working under a wide range of Vdd and

Self-Timed SRAM with Smart Latency Bundling

process variation conditions. An on-chip testing method for

asynchronous memories is developed and demonstrated in this

study of the fully SI SRAM. The fully SI SRAM is

demonstrated to consume significantly less energy in both

writing and reading operations compared with its fully

synchronous counterpart.

A smart latency bundling unit, based on a single cell of such

SI SRAM suitable for use in self-timed SRAM banks, is

designed and comprehensively verified. A new self-timed

SRAM design, using such bundling units for both reading and

writing operations, is developed and thoroughly analysed.

Comparative studies are carried out with fully SI and smart

bundled solutions which demonstrate that the self-timed smart

bundled design can realize additional energy and performance

advantages over the fully SI solution.

The smart bundling method solves the problem of wrapping

the latencies along horizontal rows. On the other hand, the

charging and discharging of vertical bit lines could affect

indication reliability at very low Vdd. This remains an

interesting problem for further study.

The results of this paper represent significant advances

towards the application of the practical method of latency

bundling for asynchronous SRAM.

ACKNOWLEDGMENT

Abdullah Baz is supported by a scholarship from Umm Al-

Qura University, Kingdom of Saudi Arabia.

This work was supported in part by the Engineering and

Physical Sciences Research Council (EPSRC) under grant

number EP/G066728/1 "Next Generation Energy-Harvesting

Electronics: Holistic Approach," website:

www.holistic.ecs.soton.ac.uk.

REFERENCES

[1] International Technology Roadmap for Semiconductors:

http://public.itrs.net/.

[2] Amrutur, B.S.; Horowitz, M.A., "A replica technique for wordline and
sense control in low-power SRAM's," Solid-State Circuits, IEEE Journal
of, vol.33, no.8, pp.1208-1219, Aug 1998.

[3] Meng-Fan Chang; Sue-Meng Yang; Kung-Ting Chen, "Wide
Embedded Asynchronous SRAM With Dual-Mode Self-Timed

Technique for Dynamic Voltage Systems," IEEE Trans. CAS-I, vol.56,
no.8, pp.1657-1667, Aug. 2009.

[4] Saito, H.; Kondratyev, A.; Cortadella, J.; Lavagno, L.; Yakovlev, A.,
"What is the cost of delay insensitivity?," Proc.‎ ICCAD’99,‎ San‎ Jose,‎
CA, pp. 316-323, Nov. 1999.

[5] Martin, A.J., "The limitations to delay-insensitivity in asynchronous
circuits", In Willian J. Dally ed, Advanced Research in VLSI, pp.263-
278, MIT press, 1990.

[6] Kearney, D.; Bergmann, N.W., "Bundled data asynchronous multipliers
with data dependent computation times", ASYNC '97, pp.186-197, April
1997, Eindhoven, Netherlands.

[7] Nielsen, L.S.; Staunstrup, J., "Design and verification of a self-timed
RAM," Design Automation Conference, 1995. Proceedings of the ASP-
DAC '95/CHDL '95/VLSI '95., IFIP International Conference on
Hardware Description Languages; IFIP International Conference on
Very Large Scale Integration., Asian and South Pacific , pp.751-758, 29
Aug-1 Sep 1995.

[8] Sit, V.W.-Y.; Choy, C.-S.; Chan, C.-F., "A four-phase handshaking
asynchronous static RAM design for self-timed systems," Solid-State
Circuits, IEEE Journal of, vol.34, no.1, pp.90-96, Jan 1999.

[9] Dama, J.; Lines, A., "GHz Asynchronous SRAM in 65nm,"
Asynchronous Circuits and Systems, 2009. ASYNC '09. 15th IEEE
Symposium on, pp.85-94, 17-20 May 2009.

[10] Rosenblum, L. Y.; Yakovlev, A., “Signal graphs: from self-timed to
timed ones,” In Proc. of international workshop on timed Petri nets, pp
199-207, Torino, Italy, July 1985.

[11] Baz, A.; Shang, D.;‎ Xia,‎ F.;‎ Yakovlev,‎ A.,‎ “Self-timed SRAM for
energy‎ harvesting‎ systems,”‎ PATMOS’10,‎ LNCS 6448, Grenoble,
France, Sept. 2010.

[12] Varshavsky, V.I.; Kishinevsky, M.A.; Marakhovsky, V.B., Peschansky,
V.A.; Taubin, A.R.; Tzirlin, B.S., Self-timed control of concurrent
processes, Kluwer Academic Publishers, 1990.

[13] Mukhopadhyay, S.; Mahmoodi, H.; Roy, K., "Modeling of failure
probability and statistical design of SRAM array for yield enhancement
in nanoscaled CMOS," Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol.24, no.12, pp. 1859- 1880, Dec.
2005.

[14] Mukhopadhyay, S.; Mahmoodi-Meimand, H.; Roy, K.; , "Modeling and
estimation of failure probability due to parameter variations in nano-
scale SRAMs for yield enhancement," VLSI Circuits, 2004. Digest of
Technical Papers. 2004 Symposium on, pp. 64- 67, 17-19 June 2004.

[15] Ramadass, Y.K.; Chandrakasan, A.P., "Minimum energy tracking loop
with embedded DC-DC converter enabling ultra-low-voltage operation
down to 250mV in 65nm CMOS", IEEE Journal of Solid-state circuits,
Vol. 43, No.1, January 2008.

[16] Amelifard, B.; Fallah, F.; Pedram, M., "Leakage Minimization of SRAM
Cells in a Dual-Vt and Dual-Tox Technology," IEEE Trans. VLSI,
vol.16, no.7, pp.851-860, July 2008.

[17] Calhoun, B.H.; Chandrakasan, A.P., "A 256-kb 65-nm Sub-threshold
SRAM Design for Ultra-Low-Voltage Operation," Solid-State Circuits,
IEEE Journal of, vol.42, no.3, pp.680-688, March 2007.

http://www.holistic.ecs.soton.ac.uk/
http://public.itrs.net/

