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Abstract

Ultra low-power design and energy harvesting applications require digital systems to operate

under extremely low voltages approaching the point of balance between dynamic and static power

consumption which is attained in the sub-threshold operation mode. Delay variations are extremely

large in this mode, which calls for the use of asynchronous circuits that are speed-independent or

quasi-delay-insensitive. However, even these classes of asynchronous logic become vulnerable because

certain timing assumptions commonly accepted under normal operating conditions are no longer

valid. In particular, the delay of inverters, often used as the so-called input `bubbles', can no longer be

neglected and they have to be either removed or properly acknowledged to ensure speed-independence.

This paper presents an automated approach to synthesis of robust controllers for sub-threshold

digital systems based on dual-rail implementation of control logic which eliminates inverters com-

pletely. This and other important properties are analysed and compared to the standard single-rail

solutions. Dual-rail controllers are shown not to have signi�cant overheads in terms of area and power

consumption and are even faster in some cases due to the elimination of inverters from critical paths.

The presented automated techniques are very e�cient and can be applied to very large controllers as

demonstrated in benchmarks.

1 Introduction

Recent research (e.g., [7][18][32]) reveals that for the majority of logic and static memory blocks the

optimal energy-per-operation voltage lies near or below the threshold voltage of a MOSFET device, where

the point of balance between dynamic and static power consumption is found. This mode is commonly

known as a sub-threshold mode. A comprehensive analysis, using the EKV model, of the sub-threshold

operation of static logic can be found in [31]. The decision at which Vdd level the circuit should operate to

meet its optimum in terms of energy e�ciency and guarantee the acceptable level of operational robustness

requires considering process and environmental variability. Notably, delay variations are extremely large

in the sub-threshold mode. This calls for the use of asynchronous circuits that are speed-independent (SI)

or quasi-delay-insensitive (QDI) [20][21]. These classes of asynchronous logic operate on the principles

of causality and completion detection rather than matched delay and fundamental mode, which makes

them inherently robust to variations in the delays of their gates. Additionally, the performance of such

circuits is determined by actual, rather than worst case latency. Recent studies in [6] and [2] show the

high potential of asynchronous SI and QDI circuits to build energy-e�cient circuits. Moreover, for power

harvesting applications, where Vdd can be unstable and varying, this is even more the case (cf. [4] and [8]).

The design of SI and QDI circuits for deep-submicron can be performed using existing CAD support,

provided by tools such as Haste and Balsa [25] or desynchronization methods [30], which use the principle

of single-rail logic and bundled-delay for the data-path, but use handshake QDI circuits for control.

Control logic usually determines the robustness of the overall system to variations and transient

errors because it forms its operational kernel. While errors in the data-path can be tolerated using

conventional (e.g. error-correction codes) approaches, any error in control logic (e.g. unspeci�ed transition

or spurious pulse on a request or acknowledgement line) can be fatal for the entire system. It is therefore

important to support asynchronous control logic design for sub-threshold mode with tools for their e�cient

synthesis from behavioural speci�cations. The state of the art is Petrify [10], which accepts event-based
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speci�cations in terms of interpreted Petri nets, called Signal Transition Graphs (STGs), and converts

them into logic equations for complex gates in the implementation circuit. By construction, this circuit is

an SI circuit with respect to the delays associated with the outputs of the complex gates. Designers usually

prefer using complex gates, which can be implemented as the so-called generalised (or asymmetric) C-

elements [25]. This way many control circuits published to date, such as controllers for pipeline stages [25],

NoC routers [12], as well as controllers for latches for sub-threshold logic [1], have been constructed.

However, in the sub-threshold mode, even these SI/QDI implementations may become vulnerable to the

e�ects of variability or susceptibility to noise (cross-talk) and transient faults. For example, the excessive

delay variations under low Vdd make certain timing assumptions that are commonly accepted under

normal Vdd no longer valid. In particular, most of the complex gates in the implementations produced

by SI/QDI synthesis contain the so-called `bubbles'. These are input inverters, whose delay is typically

neglected, or at least regarded to be much smaller than the delay of a certain (`racing') path passing

through other logic gates. In sub-threshold operation these bubbles cannot be ignored. Starodoubtsev

has developed a method of behavioural re�nement for the synthesis of the SI/QDI class of circuits from

STGs [26], which produces circuits in simple monotonic gates (free from bubbles). Unfortunately, this

technique tackles both problems, obtaining monotonic functions of the gates and decomposition of gates

into simple gates, at the same time, which makes it quite complex in practice (see also a discussion of

normalcy in Section 3). As a result it has not been automated to date and leads to circuits with long

acknowledgement paths, thereby increasing their latency.

To facilitate the availability of tools for designing e�cient and robust sub-threshold circuits it would

be bene�cial to maximally use the existing logic synthesis frameworks, such as that of Petrify, to

generate monotonic SI/QDI circuits. It would be desirable to obtain a relatively simple synthesis �ow,

similar in its spirit to the one used in NCL-D/NCL-X [15][17] for data-path logic. Fortunately, the

way to such an approach originates in the idea of a `perfect implementation' for a semi-modular circuit

from [13]. The theory for this approach is based on deriving separate Boolean covers for the set and reset

functions for each signal x in the circuit speci�cation. Those can be obtained from the excitation and

quiescent regions [10] for x. This is equivalent to �nding next state functions for two separate rails x

and x̂ of each binary signal x. The original theory of [13] was developed for the so-called closed circuits,

without input choice, and hence is not directly applicable to the types of controllers designed in practice

today. Later this approach was extended to work for open circuits in the technique for monotonic cover

implementation [16], however the focus of that work was not speci�cally on �nding dual-rail control

implementations; besides it was not fully automated to work with speci�cations of complex controllers.

In this paper, we address this problem with a speci�c requirement of �nding an SI/QDI implementation

of an asynchronous control logic which will meet the needs of sub-threshold mode of operation and will

be obtained automatically from a speci�cation which may be as complex as hundreds of logic signals.

We pursue the approach of dual-rail synthesis, using the theoretical basis of [13] as well as monotonic

cover techniques of [16] to support the decomposition of complex dual-rail gates into separate logic for set

and reset functions and standard RS latches. This combination o�ers a range of dual-rail architectures,

called here gRS and stdRS, which can be implemented using static logic libraries as well as custom

transistor-level circuits. We implement the synthesis algorithms using e�cient methods of coping with

huge state spaces that are based on Petri net unfoldings (MPSAT). One of the important bene�ts of

these dual-rail implementations of complex controllers is that the control logic can be distributed, i.e.

the appropriate gates producing control signals can be placed next to the data-path sections. This

distribution may lead to the need to use long wires, but this risk of violating delay-insensitivity due

to wire delays will be mitigated by the inherent robustness of dual-rail implementations. Special dual-

rail repeaters will be used where necessary, against transient faults and violations of signal integrity.

Besides monotonicity (no bubbles), other bene�ts of these implementations compared to single-rail control

include: less gate complexity, fewer isochronic forks; easier testability (RS-latches instead of C-elements).

The paper illustrates these advantages in a relatively simple case study and a set of benchmarks whose
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complexity scales up to large quantities of control gates. The paper is organised as follows. Section 2

presents the main foundation behind dual-rail control logic, including its motivation, advantages and

possible penalties. Section 3 describes the basic synthesis process. Section 4 presents the case study and

Sections 5 covers the experiments on a set of benchmarks.

2 Dual-rail control

Dual-rail code uses a pair of wires with only two valid signal combinations {01, 10}, which encode values

0 and 1 respectively. This code is employed to represent data in self-timed circuits [11], where a speci�c

protocol of switching helps to avoid hazards. The protocol allows only the monotonic switching from

all-zeroes {00}, which is a non-code word, to a code word and back to all-zeroes as shown in Figure 1.

The all-zeroes state, which is called spacer, indicates the absence of data and separates one code word

from another.

spacer

code
word

code
word
"1""0"

0001 10

Figure 1: Dual-rail signalling protocol

Traditionally the dual-rail switching protocol is used in asynchronous data-path logic due to its ro-

bustness and simplicity of circuit construction, as in [17] where the standard RTL-based design �ow is

extended by converting single-rail circuits into dual-rail. Within this approach, called Null-Convention

Logic [14] one can follow either of two main implementation styles: NCL-D, which integrates completion

detection into the dual-rail logic or NCL-X, which relies on a separate completion detection circuitry

and/or on some timing assumptions. The former is more conservative with respect to delay sensitivity

while the latter is more area and speed e�cient. For example, an AND gate implemented in NCL-D and

NCL-X styles is shown in Figure 2.

C

C

C

C

a_0
b_0

b_1
a_1

x_0

x_1

(a) NCL-D

inversion

x_0

x_1b_1
a_1

a_0
b_0

(b) NCL-X

Figure 2: Dual-rail data-path on AND-gate example

The inherent property of the dual-rail circuits is that the negation operation corresponds to the rail

swapping, which allows to achieve race-free operation under any single transition. Another feature of the

dual-rail logic is its balanced power consumption which facilitates circuit resistance to the power analysis

attacks. Security aspects of the dual-rail circuits have been further improved by introducing a special

alternating spacer protocol [24] � it guaranties all gates of the circuit switch each computation cycle, thus

making circuit power consumption invariant to the processed data.

The major drawback of the dual-rail data-path logic is (at least) twofold increase in area and power

consumption compared to the single-rail implementation. Switching through the all-zeroes state also

doubles the computation cycle, unless extra logic is inserted to concurrently precharge the combinational

logic to spacer [29]. The above limitations restrict the adoption of dual-rail methodology to the fairly

speci�c domain of security applications and to building truly self-timed systems. These drawbacks,

however, should not impose signi�cant overhead on the relatively small control circuits being implemented
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in dual-rail style.

The asynchronous control is usually dominated by C-elements which perform a generic function of

signal synchronisation (a C-element output goes high when all its inputs are high, and goes low when all

the inputs are low). While enjoying all the bene�ts of dual-rail switching protocol, a dual-rail C-element

can actually be made comparable in size and power consumption to the single-rail one. For example, a

typical single-rail complex-gate C-element in Figure 3(a) (as synthesised by the MPSAT or Petrify)

requires 12 transistors in static CMOS implementation. An equivalent dual-rail circuit in Figure 3(b)

has the same transistor count and is built out of simpler gates, which are more likely to be present in

the technology library. Availability of the complex gates is particularly important to avoid hazard-free

decomposition of the C-element set/reset functions [16] which is not trivial and may result in signi�cant

area, power and latency penalties.

b
a

x

(a) Single-rail

a1
b1

a0
b0

negation
x1

x0

(b) Dual-rail

Figure 3: Complex gate implementation of C-element

For custom design the dual-rail C-element is also similar in size to the standard transistor-level single-

rail implementation (8 transistors), as illustrated in Figure 4. The state of the C-element is held in a

keeper � a logic level holding circuit which consists of two inverters connected back to back. Note that

for single-rail implementation the feedback inverter has to be weak (made out of small transistors), so

that the pull-up and pull-down transistor stacks are able to enforce the keeper state. When x = 1 and

a 6= b the keeper state is supported by a weak PMOS transistor only and therefore is vulnerable to a

single event upset (SEU), such as a voltage pulse caused by charge-induced particles or electromagnetic

radiation. The corresponding dual-rail solution is based on cross-coupled inverters and pull-down NMOS

networks for both set and reset. Under the same conditions this implementation is more robust to SEUs

because its state holding element is symmetric and both inverters are strong, hence the critical charge

from the particle strike is required to be higher to pull down the middle point su�ciently low [28]. Note

that a dual-rail C-element is most exposed to SEUs when neither set nor reset function is evaluated to 1
and its state can be toggled by a particle strike. Therefore, to improve circuit robustness one can explore

a tradeo� between the complexity of the set/reset functions and minimisation of time when both evaluate

to 0.

b

a

x

inverter
weak

(a) Single-rail

x1

a0

b0

x0

a1

b1

(b) Dual-rail

Figure 4: Custom implementation of C-element

The above C-element implementations combine the set/reset functions and the state holding latch.

Often it may be necessary to separate the set and/or reset logic from the latch, e.g. to reduce the imple-
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mentation complexity or to map the latch into the library RS-latch. Such decomposition must preserve

the hazard-free operation and is achieved by building the set/rest functions satisfying the condition of mo-

notonic cover, as described in Section 3. The use of standard RS-latches is advantageous for compatibility

with the standard design practice as it helps to avoid combinational loops which often cause problems

for EDA tools. Circuit testability can also be addressed by extending the RS-latches with synchronous

scan interface and applying standard testing techniques for level-sensitive scan design (LSSD) [23]. With

this scan structure the circuit operates asynchronously in mission mode, while it is synchronised with the

test clock signals when in test mode.

A C-element with trivial set/reset functions, as shown in Figure 5, is called a repeater and is employed

to maintain signal integrity in long wires. Similarly to single-rail bu�ers, the dual-rail repeaters can be

used to reduce the time delay associated with long wires by inserting them along the switching lines. This

technique, known as repeater insertion, is well studied [3][22] and can be directly applied for dual-rail

control logic as shown in Figure 5(d).

a1

a0

x1

x0

negation

(a) Gate-level

a0

x1 x0

a1

(b) Transistor-level

R

S Q

Q x0

x1a1

a0

(c) RS-latch

 S

 R

Q 

Q 

 S

 R

Q 

Q 

∆1 δ1 ∆2 δ2 ∆3

∆1
∆3∆2

δ1 δ2

∆

∆ > +++ +

(d) Repeater insertion

Figure 5: Dual-rail repeaters

Dual-rail repeaters are very robust to SEUs because their inputs go through the dangerous spacer

state only for a short period of time and switch back into a stable code word state immediately. If a single

wire distortion occurs while in a code word state the repeater recovers from the error � the information

redundancy of dual-rail code words plays its role; a spacer state, on the other hand, does not provide

su�cient information for recovery. This is demonstrated by simulation1 of SEUs s0 and s1 on output

wires x0 and x1 respectively, see Figure 6(a). SEUs were modelled as 5ps pulses and the full recovery

took around 100ps. In the unlikely event of a SEU occuring during the spacer state, the repeater still

recovers from s1 but cannot recover from s0 as shown in Figure 6(b).

The other notorious penalties of dual-rail data-path, power consumption and cycle time, are also

irrelevant to the dual-rail control logic. In dual-rail control the switching activity doubles as all the wire

pairs go through a spacer state (similar to the dual-rail data-path). However, the load of the wires is

roughly halved compared to the corresponding single-rail circuit and therefore the power consumption

increase is insigni�cant (not twofold as in data-path logic). Also the spacer state is transient in dual-rail

control and does not require a dedicated precharge stage as in NCL, therefore the cycle time remains the

same as in single-rail control.

To summarise, the penalties associated with the dual-rail data-path circuits do not show in the control

1All simulations in this paper have been performed in Spectre using Faraday standard gate library based on UMC
90nm technology.

NCL-EECE-MSD-TR-2010-162, University of Newcastle upon Tyne 5



Andrey Mokhov, Victor Khomenko, Danil Sokolov, Alex Yakovlev: On dual-rail control logic for
enhanced circuit robustness

(a) In code word state

(b) In spacer state

Figure 6: Recovery of dual-rail repeater from SEUs

logic. In particular, the the key building block of asynchronous control, the dual-rail C-element, is similar

in size and speed to the standard single-rail implementation, while its operation at sub-threshold voltage

is more robust to noise and charge-induced particles. A synthesis method and hazard-free decomposition

of set/reset functions is presented in Section 3 and circuit complexity, size and power consumption is

analysed on a set of large benchmarks in Section 5.

3 Synthesis

We assume that the circuit's behaviour is speci�ed using its state graph (SG), which is a �nite state

machine with annotations, cf. Figure 7 (SGs can be constructed from higher-level speci�cations, such as

STGs [10] or HDLs). We assume that all the states in the SG are reachable from the initial state. With

each state s of the SG we associate a vector of binaries Code(s) representing the values of all the circuit
signals at this state; moreover, Codez(s) will denote the component of Code(s) corresponding to signal

z. Each arc of the SG is labelled by z+ or z−, where z is a signal. We assume that the speci�cation is

consistent, i.e. if an arc (s, s′) is labelled by z+ (resp. z−) then Codez(s) = 0 (resp. 1), Codez(s′) = 1
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(resp. 0), and Codez′(s) = Codez′(s′) for all z′ 6= z. Furthermore, we assume that the SG is deterministic,

i.e. no two arcs with the same source are labelled by the same signal.

0100 0000 1000

0110

0010

1100

1110 1111 1101

c+

b+ a+

b+

d+

c+d–

a–

b–

c–

inputs:   a, b

outputs: c, d

order of signals
in encodins:
a, b, c, d

Figure 7: A circuit speci�cation from [5].

The circuit signals are partitioned into inputs and outputs (the latter include internal signals). Input

signals are assumed to be generated by the environment, while output signals are produced by the

circuit. We assume that the SG is output-persistent, i.e. an output cannot be disabled by �ring any other

transition (i.e. choices are allowed only between inputs).2

For each output signal z, the Boolean functions Outz+ , Outz− and Outz are de�ned as follows:

Outz+/z−/z(s) is 1 if state s enables z+/z−/z±, and 0 otherwise. The Boolean next-state function Nxtz

is then de�ned as Nxtz(s)
df= Codez(s)⊕ Outz(s), where ⊕ is the `exclusive or' operation. Similarly, the

set and reset functions Setz and Resetz are de�ned as follows:

Setz/Resetz(s)
df=


1 if Outz+/z−(s) = 1
0 if Nxtz(s) = 0/1
− otherwise,

where `−' denotes the `don't care' value (i.e. the value of the function can be chosen arbitrarily, with the

view of simplifying the resulting implementation).

Various architectures are used to implement speed-independent circuits; the following are probably

the most well-known [10][16] (see Figure 8):

Complex-gate (CG) implementation: Every output is implemented as a single (possibly very compli-

cated) atomic gate [9].

Generalised-C (gC) implementation: Every output is implemented using a pseudo-static latch called

generalised C element (gC element) which is assumed to be atomic [20]. A gC implementation is speci�ed

by the set and reset functions for each output, which are implemented by transistor networks. In the

states where both set and reset functions evaluate to 0, a keeper element is used to ensure that the output

keeps its current value (it is an error if in some reachable state both functions evaluate to 1 � this can

lead to a short circuit).

Standard-C (stdC) implementation: Every output is implemented using a C-latch controlled by set

and reset signals, which we assume are implemented as complex-gates [5]. This architecture is super�cially

similar to the previous one, but one should bear in mind that a gC element is assumed to be atomic, while

in the stdC implementation the gates controlling a C-latch have delays. Hence a naïve transformation of

a gC implementation into an stdC one can result in a hazardous circuit (see below).

Generalised-RS (gRS) and standard-RS (stdRS) implementations: These two architectures correspond

to gC and stdC ones, in particular the same set and reset functions are used, but an RS-latch is used as

the state holding element [16]. Furthermore, the dual-rail representation of each signal is used, and so

there are no inverters anywhere in the circuit.

For the circuit to be implementable in the CG architecture, the value of Nxtz must be uniquely

2In some applications a choice between outputs is allowed, which can be implemented by a special element called arbiter

that internally uses some analog circuitry to handle the arising metastability; however, arbiters can be `factored out' into
the environment, so that the remaining part of the speci�cation is output-persistent.
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determined by the encoding of each reachable state, i.e. it should be a function of Code(s) rather than
s: Nxtz(s) = Fz(Code(s)) for some Boolean function Fz, which is eventually implemented as a complex-

gate. Similarly, for gC architecture the values of Setz and Resetz must be functions of Code(s) rather
than s: Setz/Resetz(s) = Sz/Rz(Code(s)) for some Boolean functions Sz and Rz, which will determine

the corresponding gC element. For stdC architecture Sz and Rz must in addition satisfy the Monotonic

Cover condition (MCC) [5][10], in order to provide a hazard-free circuit. MCC states that a cover must

be entered only via the states enabling the output z. As MCC reduces the �exibility in choosing Sz and

Rz, they can be more complicated than those for gC architecture, cf. Figure 8(b,c).

(a) Complex-gate (b) gC implementation

abc
_ _

d

b
_

b

C c

a

d
c
b

(c) Correct stdC implemen-
tation

ab
_

d
a

d
b

b
_

b

C c

(d) Naïve stdC implementa-
tion

(e) gRS implementation (f) stdRS implementation

Figure 8: Implementations of signal c of the SG in Figure 7.

To illustrate the importance of MCC, consider the implementation shown in Figure 8(d), which does

not satisfy it, since the state 0110 (which is covered by the set function ab∨ d and does not enable c) can

be reached from the state 1110 (which is not covered by this set function and does not enable c). Consider

the sequence of states 1111 d−−→ 1110 a−−→ 0110 b−−→ 0010. The gate computing the set function is high

at 1111. Firing of d− drives its output low, but before it reaches 0, a− can �re, driving its output high;

similarly, before it reaches 1, b− can �re, driving it low. Hence, this gate can exhibit runt non-digital

pulses causing the circuit to malfunction.

It turns out that the notion of implementability of a signal is invariant across the

CG/gC/stdC/gRS/stdRS architectures, i.e. if a signal is implementable in one of them, it is implemen-

table in the other architectures as well; moreover, given the mentioned above assumptions on the SG,

the implementability of the speci�cation in either architecture is equivalent to the Complete State Coding

(CSC) property, stating that for every output z, no two states s and s′ of SG satisfy Code(s) = Code(s′)
and Outz(s) 6= Outz(s′) [10]. In what follows, we assume that the SG satis�es the CSC property.

Normalcy [27] is a property of STGs, which is a necessary condition for their implementability using

gates without input inversions, i.e. whose characteristic function is either monotonic or a negation of a

monotonic function. Normalcy violations can be detected by model checking, and sometimes resolved by

insertion of new signals [19]. However, the latter is not always possible, as the sought signal insertions

might not exist or cause further normalcy violations, and even if this is possible, the circuit becomes

more complicated due to the additional logic needed to implement the new signals.

NCL-EECE-MSD-TR-2010-162, University of Newcastle upon Tyne 8
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There are a number of tools that support asynchronous synthesis, e.g. Petrify and MPSAT. They

both support complex-gate synthesis and derivation of set and reset functions, including monotonic

covers, and so can be used to automate any of the described asynchronous architectures. The main

problem in synthesis is the state space explosion: a relatively small speci�cation can (and often does)

yield a huge state graph; this puts a practical limit on the size of circuits that can be synthesised. To

alleviate this problem, Petrify uses BDDs, and usually can synthesise circuits with up to 20-30 signals.

MPSAT avoids generating the state graph altogether, and works on STG unfoldings instead; it usually

can synthesise circuits with up to 150-200 signals.

(a) Initial STG (b) CSC con�icts resolved

Figure 9: STG speci�cation of the example controller

4 Case study

Figure 9(a) shows an STG speci�cation of a typical asynchronous pipeline controller from [10] which

synchronises two handshakes (Ri , Ao) and (Ro, Ai) managing adjacent pipeline stages. Request Ri+

informs the controller about availability of data in the current pipeline stage. In response, the controller

immediately prompts the next stage to latch the data (Ro+) and sends an acknowledgement back to the

current stage (Ao+). Then the handshakes are reset concurrently (Ri− → Ao− and Ai+ → Ro− → Ai−)
for the next data transfer round. In order to satisfy the CSC property it is necessary to introduce two

internal signals csc0 and csc1 as shown in Figure 9(b); see details in [10].

Figure 10: Complex-gates implementation

Now it is possible to use Petrify or MPSAT synthesis tool to generate a CG implementation of the

STG. The obtained circuit is presented in Figure 10; note that input bubbles of the derived complex-gates

are explicitly shown as inverters i1 − i5 . In a normal operating mode it is commonly assumed that these

inverters are faster than any other gate. However, if the controller operates under a sub-threshold voltage

NCL-EECE-MSD-TR-2010-162, University of Newcastle upon Tyne 9
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(a) Supply voltage = 600mV (b) Supply voltage = 575mV (c) Supply voltage = 550mV

Figure 11: Simulation of a hazard in single-rail implementation

the increased delay variations can easily violate this assumption, thus breaking the speed-independence

of the circuit. Consider the following sequence of events:

Ri+, Ro+, Ao+, i2−, i3−, csc0−

i4+, Ai+, i5−, csc1−, i1+, Ro−, i2+

Ri−, Ao−, i3+, Ai−, i5+, csc1+

At this point there is a race between events i1− and csc0+: if inverter i1 happens to be slower than

gate csc0 , there will be an unspeci�ed enabling of Ao+ which creates a hazard on wire Ao and breaks

the environment protocol. At the system level this can easily lead to a global deadlock. Figure 11 shows

simulation of the circuit behaviour under di�erent supply voltages. At nominal 1V power supply we get

no sign of the hazard. This hazard-free behaviour continues all the way down to 600mV. The hazard

becomes visible at 575mV and reaches incorrect voltage levels for output Ao at about 550mV. This is a

perfect illustration of how quickly things can go wrong in the sub-threshold domain.

The problem can be solved by applying the dual-rail expansion to all signals, thus removing all the

dangerous inverters. The stdRS implementation of the controller is shown in Figure 12. Note that

although the number of wires has doubled, each wire has less load as it became distributed over two

rails. For example, signal csc0 in the single-rail implementation has 4 gates in its fanout, while both

signals csc0 and ĉsc0 in the dual-rail one have fanout 2, thus jointly consuming the same amount of

energy but switching faster. This also decreases the degree of `forking': instead of having to balance 4

wire delays to satisfy the isochronic fork assumption during circuit layout, one has to balance only two

pairs of wires which is considerably easier. Another important advantage of the dual-rail implementation

is that it is built of much simpler gates which are very likely to be present in most technology libraries.

Large 4- and 5-input gates of the CG implementation will probably require decomposition into smaller

gates, potentially introducing new sources of hazards and adding more overheads.

The next section presents a comparison between the presented implementation styles on a set of

benchmark controllers.

5 Experiments

Table 1 presents a summary of experimental results. We have taken several standard asynchronous

controllers, some of which are scalable, and synthesised their implementations using PUNF andMPSAT

synthesis tools. Despite the large state spaces (up to 1013 states) the processing times were in the order
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Figure 12: stdRS implementation

of several seconds.

Each benchmark circuit is described with three parameters: |I|, |O| and |S| being counts of inputs,

outputs and states, respectively. Columns `Inv.' report numbers of input inverters in CG and stdC

single-rail implementations; Lmax gives complexity of the largest gate in an implementation in terms of

literals (note that Lmax for stdC and stdRS implementations are the same). Power and area estimates

are normalised over the CG implementation for easier comparison; average values across all benchmarks

are given in the bottom row.

In general, dual-rail gRS implementation has no penalty in terms of power and only 15% overhead

in terms of area in comparison to CG single-rail implementation. Dual-rail is more robust though as

there are no inverters and less forks. Moreover dual-rail controllers contain simpler gates and are easier

for technology mapping. stdRS implementation gives even simpler gates (they are separated from RS-

latches), but has larger overheads: 30% in power and 51% in area. Corresponding single-rail controllers

(stdC) have the largest overheads (81% and 89%, resp.).

6 Conclusions

This paper presented an automated approach to synthesis of robust controllers for sub-threshold digital

systems. The approach is based on dual-rail implementation of control logic which eliminates inverters,

reduces forks and wire load without introducing signi�cant overheads in terms of area, latency and power

consumption.

Future work includes optimisation of set/reset functions for robustness (to minimise the period in

which both functions are zero), and further in-depth analysis of testability of RS-latch based design.
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