
NCL-EECE-MSD-2010-163, Newcastle University                                    Page 1 

 

 

 

 

 

 

 

 

 

 

 

 

Variation Tolerant Asynchronous FPGA 

 
 

 

Hock Soon Low, Delong Shang, Fei Xia, Alex Yakovlev 

 

Technical Report Series 

NCL-EECE-MSD-TR-2010-163 

 

 

 

December 2010 
  



NCL-EECE-MSD-2010-163, Newcastle University                                    Page 2 

 

 

 

 

 

 

Contact:  

h.s.low1@ncl.ac.uk 

  

delong.shang@ncl.ac.uk 

  

fei.xia@ncl.ac.uk 

  
alex.yakovlev@ncl.ac.uk 

 

 

 

 

 

Supported by EPSRC grants EP/G066 728 

 

 

 

 

 

 

 

 

NCL-EECE-MSD-TR-2010-163 

Copyright © 2010 Newcastle University 

School of Electrical, Electronic & Computer Engineering 

Merz Court, Newcastle University 

Newcastle upon Tyne, NE1 7RU, UK  

 

 

http://async.org.uk 

  

mailto:h.s.low1@ncl.ac.uk
mailto:delong.shang@ncl.ac.uk
mailto:fei.xia@ncl.ac.uk
mailto:alex.yakovlev@ncl.ac.uk
http://async.org.uk/


NCL-EECE-MSD-2010-163, Newcastle University                                    Page 3 

Variation Tolerant Asynchronous FPGA 
Hock Soon Low, Delong Shang, Fei Xia, Alex Yakovlev  

 Microelectronic System Design Group, Newcastle University, UK 

 

 

ABSTRACT 

This paper describes the realization of an interconnect Delay 
Insensitive (DI) FPGA architecture with distributed asynchronous 
control. This architecture maintains the basic block structure of 
traditional FPGAs allowing the potential use of existing FPGA 
design tools in block design. This asynchronous FPGA 

architecture is mainly aimed at tolerating the unpredictable delay 
variations caused by process and environment variations in 
current and future VLSI technology nodes and also targets low 
power operations, including modes such as dynamic voltage 
scaling and variable Vdd, as in applications featuring energy 
harvesting. This is achieved by making the longer inter-block 
interconnects DI, keeping the computational logic single-rail, and 
removing global clocks.  

Keywords 

FPGA, Process Variation, Asynchronous design. 

1. INTRODUCTION 
Feature size shrinking in CMOS transistors lead to high density in 
VLSI chips. However, with the reduction of feature size, 
variations have become a key factor affecting system behaviors. 
Two sources of variations, environmental factors such as changes 
in temperature due to changes in environment temperature or chip 

activity and physical factors during the manufacturing process [1], 
can affect circuit performance and functionality.  

CMOS process scaling continues to increase the difficulty and 

cost of the fabrication process to achieve uniformity of die 
production. This limitation will result in random and spatially 
varying deviations from intended design parameters, a 
phenomenon generally known as process parametric variation. 
The International Technology Roadmap for Semiconductors 
(ITRS) states that parametric variation is becoming a greater 
concern. This is because variation and margins for logic and 
interconnects are not scaling at the same rate [2].  

Power supply variation can be considered as an environmental 
factor. Energy harvesting devices, for example, tend to provide 
variable levels of power.  

The ITRS also predicts that chip designs are more likely to have 
multiple modules running different clocks (GALS-orientated). Up 
to 40% of the chip will be using asynchronous techniques to solve 

clock distribution problem by year 2020 [2]. Asynchronous 
circuits, such as Delay Insensitive (DI) and Speed Independent (SI 
or QDI) circuits, can in general maintain correctness in the face of 
uncertain delays caused be parametric or environmental variations 
and they may function correctly under variable Vdd.     

Field-Programmable Gate Array (FPGA) is one of the main VLSI 
methods in current digital system designs. Variation tolerance is 
an important issue for future FPGA technologies. 

This paper focuses on dealing with the effects of process variation 
on the behaviors of high-performance semiconductor devices, 

especially modern FPGAs. One of the commonest manifestations 

of process variation is in the delays or latencies of circuits. Here 
we investigate techniques with which systems can be made 
tolerant to such effects. 

In modern FPGAs, interconnects occupy up to 80% of the whole 
chip area [3]. Although the latest nanometer technology trends to 
increase the proportions of the logic array, interconnects still 
occupy a large part of the whole chip. They play an importance 
role in linking together all the functional blocks including 
configurable logic blocks, memory blocks and multiplexers. Long 
interconnect wires can easily dominate delay if not managed 
properly. As a result, with the increasing density of FPGAs in the 

latest technology, it is getting more challenging to distribute 
global clocks across wide areas evenly. Extra effort is required to 
deal with such issues as clock skew. 

Asynchronous design techniques may avoid the need for a global 
clock to controls circuit activities; instead activities may be 
locally controlled with for example handshaking protocols [4]. 
Since asynchronous circuits potentially offer global clock absence 
and low power, applying asynchronous design techniques to 
FPGAs is attractive. Asynchronous circuits can be said to be self-
timed, Speed-Independent (SI) or Delay-Insensitive (DI) 
depending on the delay assumptions that are made [4]. SI circuits 

consider only the gate delay and neglect the wire delay when 
analyzing circuit correctness. The most robust class is DI where 
circuits will operate correctly without any assumption on delays 
either in gates or interconnect wires. SI and DI circuits are 
particularly useful to cope with process variations causing latency 
variations. However, asynchronous circuits are more difficult to 
design and test compared to synchronous ones because of the 
wide variety of possible signaling protocols and a broad spectrum 

of the degree of delay insensitivity from bounded delay to full DI. 
Partly because of this, asynchronous design suffers from a lack of 
automatic design tools especially those combining all possible 
techniques in a single suite. These issues have been particularly 
impeding the progress of asynchronous techniques in FPGA, 
because the latter is intrinsically less customizable. 

1.1 Contributions and Paper Organization  
An FPGA architecture which achieves DI interconnectivity 

between logic clusters has been developed. The long interconnects 
are made DI with a new distributed control, based on David Cells, 
replacing clock trees. Clusters can be made close to SI because 
local wire lengths can be easily managed. Programmable delay 
elements are also introduced in wrapper circuits to allowed local 
logic cell delay matching after fabrication, and potentially support 
low Vdd operations. The architecture preserves the block structure 
of current technology FPGA with its single-rail combinational 
logic arrangement, making the system design flow simpler and 

more accessible as well as keeping size and power consumption 
under control. In effect the new architecture seeks to achieve DI in 
the large for long inter-cluster wires and approximate SI in the 
small within clusters. The result is a balance between the desire of 



NCL-EECE-MSD-2010-163, Newcastle University                                    Page 4 

using asynchrony for tolerating the effects of variations and 
retaining the major part of current design flow. 

The rest of the paper is organized as follows. Section 2 describes 
existing attempts at introducing asynchrony into FPGAs. Section 
3 describes our asynchronous FPGA architecture and its essential 
components in detail. Section 4 describes the proposed system 
design flow for this type of FPGA. Section 5 contains further 

investigations through example system designs. Section 6 
concludes with discussions and future work outlook. 

2. RELATED WORK 
Various statistical design techniques have been proposed to deal 
with the variation problem in CMOS design [14, 15]. However, 
these techniques, proposed for custom VLSI and ASICs, cannot 

be directly applied to FPGAs in which the circuit mapping varies 
depending on the user design after fabrication. A few papers 
suggested chip-wise placement based on traditional FPGA 
architecture [16, 17] but this requires extensive efforts to 
determine the variation map of each chip.   

Different styles of asynchronous FPGA architectures were 
presented since 1992 [5, 18-24] motivated mainly by either low 
power and/or high speed performance. From the point of view of 
implementation techniques, these architectures can be classified 
into three types. 

Type 1 (e.g. [18] and [19]) rely on significant elements of timing 
assumption to guarantee the correctness of the asynchronous 
logic. In general, the global worst case timing assumption is 

replaced with local worst case timing assumptions. This method 
mixes the delays for both FPGA intra-block and inter-block 
connections. It is hard to match delays for FPGA inter-block 
interconnects as the wire lengths can be non-deterministic at 
design time. Process variations in nanometer technology nodes in 
general will make the delay matching problem worse.  

Type 2 (e.g. [20] and [21]) focuses on high performance. They are 
also somewhat tolerant to operational variations (delay, voltage, 
temperature) through SI/DI with none or minimal reliance on 
timing assumptions. On the other hand, they modify the entire 
FPGA fabric and replace the fundamental basic logic block of 

current FPGA technology. This makes the system design process 
less accessible by significantly reducing the usefulness of existing 
design tools. Also, some of these architectures are fine-grained 
and C-element intensive implying high area and power overhead.  

Type 3, proposed in [5], is to some degree a compromise between 
types 1 and 2. This proposed architecture keeps the traditional 
logic block structure and introduces the concept of an 
asynchronous wrapper around it. This type of design has two 
potential advantages: 1) maintaining the existing FPGA block 
structure to provide the possibility of using existing commercial 
EDA tools for in-block design and 2) making global interconnects 

DI for latency variation tolerance across long wires where it is 
most needed. This architecture has yet to be fully explored. 

This paper presents the implementation of type 3 architecture with 

detailed circuit level design of all essential elements and proposes 
a standard design flow for this architecture.   

3. DESIGN AND IMPLEMENTATION 
Fully SI, or better still, fully DI systems are tolerant to latency 
variations caused by process and environment variations. 
However, these types of systems in general require a completely 
different design process for which few mature EDA toolkits exist. 

This problem is even more acute for FPGAs than for general 
ASIC. As a result, the design process for fully SI/DI FPGAs is far 
from straightforward and usually presents a steep learning curve 
to the designer. This difficulty for system design on an industrial 
scale weakens the main attractiveness of FPGAs in prototyping 
and time to market.  

In addition, SI/DI circuits tend to be based on relatively complex 

coding methods, such as dual-rail or in general m-of-n. Normally 
this implies large area overheads. Furthermore, asynchronous 
circuits are supposedly low power as they can be made to work 
only when necessary and do not require clock trees compared to 
synchronous circuits. However, complex coding may result in an 
increase of switching activities in, for example, combinational 
logic, compared with the case of single-rail synchronous circuits. 
This leads to more dynamic power consumption, potentially 
negating savings from removing clock signals. The larger circuit 
size may also lead to greater leakage power. 

3.1 Architecture 
Figure 1 shows the schematic view of the basic island-style FPGA 
architecture. The routing channels consist of wire segments, 
switch boxes and connection boxes surrounding the logic cluster. 
Ignoring the clock circuits, the conventional FPGA structure has 
two types of circuits, 1) small logic islands (logic clusters), and 2) 
large wires (interconnect channel). If the entire structure is not 

implemented fully in SI/DI circuits, the large wires need more 
efforts on timing than the small clusters. Process variations will 
also cause comparatively more significant latency problems in the 
large wires. 

 

Figure 1: Basic island style FPGA architecture. 

In other words, tolerance for latency variations is most important 
for long interconnects. Within local areas of limited size, latency 
variations tend to be easier to manage. The approach of our 

chosen architecture exploits this possible tradeoff by using DI 
inter-block connections and leaving the basic conventional FPGA 
block/cluster relatively unchanged. The overall system will in 
general consist of a set of blocks on a DI interconnect fabric. By 
completely removing the clock tree and replacing it with a 
distributed David Cell based control, this method makes each 
cluster functionally behave as a self-timed block to its 
environment.  

Table 1 shows the structural choices made for our asynchronous 
FPGA architecture implementation. The granularity of the FPGA 
architectures is usually base on three main logic cluster 

parameters. These are the lookup table (LUT) size (K), cluster size 
(N) or the number of LUTs in a cluster, and the number of inputs 
per cluster (I). The granularity will affect the area, speed and 



NCL-EECE-MSD-2010-163, Newcastle University                                    Page 5 

power. In general, increasing the sizes of K and N will increase 
the functionality and performance but also increase the area 
exponentially. Cluster input size, I, should be keep as small as 
possible, however if I is too small, many logic elements in the 
cluster may be unusable [8, 9].  The traditional FPGA architecture 

uses four LUTs per cluster and four inputs for each LUT. Here we 
choose these as default values. 

Table 1: Architecture overview. 

Architecture Overview 

Parameter value Description 

Architecture Island style [6] 

LUT Size (K) 4 * Inputs [7] 

Cluster Size (N) 4 * PLE [7] 

Cluster input Channels (i) 16 [7] 

Channel Type Dual- rail/Channel 1-of-2 coding 

Switch Box Universal - 

Connection Box Normal - 

Process Technology UMC-90nm CMOS - 

The basic building block in an FPGA comprises a lookup table 

(LUT), a register (DFF) and a multiplexer (MUX). It is normally 
called logic cell (LC) in Xilinx the equivalent from Altera is 
called logic element (LE).  

3.2 Programmable Logic Element (PLE) 
In this paper, we call our basic building block programmable 
logic element (PLE).  The architecture does not include a global 
clock system. At the level of the basic building block PLE, the 
functionality of clock signals in conventional FPGAs is now 
performed by a newly designed wrapper set around a conventional 
LE. This is schematically shown in Figure 2. 

 

Figure 2: Programmable logic element. 

The wrapper consists of the following circuits: 

 Programmable completion detection, PCD 

 Trigger Selection switch, SW 

 Programmable delay, PD 

 Single- to dual-rail converter, CONV 

 Completion detection, CD 

PCD is used to detect that all input data is ready for data 
processing. There are two possible uses for this input data when it 
is ready: 1) the data is used for a concurrent operation with other 
PLEs which may or may not be in the same cluster; 2) the data is 
used for an operation involving only the local PLE. For the former 
case, the ready signal goes to the David Cell (DC) based 

distributed control to synchronize with the input data for other 
PLEs (via T.DC) and when the synchronization is complete, SW 
will be enabled by the F.DC signal from the DC circuit. For the 
latter case, the ready signal goes directly to SW to enable the local 
LUT to start data processing.  

SW is implemented with a single bit SRAM cell to register the 
LUT enable signal, which can be either directly from PCD or 
from the distributed DC control. The enable signal is used to 
guarantee that the LUT is activated only when the data is ready 
for the entire operation. This minimizes the number of switching 
activities in the combinational logic, potentially saving power.  

PD is used to set up delays to latch data and to indicate the 
“ready” of the single-rail data from MUX. This is programmable 

delay bundling and will be discussed later in more detail. 

CONV is used to convert the conventional single-rail data in PLE 
to dual-rail data for data propagation via the DI interconnects.  

CD is the completion detection indicating this dual-rail output. 

The wrapper works as follows: The “all data ready” state is 
detected by the left-hand side PCD which generates a trigger 
signal. The trigger signal (after synchronizing with trigger signals 
from other blocks in an operation group, if needed) will then be 

fed to LUT to start the computation. PDs are used to control the 
timing of latching the result of LUT computation and starting the 
conversion of single rail data to dual-rail data. The right-hand side 
CD will then generate the “ack” or “done” signal when the 
conversion is complete and valid output data is generated.  

For complex concurrent operations requiring more than one PLE, 
the trigger signals from PCDs can be collected for group control 
using DC control. SW can be configured to select trigger signal 

between PCD and DC. This will be discussed later in more detail. 

3.2.1 PCD Design 
PCD is the completion detection circuit used to detect the 
readiness of all input data signals and, upon this detection, 

generate a trigger signal. The input data from the DI interconnects 
is in dual-rail, 1-of-2 coding format. This format allows the 
straightforward detection of valid signal from spacer or empty 
codewords.  A commonly used dual-rail code is  

{0,0}=spacer,  
{0,1}=0,  
{1,0}=1,  
{1,1}=not valid.  

Because the codeword {1,1} is illegal and does not occur, an OR 
gate is sufficient to safely indicate a single channel as being 
“valid” or “empty”.  

 

Figure 3: Programmable CD circuit. 

The C-element is one of the fundamental and commonly used 

components in asynchronous circuits [4], it provides the hysteresis 
in the empty-to-valid and valid-to-empty transition required for 



NCL-EECE-MSD-2010-163, Newcastle University                                    Page 6 

transparent handshaking. It waits for all its inputs to be valid to set 
the output to high and waits for all its inputs to become empty to 
set the output to low. For other input combinations, the output 
does not change. C-elements are thus ideal for collecting the states 
of multiple channels. 

In our PLE design, a C-element, four 2-inputs OR gates and three 
multiplexers are use to form the PCD circuit as shown in Figure 3. 

The C-element used has four fixed inputs; every input must be 
able to produce a “valid” signal for the circuit to function. 
Depending on system design and configuration, some channels 
may not be used. Flexible channel selection is required for the C-
element in such cases. This is solved by using multiplexers to link 
an unused channel (B, C or D) to Channel A, which is assumed to 
be always in use if the PLE participates in the computation. 
Whether a channel among B, C and D is used or not in the 
application can be set by enabling or disabling the relevant MUX 
at program time. 

3.2.2 SW box 
The SW trigger switch box is also programmable. The trigger 
signal can be programmed to be either from the local PCD or from 
DC control via the F.DC signal. The F.DC signal is passed from 
the PLE below and to the PLE above in multi-PLE blocks. This is 
shown in Figure 4. 

 

Figure 4: SW box circuit. 

3.2.3 PD unit  
The conventional single-rail LE needs an equivalent local clock to 
function properly in the absence of a global clock system. One of 
the simplest approaches of building an asynchronous system using 
conventional data path elements from synchronous systems is 
known as “bundled data”. In this, delay elements are used to 

bundle the data path elements temporally and local control signals 
performing the equivalent functions of clocks are generated from 
the outputs of these delays. Correct bundling means that the delay 
element will have a good matching for the latency of the data path 
element being bundled.  Bundling local delays this way provides 
more flexibility than the global worst case assumptions needed for 
a global synchronous clock system, but the temporal control 
principles are the same. Here we use the delay bundling approach 
to control the LE within a PLE.  

 

 

Figure 5: Programmable delay (PD) circuit. 

The most basic delay circuit is typically made out of a chain of 
inverters. Because of variability, either environmental or physical, 
the latency characteristics of similar LEs in different parts of a 
chip may be different. A PD element has been designed here to 
cope with process variation. An example with four selectable 

ranges is shown in Figure 5. A MUX is used to provide the 
programmable selection of different points in the inverter chain to 
maintain the correct delay given specific operating conditions.  

This programmability in delay is useful provided information on 
variations is available at program time. Such information can be 
about the environment and power supply. It can even be about 
process variations post fabrication, providing a facility for chip-
wise programming or late binding [25] techniques. PDs in 
different blocks on a chip may be set differently based on 
information collected from a characterization process.  

There is a tradeoff between delay programming precision and PD 
overhead costs. In order to maintain average and not worst case 
performance under a wide variation range, higher delay 

programming precisions may be needed, resulting in larger area 
overheads in PDs. The dynamic power cost of delay bundling 
does not change with or without programmability. 

3.2.4 Single-rail to Dual-Rail Conversion Circuit  
Converting the single-rail data output from LE to dual-rail format 
for the DI interconnects is the responsibility of CONV in Figure 2. 
This simple circuit is shown in Figure 6.  

 

Figure 6: Converter (CONV) circuit. 

There is no need to perform overt dual-rail to single rail 
conversion at the input of LE because one of the data wires 
directly gives the single-rail binary value of valid code words. 
Once it has been made sure that spacers do not propagate to LE 
this wire can be directly used as an input. 

3.2.5 Gate count/area 

Asynchronous circuits tend to be bigger than synchronous ones. In 

the case of full SI/DI there are overheads in both the control 
circuits replacing clock systems and data path circuits because of 
the complex coding in such systems, e.g. dual-rail. Even bundled 
data systems tend to have a clock replacement consisting of delay 
units which are much more substantial than the clock wires they 
replace. 

With this additional investment, many advantages can be obtained 
including lower power consumption, better variation tolerance, 
avoiding the inevitable problems clock systems face with 
technology scaling, etc. 

Table 2 shows the complexity of our PLE. It is worth noting that 
the wrapper contains a similar number of circuit elements to LE 
itself. This means that our PLE is almost the twice as big in terms 
of size. However the following subsection shows that power does 
not increase significantly through power analysis.  



NCL-EECE-MSD-2010-163, Newcastle University                                    Page 7 

Table 2 PLE size in terms of numbers of transistors. 

BOX BLOCK Parts Included  Total 

Logic 
Element 

LUT SRAM * 16 96 

Mux Tree (K = 4)  
В ς  

30 

Buffer * 30 60 

DFF -  24 

2:1 MUX -  4 

Total: 214 

Wrapper PCD SRAM * 3 18 

2:1MUX * 3 12 

Gates  90 

SW 2:1MUX  * 1 4 

(PD)*2 (Buffer * 10) * 2 40 

(4:1MUX ) * 2  20 

(SRAM * 2)*2 24 

CONV 2:1MUX * 2 8 

Buffer 2 

CD OR2  6 

Total: 224 

3.2.6 Power comparison 

The proposed PLE is roughly twice the size of the normal PLE. 

Normally, larger circuits consume more power. Our new PLE 
uses asynchronous techniques to replace global clock tree. This 
should reduce power. The combined effect is uncertain. Even 
though power is not the main motivation for this work, it needs to 
be studied to see if there are radical changes to power 
consumption. 

 

Figure 7: Synchronous LUT and CD LUT 

We use one PLE as an example. As variations are introduced, it is 
hard to guarantee that the data will come at the same time. Here 
we assume the worst case where all four data bits come at 
different moments of time. This has no effect on synchronous 
FPGA as correct operations are guaranteed by the global clock 
signals. Only during the clock rising edge, the stable data is 
required. But this is obtained by spending power on clocks. In our 

structure, the data computation starts only when all data has come. 
The operation power consumption of conventional SRAM based 
LUT and Completion detection based LUT are investigated in a 
comparative study using the following setup (Figure 7). 

Experiment setup: 

1) Four signals, namely A, B, C and D, arrive at the input 

of LUT with different timing. 

2) Signal A is assumed to arrive last and other signals were 

changing before it become stable. (16 transitions 

between “0000” to “1111”, changing 1 bit at a time). 

3) When every signal including A eventually settles, 

output „1‟ will be produced. 

 
Figure 8: Synchronous LUT operation Power 

The simulation result is shown in Figure 8. When there is a 
transition in an input signal, power line will spike. In the 

synchronous circuit, every change of data between valid clock 
signals changed the state of the LUT address and consumes 
energy. On the other hand, in the asynchronous design, data will 
not be read out from the SRAM until it received the enable signal 
(En) from CD as shown in Figure 9. The spikes of power in 
Figure 9 are therefore from CD.  

 

Figure 9: Completion Detection LUT operation Power 

Table 3 Power and energy comparison between synchronous 
and asynchronous PLEs 

Circuit Operation 
Energy 

Single 
operation 

Power 

Operating  
Voltage 

Synchronous 
LUT 

1.118pJ 3.102mW  1V 

Completion 
Detection LUT  

1.152pJ 3.355mW  1V 

This simulation shows that although we have increased the size in 
the PLE circuit, it consumes roughly the same power and energy 
as the normal clock based LUT. If taking account the clock tree 

circuit and dynamic clock transition power, the proposed 
asynchronous LUT with CD may produce an overall better power 
consumption characteristic. The power figures can be found in 
Table 3. 



NCL-EECE-MSD-2010-163, Newcastle University                                    Page 8 

3.2.7 PLE behavior and performance 
This PLE implementation was constructed through the Cadence 
design process on UMC 90nm CMOS technology. Analog 
simulations show that the circuit works as designed without logic 
errors within the Vdd range of 0.45V~1V. The overall latency and 
energy per operation performance is shown in Figure 10. 

 

Figure 10: Energy and latency vs. Vdd. 

The circuit stops functioning correctly when Vdd is further 
reduced below 0.45V. On closer observation, it was noted that the 
bundling PD delays become faster than the units (LUT etc.) they 
are bundled with. This is an interesting phenomenon (noticed 

earlier in e.g. [25]) where usual delay elements based on inverter 
chains cannot maintain correct temporal bundling for memory 
type circuits (e.g. the SRAM cells here in the LUT) when Vdd is 
lowered towards the subthreshold region. This is because a 
mismatch between the rates of slowing down when Vdd is 
reduced for memory and inverter circuits. 

As long as the bundling was still working correctly, however, PLE 
works fine under different, but constant Vdds, and the energy and 
latency behaviors are not surprising. It is worth noting that there is 

not much of an increase in latency (2) by lowering Vdd to 0.6V 
but the energy savings can be quite significant. 

 

Figure 11: PLE working under variable Vdd. 

An investigation was then carried out to see how PLE behaves 
under constantly varying Vdd over the range in which it is know 

to work correctly. In this experiment, a relatively slow sinusoid 
signal between 1V and 0.45V was set as the Vdd pattern and PLE 
subjected to that. The LE was configured as an adder to calculate 
the sum of A, B, and C without carry, with the D data channel 
unused. All three used data lines are given the value of 1 when 
valid and they are switched out of spacer as soon as the previous 
round‟s completion detection is generated. In other words, in this 
experiment PLE works in a self-looping environment with the 

completion of one round providing the ready signal to trigger the 
next round. The simulation result is shown in Figure 11. 

From these results it can be seen that the circuit works under a 
continuously varying Vdd pattern smoothly without errors. The 
circuit is slower with lower power consumption when Vdd is 
reduced and faster with higher power consumption when Vdd is 
increased. The signal Valid is from the output CD block 

indicating that the data output lines have valid data values and not 
spacers. The data value “2” indicates binary value 1 because of 
the dual-rail coding ({1,0}=1) on the input and output signals. The 
data computation was correct (without carry, 1+1+1=1). 

3.3 Cluster Design 
The cluster, consisting of a group of PLEs, is the next level in the 
hierarchy of this FPGA architecture. The units in the same 
hierarchical layer in conventional FPGAs is known as the 

configurable logic block (CLB) in Xilinx terminology and logic 
array block (LAB) in that of Altera.  

Similar to most commercial FPGAs, our cluster (Figure 12) 
consists of four PLEs with the addition of one David Cell (DC) 
which forms part of a distributed intra-cluster and inter-cluster 
control. The general cluster structure is shown in Figure 12.  

 
Figure 12: Cluster with DC. 

The DC based distributed control in the cluster is used to 

propagate the control path. When input data is ready, PCDs in the 
PLEs in the cluster will generate trigger signals which can be 
collected by DC control for group triggering. Some PLEs may 
need to execute concurrently and others sequentially. SW between 
PCD and LE allows either the selection of self-trigger directly 
from its corresponding PCD for sequential operation or group-
trigger from DC for concurrent operation. After computation is 

completed, DC withdraws the data and propagates the control 
signal to the next stage. This structure also allows data feedback 
channels from the output of each PLE to the input PCDs of other 
PLEs. This will be discussed in more detail later. 



NCL-EECE-MSD-2010-163, Newcastle University                                    Page 9 

3.4 Programmable DC Circuit 
Distribution control using DCs was proposed in [10, 11]. Some 

extension work on direct mapping of asynchronous control 
circuits from Petri Nets to DCs were also reported in [12, 13].  

Each David cell includes an elementary two stage automaton. The 
overall system is therefore a product of such automatons.  

However the DC used here is not the same as conventional DCs as 

more flexibility is needed. This is because in this case, all four 
input signals are not necessarily always used in the DC as some 
PLEs may be involved in sequential operations. All depends on 
the configuration required. For example, if only two PLEs are run 
concurrently, only the two corresponding ready signals are used to 
configure the DC to propagate control and so on. 

Here the set and reset functions all need to be programmable. The 
basic structure of DC consists of three NAND gates and three 
logic blocks. A set of SET signals (s1 – s n) will trigger signal Q 
and the forward signal (Fw) based on the programmable logic 
blocks “Logic 1” and “Logic 2”. The RESET signals (r1 – r n) 

will reset DC back to its default state through programmable logic 
block Logic 3. This is schematically shown in Figure 13. 

 

Figure 13: DC structure. 

The programmable logic SET and RESET blocks are 
implemented with LUTs, which can be programmed to cover all 

possible combinational relations of their inputs. In this case each 
logic block has four inputs because our cluster structure has n=4. 
This is shown in Figure 14 in more detail. 

 

Figure 14: SET and RESET programmable logic boxes. 

In order to keep these SET and RESET programmable logic 
blocks to a practical scale, basic timing assumptions can be used 
within them. Although this makes these blocks not strictly SI, the 
delays within such small and local areas can be more easily and 
reliably managed. Based on this argument we have gone for small 
scale timing assumptions in this tradeoff.  

4. DESIGN FLOW 
Existing asynchronous FPGAs either need a completely new 
design flow to implement their fully SI/DI solutions or are 
designed based on desynchronization methods.  

 
SPEC (Verilog) 

Partition / 

Allocation / 

Scheduling 

Control Function 

blocks 
Global data 

links 

Petri net 

representation 

DC based 

control netlist 

Refinement 

based on 

granularity 

design 

Existing 

FPGA 

mapping for 

PLE & 

Cluster 

PLE & 

Cluster 

netlist 

Interconnects 

in DI 

Finish 
 

Figure 15 System design flow. 

By retaining the LE structure of conventional FPGAs and having 
a similar organization at the cluster level, our asynchronous FPGA 
architecture allows the synthesis of PLEs or clusters through the 

existing FPGA design flow to a large degree. Because of the 
replacement of clocks with the DC based distributed control, not 
all parts of the existing LE and LAB design flow can be directly 
applied. However, the basic mapping method should be directly 
applicable in principle, although modifications are needed to 
accommodate the new control structure.  

As for the DC based distributed control, direct mapping for 
asynchronous circuits provides a suitable solution for us. This is 
based on Petri net specifications of the control path which can be 
directly mapped onto a DC based control structure.  

Here we propose the design flow for systems using this 
asynchronous FPGA architecture in Figure 15. 

The system specification is assumed to be in a design language 
such as Verilog. This Verilog specification is passed to the next 
step where after partition, allocation, and/or scheduling, the 
design is divided into control, data path function blocks, and 
global data links. This step is similar to the automatic division of 

control and data paths in the process described in [12] and the 
techniques there can be re-used with minimal modification.  

Control is represented in Petri net models, which can describe all 
types of control flow which can be found in a Verilog system 
specification. For instance, common control elements such as 
fork, join, and arbitration can be represented by the Petri net 
models in Figure 16 which is taken from [12]. 



NCL-EECE-MSD-2010-163, Newcastle University                                    Page 10 

 

Figure 16: Petri net models of control elements. 

Such a Petri net control model can then be used to generate the 
DC based distributed control with the direct mapping techniques 

described in [12]. For example, as shown in Figure 16, the places 
in this Petri net model directly indicate DCs. In other words, for 
each place in the control Petri net model, a DC is specified in the 
final implementation. The transitions and connection topology 
among the DC places are implemented through the SET and 
RESET logic of the DCs and interconnections between them.  

The data path function blocks can be similarly derived through a 
step of colored Petri net modeling [12]. Once the general function 
blocks have been synthesized, they need to be refined based on 
the FPGA granularity for partitioning, depending on PLE and 
cluster sizes. This step is not available directly from [12]. 

However, this same step exists in converting a general VLSI 
design to FPGA implementation so the same methods can be 
applied. By keeping the PLE and cluster sizes of conventional 
FPGA we have made this step straightforward. This is then 
followed by obtaining PLE and cluster circuits using existing 
FPGA mapping techniques.  

The global data interconnect fabric mainly consists of the 
channels for data communication. In our design flow it is 
implemented in dual-rail DI circuits directly. Their generation is a 
straightforward process. 

5. DESIGN EXAMPLES 
This section describes example system designs which demonstrate 
possible ways of configuring systems on the architecture 
described in the preceding sections as well as the flexibility and 
features of this architecture.  

A four bit ripple-carry full adder shows the flexibility of intra-
cluster operation organization and independent DC control of 
PLEs. The second example of a 3-to-8 decoder circuit uses a 
single DC to control units in multiple clusters.  

5.1 Full Adder Implementation 
Figure 17 shows the implementation of a four bit ripple carry 
adder using two logic clusters. This is to demonstrate the typical 

behavior of the ripple carry adder where each stage of the adder 
wait until its previous stage has completed computation and 
propagated its carry output signal. 

Signals A0-A3, B0-B3 and CIN are assumed to be from the 
previous stage. The arrival of the signals can be in any order 
because of variable interconnect lengths and computation 
latencies, based on the overall DI inter-cluster communication 
assumption. When some of the inputs from the previous stage A0-
1, B0-1, CIN have arrived in Cluster 1, some of the PLEs in this 

cluster can start computing. For example, LE2 may start its 
computation to generate its carry out signal C1. The trigger signal 
for LE2 was generated from its corresponding PCD once valid 
A0, B0 and CIN signals are detected without any intervention 
from DC control.  

 

Figure 17: Four bit full adder. 

The C1 signal generated by LE2 is fed via an internal feedback 

channel (such channels are not shown in Figure 12 but are 
allowed in the architecture) to satisfy the PCD conditions of LE3 
and LE4. Their PCDs produce two trigger signals to DC, which is 
waiting to collect these along with the PCD Signal from PLE1. 
Once all three of these signals have been collected by DC, it 
generates a merged trigger signal for the parallel triggering of 
LE4, LE3 and LE1. This merged trigger signal is in fact passed 
through all four PLEs through a chain consisting of all four SWs. 

The SW in PLE2 will not generate a second trigger locally for 
LE2 because it is programmed to respond to its local PCD instead 
of the DC control. The resulting concurrent action among three 
PLEs (4, 3 and 1) generates three latched outputs S0, S1 and C2.   

After both clusters have completed their computations, the 
acknowledgement signal ACK will be generated by the output CD 
together with the output data to allow the previous stage to clear 
its data. There may not be a need to collect CDs from all PLEs for 
this acknowledgement as the designer may view the cluster as a 
small enough block so that internal timing assumptions can be 
made. In this case a subset of CDs may suffice to acknowledge 
the previous stage.  

After this, the forward signal (Fw) will then be generated once the 
previous stage releases its data and forwards the enabling token to 

the next stage to start a new round of operation. The same 
operation happens at the next stage interface and once the data has 
been consumed, the ACK coming from the right hand side will 
reset the DCs in both Cluster 1 and Cluster 2.  



NCL-EECE-MSD-2010-163, Newcastle University                                    Page 11 

The circuits in this example demonstrate that not all PLEs must 
have all the components included in Figure 2 in use. For instance, 
only when an acknowledgement signal is needed from a PLE will 
it use its right hand side CD block. It also demonstrates the 
flexibility and programmability of DC set and reset blocks. In this 
case the DC setting is not directly related to the PCD of PLE2. 

5.2 3-to-8 Decoder Implementation         
The example in this section helps to demonstrate that units in 
multiple clusters can be controlled with a single DC. Figure 18 
shows an implementation of a 3-to-8 decoder with two clusters. It 
can be used as an address decoder. The combination of A, B and 
C inputs causes one of the 8 output lines to be selected.   

 

Figure 18: 3-to-8 decoder. 

DC functions are configurable, for this example DC in Cluster 1 is 
configured as an AND gate. When A, B and C signals are detected 
in Cluster 1, the forward signal Fw will be sent to Cluster 2. As 
shown in Figure 18, the trigger line of DC 2 is linked with Cluster 
1. This allows parallel outputs to be generated from both Clusters. 
Only one ACK signal is required to acknowledge the previous 
stage, in this case it is from the right-hand side CD of PLE1. 
Again one RESET signal to DC will reset the logic in both 
clusters.  

6. CONCLUSIONS AND OUTLOOK 
This paper describes a detailed low level circuit realization of a 

previously proposed asynchronous FPGA architecture. Different 
from existing asynchronous FPGA architectures, it tries to strike a 
sensible balance between maintaining similarities to current 
synchronous FPGA structures whilst achieving full asynchrony in 
places where it matters most, i.e. in long interconnect links. We 
envisage that the proposed approach will allow more flexibility in 
adjusting possible levels of DI, according to the needs of 
reconfigurable logic applications, building on the strengths of type 
3 architecture compared with those of types 1 and 2. 

By keeping the single-rail data representation of current FPGAs 
“in the small” in combinational logic computation units, this 

architecture makes it possible for designers to use existing FPGA 
logic mapping tools in block design. By introducing delay-
insensitivity “in the large” into the inter-block long data links, it 
provides the advantages inherent to asynchrony to these 
interconnects, namely variation tolerance and latency robustness.  

Other advantages of such a hybrid structure include the lower size 
and power requirements for combinational logic circuits using 
single-rail data representation, and robust distributed 
asynchronous control and DI inter-block communication, which 
allow efficient computation and correct operation across a wide 
Vdd range. 

In order to realize such architecture, a number of structural 
choices were made and detailed hardware elements have been 

designed. It was decided that the granularity and block structures 
should broadly follow the practice in current commercial FPGAs.  

The basic building block of the architecture, the programmable 

logic element (PLE), has been designed in detail. It includes a 
number of finer grain components, including a logic element (LE) 
inherited directly from current commercial FPGA, completion 
detection circuits and delay matching / data bundling circuits.  

Some of the completion detection and the bundling delays in the 
PLE are programmable to cater for functional configurability and 
variation tolerance concerns.  

This type of PLE has been demonstrated to work under variable 
Vdd across a wide range, with reasonable latency and energy 
behavior.  

On the level above PLEs are the clusters. The standard cluster has 
been designed with a David Cell (DC) distributed control unit 
managing the operations of the PLEs in a cluster. This 
asynchronous control fully replaces the intra-cluster clock system 
in current commercial FPGAs providing the complete equivalent 
functional set, which includes both parallel and sequential 
operations of the PLEs in any possible arrangement.  

A design flow for systems in this architecture has been proposed 
which makes maximal use of existing asynchronous and FPGA 
synthesis methods. 

Two case studies have been carried out to demonstrate the 
functional capabilities of the architecture. A four-bit ripple carry 

full adder showcases the flexibility of intra-cluster DC control. A 
3-to-8 decoder additionally demonstrates inter-cluster control 
from a single DC. 

It is our plan to carry out comprehensive comparative studies 
between systems constructed in our architecture and in other types 
of asynchronous FPGA architectures. We also plan to further 
develop and complete the design and synthesis flow, including a 



NCL-EECE-MSD-2010-163, Newcastle University                                    Page 12 

fully automatic synthesis method, for the architecture studied in 
this paper. 

7. ACKNOWLEDGMENTS 
Special thanks for Dr Stephen Bell from Rutherford Appleton 
Laboratory for his support in using different Cadence design tool 
kits and simulation techniques. This work is supported by EPSRC 
grant Holistic (EP/G066728). 

8. REFERENCES 
[1] Boning, D. S. and Nassif, S. 2001. Models of Process 

Variations in Device and Interconnect. In Design of high-
performance microprocessor circuits A. Chandrakasan, W.J. 
Bowhill, F. Fox Eds. IEEE Press: New York. 98 - 116. 

[2] International Technology Roadmap for Semiconductors.   
Available from: http://www.itrs.net/. 

[3] Singh, A. and Marek-Sadowska, M. 2002. FPGA 
interconnect planning. In Proc. 2002 international workshop 
on System-level interconnect prediction. ACM: San Diego, 
Cal, USA. 

[4] Sparsø, J. and Furber, S. 2001. Principles of asynchronous 
circuit design - A systems perspective. Kluwer Academic 
Publishers. 

[5] Delong, S., X. Fei, and A. Yakovlev. Asynchronous FPGA 
architecture with distributed control. In Circuits and Systems 
(ISCAS), Proceedings of 2010 IEEE International 
Symposium on. 

[6] Rose, J., El Gamal, A. and Sangiovanni-Vincentelli, A. 1993. 
Architecture of field-programmable gate arrays. In 
Proceedings of the IEEE. 81, 7 (1993), 1013-1029. 

[7] Betz, V. and Rose, J. 1998. How much logic should go in an 
FPGA logic block. In Design & Test of Computers. 15, 
1(1998), 10-15.  

[8] Ahmed, E. and Rose, J. 2004. The effect of LUT and cluster 
size on deep-submicron FPGA performance and density. In 
IEEE Trans. VLSI. 12, 3 (2004), 288-298. 

[9] Koun, I., Russell, T. and Rose, J. 2008. FPGA Architecture: 
Survey and Challenges. In Found. and Trends in Electron. 
Des. Autom. 2, 2 (2007), 135-253. 

[10] David, R., 1977. Modular Design of Asynchronous Circuits 
Defined by Graphs. In IEEE Trans. Computers. 26, 8 (1977), 
727-737. 

[11] Varshavsky, V. and Marakhovsky, V. 1996. Support for 
discrete event coordination. In Proc. Int. Workshop on 
Discrete-event Systems (WODES, August 1996), 332–340. 

[12] Shang, D. et al. 2004. Asynchronous system synthesis based 
on direct mapping using VHDL and Petri nets. In IEE 
Proceedings ï CDT. 151, 3 (2004), 209-220. 

[13] Shang, D. 2003 Asynchronous communication circuits: 
Design, test, and synthesis. PhD thesis. University of 
Newcastle upon Tyne.  

[14] Kulkarni, S. H., Sylvester, D. and Blaauw D. 2006. A 
Statistical Framework for Post-Silicon Tuning through Body 
Bias Clustering. In Proc. IEEE/ACM ICCAD 2006 (San Jose, 
CA, USA. Nov 5-9, 2006), 39-46.   

[15] Chopra, K., et al. 2005. Parametric yield maximization using 
gate sizing based on efficient statistical power and delay 
gradient computation. In Proc. IEEE/ACM ICCAD 2005 
(Ann Arbor, MI, USA. Nov. 6-10, 2005), 1023-1028.   

[16] Cheng, L. et al. 2006. FPGA Performance Optimization Via 
Chipwise Placement Considering Process Variations. In 
Proc. FPL 2006 (Aug 2006).   

[17] Sivaswamy, S. and Bazargan, K. 2008. Statistical Analysis 
and Process Variation-Aware Routing and Skew Assignment 

for FPGAs. In ACM Trans. Reconfigurable Technol. Syst. 1, 
1 (2008), 1-35. 

[18] Payne, R. 1996. Asynchronous FPGA architectures. In IEE 
Proceedings ï CDT. 143, 5 (1996), 282-286. 

[19] Hauck, S. et al. 1994. An FPGA for implementing 

asynchronous circuits. In Design & Test of Computers, 11, 3 
(Autumn 1994). IEEE. 

[20] Teifel, J. and Manohar, R. 2004. An asynchronous dataflow 

FPGA architecture. In IEEE Trans. Computers. 53, 11 (Nov 
2004), 1376-1392. 

[21] Achronix Semiconductor Corporation. Available from: 
http://www.achronix.com/. 

[22] Royal, A. and Cheung, P. 2003. Globally Asynchronous 

Locally Synchronous FPGA Architectures, In Proc. FPL 
2003. Springer Berlin / Heidelberg. 355-364. 

[23] Najibi, M. et al. 2005. Prototyping globally asynchronous 

locally synchronous circuits on commercial synchronous 
FPGAs. In Proc. RSP 2005 (Montreal, Canada, June 08 – 
June 10).  

[24] Jia, X. and Vemuri, R. 2005. Using GALS architecture to 
reduce the impact of long wire delay on FPGA performance. 
In Proc. ASP-DAC 2005 (Jan 18-21, 2005), 1260-1263. 

[25] Baz, A. et al. 2010. Self-timed SRAM for energy harvesting 
systems. In Proc. PATMOS 2010 (Grenoble, France, Sept 7-
10, 2010). 

[26] Sedcole, P. and Cheung, P. C. Y. Within-die variations in 
FPGAs: disaster or opportunity? Poster, Imperial College 
London. Available from: 
http://www3.imperial.ac.uk/pls/portallive/docs/1/41113698.P
DF. 

 

 

 

http://www.achronix.com/

