
School of Electrical, Electronic & Computer Engineering

Automated Generation of Processor Architectures in
Embedded Systems Design

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans

Technical Report Series

NCL-EECE-MSD-TR-2010-164

November 2010

Contact:

maxim.rykunov@ncl.ac.uk

andrey.mokhov@ncl.ak.uk

alex.yakovlev@ncl.ac.uk

albert.koelmans@ncl.ac.uk

Supported by EPSRC grants EP/C512812/1 and EP/G037809/1.

NCL-EECE-MSD-TR-2010-164

Copyright c© 2010 University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,

Merz Court,

University of Newcastle upon Tyne,

Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans

Microelectronics System Design Group, Newcastle University, UK

Abstract

Automated design of processor architectures has traditionally been focused on the clocked pipeline

organisation consisting of a fairly standard datapath and control logic. As the area of processor design

automation is becoming increasingly inclusive of system paradigms that are heterogeneous in terms

of timing, such as multiclock and asynchronous circuits, there is a need for appropriate models and

associated synthesis algorithms.

This paper approaches the problem of designing control logic for a processor using Conditional

Partial Order Graphs (CPOGs). The new method allows composing a large set of microarchitectural

algorithms (instructions) into a compact relational form, which opens way for various transformation

and optimisation procedures leading to an e�cient implementation of control logic. In this paper we

present a CPOG-based design methodology, demonstrate its application to synthesis of control logic

and datapath for an asynchronous microprocessor. Our approach is compared with synchronous and

asynchronous BALSA-based designs it terms of power and performance using Altera FPGA platform.

1 Introduction

Nowadays microprocessor designers face new challenges associated with the rapidly changing require-

ments for power consumption, high performance, area e�ciency, etc., as well as demand for shorter time

to market and greater productivity. To date, there exist approaches and associated EDA (Electronic

Design Automation) support for automated generation of Application Speci�c Instruction set Processor

(ASIP) [1, 2]. They show a general processor design environment based on micro-architectural descrip-

tion of instruction algorithms. For example, the PEAS-III system [3] allows the generation of a complete

tool-suite and includes a compiler, assembler, linker and simulator; the MetaCore system [4] is a bench-

mark driven ASIP development system, based on a formal representation language (see also the Xtensa

system [5], the EPICS system [6], etc.). While these methodologies have reached signi�cant levels in au-

tomating the whole design process, they are limited to design of synchronous systems. However, modern

processors are increasingly diversi�ed in timing modes, which calls for new ways of handling concurrent

and asynchronous interactions.

In principle, one could apply a recently developed desynchronisation method, where the synchronous

design is converted automatically into a asynchronous one [7, 8, 9]. Desynchronisation has the advantage

of minimal changes in the conventional design �ow, and may be an appropriate way towards design reuse,

i.e. obtaining new asynchronous implementations from existing synchronous designs. In the event of a

rapidly evolving processor speci�cation, a more �direct� way of incorporating new instructions and their

microarchitectural algorithms will be needed.

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 1

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

Figure 1: Conceptual view of the design process

There are direct methods in asynchronous design and they have been applied to CPUs. However they

are known to lead to ine�cient implementations, especially in terms of area and performance [10, 11, 12].

This is caused by the fact that multiple algorithmic procedures for a large set of instructions require

explicit enumeration of all alternatives. Syntax-directed methods instantiate every branch as a hardware

control thread, thereby leading to large overheads.

The key part in a microprocessor control speci�cation is the description of instructions. Each instruc-

tion corresponds to a schedule of primitive actions such as data transfer, arithmetic operation, memory

access, etc., which are performed by operational units (datapath components). The design of instruction

sets for a particular combination of operational units and software requirements is a di�cult task [2].

Moreover, it is worth mentioning that there is a signi�cant di�erence between designing CPU control and

other types of hardware. Namely, microprocessor control contains many algorithms, which are associated

with a variety of instructions rather then a single algorithm, which is commonly present in random logic

design.

The goal of this paper is to show that the CPOG-based design methodology can help to signi�cantly

improve the design space exploration. Moreover our �ow has the ability for a quick and easy retarge-

ting of the synthesised processor and control logic. We also want to demonstrate the high potential

of our approach in terms of performance and power consumption characteristics in comparison to exis-

ting synchronous and asynchronous design methodologies. Comparisons were done by running the same

benchmark program on processors synthesised using di�erent approaches.

The main contribution of this work is a new design �ow for automated synthesis of CPU control as

a composition of scheduled algorithms of CPU instructions (see Figure 1). It is particularly important

to consider this �ow in the context of diversifying requirements, such as high performance, low power

consumption, high security, etc. This �ow is based on a new model: Conditional Partial Order Graphs

(CPOG). CPOGs facilitate systematic transformation of a superposition of microarchitectural control

algorithms into a netlist for the central control logic of a CPU.

The rest of this paper is organised as follows. In Section 2 we discuss the motivation for a model

to describe the microarchitectural level of CPU design and other goals in achieving an e�ective design

�ow for synthesis of control circuits for microprocessors. Section 3 provides a quick overview of a new

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 2

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

model for system speci�cation and synthesis � CPOG. Section 4 outlines the whole proposed design �ow.

Section 5 illustrates the application of the �ow to the synthesis of control for Intel's 8051. In Section

6 we discuss our approach in terms of power and performance and compare it with synchronous and

asynchronous BALSA-based designs. Finally we summarise the contribution of this paper and discuss

the future work in Section 7.

2 Motivation for a new model

As processors become more diverse in terms of timing, the conventional FSM-oriented approach to desi-

gning their control logic starts to hit fundamental limitations. An FSM captures behaviour of a system

using an explicit set of states and transitions between these states. There is a direct correspondence

between the states of an FSM and those of the modelled system, which leads to problems in terms of

concurrency speci�cation. For example, to specify n concurrent events, the designer has to explicitly

specify 2n intermediate states, each of them corresponding to a state, where a subset of these n events

have already happened. There are 2n di�erent subsets of a set of n events, hence the number of the

required states [13] [14]. This brings us to the �rst requirement for a new model: it should be able to

capture concurrency without explicit enumeration of all possible event interleavings.

Models like Petri Nets (PNs) [15] and Signal Transition Graphs (STGs) [16] are able to capture

concurrency and choice at a very �ne level, and produce more compact and faster control circuits than the

methods based on syntax-directed translation from HDLs. However, they are built on the explicit listing of

all the event traces and causal relations of a system, what limits their applicability to microcontrollers with

a rather small state space. Processors may contain hundreds of encoded instructions, each a microprogram

operating on a shared set of datapath components. It is practically impossible to specify such systems

using PNs or STGs, as demonstrated in [13].

Another requirement for a new model is expressiveness: it should be expressive enough to cover

a wide range of solutions for di�erent optimisation criteria, thus enabling a prompt retargeting of the

synthesised processor for varying and often con�icting optimisation goals. For example, we can retarget

a CPU architecture in order to:

• minimise power consumption � this can be achieved by reducing the width of buses between datapath

components and/or by using low-power components; this inevitably a�ects the performance of the

system and necessitates rescheduling of the execution of the instructions.

• maximise performance � this can be achieved by increasing the number of functional units, their

bit-width and therefore their performance; the instructions are to be rescheduled in a maximally

concurrent way.

• optimise the architecture for a particular software application � this may involve complete re-

encoding of the instructions, taking into account their statistical properties.

• etc.

The Conditional Partial Order Graph model introduced recently [14, 17] satis�es all the requirements and

provides a formal framework for speci�cation, veri�cation and synthesis of processor microarchitectures.

In this paper we present a processor design methodology built around this model. The next section brie�y

introduces the CPOG model.

3 CPOG essentials

Conditional Partial Order Graph [13, 14] is a quintuple H(V, E, X, ρ, φ), where V is a �nite set of

vertices, E ⊆ V × V is a set of arcs between them, and X is a �nite set of operational variables. An

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 3

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

opcode is an assignment (x1, x2, . . . , x|X|) ∈ {0, 1}|X| of these variables; X can be assigned only those

opcodes which satisfy the restriction function ρ of the graph, i.e. ρ(x1, x2, . . . , x|X|) = 1. Function φ

assigns a Boolean condition φ(z) to every vertex and arc z ∈ V ∪ E of the graph.

In the context of processor microarchitecture we interpret vertices V as data path components whose

order of execution is determined by an instruction code provided by operational variables in X. The

order is captured in the precedence relation E which is conditional (every vertex or arc z ∈ V ∪E has an

associated condition φ(z)). The restriction function ρ e�ectively lists all the allowed instruction codes.

(a) Full notation (b) Simpli�ed notation

Figure 2: Graphical representation of CPOGs

Figure 2(a) shows an example of a CPOG containing |V | = 5 vertices and |E| = 7 arcs. There

is a single operational variable x; the restriction function is ρ(x) = 1, hence both opcodes x = 0 and

x = 1 are allowed. Vertices {a, b, d} have constant φ = 1 conditions and are called unconditional,

while vertices {c, e} are conditional and have conditions φ(c) = x and φ(e) = x respectively. Arcs also

fall into two classes: unconditional (arc (c, d)) and conditional (all the rest). As CPOGs tend to have

many unconditional vertices and arcs we use a simpli�ed notation in which conditions equal to 1 are not

depicted in the graph. This is demonstrated in Figure 2(b).

Figure 3: Multiple CPOG projections

The purpose of conditions φ is to `switch o�' some vertices and/or arcs in the graph according to

the given opcode. This makes CPOGs capable of specifying multiple partial orders or instructions (a

partial order is a form of behavioural description of an instruction). Figure 3 shows a graph and its two

projections. The leftmost projection is obtained by keeping only those vertices and arcs whose conditions

evaluate to 1 after substitution of the operational variable x with 1. Hence, vertex e disappears, because

its condition evaluates to 0: φ(e) = x = 1 = 0. Arcs {(a, d), (a, e), (b, d), (b, e)} disappear for the
same reason. The rightmost projection is obtained in the same way, with the only di�erence that variable

x is set to 0. Note also that although the condition of arc (c, d) evaluates to 1 (in fact it is constant

1), the arc is still excluded from the resultant graph because one of the vertices it connects (vertex c) is

excluded, and obviously an arc cannot appear in a graph without one of its vertices. Each of the obtained

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 4

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

projections can be treated as a speci�cation of a particular behavioural scenario of the modelled system.

Potentially, a CPOG H(V, E, X, ρ, φ) can specify an exponential number of di�erent partial orders of

events in V according to one of 2|X| di�erent possible opcodes.

To conclude, a CPOG is a structure to represent a set of encoded partial orders in a compact form. The

synthesis and optimisation methods presented in [14, 18] provide a way to obtain such a representation

given a set of partial orders and their opcodes. For example, the CPOG in Figure 3 can be synthesised

automatically from the two partial orders below it and the corresponding opcodes x = 1 and x = 0.

4 Proposed design �ow

Figure 1 shows an overview of the process that can be used to generate control logic of a CPU.

Speci�cation of such a complex system as a processor usually starts at the architectural level [19].

This helps designers to deal with the system complexity by structural abstraction: the whole system

is divided into several subsystems in a such way that each of them can be designed individually, thus

signi�cantly simplifying the whole design �ow and reducing the solution search space. As stated in the

introduction, the next particularly important step is re�ning the architecture to the level of scenarios or

instructions, each of which corresponds to a schedule of primitive actions. In this aspect, the whole design

�ow can be separated into 3 subsections: system speci�cation, synthesis and physical implementation.

4.1 System speci�cation

First of all, we need to de�ne the set of instructions (behavioural scenarios) and datapath components of

the microprocessor. There are several ways to do this:

• Extraction from legacy software

Components and instructions can be extracted from some legacy software (could be written in C/C++,

Assembly language, etc.).

• Using Architecture Description Languages (ADLs)

The ADL speci�cation is used to help in performing di�erent design automation tasks, e.g. hardware

generation and functional veri�cation of processors. There are several categories of ADLs, based on

the nature of the available information, such as: structural ADLs (e.g. MIMOLA [20], UDL/I [21]),

behavioural ADLs (e.g. nML [22], ISDL [23]), mixed ADLs (e.g. LISA [24], EXPRESSION [25]) and

partial ADLs (e.g. AIDL [26]).

• Other instruction speci�cations

There can be some other sources, such as a list of instructions obtained from a microprocessor speci�cation

(e.g. a CPU manual). This type of speci�cation is not formal and therefore should be processed manually.

In order to distinguish scenarios, they need to be encoded with Boolean vectors. These encodings

can be assigned arbitrarily or can be provided as part of system speci�cation. Importantly, the size and

latency of the �nal microcontroller circuit depends signi�cantly on the chosen encoding of the scenarios.

Section 5 presents an example of a binary encoding scheme for a given set of scenarios. However, other

types of encoding can also be used, such as one hot, matrix, balanced and others [17, 13].

4.2 Synthesis

Once the behavioural scenarios and datapath components of the system are speci�ed and encoded, it

is possible to synthesise a CPOG which contains all of them by using algebraic techniques described

in [13, 14]. At this stage the obtained CPOG can be viewed as an intermediate model for a compact

representation of the system behaviour, which will be further mapped onto a gate-level circuit. Therefore

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 5

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

it is not necessary for the designer to be familiar with the CPOG-based theory in order to use the proposed

design �ow.

Figure 4: Synthesised CPOG

It is important to mention the �exibility of the CPOG-based methodology, in the sense that CPOG

synthesis is possible not only from partial orders, it can also be a mixture of partial orders and CPOGs.

This allows a complete reuse of the existing CPOG speci�cations without their decomposition into sepa-

rate partial orders, so that one can add a new instruction into the speci�cation of a system and avoid its

complete resynthesis.

There are several possible optimisation techniques at this stage, which can reduce the size of a given

CPOG using logic minimisation and by exploiting the structural graph properties. It is particularly

important that the size and latency of the obtained microcontroller strongly correlates with the complexity

of the original graph, therefore it is crucial to optimise the CPOG speci�cation as far as possible by the

application of CPOG optimisation techniques [13, 18].

4.3 Physical implementation

The �nal stage of the our automated generation of control logic is mapping the CPOG representation

into a set of logic gates. As soon as the CPOG speci�cation of a system is synthesised it can be mapped

onto Boolean equations in order to produce a physical implementation (gate-level netlist) of the speci�ed

microcontroller. The size of the resulting Boolean equations is linear in the size of the CPOG. The details

of translating of CPOGs into Boolean equations can be found in [13, 14]. Finally, we can translate them

to VHDL, Verilog or other HDL (Hardware Description Language) and/or input these equations into the

technology mapping and Place and Route (P&R) tools. See the example in the next Section.

Along with hardware mapping we have to perform software mapping, i.e. the compilation of the

program code from a given legacy software. The compilation result is stored in the program memory.

Our design process, de�ned in Figure 1, shows that the interface between control and operation

components is based on a handshake protocol. This allows signi�cant �exibility in developing or reusing

the datapath of the controller. Due to the handshake protocol, the full power of partial orders can

be exploited, because the timing of control events is not bounded to particular delay constraints. The

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 6

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

advantages of such an approach have been recently applied to the designs in [27, 28, 29]. All information

about the number and type of the CPU components, such as registers, program counter, ALU (Arithmetic

logic unit), etc., can also be extracted from the legacy software and later on added to the design.

In the next section we present an example of control logic synthesis.

5 Example of control logic synthesis

Regarding our design �ow, �rst of all we need to specify the instructions of the microprocessor. We chose

the instruction set from the core of the Intel 8051 microcontroller, as it is a well-known, popular CPU

and still used in many applications even nowadays.

Extractions of components. Functional components, such as PCIU, ALU, IFU, etc. can be

extracted from the given instruction set (see Figure 4), moreover each functional block can be use several

times in one partial order, what is shown as PCIU/2, PCIU/3, IFU/2 etc.

Components Description

PCIU Program Counter Increment Unit

IFU Instruction Fetch Unit

ALU Arithmetic Logic Unit

MAU Memory Access Unit

SIDU Stack pointer Increment Decrement Unit

Extractions of partial order for instructions. The Intel 8051 microcontroller's instruction set

contains 110 instructions. Many of them have the same partial order representation, so we group them

into 20 classes. For instance, one of the classes corresponds to a group of ALU operations (namely,

ALU op. #data to Rn). In this set of instructions one of the operands is a register and the other is an

immediate constant (e.g. MOV A, #1 � move 1 to accumulator, ANL A, #1 � bitwise "AND" operation

between accumulator and 1). Figure 5 shows the partial order of the actions for such an instruction.

First, the constant has to be fetched into the Instruction Register (IR) � execution of components PCIU

and IFU. Then ALU is executed concurrently with an increment of Program Counter (PC). Finally, it is

possible to fetch the next instruction into IR.

Other instructions are described in the same way.

Encoding of partial orders. In order to distinguish between the synthesised partial orders, we need

to encode them. As stated in the proposed �ow, the chosen type of encoding has signi�cant in�uence

on the size and complexity of their CPOG composition. We used a binary encoding scheme. As we

grouped all the instructions into 20 classes, we need at least 5 bits to encode them, i.e. assign opcodes

{00000, 00001, ...10011}. Figure 5 shows that opcode 00000 was given to our example class. This encoding
scheme has been chosen for the sake of simplicity; it might not be optimal in terms of area, performance

or latency of the �nal microcontroller circuit. The decision as to which encoding has to be used in the

�nal design is governed by the overall opimisation criteria, as pointed out in Section 2.

Figure 5: ALU op. #data to Rn

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 7

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

CPOG generation. Now, we have speci�ed and encoded all the partial orders of the microcontroller.

We can proceed to synthesis of a CPOG containing all of them. Figure 4 shows the obtained CPOG,

which contains 15 vertexes and 46 arcs between them and with 5 opcode variables we obtained 225 literals.

This result shows that it is a compact implementation and it would be impossible to describe this control

circuit in such a compact form by using other techniques, such as FSMs. Most of the vertices and arcs

have conditions, depending on which a pacticular partial order can be active or disabled. Our example

partial order from Figure 5 is highlighted in Figure 4. Its elements are activated in accordance with the

evaluation of the conditions on the operational code 00000.

Mapping. We can translate the obtained CPOG into Boolean equations using algebraic tech-

niques [13, 18]. Then these equations are imported into Altera's Quartus II tool for technology mapping

into FPGA. The mapping result as a Register Transfer Level (RTL) netlist is shown in Figure 6. As a

result our control circuit placed on the chip EP1S10F780I6 from the Altera Stratix family contains 106

logic elements, which is about 1% of the total chip area.

The synthesised control circuit was simulated using the same EDA tool. The results con�rmed the

correct implementation of the handshake protocol between the controller and data path components, and

the expected orders of component activation according to the instructions.

The future work intends to validate the new CPU design �ow by implementing both a control and

datapath for the 8051 microprocessor in hardware, �rst as FPGA and as ASIC later on. This will

include experiments with di�erent types of operational units (e.g. bundled data, dual-rail), and di�erent

encodings to best �t the given program benchmarks and hardware requirements.

Figure 6: Synthesis of circuit implementation

6 Benchmark and Comparison results

To compare the presented methodology with existing approaches we decided to specify and synthesise a

simpli�ed processor with a minimal instruction set capable of executing the following simple program:

Algorithm 1 Benchmark program

Lab1: MOV A, #FF
Lab2: DEC A

JNZ Lab2
JMP Lab1

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 8

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

The processor should contain 3 operational units (PCIU, IFU, ALU) and should support execution

of 5 instructions (NOP, MOV, DEC, JNZ, JMP). The units perform the following primitive actions:

PCIU increments the program counter (PC), IFU fetches the next instruction or operand into instruction

register (IR), and ALU can copy data between registers and subtract one register from another. The

instructions execute the following sequences of these primitive actions:

• NOP (No operation) instruction does nothing except incrementing the program counter (PCIU)

and fetching the next instruction (IFU) as shown in Figure 7(a).

• MOV A, #FF (loads constant value #data into accumulator A). The constant is given immediately

after the instruction opcode (so called immediate addressing mode). Figure 7(b) shows the partial

order of actions for this operation. At �rst, the constant has to be fetched into the IR (actions

PCIU and IFU). Then an ALU operation is performed (copying the constant to the accumulator)

concurrently with another increment of the PC. Finally, it is possible to fetch the next instruction

opcode into the IR.

• DEC decrements the accumulator concurrently with the next instruction fetch, as shown in Fi-

gure 7(c).

• JNZ #123 is a conditional branching operation (Jump to #123 if Not Zero): if the accumulator

contains zero the program continues with the next instruction, otherwise the speci�ed address is

copied to the PC (similarly to MOV) � see Figure 7(d). At �rst, PC is incremented so that it points

to the constant (the branch address). Then if the accumulator is zero (signi�ed with variable z) the

PC is incremented again and the next instruction is fetched (the upper branch of the conditional

partial order). If the accumulator is not zero then the address is fetched into the IR and copied

into the PC (the lower branch IFU→ALU), followed by fetching the next instruction.

• JMP #123 performs an unconditional jump operation (Jump to #123): the speci�ed address,

where the program should continue its execution, is given immediately after the instruction opcode.

Figure 7(e) shows the partial order of actions for this operation. At �rst, the address has to be

fetched into the IR (actions PCIU and IFU). Then the ALU operation is performed � the address

is copied into the PC, followed by fetching the next instruction from this address.

The �ve instructions can be overlaid into the single CPOG shown in Figure 8. The instructions are given

sequential 3-bit opcodes 000, 001, 010, 011, 100 for simplicity.

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 9

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

IFUPCIU

(a) Partial order representation
of NOP instruction

IFUPCIU IFU/2

PCIU/2

ALU

(b) Partial order representation of MOV ins-
truction

IFUPCIU

ALU

(c) Partial order representation of
DEC instruction

1
z

IFU: !z ALU: !z

PCIU/2: z

PCIU IFU/2

(d) Partial order representation of JNZ ins-
truction

PCIU IFU ALU IFU/2

(e) Partial order representation of JMP ins-
truction

Figure 7: Graphical representation of partial orders

!b+a

done

ALU: a*(!z+!b)+b*!a+cIFU: !b+!a+!z

go IFU/2: c+a

PCIU/2: a*(z+!b)

0
b

0
c

PCIU

1
a

0
z

Figure 8: Graphical representation of CPOG

The block diagram, see Figure 9, represents the whole internal structure of our microprocessor: the

control logic, which was synthesised with CPOG-based methodology and the datapath to support the

instruction execution, which contains PCIU, IFU, ALU units and IR (the accumulator register is

considered to be a part of the ALU). As the whole approach is asynchronous, all these components

communicate using request and acknowledgement signals. Furthermore there are Data_In and

Data_Out signals, which represent input and output data for the ALU.

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 10

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

ALU_ack

C
on

tr
ol

 L
og

ic

IFU_ack

PCIU_ack

Go

Opcode

ALU_req

IFU_req

PCIU_req

Done

Program Counter
Increment Unit PCIU_ack

Instruction Fetch
Unit

Instruction address

Fetched Data

Arithmetic Logic
Unit

New PC

Instruction
Register

Data In

ALU_ack

Data Out

OpcodeStart Done

Figure 9: CPU block diagram

We simulated our design with the QuartusII tool and then placed and tested it on two di�erent Altera

FPGA platforms: Flex10K � EPF10K70RC240 and CycloneIII � EP3C16F484C6. Our approach was

compared with a synchronous implementation of the same basic processor and an asynchronous Balsa

implementation.

The synchronous implementation was synthesised using the QuartusII tool from VHDL code (see

Appendix for full listing).

The asynchronous implementation was obtained using the Balsa language, and then compiled into a

handshake circuit with the Balsa compiler. Each handshake component has a gate level implementation,

thus Balsa can automatically generate them into a Verilog netlist for Xilinx or Altera synthesis tools.

In addition, to reduce the area cost, four-phase bundle-data protocol was chosen instead of a dual-rail

protocol.

In order to compare our design with the listed implementations, the same benchmark program (Al-

gorithm 1) was executed on each of the designs on di�erent FPGA boards. The performances and power

consumptions are summarised in Table 1.

Type of

processor

FPGA

platform

Perfor-
mance

MIPS1

MIPS/W

Total
power

mW

Average
Power Dyna-
mic/Static

mW

Area (logic

elements)/%

of total

available on

chip

Our custom CPU

implementation
Flex10K 18 - - - 185/5%

Cyclone III 31 405 74 2.5/52 198/1%

Synchronous

implementation

Flex10K

18 MHz
8 - - - 144/4%

Cyclone III

100 MHz
21 290 73 1.5/54 105/<1%

Asynchronous

Balsa

implementation

Flex10K 13 - - - 1548/42%

Cyclone III 20 190 118 6.2/111 1510/10%
1 MIPS - Million Instructions Per Second

Table 1: Performance and power consumption comparison with other implementations

From the results we can see that our approach has the best performance among all of the implemen-

tations: more than 38% (Flex10K) and 55% (Cyclone III) compared to Balsa implementation; regarding

the synchronous approach � 125% (Flex10K) and 47% (Cyclone III). However power consumption and

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 11

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

the total amount of logic elements in synchronous design is better. The reason for this is that the data

path in our implementation was designed manually and can be optimised futher, however the circuit

implementation of the synchronous one was synthesised from VHDL code.

No power consumption was measured for the Flex10K FPGA platform, because Quartus II does not

support such measurements for this board, but we can still compare the performance in terms of MIPS

and area in terms of logic elements needed.

The maximum frequencies which can be obtained from the synchronous approach are 18 MHz for

Flex10K and 100 MHz for Cyclone III.

The Balsa design shows also a high performance rate, however the total amount of needed logic

elements and therefore power consumption is higher. This can happen because, as opposed to CPOG-

based methodology, the Balsa tool control of instruction can be written as a �case statement�:

case (IR as SSEMInst).Func of

JMP then MemoryREAD (); ZeroPC (); AddMDRToPC()

| LDN then MemoryREAD (); ACC_slave:=(MDR as word)

| SUB then ACC_slave:=(ACC - 1 as word)

| TEST then

if #ACC [31]

then IncrementPC () end

end;

See Appendix for complete code of Balsa implementation.

7 Conclusion and Future Work

We have presented a new design �ow for speci�cation and synthesis of processor control logic. We used a

new formal model for the description of instruction sets, to deal with concurrency and prompt retargeting

of the CPU.

The presented example of control logic synthesis shows the capability of proposed design �ow and the

potential bene�ts of CPOGs-based methodology.

Our future work will focus on implementation of complete implementation of asynchronous CPU

Intel 8051, optimisation techniques for the current �ow, such as implementing other types of instructions

encodings and further development of self-timed pipelining within the represented methodology.

Acknowledgement

This work was supported by EPSRC grants EP/C512812/1 and EP/G037809/1.

References

[1] Mishra and Kejariwal. Rapid exploration of pipelined processors through automatic generation of

synthesizable rtl models. In RSP '03: Proceedings of the 14th IEEE International Workshop on Rapid

System Prototyping (RSP'03), page 226, Washington, DC, USA, 2003. IEEE Computer Society.

[2] Sche�er and Grant Martin. EDA for IC System Design, Veri�cation, and Testing (Electronic Design

Automation for Integrated Circuits Handbook). CRC Press, Inc., Boca Raton, FL, USA, 2006.

[3] Makiko Itoht and Shigeaki Higakit. Peas-iii: An asip design environment. In ICCD '00: Proceedings

of the 2000 IEEE International Conference on Computer Design, page 430, Washington, DC, USA,

2000. IEEE Computer Society.

[4] Jin-Hyuk Yang and Chong-Min Kim. Metacore: an application speci�c dsp development system. In

DAC '98: Proceedings of the 35th annual Design Automation Conference, pages 800�803, New York,

NY, USA, 1998. ACM.

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 12

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

[5] Ricardo E. Gonzalez. Xtensa: A con�gurable and extensible processor. IEEE Micro, 20(2):60�70,

2000.

[6] R. Woudsma and R. A. M. Beltman. Epics, a �exible approach to embedded dsp cores. Int'l

Conference on Signal Processing Applications & Technology (ICSPAT), 651:506�511, Oct. 1994.

[7] Nikolaos Andrikos, Luciano Lavagno, Davide Pandini, and Christos P. Sotiriou. A fully-automated

desynchronization �ow for synchronous circuits. In DAC '07: Proceedings of the 44th annual Design

Automation Conference, pages 982�985, New York, NY, USA, 2007. ACM.

[8] J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou. From synchronous to asynchro-

nous: An automatic approach. In DATE '04: Proceedings of the conference on Design, automation

and test in Europe, page 21368, Washington, DC, USA, 2004. IEEE Computer Society.

[9] Jordi Cortadella, Alex Kondratyev, Senior Member, Luciano Lavagno, and Christos P. Sotiriou.

Desynchronization: Synthesis of asynchronous circuits from synchronous speci�cations. IEEE Tran-

sactions on Computer-Aided Design of Integrated Circuits and Systems, 25:2006, 1994.

[10] K. L. Chang and B. H. Gwee. A low-energy low-voltage asynchronous 8051 microcontroller cores.

Proc. ISCAS, page 4, 2006.

[11] Hans van Gageldonk, Kees van Berkel, Ad Peeters, Daniel Baumann, Daniel Gloor, and Gerhard

Stegmann. An asynchronous low-power 80c51 microcontroller. Asynchronous Circuits and Systems,

International Symposium on, 0:0096, 1998.

[12] L. A. Plana and Riocreux. Spa�a secure amulet core for smartcard applications. Microprocessors

and Microsystems, 27:15, 2003/10.

[13] Andrey Mokhov. Conditional Partial Order Graphs. PhD thesis, School of EECE, Newcastle Uni-

versity, 2009.

[14] Andrey Mokhov and Alexandre (Alex) Yakovlev. Conditional partial order graphs: Model, synthesis,

and application. IEEE Transactions on Computers, 59:1480�1493, 2010.

[15] Tadao Murata. Petri Nets: Properties, Analysis and Applications. 77(4), 1989.

[16] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic synthesis of

asynchronous controllers and interfaces. Springer-Verlag, ISBN: 3-540-43152-7, 2002. InternalNote:

submitted by: hr.

[17] Andrey Mokhov and Alex Yakovlev. Conditional partial order graphs and dynamically recon�gurable

control synthesis. In DATE '08: Proceedings of the conference on Design, automation and test in

Europe, pages 1142�1147, New York, NY, USA, 2008. ACM.

[18] Alex Yakovlev Andrey Mokhov, Arseniy Alekseyev. Automated synthesis of instruction codes in the

context of micro-architecture design. In In Proc. of 10th Int. Conf. on Applicatioon of Concurrency

to System Design (ACSD 2010), 2010.

[19] J. Silc and B. Robic. A survey of new research directions in microprocessors. Microprocessors and

Microsystems, pages 175�190, 2000.

[20] G. Zimmermann. The mimola design system: a computer aided digital processor design method. In

25 years of DAC: Papers on Twenty-�ve years of electronic design automation, pages 525�530, New

York, NY, USA, 1988. ACM.

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 13

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

[21] Tamio Hoshino. Udl/i version two: A new horizon of hdl standards. In CHDL '93: Proceedings

of the 11th IFIP WG10.2 International Conference sponsored by IFIP WG10.2 and in cooperation

with IEEE COMPSOC on Computer Hardware Description Languages and their Applications, pages

437�452, Amsterdam, The Netherlands, The Netherlands, 1993. North-Holland Publishing Co.

[22] A. Fauth and M. Freericks. Describing instruction set processors using nml. In EDTC '95: Procee-

dings of the 1995 European conference on Design and Test, page 503, Washington, DC, USA, 1995.

IEEE Computer Society.

[23] George Hadjiyiannis, Silvina Hanono, and Srinivas Devadas. Isdl: an instruction set description lan-

guage for retargetability. In DAC '97: Proceedings of the 34th annual Design Automation Conference,

pages 299�302, New York, NY, USA, 1997. ACM.

[24] Andreas Ho�mann, Oliver Schliebusch, Achim Nohl, Gunnar Braun, Oliver Wahlen, and Heinrich

Meyr. A methodology for the design of application speci�c instruction set processors (asip) using the

machine description language lisa. In ICCAD '01: Proceedings of the 2001 IEEE/ACM international

conference on Computer-aided design, pages 625�630, Piscataway, NJ, USA, 2001. IEEE Press.

[25] Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt, and Alex Nicolau. Expres-

sion: a language for architecture exploration through compiler/simulator retargetability. In DATE

'99: Proceedings of the conference on Design, automation and test in Europe, page 100, New York,

NY, USA, 1999. ACM.

[26] H. Morimoto and K. Yamazaki. Superscalar processor design with hardware description language

aidl. In 2nd Asia Paci�c Conference on Hardware Description, volume 75, pages 51�58, Oct. 1994.

[27] Basit Riaz Sheikh and Rajit Manohar. An operand-optimized asynchronous ieee-754 double-precision

�oating-point adder. In IEEE International Symposium on Asynchronous Circuits and Systems

(ASYNC), 2010.

[28] V. Varshavsky (Ed.). Self-timed control of concurrent processes. Kluver Academic Publishers, 1990.

[29] Bah-Hwee Gwee; Chang; Yiqiong Shi; Chien-Chung Chua; Kwen-Siong Chong;. A low-voltage

micropower asynchronous multiplier with shift add multiplication approach. Circuits and Systems

I: Regular Papers, IEEE Transactionson, 56 Issue:7:1349 � 1359, July 2009.

Appendix

The synchronous implementation:
LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY SCOMP IS

PORT(clock, reset : IN STD_LOGIC;

program_counter_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

register_AC_out : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);

memory_data_register_out : OUT STD_LOGIC_VECTOR(15 DOWNTO 0));

END SCOMP;

ARCHITECTURE a OF scomp IS

TYPE STATE_TYPE IS (reset_pc, fetch, decode, execute_dec, execute_load, execute_nop, execute_jnz,

execute_jump);

SIGNAL state: STATE_TYPE;

SIGNAL instruction_register, memory_data_register : STD_LOGIC_VECTOR(15 DOWNTO 0);

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 14

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

SIGNAL register_AC : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL program_counter : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL memory_address_register : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL memory_write : STD_LOGIC;

BEGIN

� Use LPM function for computer's memory (256 16-bit words)

memory: lpm_ram_dq

GENERIC MAP (

lpm_widthad => 8,

lpm_outdata => "UNREGISTERED",

lpm_indata => "REGISTERED",

lpm_address_control => "REGISTERED",

� Reads in mif �le for initial program and data values

lpm_�le => "program.mif",

lpm_width => 16)

PORT MAP (data => Register_AC, address => memory_address_register,

we => memory_write, inclock => not clock, q => memory_data_register);

program_counter_out <= program_counter;

register_AC_out <= register_AC;

memory_data_register_out <= memory_data_register;

PROCESS (CLOCK, RESET)

BEGIN

IF reset = '1' THEN

state <= reset_pc;

ELSIF clock'EVENT AND clock = '1' THEN

CASE state IS

� reset the computer, need to clear some registers

WHEN reset_pc =>

program_counter <= "00000000";

memory_address_register <= "00000000";

register_AC <= "0000000000000000";

memory_write <= '0';

state <= fetch;

� Fetch instruction from memory and sub 1 to PC

WHEN fetch =>

instruction_register <= memory_data_register;

program_counter <= program_counter + 1;

memory_write <= '0';

state <= decode;

� Decode instruction and send out address of any data operands

WHEN decode =>

memory_address_register <= instruction_register(7 DOWNTO 0);

CASE instruction_register(15 DOWNTO 8) IS

WHEN "00000000" =>

state <= execute_nop;

WHEN "00000001" =>

state <= execute_load;

WHEN "00000010" =>

state <= execute_dec;

WHEN "00000011" =>

state <= execute_jnz;

WHEN "00000100" =>

state <= execute_jump;

WHEN OTHERS =>

state <= fetch;

END CASE;

� Execute the dec instruction

WHEN execute_dec =>

register_ac <= register_ac - memory_data_register;

memory_address_register <= program_counter;

state <= fetch;

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 15

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

� Execute the dec instruction

WHEN execute_jnz =>

if register_ac <= 0 then

state <= execute_jump;

else

state <= execute_dec;

end if;

WHEN execute_nop =>

instruction_register <= memory_data_register;

program_counter <= program_counter + 1;

state <= decode;

WHEN execute_load =>

register_ac <= memory_data_register;

memory_address_register <= program_counter;

state <= fetch;

� Execute the JUMP instruction

WHEN execute_jump =>

memory_address_register <= instruction_register(7 DOWNTO 0);

program_counter <= instruction_register(7 DOWNTO 0);

state <= fetch;

WHEN OTHERS =>

memory_address_register <= program_counter;

state <= fetch;

END CASE;

END IF;

END PROCESS;

END a;

The Balsa design:
Import [balsa.types.basic]

constant debug = true

type word is 32 bits

type LineAddress is 5 bits

type CRTAddress is 8 bits

� SSEM function types

type SSEMFunc is enumeration

JMP, � Abs. and rel. jumps

LDN, � Load negative and store

SUB, � Two encodings for subtract

TEST � Skip and stop ;)

end

� Complete instruction encoding

type SSEMInst is record

LineNo : LineAddress;

CRTNo : CRTAddress;

Func : SSEMFunc

over word

� SSEM: Top level

procedure SSEM (

� Memory interface, MemA,MemRNW,MemR,MemW

output MemA : LineAddress;

output MemRNW : bit;

input MemR : word;

output MemW : word ;

� Signal halt state

sync halted

) is

variable ACC, ACC_slave : word

variable IR : word

variable PC, PC_step : LineAddress

variable MDR : word

variable Stopped : bit

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 16

Maxim Rykunov, Andrey Mokhov, Alex Yakovlev, Albert Koelmans:

� Extract an address from a word

function ExtractAddress (wordVal : word) =

(wordVal as SSEMInst).LineNo

shared WriteExtractedAddress is begin

MemA <- ExtractAddress (IR) end

� Memory operations, shared procedures

shared MemoryWrite is

begin MemRNW <- 0 || WriteExtractedAddress ()

|| MemW <- ACC_slave end

shared MemoryRead is

begin MemRNW <- 1 || WriteExtractedAddress ()

|| MemR -> MDR end

� Fetch an instruction IR := M[PC]

procedure InstructionFetch is

begin MemRNW <- 1 || MemA <- PC || MemR -> IR end

shared ZeroACC is begin ACC := 0 end

shared ZeroPC is begin PC := 0 end

shared Load is begin MemoryRead (); ACC_slave := (MDR as word)

end

shared SUB is begin

MemoryRead (); ACC_slave := (ACC - 1 as word)

end

� Modify the programme counter PC

shared IncrementPC is begin

PC := (PC + PC_step as LineAddress) end

shared AddMDRToPC is begin

PC_step := ExtractAddress (MDR); IncrementPC () end

procedure DecodeAndExecuteInstruction is

begin

if debug then

print "Executing Instruction: ", (IR as SSEMInst).Func

end ;

case (IR as SSEMInst).Func of

JMP then MemoryRead (); ZeroPC (); AddMDRToPC ()

| LDN then MemoryRead (); ACC_slave := (MDR as word)

| SUB then ACC_slave := (ACC - 1 as word)

| TEST then

if #ACC [31]

then IncrementPC () end � PC_step should already be 1

end ;

ACC := ACC_slave

end

begin

ZeroACC () || ZeroPC () ||

Stopped := 0; � reset initialisation

loop while not Stopped then

PC_step := 1;

IncrementPC ();

InstructionFetch ();

DecodeAndExecuteInstruction ()

end ; � loop

sync halted

end

NCL-EECE-MSD-TR-2010-164, University of Newcastle upon Tyne 17

