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Abstract

Instruction sets of modern processors contain hundreds of instructions de�ned on a relatively

small set of datapath components and distinguished by their codes and the order in which they

activate these components. Optimal design of an instruction set for a particular combination of

available hardware components and software requirements is crucial for system performance and is

a challenging task involving a lot of heuristics and high-level design decisions. The overall design

process is signi�cantly complicated by ine�cient representation of instructions, which are usually

described individually despite the fact that they share a lot of common behavioural patterns.

This paper presents a new methodology for compact graph representation of processor instruction

sets, which gives the designer a new high-level perspective for reasoning on large sets of instructions

without having to look at each of them individually. This opens the way for various transformation

and optimisation procedures, which are formally de�ned and explained on several examples, as well

as practically evaluated on an FPGA platform.

1 Introduction

Modern microprocessors become increasingly diversi�ed in terms of power modes, heterogeneous hardware

platforms, requirements for legacy software reuse, etc. This is ampli�ed by the rapidly growing demand

for low power consumption, high performance and small area of the produced circuits. As a result, under

the pressure of time to market constraints, a computer architect faces a productivity gap: the capacity

of modern CAD tools is insu�cient for exploring the variety of possible architectural solutions and for

identifying the optimal instruction set, which is a large part of a microprocessor design.

There are several criteria which determine the choice of a processor microarchitecture and the gene-

ration of an e�cient instruction set:

Functionality. Each instruction is associated with a sequence of atomic actions (usually acyclic)

to complete the task. Note that while a sequential run of actions is su�cient to achieve the instruction

functionality, it is often practical to enable some of the actions concurrently, e.g. in order to speed up the

instruction execution and to e�ciently utilise the available energy. The distinctive classes of instruction

functionality are arithmetic operations, data handling, memory access and �ow control.

The amount of computation per instruction is the key dilemma of computer architecture � it deter-

mines the tradeo� between the complexity of microarchitecture implementation and the software code it

executes. Historically there were di�erent views on this dilemma [10]. Initially, the Complex Instruction

Set Computer (CISC) architecture with its semantically rich instruction set dominated the microproces-

sor market. CISC instructions could access their operands in several addressing modes and could execute

complex multi-cycle operations without storing the intermediate results, which was advantageous for slow

and expensive memory. The major disadvantage of CISC was the complexity of the instruction decoding

logic � it had to distinguish among many instructions and their addressing modes. This problem has
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been resolved in the Reduced Instruction Set Computer (RISC) architecture, where the simplicity of ins-

truction decoding and pipelining was achieved at the cost of decreased code density. In RISC a relatively

small set of basic instructions was employed to build complex functionality at the level of software [4].

The microarchitecture complexity has been further reduced in the Very Long Instruction Word (VLIW)

architecture, where the scheduling for Instruction Level Parallelism (ILP) is performed statically during

the program compilation [7].

Operation modes. The same functionality can be achieved in di�erent ways targeting various

optimisation criteria. For example, an arithmetic operation can be executed either in an energy e�cient

way but slowly, or in a low latency mode at the price of extra energy consumption. Alternatively, for

security applications, the operation can be combined with power masking and data scrambling. The

choice of available operation modes is usually made at the design time and is limited by the circuit area

and the timing constraints. Selection of the operation mode can be encoded in the instruction set at two

levels: coarse-grain, as a separate class of mode-switching instructions or �ne-grain, as a part of each

instruction code.

For example, Intel 80386 processor [9] can operate in real and protected modes. In real mode the

instruction set is backward compatible with the previous generations of 16-bit x86 architecture and can

access only 1MB of memory through 20-bit segmented address space. In protected mode the processor

switches to 32-bit instruction set, addresses up to 4GB of memory and also features special instructions

for multitasking, process level security and memory management (virtualisation and paging).

Similarly, in the ARM architecture [8], apart from the standard RISC-like operation mode with a

32-bit instruction set there are several special modes, e.g. Thumb and Jazelle. In the Thumb mode

the processor switches to a compact 16-bit encoding of a subset of ARM instructions and makes the

instruction operands implicit. This reduces the processor functionality but improves its performance as

less data needs to be fetched from the memory. In the Jazelle mode the instruction set is changed to

natively execute Java Bytecode and to support JIT compilation [18].

In Razor-II architecture [6] the conservative variation margins on the clock period are cut and poten-

tially incorrect computation results are handled in error correction mode, where preemption mechanism

is employed, similar to that of speculative computations [13].

Resources. At least one computation resource needs to be available for each type of atomic action

comprising the instructions. The availability of resources has two aspects: static and dynamic. The

static aspect is addressed at the stage of system synthesis and is mostly constrained by the circuit

area and timing requirements. The dynamic aspect arises at the runtime when the same resource is

needed for several actions � such a con�ict has to be resolved through scheduling which may also involve

resource arbitration. It is advantageous to optimise the quantity of each resource type at the synthesis

stage targeting a trade-o� between resource idle time and the number of con�icts to resolve. This can

be achieved by the statistical analysis of potential resource utilisation and careful adjustment of the

instruction set.

Usually a designer tries to balance the load on CPU, memory and communication buses at the design

time. However, it is often not possible to �ne tune the circuit for all execution scenarios at the design time

and one of the circuit components becomes a bottleneck limiting the performance of the whole system.

In this situation a dynamic recon�guration of the system brings advantages, e.g. the critical path can be

sped up to improve circuit latency and the non-critical paths can be slowed down to save power.

Modern microprocessors, while often referred to as RISC-like, also exhibit the features of CISC and

VLIW architectures. For example, they have multi-clock instructions with high-level execution semantics

(e.g. if-then-else, DSP and multimedia instructions), which is typical for CISC. They also combine the

compile-time scheduling of VLIW architecture with dynamic arbitration of resources to employ ILP for

instruction pipelining, out-of-order and speculative execution. Being combined with various operation

modes and resource restrictions, such a diversity of instruction functionality presents a real challenge to

the e�cient design of microprocessors.
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There is clearly a niche in microprocessor EDA where the following design requirements need to be

addressed:

• compact description of individual instruction functionalities as partial orders of atomic actions;

• e�cient representation of complete instruction sets to allow their transformations (optimisation of

encoding, re-targeting for di�erent hardware platforms, etc.);

• capturing of processor operation modes as explicit parameters of the instruction sets;

• possibility to express the resource availability constraints;

• encoding of instruction set for di�erent optimisation criteria (code length minimisation, complexity

of decoding logic, legacy software compatibility, etc.);

We propose to address these requirements using a graph model, called Conditional Partial Order Graphs

(CPOGs) [17]. This model is particularly convenient for composition and representing large sets of partial

orders in a compact form. It can also be equipped with a set of mathematical tools for the re�nement,

optimisation, encoding and synthesis of the control hardware which implement the required instruction

set, similar in spirit to the approach based on control automata [2].

This paper presents a signi�cant contribution to the relatively new concept of CPOGs. The previous

CPOG-related publications, e.g. [15][16][17], focused on algebraic CPOG properties, controller synthesis,

veri�cation and optimal encoding of partial orders, while this work brings all these methods to the area

of formal speci�cation of processor instruction sets and introduces CPOG transformations as an e�cient

way of instruction set management.

The organisation of the paper is as follows. Section 2 gives the background of the CPOG model and

shows how to use it for speci�cation and composition of processor instruction sets. It is followed by

Section 3, where we describe several transformations de�ned on CPOGs and discuss issues of a physical

microcontroller implementation. Case study in Section 4 demonstrates how CPOGs can be used for cap-

turing di�erent hardware con�gurations and operation modes. The paper is concluded with experiments,

Section 5, where we specify an instruction set and study its FPGA implementation.

2 Formal model for instruction sets

This section presents the basic de�nitions behind the CPOG model and demonstrates how it can be

applied to the e�cient speci�cation of processor instruction sets.

2.1 CPOG essentials

A Conditional Partial Order Graph [17] (further referred to as CPOG or graph) is a quintuple H =
(V,E,X, ρ, φ) where:

• V is a set of vertices which correspond to events (or atomic actions) in a modelled system.

• E ⊆ V × V is a set of arcs representing dependencies between the events.

• Operational vector X is a set of Boolean variables. An opcode is an assignment (x1, x2, . . . , x|X|) ∈
{0, 1}|X| of these variables. An opcode selects a particular partial order from those contained in

the graph.

• ρ ∈ F(X) is a restriction function, where F(X) is the set of all Boolean functions over variables

in X. ρ de�nes the operational domain of the graph: X can be assigned only those opcodes

(x1, x2, . . . , x|X|) which satisfy the restriction function, i.e. ρ(x1, x2, . . . , x|X|) = 1.

• Function φ : (V ∪ E) → F(X) assigns a Boolean condition φ(z) ∈ F(X) to every vertex and arc

z ∈ V ∪ E in the graph. Let us also de�ne φ(z) df= 0 for z /∈ V ∪ E for convenience.
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Figure 1: Graphical representation of CPOGs

CPOGs are represented graphically by drawing a labelled circle for every vertex and drawing a labelled

arrow for every arc. The label of a vertex v consists of the vertex name, semicolon and the vertex

condition φ(v), while every arc e is labelled with the corresponding arc condition φ(e). The restriction

function ρ is depicted in a box next to the graph; operational variables X can therefore be observed as

parameters of ρ.

Figure 1(a) shows an example of a CPOG with |V | = 5 vertices and |E| = 7 arcs. There is a single

operational variable x; the restriction function is ρ(x) = 1, hence both opcodes x = 0 and x = 1 are

allowed. Vertices {a, b, d} have constant φ = 1 conditions and are called unconditional, while vertices {c, e}
are conditional and have conditions φ(c) = x and φ(e) = x respectively. Arcs also fall into two classes:

unconditional (arc c → d) and conditional (all the rest). As CPOGs tend to have many unconditional

vertices and arcs we use a simpli�ed notation in which conditions equal to 1 are not depicted in the graph;

see Figure 1(b).
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Figure 2: CPOG projections: H|x=1 (left) and H|x=0 (right)

The purpose of conditions φ is to `switch o�' some vertices and/or arcs in a CPOG according to a given

opcode, thereby producing di�erent CPOG projections. An example of a graph and its two projections

is presented in Figure 2. The leftmost projection is obtained by keeping in the graph only those vertices

and arcs whose conditions evaluate to 1 after substitution of variable x with 1 (such projections are

conventionally denoted by H|x=1). Hence, vertex e disappears (shown as a dashed circle ), because

its condition evaluates to 0: φ(e) = x = 1 = 0. Arcs {a → d, a → e, b → d, b → e} disappear for the
same reason; they are shown as dashed arrows . The rightmost projection is obtained in the same

way with the only di�erence that variable x is set to 0; it is denoted by H|x=0, respectively. Note that

although the condition of arc c → d evaluates to 1 (in fact it is constant 1) the arc is still excluded

from the resultant graph because one of the vertices it connects, viz. vertex c, is excluded and naturally
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an arc cannot appear in a graph without one of its vertices. Each of the obtained projections can be

regarded as speci�cation of a particular behavioural scenario of the modelled system, e.g. as speci�cation

of a processor instruction. Potentially, a CPOG H = (V,E,X, ρ, φ) can specify an exponential number of

di�erent instructions (each composed from atomic actions in V ) according to one of 2|X| di�erent possible
opcodes.

2.2 Speci�cation and composition of instructions

Consider a processing unit that has two registers A and B, and can perform two di�erent instructions: ad-

dition and exchange of two variables stored in memory. The processor contains �ve datapath components

(denoted by a . . . e) that can perform the following atomic actions:

a) Load register A from memory;

b) Load register B from memory;

c) Compute sum A+B and store it in A;

d) Save register A into memory;

e) Save register B into memory.

Table 1 describes the addition and exchange instructions in terms of usage of these atomic actions.

The addition instruction consists of loading the two operands from memory (actions a and b, causally

independent and thus possibly concurrent), their addition (action c), and saving the result (action d).

Whether a and b are to be performed concurrently depends on: i) the system architecture, e.g. if

concurrent read memory access is allowed, ii) static and dynamic resources availability (the processor

hardware con�guration must physically contain two memory access components and they both have to

be immediately available for use), and iii) the current operation mode which determines the scheduling

strategy, e.g. `execute a and b concurrently to minimise latency', or `execute a and b in sequence to

lower peak power'. Let us assume for simplicity that in this example all causally independent actions are

always performed concurrently, see the corresponding partial order PADD in the table1. Section 4 will

address joint speci�cation of di�erent scheduling strategies of an instruction.

Instruction Addition Exchange
a) Load A a) Load A

Action b) Load B b) Load B
sequence c) Add B to A d) Save A

d) Save A e) Save B

Partial order

a

d

b

c

a

d

b

e

with maximum
concurrency

PADD PXCHG

Table 1: Two instructions speci�ed as partial orders

1In this paper we describe partial orders using Hasse diagrams [3], i.e. without depicting transitive dependencies, such
as, for example, dependencies a→ d and b→ d in partial order PADD .
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The operation of exchange consists of loading the operands (concurrent actions a and b), and saving

them into swapped memory locations (concurrent actions d and e), as captured by PXCHG . Note that in

order to start saving one of the registers it is necessary to wait until both of them have been loaded to

avoid overwriting one of the values.

One can see that the two partial orders in Table 1 appear to be the two projections shown in Figure 2,

thus the corresponding graph can be considered as a joint speci�cation of both instructions. Two im-

portant characteristics of such a speci�cation are that the common events {a, b, d} are overlaid and the

choice between the two operations is distributed in the Boolean expressions associated with the vertices

and arcs of the graph. As a result, in our model there is no need for `nodal point' of choice, which tend

to appear in alternative speci�cation models (a Petri Net/Signal Transition Graph [5] would have an

explicit choice place, a Finite State Machine [14] � an explicit choice state, and a speci�cation written in

a Hardware Description Language [14] would describe the two instructions by two separate branches of

a conditional statement if or case).

The following notions are introduced to formally de�ne speci�cation and composition of instruction

sets.

An instruction is a pair I = (ψ, P ), where ψ ∈ {0, 1}|X| is a vector assigning a Boolean value to each

variable in X, and P = (V,≺) is a partial order de�ned on a set of atomic actions V . Semantically, ψ

represents the instruction opcode2, while the precedence relation ≺ of the partial order captures behaviour

of the instruction3. We assume that V and X belong to the corresponding universes shared by all the

instructions of the processor: V ⊆ UV and X ⊆ UX .
An instruction set (denoted by IS) is a set of instructions with unique opcodes, i.e. for any IS =

{I1, I2, . . . , In}, such that Ik = (ψk, Pk), all opcodes ψk must be di�erent.
Given a CPOG H = (V,E,X, ρ, φ) there is a natural correspondence between its projections and

instructions: an opcode ψ = (x1, x2, . . . , x|X|) induces a partial order H|ψ, and paired together they form

an instruction Iψ = (ψ,H|ψ) according to the above de�nition. This leads to the following formal link

between CPOGs and instruction sets.

A CPOG H = (V,E,X, ρ, φ) is a speci�cation of an instruction set IS(H) de�ned as a union of

instructions (ψ,H|ψ) which are allowed by the restriction function ρ:

IS(H) df= {(ψ,H|ψ), ρ(ψ) = 1}

Using this de�nition we can formally state that the graph in Figure 2 speci�es the instruction set

from Table 1. In the rest of this section we show how to obtain such CPOG speci�cations.

Composition of two instruction sets IS1 and IS2 is their union IS1 ∪ IS2. Composition is not de�ned

if the union contains two instructions with the same opcode (otherwise, the result would not be an

instruction set by the above de�nition). Due to the commutativity and associativity properties of set

union ∪ we can compose more than two instruction sets by performing their pairwise composition in

arbitrary order.

Note that, if instructions in given sets ISk are represented individually (as they are in conventional

methods), then the complexity of the composition operation is linear with respect to the total number of

instructions: Θ(|IS|), where IS =
⋃
k ISk. This is because we have to iterate over all of them to generate

the result. It may be unacceptably slow for those applications which routinely perform various operations

on large instruction sets. Using the CPOG model for the compact representation of instruction sets allows

most of the operations to be performed much faster, as demonstrated below.

Let instruction sets IS1 and IS2 be speci�ed with graphs H1 = (V1, E1, X1, ρ1, φ1) and H2 =
(V2, E2, X2, ρ2, φ2), respectively. Then their composition has CPOG speci�cation H = (V1 ∪ V2, E1 ∪

2In this section the instruction operands are implicit and the opcode completely de�nes the instruction. We elaborate
on this in Section 4.

3We incorporate the notion of a microprogram [14] (the behaviour of the instruction) into the de�nition of the instruction.
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Figure 3: Graph composition

E2, X1 ∪X2, ρ1 + ρ2, φ), where the vertex/arc conditions φ are de�ned as

∀z ∈ V1 ∪ V2 ∪ E1 ∪ E2, φ(z) df= ρ1φ1(z) + ρ2φ2(z)

We call H the CPOG composition of H1 and H2 and denote this operation as H = H1 ∪H2. Note that

if ρ1 · ρ2 6= 0 then the composition is unde�ned, because IS(H1) and IS(H2) contain instructions with the

same opcode ψ allowed by both restriction functions: ρ1(ψ) = ρ2(ψ) = 1. It is possible to formally prove

that IS(H) = IS(H1)∪ IS(H2) using algebraic methods4 [17], hence we can derive the following important

equation:

IS(H1 ∪H2) = IS(H1) ∪ IS(H2)

Crucially, the complexity of computing a CPOG composition does not depend on the total number of

instructions |IS1 ∪ IS2|. It depends only on the sizes of graph speci�cationsH1 andH2: Θ(|V1|+|E1|+|V2|+
|E2|). Since the number of arcs |Ek| is at most quadratic with respect to |Vk| and |Vk| ≤ |UV | (all vertices
are contained in universe UV ), we have the following upper bound on CPOG composition complexity:

O(|UV |2). Note that |UV |2 is potentially much smaller than the number of di�erent instructions, which

can be exponential with respect to |V |, in particular the total number of partial orders on set UV is

greater than 2
1
4 |UV |2 [3]. To conclude, we can operate on the CPOG representations of instruction sets

faster than on the instruction sets themselves.

Let us demonstrate speci�cation and composition of instruction sets on the aforementioned processing

unit example. Figure 3(a,b) shows two graphs HADD and HXCHG specifying singleton instruction sets

IS(HADD) = {(1, PADD)} and IS(HXCHG) = {(0, PXCHG)}, respectively. Since their restriction functions

are orthogonal ρADD · ρXCHG = x · x = 0, we can compose them into the graph shown in Figure 3(c). It

speci�es compositional instruction set IS(HADD ∪ HXCHG) = {(1, PADD), (0, PXCHG)} as intended (see

Figure 2).

3 Transformations

In this section we describe several CPOG transformations which allow e�cient management of instruction

sets. We also discuss the issues associated with physical controller implementation and possible signal-

level re�nements of the model for capturing synchronous and self-timed control interfaces.

3.1 Basic graph transformations

Consider a graph H = (V,E,X, ρ, φ). Since elements of the quintuple are shared by all instructions from

IS(H), we can make global modi�cations of the instruction set without iterating over all the instructions.

4The proof follows from Theorems 1 and 2 of [17] which concern a more restrictive operation � CPOG addition.
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For example, we can add a new action go at the beginning of every instruction by setting V ′ = V ∪{go},
φ(go) = 1, and φ(go→ v) = 1 for all v ∈ V . The cost of this global modi�cation is only Θ(|V |); we call
transformations of this type event insertions.

It is possible to introduce a global concurrency reduction between actions a and b, by setting E′ =
E∪{a→ b} and φ(a→ b) = 1. As a result, action b will always be scheduled after a in all the instructions.
The cost of this transformation is O(1), but it is not safe in general: it can introduce deadlocks if action a

is scheduled to happen after b in one of the instructions (forming a cyclic dependency). To ensure deadlock

freeness veri�cation algorithms from [16] must be employed.

Another basic transformation with the global e�ect is variable substitution. For instance, by replacing

every occurrence of x with x in all conditions φ and function ρ, we �ip the corresponding bit in all

instruction opcodes. To perform this operation we need to change Θ(|V |2) Boolean functions. Variable

substitution is a powerful transformation, it can a�ect not only a single bit, but all the opcodes; care

must be taken to ensure that the resultant opcodes do not clash.

The above transformations are global. It is possible to apply them to a subset of selected instructions

using the operations of set extraction and decomposition de�ned below.

3.2 Set-theoretic operations

Instead of looking at the whole instruction set of a processor we may need to focus our attention on its

smaller part. As an example, consider the MMIX processor instruction set [12] containing 256 di�erent

opcodes. 16 of them, starting with bits 0010, are dedicated to addition/subtraction operations, and we

want to manipulate them separately from the others.

Let graph H = (V,E,X, ρ, φ) specify the whole instruction set IS(H) of the processor and 8-bit

opcodes be encoded with variables {x1, . . . , x8}. Function f = x1 · x2 · x3 · x4 enumerates all Boolean

vectors starting with 0010 and its conjunction with ρ enumerates all wanted opcodes. Thus, graph

H ′ = (V,E,X, f · ρ, φ) speci�es the required part of IS(H). There is a dedicated operation in CPOG

algebra, called scalar multiplication, intended for this task: H ′ = f ·H [17]. Its main feature is that

∀f, IS(f ·H) ⊆ IS(H)

In our context, f can be considered an instruction property and operation f · H can be called a set

extraction: it extracts a subset of a given instruction set according to a required property.

A generalisation of this operation is called decomposition. It is easy to see that H1 = f · H and

H0 = f ·H together contain all instructions from IS(H): all instructions with opcodes satisfying property

f are put into H1, and all the rest are put into H0. Thus, any instruction set can be decomposed into

two disjoint sets according to a given property. This is formally captured by the following statement:

∀f, IS(H) = IS(f ·H) ∪ IS(f ·H)

Set extraction and decomposition are very cheap operations: they only require computation of a conjunc-

tion of two Boolean functions f and ρ.

Returning back to the MMIX example, we can decompose IS(H) into two disjoint sets: addi-

tion/subtraction operations IS1 = IS(f · H), and all the rest IS0 = IS(f · H). Then we can apply a

transformation, e.g. an event insertion, to IS1 obtaining ISt1. Finally, we can compute composition

ISt = ISt1 ∪ IS0 which contains all instructions from the original instruction set IS(H), but with a local

transformation applied to addition/subtraction operations.
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Figure 4: Datapath interface architecture

3.3 Re�nements for control synthesis

As soon as all the intended manipulations with the instruction set are performed, we can proceed to the

stage of mapping the resultant CPOG into Boolean equations and produce a physical implementation of

the speci�ed microcontroller. In order to descend from the abstract level of atomic actions to the physical

level of digital circuits the signal-level re�nements are necessary.

To interface with an asynchronous datapath component a it is possible to use the standard request-

acknowledgement handshake (req_a, ack_a), as shown in Figure 4. In case of a synchronous component b

the request signal is used to start the computation but, as there is no completion detection, the acknow-

ledgement signal has to be generated using a matched delay [20]. Also, there are cases when a matched

delay has to be replaced with a counter connected to the clock signal to provide an accurate multi-cycle

delay � see the interface of component c in the same �gure. Note that we do not explicitly show syn-

chronisers [11] in the diagram; it is assumed that components b and c are equipped with the necessary

synchronisation mechanisms to accept asynchronous requests from the microcontroller.

To explicitly specify handshake signals it is possible to perform a graph transformation explained in

Figure 5. Every atomic action a1 is split into a pair of events req_a1+ and ack_a1+ standing for rising

transitions of the corresponding handshake signals. If there are two occurrences of an atomic action,

e.g. b1 and b2, then both vertices are split5, etc. Semantically, when an atomic action a1 is ready for

execution, the controller should issue the request signal req_a1 to component a; then the high value of

the acknowledgement signal ack_a1 will indicate completion of a.

Notice that the microcontroller does not reset handshakes until all of them are complete. This leads to

a potential problem: a component cannot be released until the instruction execution is �nished. To deal

with the problem it is necessary to decouple the microcontroller from the component, see box `decouple'

in Figure 4 and its gate-level implementation in Figure 6(a). Also, when a component b is used twice in an

instruction we have to combine two handshakes (req_b1,2, ack_b1,2) into one using the merge controller,

5We use superscripts to distinguish di�erent occurrences of the same event.
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Figure 5: Signal-level re�nement

see Figure 6(b). Merge controllers can only be used if the requests are mutually exclusive6. If this is

not the case, as e.g. for concurrent actions c1 and c2, then we have to set an arbiter guarding access

to the component. Its implementation consists of the merge controller and the mutual exclusion (ME)

element [11], see Figure 6(c).

Finally, the re�ned graph can be mapped into Boolean equations. An event associated with vertex

v ∈ V is enabled to �re (req_v+ is excited) when all the preceding events u ∈ V have already �red

(ack_u have been received) [17]:

req_v = φ(v) ·
∏
u∈V

(
φ(u) · φ(u→ v)⇒ ack_u

)
where a ⇒ b stands for Boolean implication indicating `b if a' relation. Mapping is a simple structural

operation, however the obtained equations may not be optimal and should undergo the conventional logic

minimisation [14][17] and technology mapping [5] procedures.

It is interesting to note that the size of the microcontroller does not depend on the number of ins-

tructions directly. There are Θ(|V |2) conditions φ in all the resultant equations; the average size of these

conditions is di�cult to estimate, but in practice we found that the overall size of the microcontroller

never grows beyond Θ(|V |2).

r1 a1

r a

(a) Decouple

r a

r1 a1 a2 r2

(b) Merge

ME

r1a1 a2r2

Merge

r1a1 a2r2

r a

r a

(c) Arbiter

Figure 6: Handshake controllers

6It is possible to formally verify if two events in a CPOG are mutually exclusive using CPOG veri�cation techniques
from [16].
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4 Case study

In this section we study a common low-level GPU instruction, called DP3, which given two vectors

x = (x1, x2, x3) and y = (y1, y2, y3) computes their dot product x ·y = x1 ·y1 +x2 ·y2 +x3 ·y3. There are
many ways to achieve the required functionality in hardware; consider the following datapath components

(denoted by a . . . e) which can be used to ful�l this task:

a) 2-input adder;

b) 3-input adder;

c) 2-input multiplier;

d) fast 2-input multiplier;

e) dedicated DP3 unit.

Similar to the Energy Token model [19], we associate two attributes, execution latency and power

consumption, with every component. Figure 7 visualises them as labelled boxes, whose dimensions

correspond to their attributes; the area of a box represents energy required for the computation.

c da b

P
ow
er

Latency e

Figure 7: Datapath components for DP3 implementation

Depending on the current operation mode and availability of the components, the processor has to

schedule their activation in the appropriate partial order. Figure 8 lists several possible partial orders

together with their power/latency pro�les.

Fastest implementation: the fastest way to implement the instruction is to compute multiplications

tmpk = xk · yk concurrently using three fast multipliers d1-d3 and then compute the �nal result tmp1 +
tmp2 + tmp3 with a 3-input adder b; see Figure 8(a). This implementation has a very high cost in terms

of peak power and thus may not always be a�ordable.

Least peak power implementation: a directly opposite scheduling strategy is shown in Figure 8(b).

Three multiplications are performed sequentially on the same slow multiplier c1, followed by 3-input

addition b. This strategy has the largest latency among all presented because it is completely sequential

and uses slow power-saving components. On a positive side, this implementation requires only two basic

functional blocks, which are likely to be reused by other instructions, so its component utilisation is high.

Use of a dedicated component: it is possible that the chosen hardware platform contains a dedicated

computation unit capable of computing dot product of two vectors, e.g. Altera Cyclone III FPGA

board allows building a functional block called ALTMULT_ADD(3) with three multipliers connected to

a 3-input adder. We can directly execute this block without any scheduling � see Figure 8(c). While

being convenient and potentially very e�cient due to custom design, such solution is not always justi�ed

because of low component utilisation: it is impossible to reuse the built-in multipliers for implementing

other instructions and if DP3 is rarely used by software then this dedicated component will be wasting

area and power (due to the leakage current) most of the time. Moreover, such implementation does not

allow any real-time rescheduling thereby being less �exible.

Fast implementation with limited resources: if there are only two available multipliers c1 and c2 (either
because of hardware limitations or because other multipliers are busy at the moment) then the fastest
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possible scheduling strategy is as follows. At �rst, two multiplications should be performed in parallel.

Then their results are fed to 2-input adder a, while c1 is restarted for computing the third multiplication.

Finally, the obtained results are added together by the same adder a as shown in Figure 8(d).

Balanced solution: Figure 8(e) presents a balanced strategy, which aims to spread power consumption

evenly over time, while being relatively fast. This schedule may be advantageous for the best energy

utilisation and in security applications.

d3

d2

d1 b

d1

d3

bd2

(a) Least latency

c1 c1 c1 b

bc1c1c1

(b) Least peak power

e

e

(c) Dedicated unit

c1 c1 a

c2 a

c1

ac2

ac1

(d) Resource limited

d1 c1 a

a

d1

d1

a

ac1d1

(e) Balanced

Figure 8: Di�erent implementations of DP3 instruction

We could continue listing di�erent possible implementations of this instruction, but this is not the point

of the case study. The point is to demonstrate that even such basic instruction as DP3 has a lot of valid

scheduling strategies with distinct characteristics. Importantly, it is not possible to select the best strategy

because none of them is the best. Therefore including only one of them into a processor instruction set is

a serious compromise which should not be done at this early and abstract stage of the design process. We

propose to include as many di�erent implementations into the instruction set as possible, and, if needed,

reduce the behavioural spectrum at the later design stages when more information is at hand (some �nal

decisions can even be made during runtime by dynamic processor recon�guration). The CPOG model

is perfectly suited for this task: it can represent multitude of di�erent implementations of the same

instruction e�ciently. If the instruction is intended to have only one opcode, we can distinguish between

its di�erent implementations using mode and con�guration variables. They are not part of the opcode

(which is fetched from the program memory during software execution), but can be dynamically changed

by the power/latency runtime control mechanisms [21] or be statically set to constants according to the

limitations of the actual hardware platform, as shown in Figure 9.

We can specify all discussed implementations of DP3 instruction using a single CPOG. To do that

we �rst have to encode all of them. If there are no requirements on the mode/con�guration codes, then a

designer is free to assign them arbitrarily, however it may a�ect CPOG complexity and, as a consequence,

complexity of the resultant microcontroller. In this case it is possible to resort to the help of automated7

7We used Workcraft framework [1] for CPOG modelling and encoding.
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Microcontroller

opcode modeconfiguration

Complete instruction code

Operation
mode control

to data path components

static configuration bits Dynamic
reconfiguration

program memory

Figure 9: Complete instruction code

optimal encoding methods [15], which generate codes ψ1 = 001, ψ2 = 011, ψ3 = 000, ψ4 = 111, and
ψ5 = 101 for the �ve partial orders depicted in Figure 8 (note that these optimal codes are far from

trivial sequence of binary codes 000-100). If we compose all of them into a single CPOG using the

method from Section 2, we obtain the graph shown in Figure 10(a). The mode/con�guration variables

are denoted as X = {x, y, z}, and two intermediate variables {p, q} are derived from them to simplify

other graph conditions; as a result only seven 2-input gates are required to compute all graph conditions.

The obtained graph is a superposition of the given partial orders, i.e. all of them can be visually identi�ed

in it � see, for example, Figure 10(b), which shows the balanced implementation generated by code ψ5,

and compare it with partial order in Figure 8(e). For a designer this gives a useful higher-level picture

which brings out interaction between the components much better than separate partial order diagrams

(this is similar to a metro map which represents a set of metro lines in a compact understandable form).
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Figure 10: CPOG speci�cation of DP3 instruction

In the next section we apply this approach to speci�cation of a simple processing unit containing

three instructions. Each of them is described in four implementation variants which correspond to two

di�erent modes and two di�erent hardware con�gurations.

5 Experiments

This section demonstrates speci�cation of an instruction set with three instructions running under two

di�erent operation modes and on two di�erent hardware platforms.

In addition to instruction DP3 described in the previous section, we consider two more instructions,

namely ADD and MAD, which are traditionally supported by most GPUs at the assembly level. Instruc-
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tion ADD computes 4-component vector sum x + y = (x1 + y1, x2 + y2, x3 + y3, x4 + y4), i.e. it executes
four addition operations addk = xk + yk independently, while MAD performs a more sophisticated task,

executing four independent multiplications followed by additions: madk = xk · yk + zk.

Figure 11 shows the complete instruction set split into four mode/con�guration sets. Hardware

con�guration 0 contains four multiplication and four addition components (denoted by m1-m4 and a1-
a4), while con�guration 1 contains only a pair of each component type (m1, m2, a1, and a2), thus being
less �exible in terms of possible scheduling strategies but better in terms of component utilisation.
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Figure 11: Complete instruction set used for experiments

There are two operation modes: mode 0 aims to maximise performance of the processor by high

parallelism, while mode 1 executes the instructions under the limited power availability. The power limit

was set to allow concurrent execution of a multiplier and an adder, or concurrent execution of three

adders.

We use a subscript to denote the mode/con�guration code of an instruction, e.g. DP301 stands for

implementation of instruction DP3 intended for use in mode 0 and con�guration 1.

All the instructions have been composed into a single instruction set IS; the corresponding CPOG H

is shown in Figure 12(a). Opcodes ψDP3 = 01, ψADD = 00, and ψMAD = 11 have been automatically

generated by the optimal encoding procedure [15]. There are four variables in the complete instruction

code: X = {x, y,m, c}, where x and y are the opcode bits, while m and c stand for the mode and

con�guration bits, respectively; for example, instruction MAD01 has code 1101. Since opcode (x, y) =
(1, 0) is not used, function ρ = x+ y forbids it.

We synthesised a microcontroller for each con�guration by using decomposition into IS0 = IS(c·H) and
IS1 = IS(c ·H), followed by mapping of the obtained instruction sets into Boolean equations, as explained

in Section 3. These equations were imported into Altera Quartus II design kit for logic minimisation and

technology mapping into an FPGA board from the Cyclone III family; we used 32-bit multipliers and 64-

bit adders in our design. Figure 12(b) shows the reduced instruction set IS1 after logic minimisation [17]

(conditions containing variable c were minimised).

Both microcontrollers have been tested to con�rm the correct implementation of each instruction in

terms of its functionality and the proper activation order of the datapath components. Latency and
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Con�gurationMode Instruction Latency, ns Peak power, mW

DP300 22.3 0.54

0 ADD00 8.0 0.32

MAD00 17.0 0.72

0 DP310 35.7 0.26

1 ADD10 14.0 0.24

MAD10 44.0 0.26

DP301 24.8 0.36

0 ADD01 13.0 0.16

MAD01 27.0 0.52

1 DP311 34.9 0.26

1 ADD11 13.6 0.16

MAD11 42.0 0.26

Table 2: Latency and peak power of instructions

peak power of each instruction have been measured using Quartus II analysis tools and are reported in

Table 2. As expected, in mode 0 all the instructions are executed faster but at the expense of higher peak

power (up to 0.72 mW); in mode 1, on the other hand, the peak power never gets higher than 0.26 mW.

In con�guration 1 the di�erence between the modes is smaller, because there are not enough hardware

components to take advantage of maximum parallelism. Note that we were unable to perform peak power

measurements with a good accuracy using PowerPlay Analyzer (a part of Quartus II toolkit), therefore

the �gures in Table 2 should be considered as a guide only.
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(b) Instruction set IS1 = IS(c ·H) after logic minimisation

Figure 12: CPOG speci�cations of instruction sets used in experiments

6 Conclusions

In this paper we demonstrated that the Conditional Partial Order Graph model is a very convenient

and powerful formalism for speci�cation of processor instruction sets. It is possible to e�ciently describe

many di�erent `microcode' implementations of the same instruction as a single mathematical structure

and perform its re�nement, optimisation, and encoding using formal CPOG transformations. Crucially,

these transformations operate on a CPOG speci�cation rather than on the instruction set itself and thus
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their complexity does not depend on the number of di�erent instructions.

The future work includes development of a software toolkit for integration of the presented methodo-

logy into the standard processor design �ow.
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