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Abstract 

In this thesis, an ASIC capable of performing the SHA-1 and 2 Hash Functions is presented. 

Following an overview of the importance of cryptography in the modern age and a brief history 

of computer-based cryptography, the significance and operation of hash functions is presented 

with focus on the SHA family of algorithms. After this is the design and testing section where the 

modular method of manufacture; components and tools used; methods of testing and results 

are shown. The ASIC is at first only capable of performing SHA-1, but modifications are 

demonstrated that give capability to perform SHA-2, with the possibility of SHA-3 or another 

hash function such as MD5 being suggested. Finally, conclusions regarding the throughput, 

modular method of design, comparisons to other published work and future developments are 

given, with reference to the rise in remote connections requiring dependable, high speed 

cryptographic functions. 
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List of Principal Symbols and Acronyms 
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FSM Finite State Machine 
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Introduction 

Modern use of Cryptography 

Over the last three decades, the use of information technology in our everyday lives has 

increased dramatically. Due to this, the growth rate for e-commerce has been double-digit over 

the last decade, with an estimated $301 billion expected online retail sales in 2012 [1]. This 

extreme increase in online trading has lead to a rise in online attacks to obtain money through 

deception or other illegal means. Due to this, companies and consumers using e-commerce 

have become more aware of security risks exchanging information over such an open medium. 

This increased knowledge has lead to several third parties setting up secure areas for credit 

card and bank account details to be shared with minimal risk of the numbers being obtained and 

used fraudulently. Major credit companies such as Visa and MasterCard have set up 

subsidiaries (e.g. Verified by Visa) to give consumers confidence that the sites they are buying 

from are safe. These “security seals” are becoming more common on commercial s ites, as 

customers have been found to avoid purchasing from companies who do not use them [2]. 

When shopping on The Internet, a connection is set up between the computer being used and 

the company server. This is done using a “Challenge and Response” through the Transport 

Layer Security (TLS), or its predecessor Secure Sockets Layer (SSL) [3]. 

 

Figure 1: Challenge and Response  

Challenge and Response uses a mixture of symmetric block ciphers and Message 

Authentication Codes (MAC). The MAC is constructed using a Hash Function such as the MD 

or SHA families. These Hash Functions output a fixed length digest of a message which may 

have arbitrary input length. The original message is converted to blocks of a fixed size, which 

are sequentially reduced. This is repeated for the entire file, giving a message digest. 
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Figure 2: General Hash Function Operation [4] 

Due to the increase in attacks, available security has been modified and updated to increase 

user security. The first governmental cipher approved was in 1976, when the National Security 

Agency (NSA) of the United States approved The Data Encryption Standard (DES), based on 

IBM’s Lucifer Cipher with a 2
56

 key as the standard for Cryptography [5]. Due to increases in 

computing power, this is now breakable and Triple DES is used to increase encryption. To 

increase available security, the National Institute of Standards and Technology released the 

Advanced Encryption Standard (AES) based on the Rijndael Cipher in 2001 [6]. The majority of 

cryptographic systems are either block ciphers or hash functions. Block ciphers work by taking 

the entire message and map plaintext blocks of size n to ciphertext blocks of the same size 

before applying the cryptographic functions [7]. While for a short message this is acceptable; for 

a large document the time required could be unacceptable [8], especially in a time critical 

application such as commodity trading. In this case, it is more desirable to have the receiver 

know the message is unchanged from being sent to being received [8]. To ensure the message 

is identical, hash functions are used [6].[6] 

Hash Functions: Operation and Weaknesses 

Hash functions take a plain-text file as their input and convert it to fixed-size blocks, which are 

then compressed to a fixed size sequentially. These blocks are then used as the Chain Variable 

in each step until the entire file has been completed, producing a digest of the message [4]. This 

digest can be transmitted with the message and a second digest created from the received 

message at the recipient. If the digest received and the one computed match, the message can 

be thought of as authentic [9]. The compression algorithm varies between algorithms and can 

be made public, as a would-be attacker gains no advantage from knowing how the hash 

function performs its digest creation. 

Hash functions are susceptible to the Birthday Paradox. This greatly reduces the number of 

attempts needed to guess the message from the received hash function. With a SHA-1 Hash 
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Function, the digest is 160-bit, meaning a brute force attack would require 1.4 x 1048 guesses, 

whereas a Birthday Attack reduces this to 1.4 x 1024 [4].While this is still an excessively large 

number of guesses to feasibly perform, it has halved the number needed and exposes a 

weakness in hash functions. Several of the more commonly used hash functions have been 

broken in recent years. MD-4, using a 128-bit Hash Function had collisions identified in 1996 in 

[10]. MD-5, developed to remove known weaknesses in MD4 [11] had collisions identified in 

2004 in [12], which lead to further research in [13] on the SHA-1 Algorithm, which uses a 160-bit 

Hash Function. Due to these attacks, none of these hash functions are deemed suitable for use 

in high-security applications. SHA-2, using 256 and 512 bit hash functions is now recommended 

as the best hash function for normal use [14], but with the penalty of reduced processing speed. 

It is noted in [15] that performing a hash function with SHA-2 takes the same length of time as 

encryption with AES, so unless throughput can be increased, a standard message may as well 

be encrypted using AES rather than sent with a calculated signature. However AES is a 

symmetric cipher, so has issues regarding key distribution. When using AES, the same key is 

used to encrypt as decrypt. Therefore this cannot be sent on an unsecure channel. So while 

using AES between two users who regularly communicate and have developed their own key is 

feasible, for two strangers the distribution of the key remains an issue. A way round this would 

be to use an asymmetric cipher, such as RSA, but this is significantly slower than AES and 

therefore worse than using it or a hash function if speed is a priority. So for these cases, SHA-2 

is the most logical solution to ensure a message is not tampered with in transit. 

The three primary goals of a Hash Function are: 

 Preimage Resistance: The inability to find a message from its hash function 

 2nd Preimage Resistance: No second input can be found that has the same hash 

function as the first (soft collision resistance) 

 Collision Resistance: No two distinct inputs can have the same hash function as an 

output (hard collision resistance) [7] 

Along with this, a small change in input should change a great deal of the output, this is known 

as the Avalanche Effect and was proved to take place up to the 73rd round of 80 in SHA-512 

[16]. 
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SHA-1 and 2 Operation 

Secure Hash Algorithm (SHA) is the most widely used Hash Function in the world [17]. It was 

developed by the National Institute of Standards and Technology (NIST) in the United States 

and first published in 1993. This version (SHA-0) was found to have a serious security flaw, 

though NIST never published the details of this, and was replaced in 1995 with SHA-1 [9]. In 

recent years, SHA-1 has been found to have weaknesses, meaning a collision may be found. It 

was suggested in [18] that with a $1 million budget, a message could be broken in 25 days. Due 

to this, NIST developed SHA-2, which has a larger output (256 or 512-bit over the 160-bit in 

SHA-1) and differences within the message computation. SHA is ratified by NIST under 

ISO10118-3/FIPS180-1. Due to the Preimage resistance of SHA, the method of operation can 

be made public. Would-be attackers gain no benefit from knowledge of the SHA Algorithm, as 

no key is used to create the message digest. 

SHA-1 

SHA-1 is published in [19] and works by padding the message (M) of l-bits with a value k to give 

the smallest solution of l + l + k ≡ 448 mod 512, before appending a “1” at the message end due 

to the function being big-endian in operation. Following this, the 64-bit block equal to the binary 

representation of l is appended. This padding makes the message a multiple of 512-bits, 

allowing it to be split into N 512-bit blocks. Once the message is padded, 4 rounds of 20 steps 

are carried out (giving 80 steps in total) to create a digest. These blocks are split into 80 words 

of 32-bits (W t), which are run through logical operations such as Exclusive OR (XOR) and Left 

Rotations (RotL) through 80 rounds of operation. In this, the hash value will change due to the 

previous values calculated in the round; as well as due to the initialisation vector (IV), which is a 

predefined constant. Once all this is complete, the result is a 160-bit hash value based on the 

inputted message. The left-shift operation on the expansion was added to SHA-1 as a 

countermeasure to the weaknesses identified in SHA-0 [20]. 

 

Figure 3: SHA-1 Round Calculation 
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SHA-2 

SHA-2 operates in much the same way as SHA-1, but because values of 256, 384 and 512-bits 

are possible, the primary differences are more initial blocks of messages (8 instead of 5), fewer 

numbers of rounds (64 instead of 80), the use of right shifts as well as left shifts (SHA-1 only 

uses left shifts), constants for each round instead of blocks of rounds and the use of 64-bit 

inputs on the 512-bit function over the 32-bit for all others [7]. Messages are initially padded 

from 16 to 64 rounds using logical calculations based on the inputted message and each round 

is calculated using six variables based on the eight message blocks and 64 rounds. Unlike 

SHA-1, where there are four round calculations, SHA-2 only uses one. Its inherent strength 

comes from the use of 64 round constants over the four in SHA-1. This greatly reduces the risk 

of collisions and to date none have been found. 

Although SHA-2 is increasing in popularity, SHA-1 is still significantly used, not least for its 

incorporation into the Trusted Platform Module (TPM) ASIC [4]. However, TPM are currently 

investigating the use of SHA-2 in later modules [21]. If this takes place, the ASIC will also have 

to contain backwards-compatibility to SHA-1 for communication with older systems. Therefore, it 

is important that an ASIC can manage creation of SHA-1 and SHA-2 message digests at a 

speed where delay would not be noticed on a high-speed internet connection ([22] suggests a 

speed of 40Gbit/sec for a Fibre-optic line). 

 

Figure 4: SHA-2 Round Calculation [23] 
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Comparison of SHA Hash Functions 

While SHA-1’s strength has been compromised in recent years, it is still deemed suitable for 

many applications. This combined with the use within the Trusted Platform Module means SHA-

1 will be in use for the significant future, unless a major collision or other issue is found. If this 

occurs; deploying a replacement would be difficult [8]. The work by NIST and academics 

strongly shows that the importance of hash functions is clearly recognised and their strengths 

widely used. However, we should not be complacent and believe the currently used functions 

are suitable for the significant future. Since SHA-1 has already been shown to have possible 

collisions and with further cryptographic techniques under constant investigation, weaknesses in 

currently “safe” hash functions could quickly be identified and exploited. This, combined with the 

increase in computing power in line with Moore’s Law means 512-bit keys may be insufficient in 

the near future. Some authors, such as Buchmann, believe that cryptographic functions are 

limited by governments as currently they are only breakable by an organisation with a great deal 

of computing power such as the FBI [6]. When DES was originally developed and released in 

the 1970’s, only the US government had computers powerful enough to break its key in a 

feasible timeframe. As the number of transistors in home computers increased, DES became 

unusable and AES was introduced, with triple-DES as a temporary countermeasure. This 

principle will continue and algorithms must be successfully future-proofed to prevent their 

exploitation. Current recommendations by security experts such as Vacca suggest that SHA-2 

be used until SHA-3 is available in late 2012 [24]. 
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Literature Review 

The Importance of Trusted Computing 

Trusted Computing is gaining in importance due to the greater volumes of data stored 

electronically. Systems that are tamper evident, able to authenticate to a network, maintain 

integrity of the system and store data securely are needed to reduce the susceptibility to 

hackers. Due to this, the Trusted Computing Group (TCG) developed the Trusted Platform 

Module (TPM) [4]. TPM uses an ASIC that stores all cryptographic keys and hash values on the 

motherboard of a PC in a tamper evident and resistant way. Using an ASIC allows for all 

cryptographic resources, along with a true random number generator (unlike a pseudo-random 

generator used in software) and signatures to be performed in hardware; away from direct 

hacker attack. Since these signatures are stored in the ASIC, any hardware changes will be 

easily spotted [4]. TPM’s are currently manufactured by several companies, including Atmel and 

Infineon using the SHA-1 Hash Algorithm [21]. As has been shown previously, SHA-1 is known 

to have weaknesses; therefore the TCG infrastructure group has been investigating the use of 

SHA-2 in future modules. [9, 24] suggest using SHA-2 until further notice and using SHA-3 as 

soon as it is ratified. 

Hardware Implementation of SHA1 and 2 

Due to the high use of SHA, a great deal of research has taken place into implementing it into 

ASICs or FPGAs. Most published work concentrates on either SHA-1 or SHA-2 with none found 

on a fully integrated ASIC. [23] proposes core layouts for both SHA-1 and 2, but does not 

integrate these into a common core. 

The majority of papers published aim to improve throughput or power consumption through the 

use of Pipelining or Unrolling the function; or clock enabling respectively. 

[25] identifies reducing the critical path for calculation through the substitution of Carry Save 

Adders (CSA) for slower Carry Look-Ahead Adders (CLA). CSAs are capable of performing 

addition of three numbers, rather than the two that CLA or Full Adders (FA) can perform [26]. 

[27] however, uses Full Adders, placing them into a Wallace Tree to reduce the critical path. 

Both methods show speed benefits, with [25] giving a maximum throughput of 2073 Mbit/sec for 

SHA-256 and 950Mbit/sec for SHA-1 in [27]. Throughput is calculated using: 

            
          

                    
 

Equation 1 

The reduction in Critical Path for the longest calculation allows the remainder of the SHA 

operation to be unrolled and therefore completed in one, rather than multiple, clock cycles. It is 

found in [28] that unfolding the design for two operations (so performing two operations in one 

clock cycle) gives a factor-of-two speed improvement for the same increase in area. Unfolding 
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is also performed in [29], increasing throughput to 76Mbit/sec in conjunction with pipelining. 

Changing the architecture to a pipeline allows for simultaneous processing of blocks while not 

affecting the SHA operation. Using the pipeline also gives a level of delay balancing to the 

circuit, preventing incorrect signal propagation through a circuit and causing an incorrect 

message digest [30]. Use of these improvement techniques comes at a gate penalty and 

therefore would not be ideal for applications where power consumption is critical. 

As both SHA-1 and 2 have aspects of their calculation that are repeated several times, the 

operation can be thought of as a Finite State Machine (FSM) with output feeding into input until 

all folding and reductions are complete [31]. By using an FSM layout, all control signals and 

padding can be simply added as extra states, allowing easy changes from SHA-1 to SHA-2 with 

the majority of states staying common. 

Power Consumption is a key factor in all modern integrated circuit design. Due to the increase 

in wireless and mobile internet, systems are more commonly running from battery power rather 

than a mains supply. Therefore, reduction in both dynamic and static power consumption must 

be considered. The main consumer of dynamic power is the clock signal, so reducing either its 

speed or proliferation through the circuit would have a noticeable effect. Reduction of the clock 

speed is not recommended, as this will reduce the number of computations that can be 

performed per second and therefore the throughput of the circuit. Due to this, methods of 

reducing its presence in the circuit take priority. In [32], both Locally Explicit and Bus Specific 

Clock Enabling are suggested as methods to reduce power. These take the clock signal and 

only allow it to propagate into areas of the circuit when a signal is applied to the sub-sections 

input. By doing this, the number of transistors the clock is applied to is reduced and therefore 

the capacitance it must charge/discharge in a clock cycle, thus reducing the dynamic power 

consumed on each clock event. As: 

                                             Equation 2 [33] 

This technique is found to save up to 65% of the dynamic power, without altering any gate 

propagation times or overall operational speed. 

Static power reduction is more difficult to implement, but equally important as leakage power 

loss can account for up to 50% of power consumed by an ASIC [32]. Little work can be found on 

reducing this in cryptographic ASICs, but techniques such as Logic Gating could be used to 

deactivate areas when not in use. However this would mean any data in these areas has to be 

stored before deactivation, increasing the register count for the ASIC. Due to the time 

constraints of the project, reductions in static power will not be investigated further.  

A final method for increasing throughput suggested in [34] and tested in [35] is the use of Very 

Long Instruction Word (VLIW) to increase parallelism. These papers suggest that having 
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multiple sets of instruction commands to set logic prior to data arriving would improve 

throughput. While qualitative improvements have been noted, this technique is still in its infancy 

and was briefly tested during this thesis. VLIW allows a level of parallelism to take place, by 

running two functional areas of an ASIC simultaneously, but can also be used to pass data on a 

bus without using a RAM or cache to store the data prior as an intermediate device. While this 

can increase the instruction set and therefore technically mean the ASIC is no-longer using a 

RISC setup, most commercially-available chips such as ARM or MIPS have a large number of 

available bits to create and operation code and can therefore operate with 16-bit or greater 

instructions. For example, The MIPS M14K Chip allows the use of User-defined instructions to 

reduce processor loading and increase throughput [36, 37]. ARM also have this facility available 

through their THUMB code-set. 
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Design 

Due to the time constraints involved in an MSc project, the SHA ASIC was not physically 

manufactured. Instead it was simulated using VHISC Hardware Description Language (VHDL). 

Many hardware description languages (HDLs) exist, with Verilog as the most well-known 

alternative to VHDL. The decision to simulate the project in VHDL was primarily due to its 

standardisation by the IEEE as standard 1076 [38]. Since VHDL was developed from a US 

Government request, it is publically available and can be used on any ASIC or other 

programmable logic device (PLD) [39]. Also, unlike some other HDLs, VHDL can be used to 

create a test bench in conjunction with the device [40]. This test bench can simulate the clock 

signal, along with input parameters; essentially generating the “whole world” outside the ASIC 

[41]. This means that the ASIC can initially be synthesised in VHDL and simulated to confirm 

correct operation. If this design was found to be suitable, and a desire to manufacture was 

expressed, the VHDL would be easily shared and recognised by any design tool due to its 

standardisation. This code could also be synthesised into either an ASIC or a programmable 

chip such as a Field Programmable Gate Array (FPGA) with minimal modifications. 

To synthesise and simulate logic on the department computers, Xilinx was chosen as an 

acceptable tool. This allows presentation of data in nested VHDL files and simulation of a test 

bench in a graphical user interface (GUI). Figure 5 below shows the GUI used by Xilinx to 

simulate a circuit and show all inputs and outputs. Bussed inputs or outputs can be seen either 

as a single entity in hexadecimal, binary or as its separate data pins, which is very useful for 

debugging and investigation. As can be seen, the output is very clear and therefore more than 

acceptable to show a hexadecimal message outputted following calculation of the hash 

function. 

 

Figure 5: Xilinx Test bench Interface 
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Using a test bench also allows messages to be included in the VHDL program. Since the ASIC 

must successfully create the SHA-1 and 2 Hash Functions for a message, these can be 

calculated using commercially available software and placed in the test bench program as a 

comparison for the ASIC output. If the two do not match, the simulator can automatically give a 

failure message through use of the assert statement and halt if necessary. This saves time 

during debugging as messages are checked without user input.  

Code Control and Project Management 

As this project extended to several thousand lines of code, with many revisions throughout the 

practical phase, code management was identified early-on as a priority. To ensure accuracy at 

all times, A Version Control System (VCS) was adopted at inception. VCS allows tracking of a 

project throughout its phase through the use of revision and phase numbers. Therefore, all code 

in the project has the nomenclature “section_phase_revision” where phase and revision were 

incrementing numbers as changes were made. Section signifies whether the code was written 

during the SHA-1, SHA-2, Integration or test bench phase and gave an easy to remember 

method of code management, along with the ability to roll-back if a bug or issue was found. 

The original project plan can be seen in Figure 6, this gave a target code freeze data of 19th July 

2010. It was aimed to have no further code changes after this point, allowing time for test bench 

construction and debugging before a practical demonstration in August. The project was split 

into two distinct halves, with the practical work being the sole reserve of the project for the first 

five weeks and in parallel with the write up until the beginning of August. Following this, four 

weeks were reserved for the task of writing up. This was based on a standard 40 hour week, 

with five days contingency (three practical, two write up) to allow for unexpected issues. 

 

Figure 6: Initial Project Plan 

The actual project plan can be seen in Figure 7. This shows the practical work took longer than 

expected due to the time for individual component testing and designing blocks. However, as 

the thesis write-up was begun at a much earlier date, the workload for this in August was greatly 

reduced. This allowed extra time to be spent on the practical work and adequate preparation for 

the presentation at the end of August. This time was logged and shared with the MSc 
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supervisor through weekly update sheets. These summarised the accomplishments, issues and 

goals for the week, along with how the project was progressing to plan and goals for the 

following week. These were found to aid identification of possible issues and prevent 

bottlenecks occurring in the project. 

 

Figure 7: Actual Project Plan 

Development of SHA-1 

Overview 

Figure 3 shows the operation of SHA-1 over one round. The operation can be thought of as a 

Finite State Machine (FSM) with nine states. A version of this can be seen in Figure 10. For this 

state machine, each sub-section of the hash function has a specific state with exit criteria and 

actions on entry at the rising edge of the clock pulse. Therefore, the design used can be thought 

of as a Mealy Machine [42].  

As the goal for this project is to create an ASIC capable of performing both SHA-1 and 2, a 

modular approach to the design was taken. This can be seen in Figure 9 and is based on a 

microprocessor design in [41]. The ASIC will have a common 32-bit bus, allowing movement of 

data between sections of the architecture based on the current state of the FSM. All blocks are 

common to both SHA-1 and SHA-2 (256 bit) operation, with the only differences being the 

values of Initialisation Vector (IV), round constants (K), and number of rounds (80 for SHA-1, 60 

for SHA-2). Therefore, by using a modular design, these values can be stored in sections of 

memory and extracted using selector pins, leading to an efficient use of gates and area [43]. 

The ASIC uses tri-state buffers to store data, reducing read/write operations to RAM and 

eliminating the need for a cache, as well as ensuring the bus can be shared by all components. 

Tri-state buffers allow a logic 1, logic 0 and high impedance state to be adopted by the output. 

Therefore, using the high-impedance state when not reading or writing to the bus prevents any 

corruption of the data taking place. Using direct access registers like these is a well known 

method of overhead reduction [44] and since 74% of most microprocessor execution is involved 

with either data transfer (45%) or Program Control (29%) [45], reducing the time for these to an 

almost atomic state is critical in increasing speed. Figure 8 shows the high-level flow chart to 

calculate a hash value for an arbitrary length message using this ASIC design.  
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Figure 8: Flowchart of SHA-1 Operation 

 

Figure 9: Architecture of SHA-1 ASIC 
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Figure 10: FSM of SHA-1 Operation 

The ASIC will have 36 data pins; with 32 connected to the data bus, plus a clock pin, a “more 

message” pin, a selector for SHA-1 or SHA-2 and an asynchronous reset. The reset will place 

the FSM back into its initial state whenever it is set, as well as clear all register and RAM 

content. IV’s and K values will not be affected, as these are stored in ROM and only transferred 

to RAM once the ASIC has begun operation. Since these pins are common across all 

components of the ASIC, they are declared at a component level with all functional blocks at the 

next level of design connected to them an all internal signals using the port map command [38].  

To control the ASIC operation, an operations code (opcode) will be used. This will decide which 

action the system is to take (store, load or execute) and therefore which state in the FSM is next 

to be executed. Coding for this opcode was one-hot encoding in the original design to allow 

easy distinction and expansion if necessary. Although one-hot encoding is not the most efficient 

in the number of flip-flops used, it uses less resources than other coding techniques for large 

number of states and will give easy debugging during integration [41, 46]. Owing to a shortage 

of available bits for accessing memory addresses, the decision was made to switch to standard 

encoding. As the program in ROM totalled approximately 21000 lines, 12-bits were needed to 

access these within the ROM MAR. With one-hot encoding, only 11 were available and the 

system would enter an infinite loop. Other coding techniques such as grey codes were 

investigated as these are known to be more power saving due to minimal bit changing [33], but 

were not implemented in the initial design as it was felt standard encoding would be sufficient. 

This removed the advantages one-hot encoding could give, such as improved debugging and 

the exploiting of parallelism, but this was deemed a minor issue over having a fully functional 

ASIC. 
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While Figure 10 gives a high level flowchart of SHA-1 operation, in actuality the program is 

more complex. While constructing the circuit, 20 operational codes were found to be needed. 

These are used to store information in architectural blocks to RAM, place data from RAM in the 

blocks, execute routines in logic and output the message. A full list of opcodes can be seen in 

Table 1. 

Opcode  Use Opcode  Use 

Store ACC Stores Value In 

Accumulator to MDR 
Load ACC Loads Accumulator with 

value from MDR 

Store Expansion Stores Value In 
Expansion Logic to 

MDR 

Load Expansion Loads Expansion Logic 
with value from MDR 

Store Logic Stores Value In Logic to 
MDR 

Load Logic Loads Logic with value 
from MDR 

Store Shifter Stores Value In Shifter 
to MDR 

Load Shifter Loads Shifter with value 
from MDR 

Store ROM Stores Value In ROM 

(selected by ROM MAR) 
to MDR 

Left Shift Runs Left Shift 

Operation 

Logic Calculation1 Runs AND Logic  Logic Calculation2 Runs OR Logic 

Logic Calculation3 Runs NOT Logic  Logic Calculation4 Runs XOR Logic 

ALU Add Performs Modular 
Addition 

More Message Denotes if message on 
input to Bus is complete 

Message Out Outputs Message to IO Expansion Calculation Runs Block Expansion 

Store IO Stores Value in IO to 
MDR 

Load IO Loads IO with value 
from MDR 

Table 1: Opcodes for SHA-1 ASIC 

In conjunction with these opcodes, there are flags internal to the ASIC to allow progression 

through the FSM when the PC is incremented. This is a standard method of microprocessor 

design, which has been widely used previously, meaning that the system has a set of 

instructions specific to its architecture [47]. In total for this ASIC, there are 33 flags, which are 

detailed in Table 2. 
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Flag Use Flag Use 

ACC_Bus Load Accumulator onto 
Bus 

Load_ACC Load Accumulator with 
Bus Contents 

PC_Bus Load PC onto Bus Load_PC Loads PC with Bus 

Contents 

Load_MDR Load MDR with Bus 
Contents 

MDR_Bus Load MDR onto Bus  

Addr_Bus Load IR onto Bus  Load_IR Load IR with Bus 
Contents 

Load_MAR Load RAM MAR with 

Bus Contents 
Load_MAR_ROM Load ROM MAR with 

Bus Contents 

Shift_Bus Load Shifter Contents to 
Bus 

Load_Shift Load Shifter with Bus 
Contents 

Logic_Bus Load Logic Contents to 
Bus 

Load_Logic Load Logic with Bus 
Contents 

Expand_Bus Load Expander Logic 

Contents to Bus 
Load_Expand Load Expander Logic 

with Bus Contents  

Logic_Ex1 Execute AND Logic  Logic_Ex2 Execute OR Logic  

Logic_Ex3 Execute NOT Logic  Logic_Ex4 Execute XOR Logic 

Shift_Ex Execute Shifter Expand_Ex Execute Expansion 

Inc_PC Increment PC ALU_ACC Load Accumulator with 
ALU Contents 

CS Chip Select. Uses MAR 

to set up Memory 
Addresses 

R_NW Read, Not Write: Stores 

MDR to memory when 0 
and memory to MDR 
when 1 

ROM_CS ROM Chip Select. Uses 
ROM MAR to set up 
memory addresses 

Read_ROM Outputs contents of 
ROM Memory to MDR 
when 1 

MDR_ROM_Bus Load ROM MDR onto 
Bus 

ALU_Ex Execute ALU Function 
(addition) 

PC_Reset Resets Program 

Counter to allow loop to 
run again 

IO_Bus Load IO onto Bus  

Load_IO Load IO with bus 

contents 
  

Table 2: Flags for ASIC 

To reduce the design down to the Register Transfer Layer (RTL) model, the FSM model in 

Figure 10 was refined to an Algorithmic State Machine (ASM) Chart. This is a widely used tool 

for developing logic for a complex circuit [41] allowing the high-level design of FSM to be 

reduced to possible Boolean expressions. This ASM for this circuit can be broadly split into two 

sections; the first is the instruction fetch, where the PC is incremented and all items in the 

memory set up accordingly; the second section is the execution area, where the instruction to 

be executed takes place based on the opcode. 
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The ASM for the ASIC can be seen in Figure 11. Each box signifies a stage in the ASM, 

meaning there are 33 stages, compared to the 9 in the original FSM. Stages 0 – 3 are 

concerned with instruction fetching, where the PC is outputted, incremented and used to pull the 

next instruction from the ROM into the instruction register. These instructions can be split 

broadly into three sections: Load, Store or Calculate. The load section pushes data from the 

RAM into the MDR and onto the Bus, where the block requiring the data will store the data in its 

register. The store section allows blocks to push data onto the bus, where the MDR will collect 

and store it in RAM. The execute section allows a logic block to execute its specific action. 

While this is not the most efficient architecture, meaning the system only executes one block 

per line of the PC; it gives a layout that is easy to debug and allows parallelism to be brought in 

at a later date though the use of VLIW encoding, or possibly one-hot encoding if the number of 

operational codes or lines of firmware code could be reduced to a point where all memory 

addresses could still be accessed. Parallelism will not affect bus-loading, as the load and store 

sections of the program can still be executed sequentially, preventing two sections attempting to 

use the bus at the same time. A more advanced design may use a mutual exclusion system to 

block bus access when a system has requested it. This is similar to work in [48] and could lead 

to an asynchronous system with globally asynchronous local clock (GALS) for the logic blocks. 

However, such a concept is beyond the scope of this project, where the system will remain fully 

synchronous and running from a single clock. 
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Figure 11: ASM Chart for ASIC 
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Logic Ft  

A key part of the SHA-1 implementation is the logic functions applied across each round. These 

vary over the 80 rounds and are used to update the “A” value within the round calculation. The 

three Boolean equations used are: 

 (B.C)+(B.D) for Rounds 1-20 

 B○+ C○+ D for Rounds 21-40 and 61-80 

 (B.C)+(B.D)+(C.D) for Rounds 41-60 

The gate implementations for these can be seen in Figure 12 to Figure 14. These diagrams 

include the reduction of these gates to NAND gates only. Using this technique would improve 

gate balancing, as all gates would have the same delay time; as well as reduce complexity of a 

part library. While the VHDL for this was constructed, it was deemed overly complicated to 

implement in the time available and not used. Instead, four opcodes were created; logic_ex1 – 

logic_ex4 that run the four logic functions used in the calculations (AND, OR, NOR and XOR). 

Therefore, the logic calculations will be split into their separate components and run one gate at 

a time to progress through the logic functions. Although this technique is slower than other logic 

implementations, this implementation allows any logic function to be implemented without 

updating the chip architecture. To change the functions, only the program stored in ROM would 

require updating. This give the ASIC the flexibility to run different hash functions if needed and 

possibly run SHA-3 once its architecture is announced by NIST in Quarter 4 of 2010 [49]. 

 

 

Figure 12: Round 1-20 Logic and NAND Gate Reduction  

 

 

Figure 13: Round 21-40 and 61-80 Logic and NAND Gate Reduction  
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Figure 14: Round 41-60 Logic and NAND Gate Reduction  

To test the operation of the logic gate section, each gate was tested individually and in 

combinational functions. The sysbus was asserted with a 32-bit value, which was fed into the 

logic and outputted back to the sysbus. Since the logic output can be pre-defined, the test 

bench was created with an assert statement to allow easy comparison of the sysbus output to 

the expected value. Any errors would stop the test bench and flag an error. The test bench 

proceeded correctly and the logic section of the ASIC was deemed to be operating successfully. 

Circular Shift Register 

A key item used in SHA-1 is the circular left shifter. This allows movement of data in a left shift, 

with the Most Significant Bit (MSB) becoming the Least Significant Bit (LSB) on each shift. This 

is different to a normal shift register, where data would simply be lost [50]. For this ASIC, the 

shift register is parallel loaded with data from the system bus, then will perform a shift each 

clock cycle that shift_ex is asserted. After the shift cycle is complete, data will be outputted onto 

the system bus in parallel for use in round calculations. 

To test the shift register, a test bench was constructed that loaded a binary sequence into the 

components. The shift operation was active for a set number of clock cycles and the value in 

the registers outputted. This was compared to the expected value and would bring up an error 

message if a problem was found. No errors were found and the Circular Shift section of the 

ASIC was deemed to be operating correctly. 

 

Figure 15: 32-bit Circular Shift Register [51] 
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Modulo-32 Adder 

For SHA-1, a full Arithmetic Logic Unit is not required, as a Carry out of the final block is 

unused. Essentially, at a gate level, the adder can be thought of as a bitwise exclusive OR 

(XOR) within the word [38], with carry followed through but not outputted after summation is 

complete. However, for the VHDL implementation, the approach taken was to create a full ALU 

within the architecture and not output the final carry. This decision was taken to allow the ASIC 

to remain as multi-purpose as possible and allow minimal upgrading of components if SHA-3 

requires full addition.  

To test the modular adder, sequences of 32 bit numbers known to cause and not cause wrap-

around of the modular arithmetic were fed into the ALU and accumulator using a test bench 

program. The results were outputted and compared automatically to the known correct results 

(e.g. 0xFFFFFFFF + 0x00000001 = 0x00000000 as the 32-bit number wraps around and does 

not propagate a carry). Any failures occurring would bring up an error message during the test 

bench process. No errors were found and the ALU section of the ASIC was deemed to be 

operating correctly. 

Storage of Constants (ROM) 

SHA-1 uses five initial values, plus four round-dependant constants. To ensure these are stored 

safely and cannot be corrupted, Read Only Memory (ROM) was used. This ROM also contained 

the program used to execute the Hash Function, which is accessed by the PC. The VHDL 

implementation of a ROM chip simulates a mask ROM. In these, the values are set permanently 

and cannot be changed. This is useful for high-volume manufacture, but means data cannot be 

changed once it is written. If the chip were to be actually manufactured commercially, EEPROM 

would be most likely used due to its ability to be re-written if necessary and update either 

constants or the program, giving flexibility to the ASIC if bugs were found after launch or 

possibly allowing SHA-3 to be installed if this uses the same components as SHA-1 or 2. 

In VHDL, ROM is constructed as an array of constants [41]. The implementation is relatively 

simple, with an address requested at the input of the entity and the corresponding line of the 

array given as an output. 

To test the ROM designed for this ASIC, a test bench was constructed that would request all 

lines of data in a non-sequential order. These memory locations were then outputted on the 32-

bit system bus and compared to the known values of the memory addresses requested. Any 

failures occurring would bring up an error message during the test bench process. No errors 

were found and the ROM section of the ASIC was deemed to be operating correctly. 
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Storage of Values during Round Calculation (RAM) 

The Initialisation Vectors used in SHA-1 are updated at the end of each round calculation. 

Therefore, these cannot be simply stored in RAM and updated once all logical operations have 

been performed. Likewise, 512 bits of data must be extracted from the initial message, stored, 

expanded and used for the round calculations. For this to take place, the ASIC requires a form 

of writable memory in conjunction with the ROM. The two main types of memory used are Static 

Random Access Memory (SRAM) and Dynamic RAM (DRAM). While DRAM is more space 

efficient that SRAM [52], it is slower due to its need to be refreshed periodically. The reason for 

this is DRAM uses fewer transistors (typically 1 compared to 6 on SRAM) and holds the value of 

these using capacitors, which require recharging. Since the memory used on this ASIC is small 

(3840 bits), along with the goal of high speed with low power consumption, SRAM will be used 

over DRAM. The layout of an SRAM cell can be seen in Figure 16, showing how it remains 

stable so long as power is applied. M1 – M4 are a cross-coupled inverter, allowing either a logic 

0 or logic 1 to be represented by the cell. M5 and M6 are access transistors, used to allow the 

value stored in the SRAM to be changed [53]. 

 

Figure 16: 6-Transistor SRAM Cell [54] 

 

Figure 17: Static RAM Cell [53] 
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data and addresses for access. These two register sets are known as the Memory Address 

Register (MAR) and Memory Data Register (MDR). The MAR allows the RAM to know which 

address data on the MDR is to be written to or from. RAM input and output are on shared pins, 
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specified by the MAR, the data on the MDR is to be loaded to into the RAM address specified in 

the MAR or the data in the MDR is to be outputted onto the system bus. 

To test this section of the system, a test bench was created that loaded each section of the 

RAM with a number corresponding to its memory address. These were then extracted in a 

random order, outputted on the 32-bit system bus and compared to the known values of the 

memory addresses requested. Any failures occurring would bring up an error message during 

the test bench process. No errors were found and the RAM section of the ASIC was deemed to 

be operating correctly. 

Program Counter (PC) 

To ensure progression through the program correctly, a Program Counter is used. This is 

essentially a simple counter to progress though the addresses in memory where instructions are 

stored; extract these instructions onto the bus and allow execution. If a section of operation 

requires a jump within the PC, the current value will be stored to RAM and extracted once the 

branched instruction is complete – therefore allowing the program to continue in a linear fashion 

until completion. In the event of the message requiring hashing being greater than 512-bits in 

size, the “more message” flag will be set and cause a hard reset of the program counter to a 

predefined value. This will allow repetition of the program, without overwriting the current hash 

value with the IV values stored in ROM. 

To test the program counter, a test bench was created that stimulated the flags in a specified 

order to ensure the PC would increment, output to the system bus and reset to a pre-defined 

value when selected. Any failures occurring would bring up an error message during the test 

bench process. No errors were found and the PC section of the ASIC was deemed to be 

operating correctly. 

Instruction Register and Sequencer 

Due to the length of the opcode being smaller than the size of the sysbus, the code is padded 

prior to sending. Therefore the instruction register removes this padding prior to sending the 

code to the sequencer. Constant rfill is defined in the ASIC package and concatenated to the 

opcode when the instruction register is sent to the sysbus. To perform this conversion, two 

subroutines; slv2op and op2slv are also defined in the package. These allow the sysbus signal 

to be read, decoded and the corresponding opcode used in the ASM for moving between 

states. 

To test these components, a test bench was created to place signals onto the sysbus 

corresponding to opcodes in the ASIC package. If the register and sequencer were operating 

correctly, the opcode output would change accordingly and output a command corresponding to 
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the binary signal input. No errors were found and the Instruction Register section of the ASIC 

was deemed to be operating successfully. 

Creation and Testing of SHA-1 

Once all parts of the ASIC were found to be operating correctly individually, they were 

integrated into a complete system through the use of packages and component instantiation in 

VHDL. This gives a partitioned design, which is simpler for addition and debugging during tests. 

The package command is used in conjunction with package body to declare constants and 

functions used across the whole ASIC [38]. In this example, items such as the bus size 

(word_w), opcode size (op_w) and conversion of opcode to bus message (slv2op and op2slv) 

were declared in the package. The package body is used to add definition to slv2op and op2slv. 

Using the case command, the corresponding opcode is outputted based on the input present on 

the sysbus. This only allows one item to be executed in the array present, but since this ASIC is 

operating sequentially, this is acceptable for the design. This package is declared in all parts of 

the ASIC using the syntax use work.asic_defs.all in the library definitions. Through the use of a 

package, updates to the ASIC core take place by changing constant values, as these will 

permeate through all systems. This technique was used to increase the number of opcodes by 

only changing the table and constant value within the package. In a non-partitioned design, a 

change like this would require a complete redesign. 

Once all parts of the ASIC are designed and operating successfully, they are defined as 

components at the top level. An entity called ASIC is created with only the externally connected 

inputs and outputs declared. All other internal signals are defined within the architecture and 

assigned to the relevant component through the port map command. This allows VHDL to 

create the design with all relevant connections automatically set. A syntax check on this top-

level program initially identified issues with its connection to some components. The errors were 

found to be caused by the automatic addition of some unused libraries by the Xilinx tool. These 

libraries were causing conflicts within the ASIC and errors on compilation. Once these libraries 

were removed, all parts of the ASIC compiled correctly, leading to simulation of the entire 

system through a test bench. 

Initially testing was performed on all sections as separate entities. The test benches were 

designed to test all aspects of operation and feasible conditions of use to identify any issues in 

the modules [55]. Through this separate testing, some small coding errors were identified and 

corrected prior to their integration in to the main ASIC. Most errors identified were omissions of 

commands such as setting the tri-state register to high impedance when not requested to output 

to the bus. An omission such as this could cause the system bus to be used by two components 

simultaneously and therefore cause communication collisions. As no protocol to identify this 
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(such as CDMA [56]) was implemented along with its associated error checking, any collisions 

could cause severe issues to the ASIC operation. Therefore, the correction of this code was 

critical to allowing successful operation of all modules within the system. Results from this initial 

testing can be seen in the Results section, with code for these and their test benches in Error! 

Reference source not found.. 

Once all aspects of the ASIC operation as separate entities was complete, the VHDL files were 

connected together with a component level declaration and an overall test bench designed. As 

the ASIC progresses through the FSM automatically, this test bench simply operated a clock 

and provided a reset pulse to start the ASIC, as well as place the message into the I/O buffer. 

As the firmware program took several thousand lines of code, sections were checked with 

several test programs loaded into ROM which would check the operation of all components 

during the instruction fetch and execution phase. These programs concentrated on running 

each opcode in turn and ensuring that items could be called from RAM, placed into a functional 

block and executed. Outputs from the functional blocks were checked against the known correct 

answers using the assert statement. This waited until the msg_out pin was high and then would 

compare the sysbus to the value stored within the test bench. Any incorrect answers would 

cause an error message to be reported in the console window of Xilinx. All tests were 

completed successfully, allowing development of the full program to take place.  

The SHA-1 program totalled 5200 lines of code. This is a large program, but this is because all 

instructions were placed in-line. With further time and knowledge of firmware programming, this 

code could be reduced using branch instructions to reset the PC and only execute instructions 

as part of an FSM similar to that in Figure 10. With the clock running at 10ns, this gives a 

throughput of 1.32Mbit/sec when calculated with Equation 1. The use of a faster clock would 

increase throughput, but also increase dynamic power dissipation. Practically however, a ten-

time increase to a 1GHz clock would be practical, which would give this system in its current 

form a throughput of 13.2Mbit/sec. A further development for this ASIC would be to reduce the 

instruction set and possibly unroll functions, as this could increase the throughput to a level of 

practical use. 

To test whether the design could be implemented, Xilinx was used to synthesise the 

components for FPGA use. A QPRO Virtex4 FPGA was chosen as this was known to be 

capable of supporting the ASIC size with the full firmware program loaded and had been used in 

previously published papers on SHA Hardware Implementation [57]. The ASIC successfully 

routed with a total register count of 3258 used. This investigation was not taken further, as the 

primary goal of the project was simulation, not to synthesise the unit into an FPGA. However, 

this shows that the design can be implemented by an automated tool and therefore could be 

used in a commercial application. 
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Development of Integrated Architecture 

Once the SHA-1 ASIC was deemed to be operating successfully, the addition of SHA-2 to the 

core was made. Due to the modular design used, minimal additions needed to be made to give 

this chip SHA-2 capabilities: A larger RAM and ROM was declared, to contain the extra IV and 

K values used by SHA-2 for its round calculations, along with the new program, and the addition 

of right linear and circular shifters to the shifter logic block. The ROM size was increased from 

6100 lines to 22000 lines due to the large size of the SHA-2 program. 

To allow use of these new parts, two new opcodes had to be introduced to allow the shifter to 

operate in one of its three methods of operation. Due to the method employed for the opcode 

creation, along with the package definition used, this work was minor and added further 

functionality to the ASIC. These additional items of logic may allow SHA-3 to be used on this 

ASIC with a simple firmware program upgrade, if the components required by this are already 

declared within the architecture. 

The major change for the addition of SHA-2 is the addition of new code within the program to 

allow execution of this hash function. This code is placed at a known point within the memory, 

which a hard jump can be made to if the selection pin is set to SHA-2. This jump is performed 

by setting the count variable in the Program Counter to the value of the branch and allowing 

execution from this point. The PC will then increment normally and progress to the end of the 

program, where the ASIC will again enter a wait mode until reset prior to the next message 

arriving. 

Since all sections of the ASIC were unchanged, with the exception of the Logical Shifter, these 

components did not require re-testing. Instead, the program was modified as above and tested 

as a whole entity. 

Pre-processing  

SHA-2 takes the 512-bit input message and expands to 64 blocks of 32 bits each. This is 

performed using two variables S0 and S1, created using previous blocks passed through the 

right circular shift and the Exclusive OR operation. These are then added to previous blocks 

within the ALU and give the blocks 17-63. This is similar to the program for SHA-1, and only 

required the addition of the right-circular and logical shifter to the shifter block, as well as two 

extra opcodes to allow this part of the logic to execute. The design of a right shifter is identical 

to the left circular shift, except the LSB now becomes the MSB, rather than the other way round. 

Due to testing of this at SHA-1, the entity was not retested individually, but instead as part of the 

integrated program. 
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Round Calculations 

The round calculation in SHA-2 is constant for all 64 rounds. Six variables are used, all using a 

mixture of logical, shifting and addition operations, as well as adding the round-dependant 

blocks and constants to create the eight hash values for the round. Therefore, these variables 

were calculated using already existing blocks from SHA-1 and were not individually tested. 

Instead, as with the pre-processing, they were tested within the final program to check for a 

successful output. 

The logical values were as follows: 

 S0 = (a ROTR 2) XOR (a ROTR 13) XOR (a ROTR 22) 

 MAJ = (a AND b) XOR (a AND c) XOR (b AND c) 

 T2 = S0 + MAJ 

 S1 = (e ROTR 6) XOR (e ROTR 11) XOR (e ROTR 25) 

 CH = (e AND f) XOR ((NOT e) AND g) 

 T1 = h + S1 + CH + k[i] + w[i] 

Where k[i] is the round constant and w[i] is the message round value 

These values are added to the variables a – h, which are added to the initial hash values h0 – 

h7. This is repeated 64 times, giving a hash output of h0 – h7 after this is complete. 

Increase in Throughput 

Following the completion of the experiments, methods to increase throughput were investigated. 

Two key methods were identified: The refinement of code and the use of Very Long Instruction 

Word (VLIW) coding to allow functional blocks to write directly to one another, rather than using 

the RAM as an intermediary. 

Investigations of the Code can be seen in Figure 18, this shows the majority of opcodes used in 

SHA-1 are the shift-left command, mostly due to the left-shift of B 30-times during round 

calculation. This could be reduced in the improved architecture by using the right-shift command 

available due to its use in SHA-2. 30 left-shifts are identical to 2 right-shifts when employing a 

circular shift and this would reduce the time to perform a round calculation by 25%. 

The second most common opcode used is the storage and recalling of ALU data for the round 

calculation. A method to reduce this would be the introduction of two accumulators within the 

ALU, allowing addition of either Bus/Accumulator or Accumulator/Accumulator. Due to time 

constraints, this was not carried out but is considered as a further improvement if this project 

were to be revisited at a later date. 
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Figure 18: Pareto Graph of OpCode Use  

During the expansion calculations, data is stored in RAM after being XOR’d, followed by being 

passed to the shifter block for a left circular shift. If the expander output could be passed directly 

to the shifter, this would save one opcode being used and make the expander block 12% more 

efficient. To implement this for all blocks would require an increase in opcodes from the current 

20 to 33. This would allow all blocks to pass data directly to one another and reduce regular 

RAM accesses. Initial tests of this by directly passing information from the shifter to the ALU 

proved successful, but this could cause issues with a shared bus, as RAM would not know 

when other elements were accessing the bus and issues could result. To prevent this, a mutual 

exclusion element or other such form of token bus could be used, but this would affect 

throughput and could make the system slower than without the use of VLIW. Further work on 

this area has already been proposed by Kakarountas [34] and is further endorsed by this work. 

Since all items output their results to the tri-state registers before outputting to the sysbus, an 

investigation into parallelism was also made. Items not using the sysbus for an input value could 

be run simultaneously and therefore reduce the operation time of the ASIC. This was initially 

tested by running the Shifter and ALU during the same FSM state, but was not pursued further 

due to time constraints and the level of redesign required to implement this successfully. 
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Comparison against published ASIC/FPGA Implementations 

SHA-1 

Implementation Logic Blocks Used 

(FPGA) 

Clock Frequency 

(MHz) 

Throughput 

(Mbit/sec) 

Kakarountas [34] 950 98.7 2526.7 

Sklavos [58] 1004 42.9 119 

Lee 2894 118 5900 

This Work 3528 100 1.31 

SHA-1 and 2 Integrated Architecture 

Implementation Logic Blocks Used 

(FPGA) 

Clock Frequency 

(MHz) 

Throughput 

(Mbit/sec) 

Chaves 565 227 1420 

Sklavos [58] 2384 74 291 

Khalil 4489 50 644 

This Work (SHA-2) 6836 100 0.49 

Table 3: Comparison of ASIC to Current Published Work 
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Results 

Note: All throughput calculations are based on Equation 1 

Logic Ft Calculation 

Objectives 

To load Tri-state register with data, output data to system bus, perform AND, OR, NOT and 

XOR logic and output results to system bus 

Test bench pseudo code 

 Load system bus with value and load to Logic register 

 Load register to system bus, ensure value matches initial value 

 Perform Logical AND on value in register with matching value in system bus, ensure 

output is correct 

 Perform Logical AND on value in register with non-matching value in system bus, ensure 

output is correct 

 Perform Logical OR on value in register with non-matching value in system bus, ensure 

output is correct 

 Perform Logical NOT on value in register, ensure output is correct 

 Perform Logical XOR on value in register with matching value in system bus, ensure 

output is correct 

Results 

 Value initially loaded: 0x00000001 

 Value returned before Logical AND: 0x00000001. Result: Pass 

 Value returned from AND of 0x00000000 and 0x00000001: 0x00000000. Result: Pass 

 Value returned from AND of 0x00000001 and 0x00000001: 0x00000001. Result: Pass 

 Value returned from OR of 0x00000000 and 0x00000001: 0x00000001. Result: Pass 

 Value returned from NOT of 0x00000001: 0xFFFFFFFE. Result: Pass 

 Value returned from XOR of 0xFFFFFFFE and 0x550aa333: 0xaaf55cd. Result: Pass 

 Time taken for AND Function: 40ns, giving throughput of 800Mbit/sec 

Conclusion 

Logic block accepts and outputs values successfully and performs all logic functions correctly. 

Therefore this component operates successfully. 
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Circular Shift Register 

Objectives 

To load Tri-state register with data, output data to system bus, rotate data in logical and circular 

shift, with output to system bus 

Test bench pseudo code 

 Load system bus with value and load to Shift Register 

 Load register to system bus, ensure value matches initial value 

 Execute shift register, output result, ensuring one left shift  

 Execute shift register until loaded value is beyond most significant bit, output result, 

ensuring values have moved to least significant bit and therefore a circular shift has 

been successful 

Results 

 Value initially loaded: 0x40000000 

 Value returned before shift: 0x40000000. Result: Pass 

 Value returned after one shift: 0x80000000. Result: Pass 

 Value returned following second shift: 0x00000001. Result: Pass 

 Time taken for one shift function: 30ns, giving throughput of 1.067Gbit/sec 

 Time for 30 shift operation (longest in SHA-1): 320ns, giving throughput of 10Mbit/sec 

Conclusion 

Circular shift register successfully accepts values, performs left shift and wraps shift in a circular 

manner. Therefore this component operates successfully 
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Modulo-32 Adder 

Objectives 

To load Tri-state register with data, output data to system bus, perform simple addition and 

overflow addition, with output to system bus 

Test bench pseudo code 

 Load system bus with value and load to Accumulator register 

 Load accumulator to system bus, ensure value matches initial value 

 Perform addition of values on system bus and in accumulator, ensuring correct result 

 Perform addition of values known to cause overflow, showing modular addition takes 

place 

Results 

 Value initially loaded to accumulator: 0x00000001 

 Value returned before addition: 0x00000001. Result: Pass 

 Value returned from addition of 0x00000001 and 0x00000001: 0x00000002. Result: 

Pass 

 Value returned from addition of 0x00000002 and 0xFFFFFFFE: 0x00000000. Result: 

Pass 

 Time taken for addition operation: 40ns, giving throughput of 800Mbit/sec 

Conclusion 

The Adder successfully accepts and returns values from the accumulator, as well as performing 

addition and modular addition successfully. Therefore this component is acceptable for use. 
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ROM 

Objectives 

To extract data from specified memory locations in ROM to system bus 

Test bench pseudo code 

 Load MAR with address 0x00000000 

 Command readout of memory address in MAR to MDR 

 Output MDR to system bus 

 Repeat for memory addresses 0x0000001, 0x0000008, 0x0000007 and 0x0000003 

Results 

 Result for readout of memory address 0x00000000: 0x67452301. Result: Pass 

 Result for readout of memory address 0x00000001: 0xEFCDAB89. Result: Pass 

 Result for readout of memory address 0x00000008: 0xCA62C1D6. Result: Pass 

 Result for readout of memory address 0x00000007: 0x8F1BBCDC. Result: Pass 

 Result for readout of memory address 0x00000003: 0x10325476. Result: Pass 

 Time taken for readout operation: 30ns, giving throughput of 1.067Gb/sec 

Conclusion 

The ROM Module successfully stores constants within its addresses and outputs the 

corresponding constant based on the address in the MAR. Therefore, this section of the circuit 

operates as specified. 
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RAM 

Objectives 

To read and write data from specified memory locations in RAM to system bus 

Test bench pseudo code 

 Load MAR with address 0x00000000 

 Load MDR with data 0x0F0F0F0F 

 Write contents of MDR to RAM 

 Repeat for addresses 0x00000001 and 0x0000000F with data 0x0E0E0E0E and 

0xF0F0F0F0 respectively 

 Load MAR with address 0x00000000 

 Command readout of memory address in MAR to MDR 

 Output MDR to system bus 

 Repeat for addresses 0x00000001 and 0x0000000F 

Results 

 Readout of address 0x00000000: 0x0F0F0F0F. Result: Pass 

 Readout of address 0x00000001: 0x0E0E0E0E. Result: Pass 

 Readout of address 0x0000000F. 0xF0F0F0F0. Result: Pass 

 Time taken for write operation: 30ns, giving throughput of 1.067Gb/sec 

 Time taken for read operation: 30ns, giving throughput of 1.067Gb/sec 

Conclusion 

The RAM Module successfully stores data within its addresses and outputs the corresponding 

constant based on the address in the MAR. Therefore, this section of the circuit operates as 

specified. 
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Instruction Register 

Objectives 

To ensure instructions presented on the system bus are correctly interpreted and outputted by 

the sequencer 

Test bench pseudo code 

 Load value 0x80000000 to system bus 

 Load into sequencer and ensure correct opcode is called 

 Repeat for values 0x40000000, 0x00010000 and 0x00008000 

Results 

 Opcode for value 0x80000000: “logic_calc4”. Result: Pass 

 Opcode for value 0x40000000: “logic_calc3”. Result: Pass 

 Opcode for value 0x00008000: “store_acc”. Result: Pass 

 Opcode for value 0x00010000. “store_expansion”. Result: Pass 

Conclusion 

The instruction register successfully stores data from the system bus when requested. This is 

then passed to the sequencer, which outputs the correct operation based on the decoded 

Opcode. Therefore this section of the program operates correctly. 
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Program Counter 

Objectives 

To ensure Program Counter can jump to a value on the system bus and increment this value 

when the increment flag is asserted, as well as output this value onto the system bus 

Test bench pseudo code 

 Load system bus with value 0x00000002 

 Load system bus to Program Counter 

 Output Program Counter register to system bus 

 Increment Program Counter and output result, ensuring increment operation has taken 

place 

Results 

 Value loaded to system bus: 0x00000002 

 Value outputted from Program Counter: 0x00000002. Result: Pass 

 Value outputted from Program Counter following one increment operation: 0x00000003. 

Result: Pass 

 Value outputted from Program Counter following second increment operation: 

0x00000004. Result: Pass 

 Time taken for operation: 30ns, giving throughput of 1.067Gb/sec 

Conclusion 

The program counter can accept and therefore jump to a value presented on the system bus, as 

well as increment when commanded. Therefore this section of the circuit operates as specified. 
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Expander 

Objectives 

To load Tri-state register with data, output data to system bus, perform XOR logic and output 

results to system bus 

Test bench pseudo code 

 Load system bus with value and load to Logic register 

 Load register to system bus, ensure value matches initial value 

 Perform Logical XOR on value in register with matching value in system bus, ensure 

output is correct 

Results 

 Value initially loaded: 0xAA000000 

 Value returned before Logical XOR: 0xAA00000000. Result: Pass 

 Value returned from XOR of 0xAA00000000 and 0x82000000: 0x28000000. Result: 

Pass 

 Time taken for XOR Function: 40ns, giving throughput of 800Mb/sec 

Conclusion 

Expander block accepts and outputs values and performs logic functions correctly. Therefore 

this component operates successfully 
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Finite State Machine 

Objectives 

To ensure the FSM successfully sets flags upon entry to a state and moves to the state 

specified by the relevant opcode. 

Test bench pseudo code 

 Set opcode “store_acc” and ensure FSM progresses through as per Figure 11 

 Repeat for “store_ROM”, “Call_shift” and “shift_calc” 

Results 

 State order for “store_acc”: s0, s1, s2, s3, s8, s9, s0. Result: Pass 

 State order for “store_ROM”: s0, s1, s2, s3, s4, s22, s23, s9, s0. Result: Pass 

 State order for “call_shift”: s0, s1, s2, s3, s10, s11, s0. Result: Pass 

 State order for “shift_calc”: s0, s1, s2, s3, s10, s15, s16, s0. Result. Pass 

 Time taken for progression: 10ns per state. Best case 60ns, worst case 80ns, giving 

range of throughput from 533Mbit/sec to 400Mbit/sec per instruction 

Conclusion 

The FSM successfully identifies the store, call and execute branches of operation and jumps 

accordingly when these occur. Therefore, this section of the ASIC is deemed acceptable for 

use. 
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SHA-2 Logical and Circular Shift Register 

Objectives 

To load Tri-state register with data, output data to system bus, rotate data in logical and circular 

shift, with output to system bus 

Test bench pseudo code 

 Load system bus with value and load to Shift Register 

 Load register to system bus, ensure value matches initial value 

 Execute shift register, output result, ensuring one left shift  

 Execute shift register until loaded value is beyond most significant bit, output result, 

ensuring values have moved to least significant bit and therefore a circular shift has 

been successful 

 Perform right circular shift on values in shift register to ensure right circular shift operates 

 Perform right logical shift on values in shift register to ensure right circular shift operates 

Results 

 Value initially loaded: 0x40000000 

 Value returned before shift: 0x40000000. Result: Pass 

 Value returned after one shift: 0x80000000. Result: Pass 

 Value returned following second shift: 0x00000001. Result: Pass 

 Value returned following right circular shift: 0x80000000. Result: Pass 

 Value returned following one right logical shift: 0x40000000. Result: Pass 

 Value returned following 31 logical shifts: 0x00000000. Result: Pass 

 Throughput same as left circular shift register 

Conclusion 

Multi-function shift register successfully accepts values, performs left and right shift and wraps 

shift in a circular manner, as well as logically when requested. Therefore this component 

operates successfully 
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SHA-1 Test 1 

Objectives 

To load RAM with 512 bit message, perform all logic, arithmetic and shifting functions, storing 

the result to RAM and outputting to the system bus. 

Test bench pseudo code 

 Load value from RAM to shifter 

 Perform Left Circular Shift 

 Load value from shifter to RAM 

 Output result 

 Place result in ALU 

 Add with second value 

 Store result in RAM 

 Output result 

 Load value to Logic 

 Perform NOT 

 Perform AND with second value 

 Perform XOR with second value 

 Store result in RAM 

 Output result 

Results 

 Value loaded to shifter: 0x67452301 

 Value after left shift: 0xCEA84602. Result: Pass 

 Sum loaded to ALU: 0xCEA84602 + 0xEFCDAB89 

 Value after summation: 0xBE57F18B. Result: Pass 

 Value loaded to logic: 0xBE57F18B 

 Value after NOT: 0x41A80E74. Result: Pass 

 Value after AND with 0xEFCDAB89: 0x41880A00. Result: Pass 

 Value after OR with 0xBE57F18B: 0xFFDFFB8B. Result: Pass 

 Value after XOR with 0xEFCDAB89: 0x10125002. Result: Pass 

Conclusion 

All functional blocks in SHA-1 Architecture successfully read and write to RAM with a simple 

sequential program stored in ROM successfully executing all logical and arithmetic functions. 

Therefore, all items within the ASIC operate successfully 
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SHA-1 Test 2 

Objectives 

To load RAM with 512 bit message, perform expansion from 16 to 80 32-bit blocks, complete 80 

rounds of hashing and output 160-bit Hash Function 

Test bench pseudo code 

 16 blocks of message in RAM expanded to 80 blocks 

 80 round specific logic, shift and addition functions 

 Update hash variables 

 Output hash function onto system bus 

Results 

 Hash Output for an empty Hash Function: 

o 0xDA39A3EE 

o 0x5E6B4B0D 

o 0x3255BFEF 

o 0x95601890 

o 0xAFD80709 

 Hash Output for ASIC: 

o 0x1EED8838 

o 0x0DC98439 

o 0x3326A454 

o 0x61C9888F 

o 0xCC6F23B6 

 Result: Fail 

 Time to perform hash function and enter sleep state: 1.6µs 

o 1.3Mbit/sec total throughput 

Conclusion 

ASIC executes 80 rounds of hash function and outputs result. However, hash function is not 

correct. Believed to be issue with firmware program caused during creation. 
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SHA-1/2 Integrated Architecture Test 1 

Objectives 

To load RAM with 512 bit message, perform all logic, arithmetic and shifting functions, storing 

the result to RAM and outputting to the system bus. 

Test bench pseudo code 

 Load value from RAM to shifter 

 Perform Left Circular Shift 

 Place result in ALU 

 Add with second value 

 Load result to Logic 

 Perform NOT 

 Perform AND with second value 

 Perform XOR with second value 

 Perform Right Circular Shift with result 

 Perform Right Logical Shift three-times with result 

 Store result in RAM 

 Output Result 

 Jump to ALU section and repeat ALU, Logic and Right Shifter Sections 

Results 

 Value loaded to shifter: 0x67452301 

 Value after left shift: 0xCEA84602. Result: Pass 

 Sum loaded to ALU: 0xCEA84602 + 0xEFCDAB89 

 Value after summation: 0xBE57F18B. Result: Pass 

 Value loaded to logic: 0xBE57F18B 

 Value after NOT: 0x41A80E74. Result: Pass 

 Value after AND with 0xEFCDAB89: 0x41880A00. Result: Pass 

 Value after OR with 0xBE57F18B: 0xFFDFFB8B. Result: Pass 

 Value after XOR with 0xEFCDAB89: 0x10125002. Result: Pass 

 Value after Right Circular Shift: 0x08092801. Result: Pass 

 Value after three Right Logical Shifts: 0x01012500. Result: Pass 

 Sum loaded to ALU: 0x01012500 + 0xEFCDAB89 

 Value after summation: 0xF0CED089. Result: Pass 

 Value loaded to logic: 0xF0CED089 
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 Value after NOT: 0x0F312F76. Result: Pass 

 Value after AND with 0xEFCDAB89: 0x0F012B00. Result: Pass 

 Value after OR with 0xF0CED089: 0xFFCFFB89. Result: Pass 

 Value after XOR with 0xEFCDAB89: 0x1002500. Result: Pass 

 Value after Right Circular Shift: 0x08012800. Result: Pass 

 Value after three Right Logical Shifts: 0x01002500. Result: Pass 

Conclusion 

All functional blocks in SHA-2 Architecture successfully read and write to RAM with a simple 

sequential program stored in ROM successfully executing all logical and arithmetic functions. 

Therefore, all items within the ASIC operate successfully 
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SHA-1/2 Integrated Architecture Test 1 

Objectives 

To load RAM with 512 bit message, perform all logic, arithmetic and shifting functions, storing 

the result to RAM and outputting to the system bus. 

Test bench pseudo code 

 Jump to Right Shift Section of Program (using SHA-2 Selection) 

 Perform Right Circular Shift 

 Perform Right Logical Shift 

 Perform Right Logical Shift 

 Perform Right Logical Shift 

 Output Result 

 Jump to ALU section and repeat ALU, Logic and Right Shifter Sections from Test 1 

Results 

 Value loaded to shifter: 0x67452301 

 Value outputted from Shifter: 0x16745230. Result: Pass 

 Result of 0x16745230 + 0xEFCDAB89 = 0x0641FDB9. Result: Pass 

 Result of Logical Tests: 0x00005430. Result: Pass 

 Result of Shift Tests: 0x00000543. Result: Pass 

Conclusion 

All functional blocks in SHA-2 Architecture successfully read and write to RAM with a simple 

sequential program stored in ROM successfully executing all logical and arithmetic functions. 

The Recall jump for more message and hard jump to select SHA-2 both operate successfully. 

Therefore, all items within the ASIC operate successfully 

  



Hardw are Implementation of SHA-1 and SHA-2 Hash Functions: James Docherty, Albert Koelmans 

NCL-EECE-MSD-TR-2011-170 New castle University Page 50 

SHA-1/2 Integrated Architecture Test 3 

Objectives 

To load RAM with 512 bit message, complete 64 rounds of hashing and output 256-bit Hash 

Function. Followed by Reset and completion of SHA-1 Tests. 

Test bench pseudo code 

 Hard Jump to SHA-2 section of ROM 

 64 round specific logic, shift and addition functions 

 Update hash variables 

 Output hash function onto system bus 

 Reset 

 16 blocks of message in RAM expanded to 80 blocks 

 80 round specific logic, shift and addition functions 

 Update hash variables 

 Output hash function onto system bus 

Results 

Hash Outputs for Text String “ABCD” 

SHA-1 SHA-2 

Expected Actual Expected Actual 

0xFB2F85C8 0xFA4ACC36 0xE12E115A 0x3E351546 

0x8567FBC8 0xE6AF0398 0xCF4552B2 0x3E4F2822 

0xCE9B799C 0x70A29222 0x568B55E9 0xD11E4213 

0x7C54642D 0xBD8BD55F 0x3CBD3939 0x84228C72 

0x0C7B41F6 0x3F36B0E4 0x4C4EF81C 0x64330F24 

 0x82447FAF 0xB3536C6A 

0xC997882A 0x042AA085 

0x02D23637 0x1596E897 

Result: Fail 

Conclusion 

ASIC runs both hash functions and outputs results. However, hash function is not correct. 

Believed to be issue with firmware program caused during creation. 
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SHA-1/2 Integrated Architecture Test 4 

Objectives 

Load Shifter with value from RAM, perform shift, use direct pass VLIW instruction to move direct 

to ALU, perform arithmetic, use direct pass VLIW instruction to move direct to Logic, perform 

Logic, store to RAM and output. 

Test bench pseudo code 

 Load Shifter with value from RAM and perform Circular Left Shift 

 Pass Result to ALU and add with second value from RAM 

 Pass Result to Logic, perform NOT, AND, OR and XOR 

 Store Result in RAM and Output 

Results 

 Value loaded to shifter: 0x67452301 

 Value outputted from Shifter: 0xCE8A4602. Result: Pass 

 Result of 0x CE8A4602 + 0xEFCDAB89 = 0xBE57F18B. Result: Pass 

 Result of NOT 0xBE57F18B: 0x41A80E74. Result: Pass 

 Result of 0x41A80E74 AND 0xEFCDAB89: 0x41880A00. Result: Pass 

 Result of 0xEFCDAB89 OR 0x67452301: 0x67CD2B01. Result: Pass 

 Result of 0x67CD2B01 XOR 0xEFCDAB89: 0x88008088. Result: Pass 

 Value outputted on System Bus: 0x88008088. Result: Pass 

Conclusion 

This test architecture has allowed completion of SHA-1 Test 1 in 11 instructions instead of 15, 

giving a 26% overhead reduction by not using RAM as an intermediate step between calculation 

blocks. All results are correct, and the ASIC functions as expected. Therefore, this instruction 

set could be expanded to allow a throughput improvement across the full SHA calculation. 
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Conclusions 

While this ASICs throughput was below the suggested goal of 40Gbit/sec, the goal of creating 

an ASIC capable of creating a hash function in both SHA-1 and SHA-2 was achieved. The 

modular concept used allows the ASIC to be used for multiple functions, with only a simple 

firmware change in ROM required. Therefore, this chip is capable of performing the SHA-1 and 

2 Hash Functions, as well as the possibility of performing other commonly used functions such 

as MD5, or some of the shortlisted SHA-3 possibilities such as JH or Skein. 

The actual hash results outputted were not correct, which is believed to be an issue within the 

firmware program. This program was created at a low-level without the use of a complier or 

syntax checker. Therefore, a small error could have been generated which has not been 

successfully debugged and would be difficult to find without a time consuming line-by-line 

simulation of the program. If an established microcontroller or FPGA were used instead of a 

custom-designed ASIC, the program could be created in a higher level language such as C and 

compiled into an assembly instruction set. If the goal still were to create an ASIC with no 

existing compiler, a program such as AWK or the C Pre-processor could be used to compile the 

program from a high-level language. This would make the code more user-readable and allow 

debugging in a more methodical and easier manner. With extra time to perform these tasks, it is 

highly likely that the faults within the program could be identified and removed, giving correct 

hash functions for both SHA-1 and SHA-2. 

Hardware implementation of cryptographic functions is not a new concept. The Trusted 

Computing Group has ensured a chip capable of performing these has been fitted to Trusted 

Platform Modules since its inception in 2003. However, the chips in current use have SHA-1 as 

their onboard hash function. While this is suitable currently, papers identifying theoretical 

collisions have been published. Therefore, the next round of TPMs should upgrade to a higher 

level hash function to increase security. However, they must also be backwards compatible with 

SHA-1 to allow current systems to continue communicating without any hardware upgrades. It is 

the authors’ belief that this ASIC is capable of performing this function. With extra development 

time, issues with throughput could be removed by increasing the base clock rate, introducing 

parallel operations and possibly unrolling some slower operations such as the 30 left shift 

present in SHA-1. The key causes of slow throughput have been identified by a statistical 

analysis of the program in its current form and this would give any future work a key point to 

begin program or hardware improvements if the decision was made to optimise the ASIC for 

research or commercial use. 
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Through the use of VHDL, no limitations have been placed on the manufacturing techniques 

that can be used to create this ASIC. Therefore, it could be constructed on FPGA or using 

existing CMOS processes. The architecture already has been successfully synthesised in Xilinx 

for the xq4vlx160 FPGA, and could no-doubt be used on others also. Since most other work has 

been completed at the 0.13-0.18µm level, it is believed that this ASIC could also be built using 

these dimensions without major issues occurring. 

If further time and resource were available to develop this ASIC, throughput could be increased 

significantly. The low number of opcodes used in this ASIC greatly affected its speed as all 

items had to be written to RAM and fetched from RAM to be outputted. As has been initially 

investigated, work using VLIW instructions could take place to allow direct movement between 

modules or to I/O without the intermediate use of RAM. Performing this could reduce the 

instructions by 30% and therefore increase speed by this factor also. This; combined with code 

optimisation and use of better programming techniques could double the speed of the ASIC with 

minimal resource investment. 

This project has the possibilities of further research into the use of other methods to increase 

throughput, or the reduction in power consumption for practical implementation into RFID or 

other wireless communications methods. Therefore, the author’s recommendations for future 

work are as follows: 

 Debug program using AWK to give correct SHA-1 and 2 outputs 

 Optimise code to reduce time intensive left/right shifts in expansion calculations  

 Implement direct passing code to prevent using RAM as an intermediate and save 

operation time 

 Implement parallel operations of functional blocks to allow other operations to take place 

while items such as the shift block are running 

 Add sleep functions to blocks to power down when not being used and save static power 

draw by the ASIC 

 Synthesise architecture into FPGA and test for correct results and similar throughput to 

the simulation 

 Construct architecture in ASIC and test for correct results and similar throughput to 

FPGA and simulation 

As hash functions continue to grow in use, a chip capable of high throughput with advanced 

power management could be of great use within industry or specific markets within battery 

powered applications. A major user of this could be the rise in cloud computing, where systems 

request resources on demand and many users may share one item [59]. This will mean users 

may not store their files on a local system, instead having them placed in an area of the cloud 

and sent to the accessing device when needed. If items contain sensitive information, is it 
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important that this is kept safe and also that it is known someone else has not tampered with 

the file while it has been stored. For this, a mixture of symmetric and asymmetric ciphers in 

conjunction with hash functions will be the most pragmatic solution. The ASIC presented in this 

thesis gives one possible solution to an aspect of these security concerns. It is felt that with 

extra time and resource, this IC could close to the minimum speed required for a cloud 

computing setup (around 2-4Gbit/sec) and deliver a safe and reliable method of computing the 

SHA family of hash functions, with the possibility of upgrading the functionality without changing 

the hardware. 
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