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Abstract

Modern hardware systems are required to be robust, resilient and long-life, and thus they have

to be adaptive to possibly changing requirements and operating conditions. This covers not only

the data processing functions but also control, and even timing and power operation. For example,

such systems will be increasingly powered by ambient sources (energy harvesting) and will experience

a wide range of power modes, including not only dynamic voltage scaling but even power supplies

which do not deliver a stable level of Vdd.

Asynchronous controllers can o�er ultimate robustness under extreme variations caused by un-

stable power supply; however, the robustness often comes at the price of a heavy and slow imple-

mentation. This implementation may be the only option for the extreme operating conditions, but is

unacceptable for the normal operation mode of the system (in which it may be running most of the

time). There is clearly a need to choose a particular controller implementation in run-time rather

than in design time. In this paper we present and investigate a new methodology which provides a

way of building adaptive asynchronous controllers supporting a range of power and timing modes of

operation (possibly even synchronous modes) that can be selected during run-time according to the

known hardware, environmental, and power/latency budget requirements.

1 Introduction

Widening application areas of modern digital systems bring them to the domain of extreme operating con-

ditions, new process technologies, and dynamically changing requirements. For example, new systems will

be increasingly powered by ambient sources, e.g. through energy harvesting, and thereby will experience

a wide range of modes in which they are powered, including not only modes of dynamic voltage scaling

but even power supplies which do not deliver a stable level of Vdd at any particular moment or interval

of operation. Ideas of building systems that adapt to the ambient operating and power supply conditions

have been expressed in [15], where this approach was given a collective term of energy-modulated com-

puting. It was emphasized that the timing and power supply issues are inseparable in adapting to such

conditions, and the role of asynchronous or self-timed design methods will become more prominent.

As further discussed in [15], self-timed systems o�ering qualities of delay insensitivity and high tol-

erance to Vdd �uctuations can be more power-proportional (i.e. operating on a wide range of power

modes and delivering proportional quality of service) than their synchronous counterparts, but they are

not power-e�cient (i.e. delivering the best performance for invested power) under the stable operating

conditions. The problem is, however, that the existing synthesis techniques typically optimise the system

design for a well-de�ned operation mode, and as a result most of the research in logic synthesis has been

compartmentalized in speci�c timing domains. Even for systems that are globally asynchronous and

locally synchronous the division between synchronous and asynchronous domains has been structural

or spatial, but not temporal and therefore not adaptive to the operating conditions. Even within the

domain of asynchronous design, there has typically been the way of advocacy of a certain class of design,

such as delay insensitive (DI), quasi delay insensitive (QDI), speed independent (SI), relative timing,
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and fundamental mode design [14]. Each particular design class was associated with a particular style

of modelling actions and signal events, normally captured by models such as Signal Transitions Graphs

(STGs) [4] or Asynchronous Finite State Machines (FSMs), e.g. burst-mode FSMs [13].

Bearing in mind the `broadband' nature of increasing variety of operating conditions, there is clearly

a need to design controllers in such a way that they meet certain critical behavioural speci�cations, but

may vary in speci�c ways of how �ne-grain signal-ordering actions are enforced, i.e. whether they are

produced by explicit causal relations (for robustness under extreme conditions) or by implicit timing

assumptions (for performance in a stable and predictable mode). Therefore, there is an emerging need

to choose a particular controller implementation at run-time rather than at design time.

In this paper, to the best of our knowledge for the �rst time, we present and investigate a new meth-

odology which provides a way of building adaptive parametrized controllers which combine advantages of

di�erent timing classes and domains, both asynchronous and synchronous. These controllers in addition

to their interface signals will have a set of auxiliary `parametric' control inputs that select the most

adequate implementation according to the known hardware, environmental, and power/latency budget

requirements. A parametrized controller (if designed without signi�cant overheads due to its generality �

this is the main challenge!), can provide the ultimate robustness under low/unstable voltage operation in

the DI mode, while enjoying a high performance of non-DI solutions under high-voltage operation, when

circuit delays are more predictable and timing assumptions are likely to hold.

Our main contribution is a scalable method of composing several controller implementations into a

single parametrized controller (Section 3). Crucially, the method can be fully automated using existing

speci�cation and synthesis tools. We also demonstrate that the overhead of this composition is not critical

in practice and the bene�ts of having a parametrized, dynamically recon�gurable solution outweigh the

potential penalties (Sections 4 and 5). Another important contribution of this paper is a new model, called

Conditional Signal Graphs [10], which is capable of describing heterogeneous controllers and supports

automated encoding and composition methods. It forms the backbone of the proposed methodology and

is formally introduced in Section 2.

2 Background on CSGs

In this paper we use two behavioural models to specify and synthesise parametrized asynchronous control-

lers: Signal Transition Graphs (STGs) [4] and Conditional Signal Graphs (CSGs) [10]. STGs have been

introduced a long time ago and have been extensively studied and used in this context, hence we assume

the reader to be familiar with them. CSGs, however, is a new formalism derived from the Conditional

Partial Order Graph (CPOG) model [9][12] and in this section we will describe it in detail.

2.1 Conditional Signal Graphs

Similarly to the STG model, Conditional Signal Graphs can formally describe behaviour of asynchronous

circuits by associating vertices with signal transitions and using arcs to represent causality between them

(albeit in a di�erent way).

A Conditional Signal Graph is a tuple G = (V,E, S, φ), where S is a set of signals, V ⊆ S × {+,−}
is a set of vertices or events representing signal transitions: namely, events s+ and s− correspond to the

rising and falling edges of a signal s, respectively, and E ⊆ V × V is a set of arcs of the graph. Together

vertices and arcs V ∪ E are called elements of G. Each element z ∈ V ∪ E has a condition φ(z) ∈ F(S)
associated with it, wherein F(S) stands for a set of Boolean functions de�ned on domain S.

The purpose of conditions φ is to activate/deactivate elements of the graph according to the current

state of its signals. A vertex is active i� its condition evaluates to 1; an arc is active i� its condition

evaluates to 1 and it connects two active vertices; all other elements are inactive.
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An active vertex with no active incoming arcs is enabled and its corresponding signal transition can

�re changing the current state of the circuit. Thereby an arc v → u can be considered as a conditional

dependency between v and u.

Example 1. Consider one of the simplest sequential circuits � a 1-inverter ring oscillator. The circuit

and its STG speci�cation are shown in Fig. 1(a,b). The circuit behaviour is very simple: events x+ and

x− occur alternatingly starting from the initial state when x = 01.

x=0

(a) Circuit

x+ x-

(b) STG speci�cation

x+: x -x  : x_ 1

1
(c) CSG speci�cation (full)

x+ -x  

(d) CSG (simpli�ed)

Figure 1: Simple 1-inverter ring oscillator

Fig. 1(c) shows a CSG speci�cation of the circuit. A vertex is represented with its signal transition s±,

a colon `:', and condition φ(s±). An arc v → u is drawn as an arrow between vertices v and u with

condition φ(v → u) next to it.

In the initial state event x+ is active because its condition evaluates to 1: φ(x+) = x = 0 = 1, while

x− is inactive: φ(x−) = x = 0. Since x+ has no active dependencies, it is enabled to �re. As soon as it

�res, the circuit state changes to x = 1 in which x+ is no longer active but event x− becomes enabled, etc.

In general, it is reasonable to assume2 that for any signal s ∈ S events s+ and s− are active only when

s = 0 and s = 1, respectively, thus conditions φ(s+) = s and φ(s−) = s may be omitted in a diagram

for clarity; constant 1 conditions can also be omitted, see the simpli�ed version of the speci�cation in

Fig. 1(d). The only visual di�erence between speci�cations in Fig. 1(b) and Fig. 1(d) is that the latter

is `token-free'. The fundamental di�erence between STGs and CSGs is deeper and will become clearer

in the next example. Interestingly, there are many cases when a CSG speci�cation is isomorphic to its

STG equivalent.

C

a=0

b=0

c=0

(a) Circuit

a+

b+

a_

b_
c+ c_

(b) STG speci�cation

a+

b+

a_

b_
c+ c_

abc=000

(c) CSG speci�cation

Figure 2: C-element with simple environment

Example 2. Consider a C-element with a simple environment constructed from two inverters as

shown in Fig. 2(a). Initially both inverters are excited. As soon as they �re (concurrent events a+ and

b+), the C-element becomes enabled leading to c+. The reset phase is symmetric as captured by the STG

in Fig. 2(b). The CSG speci�cation happens to be isomorphic again � see Fig. 3(c); notice the initial state

shown in the box above the diagram (abc = 000). The di�erence between the STG and CSG diagrams is

manifested only in how they de�ne the initial state of the circuit: a set of tokens (i.e. a marking) versus

a Boolean vector. We believe the latter to be more natural because it directly corresponds to a circuit

state; tokens, on the other hand, do not exist in circuits, rather they correspond to cuts in a circuit state

space.

Let us simulate dynamic behaviour of the circuit using the CSG speci�cation. Initially, fragment
a+→
b+→ c

+ is active, so events a+ and b+ are allowed to happen (see Fig. 3(a), note that the active elements

1This is a purely digital construction. In practice at least three inverters must be connected in a ring to build a functioning
oscillator.

2This assumption is similar to the STG property called consistency [4].
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a+

b+

a_

b_
c+ c_

abc=000

(a) Initial state

a+

b+

a_

b_
c+ c_

abc=100

(b) Event a+ happened

a+

b+

a_

b_
c+ c_

abc=110

(c) Event b+ happened

a+

b+

a_

b_
c+ c_

abc=111

(d) c+ happened; set phase �nished

a+

b+

a_

b_
c+ c_

abc=101

(e) Event b− happened

a+

b+

a_

b_
c+ c_

abc=001

(f) Event a− happened

Figure 3: Simulation of CSG speci�cation; inactive vertices and arcs are drawn grey and dashed.

are highlighted). Assuming a+ �res �rst, the circuit goes to the next state shown in Fig. 3(b). As

abc = 100 the new active fragment is b+ → c+ → a−, thus the only enabled event is b+. After it happens,

the C-element becomes enabled and its �ring completes the set phase of the circuit bringing it to state

abc = 111, see Fig. 3(d). The reset phase is similar. If b− �res �rst then fragment a− → c− → b+

becomes active (Fig. 3(e)); a− follows bringing the circuit to state abc = 001 shown in Fig. 3(f). Finally,

event c− returns the circuit to the initial state.

Although the STG and CSG speci�cations describe the same circuit behaviour and have isomorphic

graphical representations, their �ring rules are dramatically di�erent as demonstrated above. While an

STG is simulated by moving tokens around, a CSG is simulated by shifting a `window of activity' (an

acyclic fragment of system behaviour) which contains all causal dependencies relevant to the current

state. In an STG an event is enabled when its every incoming arc contains a token; in a CSG an active

event is enabled when it has no causal predecessors in the currently active fragment.

Example 3. The last example concerns speci�cation of OR-causality [16] with CSGs. Figure 4(a)

shows an OR gate whose environment has no constraints, i.e. input signals a and b can change unpredict-

ably and we have to specify behaviour of output signal c. A CSG speci�cation of the circuit is given in

Figure 4(b). Note that we use conditional arcs φ(a+ → c+) = b and φ(b+ → c+) = a to model OR-causal

enabling of event c+. The reset phase has no arc conditions, because OR gates are asymmetric (the reset

phase of an OR gate coincides with that of a C-element). The OR-causal behaviour is demonstrated

in Figure 4(c) which shows the circuit after event a+ has �red: event c+ becomes enabled since b+ is

removed from its predecessors (arc b+ → c+ is deactivated when a = 1).

a
b c

(a) OR gate

abc=000

c _

b_

a_

b+

a+

c+

b
_

a
_

(b) CSG: set (active) and reset phases

abc=100

c _

b_

a_

b+

a+

c+

b
_

a
_

(c) a+ has �red; c+ is enabled (OR-causality)

Figure 4: OR gate with unconstrained environment

2.2 Synthesis of circuits from CSGs

An important property of the CSG model is that a CSG can be easily converted to a circuit and vice

versa. For example, in Fig. 2(c) one can see that event c+ is enabled when a · b = 1, while c− is enabled
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when a · b = 1. These equations are so called set and reset functions for signal c, denoted Sc and Rc,

respectively. To synthesise an implementation for c we can use the well-known formula c = Sc + c ·Rc [4]

leading to

c = a · b+ c · a · b = a · b+ c · (a+ b)

which is a standard C-element equation.

In general, set/reset functions for an arbitrary CSG can be obtained in the same way, details can be

found in [12] which describes synthesis of circuits from Conditional Partial Order Graphs � the `parent'

model for CSGs.

Building a CSG given a circuit is also straightforward: one has to decompose equations of each signal

s ∈ S into a pair of set/reset functions and connect events s+ and s− to the appropriate (conditional)

predecessors. This equivalence between CSGs and circuits is very important for the methodology which

we propose in this paper (Section 3).

2.3 CSG composition

Another important feature of the CSG model is that two or more graphs can be composed into a single,

parametrized graph, containing all of them. This feature is inherited from the CPOG model, which

provides a complete framework for composition [12], encoding [11], and synthesis [9] of conditional (para-

metrized) partial orders. In this paper we extend the CPOG approach to the systems with cyclic beha-

viour, such as asynchronous circuits.

C
a
b c

a+

b+

c+

a_

b_
c_

(a) C-element, equation: c = a · b+ c · (a+ b)

a
b c

a+

b+

c+

a_

b_
c_

b

a

(b) AND gate, equation: c = a · b

a
b c

p

?
a+

b+

c+

a_

b_
c_

p+b

p+a

(c) Parametrized circuit, equation: c = a · b+ p · c · (a+ b)

Figure 5: CSG composition of C-element and AND gate

Example 4. It is best to study CSG composition on a simple example. Fig. 5(a) shows a C-element

with no environment and its CSG representation. Similarly, Fig. 5(b) shows an AND gate which di�ers

from the C-element only in the reset phase: instead of waiting for both events a− and b− to happen, the

AND gate waits only for one of them � this is another case of OR-causality. We use conditional arcs

φ(a− → c−) = b and φ(b− → c−) = a to model OR-causal enabling of event c−: as soon as a− happens,

arc b− → c− becomes inactive and c− can happen without waiting for b− (and symmetrically).

Let us denote the above CSGs as G1 and G2. Now we can compose them into a single graph G by
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using CPOG multiplication and addition [12] operations:

G = p ·G1 + p ·G2

where p is an auxiliary parametric signal which activates a particular graph in the composition as required,

see Fig. 5(c): if p = 1 then G is equivalent to G1 (the conditional arcs become unconditional: 1+ x = 1),

and if p = 0 then G is equivalent to G2 (since 0+ x = x). Now we can map G into a parametrized circuit

c = a · b + p · c · (a + b), shown in Fig. 5(c), which behaves as a C-element or an AND gate depending

on parameter p. It is important that the obtained composition captures similarities between the original

graphs, in particular, their set phases are equal and as such do not require any parametrization. This

leads to compact parametrized circuits. A poor alternative solution would duplicate the original circuits

and then select the required output using a multiplexer controlled by p, thus ignoring their similar parts.

When more than two graphs are composed {G1, . . . , Gn} it is not clear how to encode them, i.e. how

to select a set of orthogonal encoding functions {f1, . . . , fn} to obtain the best composition G:

G = f1 ·G1 + f2 ·G2 + · · ·+ fn ·Gn

Fortunately, there are optimal encoding procedures developed for the CPOG model [11] which can be

imported and applied to Conditional Signal Graphs.

3 Methodology

In this section we describe how the existing STG-based and CSG-based methods can be combined in

order to automate speci�cation and synthesis of parametrized controllers.

A designer is given a task: to design a controller managing interaction of components in a large system.

Typically, there is a wide range of possible controller implementations with divergent characteristics in

terms of latency, throughput, power consumption, robustness, etc. bearing a strong in�uence on the

whole system. In general it is impossible to make a satisfactory decision at the design time by picking

just one of the options and discarding the others, because a system can operate in varying environmental

conditions and under di�erent contradictory requirements. Therefore some form of run-time adaptability

is required.

Fig. 6 shows the proposed design �ow for speci�cation and synthesis of parametrized adaptable con-

trollers. The designer selects a set of controller implementations covering the required design space.

Asynchronous implementations are formally described in the widely adopted STG model using, for ex-

ample, Workcraft modelling environment [1]. The STGs are then synthesised by Petrify [3] or

Punf/Mpsat [7] synthesis tools. The obtained circuits are converted into CSGs and they are encoded

and composed into a single parametrized graph, which is then mapped into the �nal parametrized con-

troller. This stage will be demonstrated in Section 4.

The proposed �ow can also be applied to the conventional design practices for synthesis of synchronous

circuits. In this case an alternative design pathway is taken through the FSM-speci�cation of the system,

its RTL synthesis, e.g. using Synopsys Design Compiler [2], and subsequent conversion into CSGs

for merging with the asynchronous pathway.

The synthesised parametrized controller is then passed to the standard technology mapping and place

and route (P&R) tools which are outside the scope of this paper. It is worth mentioning though, that

the parametric signals are very undemanding to P&R since it is assumed that they are rarely changed.

Some of them may even stay constant throughout the system lifetime after they have been initially set

up at the defect management and/or product binning stages.

It may seem possible to avoid using CSGs in the described design �ow and perform all the trans-

formations entirely within the STG modelling framework. However, there are several serious practical
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SYNOPSYS

? Target
controller

Different
implementations

robust

STG

fast

STG
... clocked

FSM
...

asynchronous synchronous

Synthesised controllers (circuits)

SynthesisPETRIFY
MPSAT

Mapping

robust

CSG

fast

CSG
... clocked

CSG
...

heterogeneous

CSG composition

parametrized
controller

clockparameters

CPOG
TOOLS

Figure 6: Design �ow for parametrized controllers

di�culties for that:

• modelling parametric signals together with interface signals leads to combinatorial explosion of STG

speci�cations as have been demonstrated in [12];

• there are no automated methods for generating optimal encoding of parametric signals in STGs;

• CSG composition is a fast structural operation while composing several STGs requires traversal of

their combined state graph and that is computationally expensive.

On the other hand, it is also di�cult to avoid using STGs, because specifying controllers directly in CSGs

is a di�cult task akin to manual circuit design. Therefore, we believe that the proposed methodology

should make use of both models by exploiting their advantages and avoiding drawbacks.

4 Case studies

In this section we demonstrate the proposed methodology on two examples: a common Write/Read

controller and a basic data path cell (an AND gate), both adaptable to operating conditions by logic

parametrization. The obtained parametrized controllers are evaluated in Section 5.
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4.1 Write/Read controller

Fig. 7 shows a system comprised of a writer (a component that upon request r writes a data frame to

a register in the data path and acknowledges it with signal a), three independent readers (components

that upon request ri read the data frame, process it, and respond with ai), and a Write/Read controller

managing their interaction. We assume that the two-phase handshake protocol [14] is used, and the

component delays are denoted as d (the writer) and d1− d3 (the readers). Let us explore several possible
implementations for the controller.

Writer

D
at

a 
pa

th
 (

bu
s,

 r
eg

is
te

rs
, e

tc
.)

P
ar

am
et

ri
ze

d
W

ri
te

/
R

ea
d

 c
on

tr
ol

le
r

r

a

Reader 1
r1

a1

Reader 2
r2

a2

Reader 3
r3

a3

...

Parameters
clock (if needed)

Figure 7: Write/Read controller: system-level view

Delay insensitive (DI), Fig. 8(a), is the most robust implementation; it will activate the components

in the proper order regardless of their delays and under extreme operating conditions (e.g. low and/or

unstable power supply). The cycle-time of this solution is rather long: d +max{d1, d2, d3} + C3, where

Cn stands for delay of an n-input C-element.

To improve the cycle-time a designer can replace (some of) the explicit causal relations by implicit

timing assumptions, lowering the robustness as an unavoidable side e�ect.

a
r1
r2
r3

r
a1a2 a3

C

(a) Delay insensitive (DI)

a
r1
r2
r3

r
a1
a2 C

(b) Partial acknowledgement (PA)

r

a
r1
r2
r3

(c) Timing assumptions (TA)
rclock

r1
r2
r3

matched
delay

(d) Synchronous (clocked, CL)

Figure 8: Di�erent Write/Read controller implementations

An implementation with partial acknowledgement (PA) is shown in Fig. 8(b). In this setting

we discard the acknowledgement signal a3, simplifying the controller and reducing the cycle-time to

d+max{d1, d2}+ C2. Possible reasons to discard a3: i) reader 3 is faster than the others, so we should

not normally wait for it; ii) the reader is unimportant, so we do not actually care if it misses the current
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data frame; iii) the reader is faulty, so we do not wait for it to avoid deadlock; iv) the reader is switched

o� (due to, e.g., power management).

If it is known that the writer is slower than the readers, i.e. d > di, then it is possible to make a more

aggressive optimisation of the cycle-time. The timing assumption (TA) solution, shown in Fig. 8(c),

activates the writer and the readers in parallel, assuming that the readers can �nish their task before the

writer produces a new data frame. The cycle-time is only d+ I, where I stands for delay of the inverter.

Finally, one can use a synchronous clocked (CL) solution, Fig. 8(d), which avoids any latency

penalties by discarding all causal information (signals a, a1 − a3) and using matched delay lines instead.

Its cycle-time is equal to the chosen clock period tclock. However, one should remember that for correct

operation tclock must exceed the worst-case delays d and d1−d3, thus when delay variability is high (data

dependency, low voltage, etc.) the synchronous solution becomes ine�cient.

a

r1

r2

r3

pq

0

1

a
a1
a2

a3
p

a1a2a3
p

C

r

q

pqpqclock

clock

Figure 9: Parametrized Write/Read controller

Implementations in Fig. 8 can be converted to CSGs and composed into a single parametrized circuit,

shown in Fig. 9 (necessary decomposition and negative logic optimisation have been performed). Note

that the common logic is not duplicated: there is only one C-element (shown outlined) which works either

in the 2-input or in the 3-input mode3; the fork issuing request signals r1 − r3 is also shared by all four

modes. Parametric signals p and q have been added to activate the required implementation in run-time:

combination (p, q) = (0, 0) selects the DI mode, while encodings 01, 10, and 11 select the TA, PA, and

CL modes, respectively.

robustness,
abstract units

latency, ps

50

100

150

200

specialised controllers

parametrized controller

parametrized controller
(optimised for TA mode)

0

DI mode

PA mode

TA mode

synchronous mode

Figure 10: Comparison of Write/Read controllers

Fig. 10 shows a diagram comparing all the described implementations of the Write/Read controller

against each other in terms of latency and robustness. See Section 5 for a further discussion.

3In a standard gate library, a 3-input C-element can be implemented using a 3-input AND/OR pair and a 2-input
C-element mappable to a majority gate.
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4.2 Parametrized AND gate

Interestingly, one can apply the same methodology to data path circuits. For example, Fig. 11(a-c) shows

three well-known implementations of an AND gate: single rail (SR), dual-rail NCL-X [8], and dual-rail

NCL-D [6]. All are shown together with their CSG representations which can be encoded and merged

into a parametrized CSG shown in Fig. 11(d). As a result signal c1 is implemented as an AND/C-element

described in Section 2-C, while signal c0 has a more complicated equation being a combination of the

NCL implementations.
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(a) Single rail implementation
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(b) dual-rail, NCL-X style (early propagative)
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(c) dual-rail, NCL-D style (strongly indicating)
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00: SR
01: NCL-X
11: NCL-D

(d) Parametrized controller (SR/NCL-X/NCL-D combined)

Figure 11: CSGs for parametrized AND gate

From the practical point of view such data path circuits may seem too heavy for general use, however,

they might �nd an application in the class of systems requiring extreme robustness of NCL-D data path

and still capable of running in a fast single rail clocked mode (albeit with 89% extra latency, see Table 1).

Regarding power consumption one should note that unused parts of such data cells may be disconnected

from power supply through power gating.

5 Conclusions and analysis of benchmarks

The benchmarks discussed in this paper were implemented in UMC 90nm technology using Faraday gate-

level library. Latency of the controllers was measured under normal operating conditions using Synopsys

PrimeTime [2].
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Our �rst benchmark is the Write/Read controller: four `specialized' and two parametrized implement-

ations of the controller were analysed, see Table 1. The �rst parametrized version has been presented

in Section 4-A, while the second has been obtained from it by optimising the path activated in the DI

mode, thus trying to make it work faster in this mode by sacri�cing performance in the other modes.

The results con�rm the intuitive assumption that a specialized implementation has a lower latency

than a generic design working in the corresponding mode. However, in case of the second version of the

parametrized controller the penalty is only 20% w.r.t. to the specialized DI circuit and there is no extra

delay in the synchronous mode of operation4. This means that we can run the system in a fast clocked

mode with no penalty in terms of latency and still have a robust DI solution available as a `backup' with

only 20% latency increase.

In other cases the penalty is more signi�cant, e.g. in the TA mode the parametrized controller exhibits

71% higher latency than the specialized circuit. However, this latency is still much lower than that of the

specialized DI controller, thus justifying this mode of operation. Moreover, remember that global system

cycle-times will di�er much more signi�cantly, namely 87.1ps+ d vs 148.1ps+ d+max{d1, d2, d3}. This
system-level reasoning can justify all other penalties.

Benchmark Controller Mode Latency, ps Overhead

DI 148.1 -

specialized PA 97.1 -

TA 50.9 -

CL 0(∗) -

DI 233.3 57.7%

Write/ parametrized PA 234.1 141.0%

Read TA 87.1 71.1%

CL 0(∗) -

DI 177.9 20.1%

parametrized PA 178.8 84.1%

opt. for DI TA 113.1 122.2%

CL 0(∗) -

SR 42.5 -

specialized NCL-X 86.5 -

AND NCL-D 209.8 -

gate SR 80.2 88.7%

parametrized NCL-X 233.4 169.8%

NCL-D 317.6 51.4%

specialized AND 42 -

AND/C- C 74.7 6.1%

element parametrized AND 70.4 67.6%

C 70.4 -

Table 1: Summary of simulation results

The second benchmark is the AND gate example. Note that both NCL implementations are based

on dual-rail encoding and require a codeword/spacer switching protocol [5]. Therefore their cycle delay

is a combined latency of two phases: switching from a codeword to spacer and backwards. Similarly to

the previous benchmarks, the con�gurable implementation trades the circuit latency for �exibility and

su�ers from 89% (in case of single-rail) up to 170% (in case of NCL-X) delay penalties compared to the

specialized implementations.

Finally, the table shows analysis of the AND/C-element cell which, surprisingly, can work even slightly

faster than a dedicated C-element due to peculiar transistor-level e�ects (this is a pure coincidence). The

AND/C-element is still 68% slower than an AND gate; a careful transistor-level implementation can,

however, eliminate this gap.

4,(∗) In the synchronous mode any controller latency can be compensated by adjusting (shifting) the phase of the clock
signal.
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To conclude, parametrized controllers, although su�ering from natural penalties due to generality,

are justi�ed by their adaptability to wide range of operating conditions. The proposed methodology

thus paves the way to both power-proportional and power-e�cient systems, which combine advantages

of heterogeneous timing and power domains.
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