
School of Electrical, Electronic & Computer Engineering

Asynchronous circuit development with
Workcraft

Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex
Yakovlev

Technical Report Series

NCL-EECE-MSD-TR-2011-174

December 2011



Contact:

Stanislavs.Golubcovs@ncl.ac.uk

Arseniy.Alekseyev@ncl.ac.uk

Andrey.Mokhov@ncl.ac.uk

Alex.Yakovlev@ncl.ac.uk

Supported by EPSRC grant EP/E044662/1

NCL-EECE-MSD-TR-2011-174
Copyright c© 2011 University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,
Merz Court,
University of Newcastle upon Tyne,
Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

Asynchronous circuit development with Workcraft

Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev

December 2011

Abstract

WORKCRAFT is a plugin-based development system designed to create various mathemat-
ical models. It is integrated with such external tools as PETRIFY, PUNF and MPSAT and can
simplify and partially automate the design or asynchronous systems. In this work we augment
WORKCRAFT with a new plugin targeted at modelling, simulation and formal verification of
digital circuits.

We model a digital circuit as a composition of functional components that represent beha-
viour of the circuit signals. Each component is specified by the set and reset Boolean functions.
These functions have no limitation on the number of their inputs, therefore, gates of arbitrary
complexity can be formed, allowing to create a high-level representation of a digital circuit.

Another important feature is marking certain components to be treated as a part of the
circuit environment. This technique is useful for dealing with components having internal
conflicts, such as mutual exclusion (MUTEX) elements, which allows employing the developed
plugin to modelling and formal verification of various arbitration circuits.

1 Introduction

Modern circuit designers are challenged by the requirements of high performance solutions and
reduced development time. Based on the size and complexity on the intended design, the op-
timal approach may vary. Devices with low transistor count and high demands for performance
are likely to be modelled directly in transistors and use manual mask layout. The much more
complex systems (such as hardware encoders) are more likely to be tackled by the behavioural
specifications in such languages as TiDE (Haste) [1], Balsa [2, 3], VHDL, Verilog, and System-C. In
the medium complexity spectre, there are various signal controllers that react to incoming events
and, possibly, carry out basic computations (various schedulers, handshake components, data
transceivers, etc.). These devices are quite complex for transistor level but often simple enough
to be efficiently designed at the level of binary logic gates.

Gate-level designers both in digital and analogue domain must take into account timing of
the signal propagation, in order to be able to tell whether the circuit would work in each of its

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 1



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

states for any test case. Since signal timing is increasingly more difficult to predict and control [4],
the reduction of timing assumption count is important for robust and flexible solutions. To ease
these complications, designers create circuits that are less dependent on the delay of individual
gates or wires. In other words, these circuits do not depend on the timing assumptions and are
able to work correctly regardless of how fast their individual components are. Checking that
the circuit works correctly for any gate/wire delays can be done by traversing through every
reachable state of the signals. As the number of possible states grows exponentially with each
additional signal, highly effective methods must be used to perform the state space exploration
in a reasonable amount of time.

Specification of causality in concurrent systems can be formally done with the Petri Net (PN)
model [5]. It is formed by interconnected transition and place components. During the simulation
of this model, places store a number of tokens and enable related transitions. A transition is
enabled when each of the incoming connections is related to a place with at least one token.
Transitions, when enabled, can fire and remove one token from each “incoming” place and put
one token in each of the “outgoing” places.

Signal Transition Graphs (STG) is a PN-based model that is widely used for describing beha-
viour of digital circuits. The model is derived from the PN model by introducing a set of signals
each describing the current state of a circuit wire (a binary value 0 or 1). Each transition in this
model can be associated with one of the signals and signifies a change of the corresponding wire
state (transitions marked with ‘+’ correspond to the rising edges, i.e. to changes from 0 to 1,
while transitions marked with ‘-’ correspond to the falling edges). The distribution of tokens
over places in an STG represents the current state of all circuit signals.

The state exploration in a given PN or STG can be done automatically with tools such as
PETRIFY [6] or PUNF/MPSAT [7]. They can efficiently verify if a given circuit model is free from
deadlocks and/or if the circuit contains hazards. Additionally, the STG can be synthesized into
a digital circuit implementation expressed as a set of Boolean equations. The obtained equations
are often more complex than basic cells of a given technology library. These equations need to be
mapped into the given set of basic elements in such a way that no hazards are introduced.

Unfortunately, practically useful circuits often have large STGs that are difficult to design
manually, which brings to a thought that such an STG could be formed structurally by combining
some higher level components. To assist the designer in specification of large circuits we propose
the model of interconnected Boolean logic blocks. It will be shown that this approach allows
viewing the system at various degrees of abstraction and can help composing larger and more
complex systems than the ones directly modelled by STGs.

WORKCRAFT is a plugin-based modelling framework that automates development of various
Interpreted Graph Models (IGMs) [8, 9] and provides a set of basic functionality common for dif-
ferent formalisms (visualisation, editing, simulation, etc.). We implemented the proposed circuit
model as a WORKCRAFT plugin in an attempt to support the gate-level design flow.

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 2



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

2 Digital Circuits

A digital circuit is a set of binary signals (also called components or gates), where each signal is
associated with a binary “current value”. The signal is called active, when its current value is 1
or inactive, when its current value is 0. A signal may also have an associated Boolean function
f(x1, . . . , xn) specifying its “next value” depending on the inputs of the signal. For instance, the
AND gate can be specified as a = b ·c, where a is the name of the signal, and b and c are its inputs.
It is often more convenient to describe a signal by separate set f ↑ and reset f ↓ functions such that
f = f · f ↑ +f · f ↓. For example, signal a can be described as:

a =

↑ b · c

↓ b+ c

A signal is excited when its next value function becomes different from its current value. This
may happen when one of its inputs x1, . . . , xn has changed. The excited signal may eventually
align its value with the value of the associated function making the signal stable again. When the
signal settles its value from excited to stable state, it is said that the signal fires a transition. The
timing it takes for this sort of transition to complete is called the delay of the signal (or the gate
delay), which may be arbitrarily long in the general case.

All signals of a circuit are subdivided into the input, internal, and output signals. The internal
and the output signals represent implementation of a circuit, while the input signals represent
the environment of the circuit (it is usually a simplification describing the behaviour of an envir-
onment on the signals, but not its implementation).

In contrast with the non-digital circuits (called the analogue circuits), signal changes from the
excited to the stable state are instantaneous and never hold values outside the binary set {0, 1}.
It is also assumed that these digital signals never produce glitches due to the complexity of their
function: for any single change among a signal inputs x1, . . . , xn, the signal will either remain
stable or become excited and eventually change its value (i.e., it will never make more than one
transition for each input change).

Under the assumption of non-zero gate delays, it is also possible that the function change
happens after the signal was excited already. The signal change from its excited state to the stable
state denotes its non-persistency. The non-persistency of any of the internal or output signals is
considered a hazard and wrong circuit operation. The non-persistency of an input signal is not
considered a problem because that is outside the scope of circuit responsibility.

2.1 Basic Plugin Components

For clarity of model presentation and ease of use, the modelling plugin provides the following
visual elements:

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 3



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

1. Circuit components that group related signals together. Their basic function is to visually
present signals and their connections. Their output contacts are the actual signals of the
circuit. The input contacts of a circuit component are effectively the placeholders for other
signals. They are used as arguments for the functions within the name space of the com-
ponent and are later associated with the actual signals by connections.

2. The input ports and output ports that describe the interface of the circuit. Here, the input
ports act as signals, and the output ports are the placeholders (same as inputs to the circuit
components).

3. Connections (or wires) associating signals with corresponding signal placeholders. There
may be many outgoing connections from one signal. But not more than one connection
may arrive to a placeholder. Circuit joint components can be used to branch connections at
convenient places on the diagram.

Each of the circuit signals vi (both the input ports and the output contacts) is specified by the
dedicated setvi and resetvi functions, so that fvi = fvi · setvi + fvi · resetvi . In other words, setvi
specifies the condition, when signal fvi activates to 1, and resetvi when signal resets to 0. To
avoid signal oscillation, in any circuit state, setvi and resetvi should never be true at the same
time: ∀v∈V,s∈S : setv(s) · resetv(s) = 0.

On the diagrams, set and reset functions are denoted with the vertical arrows ↑ and ↓ fol-
lowed by the Boolean formula respectively. When there is a formula f with no vertical arrow, it
means the reset function is the negation of a set function, i.e., set = f , reset = f .

2.1.1 Basic Examples

Consider the design of a toggle element (Figure 1). The STG diagram shows that it has one input
signal clk, one output out, and one internal signal m used as the local memory. It specifies that
on every positive clock edge clk+ the circuit changes its output to the opposite value. The clock
signal itself is not enough to determine whether the signal should rise or fall with the next clk
change; therefore, the signal m is used to store that information.

The circuit can be implemented with two complex gates as shown in Figure 1b. Gate signal
functions are m = clk · out + m · clk and out = clk · out + m · clk. The component may have
multiple inputs (placeholder contacts) and one or more outputs (signal contacts). The internal
signal m acts as memory and is not driving anything. However, here an assumption is made that
the clk signal will not change before m transitions.

In the next example, a model of a MUTEX element is depicted in Figure 2.
Both signals g1 and g2 are specified with corresponding set and reset functions:

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 4



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

(a) Signal Transition Graph
TOG

(b) Implementation

Figure 1: Toggle component

g1,2 =

↑ r1,2 · g2,1
↓ r1,2

Figure 2b shows how the MUTEX element is connected to its environment. Ports input1 and
input2 are the input signals and their behaviour is constrained by the state of the output ports
output1 and output2. Essentially, it is an example of 4-phase communication handshake (see [3] for
more information) executed on both of the MUTEX channels.

(a) STG model
MUTEX

(b) Implementation

Figure 2: MUTEX element

2.2 Gates of High Complexity

It is possible to model a system from a high-level perspective. Its main idea is to capture circuit
behaviour without showing its low-level implementation. There may be multiple different de-
compositions which may or may not work for their own reasons. Meanwhile, if the initial system

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 5



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

contains a hazard, its decomposition would still have the same problem. Therefore, launching
the verification technique at an early state allows catching out hazards at an early design stage.

There are no restrictions on the complexity of gates used in the circuit model. By entering
appropriate functions, our plugin allows elements with arbitrary numbers of inputs. Regardless
of a signal’s complexity, its value would only change by a single + or− transition. Figure 3 shows
high-complexity gates as an example. The specification of the components is as follows:

• C-element: c1 =

↑ a · b · c · d · e · f

↓ a · b · c · d · e · f
;

• complex gate: c2 = (a · b+ c · d+ f) · e;

• reset-dominant latch: c3 =

↑ (a+ b+ c) · done

↓ done
.

c1

C

c3

c2

Figure 3: High complexity gates

By constructing the system at the level of high-complexity gates, the top to bottom design
approach is followed. First, the task can be represented with large circuit blocks separated only
by their responsibility. Then, gradual refinement is used to approach a particular gate-level im-
plementation. The decomposition can be done by any accessible means such as manual design
as well as the automated mapping into particular technology. Once decomposed, the design can
be checked for hazards in an automated manner.

2.3 Delay-Insensitive Circuits

The main assumption about the Speed-Independent circuit is that wires do not have delay. In
real systems where one gate signal is forked to drive two of more gates, the actual arrival of the
signal may happen at different times. Such a situation may take place due to multiple reasons:
the length of the forked wires is different, each branch of a signal is connected to a transistor
with a different size, cross-capacitance in wires slows down or speeds-up the signal propagation,
etc. For small connection distances these effects may be negligible and thus lie within the same
equipotential region [10]. For the longer interconnects in larger designs all of these factors will have
an increasingly noticeable impact and, hence, need to be modelled explicitly. An ideal solution

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 6



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

would be to create designs that work for arbitrary wire delays; however, building pure delay-
insensitive circuits limits the designer to a fairly small set of implementable circuits [11].

buf1

buf2

buf3

Figure 4: Modelling asymmetric forks

The delay-insensitivity of the circuit is checked by introducing arbitrary delay on wires. This
can easily modelled by introducing additional buffer components on the wires where wire delay
is considered unpredictable. Such buffers are not needed in wires with no forks because this
timing unpredictability is already included in the signal driving the wire. On the forked wires
with independent latencies a buffer needs to be inserted for each branch.

A more practical assumption could be that one wire branch is not slower than another. These
asymmetric forks can be modelled by only placing the buffer on branches that are not the fast-
est. An example on Figure 4 shows buffer configurations that partially reduce unpredictabil-
ity in wires. As with isochronic fork, all of the outputs may receive the input1 simultaneously.
However, the output3 will never be behind any other outputs (for instance, when this wire is the
shortest and connected to the lightest load). Similarly, the output2 will always fire before output1,
implying also output3 firing before output1. However, the timing between branches output2 and
output4 is not known and may fire in arbitrary order.

2.4 Circuits with Timing Assumptions

Timing assumptions, when adequate, are helpful for reducing complexity and improving per-
formance of a circuit. This section describes how relative timing assumptions can be used in the
model. A relative timing assumption in the logic gate model is an additional signal transition
constraint that assures a Boolean expression is true before firing the associated transition. The
main difference from Boolean signal specifications is that the constraint does not result in any
new inputs of a component, which would increase its complexity.

A simple example of a counter constructed of toggle components is shown in Figure 5.
The clock signal is not constrained by any signals, therefore its value may be seen as a glitch

if the toggle components are not quick enough. The condition that all of the circuit signals have
settled can be specified as a constraint for the clock to change. As shown in Figure 1a on page 5,

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 7



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

TOG1 TOG2 TOG3

Figure 5: Counter with timing assumptions

the rising edge of the clock needs to happen after signal m has aligned with the signal out. In the
toggle component chain the set constraint for the clock ↑ transition may be written as:

clock ↑ : TOG1.m⊕ out1

It makes sure the first component TOG1 has settled after clock ↓. The reset condition for
clock is more complex because the former clock ↑might have caused changes in each of the TOG

components. The whole assumption expression can be written as:

clock ↓ : TOG1.m⊕ out1

·TOG2.clk ⊕ TOG2.m⊕ out2

·TOG3.clk ⊕ TOG3.m⊕ out3

This approach may seem awkward for the large number of assumptions; nevertheless, it is
still easy to manage in asynchronous logic with not too many timing constraints.

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 8



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

2.5 High-level Models

An important feature of the logic gate models is the ability to represent component behaviour at
various degrees of abstraction. A simple 4-phase 1-of-3 arbitration component may have various
implementations (token-ring arbiter, arbitration tree, arbiter mesh, e.t.c. [12]). However, the basic
functionality of the component states the same: when there is a request, it should provide at most
one grant signal at a time. Hence, this functionality can be modelled directly without introducing
any specific implementation (Figure 6).

ME1_3

Figure 6: 3-input arbiter (high level model)

When dealing with larger models, it is also useful to merge multiple combinational gates into
a single complex gate forming a simpler model. This would preserve the same behaviour and
have a smaller complexity (smaller state space); however, such an operation may hide some of
the hazards.

2.6 State Space Exploration

The flow presented in this paper is based on the traversal of Petri Net unfoldings. When a circuit
model is converted into its STG representation, the tools PUNF and MPSAT are used for state the
space exploration [13, 14].

When the behaviour of each signal is defined, the process of circuit conversion into its STG
form is done with the following steps:

• First, a pair of places is created for each signal in the circuit. One place p1 represents signal
value “1”. The other place p0 represents the value “0”. Depending on the initial signal state,
exactly one token is placed in either p0 or p1. During the simulation, the token may travel
from p0 to p1 and back through the appropriate set and reset signal transitions t1+, . . . , tn+

and t1−, . . . , tm−.

• After creating the signal places, all the set and reset equations are converted to their Dis-
junctive Normal Form (DNF) set = cs1 + cs2 + ... + csn and reset = cr1 + cr2 + ... + crm,
where csi and crj are the conjunctive clauses. Then, for each of the clauses the appropriate
set or reset transition is created.

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 9



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

• At the final stage, all of the generated transitions are constrained by the “read arcs”1 with
the corresponding signal places, that are mentioned in the clause. For instance, the set
function set = a · (b+ c) in the DNF form would become set = a · b+ a · c and then produce
two set transitions for clauses t1+← a · b and t2+← a · c, where a, b and c are the places of
corresponding signals.

MUTEX_g1=1

MUTEX_g1=0

r1*g2'

r1'

MUTEX_g2=1

MUTEX_g2=0

r2*g1'

r2'

input2=1

input2=0

output2'

output2

input1=1

input1=0

output1'

output1

Figure 7: Generated MUTEX STG

An example of creating the circtui STG from the MUTEX element in Figure 2b is shown in
Figure 7. Here, the transition g1+ (shown as MUTEX_g1+) is constrained by signal states
input1 = 1 and g2 = 0. Note that the placeholder contacts r1, g2, output1 have disappeared
from the STG model, they are now only shown as commentary text under the generated signal
transitions.

2.6.1 MPSAT verification flow

The MPSAT verification flow is shown in Figure 8. From a circuit defined by Boolean equations
its circuit STG can be generated with the plugin. The generated STG is always 1-safe and can
be analysed with PUNF [14] in order to create STG unfolding. The unfolded model is used by

1By the “read arc” between some place p and some transition t we mean two regular arcs connecting p → t and t → p

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 10



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

the MPSAT tool to check the STG for the properties specified separately. Based on the provided
STG unfolding and the list of markings being searched, MPSAT either reports a trace that leads
to the specified marking or reports that this marking is not reachable. There is a special MPSAT

reach language that allows the automatic generation of markings for a given unfolding and some
property to be checked [7]. The this language is able to describe various STG features, including
deadlocks and the non-persistency of the circuit outputs.

Circuit specified 
with Boolean

equations

Circuit STG

Workcraft
circuit plugin

Punf

STG unfolding

Mpsat
Verification

result

markings for hazards
and deadlocks

Plugin front-end

Verification back-end

Figure 8: Mpsat verification flow

The next example demonstrates the verification of a C-element implementation (Figure 9).
This is a NAND-gate C-element implementation proposed by Maevsky. Both input1 and input2

are constrained by the output as if they were connected through the 4-phase communication
protocol. The STG generated from the circuit is shown in Figure 10.

g2

inv2

inv3 g4

g1

g5

g3 inv1

Figure 9: C-element formed of NAND gates

When the STG is tested for hazards, the following trace is returned:
input1+ → input2+ → g1− → inv3− → g2+ → g4+ → g5− → g1+ → g3− → inv1+ →
input1−. The hazard occurs because the transition inv2− enabled by input1+ is again disabled
by input1− at the end of the trace. In practice this inverter is likely to be faster than the sequence
of events from input1+→ ... to · · · → output+→ input1−. Strictly speaking, this is not a speed-
independent circuit and the timing assumptions that both inverters inv2 and inv3 manage to
settle their values before the falling transitions on input1 and input2 signals should be explicitly
stated as a necessary condition for correct operation. One easy way to make it work is by adding

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 11



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

in
v2
=
1

in
v2
=
0

a'a

g5
=
1

g5
=
0

a' b'a*
b

g2
=
1

g2
=
0

a'b' a*
b

in
pu
t2
=
1

in
pu
t2
=
0

ou
tp
ut
'

ou
tp
ut

in
v1
=
1

in
v1
=
0

a'a

g3
=
1

g3
=
0

a'
b'

a*
b

in
pu
t1
=
1

in
pu
t1
=
0

ou
tp
ut
'

ou
tp
ut

g1
=
1

g1
=
0

a' b' c'

a*
b*
c

g4
=
1

g4
=
0

a'b' a*
b

in
v3
=
1

in
v3
=
0

a'a

Fi
gu

re
10

:N
A

N
D

-b
as

ed
C

-e
le

m
en

tS
TG

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 12



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

a constraint for the rising edge on the output signal:

output ↑: inv2 · inv3

2.7 Circuits with MUTEX Elements

Traversing through the circuit state space with a MUTEX element will always find a hazard be-
cause its outputs are non-persistent by design. When both MUTEX requests arrive, both grant
signals become excited. Then, after the first grant signal fires, the second is disabled, which is a
hazard.

In digital circuits, the environment is modelled with various high-level techniques, the only
constraint is its obedience to certain well defined communication protocols. It may contain haz-
ards or non-deterministic choices, which do not make a difference until the moment the envir-
onment actually changes one of the circuit inputs. In other words, it does not matter whether
the environment (input) signals are non-persistent unless the internal or output signals become
non-persistent.

From this perspective, the logical solution for modelling MUTEXes is modelling them as part
of the environment.

3 Conclusions

The new plugin implemented in the WORKCRAFT framework allows modelling digital circuits,
where behaviour of each signal is represented with Boolean equations.

The equation of each signal is split into two separate functions describing the set and reset

conditions. These functions have no explicit limit on the number of inputs, therefore, gates of
arbitrary complexity can be modelled.

It is possible to mark certain components to be treated as part of the environment, which
allows specifying components with internal conflicts such as MUTEX elements.

The method of designing circuits with circuit components is slightly more limited than what
STGs can describe. Any digital circuit can be converted into its STG equivalent; however, there
are STGs with CSC conflicts, demonstrating that the scope of STGs is wider than that of the
digital circuits. This means that some of the circuits are easier to describe with STGs. On the
other hand, the circuits composed of gate-level components do not create CSC conflicts, which is
an advantage in comparison with direct and potentially more complex STG design.

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 13



Stanislavs Golubcovs, Arseniy Alekseyev, Andrey Mokhov, Alex Yakovlev:
Asynchronous circuit development with Workcraft

References

[1] A. Taubin, J. Cortadella, L. Lavagno, A. Kondratyev, and A. M. G. Peeters, “Design auto-
mation of real-life asynchronous devices and systems.” Foundations and Trends in Electronic
Design Automation, vol. 2, no. 1, pp. 1–133, 2007.

[2] A. Bardsley, “Implementing Balsa handshake circuits,” Ph.D. dissertation, Department of
Computer Science, University of Manchester, 2000.

[3] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design. Bo-
ston/Dordrecht/London: Kluwer Academic Publishers, ISBN: 978-0-7923-7613-2, 2002.

[4] “International technology roadmap for semiconductors: 2005 edition.”

[5] T. Murata, “Petri nets: Properties, analysis and applications.” in Proceedings of the IEEE,
vol. 77, no. 4, April 1989, pp. 541–580.

[6] “Petrify: http://www.lsi.upc.es/~jordicf/petrify/petrify.html.”

[7] V. Khomenko, “A usable reachability analyser,” Newcastle University, Tech. Rep., 2009.

[8] I. Poliakov, V. Khomenko, and A. Yakovlev, “Workcraft — a framework for interpreted graph
models,” in PETRI NETS’09: Proc. of the 30th Int. Conf. on Applications and Theory of Petri Nets.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 333–342.

[9] I. Poliakov, “Interpreted graph models,” Ph.D. dissertation, Newcastle University, May 2011.

[10] C. L. Seitz, “System timing,” in Introduction to VLSI Systems, M. Conway, Ed. Addison-
Wesley, Reading MA, 1980, ch. 7, pp. 218–262.

[11] A. J. Martin, “The limitations to delay-insensitivity in asynchronous circuits,” in Proceedings
of the sixth MIT conference on Advanced research in VLSI. Cambridge, MA, USA: MIT Press,
1990, pp. 263–278.

[12] D. J. Kinniment, Synchronization and Arbitration in Digital Systems. John Wiley & Sons, Ltd,
2007.

[13] “Punf: http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/.”

[14] V. Khomenko, “Model checking based on prefixes of Petri net unfoldings,” Ph.D. disserta-
tion, University of Newcastle upon Tyne, February 2003.

NCL-EECE-MSD-TR-2011-174, University of Newcastle upon Tyne 14

http://www.lsi.upc.es/~jordicf/petrify/petrify.html
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/

	Introduction
	Digital Circuits
	Basic Plugin Components
	Basic Examples

	Gates of High Complexity
	Delay-Insensitive Circuits
	Circuits with Timing Assumptions
	High-level Models
	State Space Exploration
	Mpsat verification flow

	Circuits with MUTEX Elements

	Conclusions

