
School of Electrical, Electronic & Computer Engineering

Multi-resource Approach to Asynchronous
SoC: Design and Tool Support

Stanislavs Golubcovs

Technical Report Series

NCL-EECE-MSD-TR-2011-176

December 2011

Contact:

Stanislavs.Golubcovs@ncl.ac.uk

Supported by EPSRC grant EP/E044662/1

NCL-EECE-MSD-TR-2011-176

Copyright c© 2011 University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,

Merz Court,

University of Newcastle upon Tyne,

Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

University of Newcastle upon Tyne

School of Electrical, Electronic and Computer Engineering

Multi-resource Approach to Asynchronous

SoC: Design and Tool Support

by

Stanislavs Golubcovs

PhD Thesis

December 2011

Abstract

As silicon cost reduces, the demands for higher performance and lower power consump-

tion are ever increasing. The ability to dynamically control the number of resources

employed can help balance and optimise a system in terms of its throughput, power

consumption, and resilience to errors. The management of multiple resources requires

building more advanced resource allocation logic than traditional 1-of-N arbiters posing

the need for the efficient design flow supporting both the design and verification of such

systems.

Networks-on-Chip provide a good application example of distributed arbitration, in

which the processor cores needing to transmit data are the clients; and the point-to-point

links are the resources managed by routers. Building fast and smart arbiters can greatly

benefit such systems in providing efficient and reliable communication service.

In this thesis, a multi-resource arbiter was developed based on the Signal Transition

Graph (STG) development flow. The arbiter distributes multiple active interchangeable

resources that initiate requests when they are ready to be used. It supports concur-

rent resource utilization, which benefits creating asynchronous Multiple-Input-Multiple-

Output (MIMO) queues.

In order to deal with designs of higher complexity, an arbiter-oriented design flow is

proposed. The flow is based on digital circuit components that are represented internally

as STGs. This allows designing circuits without directly working with STGs but allowing

their use for synthesis and formal verification. The interfaces for modelling, simulation,

and visual model representation of the flow were implemented based on the existing

modelling framework. As a result, the verification phase of the flow has helped to find

hazards in existing Priority arbiter implementations.

Finally, based on the logic-gate flow, the structure of a low-latency general purpose

arbiter was developed. This design supports a wide variety of arbitration problems in-

cluding the multi-resource management, which can benefit building NoCs employing

complex and adaptive routing techniques.

2

Contents

List of Figures 8

List of Tables 12

Acknowledgements 13

1 Introduction 1

1.1 Motivation . 1

1.2 Main Contributions . 4

1.3 Organisation of Thesis . 5

1.4 Bibliography . 7

2 Background 8

2.1 Asynchronous Circuits . 8

2.2 Digital Circuits . 10

2.3 Petri Nets . 12

2.3.1 Pre-set and Post-set . 13

2.3.2 Enabling and Firing . 13

2.3.3 Other PN Properties . 14

2.3.4 Signal Transition Graphs . 14

2.4 Asynchronous Circuit Primitives . 16

2.4.1 C-element . 16

2.4.2 Toggle Component . 17

2.4.3 Decision Wait Element . 17

3

CONTENTS

2.5 Asynchronous Signalling . 18

2.5.1 Handshake Protocols . 18

2.5.2 Channel Types . 19

2.5.3 Delay-insensitive Encoding . 20

2.5.4 Dual-rail . 20

2.5.5 Bundled data Encoding . 22

2.6 Example of Logic Synthesis Using Petrify 22

3 Review on Asynchronous Arbiters 27

3.1 Introduction . 27

3.2 Arbiter-specific Properties . 28

3.3 Metastability . 31

3.4 Analogue arbiters . 32

3.4.1 The MUTEX Element . 32

3.4.2 Analogue 1-of-3 arbiter . 33

3.4.3 Analogue 2-of-3 Arbiter . 34

3.5 Two-way Arbiters . 35

3.5.1 4-phase Arbitration (RG) . 35

3.5.2 2-phase Arbitration (RGD) . 36

3.5.3 “Nacking” Arbiter . 37

3.6 1-of-N Multi-way Arbiters . 38

3.6.1 Mesh-based Implementation . 38

3.6.2 Cascaded Tree Arbiters . 40

3.6.3 Token Ring . 42

3.6.4 Ordered Arbiters . 44

3.6.5 Priority Arbiters . 45

3.7 Multi-resource Arbiters . 47

3.7.1 Multi-token Arbiters . 48

3.7.2 Patil’s Arbiter . 49

3.7.3 Committee arbiter . 50

4

CONTENTS

3.8 Conclusions . 51

4 Concurrent Multi-Resource Arbiter: Design and Applications 53

4.1 Introduction . 53

4.2 Design Method . 55

4.3 2× 2 Arbiter Design . 56

4.3.1 Functionality . 56

4.3.2 Resolving the Conflict . 59

4.3.3 Implementation . 63

4.3.4 Verification of the Circuit . 66

4.3.5 Latency Estimation . 66

4.3.6 Simulation in Spectre . 68

4.3.7 Cost of the Parallelism . 69

4.4 Extending up to N ×M Arbiters . 69

4.4.1 Column/row Blocking . 71

4.4.2 Ring-based Blocking . 73

4.4.3 Latency Estimation . 75

4.4.4 Simulation in Spectre . 75

4.4.5 Fairness of the Arbiter . 76

4.5 Multi-resource Arbiter for Passive Resources 76

4.5.1 Task Specification . 76

4.5.2 Implementation of the Ring Cell . 78

4.5.3 Implementation of the Client Controller and Token Controller . . . 80

4.5.4 Latency Estimation . 80

4.5.5 Comparison with Patil’s Arbiter . 81

4.6 Designing MIMO Queues . 81

4.6.1 MIMO Performance Comparison . 83

4.7 Conclusions . 83

5

CONTENTS

5 Gate-level Design Flow 85

5.1 Introduction . 85

5.2 Features of the Gate-level Design Flow . 87

5.2.1 Basic Plugin Components . 87

5.2.2 Gates of High Complexity . 89

5.2.3 Delay-Insensitive Circuits . 90

5.2.4 Circuits with Timing Assumptions 91

5.2.5 High-level Models . 93

5.2.6 State Space Exploration . 94

5.2.7 Circuits with MUTEX Elements . 96

5.3 Analysis of Priority Arbiter . 98

5.4 Conclusions . 101

6 Design of Generalized Arbiter 102

6.1 Introduction . 102

6.2 Arbiter Design . 103

6.2.1 Design Method . 103

6.2.2 Basic Structure . 104

6.2.3 Decomposition . 108

6.2.4 High Performance . 109

6.2.5 Avoiding Deadlocks . 109

6.2.6 Circuit Verification . 110

6.3 Possible Extensions . 113

6.4 Performance Estimations . 114

6.4.1 Priority 2-of-3 Arbitration . 114

6.4.2 Pipelined Arbiter Scaling . 115

6.5 Conclusions . 116

7 Conclusions 118

7.1 Summary of Contribution . 119

6

CONTENTS

7.2 Future Work . 119

A Summary on Asynchronous Arbiters 120

B Workcraft Interface 123

B.1 Main Window . 123

B.1.1 Basic Mouse Controls . 124

B.2 Common Operation Modes . 124

B.3 STG Plugin Operation Modes . 124

B.4 Digital Circuit Plugin Operation Modes . 126

B.5 Conversion to the Circuit STG . 126

B.6 Simulation . 126

B.7 Verification . 127

References 129

7

List of Figures

1.1 GALS evolution . 3

2.1 Petri net firing transition . 14

2.2 STG example of a C-element . 15

2.3 C-element examples . 17

2.4 Toggle component . 17

2.5 Decision-wait element . 18

2.6 Basic handshake protocols . 18

2.7 Channel types . 20

2.8 Dual-rail encoding . 21

2.9 Bundled data, 4-phase push channel . 22

2.10 Channel converter structure . 23

2.11 Control logic STG . 24

3.1 Naive arbiter implementation and metastability 32

3.2 MUTEX element [47] . 33

3.3 MUTEX with standard gates [35] . 33

3.4 Tri-flop arbiter . 34

3.5 2-of-3 analogue arbiter . 35

3.6 4-phase two-way arbiter . 36

3.7 2-phase two-way arbiter . 37

3.8 Nacking arbiter . 37

3.9 Multi-input arbiter . 39

8

LIST OF FIGURES

3.10 1-of-3 mesh . 39

3.11 Generic mesh structure . 40

3.12 Tree structure . 40

3.13 Cascaded arbiter STG and implementation 41

3.14 Token ring high-level models . 42

3.15 Ring implementations . 43

3.16 Ordered FIFO arbiter structure . 44

3.17 Ordered 3-way arbiter implementation . 44

3.18 Three-way static priority arbiter . 46

3.19 Eight-ways dynamic priority arbiter . 47

3.20 Multi-token arbiters . 49

3.21 Multi-resource “Forward acting” arbiter . 50

3.22 Committee problem . 51

4.1 Synopsis of an arbiter [35] . 54

4.2 Arbiter design flow . 56

4.3 2× 2 arbiter interface . 57

4.4 2× 2 arbiter STG . 58

4.5 Additional exclusion places added . 60

4.6 State graph of the modified STG . 61

4.7 STG with MUTEX elements . 62

4.8 Arbiter structure . 64

4.9 2× 2 arbiter implementation . 64

4.10 Timing diagram . 67

4.11 4× 3 arbiter implementation (shows active requests on r2g and c2g) . . . 70

4.12 Arbiter with blocking tiles . 71

4.13 Column/row block tile STG . 72

4.14 Tile implementation for the C/R blocks . 73

4.15 Ring-based tile STG . 74

4.16 Tile implementing ring-based approach . 74

9

LIST OF FIGURES

4.17 Asymmetric multi-resource arbiter structure 77

4.18 Busy token ring cell . 78

4.19 The STG of a ring cell . 79

4.20 Implementation of the ring cell . 79

4.21 Ring cell structure . 80

4.22 Structure of the sequential 2× 2 MIMO queue [80] 82

4.23 8× 8 MIMO queue . 82

4.24 MIMO performance . 83

5.1 Toggle component . 88

5.2 MUTEX element . 89

5.3 High complexity gates . 90

5.4 Modelling asymmetric forks . 91

5.5 Counter with timing assumptions . 92

5.6 3-input arbiter (high level model) . 93

5.7 High-level view on 2× 2 arbiter . 93

5.8 Generated MUTEX STG . 95

5.9 Mpsat verification flow . 96

5.10 C-element formed of NAND gates . 96

5.11 NAND-based C-element STG . 97

5.12 Modelled priority arbiter . 99

5.13 LOCK decomposition . 100

6.1 Arbitration example in 2D routing grid . 103

6.2 Arbiter design flow . 104

6.3 Generalized arbiter high-level PN . 105

6.4 High-level circuit structure . 105

6.5 Decomposition into simple gates . 108

6.6 SYNC_OR decomposition . 111

6.7 Pipelining . 113

10

LIST OF FIGURES

6.8 Employing RGD interface . 114

6.9 Decoupling synchronizer and grant controller 115

6.10 Pipelined arbiter performance . 116

B.1 Workcraft Interface . 125

B.2 Opening generated STG . 127

11

List of Tables

2.1 Dual rail 4-phase codes . 21

4.1 2× 2 performance estimation in Spectre . 68

4.2 4× 3 performance estimation in Spectre . 76

6.1 Priority 2-of-3 arbitration . 114

A.1 Analogue arbiters . 120

A.2 Two-way arbiters . 121

A.3 1-of-N arbiters . 121

A.4 Other arbiters . 122

12

Acknowledgements

I am grateful to my supervisor, Prof. Alex Yakovlev, for his incredibly wise guidance and

motivating talks. I am also grateful to Dr. Alex Bystrov and Dr. Fei Xia for their fruitful

discussions on various related topics.

I would like to thank my friends and colleagues Dr. Danil Sokolov, Dr. Andrey Mok-

hov, Dr. Robin Emery and Mr. Ashur Rafiev for contributing their ideas and making my

student life full of fun and excitement. Special thanks to Mr. Arseny Alekseyev and Dr.

Ivan Poliakov for their great technical help with the Workcraft source code. In addition, I

wish to thank Dr. Victor Khomenko for his advice and work on the tools Punf and Mpsat

which where of great help with many complex design decisions.

A very special thanks to my parents Alexander and Antonina for their constant en-

couragement and moral support.

This work was supported by EPSRC grant GR/E044662/1 (STEP).

13

Chapter 1

Introduction

1.1 Motivation

The increasing scale of modern designs is accompanied by the increased risk of failure;

as a result large multi-functional designs are more difficult to test and implement. To ad-

dress the problem, the larger systems are composed of smaller well tested design blocks

dedicated to particular tasks and combined into a single System-on-a-Chip (SoC) [66].

The result is a system with processors, memory components, encoders, floating point

units, and other blocks (also called the intellectual property (IP) cores), whose complexity

is constrained allowing combining solutions from independent vendors.

The greater requirements for high-performance systems have led designers to replace

large complex cores with multi-core systems composed of simpler cores [49]. The re-

peated use of the same core effectively creates a pool of resources (or service providers),

which allows greater control over balancing between performance and power consump-

tion.

Another question is durability; one or more cores may become temporarily or per-

manently inactive because of a fault. With the redundant resources, the “healthy” cores

could take over the job and prevent the system from failure. Examples of such resource

redundancy are RAID (Redundant Array of Independent Disks) and RAIM (Redundant

Array of Independent Memory) data storage architectures. Both technologies improve

1

CHAPTER 1. INTRODUCTION

resilience and performance of storing information on disk or in memory. In general, such

a redundant resource approach can be applied to any type of resource to achieve a trade-

off between performance and reliability.

Nowadays the Network-on-Chip (NoC) architecture is increasingly popular, where

devices communicate through a set of Point-to-Point (P2P) links that form network struc-

tures. A network is distributed over multiple link segments in order to allow concurrent

communication between multiple devices and to reuse the same links for propagating

data to different destinations. Essentially, a NoC provides and manages a distributed

set of communication resources. Various topologies, depending on the routing protocol,

provide different opportunities on what data propagation paths can be taken. For in-

stance; on a regular 2D NoC mesh there are multiple shortest paths possible for the data

travelling between two cores located in the opposite corners of the mesh. Theoretically,

such a choice of a particular path can be regarded as a redundant/replaceable resource,

which can be used for improving NoC performance, durability, and power consumption.

Asynchronous NoCs

With the increasing clock skew on smaller transistor sizes, planning multiple unrelated

clocks independently driving separate time domains becomes a necessity. The system

built on the concept of multiple clocks is called GALS (Globally Asynchronous, Locally

Synchronous) system, initially proposed by D. M. Chapiro in [15]. It assumes splitting

the design into individual modules with independent clock rates, which simplifies the

task of timing closure and enables design reuse by allowing multiple designs with inde-

pendent clock rates on the same chip. The communication latency, however, may have a

significant impact on the overall system performance [30].

Essentially, GALS is a compromise between fully synchronous and fully asynchron-

ous systems which may have various degrees of asynchrony in its communication layer.

The basic GALS designs communicate via dedicated links (Figure 1.1a) where the com-

munication is built by directly connecting these domains through special synchronous-

to-synchronous (sync-sync) interfaces (Figure 1.1).

2

CHAPTER 1. INTRODUCTION

Clock 1

Clock 2

Clock 3

Sync-Sync
Interface

Clock 1
Clock 2

Clock 3

Sync-Sync
Interface

Synchronous
NoC, Clock 4

Clock 1
Clock 2

Clock 3

Sync-Async
Async-Sync

Interface

Asynchronous
NoC

(a) (b) (c)

Figure 1.1: GALS evolution

As the number of independent cores grows, dedicated communication networks are

created (Figure 1.1b). At this stage, the network itself may still be clocked; however,

since this clock needs to cover the whole NoC area, the design had complications similar

to those in systems with a global clock skew. The clock branches with high skew require

special mesochronous synchronizers [42] that synchronize skewed clock branches belogning

to the same clock domain, this may also result in extra latency for the inter-core commu-

nication. It was shown that with the smaller transistor size even more synchronization

cycles may be needed, leading to the increased latency overhead [8], thus motivating the

fully asynchronous networks on chip.

The complete removal of global clock from the NoC environment having fully asyn-

chronous NoC implementation (Figure 1.1c) is the next step of the GALS evolution. Such

a network does not have the issue of timing closure and only needs synchronizers to

transfer data from asynchronous environment to clocked domains. As a result, the asyn-

chronous NoC designs do not suffer as much the penalty of extra synchronization latency

caused by synchronizers.

Smart Arbiters

Because NoC communication resources are reused by multiple clients, additional arbit-

ration circuitry is needed to manage resource utilization. Arbiters are designed to prevent

multiple client accesses when the resource cannot serve more than one client at a time.

Based on some form of communication, the arbiter forbids client accesses when the re-

source is not ready to be used. Alternatively, by granting a resource, the arbiter guaran-

3

CHAPTER 1. INTRODUCTION

tees that the resource can be used without the risk of being interfered. This simple form

of 1-of-N arbitration can be also extended to multiple resources. The M-of-N arbitration

featuring N clients and M resources forms a double-sided conflict where multiple clients

compete for the acquisition of a resource, and multiple resources also compete to access

the clients (supposedly because a client cannot be engaged with more than one resource

at a time) [78].

The asynchronous environment is difficult for arbitration because there are no timing

expectations about when the requests may arrive, and the only way the arbiter can decide

which request to grant is by serving requests based on their relative arrival time. Simple

digital logic used in synchronous arbiters is not sufficient in this case because the arriving

events may be too close leaving the arbiter in a metastable state [37]. The metastability in

asynchronous arbiters has to be contained within known boundaries by using specialized

circuitry; as a result, asynchronous arbiters are not so easy to design and scale.

The well known 1-of-N asynchronous arbiters are still being actively studied; how-

ever, the more general M-of-N arbiters also need to be considered in order to address the

problems of the multi-resource utilization. This is the primary goal of this work.

Currently, there are no integrated design flows supporting asynchronous arbiters. In-

stead, these designs are often made “by hand” with no guarantees of correct operation in

regards to deadlocks and hazards. For reliable solutions, the explicit support for verific-

ation is needed.

It is believed that smart asynchronous arbiters can help building the asynchronous

routers, which in turn will allow creating sophisticated asynchronous NoCs with optimal

utilization of available communication resources.

1.2 Main Contributions

The first contribution of this thesis is a design of a multi-resource arbiter supporting M-

of-N arbitration among active resource components. It directly serves the idea of provid-

ing interchangeable resources which improves the overall performance and reliability of

a system. As an example, the Multiple-Input-Multiple-Output queue is created, which in

4

CHAPTER 1. INTRODUCTION

practice can be used for load balancing among a number of processors.

The second contribution is the design of gate-level EDA flow and its implement-

ation as a plugin for the Workcraft [64] modelling environment. It supports high-

complexity gates, timing assumptions, and non-deterministic components (such as MU-

TEXes), which is useful in designing small-to-medium sized asynchronous arbiters. The

flow supports formal verification for deadlocks and hazards, which helps the design of

new and the verification of existing circuits. This flow is evaluated through a complete

design, modelling, and verification of the priority arbiter.

The third contribution is the design of a generalized arbiter based on the proposed

flow. This arbiter can be used to solve a large variety of resource allocation tasks. It is

presented at different degrees of abstraction, at high-level and at the level of decomposi-

tion. Timing estimations are made for the pipelined version of this arbiter, demonstrating

its performance for the increasing number of arbiter clients.

1.3 Organisation of Thesis

Chapter 1: Introduction motivates the necessity of the asynchronous multi-resource ar-

bitration and briefly outlines the scope and contribution of the thesis.

Chapter 2: Background describes the asynchronous circuits and their advantages and

disadvantages in comparison with the clocked designs. It defines Petri nets, STGs

and overviews their roles in specifying digital circuits at various degrees of abstrac-

tion.

Chapter 3: Review on Asynchronous Arbiters studies typical features characterising

arbitration circuits. It reviews existing arbiter designs both analogue and digital.

In this chapter multiple conventional arbiters are presented in order of increasing

complexity starting from various 1-of-2 arbiters and advancing into scalable 1-of-N

and M-of-N designs.

Chapter 4: Concurrent Multi-Resource Arbiter: Design and Applications presents the

initial solution to multi-resource arbitration with active resources. A number of

5

CHAPTER 1. INTRODUCTION

practical applications are also presented along with performance estimations com-

paring the design against existing alternative implementations in the area of MIMO

queues.

Chapter 5: Gate-level Design Flow presents the gate-level EDA flow supporting arbiter

models, which was implemented as part of the Workcraft modelling environment

in an attempt to ease the STG based design flow. It also demonstrates how exist-

ing arbiter circuits can be modelled and verified based on the example of priority

arbiter.

Chapter 6: Design of Generalized Arbiter presents the structure of the generalized ar-

biter developed with the flow proposed in previous chapter. The arbiter is able

to tackle a large variety of allocation problems making it an invaluable circuit for

designing advanced asynchronous NoC routers ensuring a high degree of link re-

source utilization.

Chapter 7: Conclusions summarises the major results achieved in this work and sug-

gests the areas for future research.

6

CHAPTER 1. INTRODUCTION

1.4 Bibliography

· Stanislavs Golubcovs, Delong Shang, Fei Xia, Andrey Mokhov, and Alex Yakovlev.

Concurrent Multi-Resource Arbiter: Design and Applications

Accepted for IEEE Transactions on Computers

· Stanislavs Golubcovs and Alex Yakovlev. Low Power Networks-on-Chip, chapter 4:

Asynchronous Communications for NoCs, pages 71–109.

Springer Verlag, 2010.

· Delong Shang, Fei Xia, Stanislavs Golubcovs, and Alex Yakovlev. The magic rule of

tiles: Virtual delay insensitivity.

In PATMOS, pages 286–296, 2009.

· Stanislavs Golubcovs, Delong Shang, Fei Xia, Andrey Mokhov, and Alex Yakovlev.

Multi-resource arbiter decomposition.

Technical Report NCL-EECE-MSDTR-2009-143, Newcastle University, February

2009.

· Stanislavs Golubcovs, Delong Shang, Fei Xia, Andrey Mokhov, and Alex Yakovlev.

Modular approach to multi-resource arbiter design.

In Asynchronous Circuits and Systems, 2009. ASYNC ’09. 15th IEEE Symposium on,

pages 107–116, May 2009.

· Stanislavs Golubcovs, Andrey Mokhov, and Alex Yakovlev. Multi-resource arbiter

design.

Technical report, UK Asynchronous Forum, Manchester, 2008.

7

Chapter 2

Background

2.1 Asynchronous Circuits

Asynchronous or self-timed circuits operate without a global clock sequentially updat-

ing the state of the system. They are formed of multiple control signals causing partial

system state updates and operate in the continuous time domain, which provides certain

advantages over the synchronous designs.

Modularity The asynchronous circuits are composed of modular blocks that intercom-

municate through handshakes. It is possible to develop these blocks independently with

different techniques and simply compose them together afterwards. Because the commu-

nication protocols usually do not have specific timing expectations, modules can work at

different speeds without the risk of violating timing constrains. In contrast, clocked sys-

tems have to be designed with the specific clock signal in mind and a slight variation on

the signal delay may have global implications.

Variability

The shrinking of the layout feature sizes causes an increase in interconnect delay vari-

ability for both traditional die-to-die and emerging intra-die variations [83]. The delay

variability also causes clock skew variations. For the 0.25µm process the reported vari-

ability was already 25% [39]. And finally, the crosstalk capacitance can cause up to 1.5×

8

CHAPTER 2. BACKGROUND

delay variation [29]. All these factors require much more sophisticated timing analysis.

Safety margins associated with the variability have to be increased at the cost of system

performance.

Similar issues occur in self-timed designs. However, the number of timing assump-

tions is significantly less. The robust delay-insensitive designs allow the circuits to operate

without explicit timing expectations on the delay of wires or gates, hence, variations in

these delays do not prevent correct functionality.

The asynchronous circuits are highly adaptive to power supply variation. With less

power, transistors would react slower, but with no strict timing constraints, such a design

would still continue to work.

Power Consumption

In synchronous systems, the clock signal needs to be propagated across the whole area

of the chip, which makes it a major power consumer. The asynchronous design is based

on more or less localized handshake communications. As a result, it often requires much

less power to operate.

Another important aspect is event-based power consumption. In a synchronous sys-

tem, the clock signal drives each clocked element of the circuit irrespective of real data

changes. On the contrary, the asynchronous design is driven by the “on demand” philo-

sophy. It dissipates power only when it is activated by the incoming request signal.

Static power consumption is related to the technology used and the area of the cir-

cuit. For CMOS technology of 130nm and above, static power consumption is a minor

contributor. As it scales down to 90nm and beyond, the static (leakage) power becomes a

greater concern. Again, asynchronous techniques allow applying power gating in a more

flexible event-based way than in clocked circuits [38].

Performance

The rate of computation in synchronous systems is dependent on the critical path. It is

the longest time, which takes a signal to propagate between two clocked components.

9

CHAPTER 2. BACKGROUND

The critical path determines the clock rate at which components can be latched and has

to include variations caused by different input data, high temperature, and low voltage

supply. As a result, the synchronous circuit is as fast as the slowest path in its worst

performance variation.

The asynchronous circuits operate through handshakes, which introduces overhead

into the computation process. Each computation transaction has to explicitly end with

the acknowledgement signal sent back to the requester, making the asynchronous com-

putation less attractive. On the other hand, the asynchronous handshakes work as fast

as the computation lasts. This leads to significant performance advantages, if the worst

case delays far exceed the delay of an average computation.

2.2 Digital Circuits

Throughout this work, the concept of an asynchronous digital circuit is inherited from D.

Muller’s switching circuits [55]. A digital circuit is a set of binary signals (also called

components or gates), where each signal is associated with a binary “current value”. The

signal is called active, when the signal value is “1” or inactive, when the signal value is

“0”. A signal may also have an associated Boolean function f (x1, . . . , xn) specifying its

“next value” depending on the inputs of the signal. For instance, the AND gate can be

specified as a = b · c, where a is the name of the signal, and b and c are the inputs for a.

For convenience, the signal a may be written in its set/reset form:

a =


↑ b · c

↓ b + c

A signal is excited when its next value function becomes different from its current

value. This may happen when one of its inputs x1, . . . , xn has changed. The excited

signal may eventually align its value with the value of the associated function making

the signal stable again. When the signal settles its value from excited to the stable state,

it is said that the signal fires a transition. The timing it takes for this sort of transition to

10

CHAPTER 2. BACKGROUND

complete is called the delay of the signal (or the gate delay), which may be arbitrarily

long in the general case.

All signals of a circuit are subdivided into the input, internal, and output signals. The

internal and the output signals represent implementation of a circuit, while the input

signals represent the environment of the circuit (it is usually a simplification describing

the behaviour of an environment on the signals, but not its implementation).

In contrast with the non-digital circuits (called the analogue circuits), signal changes

from the excited to the stable state are instantaneous and never hold values outside the

binary set {0, 1}. It is also assumed that these digital signals never produce glitches due to

the complexity of their function: for any single change among a signal inputs x1, . . . , xn,

the signal will either remain stable or become excited and eventually change its value

(i.e., it will never make more than one transition for each input change).

Under the assumption of non-zero gate delays, it is also possible that the function

change happens after the signal was excited already. The signal change from its excited

state to the stable state denotes its non-persistency. The non-persistency of any of the

internal or output signals is considered a hazard and wrong circuit operation. The non-

persistency of an input signal is not considered a problem because that is outside the

scope of circuit responsibility.

Classification

Asynchronous digital circuits fall into the following groups [75]:

· Delay-insensitive circuits (DI) assume that the circuit is expected to work “correctly”

regardless of its wire and gate delays. This class of DI circuits is considered the

most robust with respect to process and environmental variations. In practice the

class of delay-insensitive circuits is rather small [46].

· Speed-independent circuits (SI) assume that the circuit is expected to work “correctly”

regardless of its gate delays. This class of circuits assumes there is no delay in wires

and the change of one signal value immediately affects all of the functions in other

signals.

11

CHAPTER 2. BACKGROUND

· Quasi-delay-insensitive (QDI) circuits assume the presence of isochronic forks [46],

where the wire delay branches are considered to have no difference. If it is assumed

that a delay on a wire before its branching is part of the delay of a gate driving the

wire, then QDI=SI. This class of circuits may also make assumptions about one-

sided fork delays, where one branch of a fork is either the same or a slower branch,

which are called the asymmetric forks (see Chapter 5 for more details). These forks

impose fewer constraints on the design and are easier to enforce.

· Self-timed circuits (also called circuits with timing assumptions), where the circuit

is expected to work “correctly” if certain relative gate delay timing conditions are

satisfied. In practice, such circuits are less reliable with respect to timing variations

and need special attention during their layout. These circuits are fairly practical

and help to greatly simplify the logic, when the timing assumptions are reasonable

and easy to enforce by layout or additional delay elements.

2.3 Petri Nets

The Petri net model was introduced by Carl Adam Petri in his PhD thesis in 1962 [62, 56].

It is a mathematical formalism describing concurrent events, causalities between these

events (also called transitions), and a dynamic state of a certain system. As opposed to

the Finite State Machine (FSM) with a global state, the Petri net is described by a multiple

of distributed states, which better corresponds to the nature of the asynchronous circuit

events.

Definition 2.1. A Petri net is a quadruple, PN = (P, T, F, m) where:

P is a finite set of places

T is a finite set of transitions: (T ∩ P = ∅)

F : (T × P) ∪ (P× T)→N is a flow relation

m : P→N is the marking of the net (also called the state of the net)

The definition means there are places and transitions interconnected with each other.

A connection is only possible from a transition to a place or from a place to a transition.

12

CHAPTER 2. BACKGROUND

The marking is used to represent the dynamic state of a system. An example of a Petri

net is shown in Figure 2.1a on the following page. Here F(p1, t1) = 1, F(p0, t1) = 2, ...,

F(t2, p5) = 1, in the diagram it is shown by the number or directed arcs connecting places

and transitions. Marking for places m(p1) = 1, m(p2) = 2, e.t.c., or in other words: p1

has 1 token and p2 has 2 tokens.

2.3.1 Pre-set and Post-set

Definition 2.2. The pre-set of a transition t, denoted •t, is the set of places p ∈ •t ⊆ P

such that p ∈ •t ⇒ F(p, t) > 0. Similarly, a pre-set of a place p, denoted •p, is the set

of transitions t ∈ •p ⊆ T such that t ∈ •p ⇒ F(t, p) > 0. Symmetrically, a post-set

of a transition (or a place) a, denoted a•, is the set of places (or transitions) b, such that

b ∈ a• ⇒ F(a, b) > 0.

In the example on Figure 2.1a: •t1 = {p0, p1, p2}, t1• = {p3, p4}, •p2 = ∅, and

p2• = {t1, t2}.

2.3.2 Enabling and Firing

Definition 2.3. A transition t ∈ T is enabled at a marking m1 if for any place p ∈ •t,

m1(p) ≥ F(p, t). The enabled transition may fire producing a new marking m2:

∀p ∈ P : m2(p) = m1(p)− F(p, t) + F(t, p),

where each + and − are defined component-wise. In other words, firing t subtracts

F(p, t) tokens from •t for each p ∈• t and adds F(t, p) tokens to t• for each p ∈ t•.

In the example (Figure 2.1a): the transition t1 is enabled because the marking m(p0) =

2, m(p1) = 1, m(p2) = 2 satisfies the flows F(p0, t1) = 2, F(p1, t1) = 1, and F(p2, t1) = 1.

The transition t2 is not enabled because m(p4) < F(p4, t2).

Figure 2.1b demonstrates the result of firing transition t1. The tokens from •t1 =

{p0, p2} have been removed and added to t1• = {p3, p4} according to the flow function

F. After this transition, there are tokens in p2, p4 enabling transition •t2.

13

CHAPTER 2. BACKGROUND

t2

t1

p0

p2

p5

p4

p1

p3

(a) Initial state
t2

t1

p0

p2

p5

p4

p1

p3

(b) Firing transition t1
t2

t1

p0

p2

p5

p4

p1

p3

(c) Firing transition t2

Figure 2.1: Petri net firing transition

2.3.3 Other PN Properties

Traces

A trace is a sequence of fired transitions in a Petri net; it is used to depict the path from

its initial marking to any reachable marking. For instance, the trace from the marking in

Figure 2.1a to the marking in Figure 2.1c is depicted with the trace t1→ t2.

Boundedness The K-bounded Petri nets are the nets that for any reachable marking (any

trace from the initial marking) have at most K token in any place: ∀p ∈ P : m(p) 6 K.

Such Petri nets are interesting for the automated analysis tools because their reachable

marking set is finite.

Most Petri nets presented in this thesis are 1-safe. A Petri net is called the 1-safe when

it is 1-bounded (for any reachable marking, ∀p ∈ P : m(p) 6 1).

Deadlocks The deadlock state is a special PN marking, where none of the transitions is

enabled. A Petri net is deadlock-free, if there are no reachable markings leading to the

deadlock state.

2.3.4 Signal Transition Graphs

The idea to describe digital circuits with Petri nets was independently proposed in [17]

and in [67], it extends the Petri net model with a function mapping PN transitions to

particular circuit signal transitions.

14

CHAPTER 2. BACKGROUND

(a) Regular STG (b) Simplified notation

Figure 2.2: STG example of a C-element

Definition 2.4. Signal Transition Graph(STG) is a pair, STG = (PN, L) where:

PN is a Petri net PN = (P, T, F, m), and

L is a labelling function: L : T → (S ∈ C, op ∈ {+,−,∼}) ∪ dummy

The labelling function associates events of the Petri net with circuit signal transitions.

Transitions denoted with “+” are the raising signal transitions from “0” to “1”. Trans-

itions denoted with “−” are the falling signal transitions from “1” to “0”. Transitions

denoted with “∼” are the toggle transitions switching signals from “0” to “1” or from “1”

to “0” depending on the current value of the related signal.

Transitions that are not associated with any signals are called dummy transitions. Such

transitions can be useful for shifting the marking of an STG without affecting states of

the modelled signals.

Simplified Notation

Throughout this thesis the simplified notation of the STG models is used. This notation

sometimes omits the “∼” sign for the toggle transitions and the labelled transition boxes

are replaced by labels. Finally, places in diagrams are often omitted when |•p| = |p•| = 1,

which as a result makes the model more compact and easier to read.

Figures 2.2a and 2.2b present the STG of a 2-input C-element. The model presents two

input signals a and b (shown in red), these signals form the environment of the model.

The output signal c represents the output of the C-element (shown in blue).

The diagram shows that the output can raise or fall only after both inputs have

15

CHAPTER 2. BACKGROUND

transitioned to 1 or to 0 correspondingly. In this example the arcs from c to a and from c

to b introduce an assumption that the environment signals, once transitioned, would not

change until the output signal has settled.

Complete State Coding

The Complete State Coding property holds when an STG does not have a complete state

coding conflict.

The Complete State Coding conflict occurs when an STG has two reachable states in

which the values of all the signals coincide but the sets of enabled output and internal

transitions are different. In practice it means that these conflict states have ambiguous

next state functions and cannot be directly implemented as a digital circuit, hence, the

absence of CSC conflict is a necessary condition for a circuit to be synthesized.

Later in this chapter an example of CSC conflict will be considered as well as ways to

resolve it.

2.4 Asynchronous Circuit Primitives

2.4.1 C-element

The C-element introduced by Muller [55] is a latched component that changes its value

when all of its inputs make a single transition. The element depiction in diagrams is

as shown in Figure 2.3. The basic 2-input C-element can be described by the equation

q = a · b + (a + b) · q, or in the set/reset form:

q =


↑ a · b

↓ a · b

It means that the output of the gate is set when both inputs are active, it is reset

when both inputs are inactive, and it stays unchanged otherwise. The 3-input C-element

is correspondingly defined for three inputs: q = a · b · c + (a + b + c) · q.

The asymmetric C-element has different sets of inputs for its set and reset functions. An

16

CHAPTER 2. BACKGROUND

a
b C

q

(a) 2-input

C

a
b
c

q

(b) 3-input

C

+
a
b

c
d

q

(c) asymmetric

Figure 2.3: C-element examples

(a) STG

a b
c

(b) Symbol

b

c

a

(c) Implementation

Figure 2.4: Toggle component

asymmetric C-element with all four inputs activating it and only two inputs deactivating

it is shown in 2.3c. It is described by:q = a · b · c · d + (a + b) · q or the set/reset notation:

q =


↑ a · b · c · d

↓ a · b

so it is reset when both a = 0 and b = 0, regardless of the c and d values.

2.4.2 Toggle Component

The toggle component is a latch that has one input a and two outputs b and c (Figure 2.45.1).

It toggles b on every raising transition of a and toggles c on every falling transition of a.

The initial state in this element can be either “0” or “1”. When not mentioned otherwise,

the initial state of all the STGs with toggle transitions “∼” is initiated with “0”.

2.4.3 Decision Wait Element

The decision-wait (DW) element (also known as the JOIN component [32]) is a latch with

a number of rows and columns. The outputs are formed for each intersection between

17

CHAPTER 2. BACKGROUND

(a) STG

y

x2 z2

z1x1

(b) Symbol

Y

X2

Z2
C

Z1
C

X1

(c) Implementation

Figure 2.5: Decision-wait element

Req

Ack

1 2Transactions 3

(a) 4-phase handshake

Req

Ack

1 2Transactions 3

(b) 2-phase handshake

Figure 2.6: Basic handshake protocols

columns and rows. When there is a single change of one column and one row input, the

corresponding intersection also toggles its value. An example of DW element with two

rows and one column is shown in Figure 2.5.

2.5 Asynchronous Signalling

2.5.1 Handshake Protocols

Handshakes provide asynchronous systems flexibility of composing independent modules

into communicating systems through well defined interfaces. A handshake is the two-

way request-acknowledge communication transaction featuring the active participant

initiating the handshake with a request for a service, and the passive side, responding

to the initial request with the acknowledgement stating that the work requested has been

done [75]. Depending on the signalling scheme used, a handshake can be either the 4-

phase (Figure 2.6a) or the 2-phase (Figure 2.6b).

The 4-phase handshake is related to the level-based signalling. It is also commonly

known as a return-to-zero (RTZ) method. It forms the sequence of the following events:

18

CHAPTER 2. BACKGROUND

Phase 1 Req ↑ – A request is issued, new communication cycle has started.

Phase 2 Ack ↑ – The request is acknowledged. The requester may proceed with the

transaction.

Phase 3 Req ↓ – The requester is resetting to the initial state and waiting for the respon-

der to reset as well.

Phase 4 Ack ↓ – The initial state of the handshake is restored, can process to Phase 1.

The 2-phase handshake can be related to the transition or the pulse based signalling. It has

only two phases per handshake:

Phase 1 Either Req ↑ or Req ↓ – A request is issued and the new communication cycle

has been started.

Phase 2 Either Ack ↑ or Ack ↓– The request is acknowledged, can proceed to Phase 1.

When both Req and Ack signals are used, the event detection on both sides can use these

signals as a reference. If Req 6= Ack the responder knows that there was an event on the

request line. If Req = Ack then the requester knows that the acknowledgement has been

sent.

2.5.2 Channel Types

The type of the channel differs depending on which side of a handshake is transmitting

the data. When the transmitter is making the initial request, it forms the so called push

channel as data being sent is associated with the request event (Figure 2.7a). In contrast,

the pull channel transmits data with the acknowledgement phase (Figure 2.7b).

In a more general view, the handshake with no data transition associated is called

the nonput channel. It does not transport the data, but can still be used to synchronize

the communicating modules. Finally, if both the transmitter and receiver attach some

information to the request and acknowledge signals, such a communication is called the

biput channel [75].

19

CHAPTER 2. BACKGROUND

Data Req

Ack

data1 data2 data3
T

ra
n

sm
it

te
r

R
ec

ei
ve

rData Req

Ack

(a) Push channel handshake

Data Ack

Req

data1 data2 data3

T
ra

n
sm

it
te

r

R
ec

ei
ve

r

Data Ack

Req

(b) Pull channel handshake

Figure 2.7: Channel types

Because of the variety of data transmission directions, it is convenient to call the par-

ticipants the active side (or the master) initiating the request and the passive side (or the

slave) responding to the initial request with the acknowledgement.

2.5.3 Delay-insensitive Encoding

Delay-insensitive codes [82] allow the signal propagation time for each separate wire and

for each separate communication to be different. It is only required that within a finite

amount of time each signal arrives to the destination.

Delay-insensitive techniques encode both the event (an indication that the input rep-

resents fresh and valid data) and the associated data into the same wires. Special comple-

tion detection circuitry is used at the data receiver side to identify when the data event has

occurred.

2.5.4 Dual-rail

Dual-rail logic is the DI encoding that uses two separate wires (x. f alse and x.true or x.0

and x.1) to transmit zeros and ones. In a traditional 4-phase handshake only one wire can

be active at a time. Hence, there are three allowed combinations (Table 2.1):

Activating one of the signals will effectively transmit either 0 or 1. Activating both sig-

nals is not allowed and when a sequence of data symbols is transmitted using a 4-phase

protocol, they must be separated by spacers (a special signal state separating different

consequent values).

20

CHAPTER 2. BACKGROUND

Table 2.1: Dual rail 4-phase codes

x.0 x.1 meaning
0 0 spacer
1 0 send 0
0 1 send 1
1 1 not allowed

Bit x.0

Ack

11 0001Data

Bit x.1

Bit y.0

Bit y.1

spacers
xy xy xy

(a) Communication wave forms for the 2-bit
transfers

Bit x.0

Bit x.1

Bit y.0

Bit y.1

completion

R
ec

ei
ve

r

T
ra

n
sm

it
te

r Ack

....

(b) Completion detection

Figure 2.8: Dual-rail encoding

Multiple dual-rail pairs can be grouped to form a multi-bit channel. The n-bit value

requires using 2n wires and can accommodate 2n different codewords.

Figure 2.8a demonstrates an example of push channel communication for two bits us-

ing dual-rail codes. The completion detection is organised by using n 2-input OR gates.

They detect a valid data on each of the bit channels. Then, all validity signals are com-

bined into one completion signal using a C-element [70] (Figure 2.8b). This component

is a latch that outputs the value of the inputs when these inputs match and preserves

its value otherwise. In general, for the n-bit channel a tree of 2-input C-elements can be

used.

Note that the concept of spacers does not always imply the use of 0 values on the

dual-rail channel lines. The negative logic optimization might provide a better circuit by

inverting one or both (x.0 and x.1) rails. Also, the dual-rail channel may have alternating

spacer values, thus providing a more balanced power consumption in security aware

applications [71].

21

CHAPTER 2. BACKGROUND

Data

Req

data1 data2 data3

T
ra
n
sm
it
te
r

R
ec
ei
ve
r

Data

Ack

Req

Ack

Figure 2.9: Bundled data, 4-phase push channel

2.5.5 Bundled data Encoding

The bundled data encoding is one of the most popular delay-sensitive encoding techniques.

The term bundled data refers to a setup when the data symbol is encoded using a con-

ventional binary number notation, and an additional event signal is used to signify when

the data is valid. It means that the n-bit encoding requires only n + 1 wires. The timing

assumption is applied here, stating that by the time the request signal approaches the

receiver, all of the data signals will be stabilised and usable. As a result, the completion

detection circuitry also becomes trivial – it needs to checks what the request signal value

is active (for the 4-phase communication).

Figure 2.9 demonstrates the data wires bundled with Req and forming the 4-phase

push channel. The associated timing assumption is that the data wires manage to settle

by the time the request transition reaches the receiver.

There may be various combinations of different handshake and channel types. For

instance, the bundled data can also be 2-phase (e.g. to reduce latency and transition

overheads in the channel) [77].

2.6 Example of Logic Synthesis Using Petrify

Consider an example of designing a simple 4-phase controller for an asynchronous link

interface based on the logic synthesis technique. It is a structure of the converter trans-

ceiving messages (packets) from the on-chip to the off-chip link (Figure 2.10) proposed

22

CHAPTER 2. BACKGROUND

internal data
channel

SL

internal
control
channel

Control
logic

en

ack_in

nml

eop

external
channel

nml_alt

eop_ctlnml_ctl

Figure 2.10: Channel converter structure

in [73]. Packets are formed of the data flits that arrive via the internal data channel pipeline

into the Send Logic (SL) unit. To separate different packets, the internal control channel

provides additional information about the data flit types. When a normal flit is sent, the

nml signal is activated (nml+) by the control channel. Alternatively, when the last flit of

the packet is sent, eop is activated (eop+).

The SL (Send Logic) unit reacts to the incoming requests nml_ctl+ or eop_ctl+. For

nml_ctl+ it propagates the flit from the internal data channel to the external channel link.

For eop_ctl+ its task is to generate special “end-of-packet” flit and also send it across the

off-chip link.

The Control Logic unit controls sending data over the external channel by activat-

ing either nml_ctl+ or eop_ctl+. Then, following the 4-phase protocol, it resets the

request and acknowledges the control channel with en+. For the normal flit, after

nml+ it only has to propagate the handshake: nml+ → ack_in+ → en+ and reset

nml− → ack_in− → en−.

When the last flit activates eop+, the logic controller should, first, activate sending

the flit via nml_alt+ → nml_ctl+ → ack_in+. Then, after the reset phase nml_alt− →

nml_ctl− → ack_in−, it needs to send the “end-of-packet” flit and acknowledge the

environment: eop_ctl+→ ack_in+→ eop_ctl− → ack_in−. The whole logic is modelled

using the STG shown in Figure 2.11a. A single token placed in the initial state M0 enables

two mutually exclusive transitions eop+ and nml+. It is now possible to follow a trace

of events. For instance, when eop+ fires, the token will propagate to the arc eop+ →

23

CHAPTER 2. BACKGROUND

M0

M1

M2

M3

M4, M5

M4

M5

ac
k_

in
eo

p
n

m
l

en eo
p_

ct
l

n
m

l_
al

t

M0 0 0 0 0 0 0
M1 0 1 0 0 0 0
M2 1 1 0 0 0 0
M3 0 1 0 0 0 0
M4 1 1 0 0 0 0
M5 0 1 0 0 0 0

Arc reducing concurrency
to eliminate coding conflict

Input events:
eop, ack_in, nml

Output events:
nml_alt, eop_ctl, en

(a) Initial model with conflicting states

M0

M1

M3

ac
k_

in
eo

p
n

m
l

en eo
p_

ct
l

n
m

l_
al

t
cs

c

M0 0 0 0 0 0 0 0
M1 0 1 0 0 0 0 0
M2 1 1 0 0 0 0 1
M3 0 1 0 0 0 0 1

Input events:
eop, ack_in, nml

Output events:
nml_alt, eop_ctl, en

Internal event:
csc

M2

csc=1

csc=0
Region borderline

(b) CSC conflict resolved

Figure 2.11: Control logic STG

nml_alt+ which is denoted by marking M1. There is some concurrency in the diagram,

after the arc eop_ctl+ → ack_in+ two concurrent tokens appear on the arcs ack_in+ →

en+ and ack_in+→ eon_ctl−.

Implementing such an STG means finding the logic equation for each of the signals

that the given circuit has to control. It can only be done when the controlled signals are

managed by the unique state codes (CSC property holds). Such a property, however, does

not hold in the initial diagram in Figure 2.11a. For instance, the state code for marking

M1 is 010000 is equal to M3. It means that while being in such a state the circuit logic

cannot decide which event should occur next: nml_alt+ or eop_ctl+. There are more such

conflicts, M2 and M4 or M1 and M5. To deal with the problem, and achieve the complete

state coding, the model can be constrained by adding new arcs (adding more conditions

for an event to fire). For instance, if the arc eop− → eop_ctl− is created (Figure 2.11a), the

event eop_ctl− will never occur before eop−. It will reduce concurrency and markings

M4 and M5 will become unreachable. This allows one to sort out the state coding for M2.

24

CHAPTER 2. BACKGROUND

M5 is also eliminated, however, M1 is still in conflict with M3. To resolve this conflict,

one can increase the number of signals used to encode the states. For instance, if a new

signal csc is added as shown in Figure 2.11b, it will split the diagram into two regions,

one with csc = 0 and the other with csc = 1. Then the main task is to achieve that the

conflicting markings appear in different regions. In the presented case the new unique

coding for M1 and M3 are: M1 = 0100000 and M3 = 0100001.

By running Petrify with the new model, it is possible to find the implementation for

each of the signals, which is:

en = ack_in · (eop + eop_ctl)

eop_ctl = csc · (eop_ctl + ack_in)

nml_alt = csc · eop

csc = eop · (csc + ack_in)

The process of adding new signals and reducing concurrency can also be done auto-

matically by Petrify. One may find that there are also other solutions resolving the

conflicts without sacrificing concurrency, in the presented example it could be done by

adding two additional signals instead of one. Whenever there is a choice as to which ap-

proach to use, there are certain trade-offs related, for example, to the performance of the

overall system, including both the controller and the controlled logic. Concurrency re-

duction makes the controller implementation simpler, due to having more “don’t cares”

in the circuit state space, but may sometimes degrade the system’s performance, depend-

ing on the mean value and distribution of the delays associated with the initially concur-

rent branches. On the other hand, the insertion of additional signals implies a more

complex controller implementation, which may reduce the performance if the gains from

the concurrent branches in the controlled circuit are relatively small. In the latter case

the gains are absorbed by the delays introduced by the additional cells implementing csc

signals.

25

CHAPTER 2. BACKGROUND

Yet another powerful technique for resolving state encoding conflicts is based on ap-

plying timing assumptions. It can greatly simplify the implementation without the addi-

tional performance penalty. It is similar to concurrency reduction, however, the events

are not specifically constrained by adding new arcs. Instead, it is assumed that certain

events happen in a predefined order. For instance, it is known that the external link

channel is slow, much slower than any gate in the control logic. This allows the events

to be modelled as sequential, i.e. nml+ → ack_in+ and nml− → ack_in−. This, in turn,

simplifies the implementation for the signal en because it does not have to sense the nml

signal at all.

26

Chapter 3

Review on Asynchronous Arbiters

3.1 Introduction

The necessity for asynchronous arbitration can be found in applications where limited re-

sources (service providers) are distributed among multiple clients (service users). Typical

examples are shared communication channels, multi-port memories, shared data pro-

cessing components, to name but a few. When a shared resource is not able to support

multiple clients at a time, the arbitration phase is needed to avoid multiple clients access-

ing a resource concurrently. Instead of directly using the resource, clients communicate

with the arbiter to gain the permission (or get arbiter grant) to use the resource. Corres-

pondingly, the arbiter monitors whether the resource can be used and, when the resource

becomes available, grants access for an incoming client request.

Synchronous arbiters operate in time domains different from asynchronous arbiters.

The synchronous arbiters are clocked and only compute their decision based on stable

input values and stable internal states. Issues related to their design are limited to the

arbitration fairness and priority management, which is easy to address with traditional

synchronous design techniques. The asynchronous arbiters activate with the incoming

requests without explicit timing assumptions as to when these requests may arrive. In

other words, the arbiter will try to grant a request arriving first in the continuous time

domain. While it is easy for requests separated in time, the arbiter latch splitting these

27

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

requests may become metastable when two clients request the resource simultaneously.

Because of this problem, the asynchronous arbiters have a dedicated interest among other

topics of asynchronous circuits.

The problem of arbitration includes understanding the operations of typical arbiters

and the set of rules governing the arbiter interaction with clients. The formal specific-

ation is needed to describe this behaviour and enable formal verification of the design.

Convenient models for describing asynchronous arbiter functionality are the Petri nets

and the Signal Transition Graphs. Petri nets can easily model concurrent events, non-

deterministic choice, and unbounded component delay at various levels of abstraction.

Each model capturing arbiter behaviour contains dedicated states denoting arbiter avail-

ability and the events igniting transitions between these states. The key arbitration trans-

itions are the ones transferring the arbiter in and out of its critical section.

This chapter reviews a number of existing asynchronous arbiter solutions from the

perspective of various arbitration properties such as communication rules, fairness, and

scalability. It starts by presenting various simple two-way arbiters, and then progresses

into the more complex problem of multi-way, multi-client, and multi-resource arbitration.

3.2 Arbiter-specific Properties

Communication Protocol

A communication protocol determines the rules by which clients request and release re-

sources and the rules by which arbiters grant client access. The protocols are broadly

split into one of the signalling schemes: either 4-phase signalling or 2-phase signalling.

The 4-phase signalling (also called the return-to-zero (RTZ) protocol) assumes that each

of the communication signals transitions at least two times per single arbitration transac-

tion. It initiates with all communication signals being equal to logical “0”, and is eventu-

ally reset back to the “all zero” state, before the next transaction is started.

The alternative 2-phase signalling (also called the non-return-to-zero (NRZ) protocol)

does not include the phase of returning signals to the initial zero state. Hence, each new

28

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

arbitration transaction can be started by any transition on the client request line. This

type of arbiter requires an additional 2-phase “done” signal, which tells the arbiter when

the resource is released.

As will be shown, quite often the communication protocol of an arbiter can be iden-

tified by the presence of particular signals. For instance, the RG arbiters use two signals

(request-grant) per client and support the 4-phase request-grant protocol. Alternatively,

the 2-phase communication can be identified by the RGD (request-grant-done) signals,

with the communication participants toggling their signal states to communicate.

Arbiter Channels

Arbiter channels are the two-way communication links connecting the arbiter with clients

(and sometimes with resources). Usually these channels are the nonput channels. Each

client always uses its own channel, which is independent from other clients, so that the

potential conflicts between the clients were resolved within arbiter boundaries. In this

review, the channel types do not vary within the scope of the same arbiter. However, it is

also possible that some arbiters use mixed channel types for different clients.

Order of Arbitration

The order of arbitration identifies the number of resources that are shared and the number

of clients that may need the resource. The most basic arbiter type manages two clients

accessing one resource and form a particular range of two-way arbiters, hence, it presents

a 1-of-2 arbitration problem (also called the two-way arbiter).

A more general arbitration problem is the 1-of-N arbitration (also called the multi-

way arbiter). It is an extended arbitration problem supporting requests from N clients

and inherits most of the design aspects that are related to the basic 1-of-2 arbitration such

as signalling scheme and the signals used for communication.

Similarly, an arbiter may manage multiple resources distributed among clients. For

N clients and M resources it extends the allocation task to the M-of-N arbitration, which

also inherits concepts from the 1-of-N arbiters, such as scalability and fairness.

29

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

Fairness

Fairness is an important property applicable for any arbiter with two or more pending

requests. Any request arriving at the arbiter while the resource is occupied becomes a

pending request. When there are multiple pending requests, the additional arbitration

may be needed to decide which of the pending requests will be the next assigned the

resource. Different arbiters may have alternative policies regarding this conflict. The

most popular policies are the fair and the priority-based arbitration.

The arbiter is considered fair, if each of client requests is guaranteed to receive a grant

after a limited number of grants issued to other clients. Or, in other words, an infinite

number of client requests will result in infinite number of grants.

The priority arbiter favours the “most important” request first. Hence, the discrimin-

ated clients may sometimes starve as a result.

The statistical fairness of an arbiter is another type of fairness sometimes considered

by designers. It estimates grant probability distribution for even distribution of requests.

Scalability

Arbiter scaling considers the relation of arbiter costs in power, area, latency, interconnect

complexity, or throughput against the number of channels communicating with clients.

These circuit properties are governed by arbiter internal organization and have different

optimal implementations depending on how many clients need to be supported.

Analogue vs Digital

Every asynchronous arbiter has to contain metastability. Analogue arbiters are modelled at

the level of transistors and include metastability filters that deal with non-digital signal

levels. They are more difficult to design and scale, but, when used right, provide great

performance benefits.

Digital arbiters are constructed of usual logic gates and use analogue arbiters as ba-

sic building blocks to contain metastability. In digital arbiter implementations all of the

signals are always binary, either “0” or “1”. The metastable values are hidden within the

30

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

analogue arbiter components and do not have to be considered in digital circuit models.

The main advantages of the digital arbiters are their scalability and flexibility in solving

arbitration conflicts of high complexity.

Topology

The notion of topology is applicable for the scalable arbiters composed of a certain num-

ber of arbitration cells. It specifies how the cells are connected together when the arbiter is

scaled. The commonly known topologies are ring, tree, or mesh.

3.3 Metastability

The asynchronous nature of an arbiter assumes that its inputs can be changed at any time,

even when the circuit’s internal state is not stable.

For a simple 4-phase two-way arbiter with request channels r1, r2 and grant channels

g1, g2 the functionality can be specified with the following equations: g1 = r1 · g2 and

g2 = r2 · g1 (Figure 3.1a).

The arbiter always grants the first client request by lowering the corresponding grant

signal when the client issues a request, and the resource is not granted the second client.

The problem occurs when two clients request it at the same time. Because every gate

has certain speed limitations, there will be a period of time during which the output is

already greater that logical “0” but is still less than logical “1”. When two request signals

arrive within this time interval, both gates start changing their outputs and mutually

try to lock out their neighbouring gate. As a result, the half-way blocked gates will be

outputting metastable values for a prolonged period of time (Figure 3.1b).

The occurrence of metastability is rare in reality; however, theoretically, its duration

is unbounded and can be arbitrarily long. By the time the metastability is resolved, the

metastable output can be misinterpreted by the subsequent gates and create a hazard

propagating through he circuit, hence, special mutual exclusion circuit is required.

31

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

g2
r2

r1 g1

(a) Flip-flop

1

0

Metastability t

g1

g2

V

(b) Signal metastability

Figure 3.1: Naive arbiter implementation and metastability

3.4 Analogue arbiters

3.4.1 The MUTEX Element

The problem of metastability in arbiters was noticed long ago. An attempt was made to

find a solution of the mutual exclusion arbitration based on standard gates [63]. However,

it was later realised that the circuit resolving metastability has to take into account the

non-digital nature of the signals [36, 14]. Later, the MUTEX component was implemented

using threshold filters by S. Patil in [60]. The faster implementation based on the NMOS

analogue difference circuit was proposed by C. Seitz in [68]. Later, this component was

refined for the CMOS technology by A. Martin in [47]. It consists of an SR-latch followed

by the metastability filter, which hides the metastable values until one of the gates wins

the arbitration. The component is now known as the MUTEX element (Figure 3.2). It is

actively used as a basic building block when designing more complex arbiters. Internally

the MUTEX component manages analogue signal values, while externally it behaves as

a digital component with an unbounded latency.

In practice, if the asynchronous design is only allowed to use standard library cells,

the MUTEX component can be built of the cross-coupled NAND gates followed by the

32

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

r1

g2

gnd

r2

gndg1

Metastability filter

Figure 3.2: MUTEX element [47]

r1

g2
r2

g1

Metastability filter

Figure 3.3: MUTEX with standard gates [35]

low-threshold inverters (Figure 3.3). It is also a useful technique for prototyping cir-

cuits in Field Programmable Gate Array (FPGA) structures; however, the drawback is the

increased latency of the component.

3.4.2 Analogue 1-of-3 arbiter

The tri-flop is a generalization of the MUTEX element; it supports three clients accessing

a single resource (Figure 3.4a). In other words, it is a 4-phase implementation of the 1-of-3

arbitration conflict.

The implementation is straightforward with the cross-coupling NAND gates fol-

lowed by the metastability filter (Figure 3.4b). When all of the n inputs are held at lo-

gic “0”, the gate outputs x1, x2, x3 are equal to “1”. When one of the requests arrives,

the corresponding x signal falls, blocking the other gates and raising the corresponding

output grant signal g to “1”.

The detailed analysis of this arbiter has shown that multiple request signals r1, r2,

33

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

g3+g1+

r1+

r2+ r2-g2+

r3+

r1- r3-

g2-

me

g3-g1-

(a) Signal Transition Graph

r2

g3
r3

g2

r1
g1

M
et
as
ta
bi
lit
y

fil
te
r

x1

x2

x3

(b) Implementation

Figure 3.4: Tri-flop arbiter

r3 arriving at the same time may cause the ternary metastability with oscillating voltage

on the x outputs [10, 43]. Additionally, it was noted that this arbiter does not have pre-

defined behaviour when two requests are pending. Right after the resource is released,

the pending requests are in danger of starting another metastability. The resolution to

this conflict will not be fair as the outcome will likely depend on the transistor threshold

values, which will always favour one of the clients.

Since the arbiter tries to provide the grant in one computation step, its main advant-

age is low latency; however, its drawbacks of the oscillatory response, unfairness and

complicated design process often lead designers to use other 1-of-3 implementations.

3.4.3 Analogue 2-of-3 Arbiter

A small extension to the tri-flop was proposed in [10] (Figure 3.5) where it implements

the 2-of-3 allocation with the arbiter granting two first client requests. As noted in the

paper, this arbiter does not suffer the oscillatory behaviour and there is no more than one

pending request at a time. Hence, this solution presents a highly efficient 2-of-3 arbiter

implementation.

34

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

g3+g1+

r1+

r2+ r2-g2+

r3+

r1- r3-

g2-

me

g3-g1-

(a) Signal Transition Graph

r2

g3
r3

g2

r1
g1

M
et
as
ta
bi
lit
y

fil
te
r

x1

x2

x3

(b) Implementation

Figure 3.5: 2-of-3 analogue arbiter

3.5 Two-way Arbiters

The digital two-way arbiters assume there are only two clients that share a single re-

source. This section considers various communication protocols and does not consider

arbiter scaling.

3.5.1 4-phase Arbitration (RG)

The 4-phase arbiter is based on 4-phase handshakes. The protocol for two inputs can be

regarded as the simplest type of arbiter, which is implementable as a single MUTEX ele-

ment presented before. The protocol behaviour is defined with the STG diagram shown

on Figure 3.6.

When client 1 requests the resource, the event r1+ occurs. Eventually, the arbiter

responds with g1+ if the second client is not using the resource and the me place has

a token. While the token is on the path g1+ → r1− → g1−, the arbiter will prevent

the second client from using the resource. The transition g1+ grants the resource to the

client 1 may safely be used. To release the resource when it is no longer required, the

client issues transition r1−. This is subsequently followed by g1−, enabling the resource

to be granted to other clients. To obey the 4-phase communication, client 1 must wait

until g1− takes place, and only then it is allowed to issue the next request r1+ which

would start a new arbitration transaction.

35

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

g2+

r2-

g1-

r1-

r2+

g2-

meg1+

r1+
wait

signal

Figure 3.6: 4-phase two-way arbiter

Functionally, MUTEX implements the E. W. Dijkstra’s binary semaphore with its

“wait” state located on the arcs ri+ → gi+ and the “signal” state located on the arcs

ri− → gi−. As it can be seen, the “wait” state blocks the client until the me place re-

ceives a token. The “signal” state is not blocked by anything and immediately returns

the resource.

3.5.2 2-phase Arbitration (RGD)

The 2-phase arbiter is a binary semaphore implementation based on the 2-phase hand-

shake communication, which was proposed by I. Sutherland in [77]. The arbiter has two

inputs and one output for each individual client. According to the signals used, it is

called the RGD (Request–Grant–Done) arbiter denoting three signal transitions required

per one arbitration for each client.

First, a request for arbitration is sent via one of the request lines rj. Eventually it

is followed by the transition of gj acknowledging that the resource was granted. After

the resource was used, the client transitions dj which finalizes the transaction. There is

no explicit reset phase and every transaction will be started with the alternating signal

values.

The implementation of the 2-phase semaphore consists of two XOR gates, two toggle

components, and two C-elements. The STG description is simplified to only three toggle

transitions per client.

36

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

g2

r2r1

r2

meg1

r1
wait

signal
g2

r2

g1

d2

r1

d1

MUTEX

Figure 3.7: 2-phase two-way arbiter

A1+

free

A2+

R1+

N1+

R2-

A2-

busy

N2-

R2+

N2+

R1-

A1-N1-

(a) STG model

A2R2

R1

N2

N1

A1

ME

(b) Implementation

Figure 3.8: Nacking arbiter

3.5.3 “Nacking” Arbiter

The “nacking” arbiter is designed to avoid client waiting [57, 20]. It always responds

with either “acknowledged” when the resource is free or with the “not acknowledged”

when the resource is not available. Such an immediate response prevents the client from

waiting and allows it to perform other useful tasks, perhaps repeating the request at a

later time.

The arbiter STG is presented on Figure 3.8a. As the requests arrive, they always

propagate to either granting response signals A1/A2 or the nacking responses N1/N2.

This selection of the response is based on whether the token is located in the f ree or busy

37

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

place of the arbiter.

There are three conflicts possible:

· A1+ with A2+ mutually disable each other (the regular arbitration between two

concurrent requests);

· A2− with N1+ or A1− with N2+ (the arbiter does not know whether to “nack” a

request, that arrives simultaneously with the resource being released and explicit

arbitration is needed to make this decision).

Luckily, all these conflicts never occur concurrently. This means that a single MUTEX

element is sufficient to resolve the conflict. When the MUTEX element is used for the

first time, the feedback loop propagates the signal back which, XOR-ed with the initial

request, releases MUTEX for the next arbitration (Fig. 3.8b).

3.6 1-of-N Multi-way Arbiters

From a more general view, the problem of 1-of-2 arbitration can be extended to a greater

number of clients requiring access to a common resource, posing the 1-of-N arbitration

problem (Figure Multi-input arbiter). All of the 1-of-N arbiters still support the 1-of-2

arbitration, but their structure allows sharing a resource among the increasing number of

clients.

The multi-way arbiters can be built by combining the arbitration cells (or tiles) that are

treated as the basic building blocks and are simply reused when more clients are needed.

The evaluation of a particular implementation can be done by estimating the parameters

such as area, latency, power, e.t.c., against the increasing number of clients. This section

provides an insight on various 1-of-N arbiter types and the common topologies used.

3.6.1 Mesh-based Implementation

One way of arbitrating N clients is by interleaving multiple 2-input MUTEX elements in

a mesh-like structure. An example of a 1-of-3 arbiter is shown in Figure 3.10. It arbitrates

38

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

G1+

G1-

R1+

RN-

RN+

R1-

GN+

GN-
...

Figure 3.9: Multi-input arbiter

ME2

t3-

r3+

r3-

g3+

ME1

t2+

g1+

g2-

g2+

ME3

t1+

t3+

r2-r1-

t1-

g1-

r1+

g3-

r2+

t2-

(a) STG specification

r1

r2 t2

t1

r3

t3

g1

g3

g2

ME1 ME3

ME2

(b) Layout

Figure 3.10: 1-of-3 mesh

three inputs by arbitrating each pair of clients. The result is that only one grant signal

will propagate at a time.

While the resource is occupied by one of the clients, the requests from the two other

clients may become pending, which raises the question about arbiter fairness. Each time a

client releases its request, it unblocks the propagation of two other client requests, hence,

the resource will be granted to each of the clients after a finite number of resource grants.

The mesh-based arbiter can be extended to support N requests. A convenient layout

without over-crossing interconnects is shown in Figure 3.11. With the increasing N its

response latency increases linearly. It is a reasonably good performance in comparison

with other topologies. Statistically, it is even better, because the implementation of each

arbiter cell is so simple (just the MUTEX elements). The significant drawback of this

arbiter is the quadratic growth of its area, rendering it impractical for the large number

39

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

r1

r2
ME

r3

g2

g4

g3

r4

g1

ME

ME

ME

ME ME

Figure 3.11: Generic mesh structure

r1
g1

r2
g2

r1
g1

r2
g2

r
g

ME

r
gTAC

TAC

Figure 3.12: Tree structure

of clients:

C(N) =
N(N − 1)

2

3.6.2 Cascaded Tree Arbiters

The cascaded tree arbiter cells (TAC) can be connected together in a tree-like structure,

where each cell has two channels communicating with clients r1/g1, r2/g2 and the out-

going channel r/g communicating with the next level or arbitration.

When either of the requests wins the local arbitration, the outgoing signal r propag-

ates the request further. Depending on the total number of clients, there may be multiple

layers of arbitration, where the signal is propagated in a similar fashion until it reaches

the root of the tree. At the top cell a simple MUTEX element may be used to arbitrate

between the two root branches.

40

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

r+

r1+

dummy

g2+

g+

g1+

r2-

g2-

me

dummy

r-

g1+

r2+

g-

r1-

(a) TAC STG

g1

r2

r1

g

g2

r

C

C

ME

(b) TAC implementation

Figure 3.13: Cascaded arbiter STG and implementation

As the root node responds with a grant signal, the acknowledgement propagates back

to the only client that has won all the arbitrations.

The optimal structure of the arbiter assumes a balanced tree with the total number of

clients being N = 2x. It is easy to see that each additional TAC component increases the

total number of supported clients by 1: C(N) = N − 1 rendering the area increase linear.

For comparison, the 1-of-8 tree arbiter needs seven cells in total, while the mesh arbiter

would already require 28 MUTEX components.

The response time of the arbiter for a balanced tree is dependent on the number of

layers, which is:

L(N) = t · log2N = t · log22x = t · x

This means that the arbiter has a very good latency overhead for the increased number

of clients. At the same time, the propagation of requests has to pass the distance until the

root of the tree and back to the branch, which in comparison with other topologies is a

significant overhead for low numbers of clients.

It can also be shown that this arbiter is fair because each layer of arbitration will be

interleaving request grants. At each level of arbitration, there will be an equal distribu-

tion of grants for each of the branches, and the bottom level the client grants will be also

evenly distributed.

41

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

next

G+

ME

G- R+R-

next next... ...
ME

(a) Busy token ring
out

in
in

out

ME

... ...

ME

(b) Lazy token ring

Figure 3.14: Token ring high-level models

3.6.3 Token Ring

Arbiters can also be organized in a ring-like structure. A chain of cells would have neigh-

bouring cells from its left and right sides (the next cell and the previous cell). A privilege

token1 is passed between the cells in one direction. Once the token is inside the arbitration

cell, it can be captured by the associated client. One token in the network ensures that

only a single client can capture it, effectively resolving the 1-of-N allocation.

High-level Petri net specifications show basic behaviour of the cells (Figure 3.14).

Each cell creates an access point to one additional client, hence, the area of implementa-

tion increases linearly and N request channels can be implemented by using C(N) = N

arbitration cells. It is easy to see that the fairness is guaranteed because each resource

release always brings the token closer to each of the pending requests.

Depending on how the arbiter works, it can be regarded as “busy” or “lazy” token

ring. The busy token ring is fairly simple, each cell constantly passes the token to its next

neighbour as long as there is no associated client request. The drawback of the arbiter

is the constant activity causing dynamic power consumption while there are no active

client requests.

The lazy token rings propagate the token only when there is demand from a pending

request. The idea is that a request from a client keeps propagating through other cells

until it reaches the cell holding the token. At that point, by means of handshake commu-

1Here the “privilege token” is referred to the abstract privilege token and not necessary the Petri net token
identifying a state of the model.

42

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

g

tin

r

toutMUTEX

(a) RG busy ring with token
propagation [81]

RGD
Arbiter

r1
d1
g1

g2
d2

r2

Ru Du

Rl

Gl

Rr

Gr

Gu

DW

+

+

sel
0
1

no token
inside

(b) RGD lazy ring cell with handshake [85]

Figure 3.15: Ring implementations

nication, the request “grabs” the token and pulls it back into its own cell. Once the token

is in the cell, the resource is used until it is no longer needed. Once released, other cells

around the loop can grab it again and drag it away.

The 4-phase busy ring and the 2-phase lazy ring implementations are shown in Fig-

ure 3.15. The advantage of the first implementation is in its simplicity and low latency.

The advantage of the second circuit is the low power consumption since it does not do

anything until a client request arrives.

Each ring cell implements two channels of communication. The first channel grants

the token to the associated client, the second channel propagates the token around the

loop. The propagation around the loop can be done in two styles, either a single signal

is being pushed through all the cells and then negated as in Figure 3.15a; or an explicit

handshake (4-phase or 2-phase) can take place between the consequent arbitration cells.

As for latency estimation, the average response time is dependent on the total number

of cells and the speed at which the token is being passed from one cell to another. If the

token propagates one cell within time LCell , then in worst case it needs to pass N− 1 cells

making the overall response time linear: L(N) = LCell · (N − 1).

Finally, it should also be noted that because the token propagation on Figure 3.15a

creates slightly unbalanced chances for each of the clients. As the falling edge propaga-

tion takes roughly half the time of the full propagation cycle, clients located closer to the

43

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

r1

r2

rn

...

g1

g2

gn

...

FIFO

I/O
 in

te
rf

ac
e

R
q

m
as

k

1/
n

M
U

T
E

X

S
pa

ce
r

Figure 3.16: Ordered FIFO arbiter structure

g3

r1

g1

r2

g2

r3

D

D

D

M
U

T
E

X
 1

/3
fil

te
r

Interface
and

Rq mask Spacer n-1 FIFO

Figure 3.17: Ordered 3-way arbiter implementation

inverter will have greater chances of receiving the resource.

3.6.4 Ordered Arbiters

It was shown in previous arbiters that the order of grants for pending requests can vary

depending on implementation. The ordered arbiters proposed by A. Bystrov [12] are de-

signed to preserve the order of incoming pending requests. The basic idea is to free the

arbitration element as soon as possible, so that it arbitrates the next requests while the

resource is in use by the first client.

The storage of won arbitrations is organized through FIFO (First In First Out) com-

ponent as shown in Figure 3.16. Once the resource is released, the next client in queue

immediately receives the grant.

The three-way ordered arbiter is shown on Figure 3.17. The interface and masking

functionality is performed by the D-elements [45]. The scaling of this arbiter is quadratic

as the pipeline size is increased both in depth and in breath. The arbiter is fair because it

44

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

repeats the sequence of requests in the same order.

3.6.5 Priority Arbiters

Priority arbiters radically differ in the way they treat pending requests. Based on fixed

or dynamically set priorities, certain clients are discriminated making this arbiter delib-

erately “unfair”. Such arbiters are used in the asynchronous NoCs in order to support

prioritized traffic, which ensures the guaranteed latency for data delivery [22].

Static Priority Arbiter

The static priority arbiter, as the name suggests, uses statically set priorities in its granting

logic. Its idea was mostly developed by A. Bystrov in [11] while a variation based on

additional timing assumptions can be found in [24].

The arbiter splits the arbitration into two stages. At the first stage, it waits for one or

more requests propagating through an array of set-dominant latches (Figure 3.18). When

at least one request is present, the lock signal formed by the reset-dominant latch locks the

column of MUTEX elements inside the lock register. Then the second stage of arbitration

begins. The locked MUTEX elements form the 4-phase dual-rail input for the priority

module, where the final arbitration decision is made based on the active inputs and the

specified priorities. Three propagation scenarios are possible for the requests:

· The request has won MUTEX arbitration and is of the highest priority→ the prior-

ity module issues the grant to the corresponding output port.

· The request has won MUTEX arbitration, but there is another signal with higher

priority → the request is ignored for the time being and is reassessed at the next

arbitration.

· The request did not manage to pass the arbitration, or the client did not issue the

request → regardless of its priority, this request has no effect on the outputs until

the next transaction.

45

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

R2

G1

G3

R1

R3

G2

s

r

q

s

r

q

s

r

q

s

r

q

MUTEX

MUTEX

MUTEX

P
rio

rit
y

M

od
ul

e

Lock register

Figure 3.18: Three-way static priority arbiter

As the priority module has finished its computation, one of the grant signals is issued

and eventually the falling edge of the lock signal unlocks all of the MUTEX elements. At

this stage the arbiter will only wait and accumulate new pending requests as they arrive.

As the granted client has finished using the resource, its request signal is reset. This

also releases the priority module and results in the lock signal being unblocked for the

next arbitration transaction. If the time of using the resource is large, multiple pending

requests may occur, eventually resulting in the sequence of grants issued in order of their

priorities.

For each additional client the arbiter structure remains mostly flat with slight over-

head of the latency in the growing OR gates and the additional computational overhead

in the priority module. This makes the arbiter particularly fast and scalable when dealing

with large number of inputs.

The complexity for each new client grows linearly C(N) = N (as it was shown in [11],

the priority module is implementable as a tree with the logarithmic latency increase). It

means, that such implementation can be easily scaled and adapted to a large number of

clients.

46

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

s

r

q

MUTEX

P0<0..3>

P1<0..3>

P7<0..3>

4

4

4

Reset completion
detector

4 4

44

4 4

8

P
rio

rit
y

M

od
ul

e

8

R<0..7>

8

8

res_done

done

8s

r

q 8 8

8

Lock register

Lock

Lock

x8

x8

x8

x8

0

1

7

Figure 3.19: Eight-ways dynamic priority arbiter

Dynamic Priority Arbiter

The dynamic priority arbiter (DPA) has a similar structure to the static priority arbiter (Fig-

ure 3.19). The difference is that this arbiter uses additional data lines P0, . . . , P7 provid-

ing the priority values for each of the requests. The priority module compares these

values in order to determine the highest priority request. Hence, an arbitrary priority

function can be implemented.

The more detailed discussion of the dynamic priority arbiter can be found in [11].

However, it is worth noting that the arbiter has similar scaling characteristics with the

SPA implementation.

3.7 Multi-resource Arbiters

The concept of multi-resource arbitration assumes there are multiple resources that need

to be allocated among a number of clients. In addition to the fairness and scalability of the

multi-way arbiters, for certain multi-resource designs it makes the conflict double-sided

since each client can only be served by one resource at a time. This section considers the

47

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

designs using multi-resource allocation.

3.7.1 Multi-token Arbiters

The multi-token arbiter is needed when there is a resource supporting more than one

client at a time. The shared resource with capacity M (or M tokens) permits concurrent

use by a maximum of M clients. For instance, an arbiter managing three clients with the

capacity of two would be able to give grant signal to the first two client requests while

the third request would become pending until one of the first two clients releases the

resource. On the high-level STG diagram in Figure 3.20a this behaviour is represented

by placing M tokens into the mutual exclusion place ME. As a request is granted, it de-

creases the token count by one and when there are no tokens left, any new client requests

become pending. This is a more general example of Dijkstra’s semaphore, decreasing its

counter while value is greater than “0”.

Such a behaviour changes the concept of resource availability because more than one

client is able to use it at a time. From a practical perspective, this arbiter creates an ar-

tificial bottleneck of performance when the resource is in danger of being overloaded.

It helps balance out irregularities of the bursty request environment by spreading the

incoming load over time.

A ring-based topology can be used to construct this arbiter out of ring cells as shown

in Figure 3.20b. The movement of the token is ensured through four communication

channels. The “token in” and “token out” channels receive the tokens from previous cell

and send it to the next one. The channels “token get” and “token put” capture the tokens

for use by a client, and inject used tokens back into the loop. This arbiter is similar to the

token-ring arbiter presented before. However, because there are more than one token in

the loop, two different conflicts may occur: the conflict between the channels “token out”

and “token get” competing for the token, and the conflict between channels “token in”

and “token put” competing for the right to transmit their tokens through the “token out”

channel. The implementation shown in Figure 3.20c contains two arbiters dealing with

these conflicts.

48

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

G1+

G1-

R1+

RN-

RN+

R1-

GN+

GN-
...

M

ME

wait

signal

(a) High-level STG

R A

Rin

DG

Ain

Rout

Aout

Token
get

Token
put

Token
in

Token
out

multi-token
ring cell

(b) Multi-token arbiter cell structure

RGD

r1 d1
g1

g2
d2r2

R

A

Rin

D

G

Ain

Rout

DW

Aout

RGD

r1 d1
g1

g2
d2r2

+

+

(c) 2-phase implementation [85]

Figure 3.20: Multi-token arbiters

The arbiter is fair because each pending client request eventually receives a resource.

The latency is improved in comparison with the token-ring arbiter, as the greater num-

ber of tokens reduces the worst waiting time. The arbiter area scales linearly with the

increasing number of clients: C(N) = N.

3.7.2 Patil’s Arbiter

The problem of multi-token arbitration can be extended to the problem of multi-resource

arbiter or the tokens with identifiers. It is a problem of M-of-N arbitration with N clients,

M identifiable resources, and M × N different grant signals. It has a double-sided con-

flict, where multiple available resources mutually compete for a client, which means that

an arbitration among resources is also needed.

The solution was first found by Patil in [59] with the so called “forward acting” arbiter.

The structure of such an arbiter for 3 clients and 2 resources is presented in Figure 3.21

where the arrows connecting components are the two-way communication links. It con-

sists of two columns of arbitration logic, the first column contains M 1-of-N arbiters rep-

resenting the resources, the second column contains N 1-of-M arbiters representing the

49

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

ME
C1

C2

C3

ME

ME
C1

H11
H12

H21
H22

H31
H32

R1

R2

ME
C2

ME
C3

Figure 3.21: Multi-resource “Forward acting” arbiter

clients.

The conflict is resolved in two columns of arbitration. When a client i requests a re-

source, the client broadcasts its request to all of the resource arbiters in the first column.

Each resource arbiter correspondingly grants the request and propagates it to the next

column. If a resource is not available at this point it simply waits until it becomes avail-

able, or receives the “nack” signal from the i-th client arbiter in the next column. The i-th

client arbiter waits for the first request from the resource arbiter j, and then propagates

the “nack” response to all of the resource arbiters apart from the j-th arbiter. In the re-

source arbiter column, this “nack” signal forces “grants” for the client i and also releases

the resources for other client requests. After receiving all M requests, the client arbiter

issues a grant on the channel Hij.

The arbiter latency depends of the latency of the 1-of-N and 1-of-M arbiter cells.

Based on the experience from existing scalable arbiter implementations, it can be either

linear (as in ring arbiters) or logarithmic (as in priority arbiters). Similarly, fairness of the

arbiter is dependent on the fairness of each individual arbiter cell, which can be either

fair or priority based. The area, however, grows quadratically because M 1-of-N arbiters

and N 1-of-M arbiters in total are needed: C(N, M) = N ·M.

3.7.3 Committee arbiter

The committee arbiter described in [9, 13] is useful for solving a large variety of resource al-

location problems, including the multi-resource arbitration. Informally, the idea of com-

mittee arbitration states that there are professors organising themselves into committees.

Each professor can be a member of one or more committees and each committee is as-

sociated with one group of professors (Figure 3.22). The main condition for starting a

50

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

Committee NCommittee 1

...

Figure 3.22: Committee problem

committee meeting is the presence of all professors in the group associated with a com-

mittee. When multiple committee groups of professors are available, an arbitrary group

may start the committee meeting. Correspondingly, while the professors are occupied in

one committee, they are not available for any other committee to start.

It is possible to map existing allocation tasks to the committee arbiter. A generic 1-

of-N arbiter corresponds to a single professor that attends any of the N committees on

schedule. While the professor is busy with one committee, other committees will not

start during that time. Another example is the priority arbiter. It also features only one

professor, but the scheduled committees will be attended in order of their importance.

In the “Dining Philosophers” arbitration with 4 philosophers, there will be 4 commit-

tees (being the philosophers) and 4 professors (being the forks). Each of the scheduled

committees requires 2 professors to begin. If the event of assigning professors to a com-

mittee is not atomic, each committee may “capture” a single professor each and as a result

stall in a deadlock state (see the problem of Dining Philosophers [1]).

3.8 Conclusions

The chapter presents different arbiter implementations, starting with simple 1-of-2 arbit-

ers, fast non-scalable analogue arbiters, and progresses into more complex 1-of-N and

M-of-N allocation schemes. The order of arbitration increases the number of questions

regarding arbiter implementations. The simple two-way arbiters in general consider the

communication rules between a client and an arbiter. Multi-way arbiters retain the con-

51

CHAPTER 3. REVIEW ON ASYNCHRONOUS ARBITERS

cepts of communication protocol and add the concepts of topology, fairness and scalab-

ility, as those are the decisive factors identifying which arbiter is the best for a particular

task. Finally, a range of multi-resource arbiters was presented, demonstrating that this

allocation scheme inherits the concepts from the multi-way arbiters and also raises ad-

ditional questions about resource utilization concurrency and the double-sidedness of

the conflict, i.e., the multi-resource arbiters also need to grant resources, so that no more

than one resource is accessing a client at a time. All these questions are important when

building new arbiters, and will be considered in the next chapters. For further reading,

more information on asynchronous arbiters can be found in reviews [85, 41, 35]. Also, a

summary of various other arbiter implementations is provided later in Appendix A.

52

Chapter 4

Concurrent Multi-Resource Arbiter:

Design and Applications

4.1 Introduction

From a general point of view, there may be various situations requiring the multi-

resource arbitration. In the simple scenario resources are interchangeable and can serve

clients equally well, but the conflict of utilization is still there because there are not as

many resources as there are clients. Examples of multi-resource arbiters were mentioned

in the non-FIFO buffers [78] and the multibus solutions [54]. Instead of distributing

a single resource, the arbiter selects one of the M available resources and grants it to

one of the N clients. With more resources, more client requests can be satisfied con-

currently, which effects in improving the overall performance of a system. Some of the

resources may be released faster than others, resulting in their capture by new client re-

quests sooner, but this only means that their next service will be granted sooner and the

overall service time of each resource would still be balanced.

The view on the multi-resource arbiters can be generalized further by assuming that

the resources also actively report their availability (Figure 4.1). Every client requests

when a resource is needed, and also every resource indicates that it has become available

for clients. The distinction is made here between active and passive resources. The active

53

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

...

(Request, {Attributes}) (Available, {Attributes})

(Grant) (Grant)

...

Figure 4.1: Synopsis of an arbiter [35]

resources independently indicate availability to the arbiter. If a resource has not made a

request, it is not considered available by the arbiter and it will not be offered to the clients.

In comparison, a passive resource does not make the initial request, instead, the arbiter

assumes the resource is available when it is not in use by any of the clients. However, in

this case, there may still be an additional handshake occurring between the arbiter and

the resource to check the moment when the resource is ready (e.g. the tree arbiter cell).

Active resource solutions may be useful when the readiness of a resource may be

postponed indefinitely after being released by a client. For example, this can occur

if a resource is damaged or turned off to save power. For the damaged resource, all

healthy resources can act as the “spare parts”, while switching off resources allows trad-

ing performance over power consumption. Yet another example of the active resource

is a “product producer”, where consumption of its previous product (e.g. a result of a

computation) does not imply the readiness of the next product.

The active resource arbiter problem can also be mapped to the so called committee

arbiter [13]. There are committees that can be started by certain defined groups of pro-

fessors. The restrictions are as follows: (1) a committee can start only when all of the

professors are available, (2) Each professor can be engaged in not more than one commit-

tee at a time. When mapped to active resources, there will be N + M professors arranging

committees in pairs. In each pair, one professor must come from the group of N and the

other from the group of M.

Multiple solutions for the committee arbiter were proposed in [9], which are based on

the CSP 2-phase model specifications. This arbitration problem can also be interpreted

54

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

for our case when the initial requests are considered to be the professors and the granted

pairing is the starting event of a committee. The solutions provided in [9] use either expli-

cit or implicit polling mechanisms and/or multi-way arbiters based on 2-phase signalling

and as a result lead to slower and larger hardware implementations.

This chapter presents the hardware design of asynchronous active multi-resource ar-

biters, that accept requests from both the client and the resource sides. The arbiter design

is the speed-independent implementation based on 4-phase handshakes. First, the solu-

tion is provided for simple 2× 2 arbitration, then multiple scalable N × M implement-

ations are presented. The performance of the arbiter is estimated with transistor-level

analogue simulations. The ability to activate concurrent utilization is important and is

ensured to secure a better circuit performance when a single resource utilization time

is sufficiently large. The implementation is formally verified to be Speed-Independent

making it a more reliable circuit.

4.2 Design Method

Currently, asynchronous arbiter design is not fully supported by existing synthesis tools

such as Petrify [4]. But traditionally an arbitration conflict is resolved by outlining critical

section boundaries and using MUTEX elements in combination with supporting circuitry

to manage requests entering and exiting these critical sections.

In this chapter the STG-based workflow is used, where the arbiter is initially specified

by an STG, which is a convenient modelling formalism supporting concurrency and mu-

tually exclusive events.

Figure 4.2 shows the design flow. First, a high-level STG specification is formed. It

depicts the desired behaviour of the arbiter in an abstract way without specifying the

details of how the conflicts are resolved.

Then, during the factoring phase one or more MUTEX element STGs are added to

the model in such a way that the arbitration conflicts disappear from the original STG

and only occur inside the inserted MUTEX element STGs. The result is a refined STG,

where the MUTEX elements are modelled and factored out as a part of environment. This

55

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

STG
Specification

Factoring

Synthesis

Decomposition

not
automated

Petrify,
partially

automated

Implementation
(Simple gates)

Refined
STG

Boolean
Equations

Verification

Report

Verification

Report

Petrify

Punf, MPSat

Punf, MPSat

Figure 4.2: Arbiter design flow

STG can be verified for deadlocks, hazards, as well as other model states representing

wanted or unwanted behaviour. If an error is found at this stage, it needs to be fixed

before proceeding to the next flow phase.

The refined STG is synthesized with Petrify. The tool produces the implementation in

Boolean equations and is also capable of decomposing the circuit into simpler logic gates.

This approach is useful when no particular structure is required. The semi-automated de-

composition (through experimentation) may also help to find a structurally divided im-

plementation, which is helpful for searching scalable design implementations.

At the end, the verification procedure is launched again to make sure the circuit works

as expected and no hazards were introduced.

4.3 2× 2 Arbiter Design

4.3.1 Functionality

Structurally, an active resource arbiter is symmetric from both sides with the same com-

munication interface. Its task can be rephrased as the activation of available pairings

between left and right neighbouring circuits effectively pairing outstanding requests

from the opposite sides (Figure 4.3). All clients and resources actively participate by

issuing requests (clients request when they need a resource and resources make requests

56

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

C1g

C2r

R1g

R2g

C1r

C2g

R1r

R2r

H11 H21

H12 H22

H11

H22

H21
H12

C1

C2

R1

R2

Figure 4.3: 2× 2 arbiter interface

to inform the arbiter about their availability). The communication is organized in 4-

phase handshakes where each client (and resource) releases the pairing by deactivating

its request signal. The arbiter acknowledges each request with its associated grant signal.

According to the protocol, the requester is only allowed to make a new transition after its

previous transition has been acknowledged.

A pairing is possible when at least one resource and at least one client have made

their requests. It forces the arbiter to activate the corresponding pairing and acknowledge

the corresponding client and resource pair by issuing grants on both sides. Each client-

resource pairing is identified by one of the complementary signals H11, H12, H21, H22

which can be used on both sides in combination with the grant signals. For instance,

the signal H12 will signify a pairing of the client C1 and the resource R2. For the 2× 2

case there are four different pairings in total. The removal of the requests will eventually

result in the arbiter deactivating the pairing as well.

The grant signal issued by the arbiter is persistent. The arbiter waits until both sides

remove their requests, and only then simultaneously removes their grants.

The basic model of the arbiter is presented in Figure 4.4. The red (input) transitions

represent the environment and the blue (output) transitions represent the outputs from

the arbiter. The initial token placement enables request transitions from both sides. As

shown in the diagram, places p1, . . . , p4 render neighbouring pairings to be mutually

exclusive. If client C1 is paired with R1, the pairing H11 takes away tokens from p1 and

p2, effectively disabling H12 and H21. Pairings in the opposite corners do not share a

57

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

C2g-

R2r-C1r+

R2g+

R2r+

C1g-

C2r-C2g+

H22+

H21-

H12+

C1g+

R2r-

R1g+

C2g+

R1g+

C1g-

R1r-

R1g-

H21+

R1g-

H22-

C1r-

R2g-

H12-

R1r-

C2r-

C1r-

H11-

R2g-

R2g+

H11+

C2g-

C2r+

R1r+

C1g+

p1

p4

p3

p2

Figure 4.4: 2× 2 arbiter STG

common place, and, according to the STG, can be activated concurrently.

It is important that the circuit does not prevent the non-conflicting pairings. When all

four requests come at the same time, the arbiter makes a decision and connects requests

by activating either H11 and H22 forming parallel connections or H12 and H21 forming

the over-crossing connections (Figure 4.3).

To summarize, the arbiter functionality is shown in the following steps:

1. Any of the request lines are allowed to activate at any time. The arbiter waits until

at least one pair of requests can be matched;

2. When a new pairing is possible, the arbiter activates it with one of the H signals

and confirms requests with corresponding grant signals on the client and resource sides;

3. If all four requests arrive at the same time, the arbiter chooses to activate either H11

and H22 or H12 and H21;

4. When there are three requests active, only one pair will be formed and the unpaired

request (either resource or client) will wait to be matched afterwards;

5. When both requests of a pairing are released, the pairing signal is released as well,

which is subsequently acknowledged on the grant signal lines.

58

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

4.3.2 Resolving the Conflict

The STG in Figure 4.4 contains 8 conflicts (4 conflict pairs): H11←→ H12, H11←→ H21,

H22 ←→ H12, and H22 ←→ H21. It is not clear how such a complex conflict set can

be resolved in the analogue circuit domain. It is also known from the literature [35, 10]

that building an arbitration structure more complex than a simple MUTEX element at

the transistor level is problematic because such structures may be prone to oscillatory

behaviour and pose additional challenges in the fabrication process. Hence, the aim here

is to create an architecture for resolving this resource allocation task by means of MUTEX

elements used as basic arbitration components.

It is possible to resolve the 2× 2 conflict by reducing concurrency of the requesting

parties. If client requests C1r, C2r are exclusive and resource requests R1r, R2r are ex-

clusive, then only one pairing can be activated at a time. To constrain the concurrency

of the requests, places p5 and p6 are introduced as shown in Figure 4.5. This modifica-

tion places pairing signals H11+, . . . , H22 into a critical section where conflicting pairing

signals are never enabled at the same time. After firing, these events immediately return

tokens to p5 and p6 to allow the next pairing to commence.

The state graph produced from the STG diagram in Figure 4.5 shows that the concur-

rent pairings are still possible although the activation of the pairings was made sequen-

tial (Figure 4.6).

Because the signals C1r, C2r, R1r, R2r are inputs of the arbiter (Figure 4.5), the addi-

tional restrictions such as mutual exclusiveness cannot be enforced without affecting the

behaviour of the circuit environment (Figure 4.4). Hence, new internal signals must be in-

troduced, which would simulate the environment requests while supporting the desired

behaviour of exclusiveness.

The exclusiveness of the environment requests can be ensured by introducing MU-

TEX elements as in Figure 4.7. The path from the request transition C1r+ to the place

p1 now also contains transitions rc1+ → gc1+, which implies MUTEX arbitration. Sim-

ilarly, all of the pairings are now activated through the arbitration of MUTEX STGs in-

corporated into the model (ignore the dashed arcs at this point). The local request trans-

59

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

C2r+

R1r-

R2r-

H22-

H11-

C1r+

R2g-

R1r+

R1g+

R1g-

C2g+

C1g+

R1g+

C2g-

C1r-

C1g-

H11+

R2r+

H12-

R2r-

C2r-

C1g+

R2g+

R2g-

H21+

C2g+

C1g-

H12+

R1g-

C2r-

R2g+

C1r-

H21-

R1r-

H22+

C2g-

p1

p4

p3

p2

p5

p6

Figure 4.5: Additional exclusion places added

itions rc1+, . . . , rr2+ receive requests from the environment and propagate them to the

MUTEX component. The local grant transitions gc1+, . . . , gr2+ implement the constraint

of mutual exclusiveness and forward the environment requests to the pairing activation

events H11+, . . . , H22+. While the MUTEX components work independently, their com-

bination ensures that there are no more than two tokens in the places activating the pair-

ings. This ensures that no more than one pairing activation will happen at any time,

thus resolving the conflict completely (no additional arbitration is needed). Right after

the first pairing has been activated, the MUTEX request signals are released, enabling the

subsequent activation of the second pairing in the opposite corner if the requisite requests

were asserted.

In the STG with MUTEXes, there is a complete state coding conflict [19]. Consider the

trace: C1r+ → rc1+ → gc1+. In this state only the signals C1r, rc1, gc1 will evaluate

to 1. The rc1− is not allowed to fire yet, it waits for H11+ or H12+ to fire first. Then,

if transition rc1− is sufficiently slow, the events may produce the trace R1r+ → · · · →

60

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

+C1r

+C2r
+R1r

+R2r
+R1r

+R2r

+R1r
+R2r

+C1r

+C2r

+C1r

+C2r

+H11

+H12

+H21
+H22

+C2r

+R2r

+C2r +R1r

+C1r

+R2r

+C1r

+R1r

+R2r+C2r

+R1r +C2r

+R2r

+C1r

+R1r

+C1r
+H22

+H21+H12

+H11

Initial
state

Concurrent
pairings

Concurrent
pairings

Figure 4.6: State graph of the modified STG

H11+ → · · · → H11− → R1g− → C1g− → C1r+. After this trace, again, only the

signals C1r, rc1, gc1 will evaluate to 1, but there will still be a token between gc1+ and

rc1−. Therefore two different states have the same code. Because of this ambiguity, the

signal rc1 cannot be synthesized.

This diagram can be refined by adding the dashed arcs (Figure 4.7). This concurrency

reduction will not affect circuit performance because the events releasing the initial re-

quests C1r−, . . . are likely to happen after the release of the MUTEX elements rc1−,

The new arcs introduced will effectively resolve all the complete state coding conflicts.

If the STG model (Figure 4.7) is processed with Petrify [4], the following output is

synthesized:

C1g = H11 + H12 C2g = H21 + H22

R1g = H11 + H21 R2g = H12 + H22

61

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

R1r-

H11-
C1g-

R1g+

H12+
R1g+

rc1+

H21+
R2r+

rc2-

rr2+

rc1-

C1g+ C1r-

C1g-

R1r- R2r-

gr2-

C2r- C2g+

H22+

C2r+
C2g+

gc2+

R1g-

R2g-

gr1-

rr1-

gc1+

rc2+

H22-

R2g+

C2g-

C1g+

R2g-

gr2+

gc1-

R1r+

C2r-

H21-

gc2-

H11+

gr1+

C1r-
R2r-

C2g-

rr2-

H12-

R2g+

C1r+

R1g-

rr1+

p1

p2

p3

p4

p5

p6

Figure 4.7: STG with MUTEX elements

H11 = gc1 · gr1 · H12 · H21

+H11 · (gc1 + gr1 + C1r + R1r)

H12 = gc1 · gr2 · H11 · H22

+H12 · (gc1 + gr2 + C1r + R2r)

H21 = gc2 · gr1 · H11 · H22

+H21 · (gc2 + gr1 + C2r + R1r)

H22 = gc2 · gr2 · H12 · H21

+H22 · (gc2 + gr2 + C2r + R2r)

rc1 = H12 · H11 · C1r rc2 = H22 · H21 · C2r

rr1 = H21 · H11 · R1r rr2 = H22 · H12 · R2r

The equations H11, . . . , H22 represent 6-input gates with memory and need to be

62

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

decomposed into smaller gates. If decomposed with Petrify, each of the pairing signals

will be formed of two 5-input gates:

[2] = gc1 · (H12 · H21 · gr1 + H11)

H11 = H11 · (gr1 + R1r + C1r) + [2]

[4] = gc1 · (H11 · H22 · gr2 + H12)

H12 = H12 · (gr2 + R2r + C1r) + [4]

[6] = gc2 · (H11 · H22 · gr1 + H21)

H21 = H21 · (gr1 + R1r + C2r) + [6]

[8] = gc2 · (H12 · gr2 · H21 + H22)

H22 = H22 · (gr2 + C2r + R2r) + [8]

The decomposition is correct and is one way to implement these signals. From the

equations above one can see the conditions for the set and reset events. Each pairing

is only set when both local requests arrive and none of the conflicting pairings is active.

The reset of the pairing is only allowed when both of the associated requests are reset and

the local grant signals released. Based on this knowledge, it is possible to find another

structurally better organised decomposition.

4.3.3 Implementation

Arbiter Structure

The structure is presented in Figure 4.8. By introducing new internal pairing signals h11,

h12, h21, h22 it is possible to subdivide the implementation of signals H11, H12, H21,

H22 into the grant controller and the request controller parts, which splits arbitration into

two simpler problems.

Each of the requests from either client or resource side can arrive at any moment. Sup-

pose client C1 has issued a request C1r+. The signal first propagates through the request

mask: rc1+ and then is arbitrated with the neighbouring request from C2 (Figure 4.9a).

Both MUTEX elements ensure there are at most one client and one resource entering the

request controller part. The conflict is completely resolved for all request combinations,

even when all clients and all resources issue requests at the same time.

63

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

R
eq

ue
st

 m
as

k

Request
controller

Grant controller

H11

H12

H21

H22

C1r

C2r

R1r

R2r

C1g

C2g

R1g

R2g

ME

ME

h11 h12 h21 h22

gc1

gc2

gr1

gr2

rc1

rc2

rr1

rr2

Figure 4.8: Arbiter structure

C C

C C

+ +

+ +

ME
gc1

gc2

ME
gr1

gr2

H11
H12

H21
H22

H11
H21

H12
H22

C
C

C
C

H11 H21

H12 H22

C1r

C2r

R1r

R2r

C1g

C2g

R1g

R2g

h11 h21

h12 h22

(a) Implementation schematics

C1g

C2g

R1g

R2g

C1r

C2r

R1r

R2r

H11 H21

H12 H22

2x2
Arbiter

MUX

MUX

C1d

C2d

C1d

C2d

R1d

R2d

(b) Usage example

Figure 4.9: 2× 2 arbiter implementation

Suppose eventually client C1 and resource R1 issue requests C1r+, R1r+ (Fig-

ure 4.9a). The requests propagate through the request mask: rc1+,rr1+. Then they

propagate through MUTEXes and win the arbitration: gc1+, gr1+. The local grants gc1+

and gr1+ eventually activate the pairing H11+ and the grant controller activates the ar-

biter grant signals: C1g+, R1g+. The request mask consisting of a column of 2-input

AND gates hides the initial requests: rc1− and gr1− which in turn release both MUTEX

elements and allows new requests to propagate into the request controller part. The mask

is manipulated by the arbiter grant signals C1g and R1g. So, when the client or resource

request is removed, its corresponding grant signal will also be deactivated, which in turn

64

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

would open the mask for new requests.

Request Controller

The speed-independent implementation of the request controller consists of four asym-

metric C-elements producing the pairing request signals h11, . . . , h22. It asserts the pair-

ing request (i.e., changes one of its outputs from 0 to 1) when a pair of local grant signals

arrives. Later, when both local grants are removed, the pairing request signal is also

removed (i.e., changes from 1 to 0).

Because the request masks may release the left and right MUTEX elements at different

times, there may be a situation when a new local grant has propagated through one

MUTEX element with the other MUTEX still holding the old local grant value. This

situation could trigger the activation of the pairing in conflict with the one that had been

activated. To prevent this from happening, each of the asymmetric elements receives

dedicated block signals from each of the conflicting pairings.

Grant Controller

The grant controller consists of four 2-input C-elements and four 2-input OR gates. It is

activated by the request controller and is responsible for keeping the request active while

either of the sides still needs it. While the pairing activation is sequential, the pairing

release phase is fully concurrent.

Each pairing is activated by synchronising the requests from the associated parti-

cipants and the selection of the request controller. The activated pairing then propagates

through the OR gates to deliver the grant signal to the original requesters. The pairing

signals can be used to select the required data propagation path as shown in Figure 4.9b,

which is then followed by the outgoing grant signal to activate the corresponding client

and resource.

65

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

4.3.4 Verification of the Circuit

The original Petrify synthesis result is expected to be speed-independent with all the safety

properties this implies. However, the decomposition needs to be verified because it was

derived through intuition.

The circuit can be formally verified with command line tools Punf, Mpsat [5, 33] and

Workcraft integrated environment as described in [65]. First, the gate-level model of the

circuit is created in Workcraft. By using the inbuilt functionality of the tool, it is auto-

matically converted into its STG equivalent (the so called circuit Petri net). Such a model

defines the causality of its outputs. However, it does not have information about the in-

put transitions, which is defined in a separate interface STG (also called the environment

model of the circuit). The environment model that defines the behaviour of all inputs is

derived from the initial STG model shown in Figure 4.4. Then the circuit Petri net, com-

bined with the environment model, is processed with Mpsat in collaboration with Punf

to verify whether the circuit has states producing hazards [65].

The implementation of the circuit was verified using the method described above.

The output of Mpsat confirmed that there are no reachable states present in the initial

STG (Figure 4.4) where one of the signals disables the activation of the others regardless

of the speed of each circuit gate. It was also checked that the states activating concurrent

non-conflicting pairings (H11 and H22 or H12 and H21) are reachable and there are no

reachable states activating the pairings in conflict.

4.3.5 Latency Estimation

The arbiter performance can be estimated based on the average time that passes from the

moment of the initial request to the moment the circuit grants the pair and propagates

this grant to the corresponding client and resource. The circuit response latency depends

on the request arrival from both sides. Therefore, it is reasonable to estimate the latency

starting from the point when both (one client and one resource) requests have arrived.

The first pairing latency is counted from the moment when at least one pair of re-

quests has arrived, to the moment when one of the pairings have been activated (and the

66

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

Mask (rc1+)
MUTEX (gc1+)

C-element (h11-)
C-el. (H11+)

OR (C1g+)
Mask (rc1-)

MUTEX (gc1-)

C1r

C2r

C1g

C2g

Critical sec.

MUTEX (gc2+)

...

...

client 1
starts using
the channel

client 2
starts using
the channel

Figure 4.10: Timing diagram

consequent grant signal was send to the client and the resource). Similarly, the second

pairing latency is counted starting from the moment the second pair of requests has ar-

rived. If there is no metastability, the latency for the first pairing is always the same. The

second pairing latency depends on whether the circuit is occupied activating the first

pairing. The worst latency occurs when all requests arrive at the same time. In this case,

the circuit has to activate the first pairing before it processes the second one.

Consider the timing diagram of the 2× 2 circuit (Figure 4.10). The figure depicts the

situation when all four requests have arrived simultaneously (only the client side signals

are shown). For simplicity assume that all gate delays are the same for each gate and

there is no additional delay due to metastability in the MUTEX elements. As shown

on the diagram, both requests propagate through the request mask simultaneously and

arrive into the corresponding MUTEX. Once one of the requests passes the MUTEX cell,

the circuit enters its critical section and the other request must wait till the MUTEX is

released. In our example C1r wins the MUTEX arbitration and receives the pairing first,

thus having a better response time. The second client waits until the MUTEX is freed by

the request mask, which happens right after the second C-element activates the pairing

H11. The critical section introduces six gate delays making the response time for the

second pairing a constant eleven gate delays. This latency is not related to how long

client 1 occupies the allocated resource, which may be of a variable and significant length.

This reduction of the critical section to a length not related to the environment is obtained

with the internal parallelism of the arbiter.

67

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

Table 4.1: 2× 2 performance estimation in Spectre

C1r C2r R1r R2r C1g C2g R1g R2g 1st lat. 2nd lat. 2nd−1st mW

1 100 — 100 — 479 — 487 — 387 — — 0.4

2 100 105 100 105 517 938 526 947 426 842 416 0.59

3 100 101 100 101 540 960 549 969 449 868 419 0.58

4 100 300 300 200 579 999 990 570 379 699 320 0.47

5 700 100 700 200 1076 576 1085 585 385 385 0 0.4

4.3.6 Simulation in Spectre

The circuit was modelled with Spectre (Cadence analogue analysis tool) in a 90nm tech-

nology library with balanced transistor widths ranging from 500nm to 6µm. The rising

and falling edges of any of the inputs is set to 50 picoseconds and the supply voltage is 1

Volt. One fan-out of 4 inverters delay (FO4 delay) is measured to be 25ps. No wire delay

was included in the model. All of the measurements are taken when the signal value

passes the 0.5V voltage level.

The circuit response latency is estimated in Table 4.1. The first group of columns

(from C1r to R2r) shows the absolute timing of the arriving signals (all latency numbers

are shown in picoseconds). The next group shows response times for each signal. The

following two column groups show the time that has passed since the moment the re-

quest was initiated (when both a client and a resource arrive and the circuit actually can

respond with at least one pairing activation).

The response latency for the first example can be estimated as the distance between

the request pair arrival (C1r, C2r) which is 100ps and the last grant signal: 487− 100 =

387ps.

In the second and third examples requests arrive within 5 and 1 picoseconds thus

creating a metastability overhead and increasing the absolute response latency for both

pairings. The second pairing is delayed by the first one. It is waiting for the first grant

signal to mask the initial request and release MUTEX element, consequently activating

the second pairing. After the first pairing was resolved, the additional latency is determ-

inistic and is capped at around 420ps.

In the fourth example, the requests for the second pairing (H21) arrive 100 pico-

68

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

seconds after the requests for H12. The arbiter is still busy with the first pair of requests;

however, the second pair needs to wait 100 picoseconds less. This is because the second

pair of requests arrived after the first pairing was well into its activation.

Finally, in the last example requests arrive at such timings that the pairing activation

times do not overlap. In this case, the second pairing is activated with the same latency

as the first one.

4.3.7 Cost of the Parallelism

Because the implementation of concurrent requests requires additional logic, it is inter-

esting to find out the latency behaviour of fully sequential solutions.

For the sequential implementation there is no need for the request masks and heavy

2-input C-elements. The internal pairing signals will produce pairing activation signals

(H11, H12, H21, H22). Also, the negative logic optimisation can be applied. The OR

gates formerly collecting the H signals can now be changed to NAND’s. The simulation

has shown significant improvement of the activation time, shrinking the latency to just

150ps. However, the worst case waiting for the second pairing now also depends on

the utilization time of the first pairing and the deactivation time (the unlocking of the

MUTEX element).

Assume initial requests arrive as in the second test case from Table 4.1. The first pair-

ing is granted at 189ps, at which point the requests for the first pairing begin to withdraw.

Finally, the grant of the second pairing arrives at 524ps. This result is 842− 524 = 318ps

better than it is in the concurrent model. It means that in the current setup, if the pairing

is used for less than 300ps, the feature of opening the second pairing concurrently is not

justified and a simpler circuit could effectively provide the same basic functionality.

4.4 Extending up to N ×M Arbiters

In the general problem statement, the arbiter needs to support N clients and M resources.

A rectangular grid of tiles can be used to implement the functionality of C-elements in the

original design in Figure 4.9a. This regularity helps to enhance the layout and scalability

69

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

!

!

H22

3-
in

pu
t a

rb
ite

r

4-input arbiter

c1g c2g c3g c4g

r1g

r2g

r3g

C1g C2g C3g C4g

R1g

R2g

R3g

R1g

R2g

R3g

C1g C2g C3g C4g

C1r C2r C3r C4r

R1r

R2r

R3r

Figure 4.11: 4× 3 arbiter implementation (shows active requests on r2g and c2g)

of the design.

An example of a layout for 4 clients and 3 resources is given in Figure 4.11. The

internal resource grants r1g, r2g, r3g and client grants c1g, c2g, c3g, c4g form three rows

and four columns of the grid. Similarly to the 2× 2 arbiter all the conflicting pairings need

to be disabled before the new requests propagate through the M- and N-input arbiters. In

particular, the pairing row needs to be disabled before new client and resource requests

propagate through the local arbiters. As it can be seen from the figure, there are N + M−

2 conflicting pairings (or tiles) for each H tile.

If the structure of the 2 × 2 arbiter (Figure 4.9a) is to be directly used, for the 4 ×

3 arbiter this would require 7-input asymmetric C-elements, which is not practical for

increasing N and M.

Another problem with directly extending the solution in Figure 4.9a to N ×M tiles is

the fact that this solution is not based on true tiles [72]. With increasing N and M, each tile

needs to maintain its interface by adding new inter-tile wires (new input wires for each

additional pairing in conflict). A truly scalable solution should employ true tiles that do

not change shape with the size of the grid and have a constant number of inter-tile wires

that does not increase with the size of the grid. With these, a change of N or M will result

in the simple addition or removal of rows or columns of tiles.

In order to achieve this, an explicit blocking mechanism may be developed that would

disable all the conflicting pairings before the pairing activation signal H is raised. This is

described in the following sections.

70

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

!

!

H22

3-
in

pu
t a

rb
ite

r

4-input arbiter

c1g c2g c3g c4g

r1g

r2g

r3g

br1

br2!

br3

bc1 bc2! bc3 bc4

Figure 4.12: Arbiter with blocking tiles

4.4.1 Column/row Blocking

The explicit blocking can use additional specialised “blocking tiles” associated with each

column and row (Figure 4.12). Each of the blocking tiles is simply a tree of OR gates

broadcasting the block signal when one of the associated tiles was chosen for a new pair-

ing. Under the assumption of speed-independence, where wire forks are isochronous

blocking all of the conflicting tiles simultaneously.

At first, two requests propagate over one column and one row. The tile that receives

both requests acknowledges itself as the chosen pairing with x+ and sends two requests

on its column and row block tiles (Figure 4.13). As a result, the whole column and row

become blocked for new requests (bci+, bri+). The tile chosen understands that because

it also receives the same block signals. Consequently, it activates its h signal: h+ and

waits until both requests cg and rg are withdrawn. The blocks are released (bci−,bri−)

only after both old requests were removed (cg−, rg−). Hence, there is no risk of a wrong

tile being activated.

Since both cg+ and rg+ signals are going to propagate to all tiles in a certain row

and column, there will be tiles that receive only one request signal placing a token in

either p1 or p2 (Figure 4.13). To ensure the 1-safeness of the net, one of the events (either

bri+ or bci+) will remove this token from the place preceding x+. The signal sequences

cg+ → bci+ → cg− → bci− and rg+ → bri+ → rg− → bri− correspond to the

communication inside the disabled tiles. It is important that the disabled tile never reacts

71

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

bri+

bci-

bri+

x-

h+

bri-

bro+

bco-

bci-

bro-

bci+

rg-

h-

rg+

cg-

cg-

bri-

cg+

rg-

x+

bci+

bco+

p1

p2

Figure 4.13: Column/row block tile STG

with h+ which is ensured in the given STG.

An implementation of the H tile (as found by Petrify) is shown in Figure 4.14. The

signals bci are obtained by OR-ing all bco from each H tile on the pairing column. Sym-

metrically, the bri input is obtained by OR-ing bro from each tile of the row. The arrival of

bci+ and bri+ eventually activates h+ and disables all of the conflicting pairings. Because

of the existence of dedicated row/column blocking tiles, the gates dealing with blocking

and unblocking within the H tile are greatly simplified and the large fan-in problem does

not occur.

The shortcomings of using blocking tiles is that the isochronic forks of the scaled

N and M may be increasingly difficult to satisfy. So, an alternative implementation is

considered in the next section.

72

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

rg

bci

cg

bco

bri

bro

C+

h

C

x

bco

bro

propagate
row block

propagate
column block

Figure 4.14: Tile implementation for the C/R blocks

4.4.2 Ring-based Blocking

Instead of attempting fully concurrent blocking/unblocking broadcasts resulting in the

fan-out overhead, the blocking and unblocking can be organised to happen sequentially

along a row or a column travelling through all tiles in a ring fashion. These blocking

rings would together form a torus network of tiles. The behaviour of such a tile is defined

in Figure 4.15. Now, for the tiles that do not participate in pairing, the input block signals

bci+ or bri+ are always followed by reaction of a tile: bco+ or bro+.

The implementation synthesized by Petrify from Figure 4.15 is presented in Fig-

ure 4.16.

Initially, the output of gate 3 is high and all other outputs are low. When a high input

arrives on rg and cg, it affects gate 6 and consequently gate 4 (which is the internal x

signal in the STG). The circuit is in the state to block the conflicting pairings. The signal

on gate 4 enables gates 2 and 5 to produce outputs on bco and bro and disable gate 6 via

gate 5. Finally, bro and bco would eventually produce inputs on bri and bci which would

be a sufficient condition to produce the high output on h. The reset phase on signals rg

and cg would first disable gate 3 (the output of gate 4 is active). This would disable the

C-element and the output signals on bco and bro unblocking the row and the column. As

soon as both the column and the row are unblocked, the output on h will go low.

73

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

bro+

rg-

bci+

bro-

bci-

bco-

bco+ bri+cg+

bci+

bco-

bri-

bri+

bci-

rg+

bro-

bri-

bco+

h-

h+

bro+

cg-

rg-

cg-

x+

x-

Figure 4.15: Ring-based tile STG

rg

h

bcicg

bco

bri bro

6

3 4

2

5

1

x

h

Rr Cr

H

7

rg8

Figure 4.16: Tile implementing ring-based approach

74

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

This tile implementation is speed-independent, and the inter-tile blocking and un-

blocking connections are delay-insensitive because the blocking and unblocking signals

are monotonic and the logic along the blocking/unblocking path is fully combinator-

ial with no forks on outputs. This means that the overall system is speed-independent

within tiles of relatively compact size and along longer connections it is delay-insensitive.

4.4.3 Latency Estimation

One disadvantage of the N×M arbiter is the quadratic growth of the worst case response

latency. The worst delay happens when all of the requests on both sides arrive at once, it

can be estimated as: L(N, M) = (min(N, M)− 1) · δ, where δ is the time needed to activ-

ate one pairing. Note that δ also grows with the increased N and M. For the column/row

block it is logarithmic: δcr = log(max(N, M)); and for the ring-based block it is linear:

δring = max(N, M). This renders the design impractical for the increasing N and M and

more efficient methods need to be considered.

An alternative approach would be to use a dedicated lock signal taking a snapshot

of currently active requests [11, 72]. The lock mechanism formed by a column of the

MUTEX elements allows the granting of all the pairings concurrently, thus reducing the

circuit response latency. The implementation and the comparison of this approach is the

subject for further research.

4.4.4 Simulation in Spectre

The model of the 4× 3 arbiter was simulated in Spectre with a setup similar to the 2× 2

arbiter. The circuit connects 4 clients with 3 resources and can produce up to 3 concurrent

pairings out of 12 possibilities. Table 4.2 presents latency estimation for various request

arrival times. The internal arbiters are basic 3- and 4-input mesh-based ones found in [35].

Their behaviour may not be completely fair regarding the actual arrival times of requests

due to their topological asymmetry. As a result, there is a slight variation in the additional

critical cycle delay depending on which request pair arrives first.

The first three examples show latencies for three pairs of requests. Examples 4 and 5

75

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

Table 4.2: 4× 3 performance estimation in Spectre

C1r C2r C3r C4r R1r R2r R3r 1st lat. 2nd lat. 3rd lat. Overh. mW

1 25 — — — 25 — — 509 — — — 1.17

2 — 25 — — — 25 — 517 — — — 1.17

3 — — 25 — — — 25 510 — — — 1.16

4 25 30 35 40 25 30 35 556 1138 1710 572,582 1.65

5 25 26 27 28 25 26 27 562 1144 1714 570,582 1.82

6 25 125 225 325 25 125 225 508 1037 1521 529,484 1.78

7 25 325 625 925 25 325 625 509 826 1111 317,285 1.77

8 25 725 1425 2125 25 725 1425 509 516 510 — 1.59

demonstrate the maximum latency overhead along with the metastability due to simul-

taneous request arrival.

In conclusion, the response latency for each pair of the requests (when there is no

conflict) is roughly the same and equates to the critical section delay δ of the circuit (which

in this case is approximately δ ≈ 510ps). The probability that there would be a conflict

between two request pairs solely depends on their rate. With an increasing number of

resources and clients and the rate of requests, the probability of clashing pairs would

increase, which is another reason why this design does not scale well.

4.4.5 Fairness of the Arbiter

It is easy to see that the fairness of the N × M arbiter is dependent on the fairness of

its internal arbiters used to select pairings. The fair internal arbiter would ensure fair

selection of resource or client; however, depending on the design needs, the client or

resource or both can be made prioritised.

4.5 Multi-resource Arbiter for Passive Resources

4.5.1 Task Specification

In the remaining part of the chapter multiple examples of arbiter usage in practice are

presented.

The first example presents creating multi-resource arbiter for passive resources. For a

76

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

request

resource
ID

using
resource

release

1

2

3

4
ack

release
5

Figure 4.17: Asymmetric multi-resource arbiter structure

given client request, the arbiter would return the available resource and it would make

sure that not more than one client is receiving the same resource (Figure 4.17). After the

resource is no longer required, the client needs to inform the arbiter that it is releasing

the resource, so that the resource would become available to other clients. Depending on

the protocol, an explicit signal could acknowledge the client that the resource had been

released.

The implementation is based on the idea of multi-token ring arbiters presented in [85].

The token ring would consist of a certain number of separate cells, each cell connecting

to one client and two neighbouring cells (Figure 4.18). The tokens propagating inside the

ring are considered as available resources and can be captured by clients when they need

resources and later inserted back into the ring.

The model of such a cell is similar to the 2× 2 arbiter in Figure 4.9a. The former client

side requests C1 and C2 correspond to the propagation channels “Token put” (releas-

ing the token back into the loop) and “Token in” (delivering token from the left neigh-

bour). Correspondingly, the channels “Token get” (capturing the token for the client)

and “Token out” (delivering the token to the right ring cell) correspond to the resource

side requests R1 and R2, so the pairings are now formed between the token propagation

channels.

The token events are asynchronous and can happen at any moment on any channel.

77

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

Token
in

Token
out

Token
get

Token
put

2x2 ring cell

left
neighbour

cell

right
neighbour

cell

interface with the client

H21H12

H22

Figure 4.18: Busy token ring cell

The exception is the concurrent propagation on “Token put” and “Token get” because

normally a client would not try to get and put the token at the same time. This leaves

only three different token propagation scenarios. Firstly, the token can propagate through

the cell from the left to the right neighbour (pairing H22 in the initial design). Secondly,

it can be captured by the client, connecting channels “Token in” and “Token get”, which

would be the pairing H21. And finally, the token can be released by connecting channels

“Token put” and “Token out”, the pairing H12. H11 is not needed any more, which

simplifies the circuit design. It means there would be no simultaneous transfer for H11

and H22. In addition, since the client either takes a token or puts it back into the system,

there would be no simultaneous transfer for H12 and H21. This leads to a simplified STG

diagram (Figure 4.19).

The analysis of the diagram shows that there are no pairs of conflicts: H22 ←→ H12

and H22 ←→ H21. The environment makes a choice on either to get the token from the

loop (Tgr+) or put it back (Tpr+) and there are at most three requests activating at a

time.

4.5.2 Implementation of the Ring Cell

The cell can be implemented fully sequentially. First of all, the absence of concurrent

transfers removes the need for the gates masking initial requests. Additionally, because

there are no concurrent transfers, there is no need for C-elements forming the grant con-

troller, as it can be done by using just the internal asynchronous C-elements forming the

request controller in the initial design. Additionally, the pairing H11 is not needed and

can be removed. The pairings still need to be blocked by conflicting pairings in order

for the circuit to work, because, according to the protocol, before the arbiter activates a

78

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

H21-

Tpr-

Tgr-

Tog+

Tog-

Tig+

H21+Tgg-

Tig-

Tog-

Tir+

Tig-

Tgr+

Tpr+

H12-

Tpg+

Tir-

Tor-

Tir-

Tor-

Tgg+

Tor+

H22+

H12+

H22-

Tig+

Tpg-

Tog+

Figure 4.19: The STG of a ring cell

Tpr

Tgr

Tog

H22

Tig

Tpg

H22

Tor

H21

H22

Tir

H21

H12

Tgg

H12

ME

ME

+ +

+

Figure 4.20: Implementation of the ring cell

new pairing, it needs to wait until both parties remove the request from the previous

communication (Figure 4.20).

79

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

Client
controller

2x2
cell

Mux

H12
H21

H22

Token
controller

put get

outToken
controller

in

request grant

Figure 4.21: Ring cell structure

4.5.3 Implementation of the Client Controller and Token Controller

Apart from the cell providing the pairings, two additional controllers are needed: the

token controller acquiring tokens from the left neighbour and delivering them to the

right neighbour, as well as the client controller, providing the request/grant interface for

a client (Figure 4.21). Each controller is associated with a data register designed to store

the identifier of the token.

4.5.4 Latency Estimation

Similarly to the usual token ring response latency, the response time of this arbiter lin-

early increases as the number of clients N grows. Fortunately, this latency can be reduced

when more resource tokens propagate through the ring. The more there are resource

tokens in the system, the less a client needs to wait till the moment it receives a token.

For the uniform token distribution, the latency can be estimated as N/M, where M is the

number of resources propagating over N client cells, although, due to the effect of tokens

clumping together [84], the worst case latency may degrade to N −M.

80

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

4.5.5 Comparison with Patil’s Arbiter

A similar kind of arbiter, where multiple passive resources are distributed among clients,

was presented earlier by Patil [58, 59]. Both arbiters distribute M passive resources over

N clients. The distinct advantage of the Patil’s arbiter is that it does not imply busy

waiting. When there are no new requests made, the arbiter does not consume dynamic

power. The multi-token arbiter presented in this chapter follows the ideas of the busy

token-ring arbiter. Tokens always keep propagating around the loop even if the arbiter is

not receiving new requests.

The main advantage of the token-based arbiter is that all the tokens are propagating

independently around the loop. So, the arbitration is concurrent for each client, which

significantly reduces the arbiter latency. Another important advantage is that the design

is much easier to scale. For each additional client there would be only one additional

client controller and the token controller with no increasing complexity in wiring.

4.6 Designing MIMO Queues

A Multiple-Input-Multiple-Output (MIMO) queue is a type of propagation channel at-

tached to multiple senders and receivers. It functions as a buffer adjusting the mis-

matches between sender and receiver rates and also provides a choice between the in-

terchangeable receivers. So, it acts as a multi-resource arbiter, where the data flits sent

from any of the senders are distributed over multiple receivers.

As demonstrated in [80], MIMO queues (among other designs) can be constructed in

order to build applications tolerating variability of task “consumers” and task “produ-

cers”. For instance, such a queue can be used to perform load balancing of tasks over

multiple processors. In [80] authors present the design of a basic 2× 2 queue component

with a functionality similar to the 2× 2 arbiter. It consists of two tree arbiters connected

through the handshake passivator as shown in Figure 4.22. The multiplexers are managed

by the SR-latches which are in turn set up by the MUTEX elements inside the 2-port tree

arbiter cells (see [80] for more details). The handshake activator is used to request new data

81

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

Tree
arbiter

Tree
arbiter

handshake
activator

handshake
activator

req,
ack
req,
ack

req,
ack
req,
ack

req,
ack
req,
ack

handshake
passivator

Figure 4.22: Structure of the sequential 2× 2 MIMO queue [80]

2x2

P1
P2

2x2

P3
P4

2x2

P5
P6

2x2

P7
P8

2x2

2x2

2x2

2x2

2x2

2x2

2x2

2x2

C1
C2
C3
C4
C5
C6
C7
C8

Figure 4.23: 8× 8 MIMO queue

from its left neighbour and store it in its data flip-flop. First, it requests the data from the

multiplexer on its left side. Then, after the full 4-phase communication cycle is finished,

it pushes the data to its right neighbour. Since all MIMO inputs and outputs are push

channels, it is possible to attach multiple 2× 2 components sequentially in order to build

larger queues.

A generic N× N queue can be constructed by building a butterfly network out of the

basic 2× 2 queues as shown in Figure 4.23. Thus the design is easily expandable with no

increasing fan-in and fan-out overhead with the area cost of N · log N.

MIMO queues can also be constructed by adding handshake activators to the 2× 2

arbiter design shown in Figure 4.9b. The basic difference, however, is the non-blocking

property of this design, which allows the concurrent use of both handshake activators

and has a significant impact on the performance of the whole network.

82

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

0

1000

2000

3000

4000

5000

6000

2 4 8 16 32 64

ps

inputs

2x1x2
2x2

(a) Latency

0

10

20

30

40

50

60

70

80

2 4 8 16 32 64

G
fp

s

inputs

2x1x2
2x2

(b) Throughput

0

0.05

0.1

0.15

0.2

2 4 8 16 32 64

m
m

^2

inputs

2x1x2
2x2

(c) Area

Figure 4.24: MIMO performance

4.6.1 MIMO Performance Comparison

To demonstrate the performance of the presented circuit, the design was simulated in

Verilog VCS compiler. It is based on CMOS 90nm standard library cells and includes

wire delays back-annotated from the place and route step in Cadence. Each channel is

constructed to propagate 16-bit flits of data.

Two designs are compared: 1) the original MIMO design based on sequential 2× 2

cells recreated from [80] (for clarity, those are called the 2 × 1 × 2 cells), 2) the MIMO

design based on parallel 2 × 2 cells presented here. The experiment is configured in

such a way that the consumers and the producers work faster than the MIMO channel,

effectively making the MIMO being the bottleneck of performance. The average latency

(in picoseconds), average throughput (Giga-flits per second), and the cell area (mm2)

for various numbers of inputs are presented in Figure 4.24. The parallelism of separate

cells has a significant impact on the throughput. The parallel MIMO cells have achieved

around 10% latency improvement and 50% throughput improvement at a cost of about

8% of area overhead for each of the test cases.

4.7 Conclusions

This chapter describes the asynchronous design of an arbiter managing pairings between

two clients and two resources. Each resource actively reports its availability and can be

83

CHAPTER 4. CONCURRENT MULTI-RESOURCE ARBITER: DESIGN AND
APPLICATIONS

connected to any of the clients. The initial STG of the circuit demonstrates the complex-

ity of the conflict emerging among four incoming requests. One of the important features

implemented is the arbiter’s ability to establish parallel, non-conflicting pairings. In or-

der to resolve the conflict, the original model is refined with a number of relatively fast

internal arbitrations. The activation of the pairings is therefore sequential but the overall

resource utilization is still concurrent.

During the initial design the Petrify tool was used to find implementations for separ-

ate circuit parts (such as the request controller and the grant controller), later it was also

used to find different versions of the final design. Additionally, the overall circuit imple-

mentations were verified to be speed-independent by using the Punf and the Mpsat tool

chain while all the STG and gate-level modelling was done in Workcraft.

A general solution for the multi-resource N × M arbiters is also described. The ex-

tended version of multi-resource arbiter was used by other researchers to improve NoC

router throughput in [74]. Theoretically, it can be created for an arbitrary number of in-

puts and is decomposable into simple gate elements. In practice, this design may have

tight limits on how many clients and resources it supports, mainly because of the quad-

ratic area growth and the worst case latency.

The chapter further describes the creation of a multi-resource arbiter with passive

resources. It is shown how the 2 × 2 arbiters can be used for creating multiple-input-

multiple-output queues that help load balancing over multiple data processors. The res-

ults show 50% throughput improvement as compared with the original implementation

in [80], the main reason for this improvement is allowing concurrent channel utilization.

84

Chapter 5

Gate-level Design Flow

5.1 Introduction

Modern circuit designers are challenged by the requirements of high performance solu-

tions and reduced development time. Based on the size and complexity on the inten-

ded design, the optimal approach may vary. Devices with low transistor count and

high demands for performance are likely to be modelled directly in transistors and use

manual mask layout. The much more complex systems (such as hardware encoders) are

more likely to be tackled by the behavioural specifications in such languages as TiDE

(Haste) [79], Balsa [7, 75], VHDL, Verilog, and System-C. In the medium complexity

spectre, there are various signal controllers that react to incoming events and, possibly,

carry out basic computations (various schedulers, handshake components, data trans-

ceivers, etc.). These devices are quite complex for transistor level but often simple enough

to be efficiently designed at the level of binary logic gates.

Gate-level designers both in digital and analogue domain must take into account tim-

ing of the signal propagation, in order to be able to tell whether the circuit would work

in each of its states for any test case. Since signal timing is increasingly more difficult to

predict and control [2], the reduction of timing assumption count is important for robust

and flexible solutions. To ease these complications, designers create circuits that are less

dependent on the delay of individual gates or wires. In other words, these circuits do not

85

CHAPTER 5. GATE-LEVEL DESIGN FLOW

depend on the timing assumptions and are able to work correctly regardless of how fast

their individual components are. Checking that the circuit works correctly for any gate

delay can be done by traversing through every reachable signal state. As the number of

possible states grows exponentially with each new signal, highly effective methods must

be used to perform the state exploration in reasonable amount of time.

The state exploration in a given PN or STG can be done automatically with tools such

as Petrify [4] or the Punf and Mpsat [34]. As a result, it is possible to determine whether

a given circuit model has deadlocks or whether the given STG represents a circuit with

hazards. Additionally, the STG can be synthesized into a digital circuit implementation

formed by a set of Boolean equations. The obtained equations are often more complex

than the simple cells of a given technology. Thus, they need to be mapped to the given

set of basic elements in such a way that no hazards would occur.

Unfortunately, larger STGs make this detailed model of signal transitions more diffi-

cult to design, which brings to a thought that such an STG could be formed structurally

by combining higher level components. For such a formalism the model of interconnec-

ted Boolean logic blocks is proposed. It will be shown that this approach allows viewing

the system at various degrees of abstraction and can help composing larger and more

complex systems.

Workcraft is a plugin based modelling tool that helps creating various interpreted

graph-based models (IGMs) [65, 64]. Any objects created within the graph models can

be associated by directed connections between them. A circuit model plugin was imple-

mented as a part of Workcraft development environment in an attempt to support the

gate-level design flow. Its features are useful for creating new arbiters and are presented

in this chapter.

86

CHAPTER 5. GATE-LEVEL DESIGN FLOW

5.2 Features of the Gate-level Design Flow

5.2.1 Basic Plugin Components

The plugin is based on the digital circuit models described in Chapter 2. For clarity of

model presentation and ease of use, the modelling plugin provides the following visual

elements:

1. Circuit components that group related signals together. Their basic function is to

visually present signals and their connections. Their output contacts are the actual

signals of the circuit. The input contacts of a circuit component are effectively the

placeholders for other signals. They are used as arguments for the functions within

the name space of the component and are later associated with the actual signals by

connections.

2. The input ports and output ports that describe the interface of the circuit. Here, the

input ports act as signals, and the output ports are the placeholders (same as inputs

to the circuit components).

3. Connections (or wires) associating signals with corresponding signal placeholders.

There may be many outgoing connections from one signal. But not more than one

connection may arrive to a placeholder. Circuit joint components can be used to

branch connections at convenient places on the diagram.

Each of the circuit signals (both the input ports and the output contacts) is specified by

the dedicated setvi and resetvi functions, so that fvi = fvi · setvi + fvi · resetvi . In other

words, setvi specifies the condition, when signal fvi activates to 1, and resetvi when signal

resets to 0. To avoid signal oscillation, in any circuit state, setvi and resetvi should never

be true at the same time: ∀v∈V ,s∈S : setv(s) · resetv(s) = 0.

On the diagrams, set and reset functions are denoted with the vertical arrows ↑ and ↓

followed by the Boolean formula respectively. When there is a formula f with no vertical

arrow, it means the reset function is the negation of a set function: set = f , reset = f .

87

CHAPTER 5. GATE-LEVEL DESIGN FLOW

(a) Signal Transition Graph
TOG

(b) Implementation

Figure 5.1: Toggle component

Basic Examples

Consider the design of a toggle element (Figure 5.1). The STG diagram shows that it has

one input signal clk, one output out, and one internal signal m used as the local memory.

It specifies that on every positive clock edge clk+ the circuit changes its output to the

opposite value. The clock signal itself is not enough to determine whether the signal

should rise or fall with the next clk change; therefore, the signal m is used to store that

information.

The circuit can be implemented with two complex gates as shown in Figure 5.1b. Gate

signal functions are m = clk · out + m · clk and out = clk · out + m · clk. The component

may have multiple inputs (placeholder contacts) and more than one output (signal con-

tacts). The internal signal m acts as memory and is not driving anything. However, here

an assumption is made that the clk signal will not change before m transitions.

In the next example, a model of a MUTEX element is depicted in Figure 5.2.

Both signals g1 and g2 are specified with corresponding set and reset functions:

g1,2 =


↑ r1,2 · g2,1

↓ r1,2

Figure 5.2b shows how the MUTEX element is connected to its environment. Ports

88

CHAPTER 5. GATE-LEVEL DESIGN FLOW

(a) STG model
MUTEX

(b) Implementation

Figure 5.2: MUTEX element

input1 and input2 are the input signals and their behaviour is constrained by the state of

the output ports output1 and output2. Essentially, it is an example of 4-phase handshake

executed on both of the MUTEX channels.

5.2.2 Gates of High Complexity

It is possible to model a system from a high level perspective. Its main idea is to capture

circuit behaviour without showing its low-level implementation. There may be multiple

different decompositions which may or may not work for their own reasons. Meanwhile,

if the initial system contains a hazard, its decomposition would still have the same prob-

lem. Therefore, launching the verification technique at an early state will allow to catch

out hazards at an early design stage.

There are no restrictions on the complexity of gates used in the circuit model. By

entering appropriate functions, Workcraft allows elements with arbitrary numbers of in-

puts. Regardless of a signal’s complexity, its value would only change by a single + or

− transition. Figure 5.3 shows high complexity gates as an example. The specification of

the components is as follows:

· C-element: c1 =


↑ a · b · c · d · e · f

↓ a · b · c · d · e · f
;

· complex gate: c2 = (a · b + c · d + f) · e;

· reset-dominant latch: c3 =


↑ (a + b + c) · done

↓ done
.

89

CHAPTER 5. GATE-LEVEL DESIGN FLOW

c1

C

c3

c2

Figure 5.3: High complexity gates

By constructing the system at the level of high complexity gates, the top to bottom

design approach is followed. First, the task can be represented with large circuit blocks

separated only by their responsibility. Then, gradual refinement is used to approach a

particular gate-level implementation. The decomposition can be done by any accessible

means such as manual design as well as the automated mapping into particular techno-

logy. Once decomposed, the design can be checked for hazards in an automated manner.

5.2.3 Delay-Insensitive Circuits

The main assumption about the Speed-Independent circuit is that wires do not have

delay. In real systems where one gate signal is forked to drive two of more gates, the

actual arrival of the signal may happen at different times. Such a situation may take

place due to multiple reasons: the length of the forked wires is different, each branch

of a signal is connected to a transistor with a different size, cross-capacitance in wires

slows down or speeds-up the signal propagation, etc. For small connection distances

these effects may be negligible and thus lie within the same equipotential region [69]. For

the longer interconnects in larger designs, all of these factors will have an increasingly

noticeable impact and, hence, need to be modelled explicitly. An ideal solution would

be to create designs that work for arbitrary wire delays; however, building pure delay-

insensitive circuits limits the designer to a fairly small set of implementable circuits [46].

The delay-insensitivity of the circuit can be checked by modelling arbitrary delay

on wires. This can be easily modelled by introducing additional buffer components on

the wires where wire delay is considered unpredictable. Such buffers are not needed in

wires with no forks because this timing unpredictability is already included in the signal

driving the wire. For forked wires, that may propagate a signal in interchangeable order,

90

CHAPTER 5. GATE-LEVEL DESIGN FLOW

buf1

buf2

buf3

Figure 5.4: Modelling asymmetric forks

a buffer needs to be inserted for each branch.

A more practical assumption could be that one wire branch is not slower than another.

These asymmetric forks can be modelled by only placing the buffer on branches that are not

the fastest. An example on Figure 5.4 shows buffer configurations that partially reduce

unpredictability in wires. As with isochronic fork, all of the outputs may receive the

input1 simultaneously. However, the output3 will never be behind any other outputs (for

instance, when this wire is the shortest and connected to the lightest load). Similarly, the

output2 will always be before output1 implying also output3 before output1. The timing

between branches output2 and output4 is not known and behaves as in delay-insensitive

circuits.

5.2.4 Circuits with Timing Assumptions

Timing assumptions, when adequate, are helpful for improving the complexity and the

performance of the circuit. This section describes how relative timing assumptions can be

used in the model. A relative timing assumption in the logic gate model is an additional

signal transition constraint, that assures a Boolean expression is met before firing the

associated transition. The main difference, however, is that the constraint does not result

in any new inputs of a component, which would increase its complexity.

A simple example of a counter constructed of toggle components is shown in Fig-

ure 5.5.

The clock signal is not constrained by any signals, therefore its value may be seen as a

glitch if the toggle components are not quick enough. The condition that all of the circuit

signals have settled can be specified as a constraint for the clock to change. As shown in

91

CHAPTER 5. GATE-LEVEL DESIGN FLOW

TOG1 TOG2 TOG3

Figure 5.5: Counter with timing assumptions

Figure 5.1a on page 88, the rising edge of the clock needs to happen after signal m aligned

with out. In the toggle component chain, m is not affecting any other signals, hence, the

set constraint for the clock may be written as:

clock ↑ : TOG1.m⊕ out1

The reset condition is more complex because out1 is subsequently used by TOG2.

And later out2 is used by TOG3. The component TOG1 is idle for clock = 1, when TOG1

signal states comply with m⊕ out = 1. Components TOG2 and TOG3 become idle, when

clk⊕m⊕ out = 1. The whole assumption expression can be written as:

clock ↓ : (TOG1.m⊕ TOG1.out) ·

·TOG2.clk⊕ TOG2.m⊕ TOG2.out · TOG3.clk⊕ TOG3.m⊕ TOG3.out

This approach may seem awkward for the large number of dependencies, however,

it is still easy to manage in asynchronous logic with not too many timing dependencies.

92

CHAPTER 5. GATE-LEVEL DESIGN FLOW

ME1_3

Figure 5.6: 3-input arbiter (high level model)

ARB2x2

Figure 5.7: High-level view on 2× 2 arbiter

5.2.5 High-level Models

An important feature of the logic gate models is the ability to represent component be-

haviour at various degrees of abstraction. A simple 4-phase 1-of-3 arbitration compon-

ent may have various implementations (token-ring arbiter, arbitration tree, arbiter mesh,

e.t.c. [35]). However, the basic functionality of the component states the same: when there

is a request, it should provide at most one grant signal at a time. Hence, this functionality

can be modelled directly without introducing the complexity of any specific implement-

ation (Figure 5.6).

The next example of the high-level presentation is the 2× 2 arbiter described in Sec-

tion 4 (Figure 5.7). The model in Figure 4.4 specifies the expected behaviour of the envir-

onment and the behaviour of the arbiter without showing the details of implementation,

this is an alternative presentation for the STG.

When dealing with larger models, it is also useful to merge multiple simpler gates

93

CHAPTER 5. GATE-LEVEL DESIGN FLOW

into a single complex gate (component) and form a simpler model, which would sustain

the same behaviour and have a smaller complexity.

5.2.6 State Space Exploration

The flow presented in this chapter is based on the traversal of Petri net unfoldings. As a

designed circuit is converted into its STG model, the tools Punf and Mpsat are used for

state space exploration [5, 33].

When the behaviour of each signal is defined, the process of circuit conversion into

its STG form is done with the following steps:

· First, a pair of places is created for each signal in the circuit. One place p1 is used

to represent value 1. The other place p0 would represent the value 0. Exactly one

token is placed in either 0- or 1-place (p0 or p1) depending on the initial signal state.

During the simulation, this token will travel from p0 to p1 and back when one of

the corresponding set or reset transition is executed.

· After creating contact places, all the set and reset functions are converted to their

Disjunctive Normal Form (DNF) set = cs1 + cs2 + ... + csn and reset = cr1 + cr2 +

... + crm, where csi and crj are the conjunctive clauses. Then corresponding rising

and falling transitions t1+, . . . , tn+ and t1−, . . . , tm− are created for each of the con-

junctive clauses.

· At the final stage, all of the generated transitions are constrained by connecting

them to the generated place pairs with read arcs. For instance, the set function

set = a · (b + c) would be converted to the DNF form set = a · b + a · c and then

produce two set transitions for clauses t1+ ← a · b and t2+ ← a · c, where a, b and

c are the places of corresponding signals.

An example of modelling the MUTEX element from Figure 5.2b is shown in Fig-

ure 5.8. Here, the transition g1+ (shown as MUTEX_g1+) is constrained by signal states

input1 = 1 and g2 = 0. Note how the placeholder contacts (r1, output1, . . .) have dis-

appeared from the model, they are now only shown as comments under the generated

94

CHAPTER 5. GATE-LEVEL DESIGN FLOW

MUTEX_g1=1

MUTEX_g1=0

r1*g2'

r1'

MUTEX_g2=1

MUTEX_g2=0

r2*g1'

r2'

input2=1

input2=0

output2'

output2

input1=1

input1=0

output1'

output1

Figure 5.8: Generated MUTEX STG

transition labels for signals g1 and g2.

Mpsat verification flow

The Mpsat verification flow is shown in Figure 5.9. From a circuit defined by Boolean

equations its circuit STG can be generated with the plugin. The generated STG is always

1-safe and can be analysed by Punf [33] in order to create STG unfolding. The unfolded

model is used by the Mpsat tool to check the STG for the properties specified separately.

Based on the provided STG unfolding and the list of markings being searched, Mpsat

either reports a trace that leads to the specified marking or reports that this marking is not

reachable. There is a special Mpsat reach language that allows the automatic generation of

markings for a given unfolding and a property [34]. The programs in this language are

able to describe various STG features, including deadlocks and non-persistency.

The next example demonstrates the verification of a C-element decomposition (Fig-

ure 5.10). This is a NAND-based C-element implementation proposed by Maevsky. Both

input1 and input2 are constrained by the output as if they were connected through two

95

CHAPTER 5. GATE-LEVEL DESIGN FLOW

Circuit specified
with Boolean

equations

Circuit STG

Workcraft
circuit plugin

Punf

STG unfolding

Mpsat
Verification

result

markings for hazards
and deadlocks

Plugin front-end

Verification back-end

Figure 5.9: Mpsat verification flow

g2

inv2

inv3 g4

g1

g5

g3 inv1

Figure 5.10: C-element formed of NAND gates

inverters. The STG generated from the circuit is shown in Figure 5.11.

When such a model is tested for hazards, the following trace is returned:

input1+ → input2+ → g1− → inv3− → g2+ → g4+ → g5− → g1+ → g3− →

inv1+ → input1−. The hazard occurs because the transition inv2− enabled by input1+

is again disabled by input1− at the end of the trace. In practice this inverter is likely to

be faster than the sequence of events from input1+ → ... to · · · → input1−. However,

strictly speaking it is not a speed-independent circuit and the timing assumption that

input1+ → inv2− is faster than input1+ → · · · → input1− should be explicitly stated

as a necessary condition for correct operation.

5.2.7 Circuits with MUTEX Elements

Traversing through the circuit state space with a MUTEX element will always find a haz-

ard because its outputs are non-persistent by design. When both MUTEX requests arrive,

both grant signals become excited. Then, after the first grant signal fires, the second is

disabled, which creates a hazard.

In digital circuits, the environment is modelled with various high-level techniques,

96

CHAPTER 5. GATE-LEVEL DESIGN FLOW

in
v2
=
1

in
v2
=
0

a'a

g5
=
1

g5
=
0

a' b'a*
b

g2
=
1

g2
=
0

a'b' a*
b

in
pu
t2
=
1

in
pu
t2
=
0

ou
tp
ut
'

ou
tp
ut

in
v1
=
1

in
v1
=
0

a'a

g3
=
1

g3
=
0

a'
b'

a*
b

in
pu
t1
=
1

in
pu
t1
=
0

ou
tp
ut
'

ou
tp
ut

g1
=
1

g1
=
0

a' b' c'

a*
b*
c

g4
=
1

g4
=
0

a'b' a*
b

in
v3
=
1

in
v3
=
0

a'a Fi
gu

re
5.

11
:N

A
N

D
-b

as
ed

C
-e

le
m

en
tS

TG

97

CHAPTER 5. GATE-LEVEL DESIGN FLOW

the only constraint is its obedience to certain well defined communication protocols. It

may contain hazards or non-deterministic choices, which do not make a difference until

the moment the environment actually changes one of the circuit inputs. In other words,

it does not matter whether environment signals are non-persistent; however, if it is not

safe from glitches, the internal signals may become non-persistent.

From this point, the logical solution for modelling MUTEXes is modelling them as

part of the environment.

5.3 Analysis of Priority Arbiter

This section presents the analysis of the Priority arbiter described in [11], which is also

mentioned earlier in the review (Chapter 3).

The arbiter is constructed as shown in Figure 5.12. It’s inputs follow the active 4-

phase handshake protocol. The set-dominant latches with the inverted reset inputs SR1,

SR2, SR3 are represented with corresponding set/reset Boolean equations:

q =


↑ s

↓ r · s

The MUTEX elements ME1, ME2, ME3 are modelled as part of the environment and

are shown with the dashed lines. The priority module PRIO has 6 inputs corresponding

to the “won” and “lost” arbitration of the MUTEX elements w1, l1, w2, l2, w3, l3. Its task

is to wait until three out of six input signals become active, and then activate one of the

corresponding grants: g1, g2, g3. All basic components such as AND-gates, OR-gates,

and C-elements are shown straightforward, with the corresponding logic gate symbols.

The LOCK component implementation is shown different from the original design in

Chapter 3. It has the 3-input OR gate and the reset-dominant latch combined into a

single complex gate. The composition into a single gate was done intentionally to avoid

a hazard, which will be shown later in the section.

As soon as the circuit is created within the tool, it can be formally verified with the

98

CHAPTER 5. GATE-LEVEL DESIGN FLOW

SR1

SR2

ME1

ME2

LOCK

AN1

AN2

PRIO

DONE

c2

C

C_EL1

C

C_EL2

C

c3

c4

c1

ME3
SR3

c5

AN3

C_EL3

C

Figure 5.12: Modelled priority arbiter

method described above. However, without specifying the necessary timing assump-

tions, there will be hazards and deadlocks found as a result.

One timing assumption mentioned in [11] was that at least one g1w signal manages to

win the arbitration in ME1, ME2, or ME3. In other words, there is no situation, when all

of the MUTEX elements grant “lose” signals g2l, which is a reasonable timing assumption

meaning that the path from each SR component to the corresponding ME.r1w input is

shorter than the path SR→ LOCK → ME.r2l.

To avoid the state when all MUTEX arbitrations are lost, the relative timing assump-

tions for the rising transitions on MUTEX elements are added:

ME1.g2l ↑ : ME2.g1w + ME3.g1w

ME2.g2l ↑ : ME1.g1w + ME3.g1w

ME3.g2l ↑ : ME1.g1w + ME2.g1w

They suppress the activation of the third g2l signal and in the context of the PRIO module

used, avoid the deadlock.

If the model is checked, there will be a hazard found in each of the AN gates. The

99

CHAPTER 5. GATE-LEVEL DESIGN FLOW

OR

LOCK2

Figure 5.13: LOCK decomposition

problem occurs because the reset phase of the AN gate is not acknowledged by the prior-

ity module PRIO. For an extremely slow transition AN1−, the reset phase of the lock

signal lock− would be able to propagate through the environment and begin a new

transaction with the request1+, which, again, may eventually end up with lock+ and

ME1.g1w+. At that point it would disable transition AN1− and can be seen as a glitch

produced by gate AN1. Based on the number of events that have to happen before the

hazard occurs, it is reasonable to assume that AN1− will occur before the next lock+.

Hence, another timing assumption may be added safely:

LOCK.lock ↑ : AN1 · AN2 · AN3

Now consider the decomposition of the complex LOCK component into the 3-input

OR gate and the reset-dominant SR-latch LOCK2 the way it was done in [11] (Figure 5.13).

Since the initial request may come at any time on any of the request signals, the positive

edge of the request may arrive at the OR gate at any time. This means that whenever

the lock− transition is about to disable the OR gate, this may happen simultaneously

with another request enabling it at the same time. This hazard cannot be eliminated by

adding a timing assumption because by the definition of the arbiter, there are no relative

timing assumptions between independent client requests. Hence, to avoid the hazard,

the arbiter structure needs to be changed.

100

CHAPTER 5. GATE-LEVEL DESIGN FLOW

5.4 Conclusions

The approach of designing circuits based on Boolean functions allows avoiding complex-

ity of STGs by structurally dividing a circuit into simpler components. The new plugin

implemented in Workcraft EDA allows designing digital circuits, where each signal is

represented with Boolean equations limiting its behaviour.

The behaviour of each signal can be specified by two separate equations regarding

its set and reset conditions. These equations are not explicitly limited by the number of

inputs, therefore, gates of arbitrary complexity can be created.

It is possible to mark functional blocks to be treated as part of the environment, which

allows specifying components with internal conflicts such as MUTEX elements.

The method of designing circuits directly with gates is slightly more limited than

what STGs can describe. Any digital circuit can be converted into its STG equivalent;

however, there are STGs with CSC conflicts, demonstrating that the scope of STGs is

wider than the digital circuits. Luckily, the circuits composed of gate-level components

never create CSC conflicts, which is an additional reason to prefer using the gate-level

flow when dealing with circuits of higher complexity.

101

Chapter 6

Design of Generalized Arbiter

6.1 Introduction

The multi-resource arbiter presented in Chapter 4 is limited to solving the arbitration

conflict among multiple resources providing an identical service. This may be insufficient

when certain resources offer a kind of service that is only useful to a subset of clients. At

the same time a subset of resources may still be suitable for a particular group of clients,

which creates a problem of semi-interchangeable resource allocation.

One practical example for such an arbitration is building a network routing com-

ponent that selects a propagation path depending on the availability of its output ports

and the list of accepted ports selected by a client. The client selects multiple suitable

resources and the arbiter provides a grant when at least one of the suitable resources be-

comes available. In practice this may occur with data packets travelling diagonally in a

two-dimensional mesh of routers. Depending on the output port availability, each rout-

ing component may propagate a packet either vertically or horizontally while reducing

the distance towards destination regardless of the path chosen. Other topologies also

provide various degrees of path redundancy, which can be used to improve performance

and reliability of the communication network under development.

The problem of semi-interchangeable resources can be also viewed as the commit-

tee arbitration where committees are associated with more than one resource group. An

102

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

North
West

North North
East

West

South
West South

South
East

East

services
resources

Figure 6.1: Arbitration example in 2D routing grid

example in Figure 6.1 presents a routing component, where each diagonal committee is

associated with two interchangeable professors; however, a more general purpose arbiter

implementation is presented to address this problem. The scalable, low-latency design

outlined in this chapter is based on the ideas of the priority arbiter and the gate-level flow

presented in Chapter 5, where the arbitration is split into separate phases of synchroniz-

ation and grant management.

6.2 Arbiter Design

6.2.1 Design Method

The design method is similar to the one described in Chapter 4. First, using high-level

specification, the MUTEX elements are factored out from the rest of the logic. The result is

the structural model of high-level circuit components (possibly with timing assumptions)

and a number of MUTEX elements that are used to hide metastability.

Then, the MUTEX elements are presented as part of the environment, separating them

from the signals that have to be checked for hazards. If at this stage the formal verification

procedure detects any deadlocks or hazards, the factoring phase is repeated.

When the high-level model is ready and functioning, the implementations for each

of the components and their decomposition into simple logic gates can be found with

synthesis tools. This process may be fully automatic or partly done by hand. The manual

103

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

High-level
Specification

Factoring

Decomposition

not
automated

Petrify,
partially

automated

Implementation
(Simple gates)

Model
with

MUTEXes
extracted Verification

Report

Verification

Report

Punf, MPSat

Punf, MPSat

Generate STG

Circuit
plugin

Arbiter STG

Figure 6.2: Arbiter design flow

decomposition helps to enforce structure among new signals which is important for find-

ing scalable solutions. Since during this phase new hazards may have been introduced,

the verification phase is launched again.

6.2.2 Basic Structure

The basic structure of the generalized arbiter is borrowed from the priority arbiter [11]

where the grant phase is separated from the synchronization phase. The Figure 6.3 presents

the high-level view of the problem. When at least one request arrives, it passes through

the column of MUTEX elements and activates the lock signal. Once lock has fired it dis-

ables further request propagation and activates the arbitration procedure. The outcome

of this arbitration may depend on how many requests have arrived. The model does not

specify whether signals grant1, grant2, or grant3 will fire after being enabled in the same

transaction; the arbitration activity depends on the arbitration logic being implemented

and is not covered in the diagram. During the arbitration one or more grants may be

issued as a result. Eventually, when the arbitration is finished, the done signal disables

any further grants while returning the arbiter into its initial stage ready to accept more

requests. Note how the pairs of events r1, r2, r3 are used in order to keep this diagram

1-safe. The first of the requests moves the token from p1 to p2, which switches the en-

104

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

ME

init
synchronization granting

Figure 6.3: Generalized arbiter high-level PN

ME1

ME2

XOR1

LOCKER

GC

XOR2

DATA1

DATA2

COMPUTE

C

G
ra

n
t

co
n

tr
ol

le
r

Input channel 1

Input channel 2

Figure 6.4: High-level circuit structure

abled ri transitions so the second and the third requests will not add more tokens to p2,

so there is only one lock event per arbitration transaction.

The choice of this structure is motivated by its good scalability as additional client

rows can be easily added to the model without increasing its depth.

A high-level circuit model of the generalized arbiter with the MUTEX elements sep-

arated from the rest of the logic is presented in Figure 6.4. It is a simple example of an

arbiter with only two request signals req1 and req2 and two grant signals grant1 and

105

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

grant2. The activation constraints applied to the signals req1 and req2 implement the

rules of the 4-phase handshakes. The arbiter operates in two stages. At the first stage, the

column of MUTEX elements is locked fixing each of the request values. At the second

stage the arbitration decision is made based on the state of requests. Communication

with the environment is ensured through 4-phase handshakes, where each input request

signal req from a client corresponds to one output grant signal grant. The req+ and req−

transitions are used by the environment to request and release a resource. The grant+

signifies when the resource was granted and grant− returns the handshake to the initial

state and signals that the client is allowed to start the next transaction.

The main components of the arbiter are the Input channels, the LOCKER, and the

Grant controller (Figure 6.4). The input channels are used to store the state of all the

requests and synchronize the environment request signals with their internal states. The

LOCKER component activates synchronization when at least one of the input signals has

changed its state. The grant controller is then activated to resolve any conflicts based on

the request information provided by the input channels.

Process of Arbitration

Consider how the requests propagate through the design. Initially, all of the circuit sig-

nals are low. The XOR gates detect any of the environment requests changes and interpret

those changes as a new requests for arbitration by activating the MEj.r lines.

Suppose the basic 1-of-2 arbitration is being considered and the req1+ was is-

sued. This request propagates through the MUTEX element: req1+ → XOR1+ →

ME1.w+ → LOCKER.lock+. At this point, the LOCKER component begins synchroniz-

ation: LOCKER.lock+ → ME2.l+ preventing propagation of new requests beyond the

ME2 and unlocking the state update on the DATA1 component. The set/reset expres-

sions of the DATA1 component will align its output DATA1.r with the current value of

req1 whenever both DATA1.lock and DATA1.w are active:

106

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

DATA1.r =


↑ req · w · lock

↓ req · w · lock

After the alignment phase is complete, the XOR gate will release the request from

the MUTEX component, consequently letting the ME1.l+ transition to take place:

LOCKER.lock+→ DATA1.r+→ XOR1− → ME1.w− → ME1.l+.

For any number of input channels, the special state with all the MUTEX elements

holding their MEj.l signal active will signify the end of synchronization. The input sig-

nals r1, r2, and comp in the grant controller GC will form a bundled data channel, where

comp is the request line, and r1, r2 are the data lines.

When GC.comp+ is triggered, the task of the grant controller is to change the state of

the grant signals according to the data provided through the input channels.

The design of the grant controller can be created by modelling a finite state ma-

chine (FSM) that updates its state according to the request state information provided

whenever the comp signal is raised, which acts as a clock signal. The timing constraint

here is that the transition comp+ → done+ happens after all of the grant signals have

settled and are presenting the new FSM state. After the arbitration is completed, the sig-

nal LOCKER.lock is disabled by done+. This finishes the current arbitration transaction,

eventually leading to GC.comp− and GC.done−.

The important thing to note here is that both requests req1+ and req2+ may arrive

simultaneously and both propagate as “win” through the column of MUTEX elements.

In this case, the grant controller will receive both requests and release grants according

to its implementation, be it priority arbitration or some other policy.

Another important case study is when new requests arrive after the arbitration was

started. These requests will be blocked by the locked component until the arbitration is

finished. However, once MUTEXes are released, all of the requests will propagate in the

next arbitration transaction.

According to the protocol, the release of resources is eventually followed on the client

side: req1+ → grant1+ → req1−. By the XOR components it will be interpreted as a

107

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

ME2

XOR2

lock
C

COMPUTE

C

DATA2

READY2

SR2

SYNC_OR

S_AND2

R_AND2

Input channel 1

Input channel 2

G
ra

n
t

co
n

tr
ol

le
r

LOCKER

GC

Figure 6.5: Decomposition into simple gates

new request, eventually igniting ME1.w+. It means that the arbitration is started every

time the resource is requested or released.

6.2.3 Decomposition

The scalable speed-independent decomposition of the arbiter is shown on Figure 6.5. The

input channel can be constructed with three AND gates (S_AND2, R_AND2, READY2),

one SR-latch (DATA2) and one reset-dominant SR-latch (SR2).

The component initiating synchronization consists of an OR-gate (SYNC_OR) col-

lecting requests from the input channels and the C-element (LOCKER) issuing the lock

signal.

Arbiter Scaling

Arbiter scaling up to N clients is straightforward. Since each of the input channels is

formed as the true tile [72] meaning that it can be reused for any number of inputs without

changing its interface and its internal structure.

For N clients there will be N inputs for the COMPUTE C-element and N inputs for

the SYNC_OR OR gate. This C-element can be safely decomposed into a tree of smaller

108

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

C-elements or have any other implementation used in the completion detection circuits.

6.2.4 High Performance

Because of the significant synchronization overhead, the arbitration latency may seem

large for the occasional requests scattered over time. However, the variability of arbiter

latency is expected to be close to a constant for any number of requests activated (provid-

ing there are enough resources to satisfy clients). The high performance of the arbiter is

achieved by the fact that all of the pending requests are processed in a single computa-

tion transaction concurrently resolving all conflicts in one go. This can be an important

feature for high performance designs dealing with bursty request environments.

The task of the grant controller is managing grants upon receiving the GC.comp+

transition, which can be viewed as a clock signal triggering computation. It allows

designing the grant controller in a flow similar to the synchronous design. At the same

time, the computation is only launched when there are requests pending, meaning that

dynamic power would not be consumed when the circuit is idle.

6.2.5 Avoiding Deadlocks

The arbiter does not have deadlock states if the grant controller is implemented correctly.

Arbiter request signals are causally related to the state of the grant signals by obeying

the 4-phase protocol rules. On the other hand, the arbitration can only be started after an

activity on the request lines.

In the simple example above, the grant controller may have an incorrect implementa-

tion, which is prone to stalling the arbiter. For instance, when the grant controller receives

a request from the second client req2+, it is consequently granted with grant2+. While

the resource is being used, the first client may also initiate its request req1+, which is

not granted and becomes pending because the resource is busy. Eventually, the resource

is released with req2−. The arbiter logic may have a flaw that will result in ignoring

grant1+ (because the resource is still busy), and during this transaction only responding

by grant2−, thus acknowledging the resource release to the second client. The arbiter

109

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

now knows that the resource was released; however it still needs transitions on the re-

quest lines to begin the new arbitration. Because the first client has already sent its re-

quest, it will be waiting for a response. This stalls the arbiter until the next activity on

the req2 line. Hence, to avoid stalling, the grant controller must always provide all of the

new grant signals that became available during the same transaction.

6.2.6 Circuit Verification

The generalized arbiter was formally verified by methods described in Chapter 5.

Decomposition

The circuit STG is generated from the decomposed circuit in Figure 6.5. The grant con-

troller is defined in a way that its outputs GC.grant1, GC.grant2 may arbitrarily align

with the inputs GC.r1, GC.r2 while the condition GC.comp · GC.done is true:

GC.grant1 =


↑ comp · done · r1

↓ comp · done · r1

and similarly:

GC.grant2 =


↑ comp · done · r2

↓ comp · done · r2

In other words, any combination of grants is permitted for any combination of re-

quests. This creates an opportunity to run the arbiter into a deadlock state when both

requests for resource were ignored (r1 = 1, r2 = 1, and grant1 = 0, grant2 = 0) or when

both resource releases were ignored (r1 = 0, r2 = 0, and grant1 = 1, grant2 = 1).

The signal GC.done always aligns itself with the GC.comp: GC.done = GC.comp. By

110

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

SYNC_OR

SR1 SR2 SR3

x

Figure 6.6: SYNC_OR decomposition

adding the following set constraint, the deadlock states can be avoided:

GC.done =


↑ comp · (r1⊕ grant1) · (r2⊕ grant2)

↓ comp

So, the GC.done+ transition is only allowed when at least one grant signal is aligned

with its input request and more request activity is expected eventually.

After applying these constraints, the automated verification phase was successful,

showing no deadlocks or hazards found.

Arbiter Scaling

Another question arises when the arbiter is scaled to support three inputs or more. The

problematic element here is the SYNC_OR gate receiving the MUTEXed requests for ar-

bitration. For an increasing number of clients, the OR gate eventually will have to be split

into smaller gates, forming a tree of OR gates. Consider a decomposition shown in Fig-

ure 6.6. Two requests SR1 and SR3 may activate simultaneously, igniting the transition

of the OR gates. It is sufficient for SR3 alone to be present in order to activate the lock

signal followed by the computation in the grant controller. Now, assume the transition

x+ is particularly slow and does not happen up until GC.done+. As the GC.done+ fires,

latches SR1, SR2, SR3 are reset back to 0 while also disabling the unacknowledged trans-

ition x+, which creates a hazard condition. In any practical circuit the timing between x+

and done+ is easy to achieve because done+ timing will be postponed by the relatively

slow COMPUTE signal and the arbiter computation itself.

To model the timing assumption, it is sufficient to additionally constrain the done

signal:

111

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

GC.done =


↑ comp · (r1⊕ grant1) · (r2⊕ grant2) · (SR1 + SR2) · x

↓ comp

Once the timing assumption was ensured, the verification phase was successful,

showing no deadlocks or hazards found.

Asymmetric forks

The design is largely speed-independent, meaning that wire delays are assumed to have

isochronic forks. It is reasonable to assume that the forks located inside the input channels

are isochronic as those are only used for the local communication. The two forks follow-

ing signals LOCKER.lock and GC.done are more likely to have skewed timing on each of

its branches (Figure 6.5). These forks are likely to become part of the global interconnects

when the design scales and inverter trees are employed to maximize performance and

additional analysis is needed to address these problems.

The lock signal can be safely forked into an inverter tree without creating any hazards

(assuming the signals become isochronic once they enter the input channel tiles). When

the done signal is forked, there may be a hazard forming on one of the SR signals. Indeed,

if a buffer component is placed on the branch disabling SR2 in the model on Figure 6.5,

then, under the assumption of arbitrary buffer delay the arrival of SR2.r+ may happen

just after the SR2.s+, which will create a hazard on the SR2 output.

In order for this hazard to occur, the path GC.done+→ SR2.q− has to be longer than

the path GC.done+ → LOCKER.lock → ME2.l− → ME2.w+ → SR2.q+. Avoiding the

hazard is ensured by placing the input of the LOCKER’s C-element on the longest branch

of the GC.done fork.

112

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

Computation

H
an
ds
ha
kereq

ack

req

ack

H
an
ds
ha
ke

(a) Low latency, low throughput

H
an
ds
ha
kereq

ack

req

ack

H
an
ds
ha
ke

H
an
ds
ha
ke

(b) Increased latency, improved throughput

Figure 6.7: Pipelining

6.3 Possible Extensions

Data Lines

The request lines can be bundled with data lines to provide additional information for

the arbitration logic. The data lines do not need to pass MUTEX elements and internally,

their data can be latched by the requests that won the arbitration.

Accumulate and Fire

The accumulate and fire [16] tactics can be enforced by modifying the OR-gate tree in the

LOCKER component in order to ignore the request combinations that are not useful or

interesting. For instance, the arbiter may wait for at least a few requests arriving before

it actually starts the arbitration and does not waste energy on lonely requests. Another

example is the M × N arbiter where the arbiter needs to have at least one request from

both sides to make a pair, otherwise arbitration would not make sense.

Pipelining

Pipelining is a technique used in long wire interconnects to increase the throughput of

a system [6, 28]. It is also used to increase throughput by splitting slow computation

into multiple fast computation stages (Figure 6.7). Similar approaches can be used to

improve the throughput of the arbiter by splitting its synchronization and grant phases

into two independent pipeline stages, the first executing synchronization, and the second

producing grant signals.

113

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

XOR2

ME2.r ...
C

grant2

done2

req2

Figure 6.8: Employing RGD interface

Table 6.1: Priority 2-of-3 arbitration

r1 g1 r2 g2 r3 g3 g1′ g2′ g3′

1 X X 0 X X 1 0 0
X X 1 1 X X 0 1 0
X X 0 X 1 X 0 0 1
0 X 1 X X X 0 1 0
1 X 1 X X 0 1 1 0
1 X 1 X 0 X 1 1 0
X X X X 1 1 0 0 1
1 X 0 X X X 1 0 0

Supporting RGD

The arbiter can be adapted to support the RGD protocol. It is relatively simple to do

because each of the request signal transitions is arbitrated already. Hence, implementing

the 2-phase logic is possible by using one additional C-element per channel as shown

in Figure 6.8.

6.4 Performance Estimations

6.4.1 Priority 2-of-3 Arbitration

One simple example considered is the priority-based 2-of-3 arbiter. It acts similarly to the

1-of-3 priority arbiter favouring requests r1, r2, r3 in that order. However, it is allowed

to grant 2 resources at a time. The truth table for the arbiter decision making module is

shown in Table 6.1. Here g1′, g2′, and g3′ are the next state values for the current state

of r1, . . . , r3, g1, . . . , g3. “X” represent the “don’t care” values, which can be either “0” or

“1”.

The circuit as derived with the “Logic Friday” tool [3] is implementable with the

following equations:

114

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

C C

input channel
"ready" signals

request signals

req_out

ack_indone

COMPUTE

request signals

Figure 6.9: Decoupling synchronizer and grant controller

g1′ = r1 · (r2 · (g3 + r3) + g2 + r2)

g2′ = r2 · (r1 · (g3 + r3) + r1 + g2)

g3′ = r3 · (r2 + g3)

In this example matched delay line was used for the completion detection. The es-

timated latency based on a CMOS 90nm implementation (including wire delays) of a

request propagating from the input port until receiving a grant signal is between 900ps

and 1000ps (depending on which requests were issued). The latency is still roughly the

same regardless of whether two requests are granted concurrently or some request is

granted while another released.

6.4.2 Pipelined Arbiter Scaling

The pipelined version of the arbiter has its grant controller separated through the addi-

tional handshake as shown in Figure 6.9. The requests possibly bundled with additional

data are propagated further through the data latch controller. The falling edge of the

COMPUTE signal is decoupled from the req_out signal. The latch is transparent when

req_out = 0 and opaque when req_out = 1.

Figures 6.10a, 6.10b, and 6.10c demonstrate the pipelined arbiter performance based

on its implementation in 90nm CMOS cell library including wire delays.

The latency is estimated as the time between the request signal propagates from the

change in the request lines to the rising edge of the req_out (Figure 6.9). As it would

be expected from the structure, the latency increase is logarithmic. The additional input

channels occasionally add more layers to the trees of logic gates communicating the in-

115

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

0

200

400

600

800

1000

2 4 8 16 32 64

ps

inputs

(a) Latency

0

10000

20000

30000

40000

50000

2 4 8 16 32 64
0

200

400

600

800

1000

M
 s

yn
c

pe
r

se
c

(t
ot

al
)

M
 s

yn
c

pe
r

se
c

(p
er

 c
ha

nn
el

)

inputs

total
per channel

(b) Throughput

0

0.001

0.002

0.003

0.004

0.005

2 4 8 16 32 64

m
m

^2

inputs

(c) Area

Figure 6.10: Pipelined arbiter performance

put channels. The latency for two inputs is 650ps on average. As the number of inputs

increases up until 64, the latency increases to approximately 950ps.

The throughput is measured as the number of input channels multiplied by the num-

ber of transactions (measured in millions per second) assuming that the grant controller

is faster and the synchronizer is the bottleneck of performance. With the increased input

count the total number of arbitrations drops to about 576 million arbitrations per second

while the maximum number of requests processed increases to 576× 64 = 36864 million

requests per second (Figure 6.10b).

Finally, the estimation in Figure 6.10c shows how much the actual synchronizer area

increases with the increasing number of clients. The result is essentially a linear depend-

ence on the number of input channels.

6.5 Conclusions

This chapter presents a structure for an asynchronous generalized arbiter, which is able

to tackle a large variety of arbitration problems.

The circuit may be slower than existing arbiters that are structurally dedicated to par-

ticular arbitration problems such as the 2× 2 or the 1-of-N implementations. However,

the generalized arbiter, scaled for multiple inputs, has benefits of resolving the conflicts

in an intelligent and highly concurrent manner. For instance, the 4-input arbiter imple-

menting the 2× 2 MIMO cell can be made with simultaneous channel allocation for both

116

CHAPTER 6. DESIGN OF GENERALIZED ARBITER

clients. At the same time, the channel allocation could be made static, e.g., the configura-

tion of the channel multiplexers would not be configured for each arbitration transaction,

and it would only be changed if particular combination of requests requires it.

The grant controller is activated by the locally generated clock signal allowing de-

veloping the advanced arbitration logic in synchronous design flow. At the same time,

the arbiter operates only when there is a change among its request lines, meaning that no

dynamic power is wasted when no arbitration is requested. The arbiter allows pipelining

that can improve its throughput. At the same time, the grant computation is pushed into

separate logics making the module easier to develop and verify for fabrication faults.

The generalized arbiter was formally verified to be free from deadlocks and hazards

while the risk of stalling the arbiter was shown to be dependent on the correctness of the

grant controller implementation. The scalable decomposition of the arbiter was presen-

ted. All of the necessary timing assumptions used are practical and easy to enforce even

without explicit delay elements.

More research is needed to estimate arbiter performance and compare it with exist-

ing implementations. The chapter has provided a high-level specification, which may

have different decompositions. Other decompositions with more timing assumptions

also need more study as such designs may provide greater performance benefits in fu-

ture.

It is believed that such an arbiter can be useful in future asynchronous NoC routers

where sophisticated arbitration logic is needed for designing various adaptive routing

protocols in busy request environments.

117

Chapter 7

Conclusions

This work presents multi-resource arbitration components that distribute interchange-

able resources among clients based on the information on resource availability. The high

performance of a system is ensured by the concurrency in resource utilization. The ro-

bustness is ensured by the fact that each client can use one of multiple interchangeable

resources and the client can be serviced while at least one of the resources is available.

The simple multi-resource arbiter is not suitable for the allocation task when the re-

sources are completely or partially interchangeable and more sophisticated arbitration

logic is needed for this case. The traditional STG based design flow appears to have

difficulties in tackling this problem and a higher level design flow was proposed and

implemented as a result. The gate-level design flow is a good alternative, which helped

tackling the problem structurally.

With stronger tool support, the more complex arbiter designs can be approached. The

generalized arbiter conceptually solves a great variety of arbitration problems. Its effect-

iveness is achieved through dividing the arbitration process into two separate stages of

computation. First of all, the arbiter needs to acknowledge changes in the input sig-

nals, which would initiate the second stage – the computation of grant signals based on

the current input values. Such a separation has allowed to create an arbiter with low

latency. As opposed to most other arbiter implementations, each of the input signals

propagates through only a single layer of MUTEX arbitration. The column of MUTEX

118

CHAPTER 7. CONCLUSIONS

elements creates a snapshot of all input signals, which can be used by the grant logic

computation. In practice, this arbitration platform can be used to create arbiters with

semi-interchangeable resources as a comprehensive solution to the asynchronous NoC

routers, effectively implementing the multi-resource utilization.

7.1 Summary of Contribution

· This work introduces the multi-resource arbiter and shows a number of examples,

where such a design could be useful;

· To develop more complex arbiters, the gate-level design flow was implemented a

plugin of the existing Workcraft modelling environment;

· Finally, the generalized arbiter is developed based on the gate-level design flow.

7.2 Future Work

This work opens up opportunities to address multiple additional issues in future re-

search. The gate flow plugin still needs to be improved to support hierarchical com-

position of components, so that a finished design it can be encapsulated into a box with

multiple inputs and outputs and then reused in other models. Alternatively, the support

for abstract components with pre-defined interface and no implementation can be useful

for testing out alternative implementations of a chosen component.

Various models supporting the concept of digital signals can be intermixed with

the gate-level design, the examples are STGs and Conditional Partial Order Graphs

(CPOGs) [51]. When combined, these models can function simultaneously while com-

municating through the gate-level model connections.

The generalized arbiter has a great potential for further research. Its performance can

be compared to other arbiters and its usefulness still needs to be demonstrated through

building new highly efficient asynchronous NoCs.

119

Appendix A

Summary on Asynchronous Arbiters

Further tables provide an overview of existing asynchronous arbiter implementations.

Table A.1: Analogue arbiters

PROTOCOL DESCRIPTION/FEATURES REFERENCES

RG threshold-based MUTEX [60]

RG 4-phase MUTEX element [68, 44]

RG fast multi-flop arbiter [10, 21, 43]

RG 2-of-3 arbiter [10]

RGD 5-wire arbiter with “enabling”,
the “propellor arbiter”

[53]

RG Lockable C-element [26]

120

CHAPTER A. SUMMARY ON ASYNCHRONOUS ARBITERS

Table A.2: Two-way arbiters

HANDSHAKE

WIRES

DESCRIPTION/FEATURES REFERENCES

RGD 2-phase arbiter [77, 27]

RGD 2-phase with enabling [76]

RNG “eager” arbitration [86]

RGN non-blocking arbitration,
“nacking” arbiter

[57, 20]

RGNDA 2-phase nacking arbiter [23]

Table A.3: 1-of-N arbiters

TOPOLOGY HANDSHAKE

WIRES

DESCRIPTION/FEATURES REFERENCES

Mesh-based arbiters

mesh RG linear latency, quadratic scalability [35]

Cascaded tree

casc. tree RG linear scalability [63, 61, 86]

casc. tree RG fast request propagation [31]

casc. tree RG fast request release [25, 86]

Busy ring

busy ring RG/P 4-phase/propagate [18, 81, 35]

busy ring RGD/P 2-phase/propagate [86]

busy ring RG/RG 4-phase/handshake [48]

busy ring RGDNA(2-
phase)/P

2-phase/propagate [23]

Lazy ring

lazy ring RG/RG 4-phase/handshake [48, 35]

lazy ring RG/(2-phase)P uses “pausable” 2-phase token propagation [26]

121

CHAPTER A. SUMMARY ON ASYNCHRONOUS ARBITERS

Table A.4: Other arbiters

NAME HANDSHAKE

WIRES

DESCRIPTION/FEATURES REFERENCES

Flat arbiters

“flat” arbiter RG “flat” arbitration producing
ordered request state

[52, 40]

Priority-enforcing arbiters

ordered arbiter RG The order of grants repeats the
order of requests

[12]

daisy-chain RG Priority enforced by topology [11, 35]

static priority arbiter RG Static priority defined in
combinational logic

[63, 37, 11, 35]

dynamic priority arb. RG Dynamically reconfigurable
priority

[11, 35]

Multi-resource arbiters

Multi-token arbiter Arbiter grants a resource M
times

[85]

Patil’s arbiter RG multi-resource arbitration with
passive resources

[58, 59]

Committee arbiter RG Wide range of arbitration
problems

[9]

“soft” arbiter RG “soft” arbitration,
total number of resources
granted converges to M

[50]

122

Appendix B

Workcraft Interface

B.1 Main Window

Workcraft is a plugin-based computer aided design (CAD) tool allowing to create and in-

teractively simulate Petri nets, Signal Transition Graphs, Digital Circuits and some other

model types that fall into the category of the interpreted graph models [64]. The main win-

dow of the program is shown in Figure B.1. It is split into multiple smaller windows with

dedicated responsibilities:

Main menu is used to manage models, configure system, and call various external tools

to do additional model processing;

Editor tabs shows all of the opened models, which allows to open several models in the

same session;

Editor window is the main window where models are created, viewed, and simulated;

Tool controls is used to manage simulation traces when in simulation mode;

Property editor allows changing properties of objects selected in the editor window

when in editing mode;

Editor tools panel allows to select the mode of operation (Figure B.1: Selection tool, Con-

nection tool,). Its contents vary from one model to another providing different sets

of operation modes.

123

CHAPTER B. WORKCRAFT INTERFACE

Workspace presents the list of opened or imported files;

Utility windows shows additional information such as external tool output, error mes-

sages or the progress of launched tasks.

B.1.1 Basic Mouse Controls

Mouse wheel zooms in and out;

Left click selects, connects, creates new objects (depending on the active editor mode);

Right click shows context-sensitive drop-down menu;

Middle button pans view.

B.2 Common Operation Modes

The common operation modes are used in both the STG and the Circuit models.

Select – selecting objects, moving them around and changing their properties;

Connect – creating new directed connections between model components;

Simulate – simulating models interactively.

B.3 STG Plugin Operation Modes

To create a new circuit model, from the menu select: File→Create Work...→Signal Trans-

ition Graph.

Dummy transition – creating a dummy transition;

Signal transition – creating signal transitions (a transition that is associated with a

raising or a falling edge of some signal). Use the selection mode to change its name,

transition direction, or signal type (input, output or internal);

Place – creating new places. Use the selection mode to change its token count.

124

CHAPTER B. WORKCRAFT INTERFACE

Fi
gu

re
B.

1:
W

or
kc

ra
ft

In
te

rf
ac

e

125

CHAPTER B. WORKCRAFT INTERFACE

B.4 Digital Circuit Plugin Operation Modes

To create a new circuit model, from the menu select: File→Create Work→Digital Circuit.

Input/output port – creating new input or output ports. Left-click creates an output

port. Left-click + shift creates an input port;

Joint – creating joints that allow branching wires from one source to multiple destin-

ations. The joints are not essential as branching may happen from any connection

point such as ports or component contacts. However, joints are still useful for giv-

ing the model a better look;

Function – creating function components. Right-clicking on the function compon-

ent will bring the pop-up menu where the additional output ports may be added.

For instance, it can be used to keep both MUTEX signals inside the same function

component.

B.5 Conversion to the Circuit STG

Any circuit model can be converted to its STG equivalent. It is easily done through the

menu: Tools→STG→Generate STG. Once the STG is generated, its model occurs in the

“Workspace” window (Figure B.2). It can be opened by right-clicking on the new model

in the list and selecting “Open editor”.

B.6 Simulation

Both circuit model and STG model allow interactive simulation. The simulation is started

by clicking on the button.

In the STG model, during simulation the enabled transitions are highlighted and can

be clicked to see the result of their firing. The “Tool Controls” window will show the

trace being generated (Figure B.1). This trace can be saved into clipboard or restored

from it by clicking buttons “to Clipb” and “from Clipb”. When clicked on a particular

126

CHAPTER B. WORKCRAFT INTERFACE

Figure B.2: Opening generated STG

trace transition, the model returns to the state in was at that moment. To restore the state,

the simulation tool actually “unfires” the fired transitions (for the transition being unfired

it removes tokens from the post-set places and adds tokens to the pre-set places) in the

opposite order, which can always restore the initial state.

In the circuit model, the simulation is actually based on the STG generated from the

circuit. Once started, the main window shows the circuit with wires painted “active”

and “inactive” and the excited signal contacts are marked and can be clicked to change

circuit state. The simulation changes the generated STG and then paints the circuit con-

tacts according to the excited STG transitions and paints signal wires according to the

corresponding STG signal values. As a result, the simulation tool is inherited from the

STG simulation, and can also use the same traces, be “fired” and “unfired”.

B.7 Verification

The circuit verification for deadlocks and hazards has a shortcut. It can be executed

through the menu: Tools→Verification→Check circuit for deadlocks and hazards (the

long way of doing it would be converting the circuit to its STG form, and then calling

explicitly the particular type of verification as it is described in [64]). Once the verification

is started, the STG is generated, which is then put through the Punf to find its unfolding.

After that, the unfolded model is processed by Mpsat to find whether there are reachable

127

CHAPTER B. WORKCRAFT INTERFACE

deadlocks or hazard states. If such a state is found, the plugin returns the corresponding

trace, that can be replayed in simulation.

128

References

[1] Dining philosophers problem

http://en.wikipedia.org/wiki/Dining_philosophers_problem.

[2] International technology roadmap for semiconductors: 2005 edition.

[3] Logic friday: http://sontrak.com/.

[4] Petrify: http://www.lsi.upc.es/~jordicf/petrify/petrify.html.

[5] Punf: http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/

punf/.

[6] John Bainbridge and Steve Furber. CHAIN: A delay-insensitive chip area intercon-

nect. IEEE Micro, 22:16–23, 2002.

[7] A. Bardsley. Implementing Balsa Handshake Circuits. PhD thesis, Department of Com-

puter Science, University of Manchester, 2000.

[8] Salomon Beer, Ran Ginosar, Michael Priel, Rostislav (Reuven) Dobkin, and Avinoam

Kolodny. The devolution of synchronizers. In Proceedings of the 2010 IEEE Symposium

on Asynchronous Circuits and Systems, ASYNC ’10, pages 94–103, Washington, DC,

USA, 2010. IEEE Computer Society.

[9] I. Benko and J.C. Ebergen. Delay-insensitive solutions to the committee problem.

Advanced Research in Asynchronous Circuits and Systems, 1994., Proceedings of the Inter-

nationalSymposium on, pages 228–237, November 1994.

129

http://en.wikipedia.org/wiki/Dining_philosophers_problem
http://sontrak.com/
http://www.lsi.upc.es/~jordicf/petrify/petrify.html
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/

REFERENCES

[10] Kees van Berkel and C.E. Molnar. Beware the three-way arbiter. Solid-State Circuits,

IEEE Journal of, 34(6):840–848, June 1999.

[11] Alex Bystrov, David J. Kinniment, and Alex Yakovlev. Priority arbiters. In ASYNC

’00: Proc. of the 6th Int. Symp. on Advanced Research in Asynchronous Circuits and Sys-

tems, pages 128–137, Washington, DC, USA, 2000. IEEE Computer Society.

[12] Alex Bystrov and Alex Yakovlev. Ordered arbiters. Electronics Letters, 35(11):877–879,

May 1999.

[13] K. Mani Chandy. Parallel program design: a foundation. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1988.

[14] T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and arbiter

circuits. IEEE Transactions on Computers, C-22(4):421–422, April 1973.

[15] D.M. Chapiro. Globally asynchronous locally synchronous systems. PhD thesis, Stanford

University, October 1984.

[16] Yuan Chen. High Level Modelling and Design of a Low Power Event Processor. PhD

thesis, Newcastle University, January 2009.

[17] T.A. Chu. Sintesis of Self-timed VLSI Circuits from Graph-theoretic Specifications. PhD

thesis, Massachusetts Institute of Technology, 1987.

[18] P. Corsini. n-user asynchronous arbiter. Electronics Letters, 11(1):1–2, 1975.

[19] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and Alex Yakovlev. Logic

synthesis of asynchronous controllers and interfaces. Springer-Verlag, ISBN: 3-540-43152-

7, 2002.

[20] J. Cortadella, L. Lavagno, P. Vanbekbergen, and Alex Yakovlev. Designing asyn-

chronous circuits from behavioural specifications with internal conflicts. In Proc.

Int. Symp. Advanced Research in Asynchronous Circuits and Systems, pages 106–115,

Salt Lake City, UT, Nov 1994.

130

REFERENCES

[21] A.C. Davies. Dynamic properties of a multiway arbiter. Circuits and Systems, 2000.

Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, 3:221–224,

2000.

[22] Rostislav R. Dobkin, Ran Ginosar, and Avinoam Kolodny. Qnoc asynchronous

router. Integr. VLSI J., 42:103–115, February 2009.

[23] Jo C. Ebergen, P. F. Bertrand, and S. Gingras. Solving a mutual exclusion problem

with the rgd arbiter. In Proceedings of the IFIP WG10.5 Working Conference on Asyn-

chronous Design Methodologies, pages 137–147, Amsterdam, The Netherlands, The

Netherlands, 1993. North-Holland Publishing Co.

[24] T. Felicijan, J. Bainbridge, and S. Furber. An asynchronous low latency arbiter for

quality of service (QoS) applications. Microelectronics, 2003. ICM 2003. Proceedings of

the 15th International Conference on, pages 123–126, December 2003.

[25] Hartmann J. Genrich and Robert M. Shapiro. Formal verification of an arbiter cas-

cade. In Proceedings of the 13th International Conference on Application and Theory of

Petri Nets, pages 205–223, London, UK, 1992. Springer-Verlag.

[26] Ganesh Gopalakrishnan. Developing micropipeline wavefront arbiters. IEEE Design

& Test of Computers, 11(4):55–64, Winter 1994.

[27] M.R. Greenstreet and T. Ono-Tesfaye. A fast, asP*, RGD arbiter. In Advanced Research

in Asynchronous Circuits and Systems, 1999. Proceedings., Fifth International Symposium

on, pages 173 –185, 1999.

[28] Ron Ho, John Gainsley, and Robert Drost. Long wires and asynchronous control.

In Proc. Int. Symp. on Advanced Research in Asynchronous Circuits and Systems, pages

240–249. IEEE Computer Society Press, 2004.

[29] Ron Ho and Mark Horowitz. Lecture 9: More about wires and wire models. Com-

puter Systems Laboratory, 2007.

131

REFERENCES

[30] Anoop Iyer and Diana Marculescu. Power and performance evaluation of globally

asynchronous locally synchronous processors. In ISCA ’02: Proceedings of the 29th

annual international symposium on Computer architecture, pages 158–168, Washington,

DC, USA, 2002. IEEE Computer Society.

[31] M.B. Josephs and J.T. Yantchev. CMOS design of the tree arbiter element. Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, 4(4):472–476, December 1996.

[32] R.M. Keller. Towards a theory of universal speed-independent modules. Computers,

IEEE Transactions on, C-23(1):21–33, January 1974.

[33] Victor Khomenko. Model Checking Based on Prefixes of Petri Net Unfoldings. PhD thesis,

University of Newcastle upon Tyne, February 2003.

[34] Victor Khomenko. A usable reachability analyser. Technical report, Newcastle Uni-

versity, 2009.

[35] David J. Kinniment. Synchronization and Arbitration in Digital Systems. John Wiley &

Sons, Ltd, 2007.

[36] David J. Kinniment and Doug Edwards. Circuit technology in a large computer

system. In Proceedings of the Conference on Computers–Systems and Technology, pages

441–450, October 1972.

[37] David J. Kinniment and Viv Woods. Synchronisation and arbitration in digital sys-

tems. Proc. IEEE, 123(10):961–966, October 1976.

[38] Tong Lin, Kwen-Siong Chong, Bah-Hwee Gwee, and Joseph S. Chang. Fine-grained

power gating for leakage and short-circuit power reduction by using asynchronous-

logic. In Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on,

pages 3162–3165, May 2009.

[39] Ying Liu, S.R. Nassif, L.T. Pileggi, and A.J. Strojwas. Impact of interconnect vari-

ations on the clock skew of a gigahertz microprocessor. In Design Automation Con-

ference, 2000. Proceedings 2000. 37th, pages 168–171, 2000.

132

REFERENCES

[40] Yu Liu, Xuguang Guan, Yang Yang, and Yintang Yang. An asynchronous low latency

ordered arbiter for network on chips. In Natural Computation (ICNC), 2010 Sixth

International Conference on, volume 2, pages 962–966, August 2010.

[41] Kia Seng Low and Alex Yakovlev. Token ring arbiters: an exercise in asynchronous

logic design with Petri nets, 1995.

[42] Daniele Ludovici, Alessandro Strano, Davide Bertozzi, Luca Benini, and Georgi N.

Gaydadjiev. Comparing tightly and loosely coupled mesochronous synchronizers

in a NoC switch architecture. In 3rd ACM/IEEE International Symposium on Networks

on Chip, pages 244 – 249, May 2009.

[43] O. Maevsky, D.J. Kinniment, Alex Yakovlev, and Alex Bystrov. Analysis of the oscil-

lation problem in tri-flops. EECE, 1:381 – 384, May 2002.

[44] Alain J. Martin. On Seitz’s arbiter. Technical Report 5212:TR:86, Caltech Computer

Science, 1986.

[45] Alain J. Martin. Collected papers on VLSI design. In Caltech-CS-TR-90-09, Dept. of

Computer Science, Caltech, 1990.

[46] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In

Proceedings of the sixth MIT conference on Advanced research in VLSI, pages 263–278,

Cambridge, MA, USA, 1990. MIT Press.

[47] Alain J. Martin. Programming in VLSI: From communicating processes to delay-

insensitive circuits. In C. A. R. Hoare, editor, Developments in Concurrency and Com-

munication, UT Year of Programming Series, pages 1–64. Addison-Wesley, 1990.

[48] Alain J. Martin. Synthesis of asynchronous vlsi circuits. Technical Report

CaltechCSTR:1991.cs-tr-93-28, California Institute of Technology, 1991.

[49] T.G. Mattson, R. Van der Wijngaart, and M. Frumkin. Programming the intel 80-core

network-on-a-chip terascale processor. In High Performance Computing, Networking,

Storage and Analysis, 2008. SC 2008. International Conference for, pages 1 –11, nov. 2008.

133

REFERENCES

[50] A. Mokhov and Alex Yakovlev. Soft arbiters. Technical Report NCL-EECE-MSD-

TR-2009-149, Newcastle University, 2009.

[51] Andrey Mokhov. Conditional Partial Order Graphs. PhD thesis, Newcastle University,

September 2009.

[52] Andrey Mokhov, Victor Khomenko, and Alexandre Yakovlev. Flat arbiters. In

ACSD’09, pages 99–108, 2009.

[53] C.E. Molnar and I.W. Jones. Simple circuits that work for complicated reasons. In

Advanced Research in Asynchronous Circuits and Systems, 2000. (ASYNC 2000) Proceed-

ings. Sixth International Symposium on, pages 138–149, 2000.

[54] T.N. Mudge, J.P. Hayes, and D.C. Winsor. Multiple bus architectures. Computer,

20(6):42 –48, 1987.

[55] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proc. Int’l Symp.

Theory of Switching, Part 1, Harvard Univ. Press, pages 204–243, 1959.

[56] Tadao Murata. Petri nets: Properties, analysis and applications. In Proceedings of the

IEEE, volume 77, pages 541–580, April 1989.

[57] S.M. Nowick and D.L. Dill. Practicality of state-machine verification of speed-

independent circuits. Computer-Aided Design, 1989. ICCAD-89. Digest of Technical

Papers., 1989 IEEE International Conference on, pages 266–269, November 1989.

[58] Suhas S. Patil. n-server m-user arbiter. Technical report, Computation Structures

Group Memo 42, M.I.T., 1969.

[59] Suhas S. Patil. Forward acting n x m arbiter. Technical report, Computation Struc-

tures Group Memo 67, M.I.T., 1972.

[60] Suhas S. Patil. Synchronizers and arbiters. Technical Report Memo 91, MIT Press,

October 1973.

[61] R. C. Pearce, J. A. Field, and W. D. Little. Asynchronous arbiter module. IEEE Trans.

Comput., 24(9):931–932, 1975.

134

REFERENCES

[62] Carl Adam Petri. Kommunikation mit Automaten (Communicating with automata). PhD

thesis, 1962.

[63] W.W. Plummer. Asynchronous arbiters. Computers, IEEE Transactions on, C-21(1):37–

42, January 1972.

[64] Ivan Poliakov. Interpreted Graph Models. PhD thesis, Newcastle University, May 2011.

[65] Ivan Poliakov, Victor Khomenko, and Alex Yakovlev. Workcraft — a framework

for interpreted graph models. In PETRI NETS’09: Proc. of the 30th Int. Conf. on Ap-

plications and Theory of Petri Nets, pages 333–342, Berlin, Heidelberg, 2009. Springer-

Verlag.

[66] Jan M. Rabaey and Alberto Sangiovanni-vincentelli. System-on-a-chip - a platform

perspective.

[67] Leonid Rosenblum and Alex Yakovlev. Signal graphs: from self-timed to timed ones.

Int. Workshop on Timed Petri Nets, pages 199–206, July 1985.

[68] C. L. Seitz. Ideas about arbiters. Lambda, 1:10–14, 1980.

[69] Charles L. Seitz. System timing. In Mead Conway, editor, Introduction to VLSI Sys-

tems, chapter 7, pages 218–262. Addison-Wesley, Reading MA, 1980.

[70] Maitham Shams, Jo C. Ebergen, and Mohamed I. Elmasry. Modeling and compar-

ing CMOS implementations of the C-element. IEEE Transactions on VLSI Systems,

6(4):563–567, December 1998.

[71] D. Shang, A. Yakovlev, A. Koelmans, D. Sokolov, and A. Bystrov. Dual-rail with

alternating-spacer security latch design. Technical Report NCL-EECE-MSD-TR-

2005-107, Newcastle University, 2005.

[72] Delong Shang, Fei Xia, Stanislavs Golubcovs, and Alexandre Yakovlev. The magic

rule of tiles: Virtual delay insensitivity. In PATMOS, pages 286–296, 2009.

135

REFERENCES

[73] Yebin Shi, S.B. Furber, J. Garside, and L.A. Plana. Fault tolerant delay insensitive

inter-chip communication. In Asynchronous Circuits and Systems, 2009. ASYNC ’09.

15th IEEE Symposium on, pages 77–84, May 2009.

[74] Wei Song and Doug Edwards. Improving the throughput of asynchronous on-chip

networks with sdm. In Proc. of the UK Electronics Forum, June 2010.

[75] Jens Sparsø and Steve Furber. Principles of Asynchronous Circuit Design. Kluwer

Academic Publishers, ISBN: 978-0-7923-7613-2, Boston/Dordrecht/London, 2002.

[76] R.F. Sproull, I.E. Sutherland, and C.E. Molnar. The counterflow pipeline processor

architecture. Design Test of Computers, IEEE, 11(3):48, 1994.

[77] Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738, June

1989.

[78] Y. Tamir and H.-C. Chi. Symmetric crossbar arbiters for vlsi communication

switches. Parallel and Distributed Systems, IEEE Transactions on, 4(1):13–27, 1993.

[79] Alexander Taubin, Jordi Cortadella, Luciano Lavagno, Alex Kondratyev, and

Ad M. G. Peeters. Design automation of real-life asynchronous devices and sys-

tems. Foundations and Trends in Electronic Design Automation, 2(1):1–133, 2007.

[80] C.H. van Berkel and T. van Roermund. Scalable multi-input-multi-output queues

with application to variation-tolerant architectures. Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, 17(7):920 –923, july 2009.

[81] Victor I. Varshavsky, M. A. Kishinevsky, V. Marakhovsky, and Alex Yakovlev. Self-

Timed Control of Concurrent Processes: The Design of Aperiodic Logical Circuits in Com-

puters and Discrete Systems. Kluwer Academic Publishers, Dordrecht, The Nether-

lands, 1990.

[82] Tom Verhoeff. Delay-insensitive codes—an overview. Distributed Computing, 3(1):1–

8, March 1988.

136

REFERENCES

[83] Chandu Visweswariah. Death, taxes and failing chips. In DAC ’03: Proceedings of the

40th annual Design Automation Conference, pages 343–347, New York, NY, USA, 2003.

ACM.

[84] A.J. Winstanley, A. Garivier, and M.R. Greenstreet. An event spacing experiment. In

Asynchronous Circuits and Systems, 2002. Proceedings. Eighth International Symposium

on, pages 47 – 56, April 2002.

[85] Alex Yakovlev. Designing arbiters using Petri nets. VLSI Systems Research Center,

Israel Institute of Technology, Haifa, Israel, pages 179–201, 1995.

[86] Alex Yakovlev, A. Petrov, and L. Lavagno. A low latency asynchronous arbitration

circuit. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2(3):372–377,

Sep 1994.

137

Index

2-phase signalling, 28

4-phase, 45

4-phase handshake, 35, 57, 82, 89, 106

4-phase signalling, 28

accumulate and fire, 113

active, 10

active resource, 54

analogue arbiter, 30

analogue circuit, 11

analogue difference circuit, 32

arbiter, 3

arbiter channels, 29

arbitration cell, 31, 38

asymmetric fork, 12, 91

asynchronous circuit, 8, 87

delay-insensitive, 11

self-timed, 12

speed-independent, 11

bundled data, 22, 107

C-element, 15, 16

asymmetric, 16

CAD, 123

channel

active side, 20

passive side, 20

channel type, 19

biput channel, 19

nonput channel, 19

pull channel, 19

push channel, 19

circuit

input signal, 11

internal signal, 11

output signal, 11

circuit STG, 95

committee arbiter, 50, 54, 102

complete state coding, 16, 60

conflict, 16

completion detection, 20, 22, 109

critical path, 9

decision wait, 17

delay-insensitive, 9, 75, 91

delay-sensitive encoding, 22

digital arbiter, 30

digital circuit, 10, 87

dual-rail, 45

dummy transition, 15

138

INDEX

dynamic priority arbiter, 47

equipotential region, 90

excited signal, 10

fair arbitration, 30

FPGA, 33

GALS, 2

generalized arbiter

grant controller, 106

input channel, 106

locker, 106

pipelining, 113

grant controller, 63

grant phase, 104

handshake, 18

2-phase, 19

4-phase, 18

handshake activator, 81

handshake passivator, 81

hazard, 11

inactive, 10

interpreted graph model, 123

IP core, 1

isochronic fork, 12

mesh arbiter, 38

mesochronous synchronizers, 3

metastability, 28

Network-on-Chip, 2

next state function, 16

non-deterministic choice, 28

non-persistency, 11

nonput channel, 29

order of arbitration, 29

ordered arbiter, 44

passive resource, 54

path redundancy, 102

pending requests, 30

Petri net, 12, 28

1-safe, 14

boundedness, 14

deadlock, 14

post-set, 13

pre-set, 13

trace, 14

transition enabling, 13

transition firing, 13

priority arbiter, 5

priority module, 45

priority-based arbitration, 30

privilege token, 42

push channel, 82

RAID, 1

RAIM, 1

reach language, 95

read arc, 94

relative timing assumption, 91

139

INDEX

request controller, 63

return-to-zero, 28

RGD arbiter, 36

semi-automated decomposition, 56

semi-interchangeable resources, 102

signal inputs, 10

signal transition, 10

spacer, 20

stable signal, 10

static priority arbiter, 45

statistical fairness, 30

STG, 15, 28

simplified notation, 15

synchronization phase, 104

ternary metastability, 34

timing assumption, 26

timing assumptions, 12

toggle component, 17

toggle element, 88

tree arbiter cell, 40

true tiles, 108

unbounded delay, 28

Workcraft, 5, 86

140

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Motivation
	Main Contributions
	Organisation of Thesis
	Bibliography

	Background
	Asynchronous Circuits
	Digital Circuits
	Petri Nets
	Pre-set and Post-set
	Enabling and Firing
	Other PN Properties
	Signal Transition Graphs

	Asynchronous Circuit Primitives
	C-element
	Toggle Component
	Decision Wait Element

	Asynchronous Signalling
	Handshake Protocols
	Channel Types
	Delay-insensitive Encoding
	Dual-rail
	Bundled data Encoding

	Example of Logic Synthesis Using Petrify

	Review on Asynchronous Arbiters
	Introduction
	Arbiter-specific Properties
	Metastability
	Analogue arbiters
	The MUTEX Element
	Analogue 1-of-3 arbiter
	Analogue 2-of-3 Arbiter

	Two-way Arbiters
	4-phase Arbitration (RG)
	2-phase Arbitration (RGD)
	``Nacking'' Arbiter

	1-of-N Multi-way Arbiters
	Mesh-based Implementation
	Cascaded Tree Arbiters
	Token Ring
	Ordered Arbiters
	Priority Arbiters

	Multi-resource Arbiters
	Multi-token Arbiters
	Patil's Arbiter
	Committee arbiter

	Conclusions

	Concurrent Multi-Resource Arbiter: Design and Applications
	Introduction
	Design Method
	22 Arbiter Design
	Functionality
	Resolving the Conflict
	Implementation
	Verification of the Circuit
	Latency Estimation
	Simulation in Spectre
	Cost of the Parallelism

	Extending up to NM Arbiters
	Column/row Blocking
	Ring-based Blocking
	Latency Estimation
	Simulation in Spectre
	Fairness of the Arbiter

	Multi-resource Arbiter for Passive Resources
	Task Specification
	Implementation of the Ring Cell
	Implementation of the Client Controller and Token Controller
	Latency Estimation
	Comparison with Patil's Arbiter

	Designing MIMO Queues
	MIMO Performance Comparison

	Conclusions

	Gate-level Design Flow
	Introduction
	Features of the Gate-level Design Flow
	Basic Plugin Components
	Gates of High Complexity
	Delay-Insensitive Circuits
	Circuits with Timing Assumptions
	High-level Models
	State Space Exploration
	Circuits with MUTEX Elements

	Analysis of Priority Arbiter
	Conclusions

	Design of Generalized Arbiter
	Introduction
	Arbiter Design
	Design Method
	Basic Structure
	Decomposition
	High Performance
	Avoiding Deadlocks
	Circuit Verification

	Possible Extensions
	Performance Estimations
	Priority 2-of-3 Arbitration
	Pipelined Arbiter Scaling

	Conclusions

	Conclusions
	Summary of Contribution
	Future Work

	Summary on Asynchronous Arbiters
	Workcraft Interface
	Main Window
	Basic Mouse Controls

	Common Operation Modes
	STG Plugin Operation Modes
	Digital Circuit Plugin Operation Modes
	Conversion to the Circuit STG
	Simulation
	Verification

	References

