
µSystems Research Group

School of Electrical and Electronic Engineering

Design of Asynchronous Microprocessor for
Power Proportionality

Maxim Rykunov

Technical Report Series

NCL-EEE-MICRO-TR-2013-182

December 2013

Contact: maxim.rykunov@ncl.ac.uk

Supported by EPSRC grant EP/I038357/1 and EP/K503885/1

NCL-EEE-MICRO-TR-2013-182

Copyright © 2013 Newcastle University

µSystems Research Group

School of Electrical and Electronic Engineering

Merz Court

Newcastle University

Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

Contents

List of Figures viii

List of Tables xii

Acknowledgements xv

1 Introduction 1

1.1 Power proportionality and reconfigurability 4

1.2 Asynchronous approach in power-proportional design 6

1.3 Research contribution . 9

1.4 Organisation of the thesis . 11

2 Background 13

2.1 Asynchronous systems . 14

2.1.1 Classes of asynchronous circuits . 15

2.1.2 Datapath encoding schemes . 16

2.2 Essentials of Conditional Partial Order Graph formalism 18

2.2.1 Essentials of CPOGs . 18

2.3 Intel 8051 Microcontroller . 20

2.3.1 Introduction . 21

2.3.2 Intel 80C51 microprocessor core . 21

2.3.3 Instruction Set and addressing modes 22

2.3.4 Overview of Asynchronous Intel 8051 implementations 26

2.4 Power-proportional computing . 27

iii

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

3 The design of Instruction Set Architecture 30

3.1 Which ISA to choose? . 31

3.1.1 Existing ISA approaches and challenges 33

3.2 Specification of instructions CPOG model . 35

3.2.1 Specification of instructions . 36

3.2.2 From instructions to instruction sets 38

3.3 Transformations . 39

3.3.1 Composition . 40

3.3.2 Global transformations . 45

3.3.3 Local transformations . 46

3.3.4 Mapping to logic gates . 47

3.4 Functional correctness . 50

3.4.1 General Event-B methodology . 50

3.4.2 Modelling instructions . 51

3.5 Case study . 56

3.5.1 Derivation of the instruction set . 59

3.5.2 Verification of correctness . 61

3.6 Conclusions . 64

4 Design of an Asynchronous 8051 Microprocessor 66

4.1 Asynchronous 8051 architecture and instruction set 68

4.2 Specification of the control logic . 71

4.2.1 Top level control logic . 71

4.2.2 ALU control logic . 80

4.2.3 Interpretation using Parameterised Graph 84

4.3 Datapath description . 84

4.3.1 Arithmetic Logic Unit . 85

4.3.2 Program Counter Increment Unit (PCIU) 90

4.3.3 Instruction Fetch Unit (IFU) . 91

4.3.4 Memory Access Unit (MAU) . 92

NCL-EEE-MICRO-TR-2013-182, Newcastle University iv

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

4.3.5 Stack Increment/Decrement Unit (SIDU) 92

4.3.6 Delay Registers (DR) . 93

4.3.7 Interrupt handler . 93

4.3.8 Communication protocol between control and datapath units 96

4.4 Optimisations . 97

4.4.1 Proposed extended microprocessor datapath 97

4.4.2 Proposed adjustable delay lines . 99

4.4.3 Fault tolerance . 100

4.5 Design for test . 101

4.5.1 The fault types and DFT techniques 101

4.5.2 DFT techniques . 103

4.6 Conclusions . 104

5 Implementation of the Asynchronous 8051 microprocessor demonstrator chip 105

5.1 Introduction . 106

5.2 Control logic implementation . 108

5.2.1 Implementation of the Top-level and ALU control logics 109

5.3 Datapath implementation . 111

5.3.1 Synthesis of the Arithmetic Logic Unit 113

5.3.2 PCIU implementation . 118

5.3.3 Design of the IFU and delay registers 118

5.4 Verification of the entire chip and sign-off for the ASIC 119

5.4.1 The complete design simulation . 120

5.4.2 Chip layout and final verification . 122

5.5 Testing board . 124

5.6 Measurements and results . 125

5.7 Summary . 137

6 Conclusion 139

6.1 Main contributions . 139

NCL-EEE-MICRO-TR-2013-182, Newcastle University v

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

6.2 Future research directions . 141

A PO representation of the 8051 instruction Set 143

A.1 Class A . 144

A.2 Class B . 145

A.3 Class C . 145

A.4 Class D . 146

A.5 Class E . 147

A.6 Class F . 148

A.7 Class G . 149

A.8 Class H . 150

A.9 Class I . 150

A.10 Class J . 151

A.11 Class K . 152

A.12 Class L . 152

A.13 Class M . 153

A.14 Class N . 153

A.15 Class O . 154

A.16 Class P . 155

A.17 Class Q . 156

A.18 Class R . 156

A.19 Class S . 157

A.20 Class T . 157

A.21 Class U . 158

A.22 Class V . 158

A.23 Class W . 159

A.24 Class X . 159

A.25 Class Y . 160

A.26 Class Z . 161

A.27 Class AA . 161

NCL-EEE-MICRO-TR-2013-182, Newcastle University vi

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.28 Class AB . 162

A.29 Class AC . 163

A.30 Class AD . 164

A.31 Class AE . 165

A.32 Class AF . 166

A.33 Class AG . 167

A.34 Class AH . 168

A.35 Class AI . 169

A.36 Class AJ . 170

A.37 Class AK . 171

A.38 Interrupt . 171

B Boolean equations for microcontroller synthesis 173

B.1 Boolean equations for the Top-level microcontroller 173

B.2 Boolean equations for the ALU microcontroller 179

C Interpretation using Parameterised Graph 187

D Detailed bonding diagram of the chip 188

E Code for I/O pin reassignment 191

Bibliography 193

NCL-EEE-MICRO-TR-2013-182, Newcastle University vii

List of Figures

1.1 Power-proportionality versus power-efficiency 2

1.2 Two different power-proportional design . 3

1.3 Gate delay variability versus voltage supply. 7

1.4 Traditional and energy-modulated system view. 8

2.1 Dual-rail protocol . 17

2.2 Graphical representation of CPOGs . 19

2.3 CPOG projections: H|x=1 (left) and H|x=0 (right) 20

2.4 Organisation of the internal memory in the Intel 8051 microprocessor . . . 22

2.5 Architecture of a synchronous Intel 8051 microprocessor 23

3.1 Specification and synthesis flow . 36

3.2 Graph composition . 44

3.3 Datapath interface architecture . 48

3.4 Signal-level refinement . 49

3.5 Handshake controllers . 50

3.6 Event-B model structure . 52

3.7 Datapath components for DP3 implementation 56

3.8 Different implementations of DP3 instruction 58

3.9 Complete instruction code . 59

3.10 CPOG specification of DP3 instruction . 60

3.11 Machine for the least latency implementation 63

viii

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

4.1 Conceptual view of the design process . 67

4.2 Architecture of the proposed microprocessor (dashed lines represent a 1

bit wide signal line, the width of other connections is shown in brackets) . 70

4.3 PO representation of the instructions from class E 73

4.4 CPOG specifications of CJNE instruction . 76

4.5 Representation of Huffman Encoding tree of Partial order classes 77

4.6 Complete instruction set in CPOG representation 79

4.7 Examples PO Projections in the whole instruction set 80

4.8 CPOG representation of ALU control . 83

4.9 ALU internal structure . 86

4.10 Datapath block internal structure . 87

4.11 Handshakes merge controller . 89

4.12 Top-level structure of the PCIU . 90

4.13 PO representation of interrupt handling . 96

4.14 Configurable datapath component with adjustable delay line 99

4.15 Implementation of the Delay registers using the Scan-chain technique . . 103

5.1 Stages of the design flow . 107

5.2 Waveform of example PO simulation . 110

5.3 Simulation of the merge controller accompanied with an adjustable delay

line . 115

5.4 Simulation waveforms of the synthesised ALU 116

5.5 Simulation of the PCIU component . 118

5.6 Simulation of loading Delay Codes to the Delay Registers 119

5.7 Waveforms of the complete design simulation 120

5.8 Various views of the design during P&R . 123

5.9 Bonding diagram and packaged ASIC . 124

5.10 The PCB and FPGA boards . 126

5.11 Loading of Delay registers captured by Digital signal analyser 126

5.12 Oscilloscope screenshots for NOP instructions on variable voltage 128

NCL-EEE-MICRO-TR-2013-182, Newcastle University ix

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

5.13 Oscilloscope screenshots of different instruction’s execution 129

5.14 Measured EPI when Vdd changes for NOP instruction 130

5.15 Measured power consumption when Vdd changes for NOP instruction . . . 130

5.16 Measured latency when Vdd changes for NOP instruction 130

5.17 Measured current when Vdd changes for NOP instruction 131

5.18 Measured EPI when Vdd changes for SJMP instruction 131

5.19 Measured power consumption when Vdd changes for SJMP instruction . . 131

5.20 Measured latency when Vdd changes for SJMP instruction 132

5.21 Measured current when Vdd changes for SJMP instruction 132

5.22 Measured EPI when Vdd changes for ADD instruction 132

5.23 Closer look of a measured EPI when Vdd changes for ADD instruction . . . 133

5.24 Measured power consumption when Vdd changes for ADD instruction . . . 133

5.25 Measured latency when Vdd changes for ADD instruction 133

5.26 Measured current when Vdd changes for ADD instruction 134

5.27 Measured EPI when Vdd changes for MUL instruction 134

5.28 Closer look of a measured EPI when Vdd changes for MUL instruction . . . 134

5.29 Measured power consumption when Vdd changes for MUL instruction . . . 135

5.30 Measured latency when Vdd changes for MUL instruction 135

5.31 Measured current when Vdd changes for MUL instruction 135

A.1 PO representation for instructions from class A 144

A.2 PO representation for instructions from class B 145

A.3 PO representation for instructions from class C 145

A.4 PO representation for instructions from class D 146

A.5 PO representation for instructions from class E 147

A.6 PO representation for instructions from class F 148

A.7 PO representation for instructions from class G 149

A.8 PO representation for instructions from class H 150

A.9 PO representation for instructions from class I 150

A.10 PO representation for instructions from class J 151

NCL-EEE-MICRO-TR-2013-182, Newcastle University x

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.11 PO representation for instructions from class K 152

A.12 PO representation for instructions from class L 152

A.13 PO representation for instructions from class M 153

A.14 PO representation for instructions from class N 153

A.15 PO representation for instructions from class O 154

A.16 PO representation for instructions from class P 155

A.17 PO representation for instructions from class Q 156

A.18 PO representation for instructions from class R 156

A.19 PO representation for instructions from class S 157

A.20 PO representation for instructions from class T 157

A.21 PO representation for instructions from class U 158

A.22 PO representation for instructions from class V 158

A.23 PO representation for instructions from class W 159

A.24 PO representation for instructions from class X 159

A.25 PO representation for instructions from class Y 160

A.26 PO representation for instructions from class Z 161

A.27 PO representation for instructions from class AA 161

A.28 PO representation for instructions from class AB 162

A.29 PO representation for instructions from class AC 163

A.30 PO representation for instructions from class AD 164

A.31 PO representation for instructions from class AE 165

A.32 PO representation for instructions from class AF 166

A.33 PO representation for instructions from class AG 167

A.34 PO representation for instructions from class AH 168

A.35 PO representation for instructions from class AI 169

A.36 PO representation for instructions from class AJ 170

A.37 PO representation for instructions from class AK 171

A.38 PO representation for the interrupt handler 172

D.1 The bonding diagram of the chip . 190

NCL-EEE-MICRO-TR-2013-182, Newcastle University xi

List of Tables

2.1 Dual-rail data encoding . 17

3.1 Two instructions specified as partial orders 37

4.1 Function components extracted from ISA . 72

4.2 Specification of functioning components in ALU 81

4.3 Breakdown of opcodes for instructions from group A 82

4.4 Structure of the PSW register . 88

4.5 Structure of the “Work” register . 88

4.6 Structure of the Delay Registers set . 94

4.7 Comparisons between different implementations of arithmetic logic 98

5.1 Additional information for simulations . 121

5.2 Performance comparison with other 8051 versions 137

A.1 List of all instructions from class A . 144

A.2 List of all instructions from class B . 145

A.3 List of all instructions from class C . 146

A.4 List of all instructions from class D . 147

A.5 List of all instructions from class E . 148

A.6 List of all instructions from class F . 149

A.7 List of all instructions from class G . 150

A.8 List of all instructions from class H . 150

A.9 List of all instructions from class I . 151

xii

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.10 List of all instructions from class J . 151

A.11 List of all instructions from class K . 152

A.12 List of all instructions from class L . 152

A.13 List of all instructions from class M . 153

A.14 List of all instructions from class N . 154

A.15 List of all instructions from class O . 154

A.16 List of all instructions from class P . 155

A.17 List of all instructions from class Q . 156

A.18 List of all instructions from class R . 156

A.19 List of all instructions from class S . 157

A.20 List of all instructions from class T . 157

A.21 List of all instructions from class U . 158

A.22 List of all instructions from class V . 158

A.23 List of all instructions from class W . 159

A.24 List of all instructions from class X . 159

A.25 List of all instructions from class Y . 160

A.26 List of all instructions from class Z . 161

A.27 List of all instructions from class AA . 162

A.28 List of all instructions from class AB . 162

A.29 List of all instructions from class AC . 163

A.30 List of all instructions from class AD . 164

A.31 List of all instructions from class AE . 165

A.32 List of all instructions from class AF . 166

A.33 List of all instructions from class AG . 167

A.34 List of all instructions from class AH . 168

A.35 List of all instructions from class AI . 169

A.36 List of all instructions from class AJ . 170

A.37 List of all instructions from class AK . 171

NCL-EEE-MICRO-TR-2013-182, Newcastle University xiii

Abstract
Microprocessors continue to get exponentially cheaper for end users following Moore’s
law, while the costs involved in their design keep growing, also at an exponential rate.
The reason is the ever increasing complexity of processors, which modern EDA tools
struggle to keep up with. This makes further scaling for performance subject to a high
risk in the reliability of the system. To keep this risk low, yet improve the performance,
CPU designers try to optimise various parts of the processor. Instruction Set Architec-
ture (ISA) is a significant part of the whole processor design flow, whose optimal design
for a particular combination of available hardware resources and software requirements
is crucial for building processors with high performance and efficient energy utilisation.
This is a challenging task involving a lot of heuristics and high-level design decisions.
Another issue impacting CPU reliability is continuous scaling for power consumption. For
the last decades CPU designers have been mainly focused on improving performance, but
“keeping energy and power consumption in mind”. The consequence of this was a deve-
lopment of energy-efficient systems, where energy was considered as a resource whose
consumption should be optimised. As CMOS technology was progressing, with feature
size decreasing and power delivered to circuit components becoming less stable, the
energy resource turned from an optimisation criterion into a constraint, sometimes a cri-
tical one. At this point power proportionality becomes one of the most important aspects
in system design. Developing methods and techniques which will address the problem
of designing a power-proportional microprocessor, capable to adapt to varying operating
conditions (such as low or even unstable voltage levels) and application requirements in
the runtime, is one of today’s grand challenges. In this thesis this challenge is addressed
by proposing a new design flow for the development of an ISA for microprocessors, which
can be altered to suit a particular hardware platform or a specific operating mode. This
flow uses an expressive and powerful formalism for the specification of processor instruc-
tion sets called the Conditional Partial Order Graph (CPOG). The CPOG model captures
large sets of behavioural scenarios for a microarchitectural level in a computationally
efficient form amenable to formal transformations for synthesis, verification and automa-
ted derivation of asynchronous hardware for the CPU microcontrol. The feasibility of
the methodology, novel design flow and a number of optimisation techniques was proven
in a full size asynchronous Intel 8051 microprocessor and its demonstrator silicon. The
chip showed the ability to work in a wide range of operating voltage and environmental
conditions. Depending on application requirements and power budget our ASIC supports
several operating modes: one optimised for energy consumption and the other one for
performance. This was achieved by extending a traditional datapath structure with an
auxiliary control layer for adaptable and fault tolerant operation. These and other opti-
misations resulted in a reconfigurable and adaptable implementation, which was proven
by measurements, analysis and evaluation of the chip.

xiv

Acknowledgements
Thought only my name appears on the cover of this thesis, a great number of people have
contributed to its success.

First and foremost, I would like to express my sincere gratitude to my supervisor,
Prof. Alex Yakovlev. I have been amazingly fortunate to have such a patient, enthusiastic
and trustworthy advisor with immense knowledge, which he is available to share on a
24/7 basis. Alex was the one introduced me to world of asynchronous systems to me and
guided me throughout my PhD research. I am also grateful to Prof. Vladimir Davydov, who
was my undergraduate supervisor in Saint-Petersburg State Polytechnical University in
Russia.

My sincere thanks also goes to my co-advisor, Dr. Albert Koelmans, who has been
always there to give a good piece of advice. I am also grateful to him for consistent
notation in my writings and for carefully reading and commenting on countless revisions
of this and other publications throughout the research.

I am thankful to another my good friend and a person whose PhD research motivated
me to develop novel approaches in microprocessor design – Andrey Mokhov. His encou-
ragement, practical advice and insightful discussions about the research helped me to
overcome many difficult situations and finish this dissertation.

My special thanks goes to Danil Sokolov, Reza Ramezani, Arseniy Alekseyev, Fei Xia,
Delong Shang, Alex Bystrov, Raa’ed Aldujaily, and other colleagues in the Microelectro-
nics System Design Group for insightful comments, constructive criticisms and help.

I am also indebted to all the laboratory technicians in our school for their practi-
cal advice and many insightful discussions and suggestions, in particularity to Darren
Mackie, who helped us a lot at the stage of the developing of the demonstrator PCB.

Lastly but most importantly, none of this would have been possible without the love,
support and patience of my family. My family and my fiancé, Alena, to whom this disserta-
tion is dedicated to, has been always there for me and believed in me even when I myself
could not. Many thanks to all my friends for their support, motivation and inspiration.

Finally, I appreciate the financial support by EPSRC grant EP/I038357/1 (eFutu-
resXD, project PowerProp) that funded research on power-proportionality and EPSRC
Impact Acceleration Account project "Dataflow Computation a la Carte" EP/K503885/1
that supported prototyping and commercialisation activities.

xv

Chapter 1

Introduction

Since 2007 our society has used more energy for browsing the Internet than for air tra-

vel [79]. It is also predicted that the energy (and environmental) footprint of computation

and data traffic will steadily increase in the near future: data centres will grow and so

will the network infrastructure, together with the number of terminal nodes of the global

information network such as computers, mobile phones, gadgets and other connected

cyber-physical devices (the so called Internet of Things). Energy-efficiency of compo-

nents at all levels of the computation hierarchy is thus becoming a major concern for the

microelectronics industry. A serious factor impeding progress in addressing this concern

is a wide gap between the ways in which energy efficiency is approached by hardware

and software engineers, and this gap is matched by a lack of mutual understanding

between the two communities.

To address this issue we discuss an approach to bridge this gap by developing a sha-

red design criterion, called power-proportionality, on the basis of which both electronics

and programming solutions can be judged. A computing system, for it to be considered

power-proportional, has to keep power consumption and computation load proportional

to each other [163]. That is, an idle system would ideally consume no power, whereas,

given a small energy budget, the system would respond by reducing its computation

flow and reduce the delivered Quality-of-Service (QoS), and still remain functional. The

state-of-the-art systems have a generally poor power-proportionality; for example, the

1

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

servers used in data centres typically consume 50-60% of peak power under 10% of peak

load [98]. Figure. 1.1 depicts the idea of energy-proportionality and its relation to the

delivered QoS. The left plot represents the notion of energy-proportional computing [18],

where in a real design there is a particular level of minimum energy per operation, which

does not decrease no matter how low the activity of the design goes. However, energy-

proportionality is a property in which even at small amounts of energy level some useful

activity can still be generated (the optimal design). One can look at this chart from a

different angle (see the right hand-side plot), where the activity level axis is shown as

the delivered QoS and the energy per action represented as power level. From this point

of view, QoS in a real design decreases much quicker than its power level, and therefore

the design effort is to increase the delivered QoS in low power supply conditions.

Figure 1.1: Power-proportionality versus power-efficiency

Often it is very difficult to design both power-proportional and energy-efficient sys-

tems at the same time. Figure 1.2 shows two power-proportional designs: one (Design

1) is more energy-efficient at low power levels, while the other is more efficient at high

power levels. If one wants to build a system that is both power-proportional and power-

efficient in a wide range of supply voltages, the best way is to build a hybrid solution,

which combines the strengths of both designs. Hence Design 1 could be used in idle

mode and Design 2 in full power mode.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 2

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 1.2: Two different power-proportional design

So why are modern systems not power-proportional? We hypothesise that this is

because they are designed to operate in a narrow range of conditions and are typically

optimised for either high performance or low power consumption. This approach is inhe-

rently flawed because all the design effort is focused on one particular operation mode.

Hence Integrated Circuits (ICs) developers diversify from general-purpose processing with

a single CPU into the realm of System on Chips (SoCs) with multiple specialised cores

combined in a single design to efficiently serve a range of predefined applications. Such

functional diversification is also motivated by production costs, design reuse, producti-

vity issues and time-to-market constraints. This trend has given rise to the development

of application-specific processing cores [91]. At design time, application-specific cores

are just instantiated with little or no effort on their joint optimisation, e.g., for better

utilisation of hardware components or for improved reliability of the whole system. All

functional adaptation to the needs of a particular application is made at run time, by

activating one (or a few) of the specialised cores. An example of such a heterogeneous

architecture is Cell microprocessor developed by the Sony-Toshiba-IBM alliance [64]. It

combines a general-purpose core of modest performance with eight high-performance

coprocessing elements. The general-purpose core runs an OS and schedules tasks onto

the specialised cores to accelerate multimedia applications.

In addition to functional diversification there is a significant demand for systems

NCL-EEE-MICRO-TR-2013-182, Newcastle University 3

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

that operate in a wider spectrum of operating conditions (in terms of performance, energy

consumption, reliability, etc.). This non-functional diversification is apparent in a recently

announced ARM’s big.LITTLE architecture [14]. It couples a low-power core with a high-

performance core in order to dynamically adjust the computation resource and power

consumption of the system. Nvidia extends this approach to multi-core processors by

introducing a low-power "companion" core to its quad-core Tegra series of SoCs [119].

The companion core is manufactured using a low-power silicon process and operates at

a low clock rate, while the four main cores are performance-oriented. In both ARM and

Nvidia architectures, the running state can be quickly transferred between the cores,

thus efficiently switching between the low-power and high-performance modes.

The existing techniques split the functionality over several processor cores. That is

mostly driven by pressures of productivity, backward compatibility issues and design

reuse requirements. Intertwining the functional and non-functional diversities in a he-

terogeneous system results in a huge design exploration space for all combinations of

operating modes and system functionalities. It is very hard to meet the time-to-market

demands by considering the cores of such a system individually.

In light of the above, CPU engineers currently focus on the design and implemen-

tation of power-proportional microprocessors, capable of adapting to varying operating

conditions (such as low and/or unstable power voltage level) and application require-

ments (mode of software execution) in runtime.

1.1 Power proportionality and reconfigurability

How can one build a reconfigurable and adaptable processor? The first thought could

be to implement it in Field-Programmable Gate Array (FPGA) [58] technology, allowing

static and, sometimes, dynamic reconfiguration. Such a processor would be capable of

adjusting its internal structure or behaviour by rewiring the interconnections between its

components or even by changing its functionality at the level of individual components.

This technology can provide fine-grained control over a system at runtime. However

the associated overheads are extremely high. In particular, in terms of energy consump-

NCL-EEE-MICRO-TR-2013-182, Newcastle University 4

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

tion, FPGAs are typically more expensive than Application-Specific Integrated Circuits

(ASICs).

Since the fine-grain reconfigurability offered by FPGAs is overly costly, one must

consider the coarse-grain reconfigurable architectures in the ASIC realm. They signifi-

cantly lower the overheads by dropping reconfigurability in datapath components and

utilising custom designed versions instead. The control logic and interconnect fabric,

however, retain the capability to reconfigure. The key design and implementation chal-

lenge is to formally describe and synthesise a controller whose task is to coordinate hard

system resources (the datapath components and interconnects) according to the runtime

information on the availability of soft system resources (energy, time); the latter can also

include information on hardware faults in a system, thereby allowing the controller to

bypass faulty components whenever possible.

A conventional approach to the specification and synthesis of control logic is to employ

Finite State Machines (FSMs) [118] or interpreted Petri Nets (PNs) [50] as an underlying

modelling formalism. Within this approach the designer explicitly describes the control-

ler’s behaviour for each combination of available resources and operating conditions. The

number of such combinations and corresponding behaviours grows exponentially with the

size and degree of adaptability of the system. This leads not only to the state space

explosion problem, but also to the explosion of the specification size [107], thus slowing

down the synthesis tools, reducing productivity, and increasing the overall cost of ASIC

development.

Our approach is based on the crucial observation that the controller’s behaviours

are strongly related to each other in different operating conditions. Indeed, when a

system configuration is changed incrementally, e.g., a datapath component goes offline

and another is used in its place, the overall behaviour of the controller is affected in the

same incremental manner, hence it is inefficient to separate these two similar behaviours

in different specifications, and one would want to have a joint configuration.

It has been demonstrated that the FSM and PN formalisms are not well-suited to

describing families of many related behaviours [107] and the design methodologies based

NCL-EEE-MICRO-TR-2013-182, Newcastle University 5

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

on them have poor scalability in the context of reconfigurable systems. As an alternative,

the Conditional Partial Order Graph (see Section 2.2) model was introduced in [107]. This

model enables us to specify and synthesise the whole processor as a homogeneous sys-

tem, but still retain the ability to change its behaviour in order to meet the application’s

functional requirements and adjust to the selected operating mode.

Power-proportionality can also be tackled from a system-level point of view. In the

next section we address the main digital-logic design philosophies in the aspect of power-

modulated computing.

1.2 Asynchronous approach in power-proportional design

At the system-level, there are three general digital-logic design approaches: the (clo-

cked) synchronous [84], the (clock-free) asynchronous [111, 139] and the hybrid globally

asynchronous locally synchronous (GALS) [37].

In synchronous systems, operations between circuits are synchronised to a global

timing reference (a global clock). The clock frequency in these systems is set in such a

way that the operational time of all its components should be within the period of the

clock, hence the highest clock frequency of the whole system is defined by the critical

path of its slowest block. In order to improve performance and energy consumption1,

the clock frequency of the system needs to be adjusted (e.g. Multi-level Voltage Scaling

(MVS), Dynamic Voltage and Frequency Scaling (DVFS) [129], etc.) to match the critical

path of is components, as the environment conditions vary along with specific operating

modes. Figure 1.3 (The figure was taken from analysis of gate delay timing variability

on a various voltage supply for a 90nm process [33]) shows that synchronous designs

operate only on a narrow voltage range and gate timing variability, hence they are not

providing robust computations in variable operating conditions.
1With a current multi-billion transistor design distribution of a global clock in the entire system could

be costly in terms of area and power (up to 40% of the total chip power consumed by the clock distribution
network [54]).

NCL-EEE-MICRO-TR-2013-182, Newcastle University 6

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 1.3: Gate delay variability versus voltage supply.

Asynchronous (or self-timed) systems (see Section 2.1), on the other hand, have no

distributed clock tree, they are event-driven. Their computations are triggered upon

request, and they happen at their fastest possible speed in the specified operation and

variation space. Moreover, there are no additional frequency adjustments, as required

by the clocked approach. Self-timed logic provides better timing robustness under a

variable voltage (Figure. 1.3 (“Design with timing assumptions” and “Delay insensitive

design” areas)). An example of such a relationship can be found in Figure. 1.2, where

Design 1 uses a speed-independent approach for a circuit which is built from dual-rail

components with completion detection. On the one hand this design is more robust to

delay variations due to low voltage supply levels, on the other it requires more power

due to its additional circuitry. Design 2 employs a bundled-data approach, thus it is less

timing robust on low power levels but has much less overhead for a nominal Vdd. In the

NCL-EEE-MICRO-TR-2013-182, Newcastle University 7

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

light of the above, the best way to implement a system that is both power-proportional

and power-efficient in a wide range of supply voltage levels is to produce a hybrid design,

as discussed earlier.

Let us now consider another example with two system design approaches, shown in

Figure 1.4: a traditional clock-driven design and a self-timed energy-modulated system.

Figure 1.4: Traditional and energy-modulated system view.

Both of the examples contain several operating modes, i.e. idle mode, data processing

(DP, DP1, DP2, etc.), communicating (comms), etc., each of which becomes active and

performs to a certain level of quality in response to some level of power supply. In

traditional (synchronous) systems the range of operating voltages for a specific mode

is narrow. Therefore in a variable voltage supply we could have long breaks before

a particular mode can be used. However in the asynchronous example this operating

voltage range is much wider, hence these modes can start operating much earlier, and

therefore we have a seamless transition between different modes as the power supply

changes.

In light of the above, asynchronous methods are more suitable for design of power-

proportional systems and can help to address the grand challenge of developing and

producing asynchronous power-proportional designs.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 8

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

The next section outlines research goals and overall contribution of the thesis.

1.3 Research contribution

The first stage of the research investigated the various models and formalisms (PN, FSMs,

etc.) for control logic synthesis, as well as different methodologies for asynchronous

systems design. Particular attention was paid to the Conditional Partial Order Graph

(CPOG) methodology. Its feasibility was later demonstrated by an implementation of an

asynchronous microcontroller [132].

As the research was progressing, the challenge became not only to implement a more

sophisticated example, using the CPOG formalism, but to develop a system which will

be able to meet a variety of functional requirements as well as be adjustable to the

wide range of operating modes. In other words, it should be reconfigurable and power-

proportional.

To demonstrate these ideas the Intel 8051 microprocessor was chosen. Its architecture

and implementation are reasonably old (1980s), however there are still plenty of devices

that use this CPU [7].

The main objective was to show the feasibility of our approach on a realistic micro-

processor architecture, so that it could be further applied to the design of modern CPU

architectures. In this aspect there are other interesting CPU architectures could be used

as a a vehicle for this work, for instance MSP430 CPU from Texas Instruments [146]. On

the one hand its original ISA contains only 27 instructions, which leads to a fairly simple

control logic and won’t show the capability and advantage of the CPOG method to work

on a larger scale instruction set, as it was shown on a bigger ISA of the Intel 8051. On

the other hand this simplicity of ISA can be used to expand the number of modes in

which instructions can be used and therefore show the advantage of the CPOG approach

to work with multi-modal systems.

The following outlines the most important contributions in this thesis:

• Propose a design flow for the development of instruction set architectures for a

microprocessor, which can be altered to suit a particular hardware platform or a

NCL-EEE-MICRO-TR-2013-182, Newcastle University 9

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

particular operating mode.

Following the discussions in the introduction, we developed an Instruction Set

Architecture (ISA) design flow. This flow uses a convenient and powerful formalism

for specification of processor instruction sets called the CPOG model.

• Development of an adaptive and reconfigurable system, based on an asynchro-

nous Intel 8051 microprocessor, with run-time adaptability of its functionality and

operation modes.

We implemented an asynchronous Intel 8051 CPU to demonstrate the feasibility

of the CPOG formalism and the proposed ISA design flow in the development of a

sophisticated microprocessor.

• Testing of the adaptive design by implementing a proof-of-concept ASIC and

evaluating its performance and power consumption.

The proposed reconfigurable design was implemented as a proof-of-concept ASIC.

The chip went through a series of tests and evaluation stages. Measured results

proved the feasibility of the proposed design flow and demonstrated the advantages

of the adaptive design.

This work has been conducted as part of the PowerProp project funded by EPSRC EFu-

turesXD. The main goal of this project was to address a wide development gap between

the ways of how energy efficiency is approached by hardware and software engineers.

Therefore this work required active involvement of researchers from both the microelec-

tronics and software engineering domains of Newcastle University. The project has also

been influenced by an intern-ship at Imagination Technologies during the winter of 2012,

where it was possible to experience the industrial aspects of hardware development and

fabrication.

The work conducted to the above research goal resulted in a number of publications:

1. M. Rykunov, A. Mokhov, A. Yakovlev, A. Koelmans, “Specification and synthesis of

processors using CPOG-based methodology”. Proceedings of the UK Electronics

Forum. Newcastle, UK, 2010.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 10

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

2. M. Rykunov, A. Mokhov, A. Yakovlev, A. Koelmans, “Automated Generation of Control

logic for Processor Architectures”. Proceedings of the UK Electronics Forum. Man-

chester, UK, 2011.

3. A. Mokhov, M. Rykunov, D. Sokolov, A. Yakovlev, “Formal modelling and transfor-

mations of processor instruction sets”. Proceedings of the 9th ACM/IEEE Interna-

tional Conference on Formal Methods and Models for Co-Design (MEMOCODE).

Cambridge, UK, 2011.

4. M. Rykunov, A. Mokhov, D. Sokolov, A. Yakovlev, A. Koelmans, “Reconfiguration Stra-

tegies for Hardware-Software Energy Awareness”. Proceedings of the UK Electro-

nics Forum. Newcastle, UK, 2012.

5. M. Rykunov, A. Mokhov, A. Yakovlev, A. Koelmans, “Automated generation of pro-

cessor architectures in embedded systems design”. Technical Report NCL-EECE-

MSD-TR-2010-164.; 2012.

6. A. Mokhov M. Rykunov D. Sokolov A. Yakovlev, A. Iliasov and A. Romanovsky, “Syn-

thesis of processor instruction sets from high-level ISA specifications”. IEEE Tran-

sactions on Computers, 2013.

7. M. Rykunov, A. Mokhov, D. Sokolov, A. Yakovlev and A. Koelmans, “Design-

for-Adaptivity of Microarchitectures”. Proceedings of the 24th IEEE Interna-

tional Conference on Application-specific Systems, Architectures and Processors

(ASAP13), Washington D.C., USA, 2013.

8. A. Mokhov, M. Rykunov, D. Sokolov, A. Yakovlev, “Towards Reconfigurable Processors

for Power-Proportional Computing”. Proceedings of the 12th IEEE Low Voltage Low

Power Conference (FTFC). Paris, France, 2013.

1.4 Organisation of the thesis

The rest of the thesis is organised as follows:

NCL-EEE-MICRO-TR-2013-182, Newcastle University 11

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Chapter 2 (Background) outlines the main classes of asynchronous circuits, gives an

introduction into the CPOG model, talks about the main features of Intel 8051 micropro-

cessor, its original architecture and an overview of various asynchronous implementations

and finally discusses the main aspects of power proportional computing techniques.

Chapter 3 (The Design of Instruction Set Architecture) outlines the main aspects of

designing instruction sets and presents a case study to show all benefits of the introduced

compositional approach.

Chapter 4 (Design of Asynchronous 8051 Microprocessor) describes the main stages

of the microprocessor design flow and provides implementation details for our asynchro-

nous 8051 microprocessor.

Chapter 5 (Application example : Implementation of the demonstration chip) ad-

dresses the development of the asynchronous 8051 microprocessor and its ASIC imple-

mentation, which covers synthesis, verification, fabrication and testing.

Chapter 6 (Conclusions) summarises the contribution of the thesis and outlines areas

of future work.

Appendix describes PO specifications of instructions in both control logics (the Top-

level and the ALU); shows Boolean equations from the mapping of the CPOGs; provides

more details on the bonding diagram of the chip.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 12

Chapter 2

Background

This chapter gives the main background information for this thesis. The following areas

are covered:

• Asynchronous systems

Section 2.1 introduces basic properties and classes of self-timed designs and ex-

plains the main types of communication protocols used in asynchronous circuits.

• Conditional Partial Order Graph methodology

In Section 2.2 we outline some essential information about a novel compositional

approach based on Conditional Partial Order Graphs.

• Intel 8051 microprocessor design and its asynchronous derivatives

The architecture and the main features of the Intel 8051 core are explained in

Section 2.3. Along with the original design we give a quick overview of its main

asynchronous variations.

• Power-proportional computing

In Section 2.2 we overview the main techniques currently used in the area of power-

proportional computing.

13

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

2.1 Asynchronous systems

Digital circuits register computation results when an operation completion signal is is-

sued. In synchronous circuits the role of such a signal belongs to a global clock whose

period is chosen to be long enough for all the circuit modules to complete the computa-

tion, thus exhibiting the worst case performance. Self-timed (or asynchronous) circuits

have no distributed clock tree, hence the completion detection is achieved by requesting

each module to indicate its progress independently, either through explicit completion

detection logic or by replicating the critical path in the form of a matching delay line [139].

This approach gives the following advantages, which contribute to the popularity of the

asynchronous design:

• Low power consumption. In a clocked design the distributed clock tree consumes

nearly half of the total power consumption [54]. It still dissipates dynamic power

even if there are no computations happening, just because it is clocked. There

is no clock in asynchronous designs, therefore no meaningless switching activity

(everything is event-driven) and no losses in power.

• Potentially higher performance. The maximum frequency of a clocked design is

determined by the global worst case latency, hence each next computational cycle

needs to wait for this delay. Self-timed systems are event-driven, i.e. the next

computational cycle starts immediately after the previous one has indicated its

completion. It should be mentioned that there are several techniques developed

(see Section 2.1.2) in order to detect the completion the previous computation stage.

• Low electromagnetic emission. The absence of a clock in self-timed systems leads

to lower levels of electromagnetic emission compared to the synchronous design.

This property can be used for security applications as in a clocked design it is easier

to extract information from it by using the clock patterns in its electromagnetic noise

profile as a reference for the data flow.

• Robustness towards process and supply voltages variations. The global worst

case latency in a synchronous design is determined for a very narrow safety mar-

NCL-EEE-MICRO-TR-2013-182, Newcastle University 14

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

gin on the process variation and operating conditions (i.e. voltage supply and

temperature), hence any significant change of these parameters may cause a mal-

functioning of the design. Self-timed circuits adjust to these variation naturally,

if the computation time of any of the units changes (due to these variations) the

performance of the whole system changes accordingly.

Despite these advantages the design and synthesis of asynchronous circuits are still

more of an academic exercise than the mainstream of the semiconductor industry. This

is due to significant changes required in the conventional design flow, the immaturity of

the software tools and long learning curve for engineers. The most successful commercial

solution is provided by Handshake Solutions [69] in their Timeless Design Environment

(TiDE). Its open-source alternative is the Balsa toolset [2]. Other examples of asynchro-

nous design flows are BESST [21], TAST [144], PipeFitter [120], etc.

2.1.1 Classes of asynchronous circuits

There are several classes of asynchronous circuit, that one can distinguish. The Delay

Insensitive (DI) class is the most robust to process and environmental variations [41]. The

DI approach makes no assumptions on wire or gate delays, therefore such circuits can

correctly operate with the unbounded gate and wire delay models (the formal specifica-

tion can be found in [149]). Despite these advantages very few examples of this class can

be found in real life due to significant difficulties of its implementation using standard

logic gates as well as performance and area overheads [94].

In order to be able to build practical circuits out of standard gates it is necessary

to loosen the DI restrictions, hence the Speed-independent (SI) approach was develo-

ped. Similar to the DI approach, SI circuits assume the unbounded gate delay model,

however the delay of wires is considered to be “negligible”, so that the output of one

gate is immediately propagated to another gate [111]. In 1960x the first asynchronous SI

microprocessor (ILLIAC II) was developed, which was the most powerful computer at the

time [112].

The Quasi Delay Insensitive (QDI) class assumes a “negligible” wire delay, as in SI

NCL-EEE-MICRO-TR-2013-182, Newcastle University 15

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

circuits, introduces the concept of the isochronic fork. This fork is a wire fanout, which

has matching signal transitions at all ends of the fork. In other words it is assumed that

there is no delays between the branches of wire fork [93].

There are numerous applications of QDI and SI circuits, some examples of which are

outlined in Section 2.3.

The presented approaches are classic ways for designing a self-timed circuit from

“scratch”. However the re-design of existing IP cores in an asynchronous style is not

acceptable for industry due to time to market constraints. Recently a less intrusive

desynchronisation technique found its way to commercial products [82]. It converts syn-

chronous circuits into asynchronous ones at a late stage of the conventional design flow,

thus reusing time-proved synchronous EDA tools. There are several ways to ensure

asynchronous operation of the resultant circuits, e.g. in the Nanochronous [114] imple-

mentation a copy of the circuit critical path is used to adapt the clocking speed to the

environment variations.

2.1.2 Datapath encoding schemes

There are two main commonly used datapath encodings used for implementing asynchro-

nous circuits: dual-rail and bundled-data protocols.

The bundled-data protocol represents each bit of data by one single wire. Request

and acknowledgement signals are separate and bundled with the data. Two signalling

disciplines can be exercised over a bundled-data channel – 2-phase and 4-phase. A

2-phase protocol indicates the availability of results by any change of the completion

signal. However in a 4-phase protocol the completion signal needs to return to zero,

representing the mandatory reset stage, before starting the next round of handshaking

operation. The 2-phase protocol is potentially faster than the 4-phase since there is a

latency overhead because of the mandatory reset phase, however the implementation of

it is much more complex and hard to design, therefore it often results in a large overhead

in terms of area and power consumption [139].

Opposite to the bundled-data approach the dual-rail protocol uses two wires to re-

NCL-EEE-MICRO-TR-2013-182, Newcastle University 16

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table 2.1: Dual-rail data encoding

State data
true

data
false Description

Empty 0 0

Reset or spacer state is used
after the recipient

acknowledged the data to
separate two valid data sets

Valid “1” 1 0 Logic “1”
Valid “0” 0 1 Logic “0”
Not valid 1 1 Not used

Figure 2.1: Dual-rail protocol

present one bit of data and one separate handshake signal, representing request and

acknowledgement. One of the data wires is called “data true” and the other – “data

false”. Both of them are used in a specific dual-rail data encoding (see Table 2.1 and

Figure 2.1).

Similar to the the bundled-data protocol, dual-rail can also be separated in to 4-phase

and 2-phase approaches. It is mandatory that in the 4-phase approach there should be a

spacer in-between two valid data symbols, however in the 2-phase approach each valid

data symbols comes immediately after another one has been acknowledged.

Comparing the bundled-data and the dual-rail protocols one can notice their respec-

tive advantages and disadvantages. The bundled-data protocol needs only a single wire

to represent one bit of data, this simplifies the datapath logic. This leads to smaller cir-

cuits, which consume much less power, compared to the dual-rail protocol. Generally with

proper delay matching, bundled-data circuits operate faster than the dual-rail protocol

especially with a large data bus, as the performance doesn’t suffer from the complicated

completion detection circuitry as in the the dual-rail protocol.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 17

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

In light of the above the bundled-data 4-phase protocol was chosen for our design

(see Section 4.1).

2.2 Essentials of Conditional Partial Order Graph formalism

Conditional Partial Order Graphs (CPOGs) are a novel compositional approach, which is

capable of capturing similar behavioural patterns, or event orders, in a compact functional

form. In particular this approach is beneficial for systems with many behavioural scena-

rios defined on the same set of primitive actions, e.g. CPU microcontrollers. Using this

approach the whole microcontroller’s design flow becomes highly efficient as it is based

only on structural methods and does not require exploration of the entire controller state

space or explicit enumeration of all its behavioural scenarios.

This section will focus on the essential information on the CPOG methodology, that

originally was developed on the basis of well-studied and closely related Partial Orders

(POs) and Directed Acyclic Graphs (DAGs) formalisms [23, 49, 90].

2.2.1 Essentials of CPOGs

A Conditional Partial Order Graph [107] (further referred to as CPOG or simply graph)

is a quintuple H= (V ,E,X,ρ,φ) where:

• V is a set of vertices which correspond to events (or atomic actions) in a modelled

system.

• E⊆ V×V is a set of arcs representing dependencies between the events.

• Operational vector X is a set of Boolean variables. An opcode is an assignment

(x1,x2, . . . ,x|X|) ∈ {0,1}|X| of these variables. An opcode selects a particular partial

order from those contained in the graph.

• ρ ∈ F(X) is a restriction function, where F(X) is the set of all Boolean functions

over variables in X. ρ defines the operational domain of the graph: X can be

assigned only those opcodes (x1,x2, . . . ,x|X|) which satisfy the restriction function,

i.e. ρ(x1,x2, . . . ,x|X|) = 1.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 18

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

(a) Full notation (b) Simplified notation

Figure 2.2: Graphical representation of CPOGs

• Function φ : (V ∪E)→ F(X) assigns a Boolean condition φ(z) ∈ F(X) to every ver-

tex and arc z ∈ V ∪E in the graph. Let us also define φ(z) df
= 0 for z /∈ V ∪E for

convenience.

CPOGs are represented graphically by drawing a labelled circle for every vertex and

drawing a labelled arrow for every arc. The label of a vertex v consists of the

vertex name, a colon and the vertex condition φ(v), while every arc e is labelled with the

corresponding arc condition φ(e). The restriction function ρ is depicted in a box next to

the graph; operational variables X can therefore be observed as parameters of ρ.

Fig. 2.2(a) shows an example of a CPOG with |V |= 5 vertices and |E|= 7 arcs. There

is a single operational variable x; the restriction function is ρ(x) = 1, hence both opcodes

x = 0 and x = 1 are allowed. Vertices {a,b,d} have constant φ = 1 conditions and are

called unconditional, while vertices {c,e} are conditional and have conditions φ(c) = x

and φ(e) = x respectively. Arcs also fall into two classes: unconditional (arc c→ d) and

conditional (all the rest). As CPOGs tend to have many unconditional vertices and arcs

we use a simplified notation in which conditions equal to 1 are not depicted in the graph;

see Fig. 2.2(b).

The purpose of conditions φ is to ‘switch off’ some vertices and/or arcs in a CPOG

according to a given opcode, thereby producing different CPOG projections. An example

of a graph and its two projections is presented in Fig. 2.3. The leftmost projection is

obtained by keeping in the graph only those vertices and arcs whose conditions evaluate

to 1 after substitution of variable x with 1 (such projections are conventionally denoted by

H|x=1). Hence, vertex e disappears (shown as a dashed circle), because its condition

NCL-EEE-MICRO-TR-2013-182, Newcastle University 19

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 2.3: CPOG projections: H|x=1 (left) and H|x=0 (right)

evaluates to 0: φ(e) = x= 1 = 0. Arcs {a→ d,a→ e,b→ d,b→ e} disappear for the same

reason; they are shown as dashed arrows . The rightmost projection is obtained in

the same way with the only difference that variable x is set to 0; it is denoted by H|x=0,

respectively. Note that although the condition of arc c→ d evaluates to 1 (in fact it is

constant 1) the arc is still excluded from the resultant graph because one of the vertices it

connects, viz. vertex c, is excluded and naturally an arc cannot appear in a graph without

one of its vertices. Each of the obtained projections can be regarded as the specification

of a particular behavioural scenario of the modelled system, e.g. as specification of a

processor instruction. Potentially, a CPOG H = (V ,E,X,ρ,φ) can specify an exponential

number of different instructions (each composed from atomic actions in V) according to

one of 2|X| different possible opcodes.

2.3 Intel 8051 Microcontroller

In this Section we focus on the main features of the Intel 8051 microprocessor and its

original architecture (Sections 2.3.2 and 2.3.3), and give a quick overview of various

asynchronous implementations (Section 2.3.4).

NCL-EEE-MICRO-TR-2013-182, Newcastle University 20

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

2.3.1 Introduction

The original synchronous 8051 microcontroller (MCU) was developed by Intel in the early

1980s using NMOS technology. In later versions, it was moved to the CMOS, hence the

name was changed to 80C51. Up to the present time the Intel 80C51 microcontroller

and its numerous derivatives are widely used all over the globe; 8051 is one of the most

widely produced 8-bit microcontroller in the world [92]. Nearly every major semiconductor

manufacturer, such as Infineon, Philips, Atmel, STMicroelectronics, Texas Instruments,

etc., has their own version of the 8051. Usually all the 8051 derivitives are based on

the same CPU architecture, but differ in sizes and types of the memories, and in the

peripherals.

In general a microcontroller is a “small computer” situated on a single IC consisting

of two main parts: the CPU core with its memories and input/output peripheral blocks

(e.g timers, counters, receivers and transmitters, etc. [158]). The main target in our work

was designing a CPU, therefore we concentrated on the processor of the Intel 8051

microcontroller. The next two subsections will address the architecture, the main features

and the ISA of this core.

2.3.2 Intel 80C51 microprocessor core

The original CPU core adopts the Harvard architecture [45], which separates the storage

of data and instructions.

The data memory usually is split into internal (256 byte) and external (64 kbyte)

Random Access Memory (RAM) blocks. The internal data RAM contains several dedicated

areas: the first 64 bytes (00h - 1Fh) are four register banks of eight registers each; then a

small memory area (20h - 2Fh) is bit-addressable space; the next 80 bytes (30h - 7Fh) are

usually shared between the stack data and user variables; finally the last 128 bytes are

a special part of the internal RAM known as the space of the Special Function Registers

(SFRs). These are readable and writeable registers (such as accumulator, B-register,

Program State Word (PSW), Data PoinTeR (DPTR), etc.) could be accessed by the CPU.

The handbook of the standard 8051 shows that the SFR-space is not completely filled

NCL-EEE-MICRO-TR-2013-182, Newcastle University 21

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 2.4: Organisation of the internal memory in the Intel 8051 microprocessor

by these special registers, which only use 21 out of 128 spaces, the rest is free for user

variables. The structure of the RAM block is shown in Figure 2.4 [1] or can also be found

in the original 8051 handbook [158].

The program memory is most commonly implemented as an off-chip EPROM, so that

it’s more convenient for reprogramming.

The synchronous architecture of the Intel 8051 is shown in Figure 2.5 [8]. The core is

built around the internal bus (IB), to which all main registers are able to write to and to

read from. We can see all the main components, such as the Arithmetic Logic Unit (ALU),

Read Only Memory (ROM), Random Access Memory (RAM), the SFR-space and the four

bidirectional ports to the outside world. There is a special separate B bus, which is used

for modifying the program counter (PC). Having only two main buses to communicate

between the registers makes this architecture very compact and efficient. However this

significantly reduces parallelism in the system, hence all the instructions contain many

sequential parts in their execution.

2.3.3 Instruction Set and addressing modes

ISA is usually divided into the following classes: Complex Instruction Set Computer

(CISC), Reduced Instruction Set Computing (RISC), Very-Long Instruction Word (VLIW)

NCL-EEE-MICRO-TR-2013-182, Newcastle University 22

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 2.5: Architecture of a synchronous Intel 8051 microprocessor

NCL-EEE-MICRO-TR-2013-182, Newcastle University 23

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

and various hybrids [62, 34]. These classes differ in the complexity of the their instruction

sets, the encoding style of the instructions, and the homogeneity of the internal register

structure in the implementation.

Due to the following facts the 8051 microprocessor can be considered as a CISC

architecture:

• The instruction set has 255 different complex instruction with variable length (from

1 to 3 bytes), many of which involve multiple memory accesses.

• A number of different addressing modes, such as immediate, register addressing,

direct, indirect, relative and indexed, which are explained later on.

• The system doesn’t have uniform internal register structure. There are several

specialised registers (SFRs, four register banks, etc.).

• It takes a variable number of clock cycles to execute an instruction. Each instruction

takes one, two or four machine cycles to execute. Each machine cycle consists of six

slots, each of which performs different operations and requires one clock cycle [158].

In contrast to CISC, RISC and VLIW architectures usually have fixed length instructions

with a regular format. Usually it is a one simple (RISC) or many independent simple

(VLIW) operations. The structure of the register file is regular with many general-purpose

registers. The hardware design usually focuses on designing high-performance imple-

mentations, where the execution of several instructions can be pipelined, as opposed to

CISC, which exploits microcoded implementations, i.e multiple operations are encoded in

one instruction.

The instruction set can be separated into five classes:

• Arithmetic operations: this class of operations includes addition (ADD), addition

with carry (ADDC), subtraction (SUBB), increment (INC), decrement (DEC), multi-

plication (MUL), division (DIV) and decimal adjustment of accumulator (DA).

• Logic operations: this class of operations includes logic AND (ANL), logic OR (ORL),

logic exclusive OR (XRL), clear (CLR), complement (CPL), swap (SWAP), rotate to

NCL-EEE-MICRO-TR-2013-182, Newcastle University 24

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

the right (RR), rotate to the right with carry (RRC), rotate to the left (RL) and rotate

to the left with carry (RLC).

• Data transfer operations: moving data from and to internal (MOV) and external

(MOVX, MOVC) data memory, push data to (PUSH) and from (POP) the stack and

the exchange operation (XCH).

• Boolean operations: these instructions operate on individual bits of registers.

• Branching operations: this class of instruction can conditionally and unconditio-

nally change the contents of the PC. There are three main types: the short jump

(SJMP), the long jump (LJMP) and the absolute jump (AJMP).

The full explanation of each instruction and their opcodes can be found in the Appendix.

Six addressing modes are supported by the 8051 instruction set:

• Direct addressing mode: the operand is specified by an 8-bit address field. This

addressing mode is used only for accessing the data in the internal RAM. For

example, DEC 01h (operation: (R1):= (R1) – 1, 01h is the direct address of the

second register in the first bank).

• Immediate addressing mode – the value is a constant and, as the name suggests,

it is stored immediately after the operation code in memory. For example, ADD A,

#123h (operation: (A):= (A) + 123h).

• Register addressing mode involves the use of the Bank of registers to hold the

data to be manipulated. The 3-bit register specification is part of the opcode of the

instruction. For example, INC R6 (operation: (R6):= (R6) + 1).

• Indirect addressing mode is used when the instruction performs an operation on

the data whose address is contained in register R0 or R1. For example, DEC @R0

(decrement the internal RAM cell by 1 indirectly through the R0 register).

• Relative addressing mode is used with jump instructions, when a fetched address

is loaded to the PC. For example, SJMP #11h (operation: (PC):= (PC) + 11h).

NCL-EEE-MICRO-TR-2013-182, Newcastle University 25

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

• Indexed addressing mode is used for accessing data elements of look-up table

entries in the ROM, where the address of the data in the table is formed by adding

the accumulator and base pointer. For example, MOVC A, @A+DPTR (move the

code data relative to the DPTR to the accumulator (address=A+DPTR)r).

More specific and detailed information on the 8051 architecture can be found in numerous

publications and user manuals [158, 80, 48].

2.3.4 Overview of Asynchronous Intel 8051 implementations

In the introduction we mentioned that there are numerous derivatives of the synchronous

implementation of the Intel 8051 microprocessor. However many designers also focused

on its asynchronous implementation.

Probably one of the first asynchronous 8051 microcontroller was implemented by

Gageldonk et al. [151] in the Philips Research Laboratories in 1998 and later became

a commercial product. In fact this MCU was developed using the Tangram (or Haste)

behaviour model, which originally was introduced by the Philips Research Laboratories

in the Tangram tool over 20 years ago [150]. Later on this work proceeded by Handshake

Solutions [69] and led two implementations HT80C51-LP (Low Power) and HT80C51-LC

(Low Cost). Both of them were mainly designed to demonstrate the feasibility of the

Tangram design flow.

In 2002 Lee et al. proposed a new version of a self-timed 8051 with a new 5-staged

pipelined architecture [81]. This implementation regrouped the entire ISA into seven

groups, which were defined by a particular execution scheme of the instructions. In this

way some instructions needed only parts of the scheme, e.g,. NOP instruction needed

only fetching and decoding, and therefore regrouped instructions use the same set of

pipelined stages.

A year later a QDI asynchronous 8051 microcontroller called Lutonium [96] was intro-

duced. This design utilised highly parallel processing with a deep pipeline architecture.

The main core was described with Communicating Hardware Process (CHP) [95] and the

pipeline stages were implemented using the Pre-Charge Half Buffers (PCHB) template.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 26

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

There were also several other implementations using CSP-like hardware description

languages such as the open-source Balsa toolset developed at Manchester University [2,

17], which led to RTL simulations and an FPGA implementation. This was a 2-stage

pipeline architecture, which used a partial instruction decoding [35]. Another example is

a pipelined asynchronous 8051 soft-core , which was implemented and validated on an

FPGA [36].

One of the most recent implementations of this core was done by Chang et al. [88].

In this work two 8051 microcontroller cores were designed on the same die: one syn-

chronous and one asynchronous (QDI approach). The main target of this work was to

delineate and compare these two approaches with the same environment and variation

conditions, as they were physically located on the same chip.

Each of these asynchronous 8051 microcontroller examples was done in a different

process size and a different purpose was targeted, therefore we didn’t compare them in

terms of power and performance. However we did compare our implementation with some

of these approaches in the Implementation chapter (Chapter 5).

2.4 Power-proportional computing

In the introduction we discussed the main aspects of power-proportionality and how one

can introduce them in the system development flow, particularly in asynchronous systems

(see Section 1.2). In this section we show the main techniques and approaches people

use in their circuit development process nowadays.

At the present time such methods have been partially addressed within the already

well-established research area called low-power IC design in the form of fairly special

techniques for reducing the switching activity (dynamic power) and leakage current (static

power) in the circuit.

In the beginning of the CMOS technology era dynamic power has been dominating

in logic. In synchronous circuits up to 50% of dynamic power goes to global clock distri-

bution across the chip. This became the primary target for power saving in clock gating

techniques, where clock switching is suppressed for inactive parts of the system. There

NCL-EEE-MICRO-TR-2013-182, Newcastle University 27

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

is a trade-off between the granularity of clock gating and the area overheads introduced

by gating logic. All modern synthesis tools support basic RTL-level clock gating, while

tools developed in Calypto [31] and Envis [56] extend this approach by comprehensive

analysis of the circuit to provide optimal clock gating solution.

In deep sub-micron technology the trend has changed and static power is no longer

negligible - up to 40% of the total power is due to leakage. This is usually resolved by

power gating, where the voltage source is disconnected from those parts of the circuit

which are inactive for extended periods of time. Over-conservative variation margins on

the clock period are utilised in the voltage scaling approach, which is a more aggressive

technique for dynamic power reduction [162]. There are several approaches to voltage

scaling:

• Static Voltage Scaling (SVS): different blocks or subsystems are given carefully

selected fixed supply voltages.

• Multi-level Voltage Scaling (MVS): an extension of static voltage scaling where a

block or a subsystem is switched between two or more voltage levels (independent

power supplies). Only a few statically selected levels are supported for different

operating modes.

• Dynamic Voltage and Frequency Scaling (DVFS): an extension of MVS where a lar-

ger number of voltage levels are dynamically switched between to follow changing

workloads.

• Adaptive Voltage Scaling (AVS): an extension of DVFS where a control loop is

used to adjust the voltage. This approach is implemented using off-chip voltage

regulators by National Powerwise [115] in a publicly available tool [83].

There are several low-level techniques for decreasing the leakage of the cells outside the

speed-critical path either by using a special low-leakage technology library (supported

by all modern synthesis tools and many libraries have low-leakage gate implementations)

or by adjusting their lithography mask data (e.g. implemented in Blaze DFM tools, Tela

Innovations company [145] and used at the TSMC foundry).

NCL-EEE-MICRO-TR-2013-182, Newcastle University 28

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Significant improvements can be achieved by a more radical approach - conversion of

circuits to an asynchronous mode of operation. Self-timed circuits are free from a rigid

clock and function at the best speed for given operating conditions, where e.g. voltage

scaling fits naturally, which we demonstrated in this work.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 29

Chapter 3

The design of Instruction Set

Architecture

The design of a microprocessor or any other complicated circuitry is not a trivial process,

and consists of a deep analysis beforehand and various implementation stages after-

wards [97]. First and foremost we need to think what functions, architecture and struc-

ture we want to have in the future design. In terms of the microprocessor’s development,

its structure and functionality highly depends on the Instruction Set Architecture (ISA),

which is used during its design flow.

Optimal design of an instruction set for a particular combination of available hard-

ware resources and software requirements is crucial for building processors with high

performance and energy efficiency, and is a challenging task involving a lot of heuristics

and high-level design decisions.

Design of the microprocessor ISA is a computationally intensive task whose search

space grows exponentially with the number of instructions and supported operating

modes. Furthermore, the ISA development process often goes beyond a one-time effort

of a single designer as the ISA may need to be extended at the customer side, e.g., as

in Application Specific Instruction set Processors (ASIPs) [152]. ASIPs allow adding new

functionality to an extensible baseline ISA in the form of Instruction Set Extensions (ISEs),

thereby combining the flexibility of a general purpose CPU and performance of an ASIC.

30

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

The key idea is to analyse the application domain and identify repetitive source code

fragments that can be replaced by custom ISE instructions to reduce overheads associa-

ted with the instruction fetch cycle and storage of temporary values [68], as well as to

enable additional optimisation opportunities in resource allocation, register binding, and

port assignment [40][121].

Modern embedded systems often require yet another dimension of ISA flexibility –

dynamic reconfigurability. For example, a baseband processor whose core functionality

is signal processing may need to be reconfigured upon standardisation of a new commu-

nication protocol. Reconfigurable ASIPs address this requirement by combining a static

general purpose ISA with a reconfigurable fabric to introduce new functionality when it

becomes needed [26][27]. Reconfigurability and custom instructions also address the is-

sue of energy efficiency (a major concern for the microelectronics industry, particularly in

mobile and embedded domains) by power elasticity [161] and by moving computationally

intensive algorithms from software to hardware [68][89].

One of the key difficulties in designing instruction sets is the necessity to comprehend

and deal with a large number of instructions, whose microcontrol implementation may

be altered to suit a particular hardware platform or a particular operating mode (Sec-

tion 3.1). To overcome this, instructions and groups of instructions have to be managed

in a compositional way: an ISA specification should be composable from specifications

of its constituent parts (Section 3.2). Furthermore, one should be able to transform and

optimise ISA specifications (Section 3.3) in a fully formal way to guarantee correctness

without computationally expensive verification after each incremental modification of an

ISA (Section 3.4). The chapter is concluded with a case study in Section 3.5 to de-

monstrate how CPOGs can be used for capturing different hardware configurations and

operation modes.

3.1 Which ISA to choose?

As it was mentioned in the beginning of the Chapter, the design of a microprocessor’s ISA

is one of the main parts in the design flow of a processor. There are several criteria which

NCL-EEE-MICRO-TR-2013-182, Newcastle University 31

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

determine the choice of an instruction set for a needed processor microarchitecture.

Functionality. Each instruction is associated with a sequence of atomic ac-

tions (usually acyclic) to complete the corresponding computational task. Note that

while a sequential run of actions is sufficient to achieve the instruction functionality,

it is often practical to enable some of the actions concurrently, e.g., in order to speed

up the instruction execution and to efficiently utilise the available energy. The distinc-

tive classes of instruction functionality are arithmetic operations, data handling, memory

access and flow control.

The amount of computation per instruction is an important characteristic of an ISA,

which can be illustrated by comparing CISC, RISC and VLIW architectures (see Sec-

tion 2.3.3). The CISC architecture is based on a semantically rich instruction set, which

provides operand access in several addressing modes and can execute complex multi-

cycle operations without storing the intermediate results [72]. In contrast, the RISC

architecture employs a relatively small set of basic instructions to build a complex func-

tionality at the level of software [43]. The microarchitecture complexity of the VLIW

architecture falls between the RISC and CISC architectures, as the scheduling for Ins-

truction Level Parallelism (ILP) is performed statically during the program compilation,

when VLIW instruction is broken into several simple RISC instructions [59].

Operation modes. The same functionality can be achieved in different ways targeting

various optimisation criteria. For example, an arithmetic operation can be executed either

in an energy efficient way but slowly, or in a low latency mode at the price of extra energy

consumption. Alternatively, for security applications, the operation can be combined with

power masking and data scrambling. The choice of available operation modes is usually

made at the design time and is limited by the circuit area and the timing constraints.

Selection of the operation mode can be encoded in the instruction set at two levels:

coarse-grain, as a separate class of mode-switching instructions or fine-grain, as a part

of each instruction code.

For example, in the ARM architecture [61], apart from the standard RISC-like operation

mode with a 32-bit instruction set there are several special modes, e.g., Thumb and

NCL-EEE-MICRO-TR-2013-182, Newcastle University 32

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Jazelle. In the Thumb mode the processor switches to a compact 16-bit encoding of a

subset of ARM instructions and makes the instruction operands implicit. This reduces the

processor functionality but improves its power efficiency through increased code density,

usually at the expense of performance. In the Jazelle mode the instruction set is changed

to natively execute Java Bytecode and to support just-in-time compilation [113].

Resources. At least one functional unit must be available for each type of atomic

action comprising the instructions. The conflicting situations, when the same hardware

resource is requested by several actions, are resolved through scheduling and may also

involve dynamic arbitration. The quantity of each resource type is therefore decided by

trading resource idle time against the frequency of potential conflicts to resolve.

Modern CPUs, while often referred to as RISC-like, also exhibit the features of CISC

and VLIW architectures. For example, they often have complex multi-clock DSP/multi-

media instructions, which is typical for CISC. They also combine the compile-time VLIW

scheduling with dynamic arbitration of resources to employ ILP for instruction pipelining,

out-of-order and speculative execution. Such a diversity of instruction functionality, com-

bined with various operation modes and resource constraints, makes ISA design extremely

challenging.

3.1.1 Existing ISA approaches and challenges

There are several well-established approaches for the functional-level description and

formal verification of an ISA. Event-B [164] is a widely adopted language for specifying

first-order logic systems and doing refinements on these representations. Combined

with the Rodin theorem prover [148], it becomes a powerful platform for proving that a

(refined) system satisfies the initial specification, e.g., does not leave a certain set of

‘good’ states during its operation. HOL [60] is a computer-assisted proving environment

for constructing verifiably correct mathematical proofs. Although its expressiveness is

unrivalled, the generic nature of a tool such as Isabelle/HOL makes it more suitable for

analysing individual instructions with deep mathematical properties; see, for example,

verification of the IA-64 division algorithm [70].

NCL-EEE-MICRO-TR-2013-182, Newcastle University 33

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

These formal ISA methods have a history of being used for reasoning about hard-

ware implementations, however they are more targeted at the software-related aspects

of processor functionality. No hardware implementation issues are usually taken into

consideration apart from those directly visible to the instructions, such as the size of

addressable memory, the number and type of available registers, etc. As a result, an ISA

designer does not have the full control on how the specified functionality is achieved in

hardware, what the costs of every instruction are in terms of energy consumption and

computation resources, how to minimise latency of instruction decoding logic, or how to

dynamically adapt the processor to the current operating conditions. Modelling such

low-level implementation details in Event-B or HOL is costly; a more targeted formalism

is needed to interface the representation of knowledge about instructions sets with that

of knowledge about their execution.

There is clearly a niche in microprocessor EDA where the following design require-

ments need to be addressed:

• description of individual instruction functionalities at the microcode level as partial

orders of atomic actions;

• efficient representation and manipulation with complete instruction sets (re-

encoding, re-targeting, etc.);

• compositional approach to ISA design to facilitate modularity, extensibility and

reuse;

• explicit capturing of processor operation modes;

• possibility to express the resource availability constraints.

We propose to address these requirements using the Conditional Partial Order Graphs

(CPOGs) approach [107]. This model is particularly convenient for composition and re-

presentation of large sets of partial orders in a compact form. It can be equipped with

a suite of mathematical tools for the refinement, optimisation, encoding and synthesis

of the control hardware which implements the required instruction set, similar in spi-

rit to the approach based on control automata [15]. We envisage that the model can be

NCL-EEE-MICRO-TR-2013-182, Newcastle University 34

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

used as a complementary formalism for the existing ISA methodologies providing a formal

link between the software and hardware domains. Although general-purpose modelling

languages and proving environments, such as Event-B or HOL, may be used to a similar

effect, the CPOG model offers a superior mathematical construction permitting automated

analysis and synthesis.

Moreover the area of ASIP also contributes by this approach by providing a me-

thodology to systematically manipulate instruction sets in order to explore the space

of possible solutions. Our approach can simplify the design of ASIPs and synthesis of

ISEs, as it naturally supports incremental and compositional development of instruction

sets. Moreover, we utilise the same formal model throughout the whole design process:

specification of individual instructions, combining them into instruction sets, exploring

the design space, and synthesis of the control logic [106], which facilitates productivity

and consistency of the design flow.

Figure 3.1 shows the proposed pathway from a high-level specification of an ISA to a

low-level microcontroller implementation. Our specification and synthesis flow comprises

four distinct levels. At the architectural level the ISA is modelled using the Event-B

formalism. Given available hardware resources and operating modes we can refine the

ISA and descend to the microarchitectural level. At the transformation level the refined

instructions are composed into a single CPOG representation which is then iteratively

optimised for a set of design constraints, such as requirements to the instruction opcodes

and ILP support. Finally, at the implementation level the ISA is synthesised into a set

of hardware components, such as instruction decoder and microcontrol logic.

In the next Section we describe the use of the CPOG method for the specification of

processor instruction sets and demonstrate the approach on an example.

3.2 Specification of instructions CPOG model

The essentials of the Conditional Partial Order Graph methodology was presented in

Section 2.2, therefore in this section we discuss the formal correspondence between a

CPOG representation and CPU instruction (see Section 3.2.1). Also we discus how this

NCL-EEE-MICRO-TR-2013-182, Newcastle University 35

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 3.1: Specification and synthesis flow

specification method can be expanded to the whole ISA.

3.2.1 Specification of instructions

Consider a processing unit that has two registers A and B, and can perform two different

instructions: addition and exchange of two variables stored in memory. The processor

contains five datapath components (denoted by a . . .e) that can perform the following

atomic actions:

a) Load register A from memory;

b) Load register B from memory;

c) Compute sum A+B and store it in A;

d) Save register A into memory;

e) Save register B into memory.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 36

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Instruction Addition Exchange
a) Load A a) Load A

Action b) Load B b) Load B
sequence c) Add B to A d) Save A

d) Save A e) Save B

Partial order

a

d

b

c

a

d

b

e

with maximum
concurrency

PADD PXCHG

Table 3.1: Two instructions specified as partial orders
Table 3.1 describes the addition and exchange instructions in terms of usage of these

atomic actions.

The addition instruction consists of loading the two operands from memory (actions

a and b, causally independent and thus possibly concurrent), their addition (action c),

and saving the result (action d). Whether a and b are to be performed concurrently

depends on: i) the system architecture, e.g., if concurrent read memory access is allowed,

ii) static and dynamic resources availability (the processor hardware configuration must

physically contain two memory access components and they both have to be immediately

available for use), and iii) the current operation mode which determines the scheduling

strategy, e.g. ‘execute a and b concurrently to minimise latency’, or ‘execute a and b in

sequence to reduce peak power’. Let us assume for simplicity that in this example all

causally independent actions are always performed concurrently, see the corresponding

partial order PADD in Table 3.11. Section 3.5 will address joint specification of different

scheduling strategies of an instruction.

The operation of exchange consists of loading the operands (concurrent actions a

and b), and saving them into swapped memory locations (concurrent actions d and e), as

captured by PXCHG . Note that in order to start saving one of the registers it is necessary
1In this example we describe partial orders using Hasse diagrams [23], i.e. without depicting transitive

dependencies, such as, for example, dependencies a→ d and b→ d in partial order PADD .

NCL-EEE-MICRO-TR-2013-182, Newcastle University 37

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

to wait until both of them have been loaded to avoid overwriting one of the values.

One can see that the two partial orders in Table 3.1 appear to be the two projections

shown in Figure 2.3, thus the corresponding graph can be considered as a joint speci-

fication of both instructions. Two important characteristics of such a specification are

that the common events {a,b,d} are overlaid and the choice between the two operations

is distributed in the Boolean expressions associated with the vertices and arcs of the

graph. As a result, in our model there is no need for a ‘nodal point’ of choice, which

tend to appear in alternative specification models (a Petri Net [50] would have an explicit

choice place, a Finite State Machine [100] – an explicit choice state, and a specification

written in a Hardware Description Language [100] would describe the two instructions

by two separate branches of a conditional statement if or case). The absence of a choice

nodal point could lead to a confusion, as this point would be “distributed” and won’t be

clearly seen on a PO representation. Usually such a nodal point gives us a condition for

a choice, however in CPOG representation only by applying a particular condition we

can see different brunches.

One downside of a purely graph-based approach to instruction sets is the inability to

reason about functional correctness; specifically, the relationship between an instruction

behaviour and the functionality of the blocks it is made of. Clearly, a designer would seek

some form of assurance that an instruction is correct in respect to original requirements

and an evidence of correctness is exhibited. An ultimate form of evidence is a formal

proof. In Section 3.4 we will show how to obtain the proof of instruction correctness with

a refinement-based derivation of instruction logic.

3.2.2 From instructions to instruction sets

The following notions are introduced to formally define specification and composition of

instruction sets.

An instruction is a pair I= (ψ,P), where ψ ∈ {0,1}|X| is a vector assigning a Boolean

value to each variable in X, and P = (V ,≺) is a partial order defined on a set of atomic

NCL-EEE-MICRO-TR-2013-182, Newcastle University 38

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

actions V . Semantically, ψ represents the instruction opcode2, while the precedence

relation ≺ of the partial order captures the behaviour of the instruction3. We assume

that V and X belong to the corresponding universes shared by all the instructions of the

processor: V ⊆UV and X⊆UX.

An instruction set (denoted by IS) is a set of instructions with unique opcodes, i.e. for

any IS= {I1, I2, . . . , In}, such that Ik = (ψk,Pk), all opcodes ψk must be different.

Given a CPOG H = (V ,E,X,ρ,φ) there is a natural correspondence between its pro-

jections and instructions: an opcode ψ= (x1,x2, . . . ,x|X|) induces a partial order H|ψ, and

paired together they form an instruction Iψ = (ψ,H|ψ) according to the above definition.

This leads to the following formal link between CPOGs and instruction sets.

A CPOG H = (V ,E,X,ρ,φ) is a specification of an instruction set IS(H) defined as

a union of instructions (ψ,H|ψ) which are allowed by the restriction function ρ (see

Section 2.2):

IS(H)
df
= {(ψ,H|ψ), ρ(ψ) = 1}. (3.1)

Using this definition we can formally state that the graph in Figure 2.3 specifies the

instruction set from Table 3.1. Section 3.3 shows how to obtain and efficiently manipulate

such CPOG specifications.

3.3 Transformations

In this section we describe CPOG transformations which allow the systematic manipulate

of instruction sets. The transformations facilitate the following stages of the ISA design

flow shown in Figure 3.1:

• compositional and modular construction of instruction sets from smaller subsets

and/or individual instructions (Section 3.3.1);

• global ISA modifications, that is modifications of all the instructions at once, for
2In this section the instruction operands are implicit and the opcode completely defines the instruction.

We elaborate on this in Section 3.5.
3We incorporate the notion of a microprogram [100] (the behaviour of the instruction) into the definition

of the instruction.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 39

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

example, re-encoding, re-targeting for a different hardware platform, refinement for

hardware synthesis (Section 3.3.2);

• local and incremental ISA modifications, which usually apply only to a subset of

all the instructions and are heavily relied on in various ISA optimisation algorithms

(Section 3.3.3);

• hardware synthesis, i.e., transformation of an instruction set into a microcontroller

by mapping a given CPOG into Boolean equations (Section 3.3.4).

An important feature of all the discussed transformation procedures is their higher effi-

ciency in comparison to the conventional approaches. In particular, we will demonstrate

that the algorithmic complexity of all the procedures does not depend on the number of

instructions in a given ISA.

3.3.1 Composition

Compositionality is a key concept in modern system design: a realistic system can only

be designed and analysed by breaking it down into smaller pieces. A typical instruction

set of a modern processor contains hundreds of base instruction classes and various ISA

extensions, and usually is a result of several design iterations. Therefore, it is necessary

to be able to compose large instruction sets from smaller ones to enable modularisation,

reuse, and incremental development.

A CPOG can be deconstructed by means of projections, as was demonstrated in Fi-

gure 2.3. The opposite operation, that is constructing a CPOG out of given parts, is called

composition. This subsection describes how it can be used to build large instruction sets

from smaller ones.

Definition 3.1. Two well-formed graphs H1 and H2 are said to be in an encoding conflict

with respect to their restriction functions ρ1 and ρ2 iff ρ1ρ2 6= 0. An encoding conflict

implies the existence of an opcode ψ such that both of the restriction functions are

satisfied: ρ1|ψ = ρ2|ψ = 1. This leads to ambiguity in some cases, when two graphs

describe different behaviour for the same opcode ψ. Depending on whether these two

NCL-EEE-MICRO-TR-2013-182, Newcastle University 40

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

graphs actually specify the same or different scenarios under ψ the conflict can be either

true or false.

An encoding conflict is true if the partial orders generated with ψ are different:

∃ψ, (ρ1ρ2)|ψ = 1, po(dg H1|ψ) 6= po(dg H2|ψ)

Conversely, an encoding conflict is false if the partial orders generated with ψ are in

fact the same:

∀ψ, (ρ1ρ2)|ψ = 1, po(dg H1|ψ) = po(dg H2|ψ)

Formally, the composition of two instruction sets IS1 and IS2 is simply defined as their

union IS1 ∪ IS2; it is required that the union does not contain two instructions with the

same opcode otherwise it would be impossible to distinguished them during the decoding

process. Due to the commutativity and associativity properties of set union ∪, one can

compose more than two instruction sets by performing their pairwise composition in

arbitrary order, for instance, IS1∪ IS2∪ IS3 = (IS1∪ IS2)∪ IS3 = IS1∪ (IS2∪ IS3).

Note that if instructions in given sets ISk are represented individually (e.g., by listing

them one after another as in conventional methods), then the complexity of the compo-

sition operation is linear with respect to the total number of instructions: Θ(|IS|), where

IS=
⋃
k ISk. This is because we have to iterate over all of them to generate the result. It

may be unacceptably slow for those applications which routinely perform various opera-

tions on large instruction sets. By using the CPOG model for the compact representation

of instruction sets, one can perform most of the operations much faster, as demonstrated

below.

Let instruction sets IS1 and IS2 be specified with graphs H1 = (V1,E1,X,ρ1,φ1) and

H2 = (V2,E2,X,ρ2,φ2), respectively, as in (3.1), where the set of variables X is the same.

Then their composition has CPOG specification H= (V1∪V2,E1∪E2,X,ρ1 +ρ2,φ), where

the vertex/arc conditions φ are defined as

∀z ∈ V1∪V2∪E1∪E2, φ(z) df
= ρ1φ1(z)+ρ2φ2(z).

NCL-EEE-MICRO-TR-2013-182, Newcastle University 41

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

We call H the CPOG composition of H1 and H2 and denote this operation as H=H1∪H2.

Note that if ρ1 · ρ2 6= 0 then the composition is undefined, because IS(H1) and IS(H2)

contain instructions with the same opcode ψ allowed by both restriction functions:

ρ1(ψ) = ρ2(ψ) = 1. The case of graph addition was introduced previously [102]. The

following theorems highlight the key properties of the composition operation regarding

the union of graphs.

Theorem 3.1. Union ∪ is an associative and commutative operation, when its arguments

are not in conflict.

Proof. 1) Associativity: (H1∪H2)∪H3 =H1∪ (H2∪H3).

Follows from the associativity of set union ((V1 ∪V2)∪V3 = V1 ∪ (V2 ∪V3) etc.) and

Boolean disjunction ((ρ1 +ρ2)+ρ3 = ρ1 +(ρ2 +ρ3)). To prove associativity with respect

to conditions φ, let us define ρ ′ and φ ′ to be the restriction functions and conditions

of graph H ′ = H1 ∪H2: ρ ′ = ρ1 +ρ2 and φ ′ = ρ1φ1 +ρ2φ2. In the same way, let ρ and

φ denote the restriction function and conditions of the final graph H = H ′ ∪H3. So,

ρ= ρ ′+ρ3 = ρ1 +ρ2 +ρ3 while φ is equal to

The result remains the same if the order of union of the three graphs is altered:

H ′ =H2+H3, H=H1+H
′. So, independently of the order, function φ(z) for a particular

z will eventually be equal to ρ1φ1(z)+ρ2φ2(z)+ρ3φ3(z).

2) Commutativity: H1∪H2 =H2∪H1.

Follows from the commutativity of set union (V1 ∪V2 = V2 ∪V1 etc.) and Boolean

disjunction (ρ1 +ρ2 = ρ2 +ρ1 etc.) operations.

Remark 3.1. When more than two graphs are in union then the redundant brackets can

be omitted without ambiguity: H1∪H2∪H3.

Corollary 1. The general equation for conditions φ in graph H(V , E, X, ρ, φ) in case of

union of n> 2 graphs Hk(Vk, Ek, X, ρk, φk), 1 6 k6 n is

φ=
∑

16k6n
ρkφk

e.g. if n= 3 the equation is φ= ρ1φ1 +ρ2φ2 +ρ3φ3.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 42

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

φ= ρ ′φ ′+ρ3φ3 =

= (ρ1+ρ2)(ρ1φ1+ρ2φ2)+ρ3φ3 =

= ρ1ρ1φ1+ρ1ρ2φ2+ρ2ρ1φ1+ρ2ρ2φ2+ρ3φ3 =
Since H1 and H2 are
not in conflict, then
ρ1 ·ρ2 = 0

= ρ1φ1+0φ2+0φ1+ρ2φ2+ρ3φ3 =

= ρ1φ1+ρ2φ2+ρ3φ3

Theorem 3.2. If H1 and H2 are not in conflict then

IS(H1∪H2) = IS(H1)∪ IS(H2)

i.e. graph H1∪H2 contains partial orders from both H1 and H2.4

Proof. Let H = H1 ∪H2. At first let us show that IS(H1)∪ IS(H2) ⊆ IS(H). Consider

an instruction (see definition in Section 3.2.2) I ∈ IS(H1) (the proof for the case when

I ∈ IS(H2) is similar due to symmetry between H1 and H2).

1. The restriction function ρ2|ψ of H2 is not satisfied because H1 and H2 are not in

conflict: (ρ1ρ2)|ψ = ρ1|ψ ·ρ2|ψ = 1 ·ρ2|ψ = ρ2|ψ = 0.

2. The restriction function ρ of H is satisfied with ψ: ρ|ψ = (ρ1 +ρ2)|ψ = 1+0 = 1.

3. Vertex/arc conditions φ(z) for ∀z ∈ V1∪E1 in H|ψ evaluate to the same values as

in H1|ψ: φ(z)|ψ = (ρ1φ1(z)+ρ2φ2(z))|ψ = 1 ·φ1(z)|ψ+0 ·φ2(z)|ψ = φ1(z)|ψ.
4Moreover union preserves the initial opcodes of the partial orders.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 43

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

a

d

b

c

ρ(x)=x

(a) HADD

a

d

b

e

ρ(x)=x

(b) HXCHG

a

d

b

c: x e: x
_

x

x

x
_

x
_

x
_

x
_

ρ(x)=1

x

(c) HADD ∪HXCHG

Figure 3.2: Graph composition

Therefore, the sets of vertices and arcs of H|ψ are the same as those of H1|ψ. Conse-

quently, P =H1|ψ =H|ψ and therefore I= (ψ,P) ∈ IS(H).

Now let us prove the reverse statement: IS(H) ⊆ IS(H1)∪ IS(H2). Consider an ins-

truction I = (ψ,P) ∈ IS(H). The restriction function ρ = ρ1 +ρ2 must be satisfied which

means that either ρ1 or ρ2 is satisfied but not both of them. Let it be ρ1: ρ1|ψ = 1 and

ρ2|ψ = 0 (the other case is again symmetric). This leads to the same conclusion as in the

first part of the proof : H1|ψ = H|ψ. Therefore IS(H) ⊆ IS(H1)∪ IS(H2). This completes

the proof.

Crucially, the complexity of computing a CPOG composition does not depend on the

total number of instructions |IS1∪ IS2|. It depends only on the sizes of graph specifications

H1 and H2: Θ(|V1|+ |E1|+ |V2|+ |E2|). Since the number of arcs |Ek| is at most quadratic

with respect to |Vk| and |Vk|6 |UV | (all vertices are contained in universe UV), we have

the following upper bound on CPOG composition complexity: O(|UV |2). Note that |UV |2

is potentially smaller than the number of different instructions5, which can be exponential

with respect to |V |, in particular the total number of partial orders on set UV is greater

than 2 1
4 |UV |

2 [23]. To conclude, we can operate on the CPOG representations of instruction

sets faster than on the instruction sets themselves.

Let us demonstrate the composition of instruction sets on the aforementioned pro-

cessing unit example. Figure 3.2(a,b) shows two graphs HADD and HXCHG specifying
5Although this statement does not hold for our simplistic examples, e.g., |V |+ |E|= 5+7 = 12 and |IS|= 2

in Figure 3.2, it does hold in practice. For example, our implementation of Intel 8051 microprocessor (see
Section 4.2 has 257 instructions but its CPOG representation contains only 17 vertices and 46 arcs. Moreover,
if we do not use abstraction and treat instructions ADD A,B and ADD C,D as different ones, the number of
instructions of a modern 32-bit processor can easily grow to 232 while its CPOG will remain compact.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 44

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

singleton instruction sets IS(HADD) = {(1,PADD)} and IS(HXCHG) = {(0,PXCHG)}, respec-

tively. Since their restriction functions are orthogonal ρADD · ρXCHG = x · x = 0, we

can compose them into the graph shown in Figure 3.2(c). It specifies the composition

IS(HADD ∪HXCHG) = {(1,PADD),(0,PXCHG)} as intended (see Figure 2.3).

3.3.2 Global transformations

Consider a graph H = (V ,E,X,ρ,φ). Since elements of the quintuple are shared by all

instructions in IS(H), we can make global modifications of the instruction set without

iterating over all the instructions. For example, we can add a new action go at the

beginning of every instruction by setting V ′ = V ∪ {go}, φ(go) = 1, and φ(go→ v) = 1 for

all v ∈ V . The cost of this global modification is only Θ(|V |); we call transformations of

this type vertex insertions.

It is possible to introduce a global concurrency reduction between actions a and b, by

setting E ′ = E∪ {a→ b} and φ(a→ b) = 1. As a result, action b will always be scheduled

after a in all the instructions. The cost of this transformation is O(1), but it is not safe in

general: it can introduce deadlocks if action a is scheduled to happen after b in one of

the instructions (forming a cyclic dependency). To ensure deadlock freeness verification

algorithms from [102] must be employed.

Variable substitution is another basic transformation with the global effect. For ins-

tance, by replacing every occurrence of x with x in all conditions φ and function ρ, we

flip the corresponding bit in all instruction opcodes. To perform this operation we need

to change Θ(|V |2) Boolean functions. Variable substitution is a powerful transformation,

it can affect not only a single bit, but all the opcodes; care must be taken to ensure that

the resultant opcodes do not clash and become in conflict.

Variable substitution is also applied to simplify the calculation, e.g. this technique is

used a lot in Integration by substitution simplification.

A global Opcode expansion is used, when we want to introduce a new variable in the

opcode and therefore all the conditions in the graph need to be changed. Let’s assume we

have two instructions, which are distinguished by one condition y, so the set of conditions

NCL-EEE-MICRO-TR-2013-182, Newcastle University 45

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

would be X= {y}. Now we want to add a third instruction, so we need extend the set of

variables by a new condition x and new set will be X ′ =X∪ {x}. To perform this operation

we need to change Θ(|V |2) Boolean functions.

Opposite to the previous one, we can think of Opcode reduction. This transformation is

performed when we want to optimise one of the variables away, so a new set of conditions

would be X ′ = X\ {x}. With the same difficulty of Θ(|V |2) we need to go through all the

conditions, however we need to make sure that the rest of the opcodes do not in conflict.

The above transformations are global. It is possible, however, to apply them only to a

subset of selected instructions using the operations of set extraction and decomposition

defined below.

3.3.3 Local transformations

Instead of looking at the whole instruction set of a processor one may need to focus

attention on its smaller parts. As an example, consider the MMIX processor instruction

set [86] containing 256 different opcodes. 16 of them, starting with bits 0010, are dedicated

to addition/subtraction operations, and a designer wants to manipulate them separately

from the others.

Let graphH=(V ,E,X,ρ,φ) specify the whole instruction set IS(H) of the processor and

8-bit opcodes be encoded with variables {x1, . . . ,x8}. Function f= x1 ·x2 ·x3 ·x4 enumerates

all Boolean vectors starting with 0010 and its conjunction with ρ enumerates all wanted

opcodes. Thus, graph H ′ = (V ,E,X,f · ρ,φ) specifies the required part of IS(H). There

is a dedicated operation in the CPOG algebra, called scalar multiplication, specifically

intended for this task: H ′ = f ·H [107]. Its main feature is that

∀f, IS(f ·H)⊆ IS(H)

In our context, f can be considered an instruction property and operation f ·H can be

called a set extraction: it extracts a subset of a given instruction set according to a

required property.

A generalisation of this operation is called decomposition. It is easy to see that

NCL-EEE-MICRO-TR-2013-182, Newcastle University 46

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

H1 = f ·H and H0 = f ·H together contain all instructions from IS(H): the instructions

with opcodes satisfying property f are put into H1, and all the rest are put into H0.

Thus, any instruction set can be decomposed into two disjoint sets according to a given

property. This is formally captured by the following statement:

∀f, IS(H) = IS(f ·H)∪ IS(f ·H)

Set extraction and decomposition are cheap operations: they only require computation

of a conjunction of two Boolean functions f and ρ.

Returning back to the MMIX example, we can decompose IS(H) into two disjoint sets:

addition/subtraction operations IS1 = IS(f ·H), and all the rest IS0 = IS(f ·H). Then we can

apply a transformation, e.g., an event insertion, to IS1 resulting in ISt1. Finally, we can

compute composition ISt = ISt1∪ IS0 which contains all the instructions from the original

instruction set IS(H), but with a local transformation applied only to addition/subtraction

operations.

3.3.4 Mapping to logic gates

Finally, the refined CPOG can be mapped into Boolean equations and produce a physical

implementation of the specified microcontroller. In order to descend from the abstract

level of atomic actions to the physical level of digital circuits signal-level refinements are

necessary.

To interface with an asynchronous datapath component a it is possible to use the

standard request-acknowledgement handshake (req_a,ack_a), as shown in Figure 3.3.

In case of a synchronous component b the request signal is used to start the computation

but, as there is no completion detection, the acknowledgement signal has to be generated

using a matched delay [139]. Also, there are cases when a matched delay has to be

replaced with a counter connected to the clock signal to provide an accurate multi-

cycle delay – see the interface of component c in the same figure. Note that we do not

explicitly show synchronisers [85] in the diagram; it is assumed that components b and

c are equipped with the necessary synchronisation mechanisms to accept asynchronous

NCL-EEE-MICRO-TR-2013-182, Newcastle University 47

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

re
q_

b2

ac
k_

b2

re
q_

c1

ac
k_

c2

re
q_

c2

ac
k_

c1

ac
k_

a1

re
q_

a1

re
q_

b1

ac
k_

b1

ac
k_

a

re
q_

b

ac
k_

b

re
q_

c

ac
k_

c

re
q_

a

de
la

y

co
un

te
r

cba

bus

microcontroller

decouple merge arbiter

clock

control

datapath

Figure 3.3: Datapath interface architecture

requests from the microcontroller.

To explicitly specify handshake signals it is possible to perform a graph transformation

explained in Figure 3.4. Every atomic action a1 is split into a pair of events req_a1+ and

ack_a1+ standing for rising transitions of the corresponding handshake signals. If there

are two occurrences of an atomic action, e.g. b1 and b2, then both vertices are split6, etc.

Semantically, when an atomic action a1 is ready for execution, the controller should issue

the request signal req_a1 to component a; then the high value of the acknowledgement

signal ack_a1 will indicate the completion of a.

Notice that the microcontroller does not reset handshakes until all of them are com-

plete. This leads to a potential problem: a component cannot be released until the

instruction execution is finished. To deal with the problem it is necessary to decouple

the microcontroller from the component, see box ‘decouple’ in Figure 3.3 and its gate-

level implementation in Figure 3.5(a). Also, when a component b is used twice in an

instruction we have to combine two handshakes (req_b1,2,ack_b1,2) into one using the
6We use superscripts to distinguish different occurrences of the same event.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 48

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 3.4: Signal-level refinement

merge controller, see Figure 3.5(b). Merge controllers can only be used if the requests

are mutually exclusive7. If this is not the case, as e.g. for concurrent actions c1 and

c2, then we have to set an arbiter guarding access to the component. Its implementa-

tion consists of the merge controller and the mutual exclusion (ME) element [85], see

Figure 3.5(c).

Finally, the refined graph can be mapped into Boolean equations. An event associated

with vertex v ∈ V is enabled to fire (req_v+ is excited) when all the preceding events

u ∈ V have already fired (ack_u have been received):

req_v= φ(v) ·
∏
u∈V

(
φ(u) ·φ(u→ v)⇒ ack_u

)
where a⇒ b stands for Boolean implication indicating ‘b if a’ relation. Mapping is a

simple structural operation, however the obtained equations may not be optimal and

should undergo the conventional logic minimisation [100, 107] and technology map-

ping [50] procedures.

It is interesting to note that the size of the microcontroller does not depend on the

number of instructions directly. There are Θ(|V |2) conditions φ in all the resultant equa-

tions; the average size of these conditions is difficult to estimate, but in practice we found

that the overall size of the microcontroller never grows beyond Θ(|V |2).
7It is possible to formally verify if two events in a CPOG are mutually exclusive using CPOG verification

techniques from [108].

NCL-EEE-MICRO-TR-2013-182, Newcastle University 49

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

(a) Decouple (b) Merge (c) Arbiter

Figure 3.5: Handshake controllers

3.4 Functional correctness

In this section we discuss a formalism called Event-B [11] and its application to for-

mal verification of correctness of CPOG-based representations of instructions. Event-B

belongs to a family of state-based modelling languages that represent a design as a

combination of state (a vector of variables) and state transformations (computations up-

dating variables). In general, a design in Event-B is abstract: it relies on data types

and state transformations that are not directly realisable. This permits terse models

abstracting away from insignificant details and enables one to capture various pheno-

mena of a system with a varying degree of detail. Crucially, each statement about the

effect of a certain computation is supported by a formal proof. In Event-B, one is able to

make statements about safety (this incorporates the property of functional correctness)

and progress. Safety properties ensure that a system never arrives at a state that is

deemed unsafe (e.g., keep on using power hungry computing blocks when there is a lack

of energy in the battery). Progress properties ensure that a system is able to achieve its

operational goals.

3.4.1 General Event-B methodology

An Event-B development starts with the creation of an abstract specification. A corners-

tone of the Event-B method is the stepwise development that facilitates a gradual design

NCL-EEE-MICRO-TR-2013-182, Newcastle University 50

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

of a system implementation through a number of correctness-preserving refinement steps.

The general form of an Event-B model (or machine) is shown in Figure 3.6. Such a model

encapsulates a local state (program variables) and provides operations on the state. The

actions (called events) are defined by a list of new local variables (parameters) vl, a state

predicate g called event guard, and a next-state relation S called substitution (see the

EVENTS section in Figure 3.6).

The INVARIANT clause contains the properties of the system (expressed as state pre-

dicates) that should be preserved during system execution. These define safe states of a

system. In order for a model to be consistent, invariant preservation should be formally

demonstrated. Data types, constants and relevant axioms are defined in a separate

component called context.

Model correctness is demonstrated by generating and discharging proof obligations

– theorems in first order logic. The proof obligations demonstrate model consistency,

such as the preservation of the invariant by the events, and refinement links to other

Event-B models. A collection of automated theorem provers attempts to discharge proof

obligations; typically only 3%-5% of proofs require user intervention.

If a model possesses rich control flow properties (e.g., a computational algorithm) the

control flow aspect of a model is defined in a separate view called the flow of a model [78].

The flow aspects introduces further verification obligations to ensure that all specified

event ordering are found among event traces of a specification. In this work we apply the

flow aspect to obtain structured programs – programs that use concepts like sequential

composition, choice and loop.

3.4.2 Modelling instructions

Our goal is the verification of an instruction, that is, explaining how it is assembled from

smaller blocks and whether such an assembly always delivers the right results. Before

one may attempt such a verification, it is requisite to obtain a formal specification of

what an instruction is expected to do. In other words, what is the expected effect of an

instruction execution on system memory, registers and flags. Such a specification must

NCL-EEE-MICRO-TR-2013-182, Newcastle University 51

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

MACHINE M

SEES Context

VARIABLES v

INVARIANT I(c,s,v)
INITIALISATION R(c,s,v ′)
EVENTS

E1 = any vl where

g(c,s,vl,v)
then

S(c,s,vl,v,v ′)
end

. . .
END

Figure 3.6: Event-B model structure

capture both the normal and abnormal cases. A normal case is a successful execution

of an instruction until the completion; this happens when an instruction is called in

a right state and with appropriate parameters. For some instructions, there are side

conditions that must be satisfied or an instruction execution is aborted. One may also

want to foresee (and, possibly, try to mask) abortive execution attempts due to transient

hardware faults.

For a refinement-based approach such as Event-B the conventional way to obtain

a specification is to gradually develop it from a high-level abstraction of a computing

platform: memory that may be written and read, and a device acting upon it [32, 46].

Several specifications have been developed recently, e.g., for XMOS architecture [165],

that employ Event-B to formalise instruction sets of real-life CPUs. A CPU is treated as

a black-box so that a specification ends with a characterisation of normal and abnormal

instruction behaviours. We take such a specification as our starting point, open the black

box and explain how each instruction is realised.

Let us first examine what constitutes an instruction specification (Figure 3.6). The

relevant ingredients are state variables (capturing concepts like memory, stack and re-

gisters), invariant and the pre- and postconditions of normal and abnormal instruction

cases. Model variables v abstractly characterise memory and CPU states. An invariant

I(v) defines a set of safe states S= {v | I(v)} that includes all the reachable model states;

it is guaranteed that no chain of instruction execution could lead to a state outside S.

Predicate R(c,s,v ′) defines the set of vectors of initial variable values.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 52

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Let predicate families PiN(v) and QiN(v,v ′) denote pre- and postconditions of nor-

mal instruction cases, where v and v ′ correspond to the current and the next states.

Correspondingly, PiA(v) and QiA(v,v ′) define abnormal cases.

For instruction preconditions PN(v) and PA(v) it holds that whenever an instruction

is invoked and the system is in a safe state the instruction is ready to run:

I(v)⇒
∨
i

PiN(v)∨
∨
i

PiA(v).

At the same time, there must be a definite way to tell which case applies in a current

state and there should not exist a state where both normal and abnormal cases may be

executed. As the system has a deterministic behaviour it can only be either in normal

or abnormal state not in both. Formally, the normal and abnormal preconditions of an

instruction must partition the set S of safe states:

S= {v | PN(v)}⊕ {v | PA(v)}.

A postcondition expresses the set of states that may be reached via an instruction

execution (an instruction specification may be non-deterministic) and the relationship to

the original state. An instruction must terminate in a safe state; that is, re-establish the

invariant condition I(v):

∀i,t · t ∈ {N,A}∧ I(v)∧Pit(v)∧Qit(v,v ′)⇒ I(v ′).

The condition may be satisfied by simply choosing a pair of Pit(v) and Qit(v,v ′) such that

the left-hand side is always false. To counteract this, it is required that an instruction is

always able to deliver some result:

I(v)∧Pit(v)⇒∃v ′ ·Qit(v,v ′).

The condition also captures the cases where a contradiction is present only for a subset

of states characterised by I(v)∧Pit(v), e.g., a pair of predicates (y > 0,y ′ ∗y ′ = y) where

NCL-EEE-MICRO-TR-2013-182, Newcastle University 53

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

y ∈ N do not define a valid instruction case.

In a general case, an instruction specification is formed of a number of normal and

abnormal cases.

instruction name is

state v

invariant I(v)

behaviour

P1
N(v)→Q1

N(v,v ′)

. . .

PkN(v)→QkN(v,v ′)

P1
A(v)→Q1

A(v,v
′)

. . .

PkA(v)→QkA(v,v
′)

end

An instruction implementation explains how each case of an instruction specification

is implemented by a deterministic program comprising of primitive functional blocks.

To formally relate an operation specification to an implementation we construct a

separate Event-B development for each case of an operation. An abstract machine of

such development is based on the following template.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 54

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

MACHINE op

VARIABLES m,r,f,c

INVARIANT

Im(m,r,f)

c ∈ B

c= FALSE⇒ P(m,r,f)

c= TRUE⇒Q(m,r,f)

INITIALISATION

m,r,f,c : |Im(m ′,r ′,f ′)∧P(m ′,r ′,f ′) ‖ c := FALSE

EVENTS

op = when

c= FALSE

then

m,r,f,c : | Q(m ′,r ′,f ′) ‖ c := TRUE

end

END

Here, Im is the state model of an instruction, c is an auxiliary control variable. The

model defines a single step automata. The automata is initialised into a state when

c=FALSE and atomically transitions into a terminal state where c=TRUE. The invariant

properties c= FALSE⇒ P(m,r,f) and c= TRUE⇒Q(m,r,f) explain the meaning of the

automata states in relation to the operation definitions: initially, the state satisfies the

operation precondition; upon termination it satisfies the operation postcondition. A single

transition, defined in event op, takes the automata from a state satisfying the precondition

to a state satisfying the postcondition. Thus, the specification is trivially convergent.

We use the standard Event-B refinement to gradually replace event op with a

convergent, deterministic program. The determinacy of a final specification is established

at the syntactic level (only deterministic variable updates are used in event specifica-

tions). The preservation of convergence is a part of the refinement method.

There is a small semantic mismatch. While we speak about operations in the terms of

preconditions and postconditions, Event-B events are defined in the terms of guards and

postconditions. The difference is that a guard may not be weakened during refinement

while a precondition may not be strengthened. The solution is to insist that an abstract

NCL-EEE-MICRO-TR-2013-182, Newcastle University 55

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

c da b

P
o
w
er

Latency e

Figure 3.7: Datapath components for DP3 implementation

event guard is always refined in such a way that abstract states characterised by the

guard are all accounted for by the guards of concrete events. In other words, the collective

precondition of an implementation is not more restrictive than in the abstract model:

I(v)∧G(v)⇒H1(v)∨ · · ·∨Hn(v),

where G is a guard of some abstract event and Hi are the guards of a subset of concrete

events. The condition states that whenever an event is refined, for every state of the

event guard there is always something to do in the refined machine.

An illustration to the described modelling approach is provided in Section 3.5.

3.5 Case study

In this section we study a common low-level GPU instruction, called DP3, which given

two vectors x = (x1,x2,x3) and y = (y1,y2,y3), computes their dot product x ·y = x1 ·y1 +

x2 ·y2 +x3 ·y3. There are many ways to achieve the required functionality in hardware;

consider the following datapath components (denoted by a . . .e) which can be used to

fulfil this task:

a) 2-input adder;

b) 3-input adder;

c) 2-input multiplier;

d) fast 2-input multiplier;

NCL-EEE-MICRO-TR-2013-182, Newcastle University 56

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

e) dedicated DP3 unit.

Similar to the Energy Token model [134], we associate two attributes, execution latency

and power consumption, with every component. Figure 3.7 depicts them as labelled

boxes with dimensions corresponding to their attributes; the area of a box represents the

energy required for the computation.

Depending on the current operation mode and availability of the components, a pro-

cessor has to schedule their activation in the appropriate partial order. Figure 3.8 lists

several possible partial orders together with their power/latency profiles.

Least latency implementation: the fastest way to implement the instruction is to

compute multiplications tmpk= xk ·yk concurrently using three fast multipliers d1-d3 and

then compute the final result tmp1+tmp2+tmp3 with a 3-input adder b; see Figure 3.8(a).

This implementation is the costliest in terms of peak power and thus may not always be

affordable.

Least peak power implementation: a directly opposite scheduling strategy is shown

in Figure 3.8(b). Three multiplications are performed sequentially on the same slow

multiplier c1, followed by 3-input addition b. This strategy has the largest latency

among all the presented because it is completely sequential and uses slow power-saving

components. On a positive side, this implementation requires only two basic functional

blocks, which are likely to be reused by other instructions, so its resource utilisation is

high.

Use of a dedicated component: it is possible that the chosen hardware platform

contains a dedicated computation unit capable of computing dot product of two vec-

tors, e.g. Altera Cyclone III FPGA board allows building a functional block called ALT-

MULT_ADD(3) with three multipliers connected to a 3-input adder. We can directly

execute this block without any scheduling – see Figure 3.8(c). While being convenient

and potentially efficient due to custom design, such a solution is not always justified

because of low resource utilisation: it is impossible to reuse the built-in multipliers for

implementing other instructions and if DP3 is rarely used by software then this dedicated

component will be wasting area and power (due to the leakage current) most of the time.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 57

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

d3

d2

d1 b

d1

d3

bd2

(a) Least latency
c1 c1 c1 b

bc1c1c1

(b) Least peak power
e

e

(c) Dedicated
unit

c1 c1 a

c2 a

c1

ac2

ac1

(d) Resource limi-
ted

d1 c1 a

a

d1

d1

a

ac1d1

(e) Balanced

Figure 3.8: Different implementations of DP3 instruction

Moreover, such an implementation does not allow any dynamic reconfiguration thereby

is less flexible.

Fast implementation with limited resources: if there are only two available multi-

pliers c1 and c2 (either because of hardware limitations or because other multipliers

are busy at the moment) then the fastest possible scheduling strategy is as follows. At

first, two multiplications should be performed in parallel. Then their results are fed to

2-input adder a, while c1 is restarted for computing the third multiplication. Finally, the

obtained results are added together by the same adder a as shown in Figure 3.8(d).

Balanced solution: Figure 3.8(e) presents a balanced strategy, which aims to spread

power consumption evenly over time, while being relatively fast. This schedule may be

advantageous for the best energy utilisation and in security applications.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 58

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Microcontroller

opcode modeconfiguration

Complete instruction code

Operation

mode control

to data path components

static configuration bits Dynamic

reconfiguration

program memory

Figure 3.9: Complete instruction code

3.5.1 Derivation of the instruction set

We could devise more implementations of this instruction, but this is not the point of

the case study. The goal is to demonstrate that even such a basic instruction as DP3

has a lot of valid scheduling strategies with distinct characteristics. Importantly, it is

not possible to select the best strategy because a priori it is not known which one is

better. Therefore including only one of them into a processor instruction set is a serious

compromise which should not be done at this early and abstract stage of the design

process. We propose to include as many different implementations into the instruction

set as possible, and, if needed, reduce the behavioural spectrum at the later design

stages when more information is at hand (some final decisions can even be made during

runtime by dynamic processor reconfiguration). The CPOG model is well suited for this

task: it can represent a multitude of different implementations of the same instruction

in a compact overlaid form. If the instruction is intended to have only one opcode,

we can distinguish between its different implementations using mode and configuration

variables. They are not part of the opcode (which is fetched from the program memory

during software execution), but can be dynamically changed by the power/latency runtime

control mechanisms [161] or be statically set to constants according to the limitations of

the actual hardware platform, as shown in Figure 3.9.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 59

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

e: z

a: x

c1: y

a: x

c1: p
_

c2: x y·
p = x y

_ _

·
q = p z·

d3: q

d2: q

d1: y z·
_

b: x z·
_

d1: x y·
_

c1: x y·
_

_

(a) Composition H of all implementations

e: z

a: x

c1: y

a: x

c1: p
_

c2: x y·
p = x y

_ _

·
q = p z·

d3: q

d2: q

d1: y z·
_

b: x z·
_

d1: x y·
_

c1: x y·
_

_

(b) Projection H|ψ5 , ψ5 = (1,0,1)

Figure 3.10: CPOG specification of DP3 instruction

We can specify all the discussed implementations of DP3 instruction using a single

CPOG. To do that we first have to encode all of them. If there are no requirements on

the mode/configuration codes, then a designer is free to assign them arbitrarily, howe-

ver it may affect CPOG complexity and, as a consequence, complexity of the resultant

microcontroller. In this case it is possible to resort to the help of automated8 optimal

encoding methods [104], which generate codes ψ1 = 001, ψ2 = 011, ψ3 = 000, ψ4 = 111,

and ψ5 = 101 for the five partial orders depicted in Figure 3.8 (note that these optimal

codes are far from trivial sequence of binary codes 000-100). If we compose all of them

into a single CPOG using the method from Section 3.3.1, we obtain the graph shown in

Figure 3.10(a). The mode/configuration variables are denoted as X = {x,y,z}, and two

intermediate variables {p,q} are derived from them to simplify other graph conditions; as

a result only seven 2-input gates are required to compute all graph conditions. The ob-

tained graph is a superposition of the given partial orders, i.e. all of them can be visually

identified in it – see, for example, Figure 3.10(b), which shows the balanced implemen-

tation generated by code ψ5, and compare it with partial order in Figure 3.8(e). For a

designer this gives a useful higher-level picture which brings out interactions between

the components much better than separate partial order diagrams (this is similar to a

metro map which represents a set of metro lines in a compact understandable form).

NCL-EEE-MICRO-TR-2013-182, Newcastle University 60

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

3.5.2 Verification of correctness

We now demonstrate the application of the Event-B modelling and verification approach

described in Section 3.4 to the above example. Due to the similarity of the approach we

described the least latency implementation of DP3 instruction, as shown in Figure 3.8(a).

We show with a formal approach that our chosen implementation does indeed compute

the dot product of two vectors. The following is a simple DP3 instruction specification

that defines only one normal case.

instruction dotp is

c= TRUE→ r= x(1)∗y(1)+x(2)∗y(2)+x(3)∗y(3)

end

As the first step, we obtain an abstract Event-B state model of the instruction by

instantiating the model template given above. The properties of the dot product operation

are substituted in the place of abstract predicates P and Q. The result is the following

Event-B machine. Note that the specification is generalised to an arbitrary vector length.

This does not affect proofs and the model may be reused should there be a need for a

differing vector length:
8We used Workcraft framework [6] for CPOG modelling and encoding.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 61

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

MACHINE dotp

VARIABLES x,y,r,c

INVARIANT

x ∈ 1..n→ Z

y ∈ 1..n→ Z

r ∈ Z

c ∈ B

c= TRUE⇒ r= Σ{x(i)∗y(i) | i ∈ 1..n}

INITIALISATION

x :∈ 1..n→ Z

y :∈ 1..n→ Z

r :∈ Z

c := FALSE

EVENTS

dotp = when

c= FALSE

then

r := Σ{x(i)∗y(i) | i ∈ 1..n}

c := TRUE

end

END

The machine is refined into an implementation that makes use of n parallel multipliers

and one n-input adder; this is a generalised version of the least latency implementation.

The result is the model shown in Figure 3.11.

All the consistency and refinement proof obligations are discharged by autonomous

theorem provers. Once a concrete model of an instruction is developed and verified it

must be, somehow, transformed into a graph to feed it into the CPOG synthesis routines.

For this we construct a graph expressing possible event orderings (called the flow aspect

of a model). This additional model must be proven consistent with the Event-B machine in

a sense that all the paths in such a graph are also possible event sequences in the history

of a machine execution. The relevant proof obligations are generated automatically by

the Event-B modelling tool [148]. The following flow aspect is constructed for a trivial

specialisation of least_latency where n= 3 with parametrised event mul3 split into three

NCL-EEE-MICRO-TR-2013-182, Newcastle University 62

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

MACHINE least_latency
re�nes dotp

VARIABLES x,y,r,c,m
INVARIANT

m ∈ 1..n 6→ Z
∀i · i ∈ dom(m)⇒m(i) = x(i)∗y(i)

INITIALISATION . . . ‖ m := ∅
VARIANT 1..n\dom(m)
EVENTS

mul2 = any i where

i ∈ 1..n
i /∈ dom(m)

then

m(i) := x(i)∗y(i)
end

addn ref dotp = when

c= FALSE
dom(m) = 1..n

then

r := Σ(m)
c := TRUE

end

END

Figure 3.11: Machine for the least latency implementation

separate events, one for each i ∈ {1,2,3}; the n-input adder becomes 3-input adder:

mul2_1

mul2_2

mul2_3

add3dom(m)=1‥3 ∧ a=FALSE

1∈dom(m)∧a=FALSE

2∈dom(m)∧a=FALSE

3∈dom(m)∧a=FALSE

m=∅∧a=FALSE

The shaded boxes are assertions — elements aiding in the construction of a proof;

these do not contribute to the output control graph. Single and double circles are the ini-

tialisation and termination actions; the rounded boxes are the events of the machine. The

input for CPOG synthesis is a graph obtained by removing assertion elements and drop-

ping all the edge and node annotations. Other implementations of the DP3 instruction

can be verified in a similar way.

Event-B Rodin Platform employs a range state-of-the-art verification techniques ba-

sed on automated theorem proving, constraint solving and model checking. This makes

it possible to discharge around 80% to 95% of all verifications conditions completely au-

tomatically. For more involved cases and to study failed proofs, Rodin also features an

interactive proof environment and a library of rewrite (simplification) rules. This allow a

NCL-EEE-MICRO-TR-2013-182, Newcastle University 63

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

user to provide proof hints or build a proof skeleton with details filled in by automated

tools. From large-scale projects, it was estimated that a verification engineer works at

an average pace of 12-20 proof obligations per day doing one or two interactive proofs.

A medium size model is about 600 - 1400 proof obligations, takes around three months

and the actual proof effort is small proportion of it.

3.6 Conclusions

In this chapter we discussed main stages of design of instruction set architectures for a

microprocessor. It was shown that one of the key difficulties is the necessity to compre-

hend and deal with a large number of instructions, whose microcontrol implementation

may be altered to suit a particular hardware platform or a particular operating mode.

We demonstrated that the Conditional Partial Order Graph model is a convenient

and powerful formalism for specification of processor instruction sets. It is possible to

efficiently describe many different ‘microcode’ implementations of the same instruction as

a single mathematical structure and perform its refinement, optimisation, and encoding

using formal CPOG transformations. Crucially, these transformations operate on a CPOG

specification rather than on the instruction set itself and thus their complexity does not

depend on the number of different instructions.

The overall number of CPU instructions is often quite large although the majority of

them are of a fairly trivial nature. To free a designer from the tedium of attending to the

minute details of instruction logic we plan to implement a procedure to automatically

construct a collection of correct instruction specifications. A number of such procedures

were studied within the constructive logic where the proof of a specification statement is

given in terms that permit an automatic extraction of an executable program. Although the

search space for a proof is potentially large, the application of proof planning techniques,

such as rippling and abstraction, reduce it considerably to make possible the discovery

of non-trivial programs with loops and branching [28].

In the last section of this chapter we demonstrated an example of a simple DP3 ins-

truction, which shows how CPOGs can be used for capturing different hardware configura-

NCL-EEE-MICRO-TR-2013-182, Newcastle University 64

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

tions and operation modes and to formally reason about correctness of CPOG constructs

with respect to the given functional ISA descriptions using the Event-B model.

The presented partial order representation and functional verification of instruction

sets were applied to a more sophisticated instruction set in the next chapter, where we

used it for the design of a microcontroller of a new asynchronous Intel 8051 micropro-

cessor.

In this chapter we addressed compositional design flow, which is currently fully au-

tomatic. Designer only needs to feed a PO representation to the tool (the Workcraft tool

with SCENCO plugin), which then automatically encode them and overlay into the final

CPOG.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 65

Chapter 4

Design of an Asynchronous 8051

Microprocessor

In the previous chapter we described the main aspects of designing microprocessor ins-

truction sets and presented a case study to show the benefits of the introduced com-

positional approach. To demonstrate our methodology on a more sophisticated example

and to introduce a new power-proportional criterion in the system design flow, as we

discussed in Chapter 1, we implemented a new asynchronous 8051 microprocessor. Its

complete design flow and specific implementation details are described in this chapter.

During the development process we formulated a new flow for the processor imple-

mentation [132], which is shown in Figure 4.1. This flow can be divided into two main

stages: Design and Implementation.

The Design stage is usually the initial point from where the development of a CPU

or any other complicated system starts. This part is mainly focused on the primary

understanding of the main aspects of microprocessor development:

• application specific aspects, such as the microprocessor’s architecture, instruction

set, application specific functionality, etc.

• non-functional aspects, such as environmental conditions (e.g. support for unstable

voltage supply, wide range of operating temperatures, etc.), support for a hierarchy

of energy-saving modes (high performance, low power), etc.

66

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

This stage can be divided into several steps: analysis of the processor architecture

and instruction set (Section 4.1), and specification of the control logic and datapath

components (Section 4.2).

The Implementation stage includes the development of the central microcontroller,

datapath components and interface protocols.

Figure 4.1: Conceptual view of the design process

In Section 4.2 we discuss the implementation of two main control logic blocks for the

microprocessor: the top level (Section 4.2.1) and the ALU (Section 4.2.2) control logic

block. We make use of the previously presented compositional approach (Section 2.2),

which is highly beneficial for systems with many behavioural scenarios defined on the

same set of events and actions, such as the control logic of a CPU [9].

The structure of the CPU datapath (internal implementation details and specific fea-

tures) and the communication protocol between control and datapath units are described

in Section 4.3.

Finally, Section 4.4 discusses the applied ISA transformations and optimisations (such

as extended datapath structure, adjustable delay lines, issues of fault tolerance, etc.) and

Section 4.5 introduces design for test features, which were applied during the implemen-

NCL-EEE-MICRO-TR-2013-182, Newcastle University 67

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

tation.

4.1 Asynchronous 8051 architecture and instruction set

As was mentioned in Chapter 2.3, the Intel 8051 architecture is still popular and used

in various devices, embedded systems and in a wide range of applications. Our imple-

mentation follows the Harvard architecture [45] of the original Intel 8051 CISC (Complex

Instruction Set Computer) and supports 257 instructions of the microprocessor (255 stan-

dard instructions and two extra instructions specific to our implementation (Section 4.4.3

and Appendix A)). The top-level architecture of the CPU as well as the full instruction

set are described in the Philips 80C51 Data Handbook [48], which contains about 100

pages of the architecture specification and about 1300 pages of various derivatives of

the 80C51. In this section we describe several significant changes we introduced in our

implementation:

• We chose the asynchronous design style for our implementation. There are nume-

rous advantages of the self-timed approach, as discussed Section 2.1. Figure 4.2

and Figure 4.9 show that the control circuitry communicates with datapath units by

means of request and acknowledgement signals, which use a 4-phase handshake

protocol (Section 4.3.8).

• We implemented a more ambitious 16-bit version of the Harvard1 architecture to

obtain higher performance, by using a unified 16-bit width for both address and

data buses.

• The 16-bit datapath was extended with additional computational units (adder, mul-

tiplier and divider), which were specifically optimised to work in a particular opera-

tional mode (Section 4.4.1) . By using this approach we achieved robust operation

of the circuit over a wide range of supply voltages.

• We can easily choose which computational unit to use depending not only on ap-

plication or environmental aspects, but also on the functional correctness of an
1Instruction memory and data memory are separate.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 68

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

individual unit, thus addressing the issue of fault tolerance (Section 4.4.3). This

was done by adding a special internal register “Unit Selector” (see Figure 4.9)

to the architecture. By accessing this register, we can specify which computation

units are operational and which are not.

The specification of a complex system such as a microprocessor usually starts at the

architectural level [133][100], where the structural abstraction enables a designer to divide

the system into several subsystems, thus significantly simplifying the design flow and

reducing the solution search space. It is particularly important to refine the architecture

to the level of operational units (or datapath) and behavioural scenarios (or control logic).

There are several ways in which this can be done:

• Refinement from software (written in C/C++, Assembly language, etc.).

• Using Architecture Description Languages (ADLs), such as structural ADLs (e.g.

MIMOLA [166], UDL/I [75]), behavioural ADLs (e.g. nML [57], ISDL [66]), mixed ADLs

(e.g. LISA [74], EXPRESSION [67]) and partial2 ADLs (e.g. AIDL [65]).

• Other instruction specifications, such as a list of instructions obtained from a mi-

croprocessor specification (e.g. a CPU manual). This type of specification is not

formal and therefore should be processed manually.

As we had a full description of the microprocessor, its instruction set and architecture

details, we proceeded with a manual specification.

Figure 4.2 shows the block diagram of the top-level architecture of the microprocessor.

The top level hierarchy of any CPU (including ours) can be divided into two parts: Control,

which contains Control logic and Datapath – the rest of the blocks. Note that the main

datapath block – Arithmetic Logic Unit (ALU) (Figure 4.9) is a complicated system with

a hierarchical structure. Therefore we treated it in the same way as the whole system,

and refined it further down to the level of operational units and behavioural scenarios.
2Usually ADLs are divided into three categories, depending on the nature they capture the structure:

structural – the architectural components and their connectivity; behavioural – instruction set behaviour;
mixed – both structure and behaviour of the architecture [101].

NCL-EEE-MICRO-TR-2013-182, Newcastle University 69

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

C
on

tr
ol

 L
og

ic

P
ro

gr
am

 C
ou

nt
er

In
cr

em
en

t U
ni

t
Opcode [16]

R
O

M

IF
U

_r
eq

/a
ck

P
C

IU
_r

eq
/a

ck

In
st

ru
ct

io
n

F
et

ch

U
ni

t
In

st
ru

ct
io

n
A

dd
re

ss
 [1

6]

In
st

ru
ct

io
ns

 [1
6]A

dd
re

ss
 [1

6]

In
st

ru
ct

io
n

R
eg

is
te

r

S
ta

rt

Finish G
o

F
et

ch
ed

 D
at

a
[1

6]

D
on

e_
F

A
rit

hm
et

ic
 L

og
ic

 U
ni

t

N
ew

 P
C

 [1
6]

A
LU

_r
eq

/a
ck

M
em

or
y

A
cc

es
s

U
ni

t

In
te

rn
al

 R
A

M

D
el

ay
 C

od
es

 [1
6]

S
ID

U
_r

eq
/a

ck

SIDU_req/ack

S
ta

ck
 a

dd
re

ss
 [1

6]

Data to RAM [16]

Address [16]

D
at

a
fr

om
 R

A
M

 [1
6]

Request

E
xt

er
na

l R
A

M

In
te

rr
up

t
Go

Request

Address [16]

Data in [16]

Data out [16]

Data out [16]

Address [16]

Data in [16]

MAU_req/ack

R
eq

ue
st

S
ta

ck
 In

cr
em

en
t/

D
ec

re
m

en
t U

ni
t

D
el

ay
R

eg
is

te
rs

D
el

ay
co

de
s

[1
6]

O
pe

ra
tin

g
m

od
e

Opcode [16]

E
xt

er
na

l d
at

a
[1

6]

D
el

ay

C
od

es
 [1

6]

D
el

ay
co

de
s

[8
]

Delay codes [4]

[8
]

D
el

ay
 B

it

Fi
gu

re
4.

2:
Ar

ch
ite

ct
ur

e
of

th
e

pr
op

os
ed

m
ic

ro
pr

oc
es

so
r(

da
sh

ed
lin

es
re

pr
es

en
ta

1
bi

tw
id

e
si

gn
al

lin
e,

th
e

w
id

th
of

ot
he

rc
on

ne
ct

io
ns

is
sh

ow
n

in
br

ac
ke

ts
)

NCL-EEE-MICRO-TR-2013-182, Newcastle University 70

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Sections 4.2 and 4.3 describe the structure, functionality and implementation flow of

each block from the diagram in detail.

4.2 Specification of the control logic

The control logic of a microprocessor coordinates its components and directs the execution

of instructions. Our implementation of the Intel 8051 processor contains 257 instructions;

to cope with such a complex ISA it was essential to make use of the presented compo-

sitional approach. Two control logic blocks were developed in our implementation: the

top level control logic and the ALU control logic. In the following subsections we discuss

their implementation and structure in detail.

4.2.1 Top level control logic

The top level control logic is the main control logic of the microprocessor. It coordinates

the execution of all CPU datapath components from the top architectural level.

The key part in a microprocessor control specification is the description of instructions.

Each instruction corresponds to a schedule of primitive actions such as data transfer,

arithmetic operation, memory access, etc., which are performed by datapath components.

The control logic design flow contains the following steps:

Extraction of datapath components. In the previous section we have already stated

several ways in which operational units (or datapath) and behavioural scenarios can

be extracted. Table 4.1 presents five functional components extracted from the 8051

instruction set [80] specification. This type of specification is not formal, therefore was

processed manually. More detailed information about datapath components is given in

Section 4.3. We proceed to the specification of the individual instructions.

Extraction of partial orders for instructions. PO is essentially a model of ordering of

actions, with associated cause and effect relationships [102].

Each instruction was specified as a PO (see Appendix A). Some of the instructions

had the same PO, so we eventually grouped them into classes. Finally we obtained 37

different classes of different dependency graphs, with the largest class containing up to

NCL-EEE-MICRO-TR-2013-182, Newcastle University 71

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table 4.1: Function components extracted from ISA

Components Description
Duplicate usage of the

same component

PCIU
Program Counter Increment Unit is responsible for

incrementing the program counter (instruction pointer) to
indicate where the execution is in a program source code.

PCIU/2 and PCIU/3

IFU
Instruction Fetch Unit extracts operational code of the

instruction from the program memory using the provided
address pointer.

IFU/2, IFU/3 and IFU/4

MAU
Given an address pointer and input data, the Memory Access

Unit accesses the data from internal and external RAM.
MAU/2, MAU/3, MAU/4,

MAU/5 and MAU/6

ALU

Arithmetic Logic Unit is the main computation unit, which
performs arithmetic and logical operations in the CPU. It also
provides appropriate addresses and data for MAU and IFU in

specific instructions.

ALU/2, ALU/3, ALU/4,
ALU/5, ALU/6 and ALU/7

SIDU
Stack pointer Increment/Decrement Unit, as the name

suggests, is in charge of incrementing and decrementing the
stack pointer.

SIDU/2

60 instructions.

As an example Figure 4.3 shows the PO representation of the instructions from class

E3, which corresponds to a group of 17 instructions having the same PO representation:

• MOV direct, A In this instruction, access to internal RAM (execution of components

ALU→MAU) is performed concurrently with fetching a target address (direct) into

the Instruction Register (IR) PCIU→ IFU . Then ALU/2 (preparation for writing the

data from the accumulator (A) into the target RAM location) is executed concurrently

with an increment of Program Counter (PCIU/2). Finally, it is possible to write data

from the accumulator into the target memory location (MAU/2) and fetch the next

instruction into IR (IFU/2).

• MOV direct, Rn This group of instructions is similar to the previous one with the

difference that we are moving data from an internal register (Rn) to a target internal

RAM location (direct). There are 8 different instructions, as we have access to 8

different registers (R0-R7) in the register bank.

• MOV @Ri, #immediate In this group of instructions one of the operands is an
3All the classes are specified in an alphabetic order, see Appendix A.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 72

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

internal RAM memory location addressed indirectly and the other is an immediate

constant. First, access to an internal register (Ri) is performed concurrently with

fetching a direct constant (#immediate) into the IR. Then ALU/2 (preparation of

writing the data in IR to address given in Ri) is executed concurrently with an

increment of PC. Finally, we write data into memory and fetch the next instruction

into IR. Internal RAM can only be addressed indirectly through registers R0 or R1,

so there are 2 different instructions in this group.

• ADD A, #immediate Here we have a group of ALU operations. This particular

instruction performs addition of the accumulator and an immediate constant. Simi-

larly to previous examples, we read data from the accumulator while concurrently

fetching an immediate constant. Then we execute the operation of addition (ALU/2)

concurrently with an increment of PC, and finally write data into memory and

fetch the next instruction into IR. It can be noticed that other instructions have

the same behaviour: ADDC A, #immediate, SUBB A, #immediate, ORL A, #imme-

diate, ANL A, #immediate and XRL A, #immediate, hence this group contains 6

instructions.

Figure 4.3: PO representation of the instructions from class E

Now let’s look into a more sophisticated example. The previous example has no

conditional behaviour. However, such instructions are also popular in programming and

show all of the benefits of the compositional approach. For example, instructions from

class AE (see Figure 4.4) contain two conditional branch instructions:

1. CJNE @Rn, #immediate, offset The CJNE instruction compares contents of the

memory location whose address is provided in the specified register with a gi-

ven immediate constant, and branches to the specified destination (by adding the

NCL-EEE-MICRO-TR-2013-182, Newcastle University 73

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

given address offset to the PC) if their values are not equal. Otherwise, execu-

tion continues with the next instruction. CJNE is a good example to demonstrate

the compositionality of CPOGs: the complete behaviour of the instruction is split

into two scenarios, which are easier to specify separately; the scenarios are then

composed, resulting in the complete instruction specification.

• Figure 4.4(a) shows a graph describing the order of activation of the functio-

nal units in the first CJNE scenario, where the branch is not taken because

the compared values are equal. This scenario begins with two concurrent

sequences of actions: PCIU → IFU is executed to fetch the constant stored

immediately after the instruction opcode, while actions ALU →MAU are per-

formed to fetch the contents of Rn from the internal memory. After that, another

similar sequence is performed, ALU/2 →MAU/2 , to look up the contents of

the memory at the address loaded from Rn. Finally, ALU/3 is performed to

compare the obtained values; the corresponding status flags are set according

to the result. In particular, if the values are equal the flag z is set to 1. In this

scenario we assume that the values are indeed equal, therefore, the processor

may proceed with the next instruction, that is, the program counter is incre-

mented twice (skipping the branch offset) and the next instruction opcode is

fetched (actions PCIU/2→ PCIU/3→ IFU/3).

• The second scenario, see Figure 4.4(b), is identical to the first one until the

moment when comparison is performed by ALU/3 and it is determined that the

compared values are different. At this point, the execution continues as follows.

The branch offset is loaded by performing IFU/2 straight after PCIU/2 . Then

the actual branch operation is executed by adding the offset to the current

PC value (ALU/4) and fetching the next instruction opcode. Note that action

PCIU/3 is skipped in this scenario.

2. CJNE A, direct, offset The only difference between this instruction and the pre-

vious one is that this one compares contents of two memory location, one of which

NCL-EEE-MICRO-TR-2013-182, Newcastle University 74

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

is located in the SFR – Accumulator and the other one is a different internal RAM

location. Actions ALU →MAU are performed to fetch the contents of the Accumu-

lator and ALU/2 →MAU/2 to read the other internal RAM location. The rest of

execution is identical to the first CJNE instruction.

In terms of the top level control execution both of the instructions are the same. However,

one should notice that the data which is fetched during the actions ALU → MAU in

each of the instructions needs to be treated differently: in the first one it is a memory

address, which needs to be looked up; in the second one it is a value which needs to be

compared. This difference is handled at the ALU control level and discussed in details in

Section 4.2.2.

All the other instructions were represented as POs in the same manner, see Appen-

dix A.

After we extracted POs for all the instructions it was important to show that each of

the behavioural scenarios conformed to the instruction specification, i.e. they required a

formal proof of correctness (see Section 3.4). This was done in the same way as we showed

with the DP3 instruction (see Section 3.5). An important feature of the CPOG approach

(Section 2.2) is that if we have an instruction with conditions (like CJNE instruction)

and we verify the correctness of all conditions, it becomes possible to merge them into

one instruction by using the CPOG composition (Figure 4.4(c)). The final instruction is

correct by construction and therefore does not require any additional verification. One

can see that the composition (Figure 4.4(c)) has only three conditional elements, namely,

φ(PCIU/3) = z and φ(IFU/2) = φ(ALU/4) = z. All the other vertices and all the arcs

are unconditional due to the similarity between the two scenarios.

Encoding of partial orders. In order to distinguish between the synthesised POs, we

need to encode them. The codes can either be assigned arbitrarily or can be provided as

part of the system specification. Importantly, the size and latency of the final microcon-

troller circuit depends significantly on the chosen encoding of the scenarios [102]. There

are several types of encoding that can be used, such as one hot, matrix, balanced [103]

and others. A new technique for optimal encoding was recently introduced [104], but

NCL-EEE-MICRO-TR-2013-182, Newcastle University 75

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

(a) Specification of the first scenario of
CJNE (z= 1)

(b) Specification of the second scenario of CJNE (z= 0)

(c) Complete specification of CJNE instruc-
tion

Figure 4.4: CPOG specifications of CJNE instruction

NCL-EEE-MICRO-TR-2013-182, Newcastle University 76

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

due to the complexity of the optimal encoding algorithm it was unable to process 257

instructions, which we have in our implementation.

Therefore we had to use a semi-automated approach based on the Huffman encoding

algorithm [76] because of its simplicity and speed. It reduces the number of bits required

to encode instructions. The complete Huffman encoding tree is shown in Figure 4.5.

Figure 4.5: Representation of Huffman Encoding tree of Partial order classes

It is one of our current work to analyze the effect of the encoding on the area and

performance of the final controller.

CPOG generation. Now, after we represented all the instructions of the CPU as POs

and encoded them, it became possible to synthesise a CPOG containing all of them, as

shown in Figure 4.6. Note that most of vertexes and arcs have conditions, depending on

which particular PO can be activated or disabled in accordance with the evaluation of the

conditions under the opcode. The obtained graph is a superposition of the given partial

orders, i.e. all of them can be visually identified – see, for example, Figure 4.7(a), which

shows the projection of PO for the instructions from class D and Figure 4.7(b) – from

class Y. In the same way, each of the POs can be activated in this CPOG. For a designer

this gives a useful higher-level picture which brings out the interactions between the

components much better than separate partial order diagrams (this is similar to a metro

map which represents a set of metro lines in a compact understandable form). At his stage

it is not only possible to verify the correctness of PO encoding (the correspondence

NCL-EEE-MICRO-TR-2013-182, Newcastle University 77

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

between opcodes and a needed POs), but also to check if a particular PO is correct

(correctness of vertices and arcs conditions). Both of these verification checks can be

done using the Workcraft framework [6].

Mapping. The final stage of our control logic design is the mapping of the CPOG

representation into a set of logic gates. As soon as the CPOG specification of a system

is synthesised and checked for correctness, it can be mapped onto Boolean equations

in order to produce a physical implementation (gate-level netlist) of the specified micro-

controller. The mapping procedure is a purely structural operation and was addressed

in Section 2.2 and Section 3.3.4.

Finally, we can translate the obtained Boolean equations into VHDL, Verilog or other

HDL and/or input these equations into technology mapping and Place and Route (P&R)

tools (e.g. Synopsys Design Vision [142], Cadence Encounter Digital Implementation

System [30], etc.). See the demonstration chip example in Section 5.2 and Appendix B.1

section for all the resulting Boolean equations.

Along with hardware mapping we have to perform software mapping, i.e. the compi-

lation of the program code from a given legacy software and store the compilation result

in the program memory.

Our design process flow, defined in Figure 4.1, shows that the interface bet-

ween control logic and datapath components is based on a handshake (request-

acknowledgement) protocol. This allows significant flexibility in reusing the datapath

components, such as ALU, PCIU, IFU, memory block, etc., by the controller. So each

of these components can be executed several times with different functionality during

the execution of a particular instruction depending on the order when a particular com-

ponent was requested. Due to the handshake protocol, the full power of partial orders

can be exploited, because the timing of control events is not bounded to particular de-

lay constraints. The advantages of such an approach have been recently applied to the

designs in [19][55][38]. All details of the number and types of the CPU components, such

as registers, program counter, ALU, etc., are described in Section 4.3.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 78

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A
LU

/4

S
ID

U
/2

0 D

A
LU

/7

G
O

0 E0 C

A
LU

/5
0 G 0

in
te

rr
up

tio
n

bi
t

M
A

U
/5

A
LU

IF
U

/2 A
LU

/3

A
LU

/2
0 F

D
O

N
E

_F
A

LU
/6

0 z

M
A

U

M
A

U
/2

B

S
ID

U

P
C

IU

0 H

P
C

IU
/3

M
A

U
/4

P
C

IU
/2

M
A

U
/3

0 A

IF
U

/3

D
O

N
E

M
A

U
/6

IF
U

IF
U

/4

0

op
co
d
e

Fi
gu

re
4.

6:
Co

m
pl

et
e

in
st

ru
ct

io
n

se
ti

n
CP

O
G

re
pr

es
en

ta
tio

n

NCL-EEE-MICRO-TR-2013-182, Newcastle University 79

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

(a) Projection D with interrupt

(b) Projection Y without interrupt

Figure 4.7: Examples PO Projections in the whole instruction set

4.2.2 ALU control logic

Unlike the top level control logic, the ALU control logic coordinates the execution of the

datapath only within the Arithmetic Logic Unit. As was mentioned in Section 4.1, the

ALU itself is a complicated circuit with a hierarchical structure, so a dedicated circuit

was developed to control the computational part of the ALU (Figure 4.9).

Control logic of the ALU block was designed using the same flow (Figure 4.1) which

was applied to the development of the top-level control logic. However, the flow was

focused not on the top-level architecture of the CPU and instruction set, but on the specific

ALU features, such as the availability of specific datapath components, the operating

NCL-EEE-MICRO-TR-2013-182, Newcastle University 80

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table 4.2: Specification of functioning components in ALU

Components Description

Address_R and
Data_R

Address Register and Data Register are used to keep
address and data for accessing internal and external

memories.
Temp_R and

Temp2_R Two Temporary Registers are reserved for internal usage.

Datapath The main computational unit in this block. It is used for all
arithmetic and logical operations in the CPU.

PSW_R
PSW (Program status word) Register is used to keep
information about processor’s status and required for

proper program execution.

PC_R Program Counter Register holds address of the next
instruction.

Unit Selector_R Unit Selector Register keeps information about operating
arithmetic units.

modes, the order of ALU component execution, etc.

Following the flow we extracted the datapath components (see Table 4.2) needed

for the correct execution of the ALU’s behavioural scenarios. Also, additional hardware

elements were added, such as the “Work” Register for fault tolerance control, which can

also be found in Table 4.2.

The next step was the extraction of behavioural scenarios of the ALU unit in a parti-

cular instruction. Essentially we used the same instruction groups, as for the top level

control (see Appendix A). However, depending on the order in which the ALU component

was requested during the instruction execution the control logic behaves differently, the-

refore in the PO representation we introduced parameters ALU-ALU7 in addition to the

opcode.

At the encoding stage we simply extended the existing opcode from the top level

control logic of instructions groups (see an example of opcode for group A in Table 4.3).

Note that each instruction group has its own breakdown of the opcode, due to the different

number of instructions per group and the therefore varying length of the opcode (see

Appendix A).

After all POs were extracted and encoded we eventually combined them into a CPOG

(Figure 4.8), which is not as complex as the top-level control logic (Figure 4.6), due to

NCL-EEE-MICRO-TR-2013-182, Newcastle University 81

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table 4.3: Breakdown of opcodes for instructions from group A

Instruction

name

Main

opcode1 (bits 12..11)2 Rn

number3 (bits 7..6)2 Reading

from4

Writing

to4

Instruction

opcode

MOV A, Rn 111 11 000 00 010 000 1111100100010000

MOV Rn, A 111 11 000 00 000 010 1111100100000010

INC Rn 111 00 000 00 010 010 1110000100010010

INC A 111 00 xxx 00 000 000 1110000000000000

INC DPTR 111 00 xxx 00 100 100 1110000000100100

DEC Rn 111 00 000 01 010 010 1110000101010010

DEC A 111 00 xxx 01 000 000 1110000001000000

RLC A 111 00 xxx 10 000 000 1110000010000000

RRC A 111 00 xxx 11 000 000 1110000011000000

RL A 111 01 xxx 00 000 000 1110100000000000

RR A 111 01 xxx 01 000 000 1110100001000000

DA A 111 01 xxx 10 000 000 1110100010000000

SWAP A 111 10 xxx 00 000 000 1111000000000000

CPL A 111 10 xxx 01 000 000 1111000001000000

1. The main opcode (bits 15..13) is generated using the Huffman encoding tree for the
top level control logic.

2. Bits 12..11 and 7..6 are used to distinguish instructions within the group.

3. Rn number (bits 10..8) identifies the specific register (R0-R7) from the Register
Bank [80]. “xxx” description means that the Register Bank is not used for executing
that instruction.

4. “Reading from” and “Writing to” are two areas in the opcode, which show the source
from where the data is read and destination where it should be written: “000” –
accumulator, “001” – register B, “010” – register from the Register Bank, “100” –
DPTR, “011” – PSW [80].

NCL-EEE-MICRO-TR-2013-182, Newcastle University 82

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

the fact that there are mainly “request to the datapath unit” operations, and many of

these primitive actions are happening concurrently. Again we don’t show vertex and arc

conditions on the diagram for clarity.

Figure 4.8: CPOG representation of ALU control

We used the Workcraft framework [6] to simulate and verify the correctness of ALU

CPOG functionality.

One can notice that we addressed the verification process in Section 3.4.1 using

Event-B formalism. Instruction verification using Workcraft tool and Event-B formalism

are different approaches targeting different things. The Workcraft framework was used

to create each of the PO, encode and produce the final CPOG representation. Further

on we use this tool for a functional simulations of POs. However Event-B formalism is

use for a formal verification of created PO, i.e it checks how an instruction is assembled

from smaller blocks and whether such an assembly always delivers right results in all

the possible instruction executions.

Finally we translated the obtained CPOG into Boolean equations (see Appendix B.2)

using techniques described in Section 4.2.1. Then these equations were passed to a

synthesis tool (e.g. Synopsys Design Vision [142], Altera’s Quartus II FPGA design soft-

NCL-EEE-MICRO-TR-2013-182, Newcastle University 83

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

ware [53], etc.) for obtaining the gate level implementation (see Section 5.2).

Using the same design flow (Figure 4.1) for both control logic blocks (the top level and

the ALU control) significantly simplified and accelerated the development process. By

using such a compositional approach ISA can be easily adjusted to a needed application

and/or environment conditions (see Section 3.5).

4.2.3 Interpretation using Parameterised Graph

In this Section we showed how powerful and convenient the CPOG methodology can be

in control logic synthesis. Further research shows that this approach can be extended

in several ways:

• Extension of a graph model representation from partial orders to general graphs.

However, this extension should not exclude the usage of POs if it provides better

results for needed behaviours of a system.

• Description of the equivalence relation between specification as a set of axioms

and further generalisation in an algebra. This set of axioms can be proven to be

minimal, sound and complete.

• By using this new algebra we provide the ability to manipulate the specifications

as algebraic expressions. In other words, we are adding a syntactic level to the

semantic representation of specifications similar to Boolean algebra and digital

circuits.

These extensions were introduced as Algebra of Parameterised Graph (PG) [105]. This

approach was implemented using a Domain Specific Language (Haskell [71]) to synthesise

the control logic. Despite the fact that this is ongoing work, some examples of algebraic

equations are presented in Appendix C.

4.3 Datapath description

This section outlines details of the functionality, development process and main features of

the second part of CPU – the Datapath. The datapath of a processor contains arithmetical

NCL-EEE-MICRO-TR-2013-182, Newcastle University 84

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

circuits (where the actual computation takes place) registers, and dedicated memory

blocks (where the data is stored), and communication paths (which provide links between

them).

The datapath can be found in the microprocessor’s top level structure in Figure 4.2,

where it is shown around the control logic block. The rest of the section discusses the

datapath components in detail.

4.3.1 Arithmetic Logic Unit

The ALU is the most important component of the datapath. As a part of the CPU archi-

tecture it was first mentioned by John von Neumann [117] in 1945. Since then, this part

of a CPU has become more and more complex, and now, in high performance Graphics

Processing Units (GPUs), we may have 1000s of ALU cores on the same chip.

In our implementation we were following the original ALU architecture of the 8051

microprocessor, however, we applied some special features, which we will discus in Sec-

tion 4.4. As was already mentioned in Section 4.1 the ALU is a complex circuit with a

hierarchical structure, shown in Figure 4.9 with its own control circuitry and a datapath.

As the control logic (Main control block) was already addressed in Section 4.2.2, here

we concentrate on the datapath, which mainly contains computational units and internal

registers:

• Address and Data Registers – two 16-bit registers, which are used for reading and

writing from/to the RAM memory blocks. Both of them are connected through the

Cross bar switch to other component, e.g. data from computational units, data from

ROM or RAM blocks, etc.

• Temp and Temp2 Registers are two 16-bit registers, used for internal purposes, e.g.

to exchange data between two locations. They are also connected to the Cross bar

switch and it is possible to transfer the data to the Datapath block.

• Datapath contains arithmetic and logic operational units (see Figure 4.10). The

computational units are 16-bit wide and some of them (adder, multiplier and divi-

NCL-EEE-MICRO-TR-2013-182, Newcastle University 85

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 4.9: ALU internal structure

der) have a duplicate set of components to support multiple operation modes (Sec-

tion 4.4.1) and fault tolerance features (Section 4.4.3). The block has “Operating

mode” and “Working units” inputs, which provide information about the current ope-

rating mode (high performance/low power) and health of the computational units.

There are other inputs and outputs, such as the “Delay codes” input (the delay

code is provided for each arithmetic component and register with an adjustable

delay line, see Section 4.4.2), the “Old PC” input (the current instruction address,

which is used in branch instructions), the “Opcode” input (the type of operation to

be performed and the input data for it – this information is encoded in the opcode

of the operation), the “Data from RAM” and “Data from ROM” inputs, the “PSW in”

output (new data to be written to the PSW Register) and the “Data out” output

(data computed by the arithmetic blocks, which goes through the Cross bar switch

to its destination).

NCL-EEE-MICRO-TR-2013-182, Newcastle University 86

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 4.10: Datapath block internal structure

• Cross bar switch is an interconnect circuitry matching inputs and outputs depending

on the “Opcode” input.

• PSW (Program Status Word) Register is a 16-bit directly addressable register,

that holds information about the current CPU state. The structure of the register

is shown in Table 4.4.

• Unit Selector Register is a 7-bit directly addressable register, which is used to hold

information about faults in datapath components, each represented by a register bit

(6 bits in total, see Table 4.5), the 7th bit (“bulb”) is used for demonstration purposes

only (it is accessible from the software level and connected to the output pin of

the chip, see Appendix D). The register can be accessed by a special instruction

MOV wrk, direct, which writes data from an internal RAM location into the “Work”

Register (this instruction has been added to the standard Intel 8051 ISA).

NCL-EEE-MICRO-TR-2013-182, Newcastle University 87

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table 4.4: Structure of the PSW register

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
OV EA N Z RS1 RS0 CY

0. CY Carry flag is set if there was a carry from or borrow to the most
significant bit in the last arithmetic operation.

1-2. RS1 & RS0 Register bank select: 00 – Bank0; 01 – Bank1; 10 – Bank2;
11 – Bank3.

3. Z Zero flag is set if the last arithmetic result is equal to zero, and
reset otherwise.

4. N Negative flag is set if the last arithmetic result is negative, and
reset otherwise.

5. EA Interruption flag indicates the occurrence of an interrupt.
6. OV Overflow flag is set a signed arithmetic operation result is

too large positive or negative number to fit
into the destination register.

The rest 9 bits (15..7) can be used as general purpose flags.

Table 4.5: Structure of the “Work” register

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
“bulb” div1 div0 mult1 mult0 add1 add0

0-5. – 6 bits carry information about fault in datapath arithmetic
units: 0 and 1 (add0 and add1) – adders;
2 and 3 (mult0 and mult1) – multipliers;
4 and 5 (div0 and div1) – dividers (see Section 4.4.1).

6. “bulb” – this bit used for demonstration purposes only.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 88

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

• PC (Program Counter) Register is an an auxiliary 16-bit register holding a new PC

address before it is sent to the Program Counter Incremental Unit.

• Merge controller is a special component that allows requests to the ALU multiple

times during the execution of the same instruction. The ALU can be requested up

to 7 times within the same scenario (see Figure 4.6) and ALU control logic needs to

behave differently for each request. The merge controller was originally proposed

in [102] to solve handshake management issues. We developed the implementation

further to cope with a higher number of requests. Figure 4.11 shows a schematic

view (a) and implementation (b) of the Merge controller used in the ALU component.

The complex gate in Figure 4.11(b) was separately implemented and validated for

timing hazards.

It is worth mentioning the schematic implementation of the merge controller for the ALU

block (Figure 4.11(b)) was shown for the reader to understand the functional structure

of the unit. During the implementation this block was described using VHDL and then

generated by the synthesis tool. The actual structure of the merge controller block is

different and contains several various complex gates generated by the tool.

(a) Schematic view (b) Implementation

Figure 4.11: Handshakes merge controller

NCL-EEE-MICRO-TR-2013-182, Newcastle University 89

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 4.12: Top-level structure of the PCIU

All communication between the control logic and the datapath units within the ALU

component (Figure 4.9) is arranged by means of request and acknowledgement signals

(in the same way as the Top level, see Figure 4.2) and is regulated by the Main control

block (see Section 4.2.2).

4.3.2 Program Counter Increment Unit (PCIU)

Each Von-Neumann processor contains a component, which stores the address of the

instruction that is currently being executed. In the Intel x86 architecture such a unit is

called Instruction Pointer (IP) [160] or Instruction Address Register (IAR) [109]. In our

implementation it is a Program Counter Increment Unit (PCIU).

It is a 16-bit loadable counter, which is incremented before fetching new data from

program memory (Section 4.3.3). Instructions are normally fetched sequentially from

ROM, however, there are situations when a new value is placed in the PC, e.g. branching

or jump instructions, calls and returns, etc. In this case a new value is prepared by the

ALU block and loaded into the counter in the PCIU.

Figure 4.12 shows a schematic view of PCIU, which contains a 3-way Merge controller

(similar to the one in the ALU, however the PCIU block can be requested a maximum of

three times in the same instruction) and loadable 16-bit counter, which provides the

address for the next data to be fetched from program memory.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 90

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

4.3.3 Instruction Fetch Unit (IFU)

We followed the original Harvard architecture, where instruction memory and data me-

mory are physically separate. Hence all instructions are stored in program memory (a

programmable ROM). To access the memory and load instructions the following blocks

were implemented:

• Instruction Fetch Unit controls the request/acknowledgement protocol between the

main control block and the ROM (mainly by the use of Merge controller see Sec-

tion 4.3.1), provides the instruction address from the PCIU to the ROM and receives

new data from the ROM.

• ROM stores the program code for the microprocessor. This is an off-chip 128Kb

Erasable Programmable Read-Only Memory (EPROM) with 16-bit address bus and

16-bit output data bus.

• Instruction Register is an internal 16-bit register, which holds the opcode for the

instruction, which is currently executed . This register is latched when it receives

the Done_F (see Figure 4.2) signal from the main control logic, which indicates the

end of execution of the current instruction (see Figure 4.6). When a new opcode is

loaded into the register, the Finish signal initiates execution of the new instruction.

Programs may contain not only one-word instructions (just an opcode), but also two-

word and tree-word instructions. The second and the third words (the operands) are

used differently depending on the addressing mode (see Section 2.3.3).

A multi-word instruction can be sent not only to the Instruction Register as the opcode

of the instruction, but also to the ALU block as specific data for computation.

Delay Codes are also read from the ROM (see Figure 4.2). These codes are required

by the adjustable delay lines (see Section 4.4.2) and stored in the Delay Registers (DR)

(see Section 4.3.6). During the Reset stage of the CPU, the IFU block generates the

ROM addresses, which depends on the current value of the Delay Bit. If the bit is not

set, the requested addresses would be from #0000h to #000Fh, if it is set – from #0010h

NCL-EEE-MICRO-TR-2013-182, Newcastle University 91

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

to #001Fh. Every value read from the ROM will be written to the corresponding DR (see

Section 4.3.6).

4.3.4 Memory Access Unit (MAU)

In the previous Section we discussed the process of fetching instructions from ROM,

however general purpose data is stored in a physically different unit called RAM. A

special block, called Memory Access Unit, was designed to access this memory.

According to the original architecture [158] there are two RAM blocks (Internal and

External) and different instructions are used to access each of them. Due to the lack

of off-chip pins the External RAM was also placed on-chip and has the same size as

the Internal one (512 bytes). Depending on the instruction (opcode), MAU accesses the

required memory block and proceeds with a write or read operation. During the read

operation the ALU calculates the address and sends it to the appropriate RAM through

the MAU block. The data from the memory is send back to ALU directly. The same

procedure is followed during the write operation, however along with the write address

the ALU also needs to provide the data to be written.

MAU has its own Merge controller (Sections 4.3.1; 4.3.2) to deal with multiple requests

from the main control logic, as it could be requested up to six times during the execution

of the same instruction.

The Delay Code input provides the delay constraints for the adjustable delay line (see

Section 4.4.2).

4.3.5 Stack Increment/Decrement Unit (SIDU)

The microprocessor has a special address space in RAM reserved for Stack. This area is

allocated to store information about the current program status (PSW), specific registers

(A, B [158]) or any other data, which can be corrupted during the interrupt handing

process.

To have access to a memory location in Stack we need to store its address. For this

reason a specific block, called Stack Increment/Decrement Unit, was designed, which

NCL-EEE-MICRO-TR-2013-182, Newcastle University 92

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

stores the address and provides functionality for incrementing the Stack Pointer (SP)

every time we write to the Stack, and decrementing it when we read the data back. It

has the same structure as the PCIU block (see Section 4.3.2), however the counter can

both increment and decrement its value, and can’t be loaded like PCIU. SIDU can only

be requested twice in the same instruction, so it uses a 2-way Merge controller.

4.3.6 Delay Registers (DR)

Delay Registers (DR) is a set of 8 internal 16-bit registers, to store the Delay codes for

adjustable delay lines (see Section 4.4.2).

The latency of a delay line is controlled by the value of the corresponding delay code,

so the valid code needs to be stored in the DR. The process of loading codes into the

registers is controlled by the IFU block (see Section 4.3.3). Table 4.6 shows the allocation

of the Delay Registers to specific computational unit delay lines.

Every time the environment conditions (voltage supply, temperature, etc.) change,

the critical path of the computational logic is affected, so we need to update the Delay

code. In order to do so, the CPU needs to go through the Reset process, when the IFU

block (see Section 4.3.3) generates addresses (depending on the Delay Bit), fetches a

new Delay codes, and loads them into the DR.

In out implementation the only way to load new constants is to go through the reset

process, so it might seems that there is no seamless changes with the environment.

However this is the way how we needed to deal with the bundled data approach. It is

our future work to apply other approaches, e.g a competition detection techniques, to

remove the this issue completely.

4.3.7 Interrupt handler

Following the original CPU implementation, our microprocessor is able to handle hard-

ware interrupts.

Usually a hardware interrupt is a special signal sent to the processor from external

devices in order to execute a particular routine and pause the running program. The

NCL-EEE-MICRO-TR-2013-182, Newcastle University 93

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table 4.6: Structure of the Delay Registers set

Delay Register Bits of the Delay
Code Datapath Component

1 [15...8] Fast Adder
[7...0] Low-power Adder

2 [15...8] Fast Multiplier
[7...0] Low-power Multiplier

3 [15...8] Fast Divider
[7...0] Low-power Divider

4 [15...8] Internal RAM
[7...0] External RAM
[15...8] ROM

5
[7...4] Program counter

(counting phase)

[3...0] Program counter
(loading phase)

[15...12] SIDU register

6 [11...8] PSW register in ALU

[7...4] Address register in
ALU

[3...0] Data register in ALU
[15...12] Temp register in ALU

7 [11...8] Temp register 2 in
ALU

[7...4] “Work” register in
ALU

[3...0] Logic operations in
ALU

8 [15...8] Instruction Register

NCL-EEE-MICRO-TR-2013-182, Newcastle University 94

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

control logic of the CPU needs to have the ability to recognise such a signal and initiate

a particular process to handle the interrupt using appropriate datapath units.

Due to the fact that the original Intel 8051 processor was specifically designed to

work as a microcontroller, the main CPU was accompanied with a number of peripherals,

such as counters, watchdog timers, ADC/DAC converters, etc. Hence, it was supplied

with a variety of interrupt levels. However, our goal is to design a CPU with specific

features, so a less sophisticated interrupt handler was implemented.

We have implemented the interruption bit, which indicates the occurrence of an in-

terrupt. It can be found along with its opcode in Figure 4.6. Figure 4.13 shows a graph

describing the order of activation of functional units in the situation when a processor

interrupt occurs. This graph can also be found on the right hand side of the CPOG repre-

sentation of the complete instruction set. Execution of every instruction finishes in vertex

DONE , no matter whether interrupt happened or not. If there were no interrupts during

the execution of a PO (i.e., the interrupt bit was not set (see Figure 4.7(b)), the execution

continues to vertex DONE_F , representing the end of the instruction execution. However,

if an interrupt did occur (we assume that the processor wasn’t in the state of handling a

previous interrupt) then the execution would follow a different route (Figure 4.7(a)). First

we need to save the current program counter (PC) onto the stack (ALU/6→MAU/6) so

that the processor can return to the location where it was interrupted, and set a special

“Interruption flag” (EA) in the PSW register (Figure 4.3.1) to indicate the occurrence of

an interrupt. Then we update the stack pointer (SIDU) concurrently with loading the

interrupt handler address (the entrance to the interrupt handler subroutine has address

FF00) into IFU (ALU/6 →MAU/6). Finally, the execution finishes in vertex DONE_F .

Note that vertices GO, DONE and DONE_F do not represent any functional units (un-

like other vertices); instead, they indicate the start of an instruction execution or its

completion. At the end of the interrupt handling procedure the programmer needs to

disable the EA flag (by RETI instruction), so that a new interrupt can be handled.

If a new interrupt takes place, while the processor is handling the previous one, we

ignore it until the “Interruption flag” (Figure 4.3.1) is reset, indicating that the CPU is

NCL-EEE-MICRO-TR-2013-182, Newcastle University 95

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 4.13: PO representation of interrupt handling

ready to process the next one.

4.3.8 Communication protocol between control and datapath units

Digital circuits register the computation results when the operation completion signal

is issued. In synchronous circuits the role of such a signal belongs to the global clock

whose period is chosen to be long enough for all the circuit modules to complete the

computation, thus exhibiting the worst case performance. However, as the title of the

Chapter suggests we designed an asynchronous microprocessor, where it is achieved by

allowing each module to indicate its progress independently, either through explicit com-

pletion detection logic or by replicating the critical path in the form of a matching delay

line [139]. The former approach requires redesign of the datapath components (using,

e.g., dual-rail logic) with associated design overheads and productivity penalties. The

latter approach, called bundled-data, allows the reuse of conventional design methods

and existing datapath components, and thus is more convenient for our purposes.

Two signalling disciplines can be exercised over a bundled-data channel – 2-phase

and 4-phase. A 2-phase protocol indicates the availability of results by any change of

the completion signal, which requires a more complicated control logic. In a 4-phase

protocol only the rising edge indicates the availability of the results, which simplifies the

control logic, but introduces latency overheads because of the mandatory reset phase.

However, these control delay overheads can be efficiently mitigated by using asymmetric

delay lines [51] or local clock controllers [116], therefore we chose 4-phase signalling for

our design.

In the next Section we will focus on the new features which were introduced in the

NCL-EEE-MICRO-TR-2013-182, Newcastle University 96

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

CPU for the purpose of power proportionality, fault tolerance, a wide range of operating

modes, design for test issues, etc.

4.4 Optimisations

In the Introduction (see Section 1.1) we mentioned that there is a high demand for sys-

tem, which can operate in a wide range of supply voltages, and adjust their functionality

towards a specific application and operating mode. In this section we will discuss these

issues and introduce several important features of our design: Extended datapath struc-

ture (Section 4.4.1), Adjustable delay lines (Section 4.3.6) and Fault tolerance mechanisms

(Section 4.4.3).

4.4.1 Proposed extended microprocessor datapath

As discussed in the introduction, it is important to provide support not only for dynamic

reconfigurability in the application-specific context but also to capture multiple operation

modes provided by the system. Such reconfigurability can be applied at different levels

of abstraction – from the high level of system components down to individual gates and

transistors. We focus on the functional block level of granularity.

The most power and time consuming components of the 8051 microprocessor are in

the datapath [151], e.g. adders, multipliers and dividers. To be adjustable towards a wide

range of operating conditions and custom applications, we designed two sets of arithmetic

units: one optimised for energy consumption and the other one for performance:

Adder implementations. As we needed to have two adders different in their per-

formance and power consumption, we looked through several existing implementations:

Ripple Carry Adder (RCA) [29], Carry Look-ahead Adder (CLA) [77], Kogge-Stone Adder

(KSA) [87] and Brent-Kung Adder (BKA) [25]. Amongst these four implementations, RCA

and CLA are slow, but low-power, however KSA and BKA or so-called Prefix-Tree ad-

ders [25] target high-performance applications. After comparing the simulation results,

we chose RCA and BKA, see Table 4.7.

Multiplier implementations. A similar search was done to find two examples of mul-

NCL-EEE-MICRO-TR-2013-182, Newcastle University 97

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table 4.7: Comparisons between different implementations of arithmetic logic

Computational
unit Type Delay

(ns)

Power
consumption

(W)

Energy
per

operation
(J)

Area
(units)

Adder fast 1.81 2.93e-06 2.95e-08 4687
slow 2.01 1.67e-06 2.44e-08 4113

Multiplier fast 2.25 3.76e-05 1.71e-07 20970
slow 4.13 2.78e-05 1.49e-07 14756

Divider fast 18.61 1.14e-05 5.76e-07 44275
slow 22.09 1.07e-05 5.58e-07 43576

tiplier units. There are several multiplication algorithms that are used nowadays, such

as sequential multipliers [141], Booth’s multipliers [24], Wallace [154]/Dadda [52] tree al-

gorithms, etc. Moreover, most implementations come with various modifications of adders

and encodings, depending on which the performance and power consumption of the final

multiplier may vary. For high performance multiplication we chose Wallace tree design

and for low power we chose a simple partial products multiplier (PPM) [77]. Simulation

results are shown in Table 4.7.

Divider implementations. We tested several designs of divider blocks (Long division

algorithm [157], Nonrestoring divider [156], SRT division [127], Goldschmidt Implementa-

tion [63], etc.) to find appropriate examples of high performance and low power divider

logic. High performance divider was taken from the DesignWare Synopsys Library [73]

and the “Long division algorithm” was chosen for the low power implementation. Simu-

lation results of the chosen dividers can be found in Table 4.7.

Depending on whether there is a shortage of energy or on any other restrictions

imposed by a custom application, we can choose the most appropriate functional block

to be used during an instruction execution by switching a specially dedicated pin on the

chip (see Appendix D) – the Operating mode bit (Figure 4.2). The decision on which set

of units to use can be made at different levels: software, sensors, external signals, etc.

In the next version of our chip we are planning to add a power gating mechanism

to switch off the unused set of computation components and thereby reduce the static

NCL-EEE-MICRO-TR-2013-182, Newcastle University 98

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 4.14: Configurable datapath component with adjustable delay line

power consumption.

Duplication of the main arithmetic units provided not only the ability to adapt to

varying application requirements and operating conditions, but also allowed us to provide

fault tolerance mechanisms (Section 4.4.3).

4.4.2 Proposed adjustable delay lines

Our implementation of self-timed datapath components is based on the bundled-data

approach (Section 4.3.8), where each computational block (Table 4.6) is accompanied by

a matching delay line to signal completion. In order to correctly function in a wide range

of operating conditions (e.g. supply Vdd or temperature), the bundle-data component

needs to adjust the latency of its completion signal. We propose to address this issue by

use of an adjustable delay line [129], whose latency is selectable by a Delay code, see

Figure 4.14.

The ack signal is produced as a reaction to the req signal after a time interval which

is chosen by the Delay code input - the total latency is formed as a combination of delay

portions between the multiplexers controlled by the Delay code bits.

The Delay code was calculated according to Vdd, environment temperature and tech-

nology process values. First we synthesised a netlist for a computational unit (such as an

adder or a register) using the chosen technology library (130nm CMOS, see Section 5.1).

NCL-EEE-MICRO-TR-2013-182, Newcastle University 99

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Then the netlist was simulated under normal corner case conditions (nominalVdd level

1.2V) in order to find out the critical path delay of the component. This value (minus the

delay of all the OR-gates, multiplexers and wires in the delay line) represents the time

delay in the delay_init (Figure 4.14) block. Hence under normal operating conditions

when all the bits in the Delay code are “0”, after the delay_init time the ack signal will

represent the completion of calculation of the computational unit.

When the operation conditions (Vdd and/or temperature) change we need to add extra

delay portions into the delay line to generate a valid completion signal. By knowing the

number of bits in the Delay code for a particular variable delay line (Table 4.6) and the

dependency of the propagation delay and the operation conditions, we split the delay

portions equally between the delay (Figure 4.14) blocks in each of the delay line. By

applying a particular Delay code we can adjust the completion signal as widely as

possible.

The Delay codes are loaded into the Delay Register (Section 4.3.6) during the reset

stage of the microprocessor using the IFU block (Section 4.3.3).

4.4.3 Fault tolerance

All complex systems, including microprocessors, are designed with the possibility of faults

in mind. Sometimes it may be impossible to predict the nature of potential faults and

their locations. It is therefore important to design a system in such a way that it can

tolerate the faults and continue functioning correctly. A general approach to building

fault tolerant systems is redundancy, which can be applied at several levels:

• time redundancy - by performing an operation several times;

• data redundancy - by providing extra information;

• physical redundancy - by supplying extra hardware to allow the system to com-

pensate the loss of failed components [122].

As our design has a duplicate set of computation blocks (Section 4.4.1) for the ability to

work in multiple operation modes, we can make use of physical redundancy and build a

NCL-EEE-MICRO-TR-2013-182, Newcastle University 100

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

fault tolerant system. For this a special “Work” Register (see Figure 4.9) is provided. It

holds information about faults in datapath components, each represented by a register

bit (6 bits in total) (Table 4.5). The register can be accessed by a special instruction

MOV wrk, direct – write data from an internal RAM location into the “Work” Register

(this instruction has been added to the standard Intel 8051 ISA). Each arithmetic com-

ponent can be checked for operational correctness (by performing arithmetic operations

on them) and if one of the components is not working properly, the “Work” Register can

be updated accordingly.

It is important to note that functional correctness has a higher priority than the

operating mode. In other words, if a particular datapath component is chosen for a

specific operating mode, but the “Work” Register states it is broken, then a duplicate

component will be used instead. This choice is done hardware level, however the “Work”

Register can be changed by the operating system.

4.5 Design for test

In Section 4.4.3 we discussed how the system tackles faults within the computational

blocks (adder, multiplier, etc.). However, faults can occur in various parts of the system

and it is more important to locate such defects even before the design starts functioning.

In this Section we address these issues by using Design for Test (DFT) techniques,

which is a set of design methods that add testability features to a design and validate

the system for a functional correctness after it has been manufactured.

The choice of a particular testing methodology largely depends on the nature of the

fault. Section 4.5.1 gives a quick overview of a variety of errors that can occur in the

process of a chip development, different types of fault models that are used to describe

such defects and a range of testing methods applied to detect a particular error.

In Section 4.5.2 we discuss particular DFT techniques used in our implementation.

4.5.1 The fault types and DFT techniques

In the process of a VLSI circuit development a number of error/fault models are used:

NCL-EEE-MICRO-TR-2013-182, Newcastle University 101

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

• Logic errors. This group includes all the functional errors made during the design

or fabrication stages of development. Different fault models are used for this kind

of defects, the main types of these are: Single Stuck-at (when one of the nodes in

the circuit steadily tied to either logic 0 or 1), Stuck-Open model (when a physical

line in the circuit is broken and tied neither to 0 nor to 1) and Bridging (two or

mode nodes of the circuit are shorted together).

• Delay faults. Some physical errors, i.e. process variations, make some delays in

the circuit greater or smaller than expected. Typically two fault models are used:

Transition fault model (or gate delay) and Path delay fault model.

• Current-based model (IDDQ fault model [126]). This method suggests measuring

the steady state current of the device against a predefined pass/fail threshold.

The probability of occurrence of a particular type fault depends on the technology used.

If the technology is > 130nm, then the above models usually cover 90% of all possible

fabrication defects. However, if we go below that technology, such models have a low

fault coverage and people use other less-popular models, such as a low-stress voltage

faults models (usually low Vdd increases the delay of the circuit, more so for a faulty

one; tests on higher Vdd can reduce the lifetime), power monitoring (static/dynamic IR

drop during the test [110]), etc.

For detection of a particular fault it is possible to generate a specific test pattern by

Automatic Test Pattern Generator (ATPG) tools [47] using various algorithms (Pseudo-

random, Ad-Hoc, PODEM, etc.).

The most conventional way to gain test information from the circuit under test (CUT)

is to use so-called scan-chains [159]. This is a technique which provides a simple way to

set and observe all the registers of the design. Test patterns are shifted by scan-chains

into registers, then the clock signal is issued to test the CUT, and the results can be

shifted out by scan-chains to be compared with the expected results.

We use the scan-chain approach in our implementation (Section 4.5.2).

NCL-EEE-MICRO-TR-2013-182, Newcastle University 102

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 4.15: Implementation of the Delay registers using the Scan-chain technique

4.5.2 DFT techniques

Section 4.5.1 gave a quick overview of the main DFT methods. However, depending on

the design targets, those approaches can be used to a different extent, such as full scan,

partial scan, boundary scan, etc. To save area and design time, we implemented a partial

scan for our design, hence only dedicated flip-flops were chained.

It is crucial for our design to have the Delay registers (Section 4.3.6) properly loaded

with the Delay codes, as without them the completion signal from the adjustable delay

lines (Section 4.4.2) will be incorrect and therefore the results from the corresponding

computational logic will be registered wrongly. A scan-chain of eight 16-bit registers

from the Delay register set was implemented, see Figure 4.15.

The selected flip-flops (FF) from the design were replaced by scan-FFs (using a DFT

Compiler tool from Synopsis [143]), which contain several additional inputs. In test mode,

when the Scan_en input is set, all FFs are configured as a chain of shift registers. The

test pattern is then shifted in using Scan_in and CLK inputs. Once the whole pattern is

shifted in, the Scan_en is reset and the Delay registers are back to the normal mode to

apply the pattern on the connected combinational logic. Once this is done the circuit is

put back to test mode and results can be scanned out from the registers using Scan_out.

Some implementation details and results regarding the testing techniques used in

our Demonstration chip are presented in Section 5.3.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 103

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

4.6 Conclusions

This chapter described the main stages of our design flow and provided implementa-

tion details of our asynchronous 8051 microprocessor. We outlined a novel CPU design

methodology (Figure 4.1), which was followed through the whole design process:

• Using the provided CPU specification, we analysed the processor architecture and

instruction set (Section 4.1).

• Section 4.2 described the process of the control logic development and highlighted

the benefits of using a novel formalism of CPOGs.

• The structure of the datapath was outlined in Section 4.3. We discussed the main

features of our implementation: extended datapath structure (Section 4.4.1), ad-

justable delay lines (Section 4.4.2), fault tolerance mechanisms (Section 4.4.3) and

DFT methods (Section 4.5).

In this chapter we discussed the design techniques we used to develop a system which

can operate in a wide range of supply voltages and can adjust its functionality towards

a specific application and operating modes. Such a system can adapt itself depending

on the energy budget and computational resources availability, so it contributes to the

so-called power-proportionality criterion [10].

The next chapter demonstrates the feasibility of our approach by building a compe-

titive asynchronous microprocessor, and presents a demonstration in silicon, which was

produced during this PhD work.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 104

Chapter 5

Implementation of the Asynchronous

8051 microprocessor demonstrator

chip

In the previous Chapter we discussed the architecture and the main design features

of our new Asynchronous 8051 microprocessor. To demonstrate the feasibility of our

methodology, novel design flow, and optimisation techniques a demonstrator silicon was

produced. This chapter addresses the CPU design flow, which was discussed in Chapter 4,

in terms of hardware development and synthesis for the chip fabrication. Section 5.2

discusses the implementation of the microprocessor’s control logics (both the Top-level

and the ALU control logic) and the datapath synthesis is described in Section 5.3. After

all the main parts of the chip were synthesised and tested, they were integrated into

the whole chip design and enriched with DFT features for offline testing. The resultant

design was simulated, verified and finally fabricated (Section 5.4). Once the ASIC was

received from the manufacturer, the evaluation procedure took place. To validate the

functionality of the microprocessor we developed a testing board, whose details are

shown in Section 5.5. All the measurements, analysis and comparisons with synchronous

and other low-power CPU implementations are presented in Section 5.6.

105

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

5.1 Introduction

The history of the design of an asynchronous Intel 8051 using the CPOG methodology

goes back to July 2011, when for the very first time its simplified FPGA implementation

and measurement results were presented [132]. It took about a month to build that version

which had a minimal instruction set capable of executing a simple program. The design

was implemented and measured using two different FPGA chips (Flex10K [13] and Cyclone

III [12]). We showed performance, power and area utilization advantages compared to

its synchronous counterpart as well as to its asynchronous version implemented using

the Balsa language [16, 2]. It was then decided to implement the entire Intel 8051

microprocessor with the complete instruction set. Several additional optimisations and

improvements were considered during the chip design stage, as discussed in Chapter 4.

As the first try was purely an FPGA implementation we needed to go through a very

complex design flow to fabricate the design in silicon. This flow includes the following

important stages:

1. Behavioural description of each module and its validation by simulation.

2. Register-transfer-level (RTL) implementation, its simulation and verification.

3. Validation using an FPGA development board.

4. Hardware synthesis for a particular technology library.

5. A number of validation procedures (such as simulation, static timing analysis, etc.)

to check the functionality of the design before proceeding with layout.

6. Place and Route (P&R) and physical validation.

7. Parasitic Capacitances Extraction and post-layout simulations.

8. Sign-off and fabrication.

Figure 5.1 shows a diagram of the explained stages and their interconnections.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 106

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 5.1: Stages of the design flow

To successfully accomplish all these stages we employed various Electronic Design

Automation (EDA) tools provided by different companies: Synopsys, Inc. tools for be-

haviour/RTL synthesis and simulation such as Design Compiler [142], Verilog Compiler

Simulator (VCS) and Discovery Visual Environment (DVE) [153], PrimeTime suite [147] for

NCL-EEE-MICRO-TR-2013-182, Newcastle University 107

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

power and time measurements; FPGA design tools such as Altera Quartus II design [53]

and Altera FPGA developing boards (DE0 and DE1 Altera Developing FPGA board [12]);

Cadence Design Systems, Inc. tools for layout such as Encounter(R) [30] and Mentor

Graphics tools for physical verification such as Calibre [99].

It took about 5 months for the design to go through the above stages. The control

logic was the easiest part to design, since it was benefiting from the presented com-

positional approach. We reuse part of the previously developed control logic from a

simplified version of 8051 microprocessor [131]. However the most time consuming part

to design was the processor’s datapath, as it contained more blocks to be developed

and validated. Moreover since we were implementing a self-timed design, the datapath

has an asynchronous nature, but it is a well-know fact that currently the development of

asynchronous circuits has been hindered by the difficulties to design self-timed systems

using existing EDA tools. In this aspect extra time was needed to verify the correctness

of these circuits.

The chip was meant to be a “proof-of-concept” of the feasibility of the CPOG approach

and a demonstration of power-proportionality as a method of building energy-efficient

and adaptive systems (see Chapter 1).

The next section will focus on the implementation details of each of the microproces-

sor’s internal blocks presented in the entire architecture for the CPU (Figure 4.2).

5.2 Control logic implementation

As it was mentioned in the introduction, the control logic design benefited from using

the novel CPOG formalism, which allowed us in a convenient way to extend our previous

implementation [132] of 4 instructions to current 257 instructions ISA.

In Section 4.2 we presented the specification and the complete design flow of the Top-

level and ALU control logics, so in this section we explain their hardware implementation

and verification details.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 108

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

5.2.1 Implementation of the Top-level and ALU control logics

As it was mentioned in Section 4.2 the final stage of the control logic design is the

mapping of the synthesised CPOG into Boolean equations1, which were then translated

to VHDL code. After generating VHDL files we, following the flow from the Figure 5.1,

first of all, verified the functionality of both control logics using an FPGA designing

tool (simulation and development board) and then by simulating a synthesised Verilog

netlist. Simulation of the Top-level control logic’s netlist is presented in Figure 5.2(a),

where we can see a correct execution of a PO (class H (see Appendix A.8)). After the

start signal GO the PO execution begins according to its description (under the waveform)

with two request signals (req−pciu and req−alu), then after an acknowledgement from

the PCIU is received, a new request to IFU block (req−ifu) is generated. Finally when

acknowledgements from both the ALU and the IFU blocks are received, the signal done−f

was issued, representing the end of the PO and instruction.

Another example of PO simulation using an Altera FPGA design tool is presented in

Figure 5.2(b). For clarity we do not show acknowledgement signals here, however the

simulation is the same as the previous example. Figure 5.2(c) presents a sequential simu-

lation of the previous two POs in an FPGA design tool. The same verification procedure

was repeated for each PO class.

The ALU control logic was synthesised and verified for functional correctness in the

same way as the Top-level one.

To estimate the complexity of the generated control logic, the number of cells used for

the top-level control (326) and the internal ALU control (220) was counted. It should be

noted that in the used technology a cell can correspond to a logic gate with up to 9 inputs.

The total area for both of the microcontrollers (top-level and ALU logics) was only 546

logic gates. For comparison, we took three publicly available Intel 8051 implementations,

namely [3], [4], and [5], and synthesised their central controllers in the same technology

library. The final gate counts were, respectively: 1545, 472 (without the ALU/interrupt

control), and 825. The ALU and interrupt control logic from [4] was scattered across
1All the resulting equations for both of the Top-level and ALU control logic blocks are shown in Appendix B.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 109

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

(a) Simulation of PO execution using EDA simulation tool

(b) Simulation of PO execution using FPGA simulation tool

(c) Simulation of sequential execution of two POs

Figure 5.2: Waveform of example PO simulation

NCL-EEE-MICRO-TR-2013-182, Newcastle University 110

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

datapath modules for optimisation, hence we could not extract it and it was not included

in the count of 472. However, we can still conclude that our implementation is efficient

in terms of area.

After the control part was synthesised and checked we focused on implementation of

the second main part of the CPU – the Datapath, which is discussed in the next Section.

5.3 Datapath implementation

In Section 4.3 we outlined details of functionality and the main features of the the Data-

path, whose hardware implementation details are discussed in this section.

The synthesis of the processor’s datapath followed its hierarchical structure presen-

ted in the overall architecture for the CPU (Figure 4.2): synthesis of the ALU block

(Section 5.3.1), PCIU implementation is presented in Section 5.3.2 and finally the IFU

component with the Delay Registers are explained in Section 5.3.3.

There are other important hardware components, whose implementation details are

summarised below:

• MAU

The main purpose for the MAU is accessing both of the RAM (internal and external)

blocks (see Section 4.3.4), therefore it redirects the address and data from the

ALU to a specific memory block depending on the opcode and received data from

memories back to the ALU. The RTL component was synthesised according to the

specification, verified and tested.

• ROM and RAM blocks

These two units were selected from the list of memory configurations supported by

the fabrication company. According to the power consumption, performance and

area requirements we chose two 512 byte modules SPSMALL9gp_256X16m2 for

both of the RAM blocks and SU180_65536X16X16BM4A for the ROM. However

this ROM block was only used for simulations, as in our implementation we had an

off-chip 128Kb EPROM (AT27C1024).

NCL-EEE-MICRO-TR-2013-182, Newcastle University 111

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Both RAM components are located on the chip, so we needed to provide a faci-

lity to read them independently from the main microprocessor. For this a special

component was developed to support two operating modes of the chip: the test

mode, when some of the external I/O pins are used to read the RAM components

and the work mode when the memories are used by the CPU. The selection of

these modes is managed through special pins, which were added to the floorplan:

the “mode_select” to switch between two modes and “ram_select” to switch bet-

ween two RAMs (Figure 5.9(a)). The code explaining this procedure is given in the

Appendix E.

• SIDU

The main purpose of the SIDU block is to provide the stack address, hence we

implemented a counter, which can be incremented or decremented depending on

the opcode. Regarding the original architecture (see Section 2.3.2) the stack is

located at a particular area in the internal RAM (30h – 7Fh), therefore the first

stack address generated by the SIDU block will be 30h. A programmer needs to

be aware of the stack pointer as the stack and user variable are sharing the same

memory area.

• “Design for test” implementation

DFT methods are well-used in the ASIC design as they significantly improve circuit

testability after the chip was manufactured.

For our implementation it was crucial to have the Delay registers with valid Delay

codes, as without them the microprocessor will malfunction. For this purpose a

special Scan chain of 120 FF was automatically generated through our 8 Delay

registers using the DFT Compiler tool. This Scan chain was then simulated and

verified.

As we used a partial scan approach the total area overhead wasn’t significant

(less than 1% of the total chip area) compared to implementation without the DFT,

however when the ASIC was fabricated the chain played a significant role in the

NCL-EEE-MICRO-TR-2013-182, Newcastle University 112

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

ASIC’s validation and testing.

The DFT approach requires several extra I/O pin (e.g. scan_in, scan_en, scan_out,

scan_clk and scan_mode) added to the floorplan of the chip. In this aspect we used

the same “test mode“ (as for reading RAM blocks) to scan in/out our test vectors

in the scan chain. The code explaining this procedure is shown in Appendix E.

The rest of the Datapath implementation is described in following section.

5.3.1 Synthesis of the Arithmetic Logic Unit

The main functionality and structure of the ALU block was addressed in Section 4.3.1.

Similar to the top-level hierarchy, the ALU block was divided into the control and da-

tapath parts. Synthesis and verification of the control part followed the same pattern

as the top-level control unit (Section 5.2.1). The datapath consisted of internal registers

(Address and Data, Temp and Temp2, Unit Selector and PC) and a Datapath block, with

all the main arithmetic and logic units in it.

The implementation of 16-bit internal registers was straight forward, however the

Datapath block needed to be carefully developed and verified as each its arithmetic

component (adders, multipliers and dividers) was implemented in two styles: one op-

timised for low energy consumption and the other one for high performance. Various

implementations of arithmetic units were reviewed in the Section 4.4.1, eventually we

took open-source implementations for our datapath, i.e adders (RCA [138] and BKA [135]),

multipliers (Wallace tree [44] and PPM [137]) and dividers (Long division algorithm [136]

and divider from the Synopsys library [73]). Simulation results of the chosen arithmetic

components are presented in Table 4.7.

After both types of the units were synthesised and verified, we combined them into

the Datapath block. A special “Operating mode” bit was added into the chip floorplan to

choose a particular set of operational arithmetic blocks.

These computational units as well as other datapath components were implemented

in an asynchronous way and were based on the bundle-data approach. Traditionally

in bundle-data approach the datapath is accompanied by a matching delay line in the

NCL-EEE-MICRO-TR-2013-182, Newcastle University 113

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

control path. In our design we made these delay lines adjustable to extend the operational

range of the circuit and to make it more power-proportional.

To synthesise a delay line for a particular component first of all we needed to find

out its critical path delay under normal operating conditions (a typical corner case in the

technology library). This is the required time for a component to have the valid output

after computation, hence the acknowledgement signal needs to be generated after it.

In our delay line the delay_init block (see Figure 4.14) represents this time (minus the

delay of all the OR-gates and multiplexers in the line). This block was synthesised using

the Synopsys Design Compiler tool. Secondly since the delay of components vary with

the supply voltage, we need to adjust our acknowledgement signal, hence the delay line

according to models which predict this variability [155]. We also needed to apply 10%

margin to these delays for the tool to be able to synthesis a delay and finally equally

spread the worst case delay of the unit throughout the whole delay line. We implemented

a matching delay line to be adjustable in a wide range of operating voltages (from the

nominal down to the threshold voltages).

According to these models, which show the dependency between the supply voltage

and the gate latency, we can predict how the critical path of the component changes

at lower voltage levels, hence we can adjust our delay line accordingly. As the supply

voltage changed we need to change the route of the request signal through the needed

delay portion blocks (see Figure 4.14) so that the acknowledgement signal will be ge-

nerated when the component’s output data is valid. This routing is done by applying a

particular delay code to multiplexers. The simulation results of one of the delay lines

accompanied with a merge controller with four independent request inputs is shown in

Figure 5.3.

The code[7..0] bus represents the delay code in the line controlling the length of the

delay. Signals req1, req2, req3 and req4 are the inputs to the merge controller from the

main control logic, as we may access the same datapath unit several times during the

execution of the same instruction. Once the request comes to the controller it generates

the req_I signal, which is sent to the delay line. After the delay the ack_I signal comes

NCL-EEE-MICRO-TR-2013-182, Newcastle University 114

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

back to the controller from the delay line and then the needed acknowledgement is send

back to the control block.

Most of the delay registers have 8 bit to hold a delay code for the datapath unit,

which indeed showed a lack of granularity of the delay line during the measurement

process. The current work is focused to reduced the granularity and also to apply a

competition detection techniques to remove the this issue completely.

Figure 5.3: Simulation of the merge controller accompanied with an adjustable delay line

Finally the complete ALU component was synthesised and tested. Simulation wa-

veforms are shown in Figure 5.4. ALU simulation of the instructions from the class C

(MOV A, #data, MOV Rn, #data, MOV DPTR, #data and MOV dir, out) is shown in

Figure 5.4(a). Each instruction has its opcode stated in opcode[15..0] bus: h2000, h2110,

h2020 and h2800 respectively2. The bus alu[6..0] shows how many times the ALU block is

used in the specific instruction. In these particular instructions the ALU block is used only

once, therefore alu[6..0] can only be 0 or 1 and accordingly we have only one acknowled-

gement send back ackalu[0]. For each instruction we have a different destination where

we need to move the data: A, Rn, DPTR or dir, therefore we have different addresses

loaded in addr_out_alu1[15..0] bus.

Figure 5.4(b) shows a detailed representation of an example instruction (MOV Rn,

#data) execution: after the ALU control unit receives a request signal (alu[0]) from the

top-level control it starts the execution (signal mainreq) according to its CPOG; follo-

wing a PO from the ALU control we need to write an address of a particular Rn re-
2All opcodes and corresponding PO can be found in Appendix A.3.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 115

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

(a) ALU simulation of instructions from class C

(b) Closer look of ALU simulation of ADD Rn, #data instruction

(c) PO representation for the instruction at the ALU-level control

Figure 5.4: Simulation waveforms of the synthesised ALU

NCL-EEE-MICRO-TR-2013-182, Newcastle University 116

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

gister (in this example it is register 1 (see Table 4.3)) to the Address register (the bus

addr_out_alu1[15..0]) and data from ROM (this instruction is using immediate addressing

mode, so the data is stored in the ROM memory, which is read by the IFU block and

holds in ifu_oout[15..0] bus) to the Data register (the bus data_out_alu1[15..0]) in this

example the values are h0001 and h00ff respectively; when acknowledgements from both

registers are received the the done_ack_alu signal is issued denoting the end of the PO.

Finally the ALU control sends an acknowledgement ackalu0 back to the top-level control.

Another simulation waveform of the instruction (ADD A, #data (opcode hCC00)) is

shown in Figure 5.4(c). According to the instruction’s PO (see Appendix A) there are two

requests to the ALU control from the top-level control (alu[6..0] bus can be 0 – no requests,

1 – ALU is requested for the first time or 3 – ALU is requested for the second time), so two

different acknowledgements ackalu0 and ackalu1 are send back when the execution is

finished. During the first request according to the PO we need to read the accumulator,

hence the ALU only needs to write the accumulator’s address (h00e0) to the Address

register, so the request ReqAM is generated and when acknowledgement (ack_reqAM)

is received the PO is complete (signals done_ack_alu and ackalu0). When the ALU

is requested for the second time (alu[6..0] equals to 3) according to the PO the ALU

needs to add two values (buses a_bl and b_bl), store the result in the Data register and

update the PSW register. As this instruction also uses immediate addressing mode, the

second value (b_bl) h0088 is taken from the ifu_oout[15..0] bus, which comes from IFU

block (data from the ROM block). Within the ALU block we have a Datapath block, which

is in charge of all the logic and arithmetic operations. The RqAluu signal shows the

start of this block to operate. When all the needed data for the arithmetic operation is

ready and it issues the start signal for the adder (req_bl). The result of addition is given

in the data_from_bl[15..0] bus, after we receive the acknowledgement from the adder

(ack_from_bl) the ack_Aluu signal is generated denoting the end of the Datapath block

operation. The next stage is to store the result in the Data register (RqDM) and update

the PSW register (RqPSW), when both of these registers issue their acknowledgements,

the PO finishes the execution with a signal done_ack_alu and finnaly ackalu1 is send

NCL-EEE-MICRO-TR-2013-182, Newcastle University 117

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

back to the top-level control.

In the same way the ALU component was verified by executing all the instructions.

5.3.2 PCIU implementation

Section 4.3.2 explained the main features of the PCIU, which is a 16-bit loadable counter.

Usually the counter simply increments the IP as the program progresses, however we

can also have a branching instruction, when the counter needs to be loaded with a new

value.

Figure 5.5 shows the waveform of the PCIU simulation with both loading and counting

situations. Signals count and complete_c represents request and acknowledgement for

the counter to count and load and complete_l for the loading data from the d[15..0] bus

respectfully. The q[15..0] bus is the output of the counter.

Figure 5.5: Simulation of the PCIU component

5.3.3 Design of the IFU and delay registers

During the execution of the program the main job of the IFU component is to fetch

instructions from the ROM block and send them to the processor core for the execution.

Another task of the IFU block is to fetch Delay Codes (as they are placed in the

ROM) and store them in the Delay Registers (DR). This procedure is happening during

the reset stage of the CPU, as we need to have valid delay codes stored in the DRs

before the microprocessor starts executing the main program. Simulation of this process

is shown in Figure 5.6.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 118

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 5.6: Simulation of loading Delay Codes to the Delay Registers

In this simulation the input_code bus represents the Delay Bit (Section 4.3.3), which

specifies from which set of ROM addresses the Delay Codes will be read (starts either

from h0000 or h0010). We introduced these two locations for the Delay code, so that

we do not need to reprogram the whole ROM, to change the Delay Code, but we can

switch the Delay Bit and fetch a new delay data. After the ready signal is received the

block starts sending request signals (req_ROM) to the memory with a specific address

(addr_ROM[15:0]); the received data from the memory is shown in data_rom[15:0] and

then it is written to a needed DR. After the complete set of Delay Codes is read the renew

signal is issued representing the end of the procedure. The Delay Bit was introduced

This subsection concludes the implementation of the particular components of the

microprocessor, now we move to the verification of the complete design.

5.4 Verification of the entire chip and sign-off for the ASIC

After we verified all parts of the design separately, the next step before proceeding with

layout was the simulation of the complete design, which is addressed in Section 5.4.1.

The last step before the design can be sent for the fabrication is place and route (P&R),

which afterwards also requires verification.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 119

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

5.4.1 The complete design simulation

Before the design goes to P&R, we need to make sure that all previously synthesised

blocks (Figure 4.2) are working correctly together and there are no timing violations. This

has been achieved in two ways: by Static Timing Analysis (STA) [22] and Dynamic Timing

Analysis (DTA). The STA verifies if the circuits meets its timing constraints, so there are

no setup and hold timing violations. However it doesn’t check its logical correctness,

therefore it is much faster than DTA, which runs an exhaustive gate-level simulation.

On the one hand, DTA requires much long time, as we need to apply a high number of

input test vectors and check the output ones. On the other hand, it is applicable to both

synchronous and asynchronous designs, however STA is more suitable for synchronous

approaches.

Figure 5.7(a) shows a waveform with part of the testbench simulation.

(a) Example simulation of the complete design

(b) Simulation with an interrupt occurring

Figure 5.7: Waveforms of the complete design simulation

NCL-EEE-MICRO-TR-2013-182, Newcastle University 120

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table 5.1 shows the code (from a bigger testbench), which simulation is presented in

Figure 5.7.

Table 5.1: Additional information for simulations

Program
Counter Opcode Mnemonic Machine code

01b8 8880 ANL dir, #data 8880, 000C, 1C06
01bb 9000 MOV A, dir 9000, 000C
01bd E840 RR A E840
01be D800 JMP rel D800, 01B8
01b8 8880 ANL dir, #data 8880, 000C, 1C06

The pc[15:0] bus represents a program counter (PC), which starts in the waveform

with the address h01b8. The top-level control sends a request signal (req_rom) to the

ROM, where first instruction (ANL dir, #data) of this example is located. At that point

the previous instruction has finished its execution and the next one starts (signals go_out

and opcode[15:0]). This instruction requires data from the RAM block and the immediate

data from the ROM. To read the data from RAM we need the address (h000C) (see the

Table 5.1), which is located after the instruction’s opcode. When the RAM address is read

from the ROM block and written to the Address Register (am[7:0]) we can proceed with

reading the RAM (the request signal req_int_ram and read/write signal web_int_ram).

The result of the reading is shown in ram[15:0] bus (h0402). Concurrently with the RAM

reading we also fetch data from the ROM block (the value h1C06). When all the data

is ready we can proceed with the AND operation, its result is shown in dm[15:0] bus

ready to be written to the RAM. Concurrently with the writing process to the RAM we

are ready to fetch the opcode of the next instruction (h9000). After this the execution of

the instruction finishes (signals go_out).

In the same way the other 3 instructions are being executed. Notice that the JMP

instruction is updating the PC with a new value (h01B8), i.e. this loops the execution of

the whole testbench.

The next example (Figure 5.7(b)) shows the same testbench, but with an interrupt

happening (signal interrupt). In Section 4.3.7 we described the main details of the in-

NCL-EEE-MICRO-TR-2013-182, Newcastle University 121

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

terrupt handler, where it was mentioned that the handler’s PO starts at the end of any

instruction’s PO, if an interrupt had occurred. This can be seen in the waveform when the

interrupt rises during the execution of ANL dir, #data instruction (opcode h8880) and at

the end of the execution (the third request to the ROM, see Figure 5.7(b)). Similar to the

previous example (without an interrupt), the request fetches the next instruction (opcode

h9000) of the program, however as we have an interrupt, first the PC is saved in the Stack

and then the entrance address of the interrupt handler is loaded to the PC. When we

start to execute the handler, the interrupt signal can still be high, however this doesn’t

affect the execution. In this example our handler contains just one instruction (opcode

h0200). At the end of the handler we have a RETI instruction (opcode h0518) to initiate

the exit from the interrupt. At this point we read our old PC from the Stack and continue

the execution of the main program (opcode h9000). Note that the programmer needs

to take care of all the important resisters (A, B, DPTR, etc.), which can be overwritten

during the interrupt handling, e.g. by storing the context in the Stack.

5.4.2 Chip layout and final verification

After the synthesised design has been fully simulated and verified we proceeded with its

layout and post-layout verification.

Before handing our synthesised netlist to the layout tool we needed to specify the

chip’s floorplan, power domain regions and I/O pins. As we have several separate netlists

to layout (the main design (the Control logic and the Datapath) and two RAM blocks)

it is important to define a region for each power domain and their location in the chip.

Following the floorplanning we imported out netlists into the Encounter tool, which has

the physical information about cells from the specified technology library and a predefi-

ned floorplan where these instances will be places. During the P&R the tool optimally

places each instance in the chip’s floorplan and routes internal connections within each

instance as well as between them and external ones to the outside I/O pins. The final

view of the design after P&R is shown in Figure 5.8(a).

NCL-EEE-MICRO-TR-2013-182, Newcastle University 122

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

(a) The abstract view of the microprocessor after
P&R

(b) Design view with a corresponding cell layout

Figure 5.8: Various views of the design during P&R

After our design was successfully placed on the chip, we needed to verify that its

functionality was not affected during the P&R. Tools for the gate-level simulation usually

do not take the disposition of the blocks in the design into account, which can significantly

effect the timings and therefore the correctness of the entire design. After the P&R

procedure the position of the components is fixed and we can extract the information

about wire delays and proceed with post-layout simulation. The Encounter tool allows

us to go through the Parasitic Capacitance Extraction and export a Standard Delay

Format (SDF) file, which provides information about wire delays for the simulation and

timing analysis tools. After that we rerun all the simulation testbenches and verify that

our CPU gives the correct results.

At the next stage it is essential to export our design from the Encounter to a special

file in Design Exchange Format (DEF), which is the input format for the Virtuoso tool.

This tool replaces an abstract view of each cell (from the Encounter) with its actual

layout. Figure 5.8(b) shows the design view after it was substituted with the actual cell

layout.

Every manufacturing company has their own restrictions on ASIC fabrication. There-

fore before sending design to them we needed to satisfy the restrictions and make sure

NCL-EEE-MICRO-TR-2013-182, Newcastle University 123

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

that our chip can actually be fabricated. To proceed with this we needed to export our

design from the Virtouso to a special Geometric Data Stream (GDSII) file, which can be

read by the verification tool. We used the Calibre tool by Mentor Graphics to go through

DRC and LVS checks. There were several iterations between us and the manufacturer

before they actually accepted our design.

The microprocessor was fabricated in the 130-nm CMOS process using the standard

cell library from STMicroelectronics [140] semiconductor foundry. This technology library

was provided by Circuits Multi-Projects (CMP) [39] service company. Collectively, the

main design block and two RAM components occupy 2.95 mm2of silicon.

Figure 5.9(a) presents the bonding diagram of the chip (more details about each of

the pin on bonding diagram is shown in Appendix D) and Figure 5.9(b) shows a photo of

one of the 25 prototypes received.

(a) The bonding diagram of the chip (b) Photo of the fabricated and pa-
ckaged chip

Figure 5.9: Bonding diagram and packaged ASIC

5.5 Testing board

Before the arrival of the chip we started to prepare a Printed Circuit Board (PCB), for

testing our microprocessor. Several important aspects needed to be considered during

its development:

• an off-chip EPROM, which holds the main program and delay codes.

• there are “test_mode” and “work_mode” (see Section 5.3), in which our processor

NCL-EEE-MICRO-TR-2013-182, Newcastle University 124

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

can operate, so the PCB needs to provide the ability to control the “mode_select”

and “ram_select” pins and connect specific signals to particular pins.

• convenient access to the rest of pins, i.e “reset”, “go”, “external data”, “delay mode”,

“calculation mode”, “interrupt”, etc. (see Figure 5.9(a)).

In the light of the above we decided to connect our PCB to an FPGA (Altera DE0 develo-

ping board [12]), which would provide a more convenient control over these specific pins

and modes; moreover the FPGA board can also be used as a ROM. However the use of

FPGA has a drawback, as it requires a 5V power supply, but the nominal voltage of our

design is 1.2V. Hence we needed to provide voltage level shifters between the FPGA and

the fabricated ASIC. At this stage we started to search for all the required components

for the PCB and to order them from the IC’s suppliers like Premier Farnell [123], Radio

Spares (RS) [128] as well as from the University’s internal stock. Figure 5.10(a) depicts a

simplified diagram of the PCB. Figures 5.10(b, c) show a pictures of the fabricated PCB

with all the components on it and the FPGA board connected to it.

After checking the functionality of the PCB, we moved to the stage of testing, recording

of the measurements and their analysis.

5.6 Measurements and results

An FPGA development board is used to control our PCB with the microprocessor. So

before measurements we needed to develop a design for the FPGA board according to

the aspects discussed in the previous section and test its functionality.

At his point we can connect both of the power supplies (1.2V and 5V) to the PCB,

program the FPGA and run the 8051 CPU. However before the main CPU program can

be executed we need to load the Delay codes. So during the Reset stage (signal “reset”

in Figure 5.11), the “Delay Bit” was set to “0”, the CPU started sending requests (“req”)

and addresses (“address”) to the ROM (through pins “output[15:0]” and “ROM_REQ” see

Figure 5.9(a)). The “data” bus and “ack” signal are coming from the FPGA board to the

chip as data from the ROM and the acknowledgement signal. Figure 5.11 shows this

NCL-EEE-MICRO-TR-2013-182, Newcastle University 125

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

(a) Schematic diagram of the PCB

(b) Photo of the PCB (c) Picture of the FPGA board
connected to the PCB

Figure 5.10: The PCB and FPGA boards

process captured by a digital signal analyser connected to the PCB.

Figure 5.11: Loading of Delay registers captured by Digital signal analyser

The Delay codes can also be loaded by using the Scan chain. First we need to switch

the chip into a test mode (by enabling the “mode_select” pin), then load a test vector

of Delay Codes using the Scan_in and Scan_clk inputs (see the floorplan of the chip

(Appendix D) and pin reassignment for the modes (Appendix E)). Using the Scan chain

we can also check the correctness of the previously loaded Delay codes by enabling the

NCL-EEE-MICRO-TR-2013-182, Newcastle University 126

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

“mode_select” pin and checking the Scan_out pin every Scan_clk impulse. Once all the

codes in the register are loaded we can run the processor.

First we fill the ROM with NOP instructions to see if the execution follows its PO

(see Appendix A.21). From outside the chip we can observe the request to ROM block

and the “GO_OUT” pin, which represents the end instruction’s execution (see Figure 5.7).

Measurements were taken on several power supply voltages: 1.28 V, 1 V, 0.7 V, 0.5V and

0.25 V. Oscilloscope screenshots are shown in Figure 5.12.

For the execution of NOP instructions we need to increment a PC and then fetch the

next instruction from the ROM. As the variable voltage will affect the execution time of

the PC and ROM, for each of the voltage levels we needed to change the delay codes.

During this experiment we noticed that the PC (the address which is coming from the

chip) starts failing when the voltage goes below 0.7V – it gets stuck at fetching the same

address forever. However, the rest of the control logic synthesised using the CPOG model

continues to operate correctly down to 0.25V.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 127

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 5.12: Oscilloscope screenshots for NOP instructions on variable voltage

In the same way we tested all the instructions classes. Figure 5.13 shows oscillo-

scope screenshots for a loop execution of example instructions from different PO classes

(see Appendix A). Depending on instruction’s PO we can have different numbers and

sequences of “ROM_REQ” coming from the chip.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 128

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 5.13: Oscilloscope screenshots of different instruction’s execution

After testing all the instruction the next step was to characterise the processor perfor-

mance and power consumption depending on particular voltage levels. Moreover, having

two implementations of each computation unit (adder, multiplier and divider) we explored

the ability to switch between high performance and low power datapaths and compare

the performance and power consumption. Following plots representing measurements

from example instruction execution:

• “NOP”

NCL-EEE-MICRO-TR-2013-182, Newcastle University 129

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 5.14: Measured EPI when Vdd changes for NOP instruction

Figure 5.15: Measured power consumption when Vdd changes for NOP instruction

Figure 5.16: Measured latency when Vdd changes for NOP instruction

NCL-EEE-MICRO-TR-2013-182, Newcastle University 130

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 5.17: Measured current when Vdd changes for NOP instruction

• “SJMP rel”

Figure 5.18: Measured EPI when Vdd changes for SJMP instruction

Figure 5.19: Measured power consumption when Vdd changes for SJMP instruction

NCL-EEE-MICRO-TR-2013-182, Newcastle University 131

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 5.20: Measured latency when Vdd changes for SJMP instruction

Figure 5.21: Measured current when Vdd changes for SJMP instruction

• “ADD A, #data”

Figure 5.22: Measured EPI when Vdd changes for ADD instruction

NCL-EEE-MICRO-TR-2013-182, Newcastle University 132

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 5.23: Closer look of a measured EPI when Vdd changes for ADD instruction

Figure 5.24: Measured power consumption when Vdd changes for ADD instruction

Figure 5.25: Measured latency when Vdd changes for ADD instruction

NCL-EEE-MICRO-TR-2013-182, Newcastle University 133

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 5.26: Measured current when Vdd changes for ADD instruction

• “MUL A, B”

Figure 5.27: Measured EPI when Vdd changes for MUL instruction

Figure 5.28: Closer look of a measured EPI when Vdd changes for MUL instruction

NCL-EEE-MICRO-TR-2013-182, Newcastle University 134

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure 5.29: Measured power consumption when Vdd changes for MUL instruction

Figure 5.30: Measured latency when Vdd changes for MUL instruction

Figure 5.31: Measured current when Vdd changes for MUL instruction

The execution of different instructions requires different computational units to operate.

Since some of the units have different ranges of operating voltages, e.g. on-chip RAM

components can not work below 0.87 V or the PC operating voltage is above 0.7 V,

different instructions have also a different operating voltage range (i.e NOP – from 0.25V

up to 1.25V; ADD – from 0.87V up to 1.25V).

NCL-EEE-MICRO-TR-2013-182, Newcastle University 135

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Analysing the presented plots we can see that different instruction have different

minimum energy point, e.g. “SJMP rel” instruction at 0.5 V (Figure 5.14) and “MUL A,B”

instruction at 0.95 V (Figure 5.28). Therefore depending on how often the programmer

will use a particular instruction at a specific voltage level the total power consumption

may vary.

Interesting results were obtained during switching between two sets of computational

units. The difference in power between the fast and slow modes for a particular voltage

level may be small, however depending on how often the programmer is using a particular

mode this difference accumulates and eventually results in significantly different total

power consumption. Surprisingly we also noticed that low-power computational units

do not always consume less energy (Figure 5.23, 5.28). At a particular voltage level

the energy consumption of the instruction increases. This is due to the leakage in the

datapath units, which are used for the instruction. In this aspect the use of low-power

components is not always optimal in a wide range of supply voltages. It is reasonable to

use them on higher voltages, when a dynamic power consumption is dominating, however

once the computational latency increases, hence the leakage, then it is more efficient to

continue computation in high performance mode.

One can notice that there is not much difference between high performance and low

power units. There are several reason why that is happening: i) represented results are

measured of the whole chip, not the particular computational units. That means that

other components, e.g. power-hungry blocks like memory, can have a greater effect on

the total numbers and “mask” the difference of these modes. ii) originally the difference of

these computational modes are caused my different algorithms used in arithmetic units,

however it might be the case that the chosen algorithms are not the best, so we can’t see

much difference in the measurements. Our current work is focused on further research of

the algorithms to find a better option.

We continue the measurements and target to get results for more representative test-

benches like Dhrystone V2.1 [124]. Simulation results of this testbench and comparisons

with other implementation of Intel 8051 are summarised in Table 5.2.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 136

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table 5.2: Performance comparison with other 8051 versions

Processor Technology MIPS
Average MIPS Energy, pJ
power, per per

mW W instruction

Sync_80C51 [151]
3.3V,

350nm
4 40 100 10000

Async_80C51 [151]
3.3V,

350nm
4 9 44 2250

H8051 [42]
3.3V,

350nm
4 44.7 89.5 11175

Lutonium [96]
1.8V,

180nm
200 100 1800 500

DS89C420[125]
1.1V,

350nm
11 18.52 600 1684

Nanyang_A8051 [35]
1.1V,

350nm
0.6 0.07 8000 130

Lutonium [96]
1.1V,

180nm
100 20.7 4830 207

Proposed 8051
1.2V,

130nm
1.5 0.74 2027 493

The table compares the following implementations of Intel 8051 microprocessor. Sync

80C51, H8051 and DS89C420 are synchronous designs - the first two employ non-pipeline

architecture and the last one has pipelined architecture. Async_80C51 is an asynchro-

nous counterpart of Sync_80C51 design. Lutonium is another asynchronous implemen-

tation which utilises a highly parallel processing with a deep pipeline architecture -

therefore its high MIPS rate and power consumption. On the contrary, Nanyang_A8051

is a self-timed, ultra low power (and thereby low performance) implementation. Despite

the technology difference, which can be scaled to the same denominator, our implementa-

tion is clearly placed between ultra low power design (runs twice as fast) and the highly

parallel version (consumes 20 times less power) [130].

5.7 Summary

In this chapter we explained the main details of the implementation, verification, fabri-

cation and testing our Asynchronous Intel 8051 microprocessor. The implementation of

NCL-EEE-MICRO-TR-2013-182, Newcastle University 137

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

each component of the processor was divided into several stages (Section 5.1), which is vi-

tally important in developing, verifying and eventually fabricating a correctly functioning

design.

The implementation of the ASIC was divided into two main parts: the control part

(Section 5.2) and the datapath (Section 5.3) design, which then follows with the complete

chip verification (Section 5.4).

After the die has arrived it was important to design the environment where we can

proceed with its testing (Section 5.5). During the verification stage we checked that

all the instructions are executed correctly, which demonstrates the correctness of the

proposed microprocessor’s design flow (Chapter 4).

Analysing the above results we can conclude that depending on application require-

ments and/or the power budget a user can adapt our microprocessor core for a particular

purpose. Extending a traditional datapath structure to work in several operating modes

along with its asynchronous nature enables our microprocessor to work in a wide range

of operating voltage (from 1.25V down to 0.25V) and environmental conditions.

One might want to compare the presented measurements in terms of trends addresses

on Figure 1.2, which shows two power-proportional designs each of which was developed

to work in a different power domains. In this work we discus the developing process to

implement a system that can adapt to different power levels and work in a wide range

of supply voltages. If we build this plot for our system and apply different computational

modes, we would see similar trends, so at some degree it was achieved. However due to

several addressed issues, e.g. not clear difference between computational units, it would

be more closer to a straight line rather than to “gull wing” shape, as on the figure.

The next chapter summarises the contribution of the thesis and discusses further

research directions.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 138

Chapter 6

Conclusion

This thesis presented a design flow for the development of microprocessor instruction set

architectures, which can be altered to suit a particular hardware platform or a particular

operating mode. The feasibility of the methodology, novel design flow and a number of

optimisation techniques were proven in a full size asynchronous Intel 8051 microprocessor

and its demonstrator silicon. Our implementation shows a competitive result and the

ability to adapt to a wide range of operating voltage and environmental conditions.

This chapter summarises the key contributions of this thesis and outlines areas of

future research.

6.1 Main contributions

It was demonstrated in Chapters 1 and 2 that the current ICs and particularly micro-

processor design flow shifts emphasis from high performance towards energy-efficient

and power-proportional solutions, as energy and power turn from optimisation criteria

to a guiding principle. In this work, several methods and techniques are proposed to ad-

dress the problem of designing a power-proportional microprocessor capable of on-line

adaptation to varying operating conditions and application requirements.

The essential contributions in this thesis are the following:

• A design flow for the development of ISA for a microprocessor (Chapter 3).

139

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

The key difficulties in designing ISA is the necessity to comprehend and deal with

a large number of instructions, whose microcontrol implementation may be altered

to suit a particular hardware platform or a particular operating mode. We demons-

trate that a novel CPOG formalism (Section 2.2) is a versatile technique enabling

efficient specification of a processor ISA. Crucially, this formalism is a convenient

tool for carrying out transformations to the ISA, as these transformations operate

on a CPOG specification rather than on the instruction set itself and thus their

complexity does not depend on the number of different instructions.

On the basis of a simple example (Section 3.5), we demonstrate how the applica-

tion of this formalism can be expanded to capture different hardware configurations

and operation modes. Further, we prove the correctness of CPOG constructs (Sec-

tion 3.5.2) with respect to the given functional ISA descriptions using the Event-B

model (Section 3.4.1).

• Development of an adaptive and reconfigurable system with run-time adaptability

on the base of an asynchronous Intel 8051 microprocessor (Chapter 4).

To demonstrate the feasibility of the introduced design flow on a well-known and

sophisticated example and to introduce a new power-proportional criterion in the

system design flow we implement a novel asynchronous of 8051 microprocessor.

Adaptation of the CPOG methodology for both microcontroller blocks (the Top level

and the ALU control) significantly simplifies and accelerates their development and

validation process. Transformation to the original ISA, e.g. expansion or contraction,

is done on the CPOG specification, which simplifies the whole ISA design flow.

We introduce some new features to our design: i) an extended datapath (Sec-

tion 4.4.1) with pairs of computational units, each being optimised to work in a

specific regime, one optimised for energy consumption and the other one for per-

formance; ii) adjustable matching delay lines (for the bundled data protocol in

datapath), which provide a robust operation of the circuit in a wide range of supply

voltages (Section 4.4.2); iii) we exploit the fact that the datapath was extended for

NCL-EEE-MICRO-TR-2013-182, Newcastle University 140

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

a multi-modal operation to provide fault tolerance features (Section 4.4.3); etc.

• Testing of the design by implementing a proof-of-concept ASIC and evaluating

its performance and power consumption (Chapter 5).

We implement the proposed asynchronous Intel 8051 microprocessor as a proof-

of-concept ASIC. The chip went through a series of tests and evaluation stages

including behaviour simulation and an FPGA-based validation. A dedicated PCB

board was fabricated along with the chip to provide a convenient testing environ-

ment. The control over ASIC was delegated to an external FPGA development

board.

Experimental results proved the feasibility of the proposed design flow to construct

a full-size ISA of a commercial microprocessor. It was also shown that by applying a

specific operating mode to the extended datapath we can adjust our microprocessor

core for a particular application requirements and power budget. Moreover this

extension provides not only an adaptable, but also a fault tolerant operation.

The process of developing this design flow and implementing our reconfigurable mi-

croprocessor core unveiled several other goals of future research discussed in the next

section.

6.2 Future research directions

There are three main directions where this research can go further: i) extension of the

CPOG formalism to enable automated scheduling of a particular instruction; ii) several

improvements of our microprocessor implementation; iii) investigation of a new realisation

of logic gates in the domain of near-threshold voltages.

• In Section 3.5 on a simple example we demonstrate how CPOGs can be used for

capturing different hardware configurations and operation modes in the execution

of a single instruction. Following this idea we can push the boundaries of power-

proportionality even further in automating scheduling of instruction execution in

NCL-EEE-MICRO-TR-2013-182, Newcastle University 141

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

terms of power/latency trade-off: based on the current operation mode and charac-

teristics and availability of datapath components, the microprocessor can schedule

the units in the appropriate partial order.

• Several further improvements can be made in the current CPU implementation:

– Design of the microprocessor core using a different asynchronous circuit class,

such as QDI approach, which provides a built-in completion detection features,

as opposed to the bundled data approach.

– Investigation and implementation of other techniques to reduce power

consumption, such as power gating.

– Research in energy-efficient usage of memory. The current RAM block is

unable to work below 0.87V, therefore we can either substitute it with a self-

timed SRAM1, which is capable of operating at lower voltages or go even

further by applying a newly developed adaptive technique, which allows the

CPU to be switched into ultra low power (and low functionality) mode. The

processor will be restricted to use only a small number of specific internal

registers rather than the full capability of its memory bank.

– Interface our chip to the sources of harvested power as well as to the self-

powered sensors which can raise interrupts.

• It is a well-know fact that usually more energy is consumed on the moving data

around rather than by the computation itself. Although in this work we didn’t

measure these two aspects, but it would be really interesting to measure and

compare these two energies. In a very near future work we are planning to make

this comparison.

• Finally, the reliability of the main control and datapath structures can also be

improved by utilizing high-reliability logic with low fan-in gates. This may have

overheads in terms of area, however it significantly improves the circuit reliability

in the domain of near-threshold voltages.
1Currently we have a fully working SRAM chip developed in our research group [20]

NCL-EEE-MICRO-TR-2013-182, Newcastle University 142

Appendix A

PO representation of the 8051

instruction Set

This appendix outlines all the instructions from the original 8051 ISA in partial order

representation. All 255 original plus two additional instructions are grouped into 37

different classes, which are enumerated in an alphabetic order. Each of the following

Section explains a particular class of instructions, shows its PO in the Top-level and ALU

microcontroller and outlines all the instructions in this particular class.

143

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.1 Class A

Top-level control ALU-level control
ALU ALU/2

Figure A.1: PO representation for instructions from class A

Table A.1: List of all instructions from class A

Mnemonic Opcode Functionbinary hexadecimal
MOV A, Rn 1111100100010000 F910 (A) := (Rn)
MOV Rn, A 1111100100000010 F902 (Rn) := (A)

SWAP A 1111000000000000 F000 exchange of
accumulator’s tetrads

DA A 1110100010000000 E880 correction of the
accumulator

INC A 1110000000000000 E000 (A) := (A) + 1
DEC A 1110000001000000 E040 (A) := (A) – 1
INC Rn 1110000100010010 E112 (Rn) := (Rn) + 1
DEC Rn 1110000101010010 E152 (Rn) := (Rn) – 1

INC DPTR 1110000000100100 E024 (DPTR) := (DPTR) + 1

CPL A 1111000001000000 F040 inversion of the
accumulator

RL A 1110100000000000 E800
rotation of the

accumulator one bit to
the left

RLC A 1110000010000000 E080

rotation of the
accumulator one bit to

the left through the
carry flag

RR A 1110100001000000 E840
rotation of the

accumulator one bit to
the right

RRC A 1110000011000000 E0C0

rotation of the
accumulator one bit to
the right through the

carry flag

NCL-EEE-MICRO-TR-2013-182, Newcastle University 144

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.2 Class B

Top-level control ALU-level control
ALU ALU/2

Figure A.2: PO representation for instructions from class B

Table A.2: List of all instructions from class B

Mnemonic Opcode Functionbinary hexadecimal
MOV A, dir 1001000000000000 9000 (A) := (direct)

MOV Rn, dir 1001000100000010 9102 (Rn) := (direct)
INC dir 1001100000000000 9800 (direct) := (direct) + 1
DEC dir 1001100010000000 9880 (direct) := (direct) – 1
CPL bit 1001110000000000 9C00 bit inversion

ANL C, bit 1001111000000000 9E00 C:=C&bit
ANL C, /bit 1001111010000000 9E80 C:=C & (NOT bit)
ORL C, bit 1001111100000000 9F00 C:=C OR bit
ORL C, /bit 1001111110000000 9F80 C:=C OR (NOT bit)
MOV C, bit 1001110010000000 9C80 (C) := bit

CLR bit 1001110100000000 9D00 (bit) := 0
SET bit 1001110110000000 9D80 (bit) := 1

A.3 Class C

Top-level control ALU-level control
ALU

Figure A.3: PO representation for instructions from class C

NCL-EEE-MICRO-TR-2013-182, Newcastle University 145

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table A.3: List of all instructions from class C

Mnemonic Opcode Functionbinary hexadecimal
MOV A, #data 0010000000000000 2000 (A) := #data

MOV Rn,
#data 0010000100010000 2110 (Rn) := #data

MOV DPTR,
#data 0010000000100000 2020 (DPTR) := #data

MOV dir, out 0010100000000000 2800
(direct) := #out

reading data from the
external pins

A.4 Class D

Top-level control

ALU-level control
ALU ALU/2

ALU/3 ALU/4

Figure A.4: PO representation for instructions from class D

NCL-EEE-MICRO-TR-2013-182, Newcastle University 146

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table A.4: List of all instructions from class D

Mnemonic Opcode Functionbinary hexadecimal

MOV @Ri, A 0110000100000010 6102
Move accumulator’s content
to the internal RAM through

the Ri register

MOV A, @Ri 0100000100010000 4110
Move data from the indirect

RAM to the accumulator
through the Ri register

MOVX @Ri, A 0110000101000010 6142
Move accumulator’s content
to the external RAM through

the Ri register

MOVX A, @Ri 0100000101010000 4150
Move data from the external

RAM to the accumulator
through the Ri register

MOVX A,
@DPTR 0100000010100000 40A0

Move data from the external
RAM to the accumulator

through the DPTR register

MOVX
@DPTR, A 0110000010000100 6084

Move accumulator’s content
to the external RAM through

the DPTR register
ADD A, Rn 0111100100010000 7910 (A) := (A) + (Rn)

ADDC A, Rn 0111100101010000 7950 (A) := (A) + (C) + (Rn)
SUBB A, Rn 0111100110010000 7990 (A) := (A) - (C) - (Rn)

INC @Ri 0100100100010000 4910 Increment the internal RAM
by 1 through the Ri register

DEC @Ri 0100100101010000 4950 decrement the internal RAM
by 1 through the Ri register

ANL A, Rn 0110100100010000 6910 (A) := (A) & (Rn)
ORL A, Rn 0110100101010000 6950 (A) := (A) OR (Rn)
XRL A, Rn 0110100110010000 6990 (A) := (A) XOR (Rn)
MUL B, A 0111100000001000 7808 B31−16 ,A15−0 := (A)∗ (B)
DIV B, A 0111100001001000 7848 Bremainder ,Aquotient := (A)/(B)

A.5 Class E

Top-level control ALU-level control
ALU ALU/2

Figure A.5: PO representation for instructions from class E

NCL-EEE-MICRO-TR-2013-182, Newcastle University 147

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table A.5: List of all instructions from class E

Mnemonic Opcode Functionbinary hexadecimal
MOV dir, A 1100000000000000 C000 (direct) := (A)

MOV dir, Rn 1100000000010000 C010 (direct) := (Rn)

MOV @Ri,
#data 1100000010010000 C090

Move immediate data to
the internal RAM through

the Ri register
ADD A, #data 1100110000000000 CC00 (A) := (A) + #data

ADDC A,
#data 1100110100000000 CD00 (A) := (A) + (C) + #data

SUBB A,
#data 1100111000000000 CE00 (A) := (A) - (C) - #data

ANL A, #data 1100100000000000 C800 (A) := (A) & #data
ORL A, #data 1100100100000000 C900 (A) := (A) OR #data
XRL A, #data 1100101000000000 CA00 (A) := (A) XOR #data

A.6 Class F

Top-level control

ALU-level control
ALU ALU/2

ALU/3

Figure A.6: PO representation for instructions from class F

NCL-EEE-MICRO-TR-2013-182, Newcastle University 148

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table A.6: List of all instructions from class F

Mnemonic Opcode Functionbinary hexadecimal

MOV @Ri, dir 0001000100010000 1110
Move direct data from one
internal RAM location to

another one indirectly
ADD A, dir 0001110000000000 1C00 (A) := (A) + (direct)

ADDC A, dir 0001110010000000 1C80 (A) := (A) + (C) + (direct)
SUBB A, dir 0001110100000000 1D00 (A) := (A) - (C) - (direct)
ANL dir, A 0001101000000000 1A00 (direct) := (direct) & (A)
ANL A, dir 0001100000000000 1800 (A) := (A) & (direct)
ORL dir, A 0001101010000000 1A80 (direct) := (direct) OR (A)
ORL A, dir 0001100010000000 1880 (A) := (A) OR (direct)
XRL dir, A 0001101100000000 1B00 (direct) := (direct) XOR (A)
XRL A, dir 0001100100000000 1900 (A) := (A) XOR (direct)

A.7 Class G

Top-level control

ALU-level control
ALU ALU/2

ALU/3 ALU/4

Figure A.7: PO representation for instructions from class G

NCL-EEE-MICRO-TR-2013-182, Newcastle University 149

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table A.7: List of all instructions from class G

Mnemonic Opcode Functionbinary hexadecimal
ADD A, @Ri 1010100000010000 A810 (A) := (A) + ((Ri))

ADDC A, @Ri 1010101000010000 AA10 (A) := (A) + (C) + ((Ri))
SUBB A, @Ri 1010110000010000 AC10 (A) := (A) - (C) - ((Ri))
ANL A, @Ri 1010000000010000 A010 (A) := (A) & ((Ri))
ORL A, @Ri 1010001000010000 A210 (A) := (A) OR ((Ri))
XRL A, @Ri 1010010000010000 A410 (A) := (A) XOR ((Ri))

All the operations are done with the data from the indirect RAM location (@Ri).

A.8 Class H

Top-level control ALU-level control
ALU

Figure A.8: PO representation for instructions from class H

Table A.8: List of all instructions from class H

Mnemonic Opcode Functionbinary hexadecimal
CLR C 0000000000000000 0000 (C) := 0
SET C 0000000100000000 0100 (C) := 1
CPL C 0000001000000000 0200 bit C inversion

A.9 Class I

Top-level control ALU-level control
ALU ALU/2

Figure A.9: PO representation for instructions from class I

NCL-EEE-MICRO-TR-2013-182, Newcastle University 150

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table A.9: List of all instructions from class I

Mnemonic Opcode Functionbinary hexadecimal

MOV dir, dir 1000100000000000 8800
Move direct data from

one internal RAM
location to another

ANL dir,
#data 1000100010000000 8880 (direct) := (direct) &

#data
ORL dir,
#data 1000100010000100 8884 (direct) := (direct) OR

#data

XRL dir, #data 1000100011000000 88C0 (direct) := (direct) XOR
#data

A.10 Class J

Top-level control

ALU-level control
ALU ALU/2

ALU/3

Figure A.10: PO representation for instructions from class J

Table A.10: List of all instructions from class J

Mnemonic Opcode Functionbinary hexadecimal

MOV dir, @Ri 0011000100010000 3110
Move indirect data from one

internal RAM location to
another

NCL-EEE-MICRO-TR-2013-182, Newcastle University 151

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.11 Class K

Top-level control ALU-level control
ALU ALU/2

Figure A.11: PO representation for instructions from class K

Table A.11: List of all instructions from class K

Mnemonic Opcode Functionbinary hexadecimal
MOV dir,

#data 1000000000000000 8000 Move immediate data to
the internal RAM location

A.12 Class L

Top-level control ALU-level control
ALU ALU/2

Figure A.12: PO representation for instructions from class L

Table A.12: List of all instructions from class L

Mnemonic Opcode Functionbinary hexadecimal

PUSH dir 1000100100000011 8903
(SP) := (SP)+1; move

data from internal RAM to
the Stack

NCL-EEE-MICRO-TR-2013-182, Newcastle University 152

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.13 Class M

Top-level control ALU-level control
ALU ALU/2

Figure A.13: PO representation for instructions from class M

Table A.13: List of all instructions from class M

Mnemonic Opcode Functionbinary hexadecimal

POP dir 1000111000011000 8E18
move data from the Stack
to internal RAM location;

(SP) := (SP)–1

A.14 Class N

Top-level control

ALU-level control
ALU ALU/2

ALU/3 ALU/4

Figure A.14: PO representation for instructions from class N

NCL-EEE-MICRO-TR-2013-182, Newcastle University 153

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table A.14: List of all instructions from class N

Mnemonic Opcode Functionbinary hexadecimal
XCH A, Rn 1011000000010000 B010 (A) <–> (Rn)

A.15 Class O

Top-level control

ALU-level control
ALU ALU/2

ALU/3 ALU/4 ALU/5

Figure A.15: PO representation for instructions from class O

Table A.15: List of all instructions from class O

Mnemonic Opcode Functionbinary hexadecimal

XCH A, @Ri 1000010000000010 8402
data exchange between
accumulator and indirect

RAM location

XCHD A, @Ri 1000010010000010 8482
half-word data exchange
between accumulator and

indirect RAM location

NCL-EEE-MICRO-TR-2013-182, Newcastle University 154

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.16 Class P

Top-level control

ALU-level control
ALU ALU/2

ALU/3 ALU/4

Figure A.16: PO representation for instructions from class P

Table A.16: List of all instructions from class P

Mnemonic Opcode Functionbinary hexadecimal
XCH A, dir 1000111100000000 8F00 (A) <–> (dir)

NCL-EEE-MICRO-TR-2013-182, Newcastle University 155

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.17 Class Q

Top-level control ALU-level control
ALU ALU/2

Figure A.17: PO representation for instructions from class Q

Table A.17: List of all instructions from class Q

Mnemonic Opcode Functionbinary hexadecimal

MOV PSW, dir 0011001000000000 3200 move data from internal
RAM location to PSW

MOV C, bit 0011001100000000 3300 (C) := bit

MOV wrk, dir 0011001110000000 3800
move data from internal
RAM location to Unit

Selector register

A.18 Class R

Top-level control ALU-level control
ALU

Figure A.18: PO representation for instructions from class R

Table A.18: List of all instructions from class R

Mnemonic Opcode Functionbinary hexadecimal

PUSH PSW 1000110000011000 8C18
(SP) := (SP)+1; move

data from the PSW
register to the Stack

NCL-EEE-MICRO-TR-2013-182, Newcastle University 156

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.19 Class S

Top-level control ALU-level control
ALU ALU/2

Figure A.19: PO representation for instructions from class S

Table A.19: List of all instructions from class S

Mnemonic Opcode Functionbinary hexadecimal

POP PSW 1000110101011100 8D5C

move data from the
Stack to the PSW
register; (SP) :=

(SP)–1

A.20 Class T

Top-level control ALU-level control
ALU

Figure A.20: PO representation for instructions from class T

Table A.20: List of all instructions from class T

Mnemonic Opcode Functionbinary hexadecimal
LJMP addr 1101100000000000 D800 (PC):=addr
SJMP rel 1101110000000000 DC00 (PC):=(PC) + rel

NCL-EEE-MICRO-TR-2013-182, Newcastle University 157

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.21 Class U

Top-level control ALU-level control
ALU

No ALU operation

Figure A.21: PO representation for instructions from class U

Table A.21: List of all instructions from class U

Mnemonic Opcode Functionbinary hexadecimal
NOP 0000011100000000 0700 (PC) := (PC) + 1

A.22 Class V

Top-level control

ALU-level control
ALU ALU/2

ALU/3

Figure A.22: PO representation for instructions from class V

Table A.22: List of all instructions from class V

Mnemonic Opcode Functionbinary hexadecimal
JMP

@A+DPTR 0000011000100000 0620 (PC):=(A) + (DPTR)

NCL-EEE-MICRO-TR-2013-182, Newcastle University 158

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.23 Class W

Top-level control ALU-level control
ALU ALU/2

Figure A.23: PO representation for instructions from class W

Table A.23: List of all instructions from class W

Mnemonic Opcode Functionbinary hexadecimal

LCALL addr 1101000000011000 D018 (SP) := (SP)+1; move PC
to the Stack; (PC):=addr

A.24 Class X

Top-level control ALU-level control
ALU ALU/2

Figure A.24: PO representation for instructions from class X

Table A.24: List of all instructions from class X

Mnemonic Opcode Functionbinary hexadecimal

LCALL addr 1101000000011000 D018 (SP) := (SP)+1; move PC
to the Stack; (PC):=addr

NCL-EEE-MICRO-TR-2013-182, Newcastle University 159

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.25 Class Y

Top-level control

ALU-level control
ALU ALU/2

ALU/3

Figure A.25: PO representation for instructions from class Y

Table A.25: List of all instructions from class Y

Mnemonic Opcode Functionbinary hexadecimal

JZ rel 1000101100000000 8B00 (PC):=(PC) + 1, if (A) = 0
then (PC):=(PC) + rel

NCL-EEE-MICRO-TR-2013-182, Newcastle University 160

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.26 Class Z

Top-level control

ALU-level control
ALU ALU/2

ALU/3

Figure A.26: PO representation for instructions from class Z

Table A.26: List of all instructions from class Z

Mnemonic Opcode Functionbinary hexadecimal

JNZ rel 0011011000000000 3600 (PC):=(PC) + 1, if (A)<>0
then (PC):=(PC) + rel

A.27 Class AA

Top-level control ALU-level control
ALU ALU/2

Figure A.27: PO representation for instructions from class AA

NCL-EEE-MICRO-TR-2013-182, Newcastle University 161

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Table A.27: List of all instructions from class AA

Mnemonic Opcode Functionbinary hexadecimal

JC rel 0011010000000000 3400
(PC):=(PC) + 1, if (C) = 1

then
(PC):=(PC) + rel

A.28 Class AB

Top-level control ALU-level control
ALU ALU/2

Figure A.28: PO representation for instructions from class AB

Table A.28: List of all instructions from class AB

Mnemonic Opcode Functionbinary hexadecimal

JNC rel 0011010000000000 3400
(PC):=(PC) + 1, if (C) = 0

then
(PC):=(PC) + rel

NCL-EEE-MICRO-TR-2013-182, Newcastle University 162

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.29 Class AC

Top-level control

ALU-level control
ALU ALU/2

ALU/3

Figure A.29: PO representation for instructions from class AC

Table A.29: List of all instructions from class AC

Mnemonic Opcode Functionbinary hexadecimal

DJNZ Rn, rel 0011110100010000 3D10

(PC):=(PC) + 1; (Rn):=(Rn) -
1

if (Rn) <> 0 then (PC):=(PC)
+ rel

NCL-EEE-MICRO-TR-2013-182, Newcastle University 163

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.30 Class AD

Top-level control

ALU-level control
ALU ALU/2

ALU/3

Figure A.30: PO representation for instructions from class AD

Table A.30: List of all instructions from class AD

Mnemonic Opcode Functionbinary hexadecimal

DJNZ dir, rel 0011010100000000 3500

(PC):=(PC) + 1; (dir):=(dir) -
1

if (Rn) <> 0 then (PC):=(PC)
+ rel

NCL-EEE-MICRO-TR-2013-182, Newcastle University 164

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.31 Class AE

Top-level control

ALU-level control
ALU ALU/2

ALU/3 ALU/4

Figure A.31: PO representation for instructions from class AE

Table A.31: List of all instructions from class AE

Mnemonic Opcode Functionbinary hexadecimal

CJNE @Ri,
#data, rel 0000101000010000 0A10

(PC):=(PC) + 2, if indirect
data in RAM <> #data then

(PC):=(PC) + rel
if the data < #data then

(C):=1 else (C):=0

CJNE A, dir, rel 0000100000000000 0800

(PC):=(PC) + 2 if (A) <>
direct data from internal RAM
then (PC):=(PC) + rel if (A) <
(direct) then (C):=1 else (C):=0

NCL-EEE-MICRO-TR-2013-182, Newcastle University 165

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.32 Class AF

Top-level control

ALU-level control
ALU ALU/2

ALU/3

Figure A.32: PO representation for instructions from class AF

Table A.32: List of all instructions from class AF

Mnemonic Opcode Functionbinary hexadecimal

CJNE Rn,
#data, rel 1011100000010000 B810

(PC):=(PC) + 2 if (Rn)<>
#data then (PC):=(PC) + rel
if (Rn) < #data then (C):=1

else (C):=0

CJNE A, #data,
rel 1011100000000000 B800

(PC):=(PC) + 2 if (A) <>
#data then (PC):=(PC) + rel

if (A) < #data then (C):=1 else
(C):=0

NCL-EEE-MICRO-TR-2013-182, Newcastle University 166

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.33 Class AG

Top-level control

ALU-level control
ALU ALU/2

ALU/3

Figure A.33: PO representation for instructions from class AG

Table A.33: List of all instructions from class AG

Mnemonic Opcode Functionbinary hexadecimal

JB bit, rel 1000101000000000 8A00 (PC) := (PC) + 2 if (bit) = 1
then (PC) := (PC) + rel

NCL-EEE-MICRO-TR-2013-182, Newcastle University 167

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.34 Class AH

Top-level control

ALU-level control
ALU ALU/2

ALU/3

Figure A.34: PO representation for instructions from class AH

Table A.34: List of all instructions from class AH

Mnemonic Opcode Functionbinary hexadecimal

JBC bit, rel 0000110000000000 0C00
(PC) := (PC) + 2 if (bit) = 1

then (bit) := 0, (PC) := (PC) +
rel

NCL-EEE-MICRO-TR-2013-182, Newcastle University 168

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.35 Class AI

Top-level control

ALU-level control
ALU ALU/2

ALU/3

Figure A.35: PO representation for instructions from class AI

Table A.35: List of all instructions from class AI

Mnemonic Opcode Functionbinary hexadecimal

JNB bit, rel 0000110100000000 0D00 (PC) := (PC) + 2 if (bit) = 0
then (PC) := (PC) + rel

NCL-EEE-MICRO-TR-2013-182, Newcastle University 169

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.36 Class AJ

Top-level control

ALU-level control
ALU ALU/2

ALU/3 ALU/4

Figure A.36: PO representation for instructions from class AJ

Table A.36: List of all instructions from class AJ

Mnemonic Opcode Functionbinary hexadecimal

MOVC A,
@A+DPTR 0000111000100000 0E20

Move the code data relative to
the DPTR to the accumulator

(address=A+DPTR)

NCL-EEE-MICRO-TR-2013-182, Newcastle University 170

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

A.37 Class AK

Top-level control

ALU-level control
ALU ALU/2

ALU/3

Figure A.37: PO representation for instructions from class AK

Table A.37: List of all instructions from class AK

Mnemonic Opcode Functionbinary hexadecimal

MOVC A,
@A+PC 0000111100000000 0F00

Move the code data relative
to the PC to the accumulator

(address=A+PC)

A.38 Interrupt

Section 4.3.7 explains the order of activation of functional units in the situation when a

processor interrupt occurs. There are two requests (ALU/6 and ALU/7) to the ALU block.

The following table addresses these two requests:

NCL-EEE-MICRO-TR-2013-182, Newcastle University 171

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

ALU-level control
ALU/6 ALU/7

Figure A.38: PO representation for the interrupt handler

NCL-EEE-MICRO-TR-2013-182, Newcastle University 172

Appendix B

Boolean equations for microcontroller

synthesis

This appendix presents the resultant Boolean equations from the mapping stage in Sec-

tion 4.2.1. As we have two control logics (the Top-level and the ALU control), we separate

this appendix also into two Sections.

B.1 Boolean equations for the Top-level microcontroller

req_s idu <= go and not C and ((not E and D and B and A) or (not D

and not B and ((not G and H and not F and E and A) or (F and

((not G and not E and not A and ackmau) or (E and A and

((ackmau and (not H or not G)) or (not G and not H)))))))) ;

req_alu <= go and ((not E and B and acksidu) or (a c k i f u and ((not

B and ((not E and A) or (not G and not F) or (G and not H))) or

(C and ackpciu) or (E and D))) or (not D and ((G and H and E and

not C) or (F and ((not C and ((not G and not E) or (G and not H)))

or (A and (acksidu or H)))) or B)) or (not A and ((D and ((F and

((ackpciu and (not H or G)) or (G and not H))) or (not G and

not F) or not C or E)) or (E and a c k i f u) or (not F and not C)

or B)) or (C and A)) ;

173

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

req_alu2 <= go and ackalu and ((not E and not B and ((F and D and C and

not A and a c k i f u and ((not G and not H and not z) or (G and H and z)))

or (not F and not D and not C and A and ack i f u2))) or (ackmau and

((C and ((A and (not D or not E)) or B)) or (a c k i f u and ((D and

((not E and ((A and acksidu) or (F and not C))) or (E and C)))

or (not D and B))) or (not A and ((D and C and ((G and not H) or E

or not F)) or (not C and ((F and not D and ((E and ackpciu) or not

H)) or (not F and E and a c k i f u))) or B)) or (not B and ((not D and

((not G and H and F and not C) or (A and ((not F and ((E and ((H and

acksidu) or G)) or (not H and ack i f u2))) or (F and not E))))) or

(a c k i f u and ((D and ((not G and H) or not F)) or (not C and ((E and

((H and F and ackpciu) or (G and not H))) or (not H and D)))))))))) ;

req_pciu <= go and ((not A and ((not C and (D or not F)) or B))

or (G and H) or A or C or E) ;

r e q _ i f u <= go and ((not E and not D and not A and F and not C and not B

and ackalu2 and ((not H and ackalu3) or not G)) or (ackpciu and ((A

and ((B and (ackalu2 or not C)) or (F and not C))) or (ackalu3

and ((not D and not A and ackalu2) or (not C and ((E and not G) or D))

or (B and ((E and not F and not C) or (ackalu2 and ((H and not G) or

ackalu or not F)))))) or (not B and ((not A and ((not z and ackalu2

and ((H and not G) or not F)) or (not E and not F))) or (not C and ((H

and ((F and ackalu2) or (not E and G))) or (not F and ((z and ackalu2)

or not G or not A or not H)) or (E and not G) or D)) or (C and ((not

D and ackalu4 and (ackalu2 or F or not G or not H or not E)) or

(not A and ((not E and H and not G) or (ackalu and ((z and not E and H)

or (not z and ((ackalu2 and (not H or E)) or (not E and not G))))) or

not D)))) or (D and A)))))) ;

req_mau <= go and ackalu and ((not A and not C and D) or (not B and ((D

and not F) or (A and F))) or (E and (not D or C)) or (not E and ((F and

((not H and (G or not C)) or (not G and H))) or (A and ackalu2) or B))

or (C and not D)) ;

NCL-EEE-MICRO-TR-2013-182, Newcastle University 174

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

req_mau2 <= go and ackalu2 and ((not E and not B and ((D and ((not

G and (H or not F)) or A)) or (A and F))) or (not A and E and

D) or (not D and ((A and ((F and G) or C)) or B)) or (not C and

((not D and F and G and not H) or (D and ((notB and (not G or

not F)) or not A)) or (E and ((not F and ((not B and not G)

or not A)) or (ackalu3 and ((not A and not H and not z) or

(not D and F and G))))))) or (C and B)) ;

req_alu3 <= go and ((not A and ackmau2 and ((not C and ((not H

and not D and ((not F and E) or (F and G))) or (a c k i f u and ((not

F and E) or D)))) or B)) or (not B and ((A and F and not E and

not D and ackmau2) or (C and ((not A and F and not z and D and

a c k i f u and ((not G and H and ack i f u2) or (G and not H))) or

(ackmau2 and ((not E and ((not F and not G and D and a c k i f u)

or A)) or (A and not D))))) or (E and ((C and not z and D and

((A and ack i f u2) or (not A and a c k i f u))) or (not C and not D

and ((A and not F and G and ((not H and not z and ack i f u2)

or (H and z and a c k i f u))) or (F and ((not A and not G and not

H and not z and ack i f u2) or (H and a c k i f u and ((not A and z

and ack i f u2) or (G and (ackmau2 or not A))))))))))))) ;

req_pciu2 <= go and (ackpciu and ((A and not C and not D and B and

a c k i f u) or (not B and ((A and not C and not D and E and G and H

and not F and not z and ackalu2) or (not A and C and D and ((F

and ackalu and ((not E and G and H and not z) or (not H and z

and ((not E and not G) or ackalu2)))) or (E and z and ackalu2)))

or (a c k i f u and ((not A and C and not D) or (not E and ((not A

and D and not G and H) or (not F and ((not A and D) or (A and

not C))))) or (E and ((not A and not D and not G) or (not F and

((not C and not G) or (not A and not D))) or (A and ((not C and

G and (F or not H)) or D)))) or (not C and D))))))) ;

NCL-EEE-MICRO-TR-2013-182, Newcastle University 175

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

r eq_ i f u2 <= go and ((A and not C and ((E and B and D and ackalu) or

(ackalu2 and ((B and D and ackalu) or (ackpciu2 and ((ackalu and

((not F and not z) or B)) or (not D and ((not H and ((E and G and

(not z or F)) or B)) or (not E and B))))))))) or (not B and ((not C

and not D and ((A and not E and not F and ackpciu2) or (not H and

((A and not G and not F and ackpciu2) or (E and ackalu2 and ((not A

and G and F and ackalu4) or (not z and ackpciu2 and ((not A and not

G and F) or (not F and ackalu3))))))))) or (ackalu and ((ackalu2 and

((A and not C and E and G and H and not F and z and not D and

ackalu3) or (not A and ((not C and E and G and H and F and not D and

ackalu3) or (C and D and ((not E and G and H and F and z) or (not z

and ((not E and not G and not H and F) or (ackalu3 and ((not H and F)

or E)))))))))) or (ackpciu2 and ((A and E and not z and D and

ackalu2) or (not C and ((A and ((not G and not F) or D)) or (ackalu2

and ((E and ackalu3 and ((G and F and ackalu4) or (not F and not z)))

or D)))) or (not A and ((ackalu2 and ((not E and H and F and not z and

D) or (z and ((E and not G and H and F) or (D and ((not H and F) or

E)))))) or (C and ((not E and ((not G and not H and F and z) or (G

and H and not z) or (not F and (ackalu3 or G)))) or not D))))))))))) ;

req_mau3 <= go and ackalu3 and ((not A and ((not C and ((E and F

and G and not H and ackalu4) or D)) or B)) or (not B and ((C and

not E and not F and not G and D) or (A and ((not D and ((F and ((G

and H) or not E)) or C)) or (C and not E)))))) ;

req_alu4 <= go and ((not B and not A and not C and E and not D and

a c k i f u and ((not F and not z and ack i f u2) or (F and G and not H)))

or (ackmau3 and ((not B and A and not D and F and ((a c k i f u and G and

H) or not E)) or (C and ((B and not A and E and D and (ack i f u2 or not

H or G or F or a c k i f u)) or (not B and A and (not D or not E))))))) ;

NCL-EEE-MICRO-TR-2013-182, Newcastle University 176

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

req_mau4 <= go and ackalu4 and ((A and not B and not D and F

and ((G and H) or not E)) or (C and ((not A and B and D and E

and (not H or G or F)) or (A and not B and (not E or not D))))) ;

req_alu5 <= go and A and not B and not C and not D and not E

and F and ackmau4 ;

req_mau5 <= go and A and not B and not C and not D and not E

and F and ackalu5 ;

req_pciu3 <= go and not B and ackpciu2 and ((C and D and z and

((A and E and not F and not G and not H) or (ackalu2 and ((not

A and not E and F and not G and H) or (A and E))))) or (not C

and not D and ((not A and E and F and not G and ackalu2 and

((z and not H) or (not z and H))) or (not F and ((z and not A and

E and ackalu2 and ackalu3) or (A and not E and ack i f u2) or (not H

and ((z and A and E and G and ackalu2) or (not G and ((z and

not A and E and ackalu3) or (A and ack i f u2)))))))))) ;

req_done <= (((not E and H and not D and not A and G and F and

not C and not B and a c k i f u) or (ackalu and ((not B and ack i f u2

and ((not z and E and H and not D and A and G and not F and not C

and ackalu2 and ackmau) or (D and not A and C and ((not z and

not E and H and G and F) or (z and ((not E and not H and not G

and F) or (ackalu2 and ackmau and ((not E and not H and F) or

(E and ackmau2))))))))) or (a c k i f u and ((E and D and A and not C

and B and ack i f u2) or (not D and not B and ((not E and not A and

not F and not C) or (ackmau and ((E and not H and A and not G and

F and not C) or (not A and C and ack i f u2))))) or (ackalu2 and

((not E and D and not A and F and C and not B and ack i f u2 and

((not H and not G) or (H and G))) or (ackmau and ((ackmau2 and

NCL-EEE-MICRO-TR-2013-182, Newcastle University 177

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

((a ck i f u2 and (ack i f u3 or B)) or (not A and B))) or (C and

((not B and ((E and D and A and ack i f u3 and (ack i f u2 or z)) or

(not E and not A and G and ack i f u2))) or (ackmau2 and ((z and

not E and H and D and not G and F and ack i f u3) or (not A and

ack i f u2 and (not F or E)) or (A and (not D or not E)) or B))))

or (not C and ((a ck i f u2 and ((D and A and ((E and G and F) or

B)) or (ackmau2 and ((E and H and A) or (G and F) or D)))) or

(not D and ((z and not A and not F and ack i f u3 and ackmau2)

or (not B and ((E and H and A and G and not F and ack i f u2) or

(not E and not A and not G) or (F and ((E and A and not G) or

(not E and ackmau2))) or (a ck i f u3 and ((not G and F and ((E

and H and ack i f u2) or (not A and ((z and not H) or (not z and

H))))) or (not F and ((z and E and not H and A and G) or

(a ck i f u2 and ((A and G) or not E) and

(((A and ((not C and acksidu and ((E and not H) or D)) or

(B and (not D or C)) or (E and D))) or (ackmau3 and ((ackmau4

and ((E and G and H) or C)) or (not A and ((not F and not G

and H) or (not E and D) or (not C and E))) or (not D and B)))

or (not B and ((A and ((not E and ackmau3 and ackmau4 and

ackmau5) or (not C and D))) or (C and ((not A and (G or F))

or (E and D))) or (not D and ((not C and ((E and not G and

acksidu) or (not F and (not H or G or not E)))) or (not A and

((G and (H or not E)) or (not G and (acksidu or E)) or not F))))))))) ;

req_mau6 <= i n t and ackalu6 ;

req_alu6 <= i n t and ackdone ;

req_alu7 <= i n t and ackmau6 ;

req_sidu2 <= i n t and ackmau6 ;

r eq_ i f u4 <= i n t and ackalu7 ;

done_f <= ackdone and ((acksidu2 and ack i f u4) or not i n t) ;

NCL-EEE-MICRO-TR-2013-182, Newcastle University 178

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

r eq_ i f u3 <= go and not B and ackalu2 and ((C and D and ((z

and ackpciu3) or (not z and ackalu3)) and ((not A and not E and F

and not G and H) or (A and E))) or (not C and not D and ((A and

not F and ackpciu3 and ((not H and (z or not G)) or not E)) or (E

and ((A and not F and G and not H and not z and ackalu3) or (not A

and ((F and not G and ackpciu3 and ((H and not z) or (not H and z)))

or (ackalu3 and ((z and ((F and not G and H) or (not F and ackpciu3)))

or (not z and ((F and not G and not H) or (not F

and ackalu4)))))))))))) ;

B.2 Boolean equations for the ALU microcontroller

req_AM <= go and ((not A7 and A1 and ((A4 and A3 and A2 and

((A5 and A and not B and not C and not D and not E and F) or

A6)) or (not A5 and ((A3 and A2 and ((A4 and A and not B and

((not C and not D and E and F and G and H) or (C and D and not

E))) or A6)) or (not A4 and ((A2 and ((not A and B and not D

and not E) or (not B and ((A and not D and ((not E and F)

or C)) or (not A and D and ((not E and not F and not G) or

(not C and (not G or F or not E)))))))) or (not A3 and ((A2

and A and not C and not D and not E) or (E and ((not A and not

C and not F) or (B and C and D))) or (not B and ((A and D and

not E) or (not D and ((A and F and G) or (not C and ((E and not

F and not G and (not I or H)) or (F and G and not H))))))) or

(not A2 and ((not D and (C or B)) or (not E and ((D and (not F

or not C or A)) or (F and ((not H and (G or not C)) or (not G

and H))))) or (not B and E))) or (not A and B) or A6))))))))

or (not A7 and not A6 and not A5 and A4 and A3 and A2 and A1

and not A and B and C and D and E and not I and not K and not

L and M)) ;

NCL-EEE-MICRO-TR-2013-182, Newcastle University 179

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

req_DM <= go and ((not A7 and (((A1 and ((A4 and A3 and A2 and

A and not B and not C and not D and not E and F) or (not A5

and ((A3 and A2 and not B and ((A4 and A and C and not E) or

(not D and ((not C and E and F and G and ((A4 and not A and not

H) or (A and H))) or (A4 and A and C))))) or (not A4 and ((A3

and A2 and ((not B and not C and not D and E and F and G and H)

or (not A and ((D and ((not E and not F and not G) or not C))

or B)))) or (not A3 and ((not B and ((not A2 and not A and C

and not D) or (A2 and ((not A and C and D and E) or (F and not

G and ((not A and not C and not D and E and not H) or (C and D

and not E and H))))))) or (A and ((A2 and ((not B and D and not

E) or (B and (not D or C)))) or (not C and ((D and ((A2 and not

B and (not G or not F)) or (not A2 and B and not E))) or (not D

and ((not A2 and not B and not E and not F) or (E and ((F and

not H and ((not A2 and not B and not G) or (A2 and G))) or (A2

and not F and not G))))))))))))))))) or A6) or (not A6 and not

A5 and A4 and A3 and A2 and A1 and not A and B and C and D and

E and not I and not K and not L and M))) and ((not (not A7 and

not A6 and not A5 and A1 and ((A3 and A2 and not B and not D and

((not A and not C and E and not F) or (A and C and A4))) or (not

A4 and ((not A3 and not B and not A and not E and ((D and C and

F and ((not G and not H) or (G and H))) or (not A2 and not D and

not C and not F))) or (A2 and ((not A3 and B and A and C and not

E) or (not B and not A and ((not A3 and D and C and G) or (F and

((not G and H and ((not A3 and not D and not C) or (D and C))) or

(G and not H and ((A3 and not D and not C) or (D and C))))))) or

(E and ((A3 and B and not A) or (D and ((not B and ((not A3 and A)

or C)) or (A3 and not A))) or (not D and ((not A3 and B and A) or

(not C and ((not B and ((not A and F and not G) or (A and not F and

G))) or (not A3 and ((A and not F and not H and I) or (F and H and

((A and not G) or (not B and not A)))))))))))))))))) or ackALU)) ;

NCL-EEE-MICRO-TR-2013-182, Newcastle University 180

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

req_PC <= go and ((not A6 and not A5 and A1 and ((not A4 and

not A3 and not A2 and A and B and not C and D and E) or (A2

and ((not A4 and not A3 and A and B and not C and D and not E)

or (not B and ((A3 and not A and not C and not D and E and

((F and G and not H) or (A4 and not F))) or (not A4 and ((A3

and E and ((A and not C and not D and not F and G) or (C and

D))) or (not A and F and ((not C and not D and E and G and H)

or (not A3 and not E and ((C and D and G and H) or (not G and

((C and D and not H) or (not C and not D))))) or (A3 and ((C

and D and not G and H) or (G and not H and ((not C and not D)

or (C and D))) or (not C and not D and E))))))))))))) or A7)

and ((not (not A7 and not A6 and not A5 and A1 and ((A3 and A2

and not B and not D and ((not A and not C and E and not F) or

(A and C and A4))) or (not A4 and ((not A3 and not B and not A

and not E and ((D and C and F and ((not G and not H) or (G and

H))) or (not A2 and not D and not C and not F))) or (A2 and

((not A3 and B and A and C and not E) or (not B and not A and

((not A3 and D and C and G) or (F and ((not G and H and ((not

A3 and not D and not C) or (D and C))) or (G and not H and ((A3

and not D and not C) or (D and C))))))) or (E and ((A3 and B

and not A) or (D and ((not B and ((not A3 and A) or C)) or (A3

and not A))) or (not D and ((not A3 and B and A) or (not C and

((not B and ((not A and F and not G) or (A and not F and G))) or

(not A3 and ((A and not F and not H and I) or (F and H and ((A

and not G) or (not B and not A)))))))))))))))))) or ackALU) ;

req_T1 <= go and (not A7 and not A6 and not A5 and not A4 and

A2 and A1 and ((not A3 and not A and B and C) or (not B and

((A3 and A and C and (not E or not D)) or (not A3 and not C and

((not A and ((E and not F) or D)) or (F and ((A and not D and

not E) or (G and ((not D and E and H) or (not A and not H))))))))))) ;

NCL-EEE-MICRO-TR-2013-182, Newcastle University 181

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

req_ALU <= go and (not A7 and not A6 and not A5 and A1 and

((A3 and A2 and not B and not D and ((not A and not C and E and

not F) or (A and C and A4))) or (not A4 and ((not A3 and not B

and not A and not E and ((D and C and F and ((not G and not H)

or (G and H))) or (not A2 and not D and not C and not F))) or

(A2 and ((not A3 and B and A and C and not E) or (not B and not

A and ((not A3 and D and C and G) or (F and ((not G and H and

((not A3 and not D and not C) or (D and C))) or (G and not H and

((A3 and not D and not C) or (D and C))))))) or (E and ((A3 and

B and not A) or (D and ((not B and ((not A3 and A) or C)) or (A3

and not A))) or (not D and ((not A3 and B and A) or (not C and

((not B and ((not A and F and not G) or (A and not F and G))) or

(not A3 and ((A and not F and not H and I) or (F and H and ((A

and not G) or (not B and not A))))))))))))))))) and ((not (not

A7 and not A6 and not A5 and not A4 and A2 and A1 and ((not A3

and not A and B and C) or (not B and ((A3 and A and C and (not

E or not D)) or (not A3 and not C and ((not A and ((E and not F)

or D)) or (F and ((A and not D and not E) or (G and ((not D and

E and H) or (not A and not H)))))))))))) or ackT1) ;

req_T2 <= go and (not A7 and not A6 and not A5 and A2 and A1 and

not B and not C and not D and F and ((E and not A4 and G and ((not

A3 and not A and not H) or (A3 and A and H))) or (A3 and A and not

E and A4))) ;

req_PSW <= ((not A7 and not A6 and not A5 and A1 and ((not A4 and

not A3 and not A2 and not A and not B and not C and not D and not

E and not F) or (A2 and ((A4 and A3 and not B and not D and E and

((not A and not C and not F and not z) or (A and C))) or (not A4

and ((A3 and D and E and ((A and not B and C and not z) or (not A

and ((not C and F) or B)))) or (not A3 and ((not A and not B and not

NCL-EEE-MICRO-TR-2013-182, Newcastle University 182

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

E and ((C and D and not F and G and (not I or not H)) or (not C

and not D and F and not G and H))) or (A and ((not B and not C and

D and E and F and G) or (not D and ((B and C and not E and not F

and not G and not H and I) or (E and ((B and C and I and not J) or

(not C and F and ((not G and H) or B)))))))))))))))) and ((not

(not A7 and not A6 and not A5 and A1 and ((A3 and A2 and not B and

not D and ((not A and not C and E and not F) or (A and C and A4)))

or (not A4 and ((not A3 and not B and not A and not E and ((D and

C and F and ((not G and not H) or (G and H))) or (not A2 and not D

and not C and not F))) or (A2 and ((not A3 and B and A and C and

not E) or (not B and not A and ((not A3 and D and C and G) or (F

and ((not G and H and ((not A3 and not D and not C) or (D and C)))

or (G and not H and ((A3 and not D and not C) or (D and C))))))) or

(E and ((A3 and B and not A) or (D and ((not B and ((not A3 and A)

or C)) or (A3 and not A))) or (not D and ((not A3 and B and A) or

(not C and ((not B and ((not A and F and not G) or (A and not F and

G))) or (not A3 and ((A and not F and not H and I) or (F and H and

((A and not G) or (not B and not A)))))))))))))))))) or ackALU)) ;

req_wrk <= go and ((not A7 and not A6 and not A5 and not A4 and not

A3 and A2 and A1 and not A and not B and C and D and not E and not F

and G and H and I) and ((not (not A7 and not A6 and not A5 and A1

and ((A3 and A2 and not B and not D and ((not A and not C and E and

not F) or (A and C and A4))) or (not A4 and ((not A3 and not B and

not A and not E and ((D and C and F and ((not G and not H) or (G

and H))) or (not A2 and not D and not C and not F))) or (A2 and ((not

A3 and B and A and C and not E) or (not B and not A and ((not A3 and

D and C and G) or (F and ((not G and H and ((not A3 and not D and

not C) or (D and C))) or (G and not H and ((A3 and not D and not C)

or (D and C))))))) or (E and ((A3 and B and not A) or (D and ((not B

NCL-EEE-MICRO-TR-2013-182, Newcastle University 183

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

and ((not A3 and A) or C)) or (A3 and not A))) or (not D and ((not

A3 and B and A) or (not C and ((not B and ((not A and F and not G) or

(A and not F and G))) or (not A3 and ((A and not F and not H and I)

or (F and H and ((A and not G) or (not B and not A))))))))))))))))))

or ackALU)) ;

done <= go and (A1 or A2 or A3 or A4 or A5 or A6 or A7) and (((not

((not A7 and A1 and ((A4 and A3 and A2 and ((A5 and A and not B and

not C and not D and not E and F) or A6)) or (not A5 and ((A3 and A2

and ((A4 and A and not B and ((not C and not D and E and F and G and

H) or (C and D and not E))) or A6)) or (not A4 and ((A2 and ((not A

and B and not D and not E) or (not B and ((A and not D and ((not E

and F) or C)) or (not A and D and ((not E and not F and not G) or

(not C and (not G or F or not E)))))))) or (not A3 and ((A2 and A

and not C and not D and not E) or (E and ((not A and not C and not F)

or (B and C and D))) or (not B and ((A and D and not E) or (not D

and ((A and F and G) or (not C and ((E and not F and not G and (not

I or H)) or (F and G and not H))))))) or (not A2 and ((not D and (C

or B)) or (not E and ((D and (not F or not C or A)) or (F and ((not

H and (G or not C)) or (not G and H))))) or (not B and E))) or (not

A and B) or A6)))))))) or (not A6 and not A5 and A4 and A3 and A2

and A1 and not A and B and C and D and E and not I and not K and

not L and M))) or ackreqAM) and ((not (not A7 and (((A1 and ((A4

and A3 and A2 and A and not B and not C and not D and not E and F)

or (not A5 and ((A3 and A2 and not B and ((A4 and A and C and not

E) or (not D and ((not C and E and F and G and ((A4 and not A and

not H) or (A and H))) or (A4 and A and C))))) or (not A4 and ((A3

and A2 and ((not B and not C and not D and E and F and G and H)

or (not A and ((D and ((not E and not F and not G) or not C)) or

B)))) or (not A3 and ((not B and ((not A2 and not A and C and not D)

or (A2 and ((not A and C and D and E) or (F and not G and ((not A and

NCL-EEE-MICRO-TR-2013-182, Newcastle University 184

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

not C and not D and E and not H) or (C and D and not E and H)))))))

or (A and ((A2 and ((not B and D and not E) or (B and (not D or C))))

or (not C and ((D and ((A2 and not B and (not G or not F)) or (not

A2 and B and not E))) or (not D and ((not A2 and not B and not E and

not F) or (E and ((F and not H and ((not A2 and not B and not G) or

(A2 and G))) or (A2 and not F and not G))))))))))))))))) or A6) or

(not A6 and not A5 and A4 and A3 and A2 and A1 and not A and B and C

and D and E and not I and not K and not L and M)))) or ackreqDM)

and ((not (not A7 and not A6 and not A5 and A1 and ((A3 and A2 and

not B and not D and ((not A and not C and E and not F) or (A and C

and A4))) or (not A4 and ((not A3 and not B and not A and not E and

((D and C and F and ((not G and not H) or (G and H))) or (not A2 and

not D and not C and not F))) or (A2 and ((not A3 and B and A and C

and not E) or (not B and not A and ((not A3 and D and C and G) or

(F and ((not G and H and ((not A3 and not D and not C) or (D and

C))) or (G and not H and ((A3 and not D and not C) or (D and

C))))))) or (E and ((A3 and B and not A) or (D and ((not B and ((not

A3 and A) or C)) or (A3 and not A))) or (not D and ((not A3 and B

and A) or (not C and ((not B and ((not A and F and not G) or (A

and not F and G))) or (not A3 and ((A and not F and not H and I)

or (F and H and ((A and not G) or (not B and not A))))))))))))))))))

or ackALU) and ((not (not A7 and not A6 and not A5 and not A4 and

A2 and A1 and ((not A3 and not A and B and C) or (not B and ((A3

and A and C and (not E or not D)) or (not A3 and not C and ((not

A and ((E and not F) or D)) or (F and ((A and not D and not E) or

(G and ((not D and E and H) or (not A and not H)))))))))))) or

ackT1) and ((not (not A7 and not A6 and not A5 and not A4 and not

A3 and A2 and A1 and not A and not B and C and D and not E and not

F and G and H and I)) or ackreqwrk) and ((not (not A7 and not A6

and not A5 and A2 and A1 and not B and not C and not D and F and

((E and not A4 and G and ((not A3 and not A and not H) or (A3 and

A and H))) or (A3 and A and not E and A4)))) or ackT2) and ((not

NCL-EEE-MICRO-TR-2013-182, Newcastle University 185

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

(not A7 and not A6 and not A5 and A1 and ((not A4 and not A3 and

not A2 and not A and not B and not C and not D and not E and not

F) or (A2 and ((A4 and A3 and not B and not D and E and ((not A

and not C and not F and not z) or (A and C))) or (not A4 and ((A3

and D and E and ((A and not B and C and not z) or (not A and

((not C and F) or B)))) or (not A3 and ((not A and not B and not

E and ((C and D and not F and G and (not I or not H)) or (not C

and not D and F and not G and H))) or (A and ((not B and not C

and D and E and F and G) or (not D and ((B and C and not E and not

F and not G and not H and I) or (E and ((B and C and I and not J)

or (not C and F and ((not G and H) or B))))))))))))))))) or

ackreqPSW) and ((not ((not A6 and not A5 and A1 and ((not A4 and

not A3 and not A2 and A and B and not C and D and E) or (A2 and

((not A4 and not A3 and A and B and not C and D and not E) or

(not B and ((A3 and not A and not C and not D and E and ((F and

G and not H) or (A4 and not F))) or (not A4 and ((A3 and E and

((A and not C and not D and not F and G) or (C and D))) or (not A

and F and ((not C and not D and E and G and H) or (not A3 and not

E and ((C and D and G and H) or (not G and ((C and D and not H)

or (not C and not D))))) or (A3 and ((C and D and not G and H)

or (G and not H and ((not C and not D) or (C and D))) or (not

C and not D and E))))))))))))) or A7)) or ackreqPC)) ;

NCL-EEE-MICRO-TR-2013-182, Newcastle University 186

Appendix C

Interpretation using Parameterised

Graph

This appendix presents several instructions using approach discussed in Section 4.2.3:

–declaration of the functional units

pciu = unit "PCIU"

ifu = unit "IFU"

alu = unit "ALU"

mau = unit "MAU"

sidu = unit "SIDU"

–declaration of the needed flags

(flag_z, flag_z’) = literals "flag_z"

–specification of each instruction

instA = alu → mau → alu/2 → (ifu + mau/2) + pciu → ifu;

instB = pciu → ifu → (pciu/2 + alu) → ifu/2 + alu → mau → alu/2 → mau/2;

instY = flag_z ? (alu → mau → alu/2 → ifu → alu/3 → ifu/2 + pciu → ifu) + flag_z’ ? (alu → mau → alu/2 → pciu/2

→ ifu/2 + pciu → pciu/2)

...

Each of the instructions can be followed by its PO representation (See Appendix A.1).

Once all the instructions are specified it is possible to synthesised the complete CPOG.

187

Appendix D

Detailed bonding diagram of the chip

The appendix outlines details about each of the pin on the bonding diagram presented

in Section 5.4.2.

The ASIC was packaged by the CMP service organisation using a CQFP64 packaging

with a 64 gull wing pins. Since our design needed only 56 I/O pins, there are 2 pins on

each side not connected. The rest are shown in Figure D.1. The functionality of the pins

is following:

• Four pairs of VDD_PAD and GND_PAD pads (two on each side) are power supply

and ground pins for the main core.

• A pair of VDD_PADIO and GND_PADIO is a dedicated power supply and ground

for I/O pins.

• 16 INPUT pins, which could be used in two modes: “test” and “work” (see Sec-

tion 5.3). In the “work” mode they are receiving the data from the ROM block.

During the “test” mode their functionality follows the program code shown in Ap-

pendix.

• 16 OUTPUT pins, similar to the INPUT pins, depending on a current mode of the

operation they can have a different purpose (see Appendix).

• GO is an input pin to start the CPU.

188

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

• GO_OUT is an output pin, representing the start and the end point of instruction

execution (see Figure. 5.7).

• BULB is an output pin, which is used for demonstrative purpose.

• TSO is an output pin, representing the output from the Scan chain in the DFT

mechanism.

• MODE_SELECT is an input pin, which provides an ability to switch between “test”

and “work” modes.

• RAM_SELECT is an input pin, which is used during the “test” mode to switch

between the internal and external RAM blocks.

• ACK_ROM is an input and ROM_REQ is an output pins, whose are used during

the communication with the ROM block.

• INTERRUPT is an input pin, which is used to initiate an interruption procedure.

• RESET is an input pin, which is used to reset the chip.

• CALC_MODE is an input pin provides an ability to switch between low power and

hight performance modes of the CPU.

• DELAY_BIT is an input pin, which is used during the reset stage, when the CPU

is loading Delay codes from the ROM.

• EXTERNAL_DATA0 and EXTERNAL_DATA1 are two input pins, which provide

information from outside world to the chip.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 189

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

Figure D.1: The bonding diagram of the chip

NCL-EEE-MICRO-TR-2013-182, Newcastle University 190

Appendix E

Code for I/O pin reassignment

The program code below was developed for multiplexing I/O pins of the chip during the

“test” and “work” operating modes.

if work_sel = ’0’ then – normal "work mode" of the CPU

ram_clkk <= req_intt; – internal RAM request

ram_clkkx <= req_inttx; – exnternal RAM request

web_out <= web; – read/write bit

rom_data <= pin_in; – input data from the ROM

ram_address <= am_in(7 downto 0); – internal RAM address

pin_out <= rom_pc; – outout address to the ROM

test_si <= ’0’; – scan_in input

test_se <= ’0’; – scan_en input

test_clk <= ’0’; – scan_clk input

test_mode <= ’0’; – scan_mode input

else – "test mode" of the CPU

test_si <= pin_in(8); – the 8th input pin is a scan_in input

test_clk <= pin_in(9); – the 9th input pin is a scan_clk input

test_se <= pin_in(10); – the 10th input pin is a scan_en input

test_mode <= pin_in(11); – the 11th input pin is a scan_mode input

if ram_sel = ’0’ then – reading the internal RAM block

ram_clkk <= pin_in(15); – the 15th input pin is a clock input for the internal RAM block

ram_clkkx <= ’0’;

ram_address <= pin_in(7 downto 0); – input pins (7downto 0) are address inputs to the RAM

pin_out <= ram_data_in; – chip’s output pins are connected to the output of the RAM block

191

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

else –reading the external RAM block

ram_clkkx <= pin_in(13); – the 13th input pin is a clock input for the external RAM block

ram_clkk <= ’0’;

ram_address <= pin_in(7 downto 0); – input pins (7downto 0) are address inputs to the RAM

pin_out <= ramx_data_in; – chip’s output pins are connected to the output of the RAM block

end if;

end if;

NCL-EEE-MICRO-TR-2013-182, Newcastle University 192

Bibliography

[1] 8051 memory organisation. http://www.8052.com/.

[2] Balsa project homepage. http://intranet.cs.man.ac.uk/apt/projects/tools/balsa/.

[3] Dalton project 8051 controller. http://www.cs.ucr.edu/ dalton/i8051.

[4] Opencores.org 8051 core project. http://opencores.org/project,8051.

[5] Oregano systems 8051 core. http://www.oreganosystems.at/?page_id=172.

[6] The Workcraft framework homepage. http://www.workcraft.org, 2009.

[7] 200th 8051 IP Core License. http://www.cast-inc.com/news/post.php?s=2013-03-12-

cast-s-200th-8051-ip-core-license-goes-to-ensphere-solutions.

[8] 80C51 8-bit microcontroller family from Philips.

http://www.nxp.com/documents/datasheet/8XC518XC52.pdf.

[9] Mokhov A., Rykunov M., Iliasov A., Sokolov D., Yakovlev A., and Romanovsky A.

Synthesis of processor instruction sets from high-level isa specifications. In IEEE

Transactions on Computers, 2013.

[10] Mokhov A., Rykunov M., Sokolov D., and A. Yakovlev. Towards reconfigurable pro-

cessors for power-proportional computing. In IEEE Faible Tension Faible Consom-

mation, 2013.

[11] J.-R. Abrial. Modelling in Event-B. Cambridge University Press, 2010.

193

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

[12] Altera DE0 Development and Education Board.

http://www.altera.com/education/univ/materials/boards/unv-dev-edu-boards.html.

[13] Altera UP2 Education and Development Board.

http://www.altera.co.uk/education/univ/materials/boards/unv-up2-board.html.

[14] ARM. Big.little processing with arm cortex-a15 & cortex-a7, 2011.

[15] S. Baranov. Logic Synthesis for Control Automata. Kluwer Academic Publishers,

1994.

[16] A. Bardsley and D. A. Edwards. The balsa asynchronous circuit synthesis system.

Proc. Forum Design Languages, page 8, 2000.

[17] Andrew Bardsley and Doug Edwards. The Balsa asynchronous circuit synthesis

system. In Forum on Design Languages, 2000.

[18] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.

Computer, 40(12):33–37, December 2007.

[19] Sheikh Basit and Manohar Rajit. An operand-optimized asynchronous ieee-754

double-precision floating-point adder. In IEEE International Symposium on Asyn-

chronous Circuits and Systems (ASYNC), 2010.

[20] A. Baz, D. Shang, F. Xia, and A. Yakovlev. Self-timed sram for energy harvesting

systems. In Journal of Low Power Electronics, 2011.

[21] BESST. http://www.async.org.uk/besst/.

[22] J. Bhasker and Rakesh Chadha. Static Timing Analysis for Nanometer Designs: A

Practical Approach. Springer, 2009. InternalNote: submitted by: hr.

[23] G. Birkhoff. Lattice Theory. Third Edition, American Mathematical Society, Provi-

dence, RI, 1967.

[24] A. Booth. A Signed Binary Multiplication Technique. Quarterly Journal of Mechanics

and Applied Mathematics, 4(2):236–240, June 1951.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 194

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

[25] R. P. Brent and H. T. Kung. A regular layout for parallel adders. IEEE Trans.

Comput., 31(3):260–264, March 1982.

[26] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh. Instruction generation and

regularity extraction for reconfigurable processors. In Proc. of the 2002 Int’l Conf.

on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), pages

262–269. ACM, 2002.

[27] P. Brisk, A. Kaplan, and M. Sarrafzadeh. Area-efficient instruction set synthesis

for reconfigurable system-on-chip designs. In Proc. of the 41st Design Automation

Conference (DAC), pages 395–400. ACM, 2004.

[28] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A

heuristic for guiding inductive proofs. Artificial Intelligence, 62(2):185–253, 1993.

[29] Neil Burgess. Fast ripple-carry adders in standard-cell cmos vlsi. In Proceedings of

the 2011 IEEE 20th Symposium on Computer Arithmetic, ARITH ’11, pages 103–111,

Washington, DC, USA, 2011. IEEE Computer Society.

[30] Cadence Encounter Digital Implementation System.

http://www.cadence.com/products/.

[31] Calypto. http://www.calypto.com/.

[32] D. Cansell, D. Mery, and C. Proch. System-on-chip design by proof-based refine-

ment. Int. J. Softw. Tools Tech. Transfer, 11:217–238, 2009.

[33] Yu Cao and Lawrence T. Clark. Mapping statistical process variations toward circuit

performance variability: an analytical modeling approach. In Proceedings of the

42nd annual Design Automation Conference, DAC ’05, pages 658–663. ACM, 2005.

[34] John D. Carpinelli. Computer Systems Organization & Architecture. Pearson Edu-

cation, 2001.

[35] K. L. Chang and B. H. Gwee. A low-energy low-voltage asynchronous 8051 micro-

controller cores. In Proceedings ISCAS, 2006.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 195

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

[36] Ruei-Fu Tsai-Hung-Yue Tsai Chang-Jiu Chen, Wei-Min Cheng and Tuan-Chieh

Wang. A pipelined asynchronous 8051 soft-core implemented with balsa. In Pro-

ceedings in IEEE Asia Pacific Conference on Circuits and Systems, 2008.

[37] D.M. Chapiro. Globally asynchronous locally synchronous systems. PhD thesis,

Stanford University, 1984.

[38] Bah-Hwee Gwee; Chang; Yiqiong Shi; Chien-Chung Chua; Kwen-Siong Chong;.

A low-voltage micropower asynchronous multiplier with shift add multiplication

approach. Circuits and Systems I: Regular Papers, IEEE Transactionson, 56 Is-

sue:7:1349 – 1359, July 2009.

[39] Circuits Multi-Projects. http://cmp.imag.fr/.

[40] N. Clark, H. Zhong, and S. A. Mahlke. Processor acceleration through automa-

ted instruction set customization. In Proc. of the IEEE/ACM Int’l Symposium on

Microarchitecture (MICRO), pages 129–140, 2003.

[41] Wesley A. Clark. Macromodular computer systems. In AFIPS ’67 (Spring): Procee-

dings of the April 18-20, 1967, spring joint computer conference, pages 335–336,

New York, NY, USA, 1967. ACM.

[42] Hynix co. HMS99C52 Datasheet. Gyeonggi, South Korea, 2003.

[43] J. Cocke and V. Markstein. The evolution of risc technology at ibm. IBM J. Res. Dev.,

44:48–55, January 2000.

[44] Source code for Wallace tree multiplication. http://www.openhdl.com/vhdl/655-vhdl-

component-wallace-tree-multiplier generic.html. Synopsys. Inc.

[45] I. Bernard Cohen. Babbage and Aiken, volume 10. IEEE Computer Society, Los

Alamitos, CA, USA, 1988.

[46] J. Colley. Guarded Atomic Actions and Refinement in a System-on-Chip Develop-

ment Flow: Bridging the Specification Gap with Event-B. PhD thesis, University

of Southampton, 2010.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 196

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

[47] EDFAS Desk Reference Committee. Microelectronics Failure Analysis. ASM Inter-

national, 2011.

[48] Philips Semiconductors [Company]. 80c51-Based 8-bit Microcontrollers Data Hand-

book: Integrated Circuits. Philips Semiconductors, 1994.

[49] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

MIT Press, 2001.

[50] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic

synthesis of asynchronous controllers and interfaces. Advanced Microelectronics.

Springer-Verlag, 2002.

[51] C.Seitz. Introduction to VLSI Systems, chapter "System timing", Chapter 7. Addison-

Wesley, 1980.

[52] L. Dadda. Some schemes for parallel multipliers. Alta Frequenza, 34:349–356, 1965.

[53] Altera Quartus II design tool. http://www.altera.co.uk/products/software/quartus-

ii/about/qts-performance-productivity.html.

[54] M. Donno, E. Maci i, and L. Mazzoni. Power-aware clock tree planning. In Procee-

dings of ISPD’04, 2004.

[55] V. Varshavsky (Ed.). Self-timed control of concurrent processes. Kluver Academic

Publishers, 1990.

[56] Envis. http://www.envis.com/.

[57] A. Fauth and M. Freericks. Describing instruction set processors using nml. In

Proceedings of the 1995 European conference on Design and Test, page 503, Wa-

shington, DC, USA, 1995. IEEE Computer Society.

[58] Field-programmable gate array. http://www.altera.co.uk/products/fpga.html.

[59] J. A. Fisher. Very long instruction word architectures and the eli-512. SIGARCH

Comput. Archit. News, 11:140–150, June 1983.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 197

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

[60] A. Fox and M. Myreen. A Trustworthy Monadic Formalization of the ARMv7 Ins-

truction Set Architecture. In Interactive Theorem Proving (ITP), pages 243–258,

2010.

[61] S. Furber. ARM System-on-Chip Architecture. Addison-Wesley Longman Publishing

Co., Inc., 2nd edition, 2000.

[62] Steve B. Furber. ARM System Architecture. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1996.

[63] R. E. Goldschmidt. Applications of division by convergence. Master’s thesis, Mas-

sachusetts Institute of Technology, 1964.

[64] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Yamazaki.

Synergistic processing in cell’s multicore architecture. IEEE Micro, 26(2):10–24,

March 2006.

[65] Morimoto H. and Yamazaki K. Superscalar processor design with hardware des-

cription language aidl. In Proceedings of 2nd Asia Pacific Conference on Hardware

Description, volume 75, pages 51–58, Oct. 1994.

[66] G. Hadjiyiannis, S. Hanono, and S. Devadas. Isdl: an instruction set description

language for retargetability. In Proceedings of the 34th annual Design Automation

Conference, pages 299–302, New York, NY, USA, 1997. ACM.

[67] . Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau. Expression: a

language for architecture exploration through compiler/simulator retargetability. In

Proceedings of the conference on Design, automation and test in Europe, page 100,

New York, NY, USA, 1999. ACM.

[68] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson,

C. Kozyrakis, and M. Horowitz. Understanding sources of ineffciency in general-

purpose chips. Commun. ACM, 54(10), 2011.

[69] Handshake Solutions. http://www.handshakesolutions.com/.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 198

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

[70] J. Harrison. Formal verification of IA-64 division algorithms. In Proceedings, Theo-

rem Proving in Higher Order Logics (TPHOLs), LNCS 1869, pages 234–251. Sprin-

ger, 2000.

[71] Haskell. http://www.haskell.org/tutorial/.

[72] S. Heath. Microprocessor architectures RISC, CISC and DSP. Butterworth-

Heinemann Ltd., 2nd edition, 1995.

[73] High performance divider from the Synopsys Library. http://www.synopsys.com/dw/.

Synopsys. Inc.

[74] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. Wahlen, and H. Meyr. A metho-

dology for the design of application specific instruction set processors (asip) using

the machine description language lisa. In Proceedings of the 2001 IEEE/ACM in-

ternational conference on Computer-aided design, pages 625–630, Piscataway, NJ,

USA, 2001. IEEE Press.

[75] Tamio Hoshino. Udl/i version two: A new horizon of hdl standards. In Procee-

dings of the 11th IFIP WG10.2 International Conference sponsored by IFIP WG10.2

and in cooperation with IEEE COMPSOC on Computer Hardware Description Lan-

guages and their Applications, pages 437–452, Amsterdam, The Netherlands, The

Netherlands, 1993. North-Holland Publishing Co.

[76] David Huffman. A Method for the Construction of Minimum-Redundancy Codes.

Proceedings of the IRE, 40(9):1098–1101, September 1952.

[77] Kai Hwang. Computer Arithmetic: Principles, Architecture and Design. John Wiley

& Sons, Inc., New York, NY, USA, 1979.

[78] A. Iliasov. Use case scenarios as verification conditions: Event-B/Flow approach. In

Proceedings of 3rd International Workshop on Software Engineering for Resilient

Systems, September 2011.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 199

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

[79] Cisco Systems Inc. Entering the Zettabyte Era, Visual Networking Index: Forecast

and Methodology, 2010-2015, 2011.

[80] Intel 8051 Instruction Set. http://www.keil.com/support/man/docs/is51.

[81] W. C. Lee J. H. Lee and K. R. Cho. A novel asynchronous pipeline architecture for

cisc type embedded controller - a8051. In Proceedings of the 2002 45th Midwest

Symposium on Circuits and Systems, 2002.

[82] D.Amiri J.Casanova C.Macian F.Martorell J.A.Moya-L.Necchi-D.Sokolov J.Cortadella,

L.Lavagno and E.Tuncer. Narrowing the margins with elastic clocks. In IEEE Inter-

national Conference on IC Design and Technology (ICICDT), 2010.

[83] Michael Keating, David Flynn, Rob Aitken, Alan Gibbons, and Kaijian Shi. Low

Power Methodology Manual: For System-on-Chip Design. Springer Publishing

Company Incorporated, 2007.

[84] W. Keister, A. E. Ritchie, and S. H.Washburn. The Design of SwitchingCircuits. New

York: Van Nostrand, 1951.

[85] David J. Kinniment. Synchronization and Arbitration in Digital Systems. John Wiley

and Sons, 2008. ISBN: 978-0-470-51082-7.

[86] D. Knuth. MMIXware, A RISC Computer for the Third Millennium, volume 1750 of

Lecture Notes in Computer Science. Springer, 1999.

[87] Peter M. Kogge and Harold S. Stone. A parallel algorithm for the efficient solution

of a general class of recurrence equations. IEEE Trans. Comput., 22(8):786–793,

August 1973.

[88] Bah-Hwee Gwee Kok-Leong Chang, Joseph S. Chang and Kwen-Siong Chong.

Synchronous-logic and asynchronous-logic 8051microcontroller cores for realizing

the internet of things: A comparative study on dynamic voltage scaling and varia-

tion effects. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

3:23–33, 2013.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 200

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

[89] J.-E. Lee, K. Choi, and N. Dutt. Energy-efficient instruction set synthesis for

application-specific processors. In Proc. of Int’l Symposium on Low Power Elec-

tronics and Design (ISLPED), pages 330–333, 2003.

[90] Art Lew. Computer Science: A Mathematical Introduction. Prentice-Hall, 1985.

[91] Dake Liu. Embedded DSP Processor Design: Application Specific Instruction Set

Processors. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[92] Michael S. Malone. The microprocessor - a biography. Springer, 1995.

[93] Alain J. Martin. Compiling communicating processes into delay-insensitive vlsi cir-

cuits. Technical report, California Institute of Technology. [CaltechCSTR:1986.5210-

tr-86], 1986.

[94] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In

Proceedings of the sixth MIT conference on Advanced research in VLSI, pages 263–

278. MIT Press, 1990.

[95] Alain J. Martin, Mika Nystr, and Catherine G. Wong. Three generations of asyn-

chronous microprocessors. IEEE Design and Test of Computers, 20:9–17, 2003.

[96] Alain J. Martin, Mika Nystrom, Karl Papadantonakis, Paul I. Penzes, James T. Pra-

kash, and Ahmet Tura. The Lutonium: A Sub-Nanojoule Asynchronous 8051 Micro-

controller. In Proceedings of the Ninth International Symposium on Asynchronous

Circuits and Systems, pages 14–23, 2003.

[97] Grant Mcfarland. Microprocessor Design. McGraw-Hill Education Pvt Limited,

2006.

[98] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich Weber,

and Thomas F. Wenisch. Power management of online data-intensive services. In

Proceedings of the 38th annual International Symposium on Computer Architecture

(ISCA’2011), pages 319–330, 2011.

[99] Mentor Graphics Calibre tool. http://www.mentor.com/products/.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 201

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

[100] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill

Higher Education, 1994. ISBN: 0070163332.

[101] Prabhat Mishra and Nikil Dutt. Architecture description languages for program-

mable embedded systems. pages 285–297, 2005.

[102] A. Mokhov. Conditional Partial Order Graphs. PhD thesis, School of EECE, New-

castle University, 2009.

[103] A. Mokhov, A. Alekseyev, and A. Yakovlev. Automated synthesis of instruction codes

in the context of micro-architecture design. In ACSD, pages 3–12, 2010.

[104] A. Mokhov, U. Degenbaev, and A. Yakovlev. Optimal Encoding of Partial Orders.

Technical report, Newcastle University, February 2009.

[105] A. Mokhov, V. Khomenko, A. Alekseyev, and A. Yakovlev. Algebra of parameterised

graphs. In Proceedings of the 2012 12th International Conference on Application

of Concurrency to System Design, ACSD ’12, pages 22–31, Washington, DC, USA,

2012. IEEE Computer Society.

[106] A. Mokhov, D. Sokolov, M. Rykunov, and A. Yakovlev. Formal modelling and transfor-

mations of processor instruction sets. In Int’l Conf. on Formal Methods and Models

for Codesign (MEMOCODE), pages 51–60, 2011.

[107] A. Mokhov and A. Yakovlev. Conditional Partial Order Graphs: Model, Synthesis

and Application. IEEE Transactions on Computers, 59(11):1480–1493, 2010.

[108] Andrey Mokhov and Alex Yakovlev. Verification of Conditional Partial Order

Graphs. In Proc. of 8th Int. Conf. on Applicatioon of Concurrency to System Design

(ACSD’08), 2008.

[109] Motorola, Inc. MOTOROLA M68000 Family Programmer’s Reference Manual. Mo-

torola, Inc, 1992.

[110] N. Mukherjee. Power-aware dft - do we really need it? In International Test

Conference, 2008.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 202

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

[111] D. Muller and W. Bartky. A Theory of Asynchronous Circuits. In Proc. Int. Symp. of

the Theory of Switching, pages 204–243, 1959.

[112] Chris J. Myers. Asynchronous circuit design. Wiley, 2001.

[113] M. O. Myreen. Verified just-in-time compiler on x86. In Manuel V. Hermenegildo

and Jens Palsberg, editors, Proceedings of Principles of Programming Languages

(POPL), pages 107–118. ACM, 2010.

[114] Nanochronous. http://www.nanochronous.com/.

[115] National Powerwise. http://www.national.com/analog/powerwise.

[116] Jindapetch Nattha, Saito Hiroshi, Thongnoo Krerkchai, and Nanya Takashi. A fair

overhead comparison between asynchronous four-phase protocol based controllers

and local clock controllers. In Proceedings of The 2005 ECTI International Confe-

rence, 2005.

[117] J.von Neumann. First Draft of a Report on the EDVAC. Moore School of Electrical

Engineering, University of Pennsylvania, June 1945.

[118] Steven Nowick. Automatic Synthesis of Burst-Mode Asynchronous Controllers. PhD

thesis, Stanford University, 1993.

[119] Nvidia. Variable smp, a multi-core cpu architecture for low power and high perfor-

mance, 2011.

[120] PipeFitter. http://polimage.polito.it/ pipefitter/.

[121] N. Pothineni, P. Brisk, P. Ienne, A. Kumar, and K. Paul. A high-level synthesis flow

for custom instruction set extensions for application-specific processors. In Proc. of

the 2010 Asia and South Pacific Design Automation Conference (ASPDAC), pages

707–712. IEEE Press, 2010.

[122] Dhiraj K. Pradhan. Fault-tolerant computer system design. Prentice Hall Inc, Upper

Saddle River, NJ, USA, 1996.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 203

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

[123] Premier Farnell plc. http://uk.farnell.com.

[124] W. J. Price. A benchmark tutorial. IEEE Micro, 9:28–43, 1989.

[125] Maxim Integrated Products. DS89C420 Microcontroller. 2000-2002.

[126] Rochit Rajsuman. Iddq testing for cmos vlsi. In PROCEEDINGS OF THE IEEE,

2000.

[127] J. E. Robertson. A new class of digital division methods. IEEE Trans. Comput.,

C-7:218–222, 1958.

[128] RS Components. http://uk.rs-online.com.

[129] M. Rykunov, A. Mokhov, D. Sokolov, A. Yakovlev, and A. Koelmans. Reconfiguration

strategies for hardware-software energy awareness. In Proceedings of the UK

Electronics Forum, Newcastle, UK, 2012.

[130] M. Rykunov, A. Mokhov, D. Sokolov, A. Yakovlev, and A. Koelmans. Design-for-

adaptivity of microarchitectures. In Proceedings of the 24th IEEE International

Conference on Application-specific Systems, Architectures and Processors, Wa-

shington D.C., USA, 2013.

[131] M. Rykunov, A. Mokhov, A. Yakovlev, and A. Koelmans. Automated generation of

processor architectures in embedded systems design. Technical Report NCL-EECE-

MSD-TR-2010-164, School of EECE, Newcastle University, December 2010.

[132] M. Rykunov, A. Mokhov, A. Yakovlev, and A. Koelmans. Automated generation of

control logic for processor architectures. In Proceedings of the UK Electronics

Forum, Manchester, UK, 2011.

[133] J. Silc and B. Robic. A survey of new research directions in microprocessors. Mi-

croprocessors and Microsystems, pages 175–190, 2000.

[134] D. Sokolov and A. Yakovlev. Task scheduling based on energy token model. In

Workshop on Micro Power Management for Macro Systems on Chip (uPM2SoC),

2011.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 204

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

[135] Source code for Brent-Kung Adder. http://www.openhdl.com/vhdl/653-vhdl-

component-brent-kung-adder-generic-print.html.

[136] Source code for Long division. http://www.codeforge.com/dlpre/165065.

[137] Source code for partial products multiplication.

http://www.codeforge.com/article/189856.

[138] Source code for RCA. http://dannicula.ro/hdl/lab/temapdf/DW01add.pdf.

[139] Jens Sparso and Steve Furber. Principles of Asynchronous Circuit Design: A Sys-

tems Perspective. Kluwer Academic Publishers, 2001.

[140] STMicroelectronics. http://www.st.com/web/en/home.html.

[141] N. R. Strader and V. T. Rhyne. A canonical bit-sequential multiplier. IEEE Trans.

Comput., 31(8):791–795, August 1982.

[142] Synopsys Design Vision. http://www.synopsys.com/Tools/Implementation.

[143] Synopsys DFT Compiler. http://www.synopsys.com/Tools/Implementation/RTLSynthesis.

[144] TAST. http://tima.imag.fr/.

[145] Tela Innovations. http://www.blaze-dfm.com/.

[146] The MSP430 from Texas Instruments. http://processors.wiki.ti.com/index.php/MSP430.

[147] The Synopsys PrimeTime suite. http://www.synopsys.com/Tools/Implementation.

[148] The RODIN toolset. http://www.rodintools.org. 2012.

[149] Jan Tijmen Udding. Classification and Composition of Delay-Insensitive Circuits.

PhD thesis, Eindhoven University of Technology, Department of Computing Science,

1984.

[150] Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits Schalij. The

vlsi-programming language tangram and its translation into handshake circuits. In

NCL-EEE-MICRO-TR-2013-182, Newcastle University 205

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

EURO-DAC ’91: Proceedings of the conference on European design automation,

pages 384–389, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.

[151] Hans van Gageldonk, Kees van Berkel, Ad Peeters, Daniel Baumann, Daniel Gloor,

and Gerhard Stegmann. An asynchronous low-power 80c51 microcontroller. Asyn-

chronous Circuits and Systems, International Symposium on, 0:0096, 1998.

[152] J. Van Praet, G. Goossens, D. Lanneer, and H. De Man. Instruction set definition

and instruction selection for asips. In Proc. of the Int’l Symposium on High-Level

Synthesis, pages 11–16, 1994.

[153] VCS verification tool. http://www.synopsys.com/Tools/Verification/.

[154] C. S. Wallace. A suggestion for a fast multiplier. EEE Trans. Electronic Computers,

EC-13:14–17, February 1964.

[155] Alice Wang, Benton H. Calhoun, and Anantha P. Chandrakasan. Sub-threshold

Design for Ultra Low-Power Systems (Series on Integrated Circuits and Systems).

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[156] Shlomo Waser and Michael J. Flynn. Introduction to Arithmetic for Digital Systems

Designers. Harcourt Brace College Publishers, 1995.

[157] Eric W. Weisstein. http://mathworld.wolfram.com/longdivision.html.

[158] John Wharton. An Introduction to the Intel MCS-51TM. Single-Chip Microcomputer

Family. Intel Application Note AP-69, 1980.

[159] M. Williams and Angel. Shift-register modification (mux scan). IEEE TC, 22(1), 1973.

[160] x86 Architecture. http://www.cs.cmu.edu/ 410/doc/intel-isr.pdf.

[161] F. Xia, A. Mokhov, Y. Zhou, Y. Chen, I. Mitrani, D. Shang, D. Sokolov, and A. Yakovlev.

Towards power-elastic systems through concurrency management. IET Computers

and Digital Techniques, 6(1):33–42, 2012.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 206

Maxim Rykunov: Design of Asynchronous Microprocessor for Power Proportionality

[162] Fei Xia, Andrey Mokhov, Yu Zhou, Yifan Chen, Isi Mitrani, Delong Shang, Danil So-

kolov, and Alexandre Yakovlev. Towards power-elastic systems through concurrency

management. IET Computers & Digital Techniques, 6(1):33–42, 2012.

[163] Alex Yakovlev. Energy-modulated computing. In Design Automation and Test in

Europe (DATE) conference, pages 1340–1345, 2011.

[164] F. Yuan and K. Eder. A Generic Instruction Set Architecture Model in Event-B

for Early Design Space Exploration. Technical Report CSTR-09-006, University of

Bristol, September 2009.

[165] F. Yuan, S. Wright, K. Eder, and D. May. Managing complexity through abstraction:

A refinement-based approach to formalize instruction set architectures. In 13th

International Conference on Formal Engineering Methods, pages 585–600, 2011.

[166] G. Zimmermann. The mimola design system: a computer aided digital processor

design method. In Proceedings 25 years of DAC: Papers on Twenty-five years of

electronic design automation, pages 525–530, New York, NY, USA, 1988. ACM.

NCL-EEE-MICRO-TR-2013-182, Newcastle University 207

