

µSystems Research Group

School of Electrical and Electronic Engineering

Paulius Stankaitis

Technical Report Series

NCL-EEE-MICRO-TR-2014-192

Algebraic Specifications of ARM Cortex M0+ Instruction

Set

Contact: paulius.stankaitis@ncl.ac.uk

Supported by EPSRC grant GR/XXXX

NCL-EEE-MICRO-TR-2014-192

Copyright © 2014 Newcastle University

µSystems Research Group

School of Electrical and Electronic Engineering

Merz Court

Newcastle University

Newcastle-upon-Tyne, NE1 7RU, UK

http://async.org.uk

Algebraic Specifications of ARM Cortex M0+ Instruction Set

Paulius Stankaitis

School of Electrical and Electronic Engineering

Newcastle University

A Dissertation submitted for the degree of

BEng (Hons) Electronic Engineering

May 2014

Abstract

Power consumption constraints became critical issue in microprocessor development.

Active research is taking place to try and optimize this problem. This project tackles power

constraint problem by further exploring fairly recently µSystem Research Group at Newcastle

University introduced Instruction Set Architecture design flow, which is based on novel

formalism called Conditional Partial Order Graphs. Study objective is to further explore this

design flow by applying its methodology to ARM Cortex M0+ Instruction Set. Implementation

of this design flow is split into four major parts and completed as follows: specification of

instruction set, scenarios encoding, CPOG generation and mapping process. Throughout this

project some interesting results were obtained, but highlight was very compact representation of

ARM Instruction Set. Investigation of link between size of control logic and instruction set, also

importance of encoding were analyzed and discussed. Project was concluded with discussion

regarding its objectives, and whether they were accomplished or not.

Acknowledgements

I am particularly thankful to Dr Andrey Mokhov, who not only introduced me into this

interesting field, but also enthusiastically guided and spent countless hours in discussions. Also

express gratitude to people in µSystem Research Group, whose work indirectly contributed to

this project. Finally, would like to thank to my supportive family and friends.

Table of Contents

1 Introduction ... 1-1

1.1 Background and Motivation ... 1-1

1.2 Objectives ... 1-1

1.2.1 Familiarization ... 1-1

1.2.2 Project Realization .. 1-2

1.2.3 Project Evaluation ... 1-2

1.3 Thesis Overview ... 1-2

2 Literature Review ... 2-3

2.1 Background ... 2-3

2.2 Instruction Set Architecture .. 2-3

2.2.1 ARM Cortex M0+ Instruction Set ... 2-5

2.3 Conditional Partial Order Graphs (CPOGs) ... 2-5

2.3.1 Further Research on CPOGs ... 2-8

2.4 Conclusion .. 2-8

3 Implementation ... 3-9

3.1 Design Flow .. 3-9

3.2 Specification of Instruction Set .. 3-10

3.2.1 Grouping Instructions .. 3-11

3.3 Encoding Partial Orders .. 3-12

3.3.1 SCENCO Encoding ... 3-12

3.3.2 ARM Encoding .. 3-12

3.3.3 SCENCO – modified Encoding .. 3-13

3.4 Producing CPOG .. 3-14

1-6

3.5 Mapping .. 3-15

4 Results .. 4-17

4.1.1 Class 1 ... 4-17

4.1.2 Class 2 ... 4-18

4.1.3 Class 3 ... 4-19

4.1.4 Class 4 ... 4-20

4.1.5 Class 5 ... 4-21

4.1.6 Class 6 ... 4-22

4.1.7 Class 7 ... 4-23

4.1.8 Class 8 ... 4-24

4.1.9 Class 9 ... 4-25

4.2 Generation of CPOG ... 4-26

4.2.1 SCENCO Encoded CPOG ... 4-26

4.2.2 SCENCO – modified Encoded CPOG .. 4-27

4.2.3 ARM Encoded CPOG ... 4-28

4.3 Top – Level Control Logic ... 4-29

5 Discussions ... 5-31

5.1 Specification of Instruction Set .. 5-31

5.2 Instruction Group Encoding ... 5-32

5.3 Conditional Partial Order Graphs ... 5-33

5.4 Mapping .. 5-34

5.5 Overview ... 5-35

6 Conclusion .. 6-36

7 References .. 7-37

8 Appendices ... 8-39

1-7

8.1 Appendix A: SCENCO – modified Encoding Table .. 8-39

8.2 Appendix B: ARM Encoding Table ... 8-41

8.3 Appendix C: ARM Encodings .. 8-43

8.4 Appendix D: SCENCO – M Encoded CPOG Control Logic (without DONE) 8-44

8.5 Appendix E: SCENCO – M Encoded CPOG Control Logic (with DONE) 8-45

8.6 Appendix F: ARM Encoded CPOG Control Logic (without DONE) 8-46

8.7 Appendix G: Minimized SCENCO – M Controller Equations 8-47

8.8 Appendix H: Minimized SCENCO – M Controller Equations (without DONE) 8-48

8.9 Appendix I: Minimized ARM Controller Equations (without DONE) 8-49

8.10 Appendix J: ARM Encoded CPOG Conditions .. 8-50

Table of Figures & Tables

FIGURE 1, EXAMPLE INSTRUCTION SET ... 2-4

FIGURE 2, PARTIAL ORDER EXAMPLE OF WASHING MACHINE ... 2-6

FIGURE 3, EXAMPLE OF CPOG ... 2-7

FIGURE 4, PART OF SCENCO-MODIFIED ENCODING .. 3-14

FIGURE 5, GROUPS FOR SYNTHESIS OF VERTICES/ARCS CONDITIONS AND CPOG LAYOUT 3-15

FIGURE 6, REQUEST-ACKNOWLEDGMENT PROTOCOL MICROCONTROLLER [1] ... 3-16

FIGURE 7, SCENCO ENCODED CPOG .. 4-26

FIGURE 8, SCENCO - M ENCODED CPOG.. 4-27

FIGURE 9, SCENCO ENCODED CPOG CONTROL LOGIC .. 4-30

TABLE 1, DATAPATH COMPONENTS .. 3-10

TABLE 2, NUMBER OF CONTROLLER GATES FOR DIFFERENT ENCODED CPOGS ... 4-29

file:///C:/Users/Paulius/Dropbox/Uni%20stuff/Final%20Project/Algebraic%20Specifications%20of%20ARM%20Cortex%20M0+%20Instruction%20Set%20Thesis.docx%23_Toc386748808
file:///C:/Users/Paulius/Dropbox/Uni%20stuff/Final%20Project/Algebraic%20Specifications%20of%20ARM%20Cortex%20M0+%20Instruction%20Set%20Thesis.docx%23_Toc386748809
file:///C:/Users/Paulius/Dropbox/Uni%20stuff/Final%20Project/Algebraic%20Specifications%20of%20ARM%20Cortex%20M0+%20Instruction%20Set%20Thesis.docx%23_Toc386748810
file:///C:/Users/Paulius/Dropbox/Uni%20stuff/Final%20Project/Algebraic%20Specifications%20of%20ARM%20Cortex%20M0+%20Instruction%20Set%20Thesis.docx%23_Toc386748812
file:///C:/Users/Paulius/Dropbox/Uni%20stuff/Final%20Project/Algebraic%20Specifications%20of%20ARM%20Cortex%20M0+%20Instruction%20Set%20Thesis.docx%23_Toc386748813
file:///C:/Users/Paulius/Dropbox/Uni%20stuff/Final%20Project/Algebraic%20Specifications%20of%20ARM%20Cortex%20M0+%20Instruction%20Set%20Thesis.docx%23_Toc386748814
file:///C:/Users/Paulius/Dropbox/Uni%20stuff/Final%20Project/Algebraic%20Specifications%20of%20ARM%20Cortex%20M0+%20Instruction%20Set%20Thesis.docx%23_Toc386748815
file:///C:/Users/Paulius/Dropbox/Uni%20stuff/Final%20Project/Algebraic%20Specifications%20of%20ARM%20Cortex%20M0+%20Instruction%20Set%20Thesis.docx%23_Toc386748816

1-1

1 Introduction

1.1 Background and Motivation

Over the years aggressive transistor’s scaling lead to immense microprocessor performance

improvement, for instance microprocessor running frequency has increased 100 times more than

theoretically predicted. However, power consumption of chip has been increasing and became

crucial progress constraint [1]. Moreover, as in recent decade mobile electronics became more

and more affordable to customers, devices operation time became vital. Though, battery life has

not increased significantly [2], thus other power optimization approaches are being researched.

Reduction of power consumption through Instruction Set optimization approach has been known

for a while. Nonetheless, it is still an active research area. In this field some important work has

been done by µSystem Research Group at Newcastle University: introduction of formalism

called, Conditional Partial Order Graph; new ISA design approach based on that model.

Reduction of power limitation through ISA motivates to further explore this fairly recently

introduced, though promising design approach.

1.2 Objectives

Project can be split into three major parts, where each had intermediate steps:

 Familiarize with µSystem Research Group introduced CPOG – based ISA design

approach.

 Apply this methodology to ARM Cortex M0+ Instruction Set.

 Evaluate results.

1.2.1 Familiarization

This objective was mainly concerned with analysis of research papers produced by µSystem

Research Group at Newcastle University and other relevant information e.g. ARM processors

architecture.

1-2

1.2.2 Project Realization

After familiarization with key concepts of ISA design methodology and CPOG formalism

project intends to apply this approach to ARM Cortex M0+ Instruction Set. Main aims of this

part is to produce CPOG of Cortex M0+ IS and to compare SCENCO and ARM Encoded

CPOGs

1.2.3 Project Evaluation

Perhaps, key objective of this project is interpretation of obtained results. Discussion and

comparison between different encoding, control logic will be completed at this stage.

1.3 Thesis Overview

Chapter 2 explains some background information and key concepts, which is relevant to this

project and is necessary to appropriately comprehend project. Moreover, it briefly overviews

important research works, which highly affected this study.

 Chapter 3 provides detailed methodology description, which is briefly introduced in Chapter 2

and used in this project. Procedures are structurally explained in their realization order.

Chapter 4 contains key results, which were obtained in this project. Results are presented

structurally with respect to methodology described in Chapter 3.

Chapter 5 provides analysis and discussion of results and possible future work.

Chapter 6 summarizes and points out what objectives were met and what were not.

Appendices provided non key results.

2-3

2 Literature Review

2.1 Background

In 1971 Intel introduced, Intel 4004, a first microprocessor which revolutionized electronic.

Complexity and performance of microprocessor has been dramatically increasing ever since.

Nowadays, single chip contain over a billion transistors compared to 2108 Intel 4004 had, it is a

remarkable achievement in only four decades. However, power efficiency became major issue,

since consumers want their devices to work longer, run faster and be less expensive [3]. These

desired parameters are highly constrained by power.

Numerous power efficient microprocessors design techniques are being developed as it is a very

active research area. As discussed in [4] power optimization can be done on few design levels.

However, this project is mainly concerned with low power component and architecture analysis

through Instruction Set Architecture viewpoint.

2.2 Instruction Set Architecture

Instruction decoder is solid target for power efficiency improvement. Task of decoder is with

given encoded binary code to enable particular microprocessor components in order to execute

instruction. Therefore, size, latency and power consumption of decoder is highly affected by

optimality of Instruction Set (IS). Nevertheless, identification of optimal instruction set is not an

easy task involving many high-level decisions and computational calculations [5]. Moreover,

plenty parameters of IS have to be considered by designers, but initial concerns are

completeness, orthogonality and compatibility of instruction set [6]. General-purpose processors

have common basic instructions, which are necessary for basic operations. Completeness

measure has to assure that instruction set is sufficient to perform these basic operations. Richness

of instruction set or orthogonality is particularly important parameter for power efficiency, as

complex instructions increases the latency of the system and thus the energy dissipation (Energy

= Power x Time).

Instruction format is another important feature which has to be considered. Instructions field

consists of operational code (op-code) and operands, where operational code is unique binary

signature used by decoder to differentiate between instructions. Decoder’s critical parameters

2-4

like size and latency are highly affected by optimality of opcodes. Operands may be data

(immediate operand) or address (addressed operand). Type and number of operands may vary

within instruction as there are different functionality instructions.

According to instruction functionality they are categorized into 4 main groups: operate, memory

access, control and miscellaneous. Operate instruction class mainly consist of arithmetic, logic

and shift instructions and are found in majority of microprocessors. Operands of these

instructions are normally user specified constants and source/destination registers. Control

instructions class best example is branch instruction. Typically, instructions are executed

sequentially in CPU. However, it is essential to have instruction, which execution would depend

on previous instructions’ outcome and would allow user to jump to specific instruction or

execute sub-routine. Branch instruction has that functionality.

Instructions within memory-access class are used as name suggests transferring data from main

memory to registers and vice versa. Operands in this class are usually used to specify memory

address. Final class contains instructions, which do not fall in previous classes. Instructions may

include interrupts, I/O instructions and processors state modes e.g. low power mode. Example of

instruction set format and instruction fields is shown in Figure 1.

Figure 1, Example Instruction Set

2-5

2.2.1 ARM Cortex M0+ Instruction Set

This ARM product is known for its power efficiency and small number of gates, which makes it

very popular choice for embedded systems. ARMv6-M architecture is used by Cortex M0+

processor, which supports majority of Thumb 16-bit and 32-bit instructions also few Thumb 2

technology instructions [7]. Register bank contains 13 general – purpose as well Stack Pointer

(SP), Link (LR) and Program Counter (PC) registers, which can be used as operands. Moreover,

processor has several special purpose registers, which are used for example to store flags from

previous instructions, interrupts, execution status etc.

Instruction operational codes vary in position and size and according to ARM encoding can be

grouped into following categories [8]:

 Shift (immediate), add, subtract, move, and compare

 Data processing

 Special data instructions and branch and exchange

 Load/store single data item

 Miscellaneous 16-bit instructions

 Hint instructions

 Conditional branch, and Supervisor Call

 Branch and miscellaneous control (32-bit instruction)

 Miscellaneous control instructions (32-bit instruction)

2.3 Conditional Partial Order Graphs (CPOGs)

Synthesis of systems, which contain many behavioral scenarios e.g. CPU microcontroller can be

a challenging task. Therefore, sufficient models are needed to capture all these scenarios in

compact and efficient form. Models like Petri Nets, Burst – Mode Finite State Machine and

Signal Transition Graphs are relatively good as they produce higher performance circuits than

syntax-directed translation from HDL approach as well as they capture concurrency and choice.

However, these models are limited, when systems have numerous similar scenarios [9].

Novel model was developed by µSystem Research Group at Newcastle University called

Conditional Partial Order Graph. CPOG is a combination of partial orders (POs) and its key

advantage is compact and efficient representation of numerous behavioral scenarios [10].

2-6

As formalism name suggests, partial orders, are foundation for this model and is a concept of

ordering actions and are ordered in a way to reflect causal dependencies. Similarly, processes

can be expressed as partial orders by splitting whole process into single events and arranging

them. Simple daily example could be a washing machine. User specified washing option would

start a process, which consists of many intermediate each other dependent or independent events.

These events can be expressed graphically or arithmetically to represent a whole process. Very

basic washer operation example is given below. This example illustrates one of the partial orders

feature, transitive arcs. Transitive arcs are indirect dependencies (dashed lines). Occasionally,

they can be neglected without losing vital information.

CPOG model uses Directed Acyclic Graphs notation, where events are denoted by vertices and

dependencies between events by arcs. Operational codes are assigned to individual POs to

distinguish between them in CPOG. Furthermore, condition function, ϕ, is used to turn off arcs

and/or vertices according to the operational code (opcode) in order to make distinctive CPOG

projections.

Likewise other models, CPOGs are represented graphically. In this model, circles denote vertices

and arrows – arcs. Vertices are labeled and contain a name and condition separated by

semicolon, arcs label only contains condition.

Figure 2, Example Partial Order

2-7

Example 1: Figure 2 shows an example of a CPOG. This CPOG contains two partial orders,

which were given a different opcode. Since, there are only two behavioral scenarios, smallest

amount of bits needed is one. Arcs and vertices with dashed lines are considered as

turned off. Therefore, under op code x = 1, vertices = {A, B, C} and arcs = {A→B, B→C} are

enabled, creating projection for one of the scenarios (Figure 2, bottom-left). Second scenario is

selected, when op code x is set to 0, this enables vertices = {A, D, E} and arc = {D→E} (Figure

2, bottom-right). In this example vertex A was unconditional, as it belonged to both partial

orders, so vertex condition . Example 1 for simplicity and clarity purposes

contained only two scenarios, but CPOG can be extended and contain numerous scenarios in a

compact and efficient form, making this model very attractive for e.g. CPU microcontroller

modeling.

Obtained CPOGs complexity can be compared or analyzed in terms of number of literals in arc

and vertices conditions. Formula 1.1 sums literals in all vertices and arcs of CPOG [10].

))(())(()(eCvCHC
Vv Ee

 (1.1)

x = 0 x = 1

Figure 3, Example of CPOG

2-8

2.3.1 Further Research on CPOGs

In research project [11] done by µSystem Research Group at Newcastle University new

Instruction Set Architecture design approach based on CPOGs was introduced. Initially project

explored models like Petri Nets (PNs), Finite State Machines (FSMs) for control logic synthesis.

However, it was Conditional Partial Order Graphs (CPOGs) formalism, which attained the most

attention. Hence, project progressed with objective to prove this models practicality by realizing

it as asynchronous microcontroller.

Intel 8051 instruction set with total 257 (including 2 non-standard) instructions was chosen, as it

was well explored and popular. However, regarding implementation researchers made few

significant changes for instance asynchronous architecture was used over synchronous also

datapath was extended with additional computational units (adder, multiplier and divider).

In the project, control logic design involved extraction of datapath components and instructions

partial orders. Due to similarity among instruction execution patterns, they were grouped and

had a single partial order for that class. Project composed 37 distinct classes, which were

assigned with opcode using Huffman encoding method, which then lead to CPOG generation

and mapping it to Boolean equations. Further work was done on designing ALU control logic,

data path, testing, and verification of manufactured chip.

Results of this project confirmed practicality of introduced novel design method of

microprocessors instruction set architecture and methodology of this work was a followed in

Algebraic Specifications of ARM Cortex M0+ Instruction Set project.

2.4 Conclusion

This chapter introduced and briefly discussed two problems: microprocessors power

consumption constraints and lack of sufficient model for systems with many behavioral

scenarios. However, as of one the solution was proposed optimization of Instruction Set

Architecture using novel model developed µSystem Research Groups’ at Newcastle University.

As it was already been demonstrated that Conditional Partial Order Graph produce compact and

efficient form of systems [12] and was used as basis for new ISA design approach. Therefore,

this project intends to continue analysis of CPOG model with ARM Cortex M0+ instruction set.

3-9

3 Implementation

3.1 Design Flow

Instruction Set Architecture, as discussed in Section II, is one of key microprocessor design

flows. Instruction set not only determines microprocessor functionality, but also highly affects

performance and energy efficiency. Therefore, adequate design methodology is necessary to deal

with large number of behavioral scenarios, but also assure correctness if IS modification is

needed.

µSystem Research Group (Newcastle University) introduced new ISA design approach [11],

which is based on formalism called CPOG (See Chapter II), which was previously introduced

by the same research group. CPOG formalism is an extremely powerful tool for modelling

systems with many behavioral scenarios and introduced ISA design method uses it for ISA

design. Alternative tools like Event-B [13] and HOL [14] are well known for system

specification and verification. However, the lack of hardware consideration and higher cost

makes CPOG based method more suitable for ISA design.

Brief description of design flow is provided below. Following sections, explains each step in

greater details

Specification of IS: Initial step in introduced methodology is instruction analyzes and

transformation as partial order. After that, instructions with the same PO are clustered and

instruction groups created.

Encoding: Instruction classes have to be encoded, so that CPOG conditions could be created and

POs could be distinguished in CPOG.

Generation of CPOG: After POs are specified and encoded, CPOG, which is a composition of

all POs, can be generated.

Mapping: Final methodology stage is designing control logic. Obtained CPOG is mapped into

Boolean equations, using request – acknowledgement handshake protocol.

3-10

3.2 Specification of Instruction Set

Methodology used in this project required transformation of instructions into partial orders.

However oppositely from [11], this project only intended to investigate top – level control,

which results in simply partial decoding of instructions. Nonetheless, first step is to express

instructions as partial orders, which is done by analyzing instructions. Construction of partial

orders was done on Workcraft tool [15][18], which enables user to represent partial orders

graphically, assign conditions and generate CPOGs

Past work done by µSystem Research Group, extracted five key datapath units from Intel 8051

instruction set, four of them were reused in this project, since their captured functionality was

adequate for examined part of Cortex M0+ instruction set. Table 1 gives a list of datapath

components and their description. It is important to mention that at top – level design stage there

is no distinction between functions of ALU (addition, subtraction etc.) [16]. Furthermore, some

partial orders required to use the same unit more than once, so to distinct between them

additional units were given numbered indexes (IFU/2, PCIU/2)

Table 1, datapath components

Component Description

MAU (Memory Access Unit) Access internal and external memory

ALU (Arithmetic Logic Unit) Executes mathematical operations.

PCIU (Program Counter Increment Unit) Increments Program Counter (PC).

IFU (Instruction Fetch Unit) Provides opcodes to Instruction Register (IR).

Derivation of partial orders involved deep analysis of individual instruction, which was done

using ARMv6-M technical manual [8]. Manual provides detailed information about every

instruction including encoding, operation pseudocode and function of instruction. Process was

simplified due to ability to cluster instruction and give class single PO. Grouping Instructions

chapter provides better insight in this.

3-11

3.2.1 Grouping Instructions

Clustering instructions can highly simplify process of specifying instruction set. Design flow

[11] expressed every instruction as partial order and then grouped instruction with the same PO.

Approach in this project was slightly different. Grouping instructions was done first and then

class was assigned with appropriate PO. Instructions were grouped according to two main

criteria: execution similarity and type of addressing mode. Instructions with similar execution

were initially clustered. However, grouped with similar execution instructions could be further

split if instructions in that group used different type of addressing. Instruction differentiation

using addressing and type of operands is discussed subsequently.

 Memory access instructions contain an offset, which is used to determine accessing address.

This offset can be immediate or register type. A constant, could be declared alongside opcode,

which would indicate that address is calculated using base register address and declared constant,

which is added or subtracted from base register address (immediate addressing). Another option

is address calculation using offset register, which is also declared by programmer. User specified

offset register contains a value, which would be added or subtracted from the base register

address to form address, which user tries to access.

Arithmetic instructions, is another class, which uses two addressing modes. Single arithmetic

instructions can use immediate operand (a constant) or register operand. Instruction with

specified register operand uses value of that registers together with possibly other register values

to perform arithmetic operation. Similarly, like memory access instructions immediate operand

is also possible. A constant is declared as instruction parameter an example of addition

instruction is shown below, where Rd is destination register, Rt – register with first operand,

#imm3 – a constant (0 – 7).

ADDS Rd, Rn, #imm3 (immediate addressing) [8]

This type of distinction among instructions was crucial, as instruction could have more than one

partial order depending on type of its operands or addressing. Instructions with immediate

operand share a common operation, a constant fetching, which in PO was denoted as action

PCIU → IFU. However, the same PCIU → IFU has another function (next instruction fetch),

when instruction uses register operand/addressing and does not require constant fetching.

3-12

3.3 Encoding Partial Orders

Once all partial orders are obtained CPOG-based design flow requires encoding every partial

order. Importance of encoding was already discussed in Chapter II and concluded that optimal

instruction encoding results in more efficient and compact control logic. Furthermore encoding

is necessary for distinguishing POs in CPOG.

 Experiments in this project used three types of encoding. SCENCO encoding was used in first

part of experiment, where objective was to produce CPOG of analyzed instruction set. Further

work required modification of SCENCO encoding and derivation of ARM, because project

intended to compare ARM and SCENCO encoded CPOGs. Derivation process of SCENCO -

modified and ARM encodings was a more complex compared to SCENCO encoding. Because

of, a lot of instructions groups contained instructions with different opcodes and lengths of

reserved bits
1
, thus highly affecting derivation process. These three encodings are explained

below.

3.3.1 SCENCO Encoding

SCENCO encoding was the most straightforward and produced computationally. A Workcraft

tool has integrated SCENCO (SCENario ENCOder) plugin, which produces optimal encoding

as well as CPOG for given POs. Therefore, it was only necessary to specify obtained POs and

number of encoding bits in Workcraft tool and effortlessly optimal encoding was provided. Note

that number of bits needed to encode N scenarios, can be calculated by formula .

Thus, minimum bits required to encode nine different scenarios , number has

to be rounded to higher value.

3.3.2 ARM Encoding

As it was mentioned particular instruction group may have contained instructions with different

opcodes. So, to produce a single opcode for that class further operations were done. Firstly, each

instructions opcodes were expressed as Boolean equation using opcodes provided in [8]. Then,

using OR operation all Boolean equations from individual group were combined, thus producing

single expression for that class. It is important to mention that obtained encoding length varied as

some groups used nine bits, while others just four. Moreover, three classes had OR operators in

1
 Reserved bits – bits, which are not used in decoding e.g. operands

3-13

their opcode, thus making this operational code off standard. Nonetheless, it was suitable for

CPOG generation purposes. Equations were combined and minimized using Logic Friday tool

[17].

3.3.3 SCENCO – modified Encoding

Modifications of SCENCO encoding were necessary in order to make reasonable comparison

between ARM and SCENCO encoded CPOGs. Major issue, was reserved bits constrains. Five

groups out of nine did not allow using full 4-bits encoding produced by SCENCO plugin. So,

some bit length manipulations were necessary.

Figure 3 gives a brief look of encoding derivation process (See Appendix for full worksheet).

Spreadsheet illustrates: new encodings together with indicated reserved bits, name of the

instructions and group it belongs. Some groups, like G1 (row 3) was allowed to use SCENCO 4-

bit encoding, since it only had single instruction and had enough unrestricted bits. On the other

hand, for some of the groups 4-bit encoding was not permitted e.g. G2 due to number of bits for

low – level opcode
2
. Therefore, G2 top – level opcode

3
 had to be reduced to 2-bits. Similar

process was continued with remaining groups, with operational code uniqueness criterion in

mind. It is important to mention that since this encoding design process was just partially

automated, obtained opcodes were not optimal.

2
 Low – level opcode – operational code used to differentiate instructions within class

3
 Top – level opcode – operational code used to differentiate between classes of instructions

3-14

Figure 4, part of SCENCO-modified encoding

3.4 Producing CPOG

After instructions are grouped and expressed as partial orders also assigned with opcode, CPOG

can be generated. Synthesis of CPOG creates arcs and vertices conditions according to generated

operational codes, thus allowing enabling/disabling particular PO in CPOG. Likewise instruction

groups encoding, project completed computational and manual CPOG generation. Necessity for

manual CPOG generation rose from lack of suitable computational tools.

Computational part of synthesis used SCENCO plugin, which was previously discussed in

encoding chapter. This plugin is not only capable of producing optimal encodings, but is also

able to generate CPOG in Workcraft tool. However, at the moment this tool is not capable of

generating CPOGs with different length encodings. Thus, ARM and SCENCO – modified

encoded CPOGs were generated manually.

Manual synthesis of CPOG was mainly concerned with creating arcs and vertices conditions.

Idea was to express ARM and SCENCO – modified opcodes as Boolean equations, then

combine particular equations to create a condition for specific arc/vertex. In example, only

instruction classes 5, 6, 7 and 8 contained MAU unit in their partial order. Therefore, MAU

condition was produced by merging Boolean expression of operation codes of 5, 6, 7 and 8

3-15

instruction classes. In other words, vertex or arc has to be enabled under one of these groups

opcode. Process was extended to all arcs and vertices. Logic Friday tool [17] was used to

minimize Boolean equations. Figure 4 shows a layout of CPOG as well as instruction group

numbers beside arc/vertex, which indicate what groups were used to construct specific condition

(see Section IV for Instruction Groups).

3.5 Mapping

Once system’s CPOG is obtained, design process is continued with mapping it to Boolean

equations in order to produce control logic. Mapping method used in this project exploits

asynchronous architecture’s request – acknowledgement handshake protocol. In this protocol

request signals are generated by controller, which receives opcodes and acknowledgement

signals and decides what components need to be enabled and in what order.

Figure 5, Groups for synthesis of vertices/arcs conditions and CPOG layout

3-16

Acknowledgment signals are generated by previously requested components, which completed

their execution. Design flow on, which this project is based on also, introduced go and done

signals.

Input signal go, enables instruction execution, while output signal done is produced after

instruction is completed. Visually controller is shown in Figure 5 [10].

Request signals are sent if following conditions are satisfied (see Eq. 2.1):

 Previous instruction completed, go signal set to 1

 Vertex condition ϕ(v) = 1, specific vertex is enabled according to received opcodes

)_),()((uackvuu = 1, all previous vertices completed their execution and so

acknowledgement signals were received

Done signal is sent when all vertices acknowledgements are received. This is captured by

equation 2.2.

Vu

uackvuu)_),()(((v)go=req_v
(2.1)

Vu

uackvdone)_)((
(2.2)

Figure 6, request-acknowledgment protocol microcontroller

4-17

4 Results

4.1.1 Class 1

Partial Order

Description: Class 1 instruction class contained only an unconditional branch instruction.

Branch instruction causes a jump to specific place of the program, specified by the programmer

and comes in two flavors: conditional and unconditional. If condition of the instruction is met,

instruction proceeds normally and causes a jump; otherwise instruction works as NOP

instruction and continues with next instruction. However, this PO only captured unconditional

side of branch instruction.

Firstly, events PCIU and IFU fetch a constant, which is an offset value of label calculated by a

compiler. These events are followed by vertex ALU, which adds obtained constant to Program

Counter (PC). Lastly, next instruction is fetched by IFU/2.

Note that this PO does not capture a fact of conditional branching, though ALU has access to

status register, which contains status flags and could determine whether condition was met or

not. So, this PO could potentially be combined with Class 9 (NOP instruction), though for

simplicity purpose these two classes are separated.

SCENCO Encoding x0 x1 x2 x3

Class 1 1 1 0

 SCENCO - modified Encoding x15 x14 x13 x12

Class 1 1 1 0

 ARM Encoding x15 x14 x13 x12 x11 x10 x9 x8 x7 x6

Class 1 1 0 1 X X X X X X

4-18

4.1.2 Class 2

Partial Order

Instructions: ADD (imm.), ADD (SP + imm.), ADR, ASR (imm.), CMP (imm.), LSL (imm.),

LSR (imm.), MOV (imm.), RSB (imm.), SUB (imm.), SUB (SP - imm.);

Description: Class 2 contained 11 instructions, which shared similarity in their execution and

type of addressing. Abbreviation used in instruction brackets stands for immediate and it is one

of addressing types discussed in Section 3, Instruction Grouping.

PO starts with vertices PCIU and IFU, since instructions with immediate addressing require to

fetch a constant into Instruction Register (IR). After, constant is fetched; ALU can perform its

task concurrently with increment of program counter (PCIU/2). Lastly, when PCIU/2 and ALU

are completed, next instruction is fetched, IFU/2.

SCENCO Encoding x0 x1 x2 x3

Class 1 1 1 1

 SCENCO - modified Encoding x15 x14 x13 x12

Class 0 1 X X

ARM Encoding x15 x14 x13 x12 x11 x10 x9 x8 x7 x6

Class See Appendix A

4-19

4.1.3 Class 3

Partial Order

Instructions: ADC (reg.), ADD (SP + reg.), AND (reg.), ADD (reg.) ASR (reg.), BIC (reg.),

CMN (reg.), CMP (reg.), EOR (reg.), LSL (reg.), LSR (reg.), MOV (reg.), MUL, MVN (reg.),

ORR (reg.), SXTB, SXTH, TST, UXTB, UXTH;

Description: Similarly to Class 2 this group covered arithmetical, logical and data – copy

instructions. However, key difference between these classes is addressing mode, which resulted

in different partial orders.

Partial Orders comprises of two concurrent processes, ALU operation and next instruction

fetching denoted by events PCIU and IFU. This is allowed due to register addressing mode,

where operands are stored in registers, thus oppositely from immediate addressing does not

require fetching into IR.

SCENCO Encoding x0 x1 x2 x3

Class 1 1 0 1

SCENCO - modified Encoding x15 x14 x13 x12

Class 1 1 0 1

ARM Encoding x15 x14 x13 x12 x11 x10 x9 x8 x7 x6

Class See Appendix A

4-20

4.1.4 Class 4

Partial Order

Instructions: BLX (reg.), BX;

Description: Instructions included in Class 4 are branch type: Branch with Link and Exchange

(BLX), Branch and Exchange (BX). BLX and BX instruction functionality and addressing mode

is similar, as they both cause branch to specific address location and use register addressing. The

only difference is that BLX instruction saves current address to Link Register (LR) before

branching. After branched instruction is executed, address, which was saved at Link Register, is

used as next instruction address.

ALU event in this partial order could do few things. Even though, as discussed in Chapter 3,

Specification of Instruction Set at this design stage there is no differentiation among specific

ALU functions (addition, subtraction etc.). ALU, in BLX and BX instructions, would move base

register address to PC counter register and specifically in BLX instruction ALU would also copy

current address into Link Register. Regarding addition instruction, ALU would execute register

addition. Vertex ALU is followed, by IFU event, which indicates next instruction fetch.

SCENCO Encoding x0 x1 x2 x3

Class 1 1 0 0

 SCENCO - modified Encoding x15 x14 x13 x12

Class 1 1 0

 ARM Encoding x15 x14 x13 x12 x11 x10 x9 x8 x7 x6

Class 0 1 0 0 0 1 1 1 X X

4-21

4.1.5 Class 5

Partial Order

Instructions: LDR (imm.), LDR (literal), LDRB (imm.), LDRH (imm.), STR (imm.), STRB

(imm.) STRH (imm.);

Description: Instructions covered by this class are memory related. Load Register (LDR)

instructions loads programmer defined memory location into register, while Store Register

(STR) instructions do opposite and store register into memory. Moreover, these instructions

come in few flavors depending on store/load information size (byte, half word, and word).

Address is calculated using base register address, in addition to specified constant offset,

indicating immediate addressing.

Likewise all immediate addressing POs it starts with constant fetching, events PCIU and IFU,

followed by ALU, which uses offset and base register address to calculate memory address,

which is being accessed. Memory access unit (MAU) uses that address to transfer data. Lastly,

next instruction can be fetched. A PCIU/2 increments PC, which now points to next instruction

and event IFU/2 fetches next instruction.

SCENCO Encoding x0 x1 x2 x3

Class 1 0 1 1

 SCENCO - modified Encoding x15 x14 x13 x12

Class 0 0 X X

 ARM Encoding x15 x14 x13 x12 x11 x10 x9 x8 x7 x6

Class See Appendix

4-22

4.1.6 Class 6

Partial Order

Instructions: LDR (reg.), LDRB (reg.), LDRH (reg.), LDRSB (reg.), LDRSH (reg.), STR (reg.),

STRB (reg.), STRH (reg.);

Description: Even though, functionality of instructions in Classes 5 and 6 are the same, type of

addressing differentiate these two POs. This class uses, already discussed register addressing

mode. Hence, address is calculated using base register address and offset register value.

Register addressing mode does not require constant fetching to IR. So, this partial order, consist

of two concurrent processes. In one of the processes, address is calculated and then data is

transferred, events ALU and MAU. Simultaneously, next instruction is fetched by vertices PCIU

and IFU.

SCENCO Encoding x0 x1 x2 x3

`

Class 1 0 0 1

 SCENCO - modified Encoding x15 x14 x13 x12

Class 1 0 0 1

 ARM Encoding x15 x14 x13 x12 x11 x10 x9 x8 x7 x6

Class 0 1 0 1 X X X X X X

4-23

4.1.7 Class 7

Partial Order

Instructions: LDM, LDMIA, LDMFD, PUSH, STM, STMIA, STMEA;

Description: Class 7 is another memory access related instruction group. Instructions in this

class are capable of transferring more than one memory location or register. Although, only

general purpose registers (R0 – R7) are allowed to be used in loading or storing process, thus for

specification of register list 8 – bits are used.

Similarly to other register addressing mode instruction classes, two concurrent processes are

taking place. Memory access unit, MAU, can transfer data between registers and memory, while

next instruction can be fetched, events PCIU and IFU.

SCENCO Encoding x0 x1 x2 x3

Class 0 0 0 1

 SCENCO - modified Encoding x15 x14 x13 x12

Class 1 0 1 X

 ARM Encoding x15 x14 x13 x12 x11 x10 x9 x8 x7 x6

Class See Appendix

4-24

4.1.8 Class 8

Partial Order

Description: Class 8 contained only a single instruction, POP. POP instruction is memory type

instruction, more specifically stack instruction. This instruction, loads multiple memory

locations from stack into registers and if program counter is used as destination register, branch

occurs. Instruction field uses 8-bits, to specify register list (R0 – R7) and extra P – bit, to specify

PC if necessary.

PO of this class is pretty straightforward, as MAU, uses base address to transfer data between

memory and registers. After, data transfer is finished, next instruction can be fetched, IFU. Note,

that this PO does not indicate in any way if branched occurred or not, next instruction is fetched

whether PC register was used as destination for transfer or not.

SCENCO Encoding x0 x1 x2 x3

Class 0 0 0 0

 SCENCO - modified Encoding x15 x14 x13 x12

Class 1 1 1 1

 ARM Encoding x15 x14 x13 x12 x11 x10 x9 x8 x7 x6

Class 1 0 1 1 1 1 0 1 1 1

4-25

4.1.9 Class 9

Partial Order

Description: Last instruction class has a single instruction, called NOP. This instruction does

nothing and just proceeds to next instruction.

SCENCO Encoding x0 x1 x2 x3

Class 0 1 1 1

 SCENCO - modified Encoding x15 x14 x13 x12

Class 1 0 0 0

 ARM Encoding x15 x14 x13 x12 x11 x10 x9 x8 x7 x6

Class 1 0 1 1 1 1 1 1 0 0

4-26

4.2 Generation of CPOG

This section provides generated CPOGs, which were obtained using derived POs with different

encodings. Firstly, computationally generated CPOG is shown, which used optimal SCENCO

encoding and is followed by few of it PO projections. Subsequently shown CPOGs were derived

manually with intention to compare ARM and SCENCO encoded CPOGs. Greater CPOG

analysis is provided in Discussion chapter.

4.2.1 SCENCO Encoded CPOG

Number of Literals 18

Figure 7, SCENCO Encoded CPOG

4-27

4.2.2 SCENCO – modified Encoded CPOG

Number of Literals 70

Figure 8, SCENCO - M Encoded CPOG

4-28

4.2.3 ARM Encoded CPOG

This CPOG vertices and arcs conditions are given in Appendix J.

Number of Literals 374

Figure 9, ARM Encoded CPOG

4-29

4.3 Top – Level Control Logic

Methodology followed in this project requires mapping CPOGs into Boolean equations in order

to produce control logic. This was done by expressing CPOG conditions into equations, which

are given in Section 3.5 and combination of them shaped top – level control circuit. Note that

this was done for all three CPOGs, though in this chapter only SCENCO encoded CPOG is

shown. Transformation process of Boolean equations to control circuit used Logic Friday tool

[17]. Tool not only is capable of producing logic circuit, but also has a function called Trace

Gate Logic, which allows user to enter opcode and simulate instruction. This is a very useful tool

for circuit correctness verification.

Table 2, summarizes key feature of control logic, number of gates per controller. Due to Logic

Friday limitation of using more than 16 variables, ARM encoded CPOG does not have DONE

signal. Therefore, for reasonable comparison purposes two separate controllers were produced

for SCENCO – modified encoding.

Remaining control circuits are provided in Appendix.

Table 2, number of controller gates for different encoded CPOGs

Type of Encoding Number of Gates

 SCENCO 58

SCENCO - M (without done signal) 60

SCENCO - M 86

ARM (without done signal) 153

4-30

Figure 10, SCENCO Encoded CPOG Control Logic

5-31

5 Discussions

5.1 Specification of Instruction Set

Specification of Instruction Set procedure extracted 9 different partial orders, which covered in

total 64 ARM Cortex M0+ instructions. Majority of covered instructions were arithmetical and

logical and mostly belonged to Class 3 (see Section 4.1.3), which clustered third of all

operations.

As discussed in Section 3.2.1 instruction addressing was one of the key factors for instruction

grouping. Comparing extracted partial orders some similarities can be noticed regarding

addressing differentiation. Immediate addressing instruction Classes 1, 2 and 5 contained

Program Counter Increment Unit (PCIU) and/or Instruction Fetch Unit (IFU) more than once in

their partial order. This can be explained by immediate addressing instruction operation.

Immediate addressing instructions, contains two fetch cycles: constant fetching and next

instruction fetching. Both these processes are denoted by events PCIU and IFU, so multiple units

are required.

Likewise, similarity of partial orders among register type addressing classes is fairly clear, 3 out

of 5 classes had concurrent processes, whereas one of the processes was next instruction fetch.

Simultaneous next instruction fetch is allowed, since operands of these classes are stored general

– purpose registers and ALU/MAU can access them directly. Remaining two classes cannot

fetch next instruction concurrently, as they are branch instructions and have to wait for

ALU/MAU event to complete.

Inspection of partial orders shows that only IFU was used in all partial orders. This will be

further discussed, as it has effect on other results like complexity of CPOG and size of control

logic.

However, not all ARM Cortex M0+ instructions were covered. In particularly hint type

instructions, which are associated with interrupts, microprocessor state mode. These instruction

required more insightful analyzes and due to project time constraints and very high level

description of these instruction in [8] they were left out. It is reasonable to predict that effect

these instructions could have had on size and complexity of CPOG and control circuit are

5-32

insignificant. However, additional instructions could have over complicated or even made

impossible to derive SCENCO – M encoding, due to encoding constraint.

Results of specification of instruction set procedure can be compared to results obtained in. Few

of derived POs matched POs extracted in that project for similar functionality instructions, thus

confirming correctness of these POs. Referenced project used processor with much larger

Instruction Set (257 instructions), therefore the number of obtained instructions groups (37

Instructions Groups) differ so significantly.

5.2 Instruction Group Encoding

Methodology used in this project requires encoding obtained partial orders. As discussed in

Section 3.3 three type of encoding were derived. Firstly, optimal encoding was computed, which

did not require much effort, since was completed by SCENCO plugin, which is integrated in

Workcraft tool [15] [18]. Plugin key target is to produce optimal opcodes, which would result in

lower complexity CPOG, which can be measured by equation 1.1. Discussions’ Section 5.3

provided more detailed analyzes on how optimality of opcodes correlate with complexity of

CPOG. Therefore, further analyses will concentrate on next two encoding derivation, which were

done manually.

ARM and SCENCO encoded CPOG comparison was one of the project objectives and in order

to complete this objective two new instruction encoding were derived. At this stage, initial

concern was level of instruction decoding. SCENCO encoded CPOGs are only for partial

instruction decoding, while ARM opcodes could specify individual instruction within instruction

class. Hence, in order make fair comparison SCENCO encoding was transformed. Appendix A

provides complete SCENCO – modified encoding scheme. Green highlighted bits indicate that

SCENCO encoding was used, because number of bits was sufficient, red points out modified

encoding. Appendix C provides ARM encoding, which for some instruction groups resulted in

rather expressions than opcodes.

5-33

5.3 Conditional Partial Order Graphs

After instructions groups were encoded, project was preceded with CPOG generation. As

discussed in Section 3.4 generation of CPOG was completed by automated and semi – automated

methods.

Computationally obtained SCENCO encoded CPOG is shown in Section 4.3.1 Figure 6. Graph

only had 18 literals, which compared to other produced CPOGs was a significantly lower

number. Furthermore, 6 out of 11 arcs were unconditional and remaining vertices and arcs

conditions could be computed with just 3 2 – input gates. It is rather interesting result, as almost

whole instruction set can be modeled in such a compact form.

Considerably more complicated CPOGs were obtained with SCENCO – M and ARM encodings.

Even though, SCENCO – M encoding (Figure 7) used the same number of opcodes bits (4 -

bits), produced graph’s vertices and arcs contained 70 literals, which was nearly 4 times more

than SCENCO. Even more complicated CPOG was generated with ARM encodings (Figure 8),

which had 374 literals.

Significant increase in complexity could be explained by transitive arc property. SCENCO

plugin exploited this feature to reduce conditions, while still maintains correctness of partial

orders. In example, projection of Class 9 is shown in Figure 6, bottom – right graph. It can be

clearly noticed that projection of this PO does not entirely match with derived PO (see Section

4.1.9). This CPOG projection used indirect dependency or in other words, transitive arc, which

helped to reduce PCIU → IFU arc condition, but did not violate a concept of PO. Similar process

can be done with other POs transitive arcs. Note that not all projected POs had transitive arcs in

the Figure 6, bottom – left; CPOG is shown under 1001 opcode, which did not have indirect

dependency. SCENCO – M and ARM encoded CPOG generation process did not use arc

condition reduction through transitive arcs, because synthesis was nearly done manually.

Therefore, it is realistic to predict that if this reduction method was used in SCENCO – M and

ARM CPOG synthesis lower complexity graphs would have been obtained.

Furthermore, selection of opcodes could have had some meaningful impact on SCENCO – M

CPOG conditions complexity. Even though, this encoding was based on optimal plugin produced

encoding, some necessary changes were made as explained in Section 3.3.3. In Appendix A red

5-34

highlighted opcodes indicate modifications from original encoding and very little can be done

with these opcodes in order to obtain more optimal encoding. In example, Class 2 and 5 also

Class 8 and 9 opcodes could have been swapped or even alternative variations explored. Though,

it is unlikely that significant improvement would be accomplished.

 In regards to ARM encoding, no optimization could be made as objective was to analyze ARM

encoding, which was taken from [8]. Therefore, complexity of ARM CPOG was highly affected

by increase in length of opcode, which used 9 bits, though only three classes used all them for

others these lower bits were Don’t Cares.

Comparison between ARM and SCENCO – M encoded CPOGs was not an easy task. Even

though, literal count points out that SCENCO – M resulted in dramatically less complex control,

level of decoding has to be considered more critically. Project attempted to be as reasonable as

possible regarding decoding, thus both utilize partial instruction decoding. However, ARM

encoding used more opcode bits, which in ARM decoder would be used to specify e.g. ALU

control. Therefore, this comparison is a bit ambiguous and requires greater analyses. Possible

solution and future work could be ALU control logic specification as well as creation of tool,

which could produce optimal encoding for varied length opcodes. This further work could lead

to comparison between control logic of SCENCO encoding and original ARM encodings.

5.4 Mapping

Project final procedure was CPOG mapping to Boolean equations, so that control logic could be

produced. As explained in Section 3.5 request – acknowledgement protocol was used, which is

captured by equations 2.1 and 2.2. Obtained equations were used to generate control circuit for

each of CPOGs with Logic Friday tool.

Objective of this step was to observe how complexity of CPOGs correlates with a size of final

logic circuit. This comparison can be done in terms of literals of CPOGs and number of gates in

control circuits.

As suspected, more complex CPOGs with higher number of literals resulted in circuits with more

gates. However, relation was not that linear. In example, optimally encoded SCENCO CPOG

had 18 literals and produced control logic 58 gates. Modified SCENCO CPOG had nearly 4

times more literals in its conditions, 70, although size of this CPOG control logic did not

5-35

different so significantly and had 86 gates. Similar result correlation can be noticed and between

SCENCO – M and ARM CPOGs.

Encoding of partial orders was essential part of this design flow and choosing an optimal

encoding should be a priority. However, results indicated that relationship between complexity

of CPOGs and number of gates in control circuit is not directly proportional. Nonetheless,

finding optimal encoding in this design method should be main concern as results clearly

indicate that optimal encoding results in smaller control logic.

5.5 Overview

Throughout results evaluation possibly obvious, but some personal important observations were

made. As it was shown CPOG size and complexity directly correlates with size of mapped

control logic and Section 2.2 discussed control logic importance on power consumption, latency.

Hence, it was necessary to understand what criteria affect size and complexity of CPOG and thus

control logic in this design flow. Results suggested that number of POs as well as PO encoding

have the most influence on control logic size.

Firstly, it can be deduced that the number of POs depends on microprocessor instruction sets

variety of functions and addressing modes. It was noticed that even if microprocessor has a lot of

instructions in its instruction set, but has quite uniformed functionality and just few addressing

modes, instructions tend to fall in the same instruction class and thus number of partial orders

does not increase that significantly. However, instruction set functionality and addressing modes

seem to be fundamental criteria, which affect size of CPOG.

Project results clearly indicated that PO encoding has great impact on complexity of CPOG.

Optimal SCENCO encoding resulted in significantly lower number of literals compared to other

encodings. However, important to note that other derivations were not completed

computationally and did not reduce arc conditions with transitive arc property, which evidently

had dramatic impact on arc conditions, thus number of literals.

Even, derivation process of partial orders is also an important criterion, which could affect

results. In this project high level instruction descriptions were used to express instruction as

partial orders, although there is no formal method how to derive or verify PO correctness.

6-36

Possible future work could also include creation formal methodology or even automated PO

derivation software, which could use high level instruction set specifications to derive POs.

6 Conclusion

This project further explored introduced ISA design approach based on CPOG formalism and

obtained some interesting results, which were analyzed and discussed. Project methodology was

successfully followed and all steps completed. However, some steps did not have formal

completion procedures; hence some new manual approaches to be developed.

 Initial aim was to express instructions as partial orders and was only partially completed. Due to

time constraints and not adequate high level descriptions of few instructions, they were left out.

Nonetheless, in the project, 9 different scenarios or partial orders were obtained, which covered

in total 64 ARM instructions. Derivation process used ARM provided technical manual, which

contained high level instructions descriptions. Yet for some instructions level of description was

not satisfactory. Therefore, in Section 5.5 some formal method, which could interpret high level

instruction descriptions and perhaps convert them to partial orders, was suggested as possible

future work.

Important step of methodology was scenario encoding. Throughout this step, few encodings were

derived and analyzed. Results clearly signified importance of optimal encoding as SCENCO

plugin computationally generated opcodes produced the most optimal CPOG with only 18

literals. Section 5.3 analyzed this interesting result and highlighted importance of transitive arcs,

which helped to reduce arcs conditions. Manually produced SCENCO – M and ARM CPOGs

did not use this property and resulted in significantly higher condition complexity, which

eventually reflected on number of gates in their control logic. Some indirect relations between

size of control logic and processors instruction set were discussed in Section 5.5

To my mind, project met its key technical objectives as some interesting results were obtained

and evaluated. Moreover, personal goals were completed as well. I was introduced to completely

new field so had to adapt and get familiar with new concepts and formalisms. I think that was

successfully achieved.

7-37

7 References

[1] H. Iwai, "Roadmap for 22nm and beyond (Invited Paper)," Microelectronic Engineering,

vol. 86, pp. 1520-1528, 7// 2009.

[2] J. Rabaey, Low Power Design Essentials: New York ; London : Springer 2009.

[3] R. K. Krishnamurthy and V. G. Oklobdzija, High-performance energy-efficient

microprocessor design. Dordrecht, the Netherlands Springer, 2006.

[4] M. Yasir Qadri, H. S. Gujarathi, and K. D. McDonald-Maier, "Low Power Processor

Architectures and Contemporary Techniques for Power Optimization," JOURNAL OF

COMPUTERS, vol. 4, October 2009.

[5] A. Mokhov, A. Iliasov, D. Sokolov, M. Rykunov, A. Yakovlev, and A. Romanovsky,

"Synthesis of Processor Instruction Sets from High-Level ISA Specifications,"

Computers, IEEE Transactions on Volume 63, Issue 6, pp. 1552 - 1566 , June 2014.

[6] R. J. Baron and L. Higbie, Computer Architecture: Reading, Mass. : Addison-Wesley

Pub. Co. , 1992.

[7] ARM Ltd. (2012). Cortex-M0+ Technical Reference Manual. Available:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0432c/index.html

[8] ARM Ltd. (2010). ARMv6-M Architecture Reference Manual. Available:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

(registration required)

[9] A. Mokhov and A. Yakovlev, "Conditional Partial Order Graphs: Model, Synthesis, and

Application," Computers, IEEE Transactions on, vol. 59, pp. 1480-1493, 2010.

[10] A. Mokhov, "Conditional Partial Order Graphs," PhD Thesis, School of Electrical &

Electronic Engineering, Newcastle University, 2009.

[11] M. Rykunov, "Design of Asynchronous Microprocessor for Power Proportionality," PhD

Thesis, School of Electrical & Electronic Engineering, Newcastle University, 2013.

[12] Andrey Mokhov, Maxim Rykunov, Danil Sokolov, Alex Yakovlev. "Design of

Processors with Reconfigurable Microarchitecture". Journal of Low Power Electronics

and Applications, Volume 4, Issue 1, pp. 36-43. 20 January 2014.

[13] F. Yuan and K. I. Eder, "A Generic Instruction Set Architecture Model in Event-B for

Early Design Space Exploration," University of Bristol2009.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0432c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

7-38

[14] A. Fox and M. Myreen, "A Trustworthy Monadic Formalization of the ARMv7

Instruction Set Architecture," in Interactive Theorem Proving. vol. 6172, M. Kaufmann

and L. Paulson, Eds., ed: Springer Berlin Heidelberg, 2010, pp. 243-258.

[15] (2009). The Workcraft framework homepage. Available: http://workcraft.org

[16] A. Mokhov, A. Alekseyev, and A. Yakovlev, "Encoding of processor instruction sets

with explicit concurrency control," Computers & Digital Techniques, IET, vol. 5, pp.

427-439, 2011.

[17] A. Mokhov, V. Khomenko, A. Alekseyev, and A. Yakovlev, "Algebra of Parameterised

Graphs," in Application of Concurrency to System Design (ACSD), 2012 12th

International Conference on, 2012, pp. 22-31.

[18] Ivan Poliakov, Danil Sokolov, Andrey Mokhov. ''Workcraft: A static data flow structure

editing, visualisation and analysis tool''. Petri Nets and Other Models of Concurrency–

ICATPN 2007, pp. 505-514, 2007

http://workcraft.org/

8-39

8 Appendices

8.1 Appendix A: SCENCO – modified Encoding Table

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 Instruction G

1 1 1 0 RESERVED B 1

0 1 0 0 0 0 0 RESERVED ADD(imm.) 2
0 1 0 0 1

RESERVED

ADD(SP+imm.) 2
0 1 0 1 0 ADR 2
0 1 1 0 0 ASR (imm.) 2
0 1 1 0 1 CMP(imm.) 2
0 1 1 1 0 LSL(imm.) 2
0 1 0 1 1 LSR(imm.) 2
0 1 1 1 1 MOV(imm.) 2
0 1 0 0 0 0 1 X X X RESERVED RSB(imm.) 2
0 1 0 0 0 1 0 RESERVED SUB(imm.) 2
0 1 0 0 0 1 1 X X RESERVED SUB(SP-imm.) 2

1 1 0 1 1 1 0 0 0 0 RESERVED ADC 3

1 1 0 1 0 0 0 RESERVED ADD(reg.) 3
1 1 0 1 0 0 1 X R X X X X RESERVED ADD(SP+reg.) 3
1 1 0 1 1 1 0 0 0 1

RESERVED

AND (reg.) 3
1 1 0 1 1 1 0 0 1 0 ASR(reg.) 3
1 1 0 1 1 1 0 1 0 0 BIC 3
1 1 0 1 1 1 0 1 1 0 CMN(reg.) 3
1 1 0 1 1 1 0 0 1 1 CMP(reg.) 3
1 1 0 1 1 1 0 1 0 1 EOR(reg.) 3
1 1 0 1 1 1 0 1 1 1 LSL(reg.) 3
1 1 0 1 1 0 1 0 0 0 LSR(reg.) 3
1 1 0 1 1 0 0 X RESERVED MOV(reg.) 3
1 1 0 1 1 0 1 0 0 1

RESERVED

MUL 3
1 1 0 1 1 0 1 0 1 0 MVN(reg.) 3
1 1 0 1 1 0 1 1 0 0 ORR(reg.) 3
1 1 0 1 1 0 1 1 1 0 REV 3
1 1 0 1 1 0 1 1 1 1 REV16 3
1 1 0 1 0 1 1 0 0 0 REVSH 3
1 1 0 1 0 1 1 0 0 1 ROR(reg.) 3
1 1 0 1 0 1 1 0 1 0 SBC(reg.) 3
1 1 0 1 1 1 1 RESERVED SUB(reg.) 3
1 1 0 1 0 1 1 1 0 0

RESERVED

SXTB 3
1 1 0 1 0 1 1 0 1 1 SXTH 3
1 1 0 1 0 1 1 1 1 0 TST 3
1 1 0 1 0 1 1 1 0 1 UXTB 3
1 1 0 1 0 1 1 1 1 1 UXTH 3

1 1 0 0 1 X X X X RESERVED BLX (reg.) 4

8-40

1 1 0 0 0 X X X X RESERVED X X X BX 4

0 0 0 0 0

RESERVED

LDR(imm.) 5

0 0 0 0 1 LDR(literal) 5
0 0 0 1 0 LDRB(imm.) 5
0 0 1 0 0 LDRH(imm.) 5
0 0 0 1 1 STR(imm.) 5
0 0 1 1 0 STRB(imm.) 5
0 0 1 1 1 STRH(imm.) 5

1 0 0 1 0 0 0

RESERVED

LDR(reg.) 6
1 0 0 1 0 0 1 LDRB(reg.) 6
1 0 0 1 0 1 0 LDRH(reg.) 6
1 0 0 1 1 0 0 LDRSB(reg.) 6
1 0 0 1 0 1 1 LDRSH(reg.) 6
1 0 0 1 1 0 1 STR(reg.) 6
1 0 0 1 1 1 0 STRB(reg.) 6
1 0 0 1 1 1 1 STRH(reg.) 6

1 0 1 0 0 RESERVED LDM, LDMIA 7
1 0 1 0 1 X X

RESERVED
POP 7

1 0 1 1 0 X X PUSH 7
1 0 1 1 1 RESERVED STM, STMIA 7

1 1 1 1 X X X X RESERVED POP 8

1 0 0 0 X X X X X X X X X X X X NOP 9

8-41

8.2 Appendix B: ARM Encoding Table

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 Instruction Group

1 1 0 1 B 1

0 0 0 1 1 1 0 ADD(imm.) 2

1 0 1 0 1 ADD(SP+imm.) 2

1 0 1 0 0 ADR 2

0 0 0 1 0 ASR (imm.) 2

0 0 1 0 1 CMP(imm.) 2

0 0 0 0 0 LSL(imm.) 2

0 0 0 0 1 LSR(imm.) 2

0 0 1 0 0 MOV(imm.) 2

0 1 0 0 0 0 1 0 0 1 RSB(imm.) 2

0 0 0 1 1 1 1 SUB(imm.) 2
1 0 1 1 0 0 0 0 1 SUB(SP-imm.) 2

0 1 0 0 0 0 0 1 0 1 ADC 3

0 0 0 1 1 0 0 ADD(reg.) 3

0 1 0 0 0 1 0 0 1 ADD(SP+reg.) 3

0 1 0 0 0 0 0 0 0 0 AND (reg.) 3

0 1 0 0 0 0 0 1 0 0 ASR(reg.) 3

0 1 0 0 0 0 1 1 1 0 BIC 3

0 1 0 0 0 0 1 0 1 1 CMN(reg.) 3

0 1 0 0 0 0 1 0 1 0 CMP(reg.) 3

0 1 0 0 0 0 0 0 0 1 EOR(reg.) 3

0 1 0 0 0 0 0 0 1 0 LSL(reg.) 3

0 1 0 0 0 0 0 0 1 1 LSR(reg.) 3

0 1 0 0 0 1 1 0 MOV(reg.) 3

0 1 0 0 0 0 1 1 0 1 MUL 3

0 1 0 0 0 0 1 1 1 1 MVN(reg.) 3

0 1 0 0 0 0 1 1 0 0 ORR(reg.) 3

1 0 1 1 1 0 1 0 0 0 REV 3

1 0 1 1 1 0 1 0 0 1 REV16 3

1 0 1 1 1 0 1 0 1 1 REVSH 3

0 1 0 0 0 0 0 1 1 1 ROR(reg.) 3

0 1 0 0 0 0 0 1 1 0 SBC(reg.) 3

0 0 0 1 1 0 1 SUB(reg.) 3

1 0 1 1 0 0 1 0 0 1 SXTB 3

1 0 1 1 0 0 1 0 0 0 SXTH 3

0 1 0 0 0 0 1 0 0 0 TST 3

1 0 1 1 0 0 1 0 1 1 UXTB 3

1 0 1 1 0 0 1 0 1 0 UXTH 3

8-42

0 1 0 0 0 1 1 1 1 BLX (reg.) 4

0 1 0 0 0 1 1 1 0 0 0 0 BX 4

0 1 1 0 1 LDR(imm.) 5

0 1 0 0 1 LDR(literal) 5

0 1 1 1 1 LDRB(imm.) 5

1 0 0 0 1 LDRH(imm.) 5

0 1 1 0 0 STR(imm.) 5

0 1 1 1 0 STRB(imm.) 5

1 0 0 0 0 STRH(imm.) 5

0 1 0 1 1 0 0 LDR(reg.) 6

0 1 0 1 1 1 0 LDRB(reg.) 6

0 1 0 1 1 0 1 LDRH(reg.) 6

0 1 0 1 0 1 1 LDRSB(reg.) 6

0 1 0 1 1 1 1 LDRSH(reg.) 6

0 1 0 1 0 0 0 STR(reg.) 6

0 1 0 1 0 1 0 STRB(reg.) 6

0 1 0 1 0 0 1 STRH(reg.) 6

1 1 0 0 1 LDM, LDMIA 7

1 0 1 1 1 1 0 POP 7

1 0 1 1 0 1 0 PUSH 7

1 1 0 0 0 STM, STMIA 7

1 0 1 1 1 1 0 1 POP 8

1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 NOP 9

8-43

8.3 Appendix C: ARM Encodings

Note: x13' is logical not.

Class1 x15 x14 x13' x12

Class2
x15' x14' x12' + x14' x13 x12' + x15' x14' x13' x11' + x15' x14' x13' x10 + x15 x14' x13 x11' x10' x9' x8'

x7 + x15' x13' x12' x11' x10' x9 x8' x7' x6

Class3
x15' x14' x13' x12 x11 x10' + x15' x14 x13' x12' x11' x10' x8 + x15 x14' x13 x12 x11' x10' x9 x8' + x15
x14' x13 x12 x10' x9 x8' x7' + x15 x14' x13 x12 x10' x9 x8' x6 + x15' x14 x13' x12' x11' x10' x9' + x15'

x14 x13' x12' x11' x9 x8' x7 + x15' x14 x13' x12' x11' x10 x8' x6 + x15' x14 x13' x12' x11' x9 x8' x6';

Class4 x15' x14 x13' x12' x11' x10 x9 x8

Class5 x15' x14 x13 + x15 x14' x13' x12' + x15' x14 x12' x11

Class6 x15' x14 x13' x12

Class7 x15 x14 x13' x12' + x15 x14' x13 x12 x10 x9'

Class8 x15 x14' x13 x12 x11 x10 x9' x8

Class9 x15 x14' x13 x12 x11 x10 x9 x8 x7' x6'

8-44

8.4 Appendix D: SCENCO – M Encoded CPOG Control Logic (without DONE)

8-45

8.5 Appendix E: SCENCO – M Encoded CPOG Control Logic (with DONE)

8-46

8.6 Appendix F: ARM Encoded CPOG Control Logic (without DONE)

8-47

8.7 Appendix G: Minimized SCENCO – M Controller Equations

REQ_PCIU = GO X15' + GO X14' + GO X13' X12 + GO X13 X12' ;

REQ_ALU = GO X15' ACK_IFU + GO X15 X14 X13' + GO X15 X13' X12 + GO X14 X12' ACK_IFU ;

REQ_MAU = GO X15 X14' X13 + GO X15 X13 X12 + GO X15' X14' ACK_ALU + GO X14' X12

ACK_ALU ;

REQ_PC2 = X15' X14 ACK_IFU + X15' X14' ACK_MAU + X15 X14' X13' X12' ACK_PCIU ;

REQ_IF2 = X15' X14' ACK_PC2 + X15' ACK_ALU ACK_PC2 + X15 X14 X13 X12' ACK_ALU ;

REQ_IFU = X15' ACK_PCIU + X13' X12 ACK_PCIU + X13 X12' ACK_PCIU + X15 X14 X13' X12'

ACK_ALU + X15 X14 X13 X12 ACK_MAU + X15 X14' X13' X12' ACK_PC2 + X14' X12 ACK_PCIU

;

DONE = X15 X14 X13' X12' ACK_IFU ACK_ALU + X15 X14 X13 X12 ACK_IFU ACK_MAU + X15

X14 X13' ACK_IFU ACK_ALU ACK_PCIU + X15 X14' X13 ACK_IFU ACK_MAU ACK_PCIU +

X15 X12 ACK_IFU ACK_ALU ACK_MAU ACK_PCIU + ACK_IFU ACK_ALU ACK_MAU

ACK_PCIU ACK_PC2 ACK_IF2 + X15 X14' X13' X12' ACK_IFU ACK_PCIU ACK_PC2 + X15 X14

X12' ACK_IFU ACK_ALU ACK_PCIU ACK_IF2 + X15' X14 ACK_IFU ACK_ALU ACK_PCIU

ACK_PC2 ACK_IF2;

8-48

8.8 Appendix H: Minimized SCENCO – M Controller Equations (without DONE)

REQ_PCIU = GO X15' + GO X14' + GO X13' X12 + GO X13 X12' ;

REQ_ALU = GO X15' ACK_IFU + GO X15 X14 X13' + GO X15 X13' X12 + GO X14 X12'

ACK_IFU ;

REQ_MAU = GO X15 X14' X13 + GO X15 X13 X12 + GO X15' X14' ACK_ALU + GO X14' X12

ACK_ALU ;

REQ_PC2 = X15' X14 ACK_IFU + X15' X14' ACK_MAU + X15 X14' X13' X12' ACK_PCIU ;

REQ_IF2 = X15' X14' ACK_PC2 + X15' ACK_ALU ACK_PC2 + X15 X14 X13 X12' ACK_ALU ;

REQ_IFU = X15' ACK_PCIU + X13' X12 ACK_PCIU + X13 X12' ACK_PCIU + X15 X14 X13'

X12' ACK_ALU + X15 X14 X13 X12 ACK_MAU + X15 X14' X13' X12' ACK_PC2 + X14' X12

ACK_PCIU ;

8-49

8.9 Appendix I: Minimized ARM Controller Equations (without DONE)

REQ_PCIU = GO X10' + GO X8' + GO X15 X14 + GO X15' X13 + GO X13' X12 + GO X14' X11' + GO X11 X9 +

GO X12' X9' ;

REQ_ALU = GO X15' ACK_IFU + GO X15 X14 X13 + GO X15' X14' X13 X12 + GO X15' X14 X13' X12 + GO X15

X14' X13' X12 + GO X10 X15' X14 X13' X11' + GO X8 X15' X14 X13' X11' + GO X15' X14 X13' X11' X9' + GO

X15' X14 X13' X11' X7 + GO X15' X14 X13' X11' X6' + GO X10' X12 ACK_IFU + GO X13' X12 ACK_IFU + GO

X14' X12' ACK_IFU + GO X10' X14' X12 X11 + GO X10' X8 X14' X13 X12 + GO X8' X14' X13 X12 X9 + GO X14'

X13 X12 X11' X9 + GO X14' X13 X12 X9 X7 + GO X10' X14' X13 X12 X7' + GO X14' X13 X12 X9 X6 ;

REQ_MAU = GO X15 X14 X13' X12' + GO X15' X14 X13 ACK_ALU + GO X15' X14 X12 ACK_ALU + GO X15

X13' X12' ACK_ALU + GO X10 X15 X14' X13 X12 X9' + GO X14 X13' X12' X11 ACK_ALU ;

REQ_PC2 = X15' X14' X12' ACK_IFU + X14' X13 X12' ACK_IFU + X15' X14 X13 ACK_MAU + X10 X15' X14'

X13' ACK_IFU + X15' X14' X13' X11' ACK_IFU + X15 X14' X13' X12' ACK_MAU + X15' X14 X12' X11

ACK_MAU + X10' X8' X15 X14' X13 X11' X9' X7 ACK_IFU + X10' X8' X15' X13' X12' X11' X9 X7' X6 ACK_IFU

+ X10 X8 X15 X14' X13 X12 X11 X9 X7' X6' ACK_PCIU ;

REQ_IF2 = X15' X14 X13 ACK_PC2 + X14' X12' ACK_ALU ACK_PC2 + X15 X14 X13' X12 ACK_ALU + X15

X14' X13' X12' ACK_PC2 + X15' X14 X12' X11 ACK_PC2 + X10 X15' X14' X13' ACK_ALU ACK_PC2 + X15'

X14' X13' X11' ACK_ALU ACK_PC2 + X10' X8' X15' X12' X9 X7' X6 ACK_ALU ACK_PC2 + X10' X8' X15 X14'

X13 X11' X9' X7 ACK_ALU ACK_PC2;

REQ_IFU = X10' ACK_PCIU + X8' ACK_PCIU + X10 X8 X15' X14 X13' X12' X11' X9 ACK_ALU + X10 X8 X15

X14' X13 X12 X11 X9' ACK_MAU + X10 X8 X15 X14' X13 X12 X11 X9 X7' X6' ACK_PC2 + X15 X14 ACK_PCIU

+ X15' X13 ACK_PCIU + X13' X12 ACK_PCIU + X12' X11 ACK_PCIU + X14' X11' ACK_PCIU + X11' X9'

ACK_PCIU + X11 X9 X7 ACK_PCIU + X11 X9 X6 ACK_PCIU ;

8-50

8.10 Appendix J: ARM Encoded CPOG Conditions

ALU = x15’ + x14 x13 + x13' x12 + x14' x12' + x12 x10' + x12 x9 x11' + x12 x9 x8' +

x12 x9 x7 + x12 x9 x6;

PCIU = x10' + x8' + x15 x14 + x15' x13 + x13' x12 + x14' x11' + x11 x9 + x12' x9';

MAU = x15' x14 x13 + x15' x14 x12 + x15 x13' x12' + x15 x14' x13 x12 x10 x9' + x14

x13' x12' x11 ;

PCIU2 = x14' x12' + x15' x14 x13 + x15' x12' x11 + x15' x14' x13' x11' + x15' x14'

x13' x10 + x15' x12' x10' x9 x8' x7' x6 + x15 x14' x13 x11' x10' x9' x8' x7 + x15 x14'

x13 x11 x10 x9 x8 x7' x6';

IFU2 = x14' x12' + x15' x14 x13 + x15' x12' x11 + x15 x14 x13' x12 + x15' x14' x13'

x11' + x15' x14' x13' x10 + x15' x12' x10' x9 x8' x7' x6 + x15 x14' x13 x11' x10' x9'

x8' x7 ;

ALU-IFU = x15' x14 x13' x12' x11' x10 x9 x8;

ALU-IFU2 = x15' x14' x12' + x14' x13 x12' + x15 x14 x13' x12 + x15' x14' x13' x11' +

x15' x14' x13' x10 + x15 x14' x13 x11' x10' x9' x8' x7 + x15' x13' x12' x11' x10' x9 x8'

x7' x6;

ALU-MAU = x15' x14 x13 + x15' x14 x12 + x15' x14 x11 + x15 x14' x13' x12' ;

IFU-ALU = x14' x12' + x15' x14 x13 + x15' x12' x11 + x15 x14 x13' x12 + x15' x14' x13'

x11' + x15' x14' x13' x10 + x15' x12' x10' x9 x8' x7' x6 + x15 x14' x13 x11' x10' x9'

x8' x7 ;

IFU-PC2 = x15' x14' x12' + x14' x12' x13 + x15' x14' x13' x11' + x15' x14' x13' x10 +

x15 x14' x13 x11' x10' x9' x8' x7 + x15' x12' x13' x11' x10' x9 x8' x7' x6;

PC2-IFU = x15 x14' x13 x12 x11 x10 x9 x8 x7' x6';

x14' x12' + x15' x14 x13 + x15' x12' x11 + x15' x14' x13' x11' + x15' x14' x13' x10 +

x15' x12' x10' x9 x8' x7' x6 + x15 x14' x13 x11' x10' x9' x8' x7 ;

PCIU-IFU = x10' + x8' + x15 x14 + x15' x13 + x13' x12 + x12' x11 + x14' x11' + x11'

x9' + x11 x9 x7 + x11 x9 x6;

PCIU-PC2 = x15 x14' x13 x12 x11 x10 x9 x8 x7' x6';

