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Abstract

This work presents a new method for designing reconfigurable dataflow hardware
structures efficiently. The design-flow my research is based on is reliant on a model
developed at Newcastle University named Conditional Partial Order Graph, also
called CPOG [50], [3]. It is a representation which is finding many applications on
the overall VLSI industry, because of its capability to capture different behaviours
of a system in an extremely compact way.

Additionally, this dissertation presents a new heuristic algorithm, able to fill in
the gap in this model at the controller synthesis phase. It is needed either for man-
aging the reconfigurability of the system under design, and for handling request/ac-
knowledgement signals for the sequentiality of the operations to be executed, in
particular for self-timed structures. The new heuristic is able to seek an optimal
op-code association (in terms of area consumption) for each different graph over a
custom number of bits. The module comes up with the synthesis phase is used to
control the events which may happen, likewise a control unit based structure.

The whole encoding tool has been integrated in Workcraft [54], which is a soft-
ware that supports different models, both for synchronous and asynchronous devices
design. One of the aim of this project indeed, was expanding such tool under CPOG
plugin, and developing a Graphical User Interface to be used by designers during the
former phases of a project. Furthermore, the whole design-flow has been applied to
a real application in order to demonstrate the easiness through which a completely
reconfigurable structure might be designed easily from scratch.

The number of applications this technique might be potentially applied for is
huge. Let us think to how many systems could be splitted into events: the decoding
part of Instruction Set Architecture of a processor for instance which tailors well to
this technique, or an Application Specific hardware structure which must be able to
perform different operations in parallel or sequentially. The limit of this design-flow
could be found just into the imagination of the designer who has to be able to split
the system to plan into smaller pieces, following the Divide and Conquer paradigm.
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Chapter 1

Introduction

The constant growth in the number of transistors it is possible to integrate in
the same amount of area of an integrated circuit (as Moore estimated [1]), makes
optimisation area problem one of the main concern designers should care about
during the design of whichever electronic device. Additionally, the increasing amount
of operations a component should be able to perform leads the need of an easy and
flexible model to represent a system, simplifying not only the former phases of
design-flow but even the latter ones. In fact, most of the mistakes that may affect a
device stem by wrong specifications, or by the lack of a sound model to represent the
whole system. On the light of above, a representation which cares about area/power
consumption is needed, in order to reduce time to market of the products without
loosing the quality of the device.

IDC (International Data Corporation), which is a corporation that helps IT pro-
fessionals, business executives, and the investment community taking decisions via
world wide statistics, forecasts an exponential growth on the smartphone shipment
over the next few years, as depicted on Figure 1.1. It represents another valid rea-
son for designers to address the high requirements in terms of battery life of mobile
devices.

As illustrated in [11], four drivers lead the need of developing low power devices:
technological, market, economical and environmental one. Poncino describes the
former one as “the difficult to pack devices with high power consumption”. In
addition, another element which brought designers to care about power consumption
was the big difference between battery and silicon technology improvement. As
represented on Figure 1.2 in fact, during the past few years, while the silicon has been
seeing an exponential enhancement, battery capacity has been remaining slightly
unmodified, reducing battery-life of products.

Additionally, while Market is always more represented by higher number of
portable devices, Economical reason expresses the correlation between the power
consumed by a device and the cost of manufacturing it, due to chip packaging cost,

1



1 – Introduction

Figure 1.1: Mobile devices growth along years, research by IDC [2].

Figure 1.2: CPU-Batteries improvements throughout years, Figure taken from [11] p.7.

as depicted on Figure 1.3). Finally, it’s important to develop low power components
in order to build a sustainable market, as represented by Environmental reason.

2
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Figure 1.3: Cost of chip package Vs Power consumption, Figure from [11] p.12.

In this research, I am going to tackle the problems illustrated above, by intro-
ducing a new design-flow which fits well to asynchronous dataflow reconfigurable
hardware architectures. As the former word explains having a self-timed structure
may save power and area at the same time. Maxim Rykunov, who developed a
totally self-timed 8051-based microprocessor on [4], states: “with a current multi-
billion transistor design distribution of a global clock in the entire system could be
costly in terms of area and power (up to 40% of the total chip power consumed by
the clock distribution network)” ([4] p.6). Furthermore even a more flexible struc-
ture could be implemented, as proved in [4], able to keep working in very different
operating conditions. It might tailor well to different kind of applications, spacing
from medical to consumer market.

Additionally, designing a reconfigurable dataflow architecture means avoiding
the whole the control-flow that takes place inside a single device. For instance, a
RISC-based microprocessor contains several modules: from the fetching side to de-
coding part, which are in charge simply to figure out what an instruction should
do. This is completely avoided with a dataflow structure which can execute the
operation straight away. The drawback in the usage of such structure is the poor
flexibility: as one might observe indeed, this application specific circuit can only per-
form one operation. Therefore the need of making such structure reconfigurable, in
order to obtain an extremely good result tradeoff between flexibility and area/power
consumption, as well as speed.

Hence, this work takes place. A recent model, able to describe such architectures
very efficiently was born in order to support event-based hardware development. It
is named Conditional Partial Order Graphs and described on [3] and [49] by Andrey
Mokhov. First attempt to use such model can be found on [51], where phase-
regeneration circuitry was the main concern. Afterwards, the theory of Partial

3
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order has been elaborated and first presented officially on [50], where it was used in
the context of asynchronous circuit design.

The model is composed by various number of graphs describing the different
behaviours a system should be able to execute, and each of them may be seen
also as a dataflow graph. The main goal of this thesis is to fill in the gap in this
model by developing an algorithm for automating the composition of the separated
graphs synthesising and mapping them on a real circuit, with a gate library set by
the designer, trying to reduce area consumption of the controller for managing the
whole structure. And to present the design-flow over a real application, with the
future purpose to print it into an ASIC.

So far, Conditional Partial Order Graphs representation (hereinafter also called
as CPOG) was used to build models for event-based hardware design, likewise
dataflow structures, as well as asynchronous circuits. First step for synthesising
such model into Boolean equations, is to assign an op-code to each scenario that
composes the whole representation. The choice of a different encoding for each
graph, affects the area of the final decoding circuit, and as will be pointed out over
the next Chapters, the higher the numbers of Partial orders which compose the
representation, the bigger the the area of the final circuit.

First aim of this research thus, is to automate the composition of several dataflow
structures on the basis of CPOG theory, trying to reduce the area of the final decoder
as much as possible. Along the research various examples will be analysed, and the
design-flow will be applied to real applications, in order to demonstrate the results
of the algorithm, and the applicability of this CPOG-driven flow in a more concrete
case of study. Plenty of graphs have been analysed during time spent in the research.
Here, for sake of readability, just few of them will be showed and discussed, the most
meaningful ones.

The dissertation is composed by following Chapters: the Introduction presents
the problem from a general point of view and illustrates the aim of this research,
Chapter 2 shows the background knowledge it is needed to reader for deeply in-
specting the topic. Over the Chapter 3 I am going to present and discuss about
all the elements a designer needs to develop an asynchronous architecture, pinpoint-
ing on how to design a self-timed pipeline. Afterwards I am going to analyse the
general procedure to design a reconfigurable hardware structure via the CPOG rep-
resentation. The Conditional Partial Order Graph automation encoding problem
is presented and discussed over the Chapter 4, where a rigorous analysis will be
done, pinpointing on area optimisation. Chapter 5 outlines the results obtained
regarding high level software part (Graphical User Interface for supporting automa-
tion of graphs composition), illustrating how I modified the plugin for CPOG on
Workcraft. Over Chapter 6 is described an interesting possibility where such
representation might be applied for: Instruction set architecture development, fo-
cusing on an example of a real processor. Finally, on Chapter 7, the designing

4
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phase of a reconfigurable dataflow asynchronous processor will be showed, in order
to make reader understand the power of such design-flow applied to a real applica-
tion. Finally the Conclusion Chapter where the key contributions of this thesis
are presented, and the area of future research are outlined.

5



Chapter 2

Background

This work is mainly based on previous research elaborated at Newcastle Univer-
sity, in particular by Dr. Andrey Mokhov and team of µSystem Research Group
at School of Electrical and Electronic Engineering. With their work [3], they intro-
duced a new light and flexible formalism able to model different event-based systems,
spacing from self-timed to synchronous architectures.

Potentially, this representation might model each kind of structure that could be
splitted into multiple events. For instance, as demonstrated in [4] by applying this
formalism to Intel 8051, even the ISA of a processor could be modelled and syn-
thesised with Conditional Partial Order Graph representation. Additional examples
of the application of such method could be found in chapter 8 of [3].

In this Chapter I am going to revise the essential features of CPOG, in order to
help the reader to understand this research and to introduce him to such formalism.
Afterwards I am going to revise the properties of dataflow-computing, analysing the
definitions and the different typologies it might be represented as.

2.1 Conditional partial order graph model

Definition.1 Conditional Partial Order Graph is a quintupleH(V , E ,X , ρ, ϕ) where:

• V is a finite set of vertices which correspond to the events in the modelled
system. V defines the system’s event domain.

• E ⊆ V × V is a set of edges representing dependencies between the events.

1This definition was elaborated entirely by Andrey Mokhov on his PhD dissertation [3], p.38. I
just report it to introduce briefly this model for the reader.

6



2 – Background

• Operational vector X is a finite set of Boolean variables. An opcode is an
assignment (x1, x2, ..., x|X |) ∈ 0, 1|X | of these variables. An opcode selects a
particular partial order from those contained in the graph.

• ρ ∈ F(X ) is a restriction function, where F(X ) is the set of all Boolean func-
tions over variables in X . ρ defines the operational domain of the graph: X
can be assigned only those opcodes (x1, x2, ..., x|X |) which satisfy the restric-
tion function, i.e. ρ(x1, x2, ..., x|X |) = 1. A graph is called singular iff its
operational domain is empty, i.e. function ρ is a contradiction: ρ = 0.

• Function ϕ : (V ∪ E) → F(X ) assigns a Boolean condition ϕ(z) ∈ F(X ) to
every vertex and arc z ∈ V ∪ E in the graph. Let us also define ϕ(z) := 0 for
z /∈ V ∪ E for convenience.

This model is based on strict graphical representation, where each event is rep-
resented by a circle ⃝, and each connection between vertices is named arc, depicted
as an arrow −→. Both the previous elements are labelled with a predefined pat-
tern composed by vertex/arc name, followed by condition ϕ(v/e). Next to each
graph, a further condition is present called “restriction function” (ρ), composed by
operational variables X .

Figure 2.1: Graphical representation of a CPOG.

On figure 2.1, an example of a Conditional Partial Order Graph model is de-
picted. On the left of it all the Boolean conditions over each vertex and edge are
listed, while on the right side of the Figure, a simplified notation is used. That is,
where the element is always present in the model, a logic 1 is present, also indicated
as no literals.

The purpose of the condition ϕ is to switch on/off vertices and edges, when
the conditions on it are satisfied or not respectively. A clearer example could be
observed on Figure 2.2, where the left side of the Figure shows the projection of the
model if X = 1, on the right side the projection on the other hand.

In this representation, dash edges and circles represent nodes and arrows switched
off, in such a way not to affect the behaviour of that particular event class. Notice
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Figure 2.2: CPOG projections: H|X=1 on the right, H|X=0 on the left side.

that, the edges followed by a logic 1 are not present if one of the two vertices
associated on it is not present too. It is a quite important feature, that allows
representing the introduction of the Don’t Care Boolean conditions.

The purpose of this research is expanding the next step, that is the synthesis
phase when a CPOG is already optimised, ready to be translated into logic circuit.
For this purpose, later on behavioural semantics of the model will be presented.

2.1.1 A factorial issue in the number of solutions

Once the Partial Orders have been prepared and optimised by the designer
to model a system, each graph must be associated to an op-code in order to be
distinguished by the remained ones. This is the first step of the synthesis stage,
where the controller for managing the whole structure should be synthesised. Before
discussing about the main issue I am going to handle during this research, let us
define some useful words that will be used along the pages of the dissertation.

Op-code points out a variable length array of bits where each element can be a
logic 0 or 1, the following ones are examples of feasible op-codes {0010, 000000, 1110001, 0}.
Op-code ensemble is defined as the the group of op-codes it is possible to use with a
particular number of bits, for instance the Op-code ensemble of length 2 is composed
by op-codes : {00,01,10,11} while the one of length 3 {000,001,010,011,100,101,110,111}.
An encoding, also referred to as solution, is a subset of an op-code ensemble where
each op-code is associated to one and only one Partial Order graph. Finally, the
solution space is represented by the group of all the possible encodings for a par-
ticular CPOG. On Figure 2.3 is depicted the op-codes available to encode a CPOG
that contains up to 8 Partial Order, composed by 3-bits op-codes.

8
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Figure 2.3: Op-code ensemble of length 3.

While on Figure 2.4, two possible solutions for what concerns a 5 graphs CPOG are
depicted taking into account the op-code ensemble on Figure 2.3.

Figure 2.4: Two possible encodings for CPOG composed by 5 Partial Orders with 3-bits
opcodes.

Moreover, another possibility designers have to exploit the higher size of the op-code
ensemble with respect to number of graphs to encode, is represented by the Don’t
care conditions. For instance, on Figure 2.5 is represented the situation where the
second Partial Order is encoded by the op-code 0XX.

On the light of above, as one might observe, there are plenty of possibilities to
encode all the graph in a representation, therefore the size of the solution space can
be really high depending on number of the graphs to encode and length of the op-
code ensemble. Even though solutions allowing don’t care conditions will be taken
into account in this research, now I am going to neglect the encodings stem by them
in the computation of the size of solution space due to the high complexity that
might be followed. However this issue will be addressed on Chapter 5.

Referring to starting aim of this Section, the main goal of a designer, is the find
inside the solution space related to a model, the best possible encoding in terms
of area of the final controller. Due to the lack of a heuristic cost function able
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Figure 2.5: Encoding for CPOG composed by 5 Partial Orders with 3-bits opcodes
exploiting don’t care.

to inspect cleverly each solution, designers needed to apply each different encoding
to the representation and to synthesise it on a real circuit in order to be able to
compare the various solutions. Nonetheless, as one might observe, it is extremely
time consuming, in particular for the CPOGs contain several graphs internally.
Indeed, as this Section aims to explain, the size of the solution space is directly
correlated with the number of Partial Orders the model is composed by and by the
length of the op-code designer wants the graphs the be encoded with. I

Hence, the size of the solution space is of primarily importance because poten-
tially, all the solutions might become a good encoding in terms of area and should
be inspected. As a consequence, an increase in the size of the possible solutions
may mean a higher complexity during the search phase and might worsen the final
solution. This is why the main aim at this step is trying to reduce the size of the
solution space as much as possible.

Hence, the need of a function able to target a subset of encodings, without going
through the entire solution space. Before concentrating on it, let us discuss about
the size of the solution space, it is useful to understand how we can approach the
problem.

Let us consider a very small Conditional Partial Order Graph representation,
composed by 4 different graphs only. As analysed in [3] and briefly above, there could
be several approaches to encode various graphs in order to minimise the Boolean
function in each vertex and edge, they could be encoded on minimum number of
bits, or by using an one hot encoding fashion for instance. What we are going to
take into account below will be op-codes ensemble with minimum length related to
number of Partial Orders.

It means that in order to encode 4 different graphs, we need 2 bits (Op-code
ensemble of length 2). Therefore, in order to get the minimum number of bits
needed to encode an entire model we need to use formula 2.1, where m stands
for the size of current op-code ensemble, assuming the graphs to be encoded with
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op-codes on minimum number of bits.

#{B} = ⌈log2(k)⌉ (2.1)

In this case, number of encodings fit perfectly graph to encode since with two
bits it is possible to encode exactly four elements (22 = 4). Afterwards, in order to
compute the entire solution space of such instance we should refer to permutation
problem. It states that the total number of solutions we can select by sorting
elements differently each time in a group of m different elements would be:

#{S} =
m!

(m− k)!
(2.2)

where k is the number of graphs to encode. Since in such case m = k, formula comes
up from example just mentioned depicted below:

4!

(4− 4)!
=

4!

1
= 4! = 24

Thus, total number of solution in this case is 24.
Moreover, there is another issue we have to take into account for reducing the

size of solution space. The encodings I just considered contain all the possible
combinations come up by permuting all the elements inside the op-code ensemble.
Nonetheless one could reduce the solution space even more by fixing the first element
of the encoding, without loosing any good results. It is because for each encoding
present in the solution space can be found a complementary solution which comes up
with the same final controller as for the complementary encoding with some inverter
gates at the starting point. Thus with no area gain at all.

Hence, by taking into account statement before, we could modify formula 2.2
into:

#{S}′ = (m− 1)!

(m− k)!
(2.3)

It is extremely beneficial for the size of the solution space. By analysing problem
before the ensemble reduces as following:

(4− 1)!

(4− 4)!
=

3!

1
= 3! = 6

Since the gap in the Partial Order composition did not allow to automatically
compose the graphs obtaining the area of the final controller. In order to first analyse
the size the final controller comes up with various encodings and try to understand
whether a correlation exists. I have focused on very small Conditional Partial Order
Graph models, as it will be discussed on next section.
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2.1.2 Examples considered

In order to be able to inspect all the solutions for a particular Partial Order
Graph, at the beginning just smaller graphs have been considered. It is because,
the number of solutions actually available depends on the number of Graphs in a
single representation in a factorial fashion, thus the more the number of CPOGs,
the more the solutions available for the entire model as argued in chapter 2.1.1.

Hence, models analysed in order to see whether a correlation is present are the
following ones, taken from [3]. As depicted in Figure 2.6, it is one of the most basic
model for four arithmetic instructions of an ALU unit.

Figure 2.6: Simple CPOG models four basic operations of a ALU,([3], Figure 7.9).

A and b nodes represent load of a and b register respectively.C represents in-
verting operation, d the addiction and e the store instruction. As one could see
this model is compact, and powerful at the same time, and may be able also used
to model quite complex instructions, belonging to different kind of sectors inside
the CPU, into very comprehensible and manageable graphs. This first example, is
quite basic and simple, and allowed me to understand how I could deal with this
representation.

Then I handled other two representations, always composed by 4 CPOG, in such
a way to keep the number of solutions reduced to 6 (by fixing first element), so
that to inspect well the entire solution space. The models used were taken from
a more bigger CPOG composed by eight instructions classes who will be analysed
separately later on.

At this point, I analysed as two separate models the graphs {a, b, c, d} and
{a, c, g, h} which may be seen as the representation of the path an instruction should
go through inside a general processor: each node indeed, corresponds to a differ-
ent stage of CPU part. For instance IFU stands for Instruction Fetch Unit, the
component in charge of fetching next instruction from Instruction memory. MAU
stands for Memory Access Unit, PCIU for Program Counter Increment Unit, the
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Figure 2.7: 8 instruction classes model.

one able to increment Program Counter register in order to select next instruction,
and so on and so forth.

Since Conditional Partial Order Graphs is an acyclic directed graph model, when
the flow should pass twice through a single node, another node, referred to as “/2”
upfront is needed, just for distinguishing among two different stages of the same
vertex.

Another issue we should address before working with CPOG representation, is
conditions on vertices. As in the node ALU/2 on f graph on Figure 2.7, nodes might
have a condition on it; it means that the vertex, and the associated edges would be
present inside the graph, if and only if the conditions on that vertex are satisfied.
The theory of how to synthesise this kind of particular nodes is reported in [3].
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2.1.3 Boolean equations extraction for each CPOG element

First of all, what I had to do was extracting the Boolean conditions for each
element of the graphs. Very basic operations are performed to reach this goal out,
which may be done manually on such small graphs. Over this Section these kind of
operations are illustrated and explained, with the help of short examples.

In order to get the Boolean equations of an element (either node or edge), one
needs to represent it by means of Boolean conditions on each particular CPOG
projection. Concerning a node: it could be present or not, depending whether it
would affect or not the behaviour of a projection respectively. If it does one should
represent the node with a 1, otherwise with 0. On the other hand, an edge could be
more difficult to manage, because we have to take into account some properties of
the model in order to optimise it as much as we can, such as the transitive property
depicted on the Definition below.

Definition2. A dependency a < b (where < denotes edge from a to b a → b )
between events a, b ∈ S in a partial order P(S, <) is called transitive (denoted as
a << b) iff there exists an event x ∈ S such that both conditions a < x and x < b
hold:

(a << b) = ∃x ∈ S, (a < x) ∧ (x < b) (2.4)

Therefore, if in a particular graph two vertices are not directly connected, but
they are in a transitive manner, one has to represent the edge in the projection with
a Don’t Care X. Let us consider for instance the Partial Order Graph on the Figure
2.8.

Figure 2.8: Partial Order Graphs example ([3], Figure 2.5).

The left-most image represents the reduced graph and on the Table 2.1 is depicted
an example of the right way to assign a Boolean condition for that particular graph.
As we can notice, a < d edge for instance is represented by a Don’t Care condition;
it is because a is connected to d by a transitive edge, as in the third graph from left
of Figure 2.8.

2Definition 4.2 from [3]
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Edge Bool. Condition

a < b 0

a < c 1

a < d X

b < a 0

b < c 1

b < d X

Table 2.1: Example of Boolean conditions assignment of graph on Figure 2.8

Another rule we have to follow to assign conditions to each arc is the following:
if at least one out of two vertices of the edge one is considering is not present, a
Don’t Care condition (X) might be assigner to that edge. It is because, no matter
the presence or not of the edge, it would not influence the projection at all since the
nodes are not present.

Once an encoding for each of the CPOG class has been chosen, one has to
minimise the condition for each element via a logic minimiser. I used Karnaugh
Map method when I faced with simple 4 instruction classes CPOG, while Espresso
logic minimiser [13] while dealing with more complex representation.

On the light of above, I would like to show to reader the results of Boolean
conditions extraction starting from a couple of encodings. They have been applied
to CPOG showed on Figure 2.9, Boolean conditions are reported on Table 2.2. As
explained on Section 2.1.1, there are 6 solutions per model (the small ones), but for
simplicity’s sake, just two of them will be reported, the most meaningful.

As one may notice, the first encoding looks way much better than the second
one in terms of number of literals present in the Boolean equations. On the light of
above, over the next section these conditions would be exploited in order to compute
equations for the final controller, area measurements will be performed on it.

2.1.4 Boolean equations extraction for the model

In order to extract all the Boolean equations from the Conditional Partial Order
Graph model for developing the final circuit implementations, various steps are
needed. Even tough they are described in [3], I want to outline some behavioural
features of the representation.

As discussed on Section 2.1, when a CPOG is ready to be synthesised into
Boolean equations, each vertex and edge have a Boolean condition associated to
itself. And according to these conditions, a part of the graph would be present or
not dynamically in the actual representation if and only if that condition is satisfied.
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Encoding Solutions

Elements 00 01 11 10 00 11 01 10

IFU !X0+!GE ((!X0∗!X1) + (X0 ∗X1))+!GE

IFU < PCIU/2 1 1

IFU < ALU/2 1 1

PCIU/2 (GE ∗X0) + (X0 ∗X1) (!X0 ∗X1) +GE ∗ (X0∗!X1)

PCIU/2 < IFU/2 1 1

ALU/2 X0∗!GE !GE ∗ ((X0∗!X1) + (!X0 ∗X1))

ALU/2 < IFU/2 !X1 !X1

IFU/2 X0 (X0∗!X1) + (!X0 ∗X1)

PCIU < IFU 1 1

PCIU < PCIU/2 1 1

PCIU X0+!X1 !X0+!X1

ALU < IFU X0 +X1 X0 +X1

ALU < PCIU/2 1 1

ALU 1 1

Table 2.2: Boolean equations for each element for CPOG on Figure 2.9
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Figure 2.9: Conditional Partial Order Graph with 4 instruction classes.

Before discussing about synthesis process, it is worth enunciating following defi-
nition:

Definition3. Opcode ψ : X ∪ Y → {0, 1} assigns Boolean values to all the static
and dynamic operational variables in the graph. The preset •ψv of a vertex v ∈ V
with respect to opcode ψ is:

•ψv := {u ∈ V , ϕ(u)|ψ · ϕ(u, v)|ψ = 1} (2.5)

It contains all the vertices u ∈ V which precede vertex v in the partial order defined
by complete projection H|ψ.

By considering definition just listed, I can analyse the mapping procedure for
building the controller. During this phase a set of equations are produced. The
overall size of them is thoroughly correlated to the size of the starting CPOG in
terms of number of graphs and conditions on their elements, as already pointed
out before. Therefore, applying optimisation techniques, as described in [3], before
synthesising the final controller is extremely important in order to reduce the whole
size of the circuit. Aim which must be also pursued by selecting the best op-code
assignment, as this dissertation want to demonstrate.

3Definition 5.17 from [3]
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Andrey Mokhov, the author of Conditional Partial Order Graph, describes map-
ping procedure in the following way:

Mapping procedure.([3], p.93) “a vertex v ∈ V is enabled to fire if and only if:

1. It belongs to the current complete projection, i.e. its condition is satisfied:
ϕ(v) = 1;

2. All its preceding vertices have already fired, i.e. ∀u ∈ V , (u ∈ •v) ⇒ fired(u).

This can be captured in terms of Boolean equations as follows:

enabled(v) = ϕ(v) ·

u∈V

{ϕ(u) · ϕ(u, v) ⇒ fired(u)}

Now predicates enabled(v) and fired(v) should be replaced with real signals.”

For instance, one might use an asynchronous-based interface where the trans-
actions are managed by a central control-unit (as depicted on Figure 2.10) by a
request-acknowledgement handshake interface. The enabled(v) might be represented
by signal reqv, and fired(v) by signal ack(v).

req(v) = ϕ(v) ·

u∈V

{ϕ(u) · ϕ(u, v) ⇒ ack(u)} (2.6)

In simple terms: an event is allowed to send a request signal as soon as preceding
event has been completed (signalled by an acknowledgement).

Figure 2.10: CPOG-based microcontroller with acknowledgements/requests interface,
taken from [3], Figure 7.4.

Once discussed about rules on how to extract Boolean equations from CPOG
model, the only thing one needs to care about is grouping together each Boolean
function for every vertex, in order to feed ABC tool and minimise Boolean equations.
In such a way to perform a fair comparison for what concerns the encodings applied.
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2.2 Dataflow computing

Dataflow structure is a special kind of architecture which totally differs from
control-flow like structure, because data can freely flow through the execution part of
the computation, avoiding the decoding part of the instructions typical of a standard
CPU of a CISC/RISC-based processor. In a general purpose processor indeed, before
an instruction is executed, it must go through various stages of the pipeline which
are useful to the CPU to fetch such instruction from the memory, and then to decode
it. Hence, the typical stage an instruction must follow for being executed are the
fetching phase and the decoding one; afterwards (depending on the instruction) even
the operands the computation is based on must be fetched from the data-memory
(in case of Harward architecture4) in order to have the operands of the computation
ready for it.

Since all these operations are executed in parallel, the throughput of the CPU,
which represents the rate of instructions to be executed in a specific amount of time,
is not affected by such a long pipeline. It is implemented in this way in order to min-
imise the number of times CPU must wait for the result of any previous instructions
of the program. Nonetheless, although this paradigm tailors well to really general
purpose applications, that is where the user may carry out very different opera-
tions. It does not fit well to some particular kind of applications where, even tough
the variability of the behaviour of the system can range from 1 to n predictable
operations, such a big waste in terms of area can be avoided.

Even though the throughput of the processor is not affected by the control flow
architecture, area is. As one might observe on Figure 2.11 indeed, the computa-
tional part which is the only really useful area dedicated to application occupies the
minority of the whole chip. The one on the Figure is just a general example, but
it is enough to make reader understand how much area one might save by avoiding
the whole memory and control flow architecture, even if in this case the hardware
would lose flexibility. Over the past few years dataflow computing has been one of
the main research area of many companies, such as for Maxeler Technologies as one
might read on [56] for example.

A good tradeoff could be obtained by making the dataflow structure reconfig-
urable. It means having various dataflow systems that can be also very different
each other, but that can be interchanged as soon as user needs it. What one gains
is having as many structures as wants where data can directly flow through, the
area of the controller for managing the reconfigurability part may be negligible with
respect to the area dedicated to computation and there is not an increment in the

4Harvard architecture differs with respect to Von Neumann structure because data and memory
are stored in two different memory elements.
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Figure 2.11: Particular of Maxeler Technologies transparencies, Slide N. 5 “Introduction
of Dataflow computing” [30]

delay since all the structures are already synthesised onto the ASIC/FPGA chip
under usage.

The really advantage of the representation I am going to use is the possibility
to share different internal components between the dataflow structures available.
Indeed CPOG allows designers to synthesise a controller able to activate the part
actually needed for the computation without synthesising it multiple times onto the
chip, getting a higher save of the area too.

In this Section I am going to introduce the dataflow paradigm, focusing on the
typologies that such structures may have.

2.2.1 Dataflow theory

Systems can be divided in two categories: control-dominated systems and data-
dominated systems. The former ones are strongly dominated by taking decision
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and by the latency, the computation time is not a main concern provided that it is
lower than the clock period superimposed by the external environment. The latter
one whereas are structures where the main concern is on data computation and
the throughput. Here each part composes such systems is autonomous and often
asynchronous.

In this paragraph I am going to cover three dataflow networks:

• Kahn process neworks

• Static dataflow neworks

• Boolean dataflow neworks

Maurizio Tranchero et al. describe in [31] the Kahn process as networks of
processes made by sequential deterministic code, where each state communicates
with the next one via a point to point FIFO5 connection. Reading operations are
blocking, it means that a process does not go on until data is present on input
FIFO. It guarantees the determinism, but may cause deadlock if such process does
not receive any more data in input. Moreover another problem that affect such
structures is the infinite memory requirements, due to various speed of the processes.
A practical example may be found on [31] on pages 102-103.

Static dataflow networks are a subset of the Kahn process networks, where the
deadlock and the problem of infinite memory requirement is addressed. Each process
indeed can be executed repeatedly reading and producing a fixed number of data,
when it is present in its input. Moreover the position of the initial values are fixed
at the beginning and they are called tokens. On Figure 2.12 an example is depicted.

The red dots represent the token, the numbers close to each state are the read-
ing/production rates depending whether the arrow goes in or out respectively from
the process, for instance process C takes 2 token and produces 3 tokens on the next
FIFO each time. If the reader follows the sequence of events may see that this pro-
cess may be repeated infinitely. In this case, the way the processes are scheduled is
BBCBBCDA, or better 2(2(B)C)DA. It means that, if the processes follow this pattern
can be executed without occurring into a deadlock and with the maximum size of a
FIFO set by the connection between the process C and D which must able to contain
6 tokens.

The Boolean dataflow networks add two nodes to Static dataflow networks : split
and merge. They are needed to express Boolean conditions for certain kind of
applications like compression/decompression (as stated in [31]). Such structures are
showed on Figure 2.13 and can be used to develop loop and if-then-else patterns.

5FIFO = First IN First OUT.
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Figure 2.12: Static Dataflow Network example

Figure 2.13: Split and merge structures. ([31], Figures 6.12 - 6.13)

In summary, there can be different typologies of dataflow structures. The ones
I am going to deal with are static dataflow network where the rate of reading/pro-
duction is 1, and where the processes start executing itself when data is present at
the input. As already mentioned, this representation I am going to use fits well to
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asynchronous structures which do not need any memory between two processes due
to protocol implemented.
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Chapter 3

Asynchronous dataflow pipelines
design

In this Chapter I am going to discuss about the design of dataflow pipelines,
pinpointing on self-timed structures. As already mentioned before, several devices
may benefit from asynchronous pattern usage for different reasons: first of all the
lack of the clock-net extremely reduces the size of the design which can be really
affected by such component. It affects also the power consumption, since even when
the device is not working the clock is always active consuming power constantly.
Designers tried during the last few years to lower such a source of power consumption
by means of techniques as clock gating, or by acting at the RTL Level pre-computing
the result for what concerns common case computation [11]. But it turns out that
such modifications contribute to an higher size of the design as well increasing the
static power consumption which is getting bigger than dynamic one nowadays [12].

Asynchronous designs may contribute solving such problem due to the capability
to work when the data is ready only. Self-timed hardware structures indeed, con-
sume an extremely small amount of power consumption when the data is not ready
at the inputs. Even though such structures may bring great advantages to VLSI
market, they have been neglected for many years also due to the complexity of the
development phase, in particular from the protocol point-of-view. One of the aim of
this research is to simplify such design-flow, in order to lead designers to use such
structures more easily.

On the light of above, I am going to present all the tools a designer may need for
developing self-timed hardware. The reconfigurability of the dataflow graphs will
be discussed over the next Chapter.
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3.1 Pipelining introduction

Before going through the core of this Chapter, it is worth giving a short intro-
duction to readers about the general concept behind the Pipeline. In the context
of Computer Science, a pipeline is defined as a set of processing parts, completely
separated each other, which are connected in succession to form a system.

The singularity of this structure is the capability of each single module the
pipeline is composed by to work without the influence of the preceding parts. Let us
think for example about a general pipeline inside a RISC-based CPU for executing
instructions, it is composed by five computational elements: Instruction Fetch
which is in charge of getting the instructions from the memory (typically instruc-
tion memory), hereinafter called F. Instruction Decode that is the hardware part
that decodes the instruction to figure out which operation needs to be performed
and to fetch the operands for the computation, called D. Execute/E which is in
charge of actually executing the instructions, Memory access/M that load/store
instructions into memory and finally Write Back/WB which writes the results
into a processor registers or forwards them into the ALU whether some particular
conditions occur. Such structure is depicted on Figure 3.1

Figure 3.1: General structure of a RISC-based processor. ([32], P. 13)

As one may notice, this structure is not pipelined because it lacks of the struc-
tures needed to store the results in the middle of the computation, that are the
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registers. A more complete design is showed on Figure 3.2 where the registers are
present between every two consecutive stages of the pipeline.

Figure 3.2: Pipeline version of a RISC-based processor. ([32], P. 16)

The hardware structures illustrated before are synchronous. Synchronous design
benefits from Pipelining-based structures because of the reduction of the critical
path and as a consequence the increasing frequency the microprocessor is able to
run on. One of the parameter which contributes to maximum operating frequency
of the circuit under design is the critical path. It is a time measure and is defined
as the slowest path in the circuit present between two memory elements (registers)
and it is connected to the frequency by following mathematical relationship:

F =
1

CP
(3.1)

Therefore, the longer the critical path, the lower the frequency the CPU can run.
On the light of above, one might observe that the advantage of inserting the registers
in the middle of the computational units is reducing drastically the critical path and
as a consequence thoroughly increasing the working frequency of the circuit.

Nonetheless, pipelining does not lead to advantages only, because first of all it
increases the area of the circuit either due to the high number of registers needed
to store all the results in the middle of the pipeline, and in particular for all the
management units in charge of controlling the good behaviour of the structures and
avoiding problems as hazards. In this brief description, I am not going to cover all
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the problems stem from the pipeline-based architecture design, but if the readers is
interested on it, they can find several information in [32].

A fundamental characteristic of a pipeline is the throughput. It is defined as the
rate of production of a structure over a time unit and it is crucial in the concept of
digital circuit nowadays. In order to better understand this concept I am going to
present a short example taking into account the structures presented before on Fig-
ure 3.1 and 3.2. Let us assume that the time needed to execute each computational
part (F-D-E-M-WB) is 1 µs both for pipelined and not pipelined-based structures;
and let us compare how much time would elapse to execute five generic instructions
consecutively assuming no hazards.

In the case of Figure 3.1, that is the not pipelined version, the µprocessor would
execute each instruction one after the other, therefore in order to obtain the total
time of execution one has to multiply the number of instructions times the time
needed to process each instruction, as computed below:

ExecutionT ime = Ninst × INSTtime = 5× 5µs = 25µs

For what concerns the pipelined version, in order to compute the overall ex-
ecution time we have to consider that the instructions are internally executed in
parallel, as represented on Figure 3.3

Figure 3.3: Pipelined execution example. ([32], P. 26 modified)

For instance, if one considers the operations under execution on fourth clock
cycles, the ones inside the red circle, he might be able to observe that the first
instruction is at the Memory stage, the second one at the Execution phase, the
third one at the Decode stage and so on. In this case the overall time of execution
is 9 µs.

Hence the total speedup one can get is:

Speedup =
ExecT imenonPipelined
ExecT imePipelined

=
25µs

9µs
= 2.77
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The considerations discussed above refer to synchronous-based structures and do
not take into account all the hazards that may occur which might stall the pipeline
slowing down the whole architecture. Nonetheless, they are enough to readers to
understand the general concept in order to better follow next Sections, where the
composition of an asynchronous pipeline is the main concern.

3.2 Asynchronous pipelining

Asynchronous circuits may have several advantages as introduced at the begin-
ning of this Chapter. As Jens Sparso, from University of Denmark, points out in
[33], self-timed-base structures may lead to great advantages such as running at high
operating speed, since it is determined not by worst-case latency, but by the local
one. [35], less emission of electro-magnetic noise [34], soundness towards variations
in temperature, supply voltage and fabrication process parameters since the com-
munication is based on handshaking protocols [36] and finally the lack of the clock
skew problem due to the absence of the clock.

It is worth starting from a higher level of abstraction for analysing the func-
tionality of an asynchronous circuit. As RTL (Register Transfer Level) represents
a relatively good level of abstraction to understand what is going on inside the de-
vice regarding synchronous logic; handshake-channel and data-token view fit well
to asynchronous circuits. The former models the signals connecting one register to
next one, hence it represents the main link useful for communication purposes, while
the latter one represents the data which is stored into the registers and that flows
through the pipeline, where combinational logic between two registers should be as
transparent as possible. Reader should think about a combinatorial block as a piece
of logic which absorbs a token, performs its computation and outputs the results
without looking at handshaking mechanism.

Figure 3.4: Dataflow asynchronous pipeline example.

As one might observe, dataflow representation tailors well to this kind of logic,
and can be used for simplify the design-flow of such circuits. On Figure 3.4 are
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depicted the main components I described above. The tool I am going to use for
representing such structures is the Dataflow Structure Plugin under Workcraft, in
this dissertation I am not going to cover the ideas behind it but if the reader is
interested might find a good starting point about the topic on [37].

This section is structured as following: in the next part I am going to introduce
the protocol I used for the asynchronous transactions and then the so called Muller
pipeline by illustrating some circuits examples for understandability’s sake.

3.2.1 4-phase dual-rail protocol

The advantage of having a synchronous architecture is the capability by all the
elements to ideally share a predefined timing set by the clock signal. It should
ideally come to each memory element at the same time, giving the possibility to
every combinatorial part to finish its execution. It extremely simplifies the design
process since designers may neglect the hazards that may happen between two clock
ticks.

Figure 3.5: Typical handshaking protocol structure.

Asynchronous architectures, even tough bring many advantages, do not have the
capability to share a single notion of time, that is the reason why a handshaking
protocol must be used to fill in the gap of communication between two memory
elements. A handshaking protocols allow two elements to communicate each other
in a really flexible way, since communication may happen in whichever time period,
no matter delay variations. Typically, three elements are present as showed on
Figure 3.5: Data bus (composed by 1 to n wires) which propagates the token, that
is the data useful to application; the Request which is the link the sender raises up
to signal that the communication can start, and the Acknowledgement, that is the
response of the receiver signalling that communication terminated correctly.
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Figure 3.6: 4-phase asynchronous protocol behaviour.

As may be seen on Figure 3.6, such protocol also called Return to Zero because of
its characteristic to zero the request signal after every transactions, works as follows:
after the sender has set data available on the Data bus it raises the Request signal up;
afterwards Acknowledgement is activated, once that the receiver has read the data
correctly. Finally Request signal is deactivated followed by the Acknowledgement.

Although this protocol is simple, it is not the best possibility for what concerns
power consumption. In fact, the transition to return to zero state could be avoided
and power consumed for such transition saved (as implemented under the 2-phase
protocol). Nonetheless, since the main purpose is to simplify the design phase I
have used the 4-phase version of the protocol, even if the 2-phase version may be
analysed in further research direction.

Nevertheless, the protocol I have used throughout this research is a bit different
to the one described above. It embeds the Request connection into the Data bus,
by avoiding any problems for what concerns the timing assumption one should take
into account for combinatorial parts of the circuit. In order to simplify the concept
of my previous statement for the readers, it is worth introducing one of the main
problem occurring when designers deal with asynchronous circuits. That is, how
could one figure out when a general combinatorial part has finished its execution,
taking into account problems which might occur?

A first solution, nowadays still used ([4]), is the bundled-data protocol. It consists
on setting some delays matching the ones of combinatorial modules for propagating
the request signal delaying it for as much time as needed by the glue logic to put
the result over the output bus. As one may figure out, this technique is extremely
unreliable if the delays are not matched correctly to corresponding modules. It is
not an easy task, due to the high number of parameters the speed of a module is
affected of, in particular for the process variations, the temperature or the power
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Figure 3.7: Bundled-data protocol model.

supply voltage swings. On Figure 3.7 a Figure representing such architectural choice.
To overcome this problem, I used the dual-rail extension of 4-phase protocol. It

consists on double each wire in order to have one single wire in the case 1 need to
be transmitted and another one in the case of a 0. On Table 3.1 is showed the small
truth table which might help to figure how the functionality of such structure.

Wire.T Wire.F Sig. Transmitted

0 0 Empty

0 1 False

1 0 True

1 1 Invalid pattern

Table 3.1: Communication on dual rail protocol.

The peculiarity of this protocol is the possibility to have one more logic state
regardless the typical True and False, the Empty state. It signals the non presence
of the data token between the sender and the receiver, therefore it is useful for the
handshaking because it can be used to capture the presence of the result after a
logic block, embedding the request signal into the data-bus and as a consequence
avoiding every delay dependency with the timing path. On Figure 3.8 the abstract
representation of such architecture.

3.2.2 C-element

Finally, to complete an asynchronous pipeline one needs another element which
is commonly used when dealing with self-timed structures: Muller C-element. Jens
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Figure 3.8: 4-phase asynchronous dual-rail protocol model.

Sparso defines the C-element as “a state-holding element much like an asynchronous
set-reset latch. When both inputs are 0 the output is set to 0, and when both inputs
are 1 the output is set to 0. For other input combinations the output does not change.
Consequently, an observer seeing the output change from 0 to 1 may conclude that
both inputs are now at 1; and similarly, an observer seeing the output change from
1 to 0 may conclude that both inputs are now 0.”([33], Pag. 15). As stated by
the author of “Asynchronous circuit design - a tutorial”, this element might help
designers to understand whether both inputs are present or not, observing the gate
by the output side only.

Figure 3.9: Schematic of 2 inputs c-element.
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IN 1 IN 2 OUT

0 0 0

0 1 No change

1 0 No change

1 1 1

Table 3.2: 2 inputs c-element truth table.

On Figure 3.9, the schematic of a 2 inputs C-element is depicted, it may be
also implemented with as many number of inputs as needed by designers. This
component is needed to implement the self-timed register, that is a module which
captures the data on its input when following conditions are both true:

• Next register contains an empty state.

• Data is present at the inputs.

When both these conditions are satisfied at the same time, data is captured and
propagated through the pipeline. On Table 3.2 the truth table of this element is
represented for understandability’s sake. Afterwards, I am going to present the
Muller pipeline, or better a 4-phase dual-rail asynchronous pipeline and the way it
works.

3.2.3 Pipeline implementation

In order to develop the pipeline, let us first build a basic structure, which will
help us to separate our hardware implementation via a higher level of abstraction.
The element I am going to present is a register, that is a memory element which is
able to store a token and then to propagate it. The particularities of this element
with respect to the synchronous version are the absence of the clock signal, and the
presence of two more ports which I am going to call Ack in and Ack out.

This small module, hereinafter named asynchronous register, embeds a comple-
tion detector mechanism which can establish whether the token has been captured
and acquired. On Figure 3.10 is showed the schematic of the internal structure of
such element.
The role of Ack in is to deactivate the register if first condition mentioned before
is not satisfied. Indeed, the next register, where the signal comes from, put the
signal on 1 if a token is present. Afterwards the inverter set the signal to a logic 0

which feeds all the C-elements not allowing them to capture the signal. Whereas,
if Ack in is set to 0, all C-elements can capture the input signals. Ack out instead
is the signal generated internally, which feeds the Ack in of the previous register in
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Figure 3.10: 1 bit asycnhronous register

the pipeline; it is set by the completion detection module which simply checks if at
least one of the two signals per input coming from external environment and going
through the C-elements are at logic 1. If so, it means that a token is present. It is
worth reminding to readers which IN0 T represents the logic true side of a signal in
dual-rail fashion, while IN1 F the logic 0 side.

As depicted on Figure just described, the completion detection module may
seem to reader a really trivial component since it is composed by one gate only.
Nevertheless, things get more complicated when one has to deal with a register
higher than one bit, since the completion detection module must check that the
empty signal is not present for the whole bus. For clarity’s sake, a 3 bits completion
detection module is represented on Figure 3.11. As one might observe, the number
of inputs of such structure is doubled with respect to number of bits to represent,
and each OR gate must check whether the signal is present on the bus. Finally, C-
element is in charge of checking that all inputs are present. As already mentioned,
C-element tailors really well to the asynchronous circuits due to its capability to
change the output when all the inputs change their logic state. Reader must pay
attention even to the internal structure of the C-element that would change as the
number of inputs change. On Figure 3.12 one of the possible implementation I used
throughout this research.

On the light of the components presented above, I can finally introduce an asyn-
chronous pipeline as final instance. It is showed on Figure 3.13 and it is composed
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Figure 3.11: 3 bits completion detection module

Figure 3.12: 3 bits C-element implementation

by asynchronous registers only without any combinatorial parts internally, they will
be covered afterwards on Section 3.3. Since the registers do not share any notion of
time, the token here is propagated like a wave, as Jens Sparso described on [33].

As discussed before, due to the protocol used for transactions, an empty state
between two consecutive registers is needed in such a way to allow tokens to be
propagated, therefore consecutive data tokens cannot be present consecutively inside
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Figure 3.13: 2 bits - 3 stages asynchronous pipeline example.

the chain. This is a quite negative problem since one would waste fundamentally
half of the possible throughput. This is why it is totally worth pursuing the research
toward the 2-phase asynchronous protocol, in order to increase the performance of
the device under development.

3.3 Combinatorial circuitry

Now that the whole structure of the memory elements has been introduced,
I can focus on presenting the combinatorial structure. It differs with respect to
the normal single-rail structure, both because each signal is represented on two
wires and because of avoiding hazards. For explaining the former statement, let us
concentrate on the protocol which allow a single information to be transmitted on
two rails. In order to be able by the designer to implement the same logic functions
as the single-rail counterpart, one should use a totally different gate library-based
structure, which assumes an information to have two inputs, not one only.

Let us take as instance a basic AND gate. It allows the output to be activated
when both two inputs are stuck at one. This functionality can be reproduced for
dual-rail protocol as on Figure 3.14, and according to [38] there could be two different
implementations for such gate.

The one on the left, also called NCL-D implementation, is the most reliable but
also the most expensive in terms of area. Indeed as one might observe it is composed
by four c-elements and one OR gate. The implementation on the right instead is
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Figure 3.14: Dual-rail AND gate implementations. ([38], Figure 2 modified)

named NCL-X and is the cheapest and less reliable one. For discussing about the
reliability of such gates and introducing to readers the reasons why designers may
choose one implementation with respect to the other one, it is worth discussing
about the the hazards issue.

Hazards are errors that might affect the pipeline due to various reasons. In
the synchronous methodology, according to [32] they may be distinguished between
Data, Control and Structural hazards, the former ones are related to instructions
depending on results of previous instructions, the Control typology are instead re-
lated to branch instructions while the latter ones to conflict of resources. All the
problems may be overcome by stalling the pipeline and introducing bubbles, that
even though may slow down the CPU reducing the actual throughput, are needed
for a correct behaviour.

In the asynchronous context, hazards may arise when a combinatorial module
is not completely transparent. Therefore, according to the definition given by Jens
Sparso, it may happen when the outputs of a combinational module arise before the
computation is actually finished inside the module.

In order to explain this phenomenon let us refer to a standard OR gate used for
single-rail transmission. Due to logic function it embeds, the output would arise
if at least one of the two inputs is stuck at one. Even though in the synchronous
context it is not a problem because registers capture the results of the glue logic at
a frequency that assumes the computation to be finished and the results stable, it
is for asynchronous combinatorial circuitry since the registers do not share a single
notion of time. In the worst case, it means that potentially a wrong result may be
propagated or that one of the next computation might be influenced by it.

In order to solve this problem, one needs to develop some structures allowing the
output to be present and at the same time checking that the computation is entirely
finished. Hence, different solutions are present on the design market. On [39] a
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technique for optimising the number of completion detection blocks to be inserted
inside the design is formulated, the main idea behind it is to strategically set a
variable number of completion detection modules checking that signals are present
at some circuit point beyond the output and the inputs, in order to be sure that
the module has terminated its computation by keeping the area as low as possible.
In this research I have not used such theory to reduce the area consumption of the
design.

The strategy I have used during my work at Newcastle University was mixing
reliable (NCL-D) and unreliable (NCL-X) gates in order to build hazards free com-
ponents. Before analysing this approach, let us first discuss about the reliability of
the gates presented on Figure 3.14. In the context of asynchronous design method-
ology, reliability is defined as the capability of displaying the results when all the
inputs are present. Considering such definition, the a typology showed on Figure
contains four C-elements, and this is the key that makes such gate totally reliable.
Indeed, both x 1 or x 0 cannot be activated if both inputs are not activated. The
disadvantage of this component is the big area it takes to be synthesised.

NCL-D [nm] NCL-X [nm]

AND 33,712 7,840

OR 33,712 7,840

XOR 36,064 20,384

Table 3.3: NCL-D and NCL-X gates area comparison

The NCL-X instead is really good from the point of view of the area, but worse
than the NCL-D for what concerns reliability. It is because the output signalling a
logic 0 may be activated as soon as one single input representing false is activated.
It does not allow designers to use NCL-X gates only to implement total reliable
components. A comparison between these two kinds of gates is depicted on Table
3.3, where the area was obtained by synthesising the gates via a 90 nm Faraday
library, in particular the low VDD version.

As reader might notice by the Table, both AND and OR gates can be synthesised on
the same amount of area, this is why in order to implement the logic OR under NCL-
D fashion one needs just to change the connection of the final OR gate. Concerning
the XOR gate, the two implementations are similar because of the implementation of
the logic function requires the usage of more gates even for what regards the NCL-X
implementation.

After having discussed about all the parts compose an asynchronous pipeline, I
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am going to discuss about the composition of various dataflow structures (Chapters
4) for supporting the reconfigurability.
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Chapter 4

Dataflow graphs composition

One of the aim of this research is to automate the composition of several dataflow
graphs, represented with Condition Partial Order Graph representation. First step
to synthesise the controller which will be in charge of managing the reconfigurability
of the structure, is to seek an optimal op-code for each graph. It is an extremely
important task because most of the area and as a consequence the power consump-
tion of the whole control-unit stem by encoding achieved. Even though the best
solution would be reachable by inspecting all the solutions only, it is infeasible due
to the wide solution space, as described on Section 2.1.1, and the high time needed
to synthesise the model into logic gates make the task of seeking the minimum
area solution really difficult. Hence, the need of a clever and faster cost function,
able to point out directly a good encoding both from the execution time and area
perspectives.

Afterwards, I am going to discuss about the various techniques used in order to
generate the encoding for the representation, it is the key point for developing a fast
and efficient tool to support the composition phase of the model. Indeed, as the
Section 4.3 points out, the encoding generation process cannot be executed quickly
and excellently at the same time. Some approximation should be done in order to
find a good trade-off between speed and quality of solution.

Therefore, over this Chapter I am going to present all the instruments, tools and
procedures used for evaluation of the various encodings. The cost function will be
also presented and described. On Section 4.3 the Graph Isomorphism issue is pre-
sented and compared to optimal search task for the purpose of the work. It might
help to see this research from a bigger perspective in order to comprehend better
final results comparing them with a similar problem already handled by countless
researchers. Finally three encoding generation possibilities will be analysed: Re-
cursive, Random and Optimal generation. Last one is the best possible trade-off
between speed and time. Nonetheless all the algorithms will be explained, discussed
and analysed in order to show the differences between them, the advantages of each
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solution as well as the drawbacks.

4.1 Decoded circuit area evaluation

In order to evaluate the area of the circuit cleverly, I used a tool developed by
Berkeley University named ABC. Among the other things this software is able to
do, it can read a library in Genlib format, and map the circuit read by file into logic
gates, computing the area it would take after synthesis process. A more complete
description of this tool is provided on its dedicated web-site, [8].

Included in this Section, all the parameters and settings I used to compute the
final area of the circuit. Following part would be structured mainly into three sub-
sections. First one describes the library used to perform a comparison between
various circuits, second one the equations needed to develop the final circuit from
CPOG models, and how to extract them. Finally the settings set into ABC tool
in order to minimise the area as much as possible, and map the boolean equations
into a circuit.

4.1.1 Gate library used

The library I used to map each circuit with real logic gates was a 90nm library,
in particular the one in [5]. Since ABC accepts just library in Genlib format, I
had to convert it first. Genlib format is a fairly simple text arrangement that
allows to specify different kinds of parameters for each gate considered. Below the
arrangement of the parameters via such format:

GATE Name Area[µm2] Function Propagation Delay

The Propagation delay is represented by four numbers as described by Robert
Moniot in [6]: “The first is the maximum delay, the second is the maximum ad-
ditional delay per fanout. The second pair of numbers are the minimum values of
those quantities.”. A more accurate description is showed on [7]. Below an example
of a simple AND gate with two inputs.

GATE and2 5.6448 O = a ∗ b; 1.0 0.2 1.0 0.2

For our analysis, just the area parameter will be taken into account, but the
delay could also be inspected by means of this library.

4.1.2 ABC tool usage

As reported in [8], “ABC is a growing software system for synthesis and verifica-
tion of binary sequential logic circuits appearing in synchronous hardware designs.
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ABC combines scalable logic optimization based on And-Inverter Graphs (AIGs),
optimal-delay DAG-based technology mapping for look-up tables and standard cells,
and innovative algorithms for sequential synthesis and verification.” More informa-
tion can be found on corresponding website.

What I want to discuss over this Section is how I used ABC to achieve the aim
of optimising the entire decoding circuit, and mapping it with a gate library in such
a way to compare various solutions in terms of area consumption properly. Before
going through the list of commands used in the software, I just want to highlight that
there are several ways to reach the goal of optimising circuit in the tool, since plenty
of commands and algorithms are present, and they are potentially exploitable to
optimise whichever logic circuit targeting different parameters. Now, let us discuss
about the particular procedure I used targeting area optimisation. Since plenty of
solutions should be analysed and compared, an automatic evaluation of the records
is needed. Hence, I used a script to perform all the operations sequentially on the
current circuit under analysis.

First operation one has to perform is clearly reading the circuit (read_eqn file_name

command) under design. file name is the path of a file with a predefined layout as
reported below, it is important in order to specify all the specifications of the logic
circuit for the tool.

INORDER = A B; % list of the inputs

OUTORDER = AND OR NOT; % list of the outputs

AND = A * B; % boolean equations

OR = A + B;

NOT = !A;

INORDER must be followed by the list of inputs of the circuit, and OUTORDER by
the outputs. A brief example of three different gates is depicted indeed, where *

represents logic and, + logic or and ! the not operator.

Afterwards, library must be read to know the exact area of logic gates I am
going to deal with. read_library library_name is the right command in such
case, where I set as library the one I presented on Section 4.1.1.

After selecting those two parameters of the tool, I can focus on optimising circuit
targeting area optimisation, obtaining results for each encoding considered. There-
fore, three commands were used sequentially: choice; map; ps. The tool uses
Standard Cell Mapping-based algorithms which allow to optimise area as well as
delay of the circuits, both sequential or combinational ones.

The commands listed above help optimising area of the final circuit, provided
they would be executed several times. As the handbook of this tool states indeed:
“Typically it takes more than 10 iterations by circuit to converge and area keeps
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improving. This is achieved by the ability of AIG1 rewriting to find good circuit
structures, by the ability of choices to capture structural flexibilities, and by the
mapper to do a good area recovery.”[8].

Finally print_gates command returns the area parameter of the circuit, it lists
all the percentages of gates used belonging to library chosen, and the final result
where all the logic gates are included.

4.2 Cost function

As mentioned before, at the beginning of this research small CPOG models were
used (as discussed in Section 2.1.2). It allowed me to inspect the overall solution
space by hand, without the need of automated algorithms, trying to find out a cost
function useful to see the problem from another perspective. Over this Section,
cost function will be presented, afterwards an analysis of the CPOG showed on
Section 2.1.2 will be performed, and finally the results will be experienced on a
bigger representation (the one on Figure 2.7), so that to demonstrate the usefulness
of the function achieved.

4.2.1 Correlation between Partial Orders and op-codes

Before comparing different encodings, I want to introduce the cost function I
used in order to find a heuristic able to minimise area the circuit would take to
be synthesised on. Inside every Conditional Partial Order Graph representation,
various number of single graphs are included, one different to each other. As I am
going to demonstrate, one can count how much a graph is different from another
one, and set this result inside a matrix (defined as Difference Matrix ).

In particular, it is defined as a strict upper triangular matrix [N ×N ], where N
is the number of graphs in a model, with all the entries on the main diagonal fixed
to 0. Every row r is associated to a CPOG, as well as every column c. Each entry
represents how much CPOG r, is different from CPOG c. An example is depicted
below.

DM =


0 2 1 4
0 0 1 2
0 0 0 1
0 0 0 0



1And-Inverter Graphs: is a directed, acyclic graph that represents a structural implementation
of the logical functionality of a circuit or network.
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Key point to find the cost function is to encode the graphs in such a way that: the
more two graphs are similar, the more should be encoded with two similar op-codes,
that is, with a minimum Hamming Distance2.

On the light of above, cost function I used to find minimum area is on Formula
4.1. DMi,j represents entry of the matrix DM with row = i and column = j,
while HDi,j represents Hamming Distance between op-codes used to encode i and
j CPOGs.

F =

i /=j
i,j∈N

(DMij −HDij)
2 (4.1)

Minimising F means encoding the Partial Orders with more differences with a
couple of op-codes with higher HD, and the ones with less differences with op-codes
with smaller HD. On the next section, I am going to analyse the area consumption
of each encoding with respect to F function.

4.2.2 Cost function results and statistics

Let us now compare different solutions for Conditional Partial Order Graph on
Figures 2.9 and 4.1. All graphs on Figures before were analysed, but for readability’s
sake, the ones just mentioned will be showed only.

Figure 4.1: CPOG with four instruction classes analysed.

2In information theory, the Hamming distance between two strings of equal length is the number
of positions at which the corresponding symbols are different.
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On the Table 4.1 the correlation present between the encodings set for the models
is depicted, the area of circuits synthesised and cost function I introduced on Section
4.2.1.

Encodings Area [µm2] Cost Function F
CPOG Fig.2.9 CPOG Fig.4.1 CPOG Fig.2.9 CPOG Fig.4.1

00 01 10 11 146,630 93,010 28 11

00 01 11 10 141,030 117,130 28 15

00 10 01 11 146,630 93,010 28 11

00 10 11 01 141,030 117,130 28 15

00 11 01 10 154,530 98,780 36 11

00 11 10 01 154,530 98,780 36 11

Table 4.1: Comparison among different solutions of two CPOGs.

First observation one might perform on Table 4.1 is that, as expected, area
changes as encoding changes. In such a small models differences in terms of area is
quite limited, but probably area swing should get wider as soon as representation
gets bigger. Additionally, as one could notice: where F is higher, the area becomes
bigger as well. Results are clearer if we plot the area function with respect to F ,
as depicted on Figure 4.2, where the function plotted is an interpolation of second
degree both for two graphs analysed.

Figure 4.2: Area-F plot of CPOG on Figures 2.9 (Blue) and 4.1 (Red)
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In particular regarding CPOG on Fig. 4.1, one can observe the strong corre-
lation between these two parameters. Let us combine now the two representations
just analysed in order to figure out whether this correlation states even for bigger
models. As considered before indeed, a peculiarity of this representation consists
on combining two or more systems without affecting the behaviour of each class of
graphs. It is an easy and quick way to combine separate behaviours of a system.

The CPOG obtained is depicted on Figure 2.7. It contains 8 separate classes of
events, and by exploiting Formula 2.3 I estimated potentially 5040 solutions that we
should analyse. On Figure 4.3 each different solution is plotted, as done for graphs
before, while on Figure 4.4 an interpolation of third degree is showed, just to have
a clearer view of the correlation present between Area and F .

Figure 4.3: Point dispersion of CPOG on Figure 2.7.

As might be observed from Figure 4.4, the correlation holds for the two param-
eters, indeed the more F the more the area of the circuit is reduced. Nonetheless,
it is worth mentioning that, as depicted on Figure 4.3 there is a certain margin of
error. In fact, although the area keeps reducing as F gets lower as average, it is not
verified for every points of the plot, but it is a statistical measure only.
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Figure 4.4: Line interpolation of CPOG on Figure 2.7.

By analysing better the statistics indeed, it is possible to find out that minimum
area point is in correspondence of F = 195, and it is 220,63 [µm2]. Additionally, if
one observes the x-axis on the minimum F point, that is 173. He might observe the
presence of various solutions returning the same cost function but a different area,
spacing from 237,52 to 274,79 [µm2].

Latter consideration should make the reader understand that this research be-
longs to heuristic class of algorithms. Therefore, defining an error parameter might
help the analysis.

Eavg = (
Aavg

Amin

− 1)× 100, Aavg ⊆ Fmin (4.2)

It is showed on Formula 4.2 and is the average error of the cost function. it
represents the error one might get neglecting the entire solution space. And as a
consequence the percentage of area one might waste if one would have not considered
the area points with higher F . Aavg indeed is computed by considering the points
with minimum weight of cost function.
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On the light of above, it is better to look for solutions where F is low, without
neglecting the encodings around the minimum cost function point, in order to im-
prove the quality of the solution. On the other hand, it is a waste of time looking
for solutions where the F is very high, because it is very unlikely to have a good
encoding in terms of area centred on high values of F . Formula 4.2 applied to CPOG
on Figure 2.7, returns a value of:

Eavg = (
258,72

220,63
− 1)× 100 = 17,26%

It represents the percentage of area one might waste whether a band of F values is
not considered. It will be useful for comparing various kind of algorithm versions.

4.3 Graph Isomorphism Similarity

Nowadays, graphs are used to model and solve different kind of problems. In the
last few years, plenty of research were conducted on different possibilities through
which graphs could be involved to, likewise pattern recognition problems, or for
describing images splitting them in different parts, a couple of examples could be
found on [14], [15].

One of the main concern involved on algorithms exploiting graphs is the match-
ing graphs issue. It is likely to compare graphs or sub-graphs in order to establish
whether two or more graphs match to solve problems described before, and as dis-
cussed in [16], there could be two different types of matching sought: exact or inexact
matching. In the former one, “a strict correspondence between the two graphs is
sought”([16], Introduction section), while in the latter the purpose of the search is
finding similarities between graphs, achieved by applying some editing operation to
them.

As described by Luigi P.Cordella et al. in their research just cited, it is not
yet known if the graph matching problems is solvable in NP-computational time
or in polynomial time. It is a problem if one has to deal with very big graphs
composed by several nodes, and although several algorithms have been developed
in order to reduce execution time and memory usage of such issue ([17]), exploiting
different representation likewise trees or planar graphs, it is still difficult to handle
this representation.

In this Section, I aim at showing to reader, the similarities between the encoding
sought problem, with graph isomorphism issue. In such a way to demonstrate that
it is not possible yet to solve issue of this research with Conditional Partial Order
Graph both in an optimal and exact way at the same time.
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4.3.1 Graph isomorphism recognition

Let us start the discussion by presenting the notion of isomorphism between two
graphs.

Definition. If A and B are two graphs of the same type (unordered, weighted, di-
rectional, ecc.), isomorphism between these graphs is the function bijection between
the vertex set of A and B, as depicted on Formula 4.3.

FB : V(A) → V(B) (4.3)

In such a way that if two vertices belonging to A are adjacent, they must be adjacent
in B as well. If an isomorphism exists between A and B, they are called isomorphic
and it is possible to state A ≃ B.

Figure 4.5: Example of two isomorphic graphs.

On Figure 4.5 is depicted an instance of two isomorphic graphs. Even though the
graphs might seem different, either because they are labelled with different names,
and because the vertices are placed in a different order, they represent the same
system or behaviour. In fact, a possible bijection among vertices of two graphs
could be the one below:

FB(A) = 1, FB(B) = 5, FB(C) = 4, FB(D) = 3, FB(E) = 2
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Over the last few decades, algorithms for speeding up the matching graphs pro-
cess have been thoroughly studied, among which it is worth mentioning the one
developed in [18], concerned exact graphs matching. As well as the one on [19]
which is based on transforming the graph in a canonical form, before starting the
matching process. As Cordella et al. explained in their research, although the latter
algorithm is one of the fastest available, “it has been shown that there are categories
of graphs for which it employs exponential time.”([16], Introduction). To complete
my analysis, there is even a non deterministic technique [20], where even though a
solution concerns this problem might be found in a polynomial time, it might not
be optimal.

4.3.2 Similarities between graph isomorphism and encoding
process

The process of seeking an optimal encoding for Conditional Partial Order Graph
model is mainly based on Formula 4.1. Here, the basic idea, as explained on Section
4.2.1, is to assign op-codes to each pair of graphs in such a way to assign the codes
with minimum number of differences (less HD) to the most similar graphs.

On the light of above, one could think the problem of CPOG-encoding, like
the problem of seeking an adequate FB between two graphs; where the first graph
represents the Conditional Partial Order Graph model:

• V represents the set of the instruction classes;

• E ⊆ V × V the differences that each class has with another one.

And the second graph represent the set of op-codes, where:

• V represents the set of our codes one could potentially assign to an instruction
class;

• E ⊆ V × V models the HD between two different op-codes.

In order to clarify my statement, an instance is represented on Figure 4.6, where
on the right side of it is depicted the graph of op-codes, where as mentioned before
each labelled circle ⃝ represent a possible op-code. In this case, since the number
of Partial Order Graphs is 4, we need 2 two bits to codify all the possible scenarios.
While each undirected arch represents the HD among vertices.

On the left side of the Image instead, DM is depicted. As one could notice,
the problem may become an instance of sub-graph matching isomorphism, since
the number of vertices that may compose the op-codes graphs could be higher than
number of vertices of Difference Matrix graph. For instance, in a model that contains
five different instruction classes, one should need at least 3 bits for encoding all of
them, nonetheless three vertices would remain spare.
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Figure 4.6: On the left side an instance of Difference Graph, on the right side an Op-codes
graph is depicted.

4.3.3 Conclusions

The aim of this Section was showing to reader the similarities that this research
has with a very well know problem belonging to graph theory field. As several
researchers have shown along past years through a high number of analysis and
works (Section 4.3), although plenty of algorithms were developed to speed up the
graphs isomorphism matching process, it still remains a very difficult task to find
an optimal solution in a very short amount of time.

Hence, as demonstrated on the Section before, due to several similarities the
encoding process presented on this research shows up with graph isomorphism one,
I can state that it is not possible yet to find an optimal solution in a short amount
of time.

Overt the next Section, I am going to discuss this problem with more details,
pinpointing on the issue of encoding generation with a particular attention to the
time of the generation as well as the goodness of the solutions.

4.4 Encoding Generation

As mentioned in the introduction of this Chapter, this Section deals with all
the various techniques one might use to generate encodings. Before going on dis-
cussing about the various techniques and software tools I developed for supporting
the encoding generation problem, it is worth mentioning the first attempt to fill in
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this gap on the article [53]. The most suitable technique depends on the structure
under development, and the advantages and the drawbacks of each method will be
presented and discussed over this Section.

4.4.1 Recursive encoding generation

First method I used to encode the Conditional Partial Order Graph model is to
try every possible combination of op-codes by permuting each element inside the
op-code ensemble. It is the simplest and the most straightforward way to inspect
the overall solution space and to analyse which is the best area point over all the
set of solutions.

First step one needs to perform is seeking the number of possible encodings avail-
able for the representation. It is achieved by means of Formula 2.3 which returns
#{S}′, the number of encodings inside the solutions space fixing first element to
0...0. Next step is recurring on the op-codes available, as I have implemented on
Listing below:

Recursive generation algorithm.

void permutation(int ∗solution, // Current permutation
int k, // Op−codes index
int ∗opcode chosen, // Support data structure
int POG number, // Number of Partial Order
int opcodes number){ // Number of op−codes

long int i;
// Limit on number of permutations to find
if(index >= permutations number)
return;

// Set solution when completed
if(k == POG number−1){
for(i = 0; i < POG number; i++)
permutations[counter][i] = solution[i];

index++;
}
else{
// Recursive code
for(i = 0; i < opcodes number; i++)
if(!enc[i]){
solution[k+1] = i;
opcode chosen[i] = 1;
permutation(solution,

k+1,
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opcode chosen,
POG number,
opcodes number);

opcode chosen[i] = 0;
}

}

As one may already notice, this method is very good for small models, as the ones I
am going to take into consideration in this analysis, but as the number of Partial Or-
ders gets higher, the number of solutions increases in an exponential fashion, making
the inspection of all the encodings not possible any more due to time constraint.

Figure 4.7: Number of solutions increments into Recursive Generation technique.

On the Figure 4.7 such correlation between number of POGs to encode and
number of possible solutions is depicted. This plot is obtained from Formula 2.3,
varying the number of graphs k and fixing the size of the op-code ensemble m, that
is the number of op-codes available for encoding all the graphs assuming a code on
minimum number of bits; while on y-axis the #{S}′ is depicted in logarithmic scale.
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As one might notice the function does not grow up always, in fact when the number
of Partial orders is 3 and 4 the number of solutions remains the same, as well as
when it is 7 and 8. This is the consequence of having a slightly higher size of the
op-codes ensemble with respect to number of POs.

For sake of understandability let us try to list all the possibilities one has to
encode 3 or 4 graphs assuming minimum number of bits op-codes. Applying Formula
2.1 it is possible to find out that 2 bits are needed to encode both 3 and 4 different
systems, hence while m is fixed to 2 both in the two cases, k represents number of
the graphs of CPOG model. Inserting these parameters inside Formula 2.3, number
of solutions comes up with both the two cases is fixed to 6. In fact, by listing all the
solutions (below) one may recognise the reason why the number of solution remains
stable, #{S}′ in fact is always equal to 6.

PO = 3 : {(00,01,10), (00,10,01), (00,01,11), (00,11,01), (00,10,11), (00,11,10)}

PO = 4 : {(00,01,10,11), (00,10,01,11), (00,01,11,10), (00,11,01,10),

(00,10,11,01), (00,11,10,01)}

As soon as number of graphs becomes higher than 8, #{S}′ becomes too high to
be inspected completely, making the recursive approach technique not very useful
to designers. Nevertheless, it is really good for small graphs and allows to find the
global minimum area point in a reasonable amount of time. On Figure 4.8, this
technique is applied to the model analysed before.

Recursive generation should make reader understand the size of the issue. This
technique can be used for models smaller than 9 Partial Order Graphs only, where
the number of them is higher another algorithm should be used to generate encodings
since it cannot be exploited any more. Indeed, by using Recursive generation on a
big models one will be able to inspect only a small part of the overall solution space
due to the huge time the heuristic would take for inspecting the overall solution
space. Hence, it leads the need of an another technique aims at targeting few good
encoding solutions.

4.4.2 Random encoding generation

Another simple generation technique I followed during this research was gener-
ating the encodings in a Random trend. Though this algorithm might seem useless,
it guarantees generation of encodings uniformly overall the space of solutions, being
a better choice with respect to technique discussed on Section 4.4.1, when analysing
the entire solution space is not possible. It might be applied to whichever Conditional
Partial Order Graph representation, no matter how many POGs it is composed by.
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Figure 4.8: Recursive encoding generation applied to CPOG on Figure 2.7.

Even in this technique the the first graph is associated to 0...0 op-code, in order
not to waste any useless encodings, and for the actual generation the algorithm on
listing below has been used:

Random generation algorithm.

/∗ Insert all the op−codes available for encoding
∗/
for(j=1; j < total opcodes; j++)
opcodes.push back(j);

while( index < permutations number)
{
// Shuffling them in order to get random positions
std::random shuffle (opcodes.begin(), opcodes.end());

// Fix first element of each permutation to op−code 0
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perm[index][0] = 0;

// Couple each POG to a random op−code
for (j=1; j< pog number; j++)
permutations[index][j] = opcodes[j−1];

/∗ Keep generating till reaching number of permutations
pre−set by user ∗/

index++;
}

Random-shuffle function refers to algorithm library [21], and guarantees the
result of a shuffled vector in linear complexity O(n). As one could notice, first
element of each permutation should be fixed at 0, which is the first absolute op-code
available, the reason was already described in Section 2.1.1.

One might want to check, every time a new solution is produced by the algo-
rithm, whether it was already present inside the encodings already produced or not.
Nonetheless, due to the high size of the solution space for CPOG composed by at
least 9 graphs, it is probably not worth performing this operation since it is very
unlikely to pick two equal encodings in the whole solution space. Since doing this
check is worth it only for very small model, I chose not to implement this feature.

On Figure 4.9 a plot of 100 permutations applied to representation of Figure 2.7 is
depicted. As one might notice, solutions distribute all over the space uniformly. That
is extremely good, because beside being able to seek totally uncorrelated solutions,
the other algorithms may be compared with a very uniform technique such as the
one just presented.

4.4.3 Optimal encoding generation

Finally, another algorithm was developed based on the cost function represented
on Formula 4.1. Here, the encodings are generated by trying to minimise the function
at run-time in order to point out the exact purpose of this heuristic, that is the cost
function minimisation. Due to complexity and length of the code, it will not be
reported on the dissertation as the ones before. Nonetheless the main idea will be
described.

Since the main purpose of the cost function is minimising the product between
the Hamming Distance of a couple of op-codes times the difference of two Partial
Order Grahs. Generation looks for the most similar couple of graphs inside the DM
matrix, storing all of them into an array. Next, the couple of graphs to encode
will be chosen randomly, and the op-codes minimising current cost function will
be assigned by selecting among the ones still available. Even on the latter case, if
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Figure 4.9: Random encoding generation applied to CPOG on Figure 2.7.

different op-codes return the same result, they will be chosen randomly.

As one could notice, the rationale is half random. It would limit the capabilities
of the encoding generation in term of cost function, but it would reduce a lot the
time that an optimal algorithm should take in order to iterate on all the possibilities.

On Figure 4.10 100 permutations generated with the just described technique
are plotted. As one could observe on the Figure, points are concentrated a bit more
where F is lower, cutting off points where the cost function is higher. But it is
still not enough since plenty of solutions are concentrated in the middle of function.
It is important to try as much as possible to target few and precise solutions, in
particular when the representation gets higher.

4.4.4 Tuning encodings by means of simulated annealing

Simulated annealing optimisation technique (hereinafter named also SA), was
introduced by Kirkpatrick et al. in 1983. As they stated in their work: “The
subject of combinatorial optimization [23] consists of a set of problems that are
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Figure 4.10: Optimal encoding generation applied to CPOG on Figure 2.7.

central to the disciplines of computer science and engineering. Research in this area
aims at developing efficient techniques for finding minimum or maximum values of
a function of very many independent variables [24].”([22]).

Commonly, it is named cost function, and in our case is the one on Formula
4.1. Several research were conducted exploiting such optimisation method, either in
computer engineering field or in other subjects (i.e. [25], [26]).

Introduction to SA

As described in [22], Simulated annealing allows to locate global minimum/max-
imum of a whichever cost function allowing to escape from a local minimum by
accepting temporary solutions worse than previous ones.

Concerning CPOG-encoding optimisation issue, an additional step is added to
encoding generation process. That is, tuning the current solution swapping the
elements belonging to it for reaching another encoding with a reduced F weight.

The pseudo-code of the algorithm is listed below:
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Simulated annealing tuned algorithm.

likelihood; // Probability to accept next solution, if worse
alpha = 0.996; // Cooling factor
temperature = 10.0; // Starting temperature
epsilon = 1; // Ending temperature
delta; // Difference among solutions

solution = compute solution();
weight = compute weight(solution);
while(temperature > epsilon){

// Compute next solution and weight
next solution = compute next solution();
next weight = compute weight(next solution);

// Comparing cost functions
delta = nextweight −weight;

if(delta < 0){
// Keep next solution
solution = next solution;
weight = next weight;

}else{
likelihood = (rand() ∗ 1.00) / RAND MAX;

/∗ If worse, keep solution with a likelihood
always lower ∗/

if(likelihood < exp(−delta/temperature)){
// Keep next solution
solution = next solution;
weight = next weight;

}
}
// Cooling temperature
temperature ∗=alpha;

}

As one may notice from the pseudo-code, the parameters at the beginning could
be tuned by the designer. The temperature represents the starting point of the
algorithm, the bigger it is the more the number of iterations will be done inside the
while-loop. Same thing regarding epsilon and alpha parameters, the former one for
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example should not be too low in order not to waste iterations looping on the same
solution.

The key point of the algorithm is the if statement contains condition below:

likelihood < e−
delta

temperature

Indeed, the more the temperature will be high, the more the algorithm would accept
worse solutions since the entire exponential factor would be higher. But as soon as
temperature cools down, right most parameter becomes always lower, making very
unlikely the acceptance of a worse solution. Notice that both likelihood and the
exponential are included between 0 and 1.

Figure 4.11: Function fluctuations using Simulated annealing optimisation technique on
Arm Cortex M0+ model.

On Figure 4.11 the results of this technique, applied to five different encodings
regarding Arm Cortex M0+ Instruction Set Architecture, are depicted; the whole
representation of the ISA will be discussed on Chapter 6. Each color inside the plot
represents a different solution, which iteration by iteration gets lower in terms of
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cost function. The increments represent the capability of such algorithm to accept
worse solutions, in order to escape from a local minimum, achieving a global one.

Simulated annealing applied to encoding generation

SA (Simulated Annealing) therefore is able to minimise the cost function of
a solution, starting from a whichever encoding. Consistently with the encoding
generation paradigm, it was inserted to optimise encodings obtained with Optimal
encoding generation (described on Section 4.4.3), in such a way to improve the cost
of each solution, from a sub-optimal one.

Figure 4.12: Optimised encodings, applied to CPOG in Figure 2.7.

The results could be observed on Figure 4.12, where the red solutions in the plot
were obtained starting from the blue ones. As one may notice, all the points are
concentrated on the left-side of the graph, where cost function values are extremely
lower. It is good due to the strict correlation between function F and area of the
circuit. It means that, the tool would be able to focus on few solutions, disposed
where it is more likely to find encodings with a reduced area.

61



4 – Dataflow graphs composition

One might even want to compare the results of all the encoding generation
algorithms described so far. It could be done by plotting the probability density
function of the solutions generated through each method, exploiting the Gaussian
function. The Gaussian’s mean represents the spot, in terms of cost function, where
it is likely to encodings to be produced by each algorithm.

Figure 4.13: Generation encoding algorithms comparison.

On Figure 4.13 all the probability density functions regarding the techniques
analysed so far are plotted. As one might notice the last method, exploiting Simu-
lated Annealing optimisation technique, is the best one. It guarantees the generation
of encodings always where F is the lowest possible. The black line represents the
Optimal encoding generation technique, it is a slightly better than the first two
methods where the mean is centred in the middle of the cost function, between the
minimum and maximum values, that are 173 and 225 respectively.

Hence, by means of Simulated annealing technique it is possible to generate
relatively few and good solutions that might be synthesised and compared reaching
the best possible area compromise out. For instance, a very good solution is reached
in terms of area even by trying 10 encodings only with a reasonable low error, results
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on Table 4.2.

Generation #Encoding Area [µm2] Time [s] Error from exact

Recursive 5040 220,630 2105 0%

Random 100 247,970 17 12,39%

Optimal + SA 10 237,520 2 7,65%

Table 4.2: Comparison between encodings generations applied to CPOG on Figure 2.7.

As one may notice from the statistics on Table 4.2, results confirm what has
been said on the Section before. The only generation technique allows to find the
exact solution is the first one, which indeed inspect the overall solution space. This
is even the reason which leads the execution time to be very high with respect to
other methods.

Random generation algorithm instead is able to to find a good solution with
a greatly reduced amount of time, even if it wastes lots of time inspecting useless
solutions. It is worth mentioning that this technique worsens as soon as represen-
tation becomes wider, probably because number of good solutions do not increase
exponentially as the number of possible solution does (according to Figure 4.7).

Finally, solutions generated via Optimal-generation technique tuned by Simu-
lated annealing optimisation method allows achieving an extremely good solution in
an greatly reduced amount of time. It might be a really good result and I think it
might be also exploited on bigger representations, since it is very fast.

4.4.5 Generation outcome

Overt this Section, all the generation techniques developed in this work has been
analysed. According to statistics, showed on Table 4.2, the heuristic illustrated in
Section 4.4.3 and 4.4.4 seems to be the best since it is an extremely good compromise
in terms of time and area trade-off. It pareto-dominates the Random algorithm
since the results obtained are better, and obtained in a shorter amount of time.
Furthermore, it allows achieving a good result with 7,65% of error with respect to
exact solution, which is a fairly good result considering the extremely low amount
of time it takes for reaching such solution out.

On the light of above, I could state that either cost function described in Section
4.2.1, and generation algorithm illustrated over this Section work well and should
allow designers reducing area consumption of circuit represented.

Certainly, these results should be experienced on bigger representations to be
tested properly; in Chapter 6 findings will be experienced on a Conditional Partial
Order Graph modelling an Instruction Set Architecture present in a real processor,
the Arm Cortex M0+.
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Chapter 5

Workcraft integration and custom
op-codes

Workcraft is a recent software developed by the School of Electrical and Elec-
tronic Engineering at Newcastle University meant to support different graphs-based
models. It allows designers working with different representations for concurrent
system design using a standard and easy framework where whichever behaviour of
a system could be modelled through graph representations composed by events and
relationships between them. It was presented for the first time by Ivan Poliakov et
al. on [54].

Some of the models supported by Workcraft are Dataflow Structure, Petri Net,
Signal Transition Graph and many others. More information could be found on its
dedicated web-site [27] constantly updated.Conditional Partial Order Graph repre-
sentation is one of the models supported. So far, op-codes for synthesising the final
controller were not carefully chosen in Workcraft, but given in the easiest way in a
sequential fashion: 0 - 1 - 2 - 3 and so on, or managed by the old tool version if the
size of the CPOG was small enough.

As my work aims to demonstrate, it was extremely inefficient from the area point
of view. Hence, in this Chapter I want to fill in this gap and show to reader, without
going through code development, how I integrated the optimal encoder (analysed
on the previous Chapter) for inspecting an optimal area solution under this software
in such a way to give an understandable interface for an easier usage, even for less
expert designers. Different snapshots of the Graphical User Interface will be showed,
as well as a description about how the interface between Workcraft and the encoder
works will be presented.

Furthermore, I will be discussing about another feature I added to tool that
may be extremely useful for a practical encoding purpose, that is assigning to any
instruction classes an op-code on different number of bits. Notice that, hereinafter
CPOG Programmer will be called SCENCO, this name stems from the two words
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Scenario Encoder and was given by Dr. Andrey Mokhov to first Encoder tool
incorporated into Workcraft, the one my tool is going to substitute. The source
code will not be reported on this thesis, but if the reader is interested might find
the source code freely available on [55].

5.1 Custom op-codes

Designers tend to reduce the op-code ensemble length for several reasons. As
RISC (Reduced Instruction Set Computer) demonstrated along the past years,
having linear and simpler architectures makes processors faster and more energy
efficient either because of a reduced instructions decoder is needed, and because of
a regular and deeper pipeline could be exploited.

Nonetheless, it may not be easy to develop an Instruction Set Architecture both
on reduced and regular number of bits for all the instructions. For instance, let us
think about two totally different instructions as could be a Shift and an Uncondi-
tional Jump. The former one might need different attributes, such as the operand
to be shifted and the one where to put the result on, the number of bits for shift
operation and the direction, the type of shift (logical/arithmetical); while an Un-
conditional Jump may just need the address where to jump regardless the op-code
of the instruction. This might lead designer to assign an op-code on reduced number
of bits to Shift instruction in order to reserve other bits for other purposes.

This is achieved in my tool by letting designer selecting number of bits one wants
an instruction class to be encoded on. It is simply done internally by means of Don’t
Care conditions. For instance, by using a set of op-codes composed by 4 bits each,
the set will be composed by 24 = 16 solutions. Assigning to a graph an op-code of 4
bits means deleting that particular solution from the set, since it must not be used
anymore for other instruction classes. Instead, giving to same graph an op-code on
less number of bits (i.e. 2) means deleting four possible solutions from the entire
set.

Therefore, assigning to a Partial Order the op-code 01-- means setting the op-
codes 0100, 0101, 0110 and 0111 as already assigned and not exploitable any more.
As one could notice, two least significant bits are considered as Don’t care conditions,
in such a way to remove the other op-codes in the op-code ensemble which match
with the shorter encoding.

On Figure 5.1 an example of such algorithm is depicted, where the set of op-codes
is represented after and before assignments. On the left-most part the complete set
where all op-codes are available is represented, in the center side after that op-code
1010 was assigned and deprived from the set (black circle models an encoding no
more available). Finally on the right-most part of Figure the set after a 2 bits
encoding assignment is showed. 01-- are the most significant bits.
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Figure 5.1: Op-codes assignment example.

As one might observe, assigning a reduced op-code to a Partial Order, may mean
saving area for the final decoder as well. It is not always true and it may impact
negatively the final controller. It is because, as showed by Figure just described,
assigning a reduced encoding means also depriving from solution set more elements,
and therefore having a reduced set of op-codes available for encoding graphs left.
Hence, it might impact cost function negatively and making solutions worse than
ones encoded on total number of bits.

Nonetheless, Optimal generation technique described on Section 4.4.3, adequately
modified to support such encodings, is meant to optimise the solution even by set-
ting instruction classes on reduced number of bits, therefore loosing a small amount
of area.

An issue designers may face with is trying to set a very short op-code to a
graph, making the entire set not enough wide to encode all the Partial Orders. For
instance, in a set composed by 16 op-code elements, if one chooses to encode one
graph with 1 bit only, 8 op-codes will be removed from the ensemble giving the
possibility to encode 8 more graphs only on total number of bits. Designer should
take into account this issue, trying to increase maximum number of bits of op-codes
if a really short op-code is strictly needed, thus increasing number of elements of
set from 16 to 32. Tool addresses this requirement letting designer the possibility
to choose number of bits of each op-code separately.

The user interface I developed in order to let designers selecting custom op-codes
for the Partial Orders is composed mainly by three different elements.

0/1: to set a custom bit to a whichever op-code;

X: it sets a Don’t Care bit to custom op-code, tool will be in charge of finding
best possibility for such bit;
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-: it removes the bit from the op-code, in this case the encoding associated to
this Partial Order will be shorter.

User can freely assign digits described on top on the op-codes as long as they are
expressed correctly, avoiding repeated op-codes for instance. If an error into custom
assignment would occur, a window will pop up signalling error’s reason.

5.2 Workcraft integration

As already described in the introduction of this Chapter, Workcraft is a software
that supports different models and provides a friendly user interface for designers
who want to model event-based systems. It is written in Java following object
programming paradigm and it contains different internal plug-in, one for each rep-
resentation supported.

On this Section I am going to present the methods and the results I obtained
on CPOG plug-in modification, mainly dividing the description into the connection
part: where the link between Workcraft and SCENCO is presented and the Graph-
ical User Interface part: which models the front-end, that is the graphical part of
the tool.

5.2.1 Front-end and back-end connection

Scenco was written and compiled in c++. In order to connect it to Workcraft, the
tool is executed from Java code providing all the needed parameters and afterwards
reading the output as it was written into a file. Several modifications were done to
starting tool in order to adapt the low level software to the front-end part, following
the most important ones will be showed.

File paths

One of the first needed modification I had to perform was setting all the paths
of the files needed to connect Workcraft environment to SCENCO. For pursuing
this purpose, new input parameters were added to tool, one for each file passed by
parameter:

• file description of the model considered;

• library file in genlib format, for selecting the library to consider during the
synthesis process;

• espresso and abc tool executable, needed to SCENCO to work properly;
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• custom encodings file, prepared by Workcraft by front-end plug-in and passed
to SCENCO in order to set custom op-codes to the tool.

The paths are always given to the Encoder by giving the absolute path of the
files, in order to avoid any incoherency problems due to directory where Workcraft
is currently installed on and in order to have a good flexibility.

Statistics and error detection

Another issue I had to deal with was the errors and statistics detection, or better
how to read the output of SCENCO in order to detect any possible errors, as well
as statistics and useful information coming from the low-level tool.

I tackled this issue by assigning different tags to output of the program, bounding
useful text lines with them, in order to be able to figure out from a high-level
perspective which parts should be considered, and which not. On the bottom all
the tags used into the output are listed and described.

• .error / .end error: text lines bounded by these two tags signal an error
happened into the processing flow;

• .area / end area: they signal the minimum area found by SCENCO ;

• .statistics / end statistics: various statistics concerning intermediate exe-
cution of the tool;

• .formulae / end formulae: all the information about encoding results found
(formulae, controller, truth tables).

When high level software reads the output of the tool and one of the tag listed
above occurs, Workcraft behaves in a different way depending on the tag present.
When error tag is reached, Workcraft displays on screen the error message so
that user could quickly understand what is wrong in the current execution. When
statistics tag is reached instead, the program simply prints the text lines into the
part related to the output window space, since statistics might contain information
useful to designer. Area and formulae tags whereas contain information useful to
core of Workcraft and are not displayed on screen, they will be used inside the
program to manage all the back-end features of the model.

In this simple way, all the information are taken into account by the software,
wasting nothing.
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Continuous mode

As mentioned into first chapters of the dissertation, where the heuristic algorithm
is explained, the higher the number of instruction classes present into the model
considered, the wider the number of possible solutions potentially available for the
analysis. Therefore is implicit that, the more the number of solution analysed by
Programmer, the better will be the result obtained.

Hence one of the most effective feature I implemented into plug-in connected
to Encoder is the Continuous mode. Through this option, the designer may run
the encoder through in an interactive fashion where continuous solutions will be
analysed displaying step by step the best result obtained so far. The user might let
the tool run until is satisfied by result, at that point one just need to press Stop
button to store the best result and keep working with it.

The designer may want to use this feature when is constrained by very strict
area requirement.

5.2.2 Graphical User Interface

In this part, the graphical user interface of the tool will be showed and briefly
described. Since SCENCO is an autonomous tool regardless few parts as the custom
encodings option, it does not require an extensive interface for the user who is limited
to setting few configuration parameters.

It is an extremely advantage from the point of view of time to market character-
istic of the design. Designer indeed, may be free to think about the core part of the
model, letting tool works for optimising as much as possible the design under work.

As one may notice from Figure 5.2, the interface is divided in two parts, on the
top part various configuration parameters are present, starting from Mode of the
tool to Custom encodings flag, while on the bottom part a table dedicate to custom
encodings is present.

Respectively, starting from the top of Figure 5.2 let us discuss each SCENCO
setting: through the Mode box, designer can choose between four different gener-
ation types through which the Encoder will generate the encoding solutions, there
are the techniques described on Section 4.4, plus three further options: Single-literal
search which generates one solution in such a way to have no more than one literal
per vertex/edge (for further information refer to dedicated website on [27]), Exhaus-
tive search which performs a deep search and Sequential search where the solution
is the most basic one (0 1 2 3 and so on). Strategy box instead, is present only
if Heuristic-guided search is selected and it can distinguish between the techniques
discussed on Section 4.4.

Second box (Generate equations for) aims at optimising the structure either
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Figure 5.2: Graphical user interface of SCENCO.

for Microcontroller or for the CPOG. The first option respectively builds the con-
troller, able to send to each element ACK and REQ signals in order to control the
control-flow of the entire structure. Second option instead does not care about the
control-flow structure, but just takes into account conditions on vertices, trying to
reduce them as much as possible.

Afterwards, three different options might be selected by user. Slower disables
the cost function approximation. It is meant to show to designer how much is the
time gained by using the cost function I sought. By disabling it, SCENCO will
compute the solutions trying to optimise them computing step by step the area
of the entire circuit spending a bigger amount of time compared to one spent to
optimise the cost function.

Normal -faster flags instead, changes the number of solutions tool would finally
synthesise during the last phase of the optimisation. As already mentioned into
previous Chapter, after that tool generates the solutions, each one with a different
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F , it will be in charged of synthesising it and getting the final area of the controller.
With this option the designer, may choose to let the tool synthesise all the final
encoding solutions, or just the one with absolutely minimum weight of function F .
For optimisation’s sake, it is extremely better let the tool analyse all the solutions
generated due to a certain intrinsic degree of uncertainty of the cost function, but
SCENCO would loose much more time to scan all the final ensemble.

Number of encodings to generate,Continuous mode, andVerbose mode
don’t need further explanations since their purposes are straightforward, regardless
second option respectively which has been explained on Section 5.2.1. Finally, Cus-
tom encodings flag enables the designers to set custom op-codes, already discussed
on Section 5.1.

This friendly user interface allows designer to experience with this software in a
fairly easy way, letting the freedom to think about the core part of the representation,
that is the model of the system and the connection between any events.
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Chapter 6

CPOG applied to ISA
development

Conditional Partial Order Graph representation can be used to model different
types of systems beside dataflow structures. As already mentioned in fact, it can be
used to represent and support the design of Instructions set architecture, because
of its capability to capture different behaviour of a system in a really compact and
specific way. As pointed out on [52] indeed, CPOG-driven design flow might be
efficiently applied to such application speeding up the whole ISA design starting
from high-level specifications. Let us think for instance to different instructions
running on a microprocessor, they might exploit different modules as well as go
through different pipeline paths making the whole process of datapath-design ex-
tremely complicated, leading to the need of a compact and efficient model to capture
the various behaviours instructions may assume.

For demonstrating the versatility of such representation and design-flow, I want
to apply it on an ISA already present on the market, the one supported by ARM
Cortex M0+. It fits well to this aim because it was already partially modelled on
[29], and because of its simplicity given by the applications the processor was meant
for (briefly introduced on next section).

Along the next Sections, the processor will be briefly described according to
technical manual downloadable from the corresponding web-site [28], afterwards the
model will be introduced partially and finally the heuristic algorithm will be applied
showing to reader the advantages a real processor may benefit from this approach,
pinpointing on area saved for the controller of the datapath. It is a really good test
for the cost function presented before, where it could be applied on.
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6.1 Arm Cortex M0+

Arm Cortex-M0+ is a RISC-based 32-bits (Reduced Instructions Set Computer)
processor. Architectures belonging to Cortex-M family are meant to be used on deep
embedded applications, or more in general on applications where power and area
are hardly constrained: for instance bio-medical or mobile applications, where the
lifetime of the devices or the electro-magnetic emissions are the main concern.

The Instruction Set Architecture used on M0+ belongs to RISC family. It is an
ISA which aims at reducing the complexity of the instructions in order to be decoded
more efficiently, and as a consequence having several advantages with respect to
CISC (Complex Instruction Set Computing) architecture, such as the possibility
by the microprocessor to run at higher frequencies. Having the instructions on a
fixed number of bits allows the structure of the pipeline to be more flexible and longer
(composed by higher number of stages). The only disadvantage is the higher length
of the code which needs a bigger instruction memory to be stored. Nonetheless,
although years ago it was a really big problem due to the low budgets available and
the higher cost of the single transistor, nowadays it is not and RISC architectures
are present everywhere.

According to technical reference manual of Arm Cortex M0+ ([28]), it embeds
two pipeline stages in order to lower the power consumption as possible and support
Thumb/Thumb 2 instruction set architectures. Thumb is an ISA introduced by Arm
that was aimed at reducing the code density of software running on the processor.
It was achieved by supporting instructions on 32 and 16 bits as well, getting an
extremely good improvement on power consumption. Drawbacks of such structure
are a lost in terms of speed and higher delay. Thumb 2 is an extension of first ISA
version, where beyond the introduction of other instructions, designers achieved
almost the same performance of 32 bits ARM instruction set, making the whole
µprocessor a leading component in a big slice of the embedded system’s market.

As one might notice, although this processor contains several complex and useful
features, is fairly small for meeting the tight constraints of embedded applications,
hence it is a perfect example for the new algorithms. Over the next Section the
model of some instructions will be showed and described.

6.2 ISA designing technique

As usual on event-based models, the key point to represent an instruction set
architecture of a general processor is grouping the instructions into multiple func-
tional areas. In each area different instructions might be present, according to their
characteristics and the steps they need to go through in order to be executed. For
instance, let us discuss about the arithmetic instructions: even though each single

73



6 – CPOG applied to ISA development

operation generates a different result, the step the two operands must go through,
depending on where they are fetched, are the same. Hence, it is convenient to group
all the instructions which fetch the operands by same sources inside one single group.

Moreover, another step a designer need to follow for designing a consistent ISA
with Conditional partial order graph is to keep a certain degree of coherency for
the modules modelled as vertices of the graph. Let us take as an instance again
the arithmetic instructions since they fit well to explanation purposes due to their
reduced complexity. Since the goal here is to share as many modules as possible
increasing the complexity of the control unit, reducing the one of the datapath,
designer needs to be consistent during the design phase of whichever module, taking
into account all the characteristics a component should embed in order to be shared
by different instructions of the system.

For instance, if one wants the ALU the be shared by the whole arithmetic in-
structions set, it is worth thinking about the ALU as a single component, seen as a
black box from the external environment, accepting two inputs and generating one
output, no matter where such inputs come from. On the other hand, a designer may
want to be more precise and splitting the ALU into internal components such as the
multiplier, the adder/subtractor or the divisor. By designing the graph as latter,
one would have the advantage of keeping the level of abstraction quite low, so that
to allow the decoder to distinguish between a MUL or an ADD instruction, even if
it would increase the number of Partial order graphs since these two instructions
just mentioned could not be grouped into a single group. While if one would set
the ALU as the arithmetic module, designer should take into account the need of
an internal decoder able to distinguish between different ALU instructions.

As this analysis wants to demonstrate, CPOG are really flexible and can capture
the behaviours of a system form different abstraction-levels. It is up to the designer
thinking about the degree of abstraction one wants to use in his model.

Once I have introduced the key points of designing an ISA, let us concentrate
on discussing about a real example on the Arm Cortex M0+. Let us represent the
arithmetic instructions considering the commands where the operands are present in
the internal registers. The processor, either for addition, subtraction, division and
multiplication need to perform exactly the same steps for executing the operations
correctly, below the general pattern of an ADD, SUB and MUL instructions is
depicted, according to manual [40].

ADD <Rdn>,<Rm> # Addition Rdn = Rdn + Rm
MUL <Rdn>, <Rm> # Multiplication Rdn = Rdn ∗ Rm
SUB <Rdn>,<Rm> # Subtraction Rdn = Rdn − Rm

After instructions have been fetched and decoded, operands need to be fetched from
corresponding registers, then the actual result should be computed internally into
the Arithmetic Logic Unit and finally it must be written into the selected register
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(addressed by Rdn for instructions just listed). All the instructions referring to
this structure of events could be grouped together in such a way to be encoded
with the same op-code, the ALU will be in charge of switching between particular
instructions via another decoder internally.

In the next Section, the model used to represent the ISA of Arm Cortex M0+

will be described.

6.3 Armv6-M representation via CPOG

Nearly all the instructions supported by Cortex-M0+ were grouped into 11 Par-
tial Order Graphs used by the heuristic presented in this dissertation in order to be
encoded minimising controller size. Descriptions of graphs were inspired by the de-
scriptions given on [29], where 9 instructions classes are described out of 11 analysed
in this dissertation.

The instruction set architecture I am going to deal with is the Armv6-M. A
complete description of such architecture may be found on [40], where the whole
structure of the ISA is described by Arm. Nonetheless, I want to start my descrip-
tion of the model beginning from the system to represent: “ARMv6-M supports the
Thumb instruction set including a small number of 32-bit instructions introduced
with Thumb-2 technology”.([40], Section A4.1). Although the ISA does not support
ARM instruction set, the two ISAs can work together via a technique that allows
the developer to switch to the Instructions he wants to use. In the Appendix A each
class is showed and described, but if the reader is interested on inspecting all the
functionality such architecture embeds, can refer to “Armv6-M architecture reference
manual”.

Reader should notice that the aim of this Section, is not modelling the Thumb
instruction set in the best possible way, but having a quite big system composed
by different Partial Order graphs in such a way to test the tools and the algorithm
for automatic composition. Each designer may come up with a different model
for the same architecture since, as already mentioned, such representation allows
hardware developers to represent their systems flexibly. Therefore readers should
focus the attention on the real goal of this Section neglecting any incoherency that
may happen during the design phase.

ARMv6-M instruction set is a very complex architecture, which requires an ex-
tremely big effort to be modelled as well as more controllers for different level of
abstraction, hence it would not be fair comparing the size of the real control unit
Arm Cortex-M0+ embeds internally with respect to this one I am going to generate.
The former one in fact, is way more complicated than the one generated for the aim
of this work and includes more instructions than the ones represented by CPOG.

In summary, this Section aims to demonstrate that such representation may be
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cleverly used to model such a complicated system, and in particular the usefulness of
the heuristic algorithm introduced by this research. All the eleven graphs designed
are presented and described on Appendix A, over the next few pages I am going
to show the whole Partial order representations as well as a couple of example of
the graphs designed. On Figure 6.1 the entire Conditional Partial Order Graph is
depicted.

Figure 6.1: ARMv6-M Instruction Set Architecture modelled via CPOG

As might be observed, all Partial orders are very different each other. Nonethe-
less, all of them embed the same nodes, which represent the modules present inside
the processor for executing an instruction. PCIU (Program Counter Increment
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Unit) is the module in charge of updating the program counter register of the pro-
cessor in order to move on a new instruction to execute. IFU (Instruction Fetch
Unit) is the unit for updating the instruction register fetching the new instruction,
ready to be executed on the next cycle. ALU (Arithmetic Logic Unit) is the block
that performs all the mathematical operations, reader should notice that, in order
to distinguish between all the operations that this unit can execute a further low-
level model is needed. MAU (Memory Access Unit) is in charge of updating the
handling the memory elements via the Load/Store operations and finally PCIU 2
and IFU 2 meant for the instructions which need a new instruction to be fetched
twice, as a NOP.

All these elements are cleverly connected to model the behaviour of several in-
structions. For instance, let us consider the instruction class NOP represented on
the top-right corner of Figure 6.1. It clearly models the no operation instruction of
the processor by means of two consecutive program counter register incrementing
operations, in order to skip the instruction which does not require any result to be
computed, then fetch unit is in charge of loading next operation inside the instruc-
tion register. Additionally, another example could be the Partial order named POP
PC : it represents the pop operation where the program counter register is used as
a destination, the MAU block indeed is in charge of managing the load operation
from the stack, while IFU of fetching new instruction addressed by the new PC.

Following this pattern, nearly all the instructions have been modelled. Reader
is thoroughly fostered to read Appendix A where the whole model is listed.

6.4 Composition results

After that all the Partial Orders have been presented on previous Section, the
graphs obtained by the composition of the single smaller systems will be presented,
focusing on the area consumption coming out. As already mentioned there are plenty
of algorithms a designer may use to compose the CPOG, as described on Sections
4.4 and 5, nonetheless in this Section I want to focus the attention of the reader on
analysing the solutions come up with the usage of techniques described previously on
Section 4.4.2 regarding the Random encoding generation and in Section 4.4.4 about
the Simulated annealing method applied to such application. Those two algorithms
indeed fit well to a CPOG with such a high number of graphs as the one described,
and additionally designers may find these two techniques suitable to have a rough
idea of the area this technique allows to save due to the wide difference of the two
methods.

Before discussing about the direct composition of graphs, let us discuss about the
solution space. As analysed in Section 2.1.1, the more the number of partial orders,
the bigger the size of the solution space according to Formula 2.3. It means that
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the number of possibilities present for encoding eleven graphs via sixteen different
elements i:

(16− 1)!

(16− 11)!
= 10897286400

As one might understand, it would be too time consuming inspecting all the solu-
tions. That is why a designer needs to choose the technique the program should use
to find a good solution. For sake of correctness, it is worth presenting the sequential
solution first of all. In order to be able to compare the other techniques with the
most basic one. It is based on assigning op-codes sequentially, hence going from 0
to 10 in order to assign an op-code to each of the eleven Partial orders. Below the
op-codes assignment:

Sequential op-codes assignment

LDR STRIMM: 0000
STR LDRREG POP: 0001
LDM STM: 0010
LDR IMM PC: 0011
LDR REG PC: 0100
POP PC: 0101
RN TO RN: 0110
NOP: 0111
#123 TO PC BRANCH: 1000
#123 TO RN: 1001
RN TO PC: 1010

Though it is the simplest encoding one may come up with, it is not the best
solution from the area point of view at all. Indeed, the area of the controller gen-
erated using the library described on Section 4.1.1 occupies 335,47µm2 and the
total number of gates needed to synthesise the structure are 50. Afterwards, the
reader will be able to compare the results with the areas coming up with other tech-
niques. To complete the sequential solution profile: on Figure 6.2 is represented the
compositional graph and below the controller Boolean equations.

Sequential encoding controller

REQ PCIU 2 = ((x 1∗x 2∗x 3)+(!x 0∗!x 1∗!x 2∗!x 3)+(x 0∗x 3)) ∗ (ACK PCIU +
!((!x 1∗!x 2)+(!x 0∗x 2))) ∗ (ACK MAU + !((x 1∗!x 2)+(!x 0∗!x 1))) ∗ (ACK IFU
+ !((!x 2)));

REQ IFU 2 = (ACK PCIU 2 + !((x 1∗x 2∗x 3)+(!x 0∗!x 1∗!x 2∗!x 3)+(x 0∗x 3))) ∗
((x 0∗x 3)+(!x 1∗x 2∗x 3)+(!x 1∗!x 2∗!x 3)) ∗ (ACK ALU +
!((!x 2∗!x 3)+(x 1∗!x 3)+(x 0)+(!x 1∗x 3))) ∗ (ACK MAU +
!((x 1∗!x 2)+(!x 0∗!x 1)));
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REQ ALU = ((!x 2∗!x 3)+(x 1∗!x 3)+(x 0)+(!x 1∗x 3)) ∗ (ACK IFU +
!((x 2∗x 3)+(x 0∗x 3)+(!x 1∗!x 2∗!x 3)));

REQ PCIU = ((!x 1∗!x 2)+(!x 0∗x 2)) ;
REQ MAU = (ACK ALU + !((!x 2∗!x 3)+(x 1∗!x 3)+(x 0)+(!x 1∗x 3))) ∗

((x 1∗!x 2)+(!x 0∗!x 1)) ;
REQ IFU = (ACK PCIU 2 + !(((x 2)) ∗

((x 1∗x 2∗x 3)+(!x 0∗!x 1∗!x 2∗!x 3)+(x 0∗x 3)))) ∗ (ACK ALU + !(((x 0∗x 2)) ∗
((!x 2∗!x 3)+(x 1∗!x 3)+(x 0)+(!x 1∗x 3)))) ∗ (ACK PCIU +
!((!x 1∗!x 2)+(!x 0∗x 2))) ∗ (ACK MAU + !(((x 1)) ∗ ((x 1∗!x 2)+(!x 0∗!x 1))));

Figure 6.2: Sequential encoding CPOG composition

Once I have introduced the basic encoding, let us discuss about the random
solutions. Here the op-codes are generated randomly until all Partial Orders are
identified by an op-code. Designer can choose how many solutions the program
should evaluate, for having a fair comparison in this Section I am going to generate
one hundred solution both for random encoding and for the Simulated annealing
technique. On Figure 6.3 the CPOG composition is depicted and below the op-
codes assignment is showed.
Random encoding op-codes assignment

LDR STRIMM: 0000
STR LDRREG POP: 1101
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LDM STM: 0110
LDR IMM PC: 1111
LDR REG PC: 1001
POP PC: 1011
RN TO RN: 1100
NOP: 0011
#123 TO PC BRANCH: 0101
#123 TO RN: 0100
RN TO PC: 1000

Figure 6.3: Random encoding CPOG composition

As one might notice, the number of literals which compose the conditions on
Random CPOG is fairly reduced with respect to the previous one. It is the reason
why the area is also reduced, in fact the size of the controller measures 284,53µm2

and 43 gates are needed for the synthesis process. Below the controller equations
that are shorter in the number of literals as well.
Sequential encoding controller

REQ PCIU 2 = ((!x 0∗!x 1)+(!x 0∗!x 2∗!x 3)) ∗ (ACK PCIU + !((!x 0)+(x 1))) ∗
(ACK MAU + !((!x 0∗!x 1∗!x 3)+(x 2∗!x 3)+(x 0∗x 3))) ∗ (ACK IFU + !((!x 3)));
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REQ IFU 2 = (ACK PCIU 2 + !((!x 0∗!x 1)+(!x 0∗!x 2∗!x 3))) ∗
((x 1∗x 2∗x 3)+(!x 0∗!x 2)) ∗ (ACK ALU + !((x 1∗x 3)+(!x 2))) ∗ (ACK MAU +
!((!x 0∗!x 1∗!x 3)+(x 2∗!x 3)+(x 0∗x 3)));

REQ ALU = ((x 1∗x 3)+(!x 2)) ∗ (ACK IFU + !((x 2)+(!x 0)));
REQ PCIU = ((!x 0)+(x 1)) ;
REQ MAU = (ACK ALU + !((x 1∗x 3)+(!x 2))) ∗

((!x 0∗!x 1∗!x 3)+(x 2∗!x 3)+(x 0∗x 3)) ;
REQ IFU = (ACK PCIU 2 + !(((x 3)) ∗ ((!x 0∗!x 1)+(!x 0∗!x 2∗!x 3)))) ∗ (ACK ALU

+ !(((x 0∗!x 1)) ∗ ((x 1∗x 3)+(!x 2)))) ∗ (ACK PCIU + !((!x 0)+(x 1))) ∗
(ACK MAU + !(((!x 1∗x 3)) ∗ ((!x 0∗!x 1∗!x 3)+(x 2∗!x 3)+(x 0∗x 3))));

Last solution a designer should absolutely take into account is the Simulated
Annealing search. It has been described in Section 4.4.4 and, as I aim to demonstrate
following, it generates an extremely good solution in terms of area. Maybe the time
for analysing the hundred solution is a bit higher, but it definitely pays off in term
of size of the final controller. On Figure 4.11 an example of the cost function
optimisation for five different solutions is depicted.
Simulated annealing op-codes assignment

LDR STRIMM: 0000
STR LDRREG POP: 1011
LDM STM: 0011
LDR IMM PC: 1010
LDR REG PC: 1001
POP PC: 0001
RN TO RN: 1111
NOP: 0111
#123 TO PC BRANCH: 1110
#123 TO RN: 0110
RN TO PC: 1101

As before, above is represented the op-codes assignment, below the controller
Boolean equations and on Figure 6.4 the CPOG composition. The size of this last
controller is 208,02µm2 and 31 gates are needed for synthesising it. Over the next
part, these results will be compared and analysed.
Simulated annealing encoding controller

REQ PCIU 2 = ((!x 2∗!x 3)+(!x 0∗x 1)) ∗ (ACK PCIU + !((!x 3)+(x 2))) ∗
(ACK MAU + !((!x 1))) ∗ (ACK IFU + !((!x 3)));

REQ IFU 2 = (ACK PCIU 2 + !((!x 2∗!x 3)+(!x 0∗x 1))) ∗ ((!x 3)) ∗ (ACK ALU +
!((!x 3)+(x 0))) ∗ (ACK MAU + !((!x 1)));

REQ ALU = ((!x 3)+(x 0)) ∗ (ACK IFU + !((!x 3)));
REQ PCIU = ((!x 3)+(x 2)) ;
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REQ MAU = (ACK ALU + !((!x 3)+(x 0))) ∗ ((!x 1)) ;
REQ IFU = (ACK PCIU 2 + !(((x 3)) ∗ ((!x 2∗!x 3)+(!x 0∗x 1)))) ∗ (ACK ALU +

!(((!x 2∗x 3)) ∗ ((!x 3)+(x 0)))) ∗ (ACK PCIU + !((!x 3)+(x 2))) ∗ (ACK MAU +
!(((!x 2∗x 3)) ∗ ((!x 1))));

Figure 6.4: Simulated annealing encoding CPOG composition

Before concluding this Section, it is worth mentioning about another technique
which show up the best result, even better than the one obtained with Simulated
annealing optimisation algorithm concerning the execution that has been taken into
account for the controller comparison. I am talking about the Old Scenco algorithm
([53]) which is able to find a solution which comes up with a controller on an area
of 204,80µm2 with 29 gates. Below the op-codes assignment is depicted which has
been named inside this plugin as Exhaustive search, while the composition of graphs
is depicted on Figure 6.5:
Exhaustive search op-codes assignment

LDR STRIMM: 0000
STR LDRREG POP: 0001
LDM STM: 0101
LDR IMM PC: 0010
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LDR REG PC: 0011
POP PC: 0111
RN TO RN: 1001
NOP: 1100
#123 TO PC BRANCH: 1010
#123 TO RN: 1000
RN TO PC: 1011

Figure 6.5: Exhaustive search encoding CPOG composition

Below the controller that comes up with this op-code association.
Exhaustive search encoding controller

REQ PCIU 2 = ((!x 2∗!x 3)) ∗ (ACK PCIU + !((!x 2)+(!x 3))) ∗ (ACK MAU +
!((!x 0))) ∗ (ACK IFU + !((!x 1)));

REQ IFU 2 = (ACK PCIU 2 + !((!x 2∗!x 3))) ∗ ((!x 1∗!x 3)) ∗ (ACK ALU + !((!x 1)))
∗ (ACK MAU + !((!x 0)));

REQ ALU = ((!x 1)) ∗ (ACK IFU + !((!x 3)));
REQ PCIU = ((!x 2)+(!x 3)) ;
REQ MAU = (ACK ALU + !((!x 1))) ∗ ((!x 0)) ;
REQ IFU = (ACK PCIU 2 + !(((x 1)) ∗ ((!x 2∗!x 3)))) ∗ (ACK ALU + !(((x 2∗x 3)) ∗

((!x 1)))) ∗ (ACK PCIU + !((!x 2)+(!x 3))) ∗ (ACK MAU + !(((x 2∗x 3)) ∗
((!x 0))));
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Even though this technique exhibits a really good result in terms of area, the
exhaustive approach is computationally expensive and it is unlikely to handle bigger
examples. For more details about such approach reader should refer to the article
where it was described: [53].

6.4.1 Final considerations

Once the four techniques have been executed on the same Conditional Partial
Order Graph, it is possible to perform some considerations about the results ob-
tained. First of all let us insert all the previous results, in terms of area and number
of gates needed for synthesising the structure on a Table (6.1). The worst solution
is the Sequential search, it generates the biggest controller, in this case 17,9% bigger
with respect to Random search and 61,2% bigger than the one with Simulated An-
nealing heuristic. Hence, it is totally inconvenient, but it is useful just for giving a
general idea about the area of the controller without using any of the techniques de-
scribed. Whereas, the exhaustive search approach gives a very good result in terms
of area, since the controller comes up with it might be synthesised saving even more
area than the simulated annealing technique. Sequential search in this case is 63,8%
bigger than the exhaustive approach solution.

Sequential Random Simulated annealing Exhaustive search [53]

Area [µm2] 335,47 284,53 208,02 204,80

N. Gates 50 43 31 29

Table 6.1: Controller size comparison for Armv6-M ISA model.

In order to compare the two heuristic techniques (random and simulated an-
nealing approaches) and show the soundness of the solutions that the Simulated
annealing algorithm is able to find, I tried to generate an extremely high number of
solutions with Random encoding, and a small one with Simulated annealing search.
The result is surprisingly good, and showed on Figure 6.6.
As one might observe on the Figure, I generated 100000 solutions with Random
method and 1000 with SA technique. My aim indeed was seeking few and sound
encodings via the latter technique respectively. On the x-axis of the graph is present
the cost function presented in Section 4.2, while on the y-axis the bare area [µm2] is
present. As I demonstrated, the lower the cost function of the solution, the higher
is the probability to seek a better encoding in terms of area, so the main goal is to
have a heuristic returning encodings minimising the cost function.

Moreover, it is worth mentioning that the best result achieved via the Simulated
annealing technique is even better than whichever results showed on previous Sec-
tion. Controller indeed might be synthesised on an area of 191,090µm2, with an
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Figure 6.6: Comparison between Simulated Annealing and Random search techniques

encoding centred on a weight of the cost function of 107, according to Chapter 4
where it is stated that a higher band of values in terms of the cost function must be
analysed in order not to loose any good results.

As one might observe, even though the extremely high number of solutions gen-
erated randomly, the weight of the cost function related to each encoding touches
110, and rarely achieve 100. The reason of the high weight of the cost function
resides on the massive number of possibilities the solution space is composed by.
Indeed, even though 100000 may seem a high number of solutions, it represents
the 0,0009% of solution space only, so it is extremely unlikely to find a really good
point. The results get worse if one normalises the points via a Gaussian considering
the cost function. As depicted on Figure 6.7 in fact, the average of the function is
centred on around 175 that represents the type of solutions is more likely to occur.
It represents a negative disadvantage since the aim is not seeking as many solution
as possible, but pointing out few and sound solutions.

Observing on the other hand the points and the density function of encodings
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Figure 6.7: Comparison between Simulated Annealing and Random search technique
(encodings weight)

generated by algorithm discussed on Section 4.4.4, one might realise the goodness of
such heuristic. In fact, even though the number of solutions generated is two orders
of magnitude less than the other number of encodings, the average of the weight of
cost function is centred on 100 with several solutions that reach 80 out. Figure 6.6
does not need any explanations: nearly all the blue points generated are way better
than the red points and moreover, due to the reduced number of encodings sought
the time needed to compute them is fairly reduced too.

Hence, I can state that the Simulated annealing technique addresses the con-
straints a designer may need. The blue normal function on Figure 6.7, representing
the normalised density of the number of solutions generated with a particular weight,
is centred on 100 which represents a really good result allowing to find good area
points in a short amount of time since few encodings are requested for achieving an
optimal result. It allows to quickly find good encodings which help synthesising the
hardware structure in a reduced amount of area, and as a consequence saving also

86



6 – CPOG applied to ISA development

power.
Lastly, on the light of above I can affirm that one of the main goals of this

research has been addressed. The composition of Partial Order graphs is now au-
tomated exploiting an algorithm which is also able to build the whole system in an
optimal way, designers that use this model can now freely compose their own system
quickly and easily through the SCENCO (SCEnario ENCOder) tool present in the
Conditional Partial Order Graph plugin under Workcraft.

In the next Chapter, I am going to exploit the knowledge I introduced in the
Chapter 3 to build from scratch a complete reconfigurable asynchronous dataflow
processor, in order to demonstrate that such design-flow tailors extremely well to
asynchronous design development.
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Chapter 7

Self-timed reconfigurable dataflow
processors design

In this final Chapter I want to introduce the reader to a real design of a self-
timed reconfigurable dataflow processor. My aim is to make reader understand
the easiness of such design-flow exploiting Conditional Partial Order Graph model
and to present how it fits well to asynchronous hardware design. The methods I
described on Chapter 3 will be exploited over the next Sections in order to build an
asynchronous pipeline applied to a real application.

The important goal I aim to achieve is highlighting the flexibility of the design-
flow, combined with self-timed structures to deal with a real application. This
Chapter is structured as following: in Section 7.1 the application I am going to
deal with will be presented, then I am going to handle the control-unit design part
with the help of CPOG model. Afterwards the datapath development is presented
switching from an higher abstraction level view (dataflow structure) to a lower level
of abstraction (RTL level design).

Reader should notice that the final hardware structure is not finished yet because
it needs to be revised and tested. So I am not going to insert in this Chapter
final synthesis results such as area and power consumption of the whole structure.
Nonetheless, it would not affect the understandability of dissertation since the main
purpose of it is focusing mainly on the design-flow.

7.1 Ordinal pattern encoding for ordinal analysis

In this Section I will be presenting the application I want to apply the design-
flow to. It is an application-specific processor suitable for Ordinal analysis. Since
the whole idea was taken by [41], I am going to refer the description to this paper.
Ordinal analysis issue is a statistical method to analyse the complexity of time series.
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Over the last few years, the topic of time series analysis has been acquiring a lot of
importance as a research area because of the applications it can be applied to, such as
financial topics and signal processing in the context of biomedical applications. Since
the time series that must be analysed are huge, the topic has been acquiring always
more relevance, researchers aim to find new algorithms and hardware structures for
better analysing time series, more rapidly and more efficiently.

Ordinal pattern encoding is a particular operation that can be applied for analysing
time series in order to evaluate the stability of a consecutive series of numbers. The
main concern one should have when applying this operation is to be able to com-
pute how many subsequences are ordered for determining the regularity and the
predictability of a time series. As Ce Guo et al. state: “This approach does not
depend on a particular time series model, and it is robust against various types of
noise.”([41], Introduction), this is an advantage because one may reproduce an al-
gorithm, or a hardware structure over different types of applications with the same
module.

Inside the paper cited above, the authors present the first reconfigurable accel-
erator for ordinal pattern encoding operation. During this research I have exploited
the main idea of this publication, modifying it accordingly for dissertation purpose,
indeed I aim to build an asynchronous dataflow reconfigurable hardware structure
running the Ordianl pattern encoding operation for different lengths of the subse-
quences.

Before going on discussing about the hardware architecture the research presents,
let us give a definition to Ordinal Pattern encoding :

Definition.1 Given a sequence of n distinct values b = (b1, ..., bn), the ordinal pat-
tern of b is mathematically described by a permutation π = (k1, ..., kn) such that
b′ = (bk1 , ..., bkn) is in ascending order.

For instance, if one has to apply the Ordinal pattern operation to the time series
b = (58, 20, 56, 10, 22) for the subsequences of length 3, one needs to consider the
three subsequences b1 = (58, 20, 56), b2 = (20, 56, 10) and b3 = (56, 10, 22). There-
fore, the ordinal pattern of these three sequences are three arrays: OP1 = (2,3,1),
OP2 = (3,1,2) and OP3 = (2,3,1). These results are really useful to Ordinal anal-
ysis because they contain information about the regularity of the whole time series
b, and can be analysed deeply looking at the distribution of these results.

First consideration one might perform is that the number of subsequences present
in a time series composed by n uncorrelated numbers, is a number of sequences of
length s equal to n− s + 1. Hence, the number of Ordinal pattern operations that

1Definition present on [41], Section II, Paragraph A
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must be applied to a time series strongly depend on the length of the whole time
series n, usually one does not need to inspect subsequences longer than 12.

As might be observed by the mathematical relationship above, this operation it
is quite demanding from the time and resources point of view. Indeed, implementing
such operation in hardware would require to sort the numbers of the sequence each
time; and as a consequence since sorting operation requires an high number of
comparison depending on how many numbers should be sorted, it does not fit well
to hardware perspective. It is in fact difficult to have a good trade-off between speed
of computation and area. Many algorithms were described for sorting numbers via
hardware structures, but all of them are really area consuming ([43], [44]). Few
research have inspected the topic of acceleration for time series, one of them refers
to a software kind acceleration based on CPU platform and is described on [42].

The method I am going to review is based on an algorithm which converts the
time series into a Lehmer code, that will be described below, and then compresses
the results via a factorial number representation. It was developed on [41]. For the
purpose of testing the design-flow of this research I am going to erase the compres-
sion part which, as will be described, is composed by various number of multipliers
only. Before introducing the real algorithm and showing the structure of it, it is
worth inserting the definition of a Lehmer code.

Definition.2 Let x = (x1, ..., xn) be a sequence of length n, the Lehmer code of x
is also a sequence with length n in the form of L(x) = (l1, ..., ln) where:

li = #{xj : j < i, xj < xi}

On the light of the definition above, the Lehmer code of the sequence x = (25,35,12,89,2)
will be computed as following:

L(x1) = 0, ⇒ @ xj : j < i, xj < xi

L(x2) = 1, ⇒ xj : j < i, xj < xi = x1

L(x3) = 0, ⇒ @ xj : j < i, xj < xi

L(x4) = 3, ⇒ xj : j < i, xj < xi = x1, x2, x3

L(x5) = 0, ⇒ @ xj : j < i, xj < xi

Hence, Lehmer code of the sequence x described above is L(x) = (0,1,0,3,0). As one
might notice, in order to apply this operation to a whichever sequence of consecutive

2Definition present on [41], Section III, Paragraph A
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numbers, one should compare the most recent value just came into the pipe with
the other values instantiating as many comparators as the length of the subsequence
one wants to compute the code for. Another consideration I can perform is that
at every step of the chain the most recent value will be always taking the 0 code
because it has not any values preceding the sequence, while the last number of the
chain, that is also the first came into it will be pushed out from the sequence losing
last number of the code. Concerning all the other elements in the pipe, the Lehmer
code associate to each element should be increased by one if and only if the new
value is less than the considered one, otherwise it would remain the same. Formula
below represents such relationship:

L(li) =


li + 1 if xi > x0

li otherwise
(7.1)

Lehmer code tailors extremely well to hardware due to its capability to compute
each number separately by the other ones. Internally it embeds the information
representing the order the numbers compose the sequence are disposed by, and it is
enough for Ordinal analysis purpose. Moreover, all the operations leading to result
can be executed in parallel relying on the Formula 7.1, so it is also convenient either
in terms of resource consumption and of speed. As mentioned before, the complete
algorithm described on [41] relies also on a layer to compact the results. Nonetheless,
since for the aim of my work it was not needed at all, it will be completely neglected
and the structure will be presented according to what I aim to build.

On Figure 7.1 is depicted the structure needed to compute the Ordinal pattern
operation for sequences of length 5 following the Lehmer code technique. As one
might observe, the whole architecture is structured mainly in five layers, each one is
in charge of performing a particular operation which is useful to the entire structure
to support Ordinal analysis. The top layer, also called Sequence buffers is composed
by as many number of registers as the length of subsequence the designer needs to
apply the Ordinal pattern for. Therefore in the case of a 5 length subsequence, one
needs to instantiate 5 registers leftmost included, which must feed all the compara-
tors below. Then n − 1 comparators are present, where n represents the length of
the subsequence. Their role is to compare each number of the subsequence with the
one just entered in the chain in order to establish whether the condition is verified
or not; if it is the output of the comparator signal a logic 1, otherwise a 0. Third
layer is composed by n− 1 adders. They are in charge of updating current Lehmer
code; reader should notice that the first adder has fed by a logic 0 from one input,
since as explained before, the first digit of the code would never be higher than 0.
Fourth layer contains n− 1 other buffers which are needed to store the current code
at each iteration and for performing the shift feeding the adders of the layer above.
Finally the compactor module which simply concatenate the numbers over a bus
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sending all of them to output together. It is not a proper module actually since it
could be obtained via a certain wires connection.

Figure 7.1: Ordinal pattern encoding algorithm for subsequences of length 5, hardware
structure inspired by [41].

First consideration which could be done is that the structure is extremely flexible
in the length of the subsequences to be applied for. Indeed, for supporting a longer
or a shorter sequence, a designer may just need to modify the number of the mod-
ules compose the layers making the whole path longer or shorter. Here it comes my
goal about reconfigurability. My aim is designing a reconfigurable hardware struc-
ture which is able to dynamically support different subsequence lengths. Hence, I
am going to design the control unit part with the support of CPOG model, and
the datapath part representing it as a dataflow structure building an asynchronous
circuit with methods and protocol described in Chapter 3.

7.2 Control-Unit design

As discussed in Chapter 4, designing the control-unit that manages the recon-
figurability of the hardware structure may be done via Conditional Partial Order
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Graph representation. Concerning this architecture for supporting the ordinal pat-
tern operation, it is fairly straightforward to model it via CPOG since one needs
just to replicate all the components and connect them as depicted on Figure 7.1.

Since the final goal is supporting the ordinal pattern encoding for subsequences
from length four to ten, I created seven graphs via Workcraft modelling each kind
of sequence. For readability’s sake, I am not going to report all of them but two only
in order to show to reader the slight differences between them. They are showed
on Figures 7.2 and 7.3. As one might notice, it is exactly equal to the structure
presented on previous Section, since each module is replicated here, and it mimics
the original behaviour of module it is related to.

Figure 7.2: Ordinal pattern model for subsequences of length 5.

For instance, the comparators present at the second layer of the structure, on Fig-
ures 7.2 called Cx with x representing the index of the Lehmer code position, behave
as described before being fed by buffers on top and feeding the adders at the bot-
tom. Here reader should notice the high level of abstraction I am dealing with.
In fact, none of the following parameters are defined such as the number of bits
the comparators are composed by, or the length of the wires, the implementation
the modules present are done. Designer is free from handling the modules as bare
hardware, simplifying the design process of the whole control-unit. The model in-
deed does not depend on characteristics just mentioned, and might be designed no
matter the low level implementation component used. For sake of understanding
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let us define what the names assigned on the Figures stand for: IN corresponds to
the first buffer which receives the time series in input. Bx are the buffers where the
time series flow through, Cx correspond to comparators as already mentioned. Ax
represent the adders , ABx the buffers which stores the current Lehmer code and
finally the COMP the compactor for concatenating all the numbers of the code into
a single data stream.OUT models the symbolic output of the structure.

Figure 7.3: Ordinal pattern model for subsequences of length 7.

Additionally, I want to highlight the regularity of this architecture: observing Figure
7.3 and comparing it to the 5 length size version indeed, it is possible to see that
the two structures are greatly similar. The only different part is that the 7 window
size version contains a longer chain, composed so by more modules without any
modifications on the links. It simplifies the whole design process.

The particularity of this system is the asynchronous pipeline I want it to be
composed by. As described in Section 3.2, a self-timed pipeline does not need any
control signals (REQ or ACK ) to propagate each token because they should be
propagated automatically by the pipeline itself. Therefore, the only control signals
needed are the ones for switching the length of the pipeline and as a consequence, one
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can use to build the control unit the option CPOG in the graphical user interface.
It allows the program to synthesise the Boolean equations for the controller in such
a way to minimise the area they will be synthesised on targeting the activation on
each module belonging to partial orders rather than the request-acknowledgement
signals, as described on Section 5.2.2.

Moreover, a designer needs to consider the search method the GUI has to use to
find a good solution. Since the number of graphs is reasonably low, and due to the
regularity of the structure, it may be convenient using the Single-literal search. It
allows to increase the number of bits of the op-codes achieving a solution where all
vertices of the graphs are associated to a single literal condition, the only drawback
is the increased number of input bits for the controller.

Let us compare the two possible solutions: Single-literal search and the stan-
dard Simulated annealing technique. The compositional graph of the former one
respectively is depicted on Figure 7.4.

Figure 7.4: Compositional graph with Single-literal search of ordinal pattern operation
structure.

The light grey nodes represent the conditional vertices that should be active if and
only if the condition of that vertex is satisfied, while the black ones are always active
since are present inside each partial order. The op-codes assignment is showed below.

Single-literal search op-codes assignment

4 WINDOW SIZE: 000000

95



7 – Self-timed reconfigurable dataflow processors design

5 WINDOW SIZE: 000001
6 WINDOW SIZE: 000011
7 WINDOW SIZE: 000111
8 WINDOW SIZE: 001111
9 WINDOW SIZE: 011111
10 WINDOW SIZE: 111111

As one might notice, the op-codes selected for the graphs are designed in such a
way that each partial order can be associated to one single bit. For instance the 5
WINDOW graph could be associated to fifth bit, if it is stuck at one it means that
nodes {B4, C4, A4, AB4} must be activated. The same for the 10 WINDOW SIZE
graph which has got the first bit associated to it x0. The first graph only must not
be associated to any bits since all the nodes present inside it are also present in the
other graphs, therefore are always active and the actual condition associated to each
vertex is and edge a logic 1.

The most important characteristic is that the circuit here does not need any
logic gates at all to be synthesised, unless some buffers to keep the signal strong
for sustaining the fanout of the modules ahead. In order to compare this solution
with the heuristic one, let us generate the compositional graph for what concerns
the Simulated annealing search. It is depicted on Figure 7.5.

Figure 7.5: Compositional graph with Simulated annealing heuristic search of ordinal
pattern operation structure.

As one might observe, each vertex of this compositional graph is associated to a
more complex condition with respect to Single-literal solution. So, it is clearly in-
convenient in terms of area since it would take a bigger area than before to be
synthesised. The advantage is the reduced number of inputs it would need to switch
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between these seven graphs, it requires half inputs than before. Below the op-codes
assignment of this solution.

Simulated annealing heuristic search op-codes assignment

4 WINDOW SIZE: 000
5 WINDOW SIZE: 100
6 WINDOW SIZE: 010
7 WINDOW SIZE: 110
8 WINDOW SIZE: 011
9 WINDOW SIZE: 111
10 WINDOW SIZE: 101

Hence, after the considerations before the designer should choose which solution
fits better to the design, one might need to consider the heuristic solution if number
of pins are tightly constrained. Sometimes indeed number of pins constrained the
area of the circuit, in particular if a small System on Chip is the target. On the
other hand, if the number of input/output pins is not a problem the Single-literal
solution is surely the best choice.

As I was aimed to show, designing control units for managing the reconfigurabil-
ity of dataflow processor is extremely quick and easy with Conditional Partial Order
Graph. The key feature which contributes to speed the whole development process
up is the dynamical abstraction mechanism that can be applied via CPOG. As men-
tioned indeed, the model allows designer to tackle the problem through whichever
level of abstraction one prefers: from hardware to Register Transfer Level.

So far, reconfigurable hardware structures have been often excluded from the
VLSI (Very Large Scale Integration) industries panorama. Maybe also for the
complexity which has always followed the design process. Even though a lot of work
must still be done to simplify and automate the design process of such structures,
this techniques might be exploited for creating working reconfigurable designs and
it is certainly a good starting point.

7.3 Datapath design

Over this Section, the asynchronous hardware design of the architecture will
be discussed, pinpointing on how to build a self-timed pipeline following the de-
scription given on Chapter 3 avoiding hazards. As pointed out before, one of the
main problem afflicting self-timed circuitry is the presence of hazards, that are often
caused by delay in the links or wrong specifications for what concerns asynchronous
transactions.
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They may end up on misbehaviours of the machine, or worse to external damages.
In order to clarify better this terminology, on Figure 7.6 the whole process that might
bring the machine to an external damage is showed.

Figure 7.6: From fault to external damage([45], p.79).

As depicted on the Figure, faults are defined as the primary mistakes which might
arise in a device. They are divided as defects or bugs, depending on whether the
mistake stems by a hardware error or by a bug into the software, they cause the mis-
behaviour of the module which can be propagated to other components. They may
be categorised into internal faults or external. Former ones are due to any defects
into the hardware or software part, while second ones respectively stem by environ-
mental strange behaviours, such as a strong increase of the external temperature,
or the presence of a really noisy environment (like the space).

“A fault may manifest itself as a change in the state of the system; such a change
is called error”([45], p.71). In turn, it may generate a misbehaviour which is defined
as a behaviour of a product different than the expected one. It can be defined
though different parameters, for instance it is categorised as static if the result is
wrong, while dynamic whether the result is right but not the timing it comes up.

Finally, a misbehaviour may end up in an external damage (or consequence),
which may be dangerous in the case the device is used for critical applications.
Obviously, a designer should try to design a device avoiding the presence of any
possible faults; nonetheless, due to the increase in the complexity of the design and
due to variability that irremediably affects the manufacturing processes, bugs or
defects may arise intrinsically affecting the dependability of the product.
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Additionally, let us define the latency as the time a fault takes to manifest itself
as a misbehaviour, while the inertia as the time between a misbehaviour and an
external consequence. As pointed out by Matteo Sonza Reorda et al., one wants the
latency to be as short as possible in order to detect the misbehaviours and remove
them, on the other hand one wants the inertia to be as long as possible in order to
have more time to remove the wrong behaviours of a product before it ends up with
an external damage. Interested reader may find more information on [45].

In the context of synchronous design, sometimes faults are present between two
consecutive clock cycles, but they are masked by the predefined timing set by the
clock signal. It does not allow modules to capture the results in the middle of the
computation, avoiding efficiently several faults and as a consequence misbehaviours
which may arise. This technique does not work for asynchronous circuits due to
the lack of the clock. In self-timed transactions indeed, in particular using the
4-phases dual-rail protocol as described in Section 3.2, the timing is set by the data-
flow itself which automatically goes through all the modules without the need of a
pre-set signal.

Even though from many points of view the clock lack can be considered an ad-
vantage, such as for saving of area/power. The hazards which may arise during the
computational phases cannot be masked any more without a predefined clock signal,
and therefore designers should seek other methods to avoid faults. Bundled-data
asynchronous protocol attempts to solve this problem by matching the combina-
tional modules with a delay depending on several parameters such as temperature,
frequency, and so on. Nonetheless, somehow this technique may not fit well to all
designs, in particular the ones subject to high variability.

4-phases dual-rail protocol attempts to overcome this problem by embedding the
control-flow mechanism into the data-flow structure, obtaining fairly good results in
terms of reliability. Nevertheless, sometimes it is not enough because signals may
be affected by some delays which might cause the requests-acknowledgements to be
arisen with wrong timing values, propagating the token either when it is not entirely
ready, or when it is already been captured. As already mentioned in Chapter 3, in
this research I am going to apply a recent method with combines NCL-D (reliable)
and NCL-X (unreliable) gates to build sound hazards-free modules.

In order to build a reliable combinational component there is not an effective
design-flow yet that, applied to a module, leads to a complete hazard-free com-
ponent. Designers in fact need to customise it checking that none of the outputs
raise up unless all the inputs are present, and that the whole token went already
through the logic. The method I am going to use to design total reliable compo-
nents involved on using NCL-X gates only, and then substituting some of them with
NCL-D counterparts cleverly for meeting the main goal just mentioned.
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Comparator design

Figure 7.7: N bit dual rail comparator from an external point of view.

Let us take as case of study the only two combinational components present
in the ordinal pattern operation: the comparator and the adder. As described on
Section 7.1, comparator must be able to compare the newest element entering into
the pipeline, with the current number of the time series stored by the buffers present
on the top layer, and output a logic 1 if the condition is met, or a 0 on the other
hand. On Figure 7.7 the schematic of the comparator is showed from a high level
point of view. As one might observe, the inputs and the outputs are doubled since
the module must work with the dual-rail protocol.

The implementation I chose to design the comparator is the one illustrated on
Figure 7.8. For the purpose of ordinal pattern operation, just the A < B output port
is needed, the other ones might be cut off. The comparator has been designed as a
subtractor where the output OUT 0 raises up if and only if the carry out signals a
logic 1, otherwise OUT 1 is activated. For more details of the theory of comparators
refer to [46].

Thus, since the only part of the comparator one should care about for dealing
with this implementation is the CARRYOUT , I reproduced the logic function of the
it starting from an adder/subtractor component and a version of the function with
NCL-X gates only has been implemented. The Boolean function is listed below and
it takes into account also the CARRY IN which must be propagated through the
chain of 1 bit carry adders:

CARRYOUT = A ·B + A · CARRYIN +B · CARRYIN
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Figure 7.8: Schematic of a comparator.([46], Figure 4.16)

While the 1-bit Carry adder is represented on Figure 7.9. The gate-level representa-
tion showed on the Figure just mentioned was obtained via the Digital circuit plugin
under Workcraft, which allows not only to design a digital circuit, but also to test it
running a basic simulation of the signals propagation. It could be very useful when
the propagations of the signals represent the main concern for avoiding hazards.

The structure represented on Figure 7.9 is extremely unreliable. In fact, just
two input signals out of three are enough to propagate the result at the output,
for instance, if the inputs B1 and CIN1 are active, the token will be propagated
through the bottom AND gate, and as a consequence into the final OR gate reaching
instantaneously the output. The same happens if A1 and B1 are active together,
signal will be propagated through the top AND port and afterwards through the
two OR gates. In order to stop the flow of the token if some inputs are delayed,
I implemented the same structure under analysis substituting some NCL-X gates
with NCL-D counterparts which, even tough the cost in terms of area, make the
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Figure 7.9: 1-bit dual-rail carry adder implemented with NCL-X gates

whole structure totally reliable. The structure is depicted on Figure 7.10.

As the reader might observe, four out of five gates have been replaced in this
implementation to make the structure hazards-free. It is because of the high un-
reliability of the gates, none of them in fact are able to stop the output flow and
most of them have been replaced in order not to propagate the output if at least
three inputs are not present. With the implementation that combines NCL-X and
NCL-D in fact, if two of the inputs are active, the output will never arise but it will
be waiting for the other input to come up. This is the best one can do for what
concerns this structure.

Adder design

For what concerns the adder, let us first think about the characteristics of the
external hardware I can exploit to simplify the design. As showed before, the adder
is in charge of adding the previous Lehmer code number to 1 if and only if the current
number of the time series is greater than the new number just entered into the chain.
It means that one could remove the second input of a standard adder exploiting the
CARRYIN to perform such operation simplifying a lot the internal structure of the
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Figure 7.10: 1-bit dual-rail carry adder implemented with NCL-D and NCL-X gates

combinational component. Indeed the truth table comes up removing such operation
is depicted on Table 7.1, and for readability’s sake on the left the schematic view
of the component is showed. It is not represented in dual-rail because the logic
function is independent on the protocol used for transactions.

Figure 7.11: Schematic.

INCARRY INOUTCARRY OUT

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 7.1: Truth table.

The Boolean functions come out from the truth table are depicted below:

OUT = IN ⊕ CARRYIN

CARRYOUT = IN · CARRYIN
They are really simple and require just two gates to be implemented. Moreover, by
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7 – Self-timed reconfigurable dataflow processors design

analysing the structure of the NCL-X xor gate (showed on Figure 7.12), one might
observe that it is reliable and does not need the substitute NCL-D.

Figure 7.12: NCL-X dual-rail XOR gate.

Indeed, the first layer of AND gates, cut off all the signals unless both of the inputs
are present at the same time. For example, if A 0 is active but none of the inputs
belonging to B input are active, the output does not make any transitions. The
only way to trigger a transition at the outputs is that at least one of the following
combination is present: {A0B0, A0B1, A1B0, A1B1} which is right the conditions we
want the circuit to address, conditions as {A0A1, B0B1} are invalid and cannot be
present inside the circuit. Hence, it is possible to implement a totally reliable 1-bit
semi-adder as showed on Figure 7.13. In order to build a n-bit adder one just needs
to connect n number of dual-rail semi-adders in cascade.

Ordinal pattern encoding hardware design

Once that I have discussed how to design and build all the components present in
this structure: asynchronous registers on Chapter 3 and combinational reliable dual-
rails modules in the previous Section. I am going to illustrate the implementation
of the whole structure, focusing on the 4-phase protocol implementation, which
contributes to modify the structure according to the protocol’s needs.

Before showing the structure, it is worth mentioning that most of the dataflow
project was designed and tested with the support ofDataflow plugin under Workcraft.
It allows to build dataflow structures via predefined instruments typically used with
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Figure 7.13: 1-bit reliable dual-rail semi-adder implementation.

this technique, such as registers, combinational component, wiring and push/pop
blocks for managing the reconfigurability of the flow. Reader may find more infor-
mation on [37]. Additionally, it supports the propagation of tokens according to
4-phase protocol tailoring well to this implementation.

Let us start presenting and describing the project designed under Workcraft,
it is depicted on Figure 7.15. In such representation the blocks present internally
mimic the behaviour of real modules as described in Section 7.1. On Figure 7.14 the
legend is showed in order to simplify the readability of the scheme. The asynchronous
register is implemented as described on Figure 3.10 for a variable number of bits,
it contains a completion detection module next to it able to detect if the module
has captured correctly the signal. The only difference with respect to the register
with a dot inside it is that the latter one stores the data, so is not able to receive
another token in input. That is the main rule of a 4-phase transaction indeed: two
data-token must always be separated by a register, otherwise something wrong is
happening into the circuit.

In order to address this constraint and to propagate the data through the pipeline
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Figure 7.14: Legend of blocks present on Figure 7.15.

accordingly, I doubled each register implementing a Master who is in charge of
capturing the data and propagate it to the Slave without any combinational logic
between them. So that to give the possibility to the Master to be free to capture a
new data as soon as it is available on the bus, and to the Slave to capture the data
without delay and put token available on the bus for the computation. In this way
all the combinational parts of the circuit can be executed at the same time as in a
pipeline, avoiding the problem of having half modules which can be triggered and
half that cannot. The other blocks have been already described in this Chapter over
the previous Sections.

For what concerns the actual structure, first of all reader should notice that the
total length of the chain involved corresponds to ten stages, as the maximum window
size designed under Conditional Partial Order Graph model. This is why in order
to support subsequences from length 4 to 10, all ten stages are needed and some
of them must be disabled to support shorter subsequences via some reconfigurable
management forms. All the registers which refer to a subsequence greater than
the minimum one in fact, should have an input needed to switch itself off from the
control unit that manages the reconfigurability; additionally another block should be
inserted before the compactor in order to tell to the final register that the index which
has been disabled from the Lehmer code is present, in such a way not to wait forever
for a disabled token. It can be achieved by using Push and Pop registers which are
described on [37]. They are omitted from this representation for readability’s sake
and because they will be inserted directly in the hardware description design.

Next step, after designed both the control unit and the datapath, is to connect
them together according to the specification mentioned before. This part will not
be covered as well as the hardware coding part done in VHDL(VHSIC (= Very High
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Speed Integrated Circuits) Hardware Description Language). It is worth mention-
ing that due to the extremely good matching between this model designed with
Dataflow plugin under Workcraft and the original circuit implemented in VHDL, it
might be possible to automate the coding part of the hardware description language,
shortening the design and as a consequence the Time to market, which is defined as
the time the company takes to push in the market its product.

In next final Chapter some considerations will be performed to close this re-
search.
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Figure 7.15: Ordinal pattern encoding hardware structure design under Workcraft.
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Chapter 8

Conclusions

This thesis presented a new design-flow composed by different elements, which
can be applied for designing reconfigurable data-flow processors. It is meant to be
used with various models and might simplify and shorten the time to market of
many products used in several applications.

In this Chapter I want to summarise all the contributions my dissertation pro-
posed, as well as the future research directions which might follow this one, expand-
ing not only the world of hardware modelling, but also the one of reconfigurable
architectures and data-flow machines, which are not extensively used in the market
even due to the complexity which drives the designing process. Nowadays indeed,
due to the high competition present in the electronics branch of the market, com-
panies try to push their own products towards the manufacturing phase quickly in
order to increase their earnings as much as possible.

Even the smallest delay on time-to-market may means an extremely huge loss of
money, as represented on Figure 8.1 indeed, where the areas of the triangles stand
for the revenues a company could potentially earn. That is why a company privileges
already working, tested and accomplished tools, neglecting the new ones present on
research fields which might introduce new design techniques.

One of the aim of this dissertation is to push Conditional Partial Order Graph
model forward to industries, in order to be used and applied to real concrete ap-
plications going into the marketplace. It is a really stable, powerful and compact
model able to really help designing process of whichever module or processor. It
would be an invaluable error neglecting it.

In summary, this Chapter is structured as following: Section 8.1 illustrates the
main contributions such dissertation aims at bringing to research, while Section 8.2
describes some future research directions which might be inspected to extend not
only the Conditional partial order graph model, but all the fields surrounding it.
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Figure 8.1: Losses due to delayed market entry([47], p.13).

8.1 Main contributions

Main concern of this dissertation is to develop a tool supporting the CPOG-
driven design process of reconfigurable dataflow processors. As showed throughout
the pages in fact, there was a gap of instruments able to support the automation
in the composition, synthesis and mapping process of systems composed by greatly
different behaviours.

The contributions this thesis aims to bring on the research fields span from au-
tomating the composition of Partial Order graphs to the creation of a Graphical user
interface, allowing the designer to set constraints in the op-codes meeting the need
of flexibility. As showed in Chapter 4 indeed, the previous plugin for the encoding
process did not allow designers the possibility to choose neither the algorithm via the
op-codes were associated to the graphs, nor the number of bits the op-codes should
be composed by or the possibility to fix some bits for reserved function purposes.
Following are showed the main contributions of such dissertation.

Algorithms for encoding process. The process of encoding Conditional Par-
tial Order Graphs now can be chosen by the designer. Who has now the possibility
to benefit from various algorithms for seeking the best solution which fits well to the
design. As described in Chapter 4 indeed, designer might use either heuristic search
algorithms exploiting different and customisable cost function, randomly-driven ra-
tionales or recursive ones. Moreover, it has been demonstrated that the cost function
presented in Chapter 4 may be extremely effective for seeking a good solution in
terms of search-time and area.
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Op-codes flexibility. Additionally, designers could now benefit from the high
flexibility in the op-codes association. In fact, one can fix how many bits each Partial
Order should be composed by, set one or more bits for each op-codes in the case
of reserved bits. The tool developed will automatically check the feasibility of such
encoding informing the developer whether any wrong specifications would occur.

Graphical User Interface. A friendly GUI has been developed in the CPOG
plugin under Workcraft in order to simplify the encoding process driving the de-
signer via a highly flexible and simple interface. It was not present before, now it is
possible to benefits from it.

Synthesis and Mapping process. The automation process is able not only
to synthesise all the Boolean equations of the controller automatically, but also to
map them by using a gate library set manually by the designer, showing final results
as number of gates used and area occupied by the circuit in order to have concrete
information to exploit for the whole project.

Real application examples. Since Conditional Partial Order graphs tailor
well to asynchronous circuits as well as to Instruction Set Architecture designs, such
dissertation demonstrated with two real examples how this CPOG-driven design-
flow might be applied for a real ISA such as the Armv6-M in Chapter 6, or to a
reconfigurable asynchronous data-flow processor on Chapter 7 for supportingOrdinal
analysis.

Such design-flow has been demonstrated to be successfully applied on real projects,
designers may now benefit from it throughout the development phases exploiting the
tool generated during this research. Over the next Section the areas of future re-
search will be presented and discussed.

8.2 Future research directions

Since the main purposes of the thesis have been presented, in this Section I am
going to show the main research directions which may follow this work, pinpointing
on the topics this thesis handled.

One of the main research direction this thesis may be followed by, is the seeking of
a new cost function in order to improve the search of an optimal encoding even more.
As indeed I have discussed in Chapter 4, and as one might observe on Figure 6.6
where two heuristic techniques are applied to a concrete instance, the cost function
so far is affected by a certain degree of error, which may also affect the result in
terms of area of the encoding found.
Indeed, as depicted on Figure 8.2, where the ∆ of the error is represented, the cost
function is not able to linearly separate the various encodings. Many of them end
up with a same weight of the function though they can be synthesised with very
different results in terms of area. Thus, the need of a better cost function, maybe
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Figure 8.2: Error showed due to cost function used.

taking into account also the op-codes not used inside the solution, that are the
ones which are not associated to any Partial Orders when the number of op-codes
is higher than the graphs. So far in fact, cost function is computed by using the
elements available for the solution which are actually used, neglecting the other ones.
Maybe by taking them into account, a more linear solution might be obtained.

Another research branch that might be followed regards the automation of hard-
ware description language starting from the dataflow representation under Workcraft.
As discussed in Chapter 7 indeed, and in particular as can be observed on Figure
7.15: the dataflow representation gives an greatly good starting point for translating
the model into hardware description language. Dataflow structure indeed, tailors
perfectly well to an asynchronous structure exploiting 4-phase protocol for trans-
actions. Hence, there are plenty of possibilities researchers have to simplify and to
speed the design process up, such as the development of a low level hardware layer
for each of the block present in the plugin in order to let designers choose how the
predefined modules present in the structures could be implemented, maybe in single
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and dual-rail fashion either. I guess that designers will absolutely benefit from it.
Furthermore, the techniques applied for the design in Chapter 7, can be expe-

rienced with the 2-phase protocol which has the capability not to return to zero
at each cycle, doubling the throughput of the whole structure as well as saving
a big amount of power due to the reduced swings of the signals for transactions.
More information about this protocol may be found on [33], dataflow plugin under
Workcraft may be thoroughly enhanced supporting the propagation of the tokens
also via this protocol.

Additionally, synthesis of final controller starting from Conditional Partial Or-
der Graphs might be driven by different cost parameters such as the delay, or the
power consumption. It would not be too difficult to implement this feature since
developers should modify the interface with Abc tool allowing the user to choose
which parameters the circuit should be optimised for.

All the previous ideas might be potentially inspected and implemented with a
deep research phase. Furthermore, this dissertation aims at pushing forward the
reconfigurable development in the context of asynchronous design. It might be
applied to particular types of applications that may benefit from the lack of the
clock signal, the power consumption reduction and high flexibility and reliability of
the transactions where the control-flow is embedded in the data-flow.

For instance, as Danil Sokolov et al. demonstrated on [48], asynchronous circuits
fit well to analogue electronic power management due to its capability of capturing
small swings of signals without requiring high clock frequencies in the input inter-
face. A further research direction might be the creation of formal ways to formalise
analogue specifications in order to represent an asynchronous circuit able to satisfy
the analogue requirements. Hence, both specification and verification of the circuit
compliance is subject of future work.
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Appendix A

Partial orders modelling Armv6-M

In the Appendix, the whole Conditional Partial Order Graph representation
modelling the Armv6-m Instruction Set Architecture is showed. As already briefly
described over Chapter 6, the entire model is composed by eleven Partial orders
which mimic the behaviour of several instructions embedded into Arm Cortex-M0+

processor. For more information about the model itself, readers can refer to [29],
where this representation is the main topic.

Over the next pages, each graph representing a particular instructions class will
be showed. The descriptions will be structured over four parts: a Figure which
shows the actual graph composed by the standard elements such as nodes and arcs;
a list of all the instructions represented by the Partial order ; a brief description of
the current graph, pinpointing on how it is structured and an explanation of the
way it works; and finally some examples of instructions as described by the official
handbook [40].

Due to the complexity of this Instruction Set Architecture embedded on a real
processor on the market, this model is not intended to be a perfect representation
of the ISA. Therefore, a fair comparison between the decoding logic of the Arm
Cortex-M0+ and the module comes up with this model cannot be carry out because
of the wide differences between the two structures. CPOG-driven model indeed
needs further graphs either for representing the instructions left (not represented
yet) and for representing the behaviour at a lower level of abstraction, for instance
for all the operations a single component, as an ALU (Arithmetic Logic Unit) is
able to perform. As already mentioned before, the goal of this representation is to
have a good model to test the new algorithms and cost function.
Following the the model handled in Chapter 6.
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Instructions class 1

Figure A.1: Memory instructions (Immediate offset addressing mode)

Instructions modelled by the graph: LDR (imm.), LDR (literal), LDRB (imm.),
LDRH (imm.), STR (imm.), STRB (imm.) STRH (imm.).

Description: Instructions related to this Partial order graph are related to LOAD-
/STORE structure architecture. Through Store command programmer can save an
operand into a position of the memory by using immediate offset addressing mode.
While trough Load instruction, one can load into a register close to processor a
value from the memory, addressing methods one could use are the same as for Store
command.

Examples:

LDR <Rt>, [<Rn>{,#<imm5>}]
LDR <Rt>,[SP{,#<imm8>}]
LDRB <Rt>,[<Rn>{,#<imm5>}]
STRB <Rt>,[<Rn>,#<imm5>]
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Instructions class 2

Figure A.2: Memory instructions (Register offset addressing mode)

Instructions modelled by the graph: LDR (reg.), LDRB (reg.), LDRH (reg.),
LDRSB (reg.), LDRSH (reg.), STR (reg.), STRB (reg.), STRH (reg.), POP.

Description: This class models the same operations that could be done under the
first class, but with a different addressing mode system. Here indeed, one could
select a memory address for storing/loading a value by exploiting register offset
addressing mode.

The flow of events this instruction class refers to is totally different, since the
immediate operand should not be fetched and evaluated. The addition in order
to evaluate the actual address and the extraction from memory could be done in
parallel with the next instruction fetching. On the bottom two examples of such
instructions. Pop instruction modelled by this Partial order cannot move data from
the stack to program counter, this behaviour is modelled by the sixth Instructions
class

Examples:

LDR <Rt>,[<Rn>,<Rm>] => Rd = Mem[Rn + Rm]
LDRH <Rt>,[<Rn>,<Rm>]
LDRB <Rt>,[<Rn>,<Rm>]
STR <Rt>,[<Rn>,<Rm>] => Mem[Rn + Rm] = Rd
STRH <Rt>,[<Rn>,<Rm>]
STRB <Rt>,[<Rn>,<Rm>]
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Instructions class 3

Figure A.3: Memory instructions (Bunch registers transferring)

Instructions modelled by the graph: LDM, LDMIA, LDMFD, PUSH, STM,
STMIA, STMEA.

Description: This instructions class always refers to memory as the two Partial
orders before. The difference here is that a bunch of registers are transferred, so
since programmer can specify registers to transfer via a 8 bits special registers, alu
event to compute the final address is not needed anymore. The address of the bunch
of register to transfer is already present in the second operand.

According to description given into Technical Manual of the processor, push
instruction is integrated inside this class of instructions, since the way through
which the register to push on stack is addressed is highlighted by the same 8 bits
word.

Examples:

PUSH <registers>
STM <Rn>!,<registers>
LDM <Rn>!,<registers> #<Rn> not included in <registers>
LDM <Rn>,<registers> #<Rn> included in <registers>
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Instructions class 4

Figure A.4: Load instruction Immediate addressing on PC

Instructions modelled by the graph: LDR (imm.).

Description: This instruction allows to load an address from the memory to the
Program Counter register. It could be useful when designer deals with code which
may contain some predefined functions addresses stored in memory. The flow of the
operations described by the Partial Order is pretty straight forward, since memory
address where instruction takes the data from is an immediate, it must be fetched
(PCIU followed by IFU ). In the case the address represents an offset, ALU must be
used to compute the actual address and afterwards the data may be taken from the
memory via the Memory Address Unit and the result is placed on Program Counter.
Finally, next instruction is fetched, addressed by current PC address.
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Instructions class 5

Figure A.5: Load instruction register addressing on PC

Instructions modelled by the graph: LDR (reg).

Description: This graph models the same behaviour described for Partial Order
on Figure A.4. It differs from the previous one because of the addressing mechanism,
in this case indeed the address of data to load is contained in a processor register,
therefore PCIU and IFU beginning nodes are not needed any more. Following
behaviour is the same as before.
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Instructions class 6

Figure A.6: POP instruction

Instructions modelled by the graph: POP

Description: The Partial order showed on Figure A.6 represents one single instruc-
tion only, that is the POP instruction. It is often used inside whichever program,
and it is in charge of moving the data from the Stack into the Program Counter,
in order to perform a branch. As described on [29], the instruction field of this
operation uses an extra bit to specify whether the data should be moved in the
program counter, otherwise the Partial order in charge of performing a regular pop
instruction is the second one.

Since the base address of the register is used for addressing, alu module is not
used at all and therefore the graph of this group results to be very simple. MAU
is used to move data between memory and register and IFU node models the next
instruction to be fetched.

Examples:

POP <registers>
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Instructions class 7

Figure A.7: Arithmetical, logic and data copy instructions (register addressing)

Instructions modelled by the graph: ADC (reg.), ADD (SP + reg.), AND
(reg.), ADD (reg.) ASR (reg.), BIC (reg.), CMN (reg.), CMP (reg.), EOR (reg.),
LSL (reg.), LSR (reg.), MOV (reg.), MUL, MVN (reg.), ORR (reg.), SXTB, SXTH,
TST, UXTB, UXTH.

Description: As one might observe from the list of operations covered by such
graph, it represents the execution of arithmetic, logic and data movement operations
where the register addressing mode is used only. Indeed as one might understand
by the events in the graph: ALU operation is executed in parallel with the fetching
of the new instruction (PCIU - IFU ), this is because the operands do not need to
be fetched since they are already available in the registers of the processor. Below
some examples are depicted related to the operations listed above.

Examples:

ADD <Rdn>,<Rm>
CMP <Rn>,<Rm> #<Rn> and <Rm> both from R0−R7
ANDS <Rdn>,<Rm>
MOV <Rd>,<Rm>
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Instructions class 8

Figure A.8: Nop instruction

Instructions modelled by the graph: NOP.

Description: This Partial Order models the NOP instruction only. The behaviour
of the graph may be interpreted as follows: since the current instruction requires
to perform no operations at all, Program Counter is incremented again (PCIU2) in
order to fetch a new instruction into the Instruction Register (IFU ).

Examples:

NOP
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Instructions class 9

Figure A.9: Unconditional branch instruction

Instructions modelled by the graph: B.

Description: This Partial Order models the behaviour of the unconditional branch
instruction. It jumps to the address labelled by the developer of the software.
Once the Program counter is updated with the offset present inside the instruction
computed by the compiler (PCIU followed by IFU ), the ALU module is used to
add/subtract to the Program Counter the offset the instruction must jump on and
afterwards, the Instruction Register is updated with the new instruction to execute.

Examples:

B <label>
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Instructions class 10

Figure A.10: Instructions with immediate addressing mode

Instructions modelled by the graph: ADD (imm.), ADD (SP + imm.), ADR,
ASR (imm.), CMP (imm.), LSL (imm.), LSR (imm.), MOV (imm.), RSB (imm.),
SUB (imm.), SUB (SP - imm.).

Description: This Partial Order embeds a high number of instructions internally,
all of them share same addressing mode and go through the same modules. The
instructions listed above requires to have an immediate operand, it requires to be
fetched and written into the Instruction Register. Then the ALU operation can be
performed in parallel with respect to the second update of the Program Counter
(PCIU2) in order to allow the next instruction to be ready for next fetch phase
(IFU2).

Examples:

ADDS <Rd>,<Rn>,#<imm3> # immediate on 3 bits
ADDS <Rdn>,#<imm8> # immediate on 8 bits
SUBS <Rd>,<Rn>,#<imm3> # S indicates that instruction updates the flag
CMP <Rn>,#<imm8>
LSRS <Rd>,<Rm>,#<imm5>
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Instructions class 11

Figure A.11: Branch instructions

Instructions modelled by the graph: BLX (reg.), BX.

Description: This graph models two slightly different branch instructions: BLX
(Branch with Link and Exchange) and BX (Branch and Exchange). Both of them
use register addressing mode, so no constants need to be fetched before the execution
of the operations. The former instruction differs by the latter one because it saved
the current Program Counter address into the Link Register (LR) before branching.
It could be useful in the case of a function.

ALU module provides all the functions just described, it is able to move the
current address to LR or to move the address stored in the register pointed by the
instruction into the Program counter in order to jump. Afterwards IFU provides
the fetching mechanism for next instruction. Below a couple of example of the usage
of these two instructions are showed, as provided by the Arm handbook.

Examples:

BLX <Rm> # RM stores the address to jump
BX <Rm>
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