
µSystems Research Group

School of Electrical and Electronic Engineering

Modelling Digital Systems using Behavioural
Fragments

J. Beaumont

Technical Report Series

NCL-EEE-MICRO-TR-2015-194

January 2015



Contact: j.r.beaumont@ncl.ac.uk

Supported by EPSRC grant EP/L025507/1

NCL-EEE-MICRO-TR-2015-194
Copyright © 2015 Newcastle University

µSystems Research Group
School of Electrical and Electronic Engineering
Merz Court
Newcastle University
Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/



1

Modelling Digital Systems using Behavioural
Fragments

Jonathan Beaumont

I. INTRODUCTION

This technical report serves as my research proposal, and
is a discussion of the work I have been doing since I started
my post graduate research in September. The following infor-
mation is the start of what I plan to continue advancing upon
during the remainder of my post graduate degree.

A. Motivation

When designing a digital system, models are used to design
and test how the system will operate, and ensure that signals
transition in the correct orders and that the function the system
is designed for will be carried out correctly. Designing a full
system can be a complex and lengthy process, requiring several
stages of tests and re-designs to add further functionality and
for finding and correcting errors. It is possible to separate
a full system into several scenarios which can be designed
separately and combined but depending on the complexity of
each scenario this may not change the length of the process.
These models can then be synthesized to a set of logic gates
which will implement the model designed for the system.

Using software, it is possible to automate the process of
creating models. Automation of the design process can reduce
1. the length of time to create a large model and 2. the chance
of errors in a design which, in turn, reduces the length of time
needed to find and correct errors. Overall this can reduce the
design time of a system.

B. Importance

In industry, the time from conception of a device to pro-
duction and being put on sale, known as time to market, can
be very lengthy, from a period of several months to a period
of years. Designing a device can be one of the causes of an
increase on the time to market, and in the case of a digital
system, the more complex a system, the more difficult it is
to design and test. If the process can be completed quicker it
means the time to market can be reduced. The time saved can
be used to better the product, for example by adding features,
or making the design smaller.

C. Contribution

The automation process I will discuss doesn’t focus on
creating the full model all at once, but instead focuses on
functionality requirements, safety constraints, communication
protocols, etc. of the system. Requirements can be described
as smaller models themselves, which I call fragments, and
these can then be combined to compose a full model. If
there are multiple scenarios of a system these can each be

composed of fragments, which may be different depending on
the requirements of each scenario. All scenarios can then be
combined to create a full system model. This process I will
discuss in this paper.

II. DESIGN FLOW

Along with the automation for this method of design comes
some changes which are necessary in order for software to
work correctly and return a correct model. I will explain the
design flow for this method, and use it throughout the paper as
an example. Each part is important for its own reasons and the
following explanations will explain why each part is necessary
for the design of digital systems using fragments.

• Decide on Scenarios - If the system is large enough,
splitting it into scenarios can allow each scenario to be
composed of fragments separately. In some cases, scenar-
ios can be made for operating modes in systems. Systems
which could take advantage of this include power-elastic
systems [11] or microprocessor systems which adapt to
operating conditions [7]. Each operating condition, for
example power saving mode or high performance mode,
will have different functionality and as such, their models
will be different. Each of these modes can be modeled
separately. In many cases, a model will have similarities
between scenarios, but differences which mean they can-
not all be composed of the same fragments. Finding these
differences is useful for finding fragments.

• Find Fragments - When scenarios have been found,
finding fragments for the scenarios can be done. Each
fragment should represent a different requirement of
the system, and will be understandable when separated
from the rest of the system. Because of this, it can be
reused across multiple scenarios, similar to a sub-routine
when writing software - it may be useful in several
different areas, and thus, separating this avoids repetition.
Fragments and scenarios could be confused, but for this
example, fragments are used to describe the very lowest
form of requirements for the systems, where as scenarios
describe one of the major operations of a system which
can be separated from other operations for composition.

• Compose each scenario - When fragments have been
found and created, these can be composed to create
complete models for each scenario.

• Combine composed scenarios - With a model for each
scenario, these can then be combined, again using soft-
ware.

• Full Model - The combined scenarios will provide a
model for the full system.



2

• Synthesis - The full system model can be synthesized,
producing a list of logic gates used to create a circuit.

• Circuit - This can be created from the list of gates from
the synthesis of the full model. This circuit will perform
the functions the model has been designed to control.

Throughout the design example, I will be producing fragments
and models as both Finite State Machines (FSM) [4] and
Signal Transition Graphs (STG) [12], as well as explaining
how the fragments are composed. Both of these types of
models have the capability of being composed of fragments,
but the models produced differ somewhat, and I will discuss
these differences.

III. DECIDE ON SCENARIOS

Specifications of digital microcontrollers will usually de-
scribe several possible operations which will happen separately
from one another, and as such, deciding scenarios for this
design flow can be done by splitting each of these operations
into multiple separate descriptions, each one a scenario in
itself.

As an example for this paper, I will use a simple buck
control circuit [10] which is designed to control the voltage
and current in a circuit, by switching on or off a p-type
transistor which increases the voltage, or an n-type transistor
which drains current from the circuit. These transistors cannot
be switched on at the same time, but which one is on at which
time is determined by several signals from the circuit. The
buck controller itself has two output signals, each switches
one of the transistors (see Figure 1). The signals and their
descriptions can be found in Table 1.

control

Th_nmos

Th_pmos

buck

V_ref

V_0

R
_l

oa
d

PMOS

NMOS

I_max

gp_ack

oc

uv

zc

gn_ack

gp

gn

over-currentz(oc)

under-voltagez(uv)

zero-crossingz(zc)

Figure 1. Basic Buck controller (illustration from [10])

From these signals, and discussing the operation of the
circuit, we can deduce that there are three scenarios:

• UV without ZC - In this scenario, there is no zero
crossing involvement. The initial state is after over current
has been dealt with and before under voltage has signaled.
When under voltage signals, the n transistor is switched
off by setting gn low, which is followed by gn_ack
going low. gp is then set high to switch on the p-type
transistor, which is acknowledged by gp_ack. After this
under voltage will go low when the circuit voltage has

returned to normal. Over current can then signal, which is
responded to by switching off the p transistor by lowering
gp, which will cause gp_ack to go low. gn will then be
set high and when the n transistor is switched on, gn_ack
will go low. At this point, the current will drain, and oc
will go low when the current is low enough.

• UV before ZC - Here, zc is involved, but only after uv
has triggered. In this case the initial state is the same as
the previous scenario and when under voltage is high, the
same signal changes occur as with the previous scenario,
turning the n-type transistor off and the p-type transistor
on. Once uv has been signaled, zc can then concurrently
transition from low to high and then low again, before
under voltage can transition low again. At this point oc
can signal and is dealt with in the same way as the
previous scenario.

• UV after ZC - Zero crossing has large involvement in
this scenario. The initial state here is again just after over
current has been dealt with, but instead of uv, zc signals
first. When zero crossing signals, the n transistor is turned
off, but the p transistor is not turned on until under voltage
signals. When uv goes high, the p transistor is turned on,
to increase the voltage in the circuit. Before under voltage
can go low, zc must go low. After this, oc can signal and
be dealt with the same way as the other two scenarios.

IV. FIND FRAGMENTS

Finding fragments is a process of knowing the systems
signals, and understanding what each one represents within the
system. When this is understood, it is a case of understanding
how each of the signals can affect others and combining them
in small models.

With several scenarios prepared, we can now start working
out requirements for each one which can then be modeled as
fragments. In this example there will be similarities between
the three scenarios, but important differences.

A. UV without ZC

There are several requirements based on how the circuit
works for this scenario. For example, when gp transitions,
gp_ack transitions as well to acknowledge that the p-type
transistor has been switched on. This is a handshake protocol.
The same applies to gn and gn_ack. The fragments for these
protocols as FSM and STG are as follows:



3

Signal Label Signal Name Notes
uv Under Voltage Input signal, shows when the circuit

voltage is low
oc Over Current Input signal, shows when circuit current is

high
zc Zero Crossing Input signal, shows when the voltage and

current are within normal range

gp_ack GP
Acknowledge Input signal, acknowledges when the

p-type transistor is turned on

gn_ack GN
Acknowledge Input signal, acknowledges when the

n-type transistor is turned on
gp GP Output signal, used to switch the p-type

transistor on
gn GN Output signal, used to switch the n-type

transistor on
Table I

SIGNALS USED IN THE BUCK CONTROL EXAMPLE

Figure 2. Handshake protocols for gn/gn_ack and gp/gp_ack as FSM

Figure 3. Handshake protocols for gn/gn_ack and gp/gp_ack as STG

Figures 2 and 3 show the handshake protocols, simply
showing that, for example, when gn+ happens, gn_ack+ can
happen, and gn- cannot happen before gn_ack+. The FSM and
STG fragments are very similar in this case. FSMs are used
to show what state a system is in - in this case what positions
the signals are in - and what transitions can occur from this
state. STGs show this in a different way, by abstracting away
the state the system is in, but showing which signal transitions
can occur and which transitions can occur as a cause of this
transition. Thus, because these signals, either gn/gn_ack or

gp/gp_ack, must transition in these orders, the FSM and STG
models look similar.

The next fragments we can devise are based on under
voltage and over current. These two signals cannot both be
high at the same time, as only one of these circuit states can
be dealt with at once. Here we can create mutexes to deal with
this:

Figure 4. FSM mutex which aims to stop uv and oc signaling at the same
time

Figure 5. STG mutex which aims to stop uv and oc signaling at the same
time

In Figures 4 and 5, it is shown in the two separate fragments
allow oc to go high only when uv has been set low, and
likewise, that uv can only signal when oc- has occurred. This
will stop the model from having a case where both uv and
oc are high at the same time, but it is possible for one to be
high, or both to be low. The FSM in Figure 4 uses two arcs to
show each mutex, where as the STG mutexes only have one.
Again, because of the way STGs abstract states, it only uses
an arc to show that uv- causes oc+, for example, but the FSM
shows what the signal positions are with the state labels.

Some more mutexes can be discovered using the knowledge
that, to avoid short circuits, both transistors cannot be switched
on at the same time. We know that gn and gp control the n-
and p-type transistors respectively, and we know that gn_ack
and gp_ack are input signals to acknowledge that the n- and
p-type transistors have been switched on or off, thus it can be



4

deduced that before gp can be set high, we need to know that
the n-type transistor is off using gn_ack etc.

Figure 6. FSM mutex which stops both transistors turning on at once

Figure 7. STG mutex which stops both transistors turning on at once

The mutexes shown in Figures 6 and 7 will mean that only
when the acknowledges for the one transistor is low, then can
the other transistor be switched on. The FSM and STG models
again have differing number of arcs, for the same reasons as
with Figure 4 and 5. This is the same with all mutexes.

All the fragments so far have been necessary to avoid issues
which could break the circuit. Now we need to add fragments
which actually cause the correct change in the circuit to deal
with either under voltage or over current. The basic operation
for these is:

• Under Voltage - Switch off the n-type transistor and
switch on the p-type transistor.

• Over Current - Switch off the p-type transistor and switch
on the n-type transistor.

Figure 8. FSM function fragments for uv+ and oc+

Figure 9. STG function fragments for uv+ and oc+

The FSMs in Figure 8 show multiple paths and repeated signal
transitions. For example the top FSM shows that when uv
signals by going high, then gp can go high and gn can go low,
or gn can go low followed by gp going high. Because only
one transition can occur at a time, it is necessary to account
for these signals transitioning in either order, but as long as
both occur it doesn’t matter the order. However, because STGs
show are more compact, Figure 9 represents the same as the
FSMs in Figure 8, but rather than show the possible orders of
signal transitions, it shows that the input signals, either uv+
or oc+, cause the respective transitions in gp and gn, and this
shows that either order of gp and gn transitioning can occur.

The last fragments we need to find for uv without zc
are those that react to switching of transistors. As discussed
before, using the acknowledge signals we can tell which
transistors are on or off, and using these we can decide which



5

states the acknowledges need to be in to cause uv or oc to go
low. The signals need to be as follows:

• Under Voltage - n transistor will be off, so gn_ack will
be low. p transistor will be on, so gp_ack will be high.

• Over Current - n transistor will be on, so gn_ack will be
high. p transistor will be off, so gp_ack will be low.

Figure 10. FSM reaction fragments for uv- and oc-

Figure 11. STG reaction fragments for uv- and oc-

Figure 10 shows the FSM fragments. As with Figure 8,
there is two paths in each fragment to show every possible
order of the signal transitions, which is not featured in the
STG fragments in Figure 11. These fragments show that for
uv or oc to go low, gp_ack and gn_ack must show the correct
states of the transistors, n-type off - p-type on for uv- and
p-type off - n-type on for oc-.

The fragments from Figure 2 to Figure 11 cover the spec-
ification for the buck controller circuit, for the scenario uv
without zc. The other two scenarios may feature some of these,
and may add some new fragments for their functionality.

B. UV before ZC
With this scenario, the zero crossing signal is included, so

we need to include it in our analysis of requirements for

the scenario fragments. If we use the same order as with
the previous scenario, it is easier to find the similarities and
differences between the scenarios.

Starting with gp/gp_ack and gn/gn_ack, these signals are
used for the same purpose in this scenario as in the previous
scenario, gp and gn used to switch on and off the p and n
transistors, and gp_ack and gn_ack are used to signal the state
of the transistor and acknowledge gp and gn. Therefore, the
handshake protocols in Figures 2 and 3 will also be used for
this scenario.

Under voltage and over current signals, as with the previous
scenario, cannot be high at the same time, and therefore the
mutex fragments in Figures 4 and 5 can be used for uv before
zc. Similarly, to stop both transistors being switched on at the
same time, we can use the mutex fragments from Figures 6
and 7 also.

The general function of the scenario hasn’t changed either,
because uv should signal before zc, uv will be dealt with in the
same way, by switching off the n-type transistor, and switching
on the p-type transistor, and the zc signal doesn’t affect the
operation of over current, so the functions in Figures 8 and 9
can still be used for this scenario.

Similarly, the reaction fragments in Figures 10 and 11 are
not affected by zc so these can be included in the fragments
for the uv before zc scenario.

Knowing that we can use the same fragments as the previous
scenario, we have yet to include the zero crossing signal. From
the specification of the scenario, we know that it needs to
transition from high to low to high after uv is signaled. And
before uv can transition low again, zc must have performed
this transition.

Figure 13. STG fragment for zc interaction with uv

Figure 12 is the FSM for the functionality of zc within
this scenario. Some of the state labels end with a letter, this
is due to a Complete State Coding (CSC) conflict, where
the state labels are the same for multiple states but each of
these similarly named states has a different behaviour.[5]For
example if this system is in state 1-0—-, there is no way
of knowing whether zc has transitioned high-low or not. For
this fragment, it is useful to keep the similar states labeled in
this way, as the process of composition using this fragment
will either remove the CSC conflict, or use it for the full
composition of the FSM for the scenario.

The STG in Figure 13 doesn’t show any CSC conflicts, it
simply shows the order of signal transitions for this interaction
between uv and zc, however it still contains a CSC conflict.
This is caused in both the FSM and the STG by zc being set
high, and then immediately set low (zc+ -> zc-), meaning that
before and after this, the states will have the same encoding.

We now have the necessary fragments for the scenario uv
before zc, which includes all the fragments in uv without zc
(Figures 2 to 11) and one extra fragment, per modeling type,
from Figures 12 and 13.



6

Figure 12. FSM fragment for zc interaction with uv

C. UV after ZC

The final scenario has some significant differences, par-
ticularly in the order of zc and uv. When analysing the
requirements for this scenario, we need to ensure that zc is
included in the correct manner, before uv is signaled.

Once again starting with the handshake protocols of
gn/gn_ack and gp/gp_ack, the change of order of zc and uv
doesn’t affect these signals, which are still used to switch the
transistors and acknowledge this. Therefore we can continue to
use the protocol fragments in Figures 2 and 3 for this scenario.

The change of uv and zc in this case causes the mutexes
from Figures 4 and 5 to be changed for this scenario. Zero
crossing doesn’t change the way that under voltage is dealt
with, by turning on the p-type transistor, and when this has
corrected the voltage in the circuit, uv will become low. This
can then cause over current to signal, therefor the first mutex is
still useable. However, because in the initial state, after over
current has been corrected, zc will signal before uv in this
scenario, so we need to change the second mutex.

Figure 14. FSM uv, oc and zc interaction mutexes

Figure 15. STG uv, oc and zc interactions

In Figure 14 and 15, these new mutexes stop oc and uv
going high at the same time, as with the previous scenarios,
but because zc signals before uv, we stop this zc signaling
before oc is low to keep this interaction the same.

The mutexes used to stop both transistors being active at the
same time, and thus avoiding short circuits, are not changed
by the functionality of this scenario, there for fragments in
Figure 6 and 7 will apply to this scenario.

The general function of correcting oc is unaffected by zc,
so the function fragment in Figures 8 and 9 for oc will remain
unchanged. However, as uv is not the first signal in this
scenario, we need to correct this fragment.

Figure 16. FSM fragment functions for oc and zc

Figure 17. STG fragment functions for oc and zc

By replacing uv+ in the function by zc+, as seen in Figures
16 and 17, we account for uv signaling after zc.

Reactions of this scenario will remain unchanged, as they
are still based on uv and oc and therefore Figures 10 and 11
can be used foe this scenario. However the zero crossing signal
is required to be low before uv can transition low, and we need
to account for this. We also need to include the interaction of
zc and uv, where uv can go high after zc. As well as this, we
need to ensure that gp does not transition high until uv has
transitioned high, and once gp is high, zc can then go low.
The following fragments are used to account for these.



7

Figure 18. FSM fragments for uv after zc

Figure 19. STG fragments for uv after zc

The fragments in Figures 18 and 19 will cause gp to
transition high only when uv signals, after zc signals. When
gp is high, gp_ack must follow it, according to the protocol,
and zc must go low. When these have occurred, only then can
uv go low.

The fragments to compose in this scenario are found in
Figures 2, 3, 6, 7, 10, 11, 14, 15, 16, 17, 18, 19.

V. COMPOSE EACH SCENARIO

With fragments prepared for each scenario it is now possible
to compose them into models. The FSM and STG methods
of composition can both be automated by software, but have
different methods of doing so, and I will begin by explaining
how each composition method works.

A. FSM Composition

As of yet, there is no software to compose Finite State
Machines from fragments, but there is methodology to do so,
and this is what I will discuss in this section.

The fragments so far have featured labels with both num-
bers, 0 and 1 to represent the signal position, and hyphen
characters ’-’. The labels have been used to show which signals
are changing at which points, ignoring the ones which do not
change due to the fragments in question. For example, the

gn/gn_ack handshake in Figure 2, the 0s and 1s within the
states show the states of gn and gn_ack as they change. The
hyphens represent the other signals which could be at any
positions (don’t care signals).

This idea is used for the composition method. If we know
the initial state we can search the state labels in the fragments
to see which signals are in similar positions. If multiple states
have the same arc transition, we can combine these state labels
to view more signals which should be in this position for
transitions, and if the state doesn’t agree with these states, then
the transitions cannot occur. From here, we can add the arcs
to the initial state to find new possible states. We then repeat
this process with all these new possible states, and continue.
If we know the final states as well, once all the possible states
have been found we can find all paths from the start state to
the final states, and remove all others, which will be loops, or
dead ends.

Using uv without zc as an example, I will show the first few
steps of composition using this method. As discussed before,
the initial state is when over current has just been corrected,
waiting for under voltage to signal. The n-type transistor is
switched on, and the p-type is off. The first state is 0000101.

Original State Possible Transition Possible Next State
0000101 uv+ 1000101
1000101 gn- 1000100
1000100 gn_ack- 1000000
1000000 gp+ 1000010
1000010 gp_ack+ 1001010
1001010 uv- 0001010
00001010 oc+ 0101010

Table II
FSM COMPOSITION TABLE, SHOWING STATES, AND THEIR POSSIBLE

NEXT STATES AFTER SIGNAL TRANSITIONS

When looking at possible arcs, there are usually several
states to combine and find that the original state from this
Table doesn’t comply, and therefore the arc will not be
included from this state. Repeating the process, eventually,
every state and its arcs will be followed and final states will
be reached. If there are any other paths which do not reach a
final state, these can be removed. Continuing this will return
the full model for uv without zc.

B. STG composition

Unlike the composition of FSM, there is a software tool
which performs efficient parallel composition of Signal Transi-
tion Graphs, known as PCOMP. This tool is used to efficiently
combine models of subsystems to create a whole system
model[2]. For example, using uv without zc, it would take one
model, such as the first function in Figure 9,and using other
fragments such as the protocols and mutexes which apply to
these transitions and would create the following based on this:



8

Figure 20. Example of STG Parallel Composition as performed by PCOMP

Figure 20 shows what the uv+ function will become when
composed with PCOMP. This doesn’t include all arcs, but
for the example, it shows that it accounts for several of the
mutexes and protocols, and includes the transitive arc between
uv+ and gp+. I will show the rest of the composition in the
following section.

C. UV without ZC composition

Figures 21 and 22 are the models for uv without zc, after
being composed by the methods for their model types. Figure
21 shows the Finite State Machine, which after composition
shows the cyclical nature of this model. The STG in Figure
22 also shows its cyclical nature. This STG has the correct
functionality, the same as the FSM in Figure 21, but has many
transitive arcs which do not affect the function of the STG,
these are remaining from the parallel composition process, and
make the model look quite convoluted. These however can
be removed by a process called resynthesis which works by
selectively composing STGs of components to obtain a smaller
model [1], [3].

Resynthesis can be performed using software tools such as
Petrify [5], and when passing this STG to petrify, the following
STG is returned:

Figure 23 shows a much less convoluted STG, with the same
functionality, but with the transitive arcs removed. Comparing
the FSM in Figure 21 and the STG in Figure 23, we can see
that the models look very similar for this scenario. We can
see that under voltage is corrected by turning off the n-type
transistor, and when this is acknowledge, the p-type transistor
is switched on, which when is acknowledged can allow the uv
signal to go low when the voltage has returned to a normal
level. Over current is corrected by, quite oppositely, switching
the p-type transistor off and the n-type transistor on when the
acknowledge signal shows the p-type transistor is off. When
the circuit returns to normal, oc can drop low which returns
the model to it’s initial state.

D. UV before ZC composition

With involvement from the zero crossing signal, we can
now see how this changes the models, as it involves some
concurrency which adds to the complexity of the models.
For this and the final scenario, I will use STG models post
resynthesis.

UV before ZC models, shown in Figure 24 and 25, show
a large difference between the models and how they work.
Both feature the same functionality; when uv signals, the n-
type transistor is switched off, and following this the p-type
transistor is switched on. Concurrently, zc goes high and then
low, which must occur before uv can go low again. The over
current signal is corrected in the same way as the previous
scenario.

The concurrency is modeled entirely differently in both of
these models, without changing the functionality. The FSM
shows zc’s transitions as possible during the gn, gn_ack, gp
and gp_ack transitions to correct under voltage, which can
happen at any point during this set of transitions, and therefore
every state has the possibilities of zc transitions, or continuing
to correct under voltage. Note that there are several states
labeled with ’A’ or ’B’, which shows the CSC conflicts within
this model. While this is an issue for a perfect working model,
CSC is corrected during the synthesis step, which will be
covered in a later section.

Signal Transition Graphs model concurrency rather than
considering possibilities of transition orders, but by showing
transitions in parallel, and using arcs to show which transitions
must have happened before the next can, for example, the arc
from gp_ack+ to uv- and the arc from zc- to uv- shows that
both gp_ack+ and zc- must have occur before uv- can. Overall,
STGs make for a much easier to understand model than that
of an equivalent FSM when concurrency is involved.

E. UV after ZC composition

As with the previous scenario, the concurrent zero crossing
involvement will cause differences between the FSM and STG
models, but in this case there are two concurrent sets which
involve a join between them.

Figures 26 and 27 are the models for UV after ZC. Again,
both these models have the same functionality, but obviously
represent it in different ways. Note that zc is the first signal
which signals from the initial state, as required for this sce-
nario. When this does signal, it switches the n-type transistor
off, by setting gn low and waiting for the acknowledge of this,
then concurrently, uv can signal, which must occur before gp
can be set high and switch on the p transistor, which then must
be acknowledged, as well as zc going low before under voltage
can go low, signaling that under voltage has been corrected.
Over current is corrected in the same way as the previous
scenarios.

While much less convoluted, the FSM still has to account
for several possibilities of signal transition orders, so when
zc signals, it must be accounted for that, while the n-type
transistor is being switched off, at some point uv will signal. gp
will be set high only when the n-type transistor is signaled as
off by gn_ack, and uv is high. The second set of concurrency
shows that zc must go low and gp_ack must signal that
the p-type transistor is on before uv can go low, but again
these signals can transition in any order, which needs to be
accounted for.

Because of the way STGs represent concurrency, Figure
27 doesn’t have to account for signal order, it simply shows
that, once zero crossing signals, that the n-type transistor will
be switched off, and uv can also signal in parallel with this.
gn_ack must be low and uv must be high before gp can be
set high, and then in either order, zc must go low and gp_ack
must be high before uv will be set low.

These two smaller concurrent sets have a join in the middle,
which again shows an important difference between Finite
State Machines and Signal Transition Graphs, which is that



9

Figure 21. Full FSM model for UV without ZC

Figure 22. Full STG model for UV without ZC

Figure 23. Full STG model for UV without ZC after resynthesis

the way they represent transitions and concurrency causes two
rather different looking models, without affecting the actual
functionality of these functions.

VI. COMBINE SCENARIOS & FULL MODEL

With the scenarios all fully composed and correctly repre-
senting the functions we require from these scenarios, we can
now move onto the next step of design, which is to combine
these scenario models to create a full system model.

For combining these models, we can again automate the
process using software tools. As with composition there is no
tool to combine FSMs in this manner as of yet, however it is
possible because the start states are the same, and therefore
we can look at the following arcs and states and use their
behaviors to determine how they will be connected in the full
system model. Obviously in this example there are issues with
CSC conflicts, and this will only increase in the full system
model, but by judging the state behaviors, we can tell which
scenario they are part of and keep them separated from each

other, rather than have one state with all possible arcs to and
from it, which would cause the scenarios to be connected, and
functions to mix and not perform the tasks we require.

The full system FSM model, as seen in Figure 28, contains
the under voltage elements from all three scenarios separated,
but only one for the over current branch. This is because
over current is corrected in the exact same ways in all three
scenarios and therefore these can be combined. Viewing the
state labels for the under voltage branches shows that there
are several CSC conflicts, including some stats with labels
’D’. This is due to there being many states with the same
labels, but different behaviors. Clearly there are huge issues
with this model and CSC conflicts, but certain tools, such as
Petrify can cope with CSC conflicts in order to synthesize the
model correctly.

The STG model can be combined using Petrify, which
will combine the scenarios together and look to remove any
redundancies in the system, while keeping its requirements,
and allowing only one scenario to be active at once.



10

Figure 24. Full FSM model for UV before ZC

Figure 25. Full STG model for UV before ZC after resynthesis

Figure 26. Full FSM model for UV after ZC

Figure 29 is the full STG for this system. As with the FSM
you can see the three separate scenarios with the under voltage
branches, and that there is only one branch for over current,
again due to its similarity between scenarios, it has been
combined. The combination process has added two places,
which allow one token each. The left most place contains a
token, as this is an initial state, and it allows only one of the
three under voltage scenarios to be active at any time. No
CSC conflicts can be seen in this model, which helps with
understanding it when viewing the model.

With these models completed, and functioning correctly we
can now move on to the final steps.

VII. SYNTHESIS AND CIRCUIT

The two models can now be synthesized to find a complex
gate implementation can be acquired which will be used in
the actual device. Synthesis is the process of breaking down
a model into working regions, and from this, calculating the
logic necessary so the input signals cause the correct output
signals[5]. Various software tools can be used to synthesize
the circuit, and for the models in this example, I chose to
use Petrify, as both model types, Finite State Machines and
Signal Transition Graphs, can be implemented in the format
(*.g files) used with Petrify, and a gate implementation can be
found.

With both of the models used in this system, the same circuit



11

Figure 27. Full STG model for UV after ZC after resynthesis

Figure 28. Full system FSM model

Figure 29. Full system STG model

implementation is found using Petrify. It includes the gates
necessary to use the inputs uv, oc, zc, gp_ack and gn_ack,
and output gp and gn.

Figure 30. Complex gate implementation of both FSM and STG models [10]

VIII. CONCLUSIONS & FUTURE WORK

It has been shown that it is possible to use smaller fragments
describing signal requirements of a system, which are modeled
themselves, in order to create models for scenarios of the
system, and from this, create a full model which can be
synthesized for a circuit implementation to be used in a device.
This could make developing models for a larger system less
complicated, by reusing fragments, and ensuring that certain
protocols are present throughout a system, which again can
help to eliminate errors and consequently, design time.

While the methods described to automate some processes
with FSMs do not yet exist, the methods are implementable.
And while the process will work with FSMs, they are still
somewhat complex when concurrency is involved. STGs
would be the preferred method of composing a system from
fragments with this example, but certain examples may be



12

better suited to use FSMs, and this method could be applied
to various other modeling systems.

A third modeling method exists, knows as Conditional
Partial Order Graphs (CPOG) [8], [6]. CPOGs have methods
of composition built into Workcraft [9], and in the future I
plan to use CPOGs, as well as FSMs and STGs, in order to
compare the three methods and their usage when designing
models from fragments.

REFERENCES

[1] Arseniy Alekseyev. Compositional approach to design of digital cir-
cuits. Technical report, School of Electrical and Electronic Engineering,
Newcastle University, 2014.

[2] Arseniy Alekseyev, Victor Khomenko, Andrey Mokhov, Dominic Wist,
and Alex Yakovlev. Improved parallel composition of labelled petri
nets. In Application of Concurrency to System Design (ACSD), 2011
11th International Conference on, pages 131–140. IEEE, 2011.

[3] Arseniy Alekseyev, Ivan Poliakov, Victor Khomenko, and Alex
Yakovlev. Optimisation of balsa control path using stg resynthesis.

[4] Michael A. Arbib. Theories of Abstract Automata (Automatic Compu-
tation).

[5] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Logic Synthesis for Asynchronous Controllers and In-
terfaces. Springer, 2002.

[6] Andrey Mokhov. Conditional Partial Order Graphs. PhD thesis, PhD
thesis, Newcastle University, 2010.

[7] Andrey Mokhov, Maxim Rykunov, Danil Sokolov, and Alex Yakovlev.
Design of processors with reconfigurable microarchitecture. Journal of
Low Power Electronics and Applications, 4(1):26–43, 2014.

[8] Andrey Mokhov and Alex Yakovlev. Conditional partial order graphs:
Model, synthesis, and application. IEEE Transactions on Computers,
59(11):1480–1493, 2010.

[9] Ivan Poliakov, Danil Sokolov, and Andrey Mokhov. Workcraft: A static
data flow structure editing, visualisation and analysis tool. Petri Nets
and Other Models of Concurrency–ICATPN 2007, pages 505–514, 2007.

[10] Danil Sokolov, Andrey Mokhov, Alex Yakovlev, and David Lloyd.
Towards asynchronous power management. In 2014 IEEE Faible Tension
Faible Consommation (FTFC), pages 1–4. IEEE, 2014.

[11] Fei Xia, Andrey Mokhov, Yu Zhou, Yuan Chen, Isi Mitrani, Delong
Shang, Danil Sokolov, and Alex Yakovlev. Towards power-elastic
systems through concurrency management. Computers & Digital Tech-
niques, IET, 6(1):33–42, 2012.

[12] Alexandre V Yakovlev, Albert M Koelmans, and Luciano Lavagno.
High-level modeling and design of asynchronous interface logic. IEEE
Design & Test of Computers, 12(1):32–40, 1995.


