
µSystems Research Group

School of Electrical and Electronic Engineering

Algebra of Parameterised Graphs

Andrey Mokhov, Victor Khomenko

Technical Report Series

NCL-EEE-MICRO-TR-2015-195

July 2014

Contact: andrey.mokhov@ncl.ac.uk, victor.khomenko@ncl.ac.uk

Supported by EPSRC grants EP/I038357/1 (eFuturesXD, project POWERPROP) and EP/K001698/1 (UN-
COVER).

NCL-EEE-MICRO-TR-2015-195
Copyright © 2015 Newcastle University

µSystems Research Group
School of Electrical and Electronic Engineering
Merz Court
Newcastle University
Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

143

Algebra of Parameterised Graphs

Andrey Mokhov, School of Electrical and Electronic Engineering, Newcastle University, UK
Victor Khomenko, School of Computing Science, Newcastle University, UK

One of the difficulties in designing modern hardware systems is the necessity to comprehend and to deal
with a very large number of system configurations, operational modes, and behavioural scenarios. It is often
infeasible to consider and specify each individual mode explicitly, and one needs methodologies and tools
to exploit similarities between the individual modes and work with groups of modes rather than individual
ones. The modes and groups of modes have to be managed in a compositional way: the specification of the
system should be composed from specifications of its blocks. This includes both structural and behavioural
composition. Furthermore, one should be able to transform and optimise the specifications in a formal way.

In this paper we propose a new formalism, called Parameterised Graphs. It extends the existing Condi-
tional Partial Order Graphs (CPOGs) formalism in several ways. First, it deals with general graphs rather
than just partial orders. Moreover, it is fully compositional. To achieve this we introduce an algebra of Pa-
rameterised Graphs by specifying the equivalence relation by a set of axioms, which is proved to be sound,
minimal and complete. This allows one to manipulate the specifications as algebraic expressions using the
rules of this algebra. We demonstrate the usefulness of the developed formalism on several case studies
coming from the area of microelectronics design.

Categories and Subject Descriptors: G.2.2 [Mathematics of Computing]: Graph Theory

General Terms: Theory, Design, Synthesis

Additional Key Words and Phrases: Parameterised Graphs, Conditional Partial Order Graphs, Switching
Networks, Transistor Networks, Microelectronics, Instruction Set Architecture

1. INTRODUCTION
While the complexity of modern hardware exponentially increases due to Moore’s law,
the time-to-market is reducing. The number of available transistors on chip exceeds
the capabilities of designers to meaningfully use them: this design productivity gap is
a major challenge in the microelectronics industry [ITRS 2011]. One of the difficulties
of the design is the necessity to comprehend and to deal with a very large number of
system configurations, operational modes, and behavioural scenarios. The contempo-
rary systems often have abundant functionality and enjoy features like fault-tolerance,
dynamic reconfigurability [Mokhov et al. 2014], and power management [Xia et al.
2012], all of which greatly increase the number of possible modes of operation. Hence,
it is often infeasible to consider and specify each individual mode explicitly, and one
needs methodologies and tools to exploit similarities between the individual modes
and work with groups of modes rather than individual ones. The modes and groups
of modes have to be managed in a compositional way: the specification of the system
should be composed from specifications of its blocks. This includes both structural and
behavioural composition. Furthermore, one should be able to transform and optimise
the specifications in a formal way.

A traditional way to achieve compositionality is to define an algebra. Many alge-
bras have been proposed on various behavioural and structural models, e.g. composi-
tions of graphs [Bauderon and Courcelle 1987; Eppstein 1992; Gadducci and Heckel
1998], an algebra for network routing problems [Carré 1971], automata composi-
tions [Gécseg 1974], Petri Net algebra [Best et al. 2001], algebra for delay-insensitive
circuits [Josephs and Udding 1993], and numerous process algebrae like CSP [Hoare
1978], CCS [Milner 1982] and π-calculus [Milner et al. 1992]. The key difference of
our approach is the way it uses parameters to capture many variants of a system in
one model. We build on the work started in [Mokhov and Yakovlev 2010], where a
formal model, called Conditional Partial Order Graphs (CPOGs), was introduced. It

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

143:2 A. Mokhov and V. Khomenko

allowed to represent individual system configurations and operational modes as anno-
tated graphs, and to overlay them exploiting their similarities. However, the formalism
lacked the compositionality and the ability to compare and transform the specifications
in a formal way. In particular, CPOGs always represented the specification as a ‘flat’
structure (similar to the canonical form defined in Section 2), hence a hierarchical rep-
resentation of a system as a composition of its components was not possible. We extend
this formalism in several ways:

(1) We move from the graphs representing partial orders to general graphs. Neverthe-
less, if partial orders are the most natural way to represent a certain aspect of a
system, this still can be handled.

(2) We handle both directed and undirected graphs.
(3) The new formalism is fully compositional.
(4) We describe the equivalence relation between the specifications as a set of axioms,

obtaining an algebra. This set of axioms is proved to be sound, minimal and com-
plete.

(5) The developed formalism allows one to manipulate the specifications as algebraic
expressions using the rules of the algebra. In a sense this can be viewed as adding
a syntactic level to the semantic representation of specifications, and is akin to the
relationship between digital circuits and Boolean algebra.

The paper is organised as follows. In Section 2 we introduce directed Parameterised
Graphs and operations thereon. In Section 3 we generalise the developed theory by
representing it in the form of an algebra, where the properties of the graph opera-
tions are formalised as axioms. In Section 4 we consider the transitive variant of this
algebra, where the graphs are considered equal if their transitive closures coincide.
This algebra is particularly suitable for modelling causal relationships. In Section 5
we introduce the versions of these two algebrae for undirected graphs. In Section 6 we
demonstrate the usefulness of the developed formalisms on three case studies from the
area of microelectronics design:

(1) Development of a phase encoding controller, which represents information by the
order of arrival of signals on nwires. As there are n! possible arrival orders, there is
a challenge to specify the set of corresponding behavioural scenarios in a compact
way. The proposed formalism not only allows to solve this problem, but also does
it in a compositional way, by obtaining the final specification as a composition of
fixed-size fragments describing the behaviours of pairs of wires (the latter was
impossible with CPOGs).

(2) Design of a microcontroller for a simple processor. The processor can execute sev-
eral classes of instructions, and each class is characterised by a specific execution
scenario of the operational units of the processor. In turn, the scenarios of con-
ditional instructions have to be composed of sub-scenarios corresponding to the
current value of the appropriate ALU flag. The overall specification of the micro-
controller is then obtained algebraically, by composing scenarios of each class of
instructions.

(3) Synthesis of a NAND gate as a transistor network, demonstrating thus the appli-
cation of an algebra of undirected graphs to switching networks.

2. PARAMETERISED GRAPHS
A Parameterised Graph (PG) is a model which has evolved from Conditional Partial
Order Graphs (CPOG) [Mokhov and Yakovlev 2010]. We consider directed graphs G =
(V,E) whose vertices are picked from the fixed alphabet of actions A = {a, b, ...}. Hence
the vertices of G would usually model actions (or events) of the system being designed,

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

Algebra of Parameterised Graphs 143:3

a cb

(a) Graph G1

d

(b) Graph G2

a

d

cb

(c) Graph G1 +G2

a

d

cb

(d) Graph G1 → G2

Fig. 1: Overlay and sequence example (no common vertices)

d

ba

(a) Graph G1

d

cb

(b) Graph G2

a

d

cb

(c) Graph G1 +G2

a

d

c
b

(d) Graph G1 → G2

Fig. 2: Overlay and sequence example (common vertices)

while the arcs would usually model the precedence or causality relation: if there is an
arc going from a to b then action a precedes action b. We will denote the empty graph
(∅, ∅) by ε and the singleton graphs ({a}, ∅) simply by a, for any a ∈ A.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, where V1 and V2 as well as E1

and E2 are not necessarily disjoint. We define the following operations on graphs (in
the order of increasing precedence):

Overlay: G1 +G2
df
= (V1 ∪ V2, E1 ∪ E2).

Sequence: G1 → G2
df
= (V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2).

Condition: [1]G
df
= G and [0]G

df
= ε.

In other words, the overlay + and sequence→ are binary operations on graphs with the
following semantics: G1+G2 is a graph obtained by overlaying graphs G1 and G2, i.e. it
contains the union of their vertices and arcs, while graph G1 → G2 contains the union
plus the arcs connecting every vertex from graph G1 to every vertex from graph G2

(self-loops can be formed in this way if V1 and V2 are not disjoint). From the behavioural
point of view, if graphs G1 and G2 correspond to two systems then G1 +G2 corresponds
to their parallel composition and G1 → G2 corresponds to their sequential composition.
One can observe that any non-empty graph can be obtained by successively applying
the operations + and→ to the singleton graphs: G =

∑
(u,v)∈E u→ v.

Fig. 1 shows an example of two graphs together with their overlay and sequence.
One can see that the overlay does not introduce any dependencies between the ac-
tions coming from different graphs, therefore they can be executed concurrently. On
the other hand, the sequence operation imposes the order on the actions by introduc-
ing new dependencies between actions a, b and c coming from graph G1 and action d
coming from graph G2. Hence, the resulting system behaviour is interpreted as the be-
haviour specified by graphG1 followed by the behaviour specified by graphG2. Another
example of system composition is shown in Fig. 2. Since the graphs have common ver-
tices, their compositions are more complicated, in particular, their sequence contains
the self-dependencies (b, b) and (d, d) which lead to a deadlock in the resulting system:
action a can occur, but all the remaining actions are locked.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

143:4 A. Mokhov and V. Khomenko

Given a graph G, the unary condition operations can either preserve the graph (true
condition [1]G) or nullify it (false condition [0]G). They should be considered as a family
{[b]}b∈B of operations parameterised by a Boolean value b.

Having defined the basic operations on the graphs, one can build graph expressions
using these operations, the empty graph ε, the singleton graphs a ∈ A, and the Boolean
constants 0 and 1 (as the parameters of the conditional operations) — much like the
usual arithmetical expressions. We now consider replacing the Boolean constants with
Boolean variables or general predicates (this step is akin going from arithmetic to
algebraic expressions). The value of such an expression depends on the values of its
parameters, and so we call such an expression a parameterised graph (PG).

One can easily prove the following properties of the operations introduced above.

Properties of overlay:

• Identity:
G+ ε = G

• Commutativity:
G1 +G2 = G2 +G1

• Associativity:
(G1 +G2) +G3 = G1 + (G2 +G3)

Properties of sequence:

• Left and right identity:
ε→ G = G
G→ ε = G

• Associativity:
(G1 → G2)→ G3 = G1 → (G2 → G3)

Other properties:

• Left and right distributivity:
G1 → (G2 +G3) = G1 → G2 +G1 → G3

(G1 +G2)→ G3 = G1 → G3 +G2 → G3

• Decomposition:

G1 → G2 → G3 = G1 → G2 +G1 → G3 +G2 → G3

Properties involving conditions:

• Conditional ε:
[b]ε = ε

• Conditional overlay and sequence:
[b](G1 +G2) = [b]G1 + [b]G2

[b](G1 → G2) = [b]G1 → [b]G2

• AND-condition and OR-condition:
[b1 ∧ b2]G = [b1][b2]G
[b1 ∨ b2]G = [b1]G+ [b2]G

• Condition regularisation:

[b1]G1 → [b2]G2 = [b1]G1 + [b2]G2 + [b1 ∧ b2](G1 → G2)

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

Algebra of Parameterised Graphs 143:5

Now, due to the above properties of the operators, it is possible to define the following
canonical form of a PG. In the proof below, we call a singleton graph, possibly prefixed
with a condition, a literal.

PROPOSITION 2.1 (CANONICAL FORM OF A PG). Any PG can be rewritten in the
following canonical form:(∑

v∈V
[bv]v

)
+

 ∑
u,v∈V

[buv](u→ v)

 , (1)

where:

(1) V is a subset of singleton graphs that appear in the original PG;
(2) for all v ∈ V , bv are canonical forms of Boolean expressions and are distinct from 0;
(3) for all u, v ∈ V , buv are canonical forms of Boolean expressions such that buv⇒bu∧bv.

PROOF. (i) First we prove that any PG can be converted to the form (1).
All the occurrences of ε in the expression can be eliminated by the identity and con-

ditional ε properties (unless the whole PG equals to ε, in which case we take V = ∅). To
avoid unconditional subexpressions, we prefix the resulting expression with ‘[1]’, and
then by the conditional overlay/sequence properties we propagate all the conditions
that appear in the expression down to the singleton graphs (compound conditions can
be always reduced to a single one by the AND-condition property). By the decompo-
sition and distributivity properties, the expression can be rewritten as an overlay of
literals and subexpressions of the form l1 → l2, where l1 and l2 are literals. The latter
subexpressions can be rewritten using the condition regularisation rule:

[b1]u→ [b2]v = [b1]u+ [b2]v + [b1 ∧ b2](u→ v)

Now, literals corresponding to the same singleton graphs, as well as subexpressions
of the form [b](u → v) that correspond to the same pair of singleton graphs u and
v, are combined using the OR-condition property. Then the literals prefixed with 0
conditions can be dropped. Now the set V consists of all the singleton graphs occurring
in the literals. To turn the overall expression into the required form it only remains
to add missing subexpressions of the form [0](u → v) for every u, v ∈ V such that the
expression does not contain the subexpression of the form [b](u → v). Note that the
property buv ⇒ bu ∧ bv is always enforced by this construction:

• condition regularisation ensures this property;
• combining literals using the OR-condition property can only strengthen the right
hand side of this implication, and so cannot violate it;
• adding [0](u→ v) does not violate the property as it trivially holds when buv = 0.

(ii) We now show that (1) is a canonical form, i.e. if L = R then their canonical forms
can(L) and can(R) coincide.

For the sake of contradiction, assume this is not the case. Then we consider two
cases (all possible cases are symmetric to one of these two):

(1) can(L) contains a literal [bv]v whereas can(R) either contains a literal [b′v]v with
b′v 6≡ bv or does not contain any literal corresponding to v, in which case we say that
it contains a literal [b′v]v with b′v = 0. Then for some values of parameters one of the
graphs will contain vertex v while the other will not.

(2) can(L) and can(R) have the same set V of vertices, but can(L) contains a subex-
pression [buv](u → v) whereas can(R) contains a subexpression [b′uv](u → v) with
b′uv 6≡ buv. Then for some values of parameters one of the graphs will contain the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

143:6 A. Mokhov and V. Khomenko

arc (u, v) (note that due to buv ⇒ bu ∧ bv and b′uv ⇒ bu ∧ bv vertices u and v are
present), while the other will not.

In both cases there is a contradiction with L = R.

This canonical form allows one to lift the notion of adjacency matrix of a graph to PGs.
Recall that the adjacency matrix (buv) of a graph (V,E) is a |V | × |V | Boolean matrix
such that buv = 1 if (u, v) ∈ E and buv = 0 otherwise. The adjacency matrix of a PG
is obtained from the canonical form (1) by gathering the predicates buv into a matrix.
The adjacency matrix of a PG is similar to that of a graph, but it contains predicates
rather than Boolean values. It does not uniquely determine a PG, as the predicates
of the vertices cannot be derived from it; to fully specify a PG one also has to provide
predicates bv from the canonical form (1).

Another advantage of this canonical form is that it provides a graphical notation for
PGs. The vertices occurring in the canonical form (set V) can be represented by circles,
and the subexpressions of the form u → v by arcs. The label of a vertex v consists of
the vertex name, colon and the predicate bv, while every arc (u, v) is labelled with the
corresponding predicate buv. As adjacency matrices of PGs tend to have many constant
elements, we use a simplified notation in which the arcs with constant 0 predicates are
not drawn, and constant 1 predicates are dropped; moreover, it is convenient to assume
that the predicates on arcs are implicitly ANDed with those on incident vertices (to
enforce the invariant buv ⇒ bu ∧ bv), which often allows one to simplify predicates
on arcs. This can be justified by introducing the ternary operator, called conditional
sequence:

u
b−→ v

df
= [b](u→ v) + u+ v

Intuitively, PG u
b−→ v consists of two unconditional vertices connected by an arc with

the condition b. By case analysis on b1 and b2 one can easily prove the following prop-
erties of the conditional sequence that allow simplifying the predicates on arcs:

[b1]u
b1∧b2−−−→ v = [b1]u

b2−→ v

u
b1∧b2−−−→ [b2]v = u

b1−→ [b2]v

Fig. 3(top) shows an example of a PG. The predicates depend on a Boolean variable x.
The predicates of vertices a, b and d are constants 1; such vertices are called uncondi-
tional. Vertices c and e are conditional, and their predicates are x and x, respectively.
Arcs also fall into two classes: unconditional, i.e. those whose predicate and the pred-
icates of their incident vertices are constants 1, and conditional (in this example, all
the arcs are conditional).

A specialisation H|p of a PG H under predicate p is a PG, whose predicates are sim-
plified under the assumption that p holds. If H specifies the behaviour of the whole
system, H|p specifies the part of the behaviour that can be realised under condition p.
An example of a graph and its two specialisations is presented in Fig. 3. The left-
most specialisation H|x is obtained by removing from the graph those vertices and
arcs whose predicates evaluate to 0 under condition x, and simplifying the other pred-
icates. Hence, vertex e and arcs (a, d), (a, e), (b, d) and (b, e) disappear, and all the other
vertices and arcs become unconditional. The rightmost specialisation H|x is obtained
analogously. Each of the obtained specialisations can be regarded as a specification
of a particular behavioural scenario of the modelled system, e.g. as specification of a
processor instruction.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

Algebra of Parameterised Graphs 143:7

a

d

b

c: x e: x
_

a

d

b

c

a

d

b

e

x
_

x
_

x x
_

Fig. 3: PG specialisations: H|x and H|x

2.1. Specification and composition of instructions
Consider a processing unit that has two registers, A and B, and can perform two dif-
ferent instructions: addition and exchange of two variables stored in memory. The pro-
cessor contains five datapath components (denoted by a . . . e) that can perform the fol-
lowing atomic actions:

a) Load register A from memory;
b) Load register B from memory;
c) Compute the sum of the numbers stored in registers A and B, and store it in A;
d) Save register A into memory;
e) Save register B into memory.

Table I describes the addition and exchange instructions in terms of usage of these
atomic actions.

The addition instruction consists of loading the two operands from memory (causally
independent actions a and b), their addition (action c), and saving the result (action d).
Let us assume for simplicity that in this example all causally independent actions are
always performed concurrently, see the corresponding scenario ADD in the table.

The operation of exchange consists of loading the operands (causally independent
actions a and b), and saving them into swapped memory locations (causally indepen-
dent actions d and e), as captured by the XCHG scenario. Note that in order to start
saving one of the registers it is necessary to wait until both of them have been loaded
to avoid overwriting one of the values.

One can see that the two scenarios in Table I appear to be the two specialisations
of the PG shown in Fig. 3, thus this PG can be considered as a joint specification of
both instructions. Two important characteristics of such a specification are that the
common events {a, b, d} are overlaid, and the choice between the two operations is
modelled by the Boolean predicates associated with the vertices and arcs of the PG. As
a result, in our model there is no need for a ‘nodal point’ of choice, which tend to appear

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

143:8 A. Mokhov and V. Khomenko

Instruction Addition Exchange
a) Load A a) Load A

Action b) Load B b) Load B
sequence c) Add B to A d) Save A

d) Save A e) Save B

Execution

a

d

b

c

a

d

b

e

scenario
with maximum

concurrency

ADD XCHG

Table I: Two instructions specified as partial orders

in alternative specification models: a Petri Net (resp. Finite State Machine) would
have an explicit choice place (resp. state), and a specification written in a Hardware
Description Language would describe the two instructions by two separate branches
of a conditional statement if or case [de Micheli 1994].

The PG operations introduced above allow for a natural specification of the system
as a collection of its behavioural scenarios, which can share some common parts. For
example, in this case the overall system is composed as

H = [x]ADD + [x]XCHG = [x]((a+ b)→ c+ c→ d) + [x]((a+ b)→ (d+ e)). (2)

Such specifications can often be simplified using the properties of graph operations.
The next section describes the equivalence relation between the PGs with a set of
axioms, thus obtaining an algebra.

3. ALGEBRA OF PARAMETERISED GRAPHS
In this section we define the algebra of parameterised graphs (PG-algebra).

PG-algebra is a tuple 〈G,+,→, [0], [1]〉, where G is a set of graphs whose vertices are
picked from the alphabet A and the operations parallel those defined for graphs above.
The equivalence relation is given by the following axioms:

• + is commutative and associative
• → is associative
• ε is a left and right identity of→
• → distributes over +:

p→ (q + r) = p→ q + p→ r
(p+ q)→ r = p→ r + q → r

• Decomposition:

p→ q → r = p→ q + p→ r + q → r

• Condition: [0]p = ε and [1]p = p

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

Algebra of Parameterised Graphs 143:9

The following derived equalities can be proved from PG-algebra axioms [Mokhov
et al. 2011, Prop. 2, 3]:

• ε is an identity of +: p+ ε = p

• + is idempotent: p+ p = p

• Left and right absorption:

p+ p→ q = p→ q
q + p→ q = p→ q

• Conditional ε: [b]ε = ε

• Conditional overlay and sequence:

[b](p+ q) = [b]p+ [b]q
[b](p→ q) = [b]p→ [b]q

• AND-condition and OR-condition:
[b1 ∧ b2]p = [b1][b2]p
[b1 ∨ b2]p = [b1]p+ [b2]p

• Choice propagation:

[b](p→ q) + [b](p→ r) = p→ ([b]q + [b]r)
[b](p→ r) + [b](q → r) = ([b]p+ [b]q)→ r

• Condition regularisation:

[b1]p→ [b2]q = [b1]p+ [b2]q + [b1 ∧ b2](p→ q)

Note that as ε is a left and right identity of→ and +, there can be no other identities for
these operations. Interestingly, unlike many other algebrae, the two main operations
in the PG-algebra have the same identity.

It is easy to see that PGs are a model of PG-algebra, as all the axioms of PG-algebra
are satisfied by PGs; in particular, this means that PG-algebra is sound. Moreover,
any PG-algebra expression has the canonical form (1), as the proof of Prop. 2.1 can be
directly imported:

• It is always possible to translate a PG-algebra expression to this canonical form, as
part (i) of the proof relies only on the properties of PGs that correspond to either
PG-algebra axioms or equalities above.

• If L = R holds in PG-algebra then L = R holds also for PGs (as PGs are a model of
PG-algebra), and so the PGs can(L) and can(R) coincide, see part (ii) of the proof.
Since PGs can(L) and can(R) are in fact the same objects as the expressions can(L)
and can(R) of the PG-algebra, (1) is a canonical form of a PG-algebra expression.

This also means that PG-algebra is complete w.r.t. PGs, i.e. any PG equality can be
either proved or disproved using the axioms of PG-algebra (by converting to the canon-
ical form).

The provided set of axioms of PG-algebra is minimal, i.e. no axiom from this set can
be derived from the others. The minimality was checked by enumerating the fixed-size
models of PG-algebra with the help of the ALG tool [Bizjak and Bauer 2011]: It turns
out that removing any of the axioms leads to a different number of non-isomorphic
models of a particular size, implying that all the axioms are necessary.

Hence, the following result holds:

THEOREM 3.1 (SOUNDNESS, MINIMALITY AND COMPLETENESS). The set of ax-
ioms of PG-algebra is sound, minimal and complete w.r.t. PGs.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

143:10 A. Mokhov and V. Khomenko

4. TRANSITIVE PARAMETERISED GRAPHS AND THEIR ALGEBRA
In many cases the arcs of the graphs are interpreted as the causality relation, and so
the graph itself is a partial order. However, in practice it is convenient to drop some
or all of the transitive arcs, i.e. two graphs should be considered equal whenever their
transitive closures are equal. E.g. in this case the graphs specified by the expressions
a → b + b → c and a → b + a → c + b → c are considered as equal. PGs with this
equality relation are called Transitive Parameterised Graphs (TPG). To capture this
algebraically, we augment the PG-algebra with the Closure axiom:

if q 6= ε then p→ q + q → r = p→ q + p→ r + q → r.

One can see that by repeated application of this axiom one can obtain the transitive
closure of any graph, including those with cycles. The resulting algebra is called Tran-
sitive Parameterised Graphs Algebra (TPG-algebra).

Note that the condition q 6= ε in the Closure axiom is necessary, as otherwise

a+ b = a→ ε+ ε→ b = a→ ε+ a→ b+ ε→ b = a→ b,

and the operations + and→ become identical, which is clearly undesirable.
The Closure axiom helps to simplify specifications by reducing the number of arcs

and/or simplifying their conditions. For example, consider the PG expression (2). As the
scenarios of this PG are interpreted as the orders of execution of actions, it is natural
to use the Closure axiom. Note that the expression cannot be simplified in PG-algebra;
however, in the TPG-algebra it can be considerably simplified:

[x]((a+ b)→ c+ c→ d) + [x]((a+ b)→ (d+ e)) = (closure)
[x]((a+ b)→ c+ (a+ b)→ d+ c→ d) + [x]((a+ b)→ (d+ e)) = (decomposition)

[x]((a+ b)→ c→ d) + [x]((a+ b)→ (d+ e)) = (choice propagation)
(a+ b)→ ([x](c→ d) + [x](d+ e)) = (conditional overlay)

(a+ b)→ ([x](c→ d) + [x]d+ [x]e) = (→ −identity)
(a+ b)→ ([x](c→ d) + [x](ε→ d) + [x]e) = (choice propagation)

(a+ b)→ (([x]c+ [x]ε)→ d+ [x]e) = (conditional ε, identity)
(a+ b)→ ([x]c→ d+ [x]e).

The corresponding TPG is shown in Fig. 4. Note that it has fewer conditional ele-
ments than the PG in Fig. 3; though the specialisations are now different, they have
the same transitive closures.

We now lift the canonical form (1) to TPGs and TPG-algebra. Note that the only
difference is the last requirement.

PROPOSITION 4.1 (CANONICAL FORM OF A TPG). Any TPG can be rewritten in the
following canonical form:(∑

v∈V
[bv]v

)
+

 ∑
u,v∈V

[buv](u→ v)

 , (3)

where:

(1) V is a subset of singleton graphs that appear in the original TPG;
(2) for all v ∈ V , bv are canonical forms of Boolean expressions and are distinct from 0;
(3) for all u, v ∈ V , buv are canonical forms of Boolean expressions such that buv⇒bu∧bv;
(4) for all u, v, w ∈ V , buv ∧ bvw ⇒ buw.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

Algebra of Parameterised Graphs 143:11

a

d

b

c: x e: x
_

a

d

b

c

a

d

b

e

x x
_

Fig. 4: The PG from Fig. 3 simplified using the Closure axiom, together with its spe-
cialisations

PROOF. (i) First we prove that any TPG can be converted to the form (3).
We can convert the expression into the canonical form (1), which satisfies the re-

quirements 1–3. Then we iteratively apply the following transformation, while pos-
sible: If for some u, v, w ∈ V , buv ∧ bvw ⇒ buw does not hold (i.e. requirement 4
is violated), we replace the subexpression [buw](u → w) with [bnewuw](u → w) where
bnewuw

df
= buw ∨ (buv ∧ bvw). Observe that after this the requirement 4 will hold for u, v and

w, and the requirement 3 remains satisfied, i.e. bnewuw ⇒ bu ∧ bw due to buv ⇒ bu ∧ bv,
bvw ⇒ bv ∧ bw and buw ⇒ bu ∧ bw. Moreover, the resulting expression will be equivalent
to the one before this transformation due to the following equality (see [Mokhov et al.
2011] for the proof):

if v 6= ε then [buv](u→ v) + [bvw](v → w) =
= [buv](u→ v) + [bvw](v → w) + [buv ∧ bvw](u→ w).

This iterative process converges, as there can be only finitely many expressions of
the form (3) (recall that we assume that the predicates within the conditional operators
are always in some canonical form), and each iteration replaces some predicate buw
with a greater one bnewuw , in the sense that buv strictly subsumes bnewuw (i.e. buw ⇒ bnewuw
and buw 6≡ bnewuw always hold), i.e. no predicate can be repeated during these iterations.

(ii) We now show that (3) is a canonical form, i.e. if L = R then their canonical forms
can(L) and can(R) coincide.

For the sake of contradiction, assume this is not the case. Then we consider two
cases (all possible cases are symmetric to one of these two).

(1) can(L) contains a literal [bv]v whereas can(R) either contains a literal [b′v]v with
b′v 6= bv or does not contain any literal corresponding to v, in which case we say that
it contains a literal [b′v]v with b′v = 0. Then for some values of parameters one of the
graphs will contain vertex v while the other will not.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

143:12 A. Mokhov and V. Khomenko

(2) can(L) and can(R) have the same set V of vertices, but can(L) contains a subexpres-
sion [buv](u→ v) and can(R) contains a subexpression [b′uv](u→ v) with b′uv 6≡ buv.
Then for some values of parameters one of the graphs will contain the arc (u, v)
while the other will not. Since the transitive closures of the graphs must be the
same due to can(L) = L = R = can(R), the other graph must contain a path
t1t2 . . . tn where u = t1, v = tn and n ≥ 3; w.l.o.g., we assume that t1t2 . . . tn is a
shortest such path. Hence, the canonical form (1) would contain the subexpres-
sions [btiti+1](ti → ti+1), i = 1 . . . n−1, and moreover

∧n−1
i=1 btiti+1 6= 0 for the cho-

sen values of the parameters, and so
∧n−1
i=1 btiti+1

6≡ 0. But then the iterative pro-
cess above would have added to the canonical form the missing subexpression
[bt1t2 ∧ bt2t3](t1 → t3), as the corresponding predicates 6≡ 0. Hence, for the chosen
values of the parameters, there is an arc (t1, t3), contradicting the assumption that
t1t2 . . . tn is a shortest path between u and v.

In both cases there is a contradiction with L = R.

The process of constructing the canonical form (3) of a TPG from the canonical form (1)
of a PG corresponds to computing the transitive closure of the adjacency matrix. As
the entries of this matrix are predicates rather than Boolean values, this has to be
done symbolically. This is always possible, as each entry of the resulting matrix can
be represented as a finite Boolean expression depending on the entries of the original
matrix only.

By the same reasoning as in the previous section, we can conclude that the following
result holds.

THEOREM 4.2 (SOUNDNESS, MINIMALITY AND COMPLETENESS). The set of ax-
ioms of TPG-algebra is sound, minimal and complete w.r.t. TPGs.

4.1. Auxiliary vertices
It is often convenient to use auxiliary vertices in TPGs. We do not name such vertices
in our drawings, but they are assumed to have globally unique names. For example,
Fig. 5 shows two TPGs representing the same connectivity between named vertices.
Note that adding an unnamed intermediate vertex allows one to reduce the size of the
graph. Given a set of vertices S, η(S) will denote the subset of named vertices in S.

With auxiliary vertices the equivalence introduced in Section 3 needs to be amended
to take them into account.

Definition 4.3 (Equivalence with auxiliary vertices). Let p1 and p2 be two TPGs
with the following canonical forms:

p1 =

(∑
v∈V 1

[b1v]v

)
+

 ∑
u,v∈V 1

[b1uv](u→ v)

 , p2 =

(∑
v∈V 2

[b2v]v

)
+

 ∑
u,v∈V 2

[b2uv](u→ v)

 .

Then they are equivalent, p1 ∼ p2, iff ∑
v∈η(V 1)

[b1v]v

+

 ∑
u,v∈η(V 1)

[b1uv](u→ v)

 =

 ∑
v∈η(V 2)

[b2v]v

+

 ∑
u,v∈η(V 2)

[b2uv](u→ v)

 .

In other words, two TPGs in canonical form are equivalent if their subgraphs induced
by named vertices coincide. Note that the above definition uses the ‘=’ relation on TPGs
to compare the induced subgraphs, which in particular includes the Closure axiom.
However, the original TPGs are in canonical form (and thus are ‘transitive’), and one

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

Algebra of Parameterised Graphs 143:13

can observe that the induced subgraphs are in canonical form too. Hence, instead of
‘=’, one can simply use the PG (rather than TPG) equivalence. For example, the graphs
shown in Fig. 5 are equivalent according to this definition.

a

b

c

d

e

f

a

b

c

d

e

f

Fig. 5: Auxiliary vertices

5. UNDIRECTED GRAPHS AND THEIR ALGEBRAE
The (T)PGs and their algebrae have undirected counterparts, (T)UPGs and (T)UPG-
algebrae. To convert the directed algebrae to the undirected ones, it is enough to pos-
tulate the commutativity of the sequencing operator. To distinguish it from the non-
commutative operator → we will call it connection and denote it by , with the fol-
lowing axiom:

p q = q p.

In addition to this axiom, all the axioms of (T)PG-algebrae are also inherited by the
corresponding undirected algebrae. It turns out that the axiom of associativity of
becomes redundant. Indeed,

(p q) r = (decomposition)
p q + p r + q r = (commutativity of +,)
q r + q p+ r p = (decomposition)

(q r) p = (commutativity of)
p (q r).

All the other axioms are necessary as confirmed using the ALG tool [Bizjak and Bauer
2011].

As in the directed case, it is convenient to introduce the ternary conditional connec-
tion operator, as follows:

u
b
v

df
= [b](u v) + u+ v.

Note that the idea of auxiliary vertices and equivalence ∼ (Section 4.1) can be di-
rectly transferred to the TUPG case. A natural application of TUPGs is switching
networks [Mokhov 2015]. As an example, consider the switching networks shown in
Fig. 6. With TUPG-algebra it is possible to prove their equivalence formally. Indeed,
by the closure axiom, we have:

p
x
q + q

y
r = p

x
q + q

y
r + p

x ∧ y
r,

if q is an expression different from ε. Hence,
a x t+ b y t+ c z t =

a x t+ b y t+ c z t+ a x∧y b+ a x∧z c+ b y∧z c ∼
a x∧y b+ a x∧z c+ b y∧z c,

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

143:14 A. Mokhov and V. Khomenko

where t denotes the auxiliary vertex.

a

b c

x

y z

a

b cy z

x zx y

Fig. 6: Two equivalent switching networks (the well-known ∆-Y transformation, see
e.g. [Shannon 1938])

PROPOSITION 5.1 (CANONICAL FORM OF A (T)UPG). Any (T)UPG can be rewrit-
ten in the following canonical form:(∑

v∈V
[fv]v

)
+

 ∑
u,v∈V
u≤v

[fuv](u v)

 ,

where:

(1) V is a subset of singleton graphs that appear in the original (T)UPG, and ≤ is some
arbitrary total order on the alphabet of vertices;

(2) for all v ∈ V , fv are canonical forms of Boolean expressions and are distinct from 0;
(3) for all u, v ∈ V , u ≤ v, fuv are canonical forms of Boolean expressions such that

fuv ⇒ fu ∧ fv;
(4) for the TUPG case only: for all u, v, w ∈ V , fuv ∧ fvw ⇒ fuw (the transitivity require-

ment); for convenience, we assume fuv = fvu.

PROOF SKETCH. By replacing every occurrence of the connection operator in the
expression by the sequence operator→ we obtain a PG. We then compute the canonical
form as explained in the proof of Prop. 2.1.

For TUPG, in the resulting PG we replace each occurrence of [fuv](u → v) with
[fuv](u → v) + [fuv](v → u), and compute the transitive closure as described in the
proof of Prop. 4.1.

Now we replace every occurrence of → with and combine terms [fuv](u v) and
[fvu](v u) as follows:

[fuv](u v) + [fvu](v u) = (commutativity)
[fuv](u v) + [fvu](u v) = (OR-condition)

[fuv ∨ fvu](u v).

Assuming u ≤ v, this guarantees that the resulting (T)UPG has at most one term
corresponding to any pair of nodes u and v. One can now show that requirements (1)-
(4) are satisfied, as in the proofs of (T)PG cases.

By paralleling the reasoning for (T)PG-algebrae one can conclude that the following
result holds.

THEOREM 5.2 (SOUNDNESS, MINIMALITY AND COMPLETENESS). The sets of ax-
ioms of (T)UPG-algebrae are sound, minimal and complete w.r.t. (T)UPGs.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

Algebra of Parameterised Graphs 143:15

a

b

c

d

(a) Phase encoded data

Matrix
phase
encoder

v1v2

vn

x12x21
x13x31

x(n-1)nxn(n-1)

......

(b) Matrix phase encoder

Fig. 7: Multiple rail phase encoding

6. CASE STUDIES
In this section we consider several practical case studies from hardware synthesis.
The advantage of graph algebrae is that they allow for a formal and compositional
approach to system design. Moreover, using their rules one can formally manipulate
specifications, in particular, algebraically simplify them.

6.1. Phase encoders
This section demonstrates the application of PG-algebra to designing the multiple rail
phase encoding controllers [D’Alessandro et al. 2007]. They use several wires for com-
munication, and data is encoded by the order of occurrence of transitions in the com-
munication lines. Fig. 7(a) shows an example of a data packet transmission over a
4-wire phase encoding communication channel. The order of rising signals on wires
indicates that permutation abdc is being transmitted. In total it is possible to trans-
mit any of the n! different permutations over an n-wire channel in one communication
cycle. This makes the multiple rail phase encoding protocol very attractive for its in-
formation efficiency [Mokhov and Yakovlev 2010].

Phase encoding controllers contain an exponential number of behavioural scenarios
w.r.t. the number of wires, and are very difficult for specification and synthesis using
conventional approaches. In this section we apply PG-algebra to specification of an
n-wire matrix phase encoder — a basic phase encoding controller that generates a
permutation of signal events given a matrix representing the order of the events in
the permutation.

Fig. 7(b) shows the top-level view of the controller’s structure. Its inputs are
(
n
2

)
dual-

rail ports that specify the order of signals to be produced at the controller’s n output
wires. The inputs of the controller can be viewed as an n×n Boolean matrix (xij) with
diagonal elements being 0. The outputs of the controller will be modelled by n actions
vi ∈ A. Whenever xij = 1, event vi must happen before event vj . It is guaranteed
that xij and xji cannot be 1 at the same time, however, they can be simultaneously 0,
meaning that the relative order of the events is not known yet and the controller has
to wait until xij = 1 or xji = 1 is satisfied (other outputs for which the order is already
known can be generated meanwhile).

The overall specification of the controller is obtained as the overlay
∑

1≤i<j≤n

Hij of fixed-

size expressions Hij modelling the behaviour of each pair of outputs. In turn, each Hij

is an overlay of three possible scenarios:

(1) If xij = 1 (and so xji = 0) then there is a causal dependency between vi and vj ,
described using the PG-algebra sequence operator: vi → vj .

(2) If xji = 1 (and so xij = 0) then there is a causal dependency between vj and vi:
vj → vi.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

143:16 A. Mokhov and V. Khomenko

vi vjxji
_

xij
_

(a) Hij

v1

v2

v3x31
_

x13
_

x21_
x12_

x
32

_

x
23

_

(b) H12 +H13 +H23

Fig. 8: PGs related to matrix phase encoder specification

(3) If xij = xji = 0 then neither vi nor vj can be produced yet; this is expressed by a
circular wait condition between vi and vj : vi → vj + vj → vi.1

We prefix each of the scenarios with its precondition and overlay the results:

Hij = [xij ∧ xji](vi → vj) + [xji ∧ xij](vj → vi)+
+[xij ∧ xji](vi → vj + vj → vi).

Using the rules of PG-algebra, we can simplify this expression to

[xji](vi → vj) + [xij](vj → vi),

or, using the conditional sequence operator, to

[xij ∨ xji](vi
xji−→ vj + vj

xij−→ vi).

Now, bearing in mind that condition [xij ∨ xji] is assumed to hold in the proper
controller environment (xij and xji cannot be 1 simultaneously), we can replace it
with [1] and drop it. The resulting expression can be graphically represented as shown
in Fig. 8(a). An example of an overall controller specification

∑
1≤i<j≤n

Hij for the case when

n = 3 is shown in Fig. 8(b). The synthesis of this specification to a digital circuit can be
performed in a way similar to [Mokhov and Yakovlev 2010].

6.2. Processor microcontroller and instruction set design
This section demonstrates application of TPG-algebra to designing processor micro-
controllers. Specification of such a complex system as a processor has to start at the
architectural level, which helps to manage the system complexity by structural ab-
straction [de Micheli 1994].

Fig. 9 shows the architecture of an example processor [MSP430 manual]. Separate
Program memory and Data memory blocks are accessed via Instruction fetch (IFU) and
Memory access (MAU) units, respectively. The other two operational units are: Arith-
metic logic unit (ALU) and Program counter increment unit (PCIU). The units are con-
trolled using request-acknowledgement interfaces (depicted as bidirectional arrows)
by Central microcontroller, which is our primary design objective.

The processor has four registers: two general purpose registers A and B, Program
counter (PC) storing the address of the current instruction in the program memory,
and Instruction register (IR) storing the opcode (operation code) of the current instruc-
tion. For the purpose of this paper, the actual width of the registers (the number of
bits they can store) is not important. ALU has access to all the registers via the reg-
ister bus; MAU has access to general purpose registers only; IFU, given the address

1There are other ways to describe this scenario, e.g. by creating self-loops vi → vi + vj → vj .

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

Algebra of Parameterised Graphs 143:17

Programbcounterb(PC)

Instructionbregisterb(IR)

Program
memory

RegisterbAb(accumulator)

RegisterbBb(address)

Instruction
fetch

unitb(IFU)

Central
microcontroller

opcode

PC
increment

unitb(PCIU)

Memory
access

unitb(MAU)

Data
memory

registerbbus

go

done

executionbcontrol

Arithmetic
logicbunitb(ALU)

flags

Fig. 9: Architecture of an example processor

of the next instruction in PC, reads its opcode into IR; and PCIU is responsible for in-
crementing PC (moving to the next instruction). The microcontroller has access to IR
and ALU flags (information about the current state of ALU which is used in branching
instructions).

Now we define the set of instructions of the processor. Rather than listing all the
instructions, we describe classes of instructions with the same addressing mode and
the same execution scenario. As the scenarios here are partial orders of actions, we use
TPG-algebra, and the corresponding TPGs are shown in Fig. 10.

ALU operation Rn to Rn An instruction from this class takes two operands
stored in the general purpose registers (A and B), performs an operation, and writes
the result back into one of the registers (so called register direct addressing mode).
Examples: ADD A, B – addition A := A + B; MOV B , A – assignment B := A.
ALU works concurrently with PCIU and IFU, which is captured by the expression
ALU +PCIU → IFU ; the corresponding PG is shown in Fig. 10(a). As soon as both con-
current branches are completed, the processor is ready to execute the next instruction.
Note that it is not important for the microcontroller which particular ALU operation
is being executed (ADD , MOV , or any other instruction from this class) because the
scenario is the same from its point of view (it is the responsibility of ALU to detect
which operation it has to perform according to the current opcode).

ALU operation #123 to Rn In this class of instructions one of the operands is a
register and the other is a constant which is given immediately after the instruction
opcode (e.g. SUB A, #5 – subtraction A := A − 5), so called immediate addressing
mode. At first, the constant has to be fetched into IR, modelled as PCIU → IFU .
Then ALU is executed concurrently with another increment of PC: ALU + PCIU ′ (we
use ′ to distinguish the different occurrences of actions of the same unit). Finally, it
is possible to fetch the next instruction into IR: IFU ′. The overall scenario is then
PCIU → IFU → (ALU + PCIU ′)→ IFU ′.

ALU operation Rn to PC This class contains operations for unconditional
branching, in which PC register is modified. Branching can be absolute or relative:
MOV PC , A — absolute branch to address stored in register A, PC := A; ADD PC , B

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

143:18 A. Mokhov and V. Khomenko

ALU

PCIU IFU

(a) ALU op. Rn to Rn

PCIU

ALU

IFU

PCIU'

IFU'

(b) ALU op. #123 to Rn

ALU IFU

(c) ALU op. Rn to PC

PCIU IFU'IFU ALU

(d) ALU op. #123 to PC

MAU

PCIU IFU

(e) Memory access

ALU

IFUPCIU

ALU': lt

(f) Cond. ALU op. Rn to Rn

ALU

IFU: lt

IFU'PCIU'PCIU

ALU': lt

(g) Cond. ALU op. #123 to Rn

IFU: lt

IFU'PCIU

ALU

ALU': lt

PCIU': lt
_

(h) Cond. ALU op. #123 to PC

Fig. 10: TPG specifications of instruction classes

— relative branch to the address B instructions ahead of the current address, PC :=
PC +B. The scenario is very simple in this case: ALU → IFU .

ALU operation #123 to PC Instructions in this class are similar to those above,
with the exception that the branch address or offset is specified explicitly as a constant.
The execution scenario is composed of: PCIU → IFU (to fetch the constant), followed
by an ALU operation, and finally by another IFU operation, IFU ′. Hence, the overall
scenario is PCIU → IFU → ALU → IFU ′.

Memory access There are two instructions in this class: MOV A, [B] and
MOV [B], A. They load/save register A from/to memory location with address stored in
register B. Due to the presence of separate program and data memory access blocks,
this memory access can be performed concurrently with the next instruction fetch:
PCIU → IFU + MAU .

Conditional instructions These three classes of instructions are similar to their
unconditional versions above, with the difference that they are performed only if the
condition A < B holds. The first ALU action compares registers A and B, setting the
ALU flag lt (less than) according to the result of the comparison. This flag is then
checked by the microcontroller in order to decide on the further scheduling of actions.

Rn to Rn This instruction conditionally performs an ALU operation with the reg-
isters (if the condition does not hold, the instruction has no effect, except changing
the ALU flags). The operation starts with an ALU operation comparing A with B; de-
pending on the result of this comparison, i.e. the status of the flag lt, the second ALU
operation may be performed. This is captured by the expression ALU → [lt]ALU ′. Con-
currently with this, the next instruction is fetched: PCIU → IFU . Hence, the overall
scenario is PCIU → IFU + ALU → [lt]ALU ′.

#123 to Rn This instruction conditionally performs an ALU operation with a reg-
ister and a constant which is given immediately after the instruction opcode (if the
condition does not hold, the instruction has no effect, except changing the ALU flags).
We consider the two possible scenarios:

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

Algebra of Parameterised Graphs 143:19

Instructions class Opcode: xyz
ALU Rn to Rn 000

ALU #123 to Rn 110
ALU Rn to PC 101

ALU #123 to PC 010
Memory access 100

C/ALU Rn to Rn 001
C/ALU #123 to Rn 111
C/ALU #123 to PC 011

MAU: d

PCIU: g

b

e

PCIU': (x+f) y

ALU: d

IFU': y

IFU: f
_

y

_

z

ALU': z c g
_. .

.

a = x+y g = e+y
_

b = z a
_
. d = y b

_.
e = a b

_
.

f = y c.
c = b lt

_
.
_

Fig. 11: Optimal 3-bit instruction opcodes and the corresponding TPG specification of
the microcontroller

(1) A < B holds: First, ALU compares A and B concurrently with a PC increment;
sinceA < B holds, the ALU sets flag lt and the constant is fetched to the instruction
register: (ALU +PCIU)→ IFU . After that PC has to be incremented again, PCIU ′,
and ALU performs the operation, ALU ′. Finally, the next instruction is fetched (it
cannot be fetched concurrently with ALU ′ as ALU is using the constant in IR):
(ALU ′ + PCIU ′)→ IFU ′.

(2) A < B does not hold: First, ALU compares A and B concurrently with a PC in-
crement; since A < B does not hold, the ALU resets flag lt and the constant that
follows the instruction opcode is skipped by incrementing the PC: (ALU +PCIU)→
PCIU ′. Finally, the next instruction is fetched: IFU ′.

Hence, the overall scenario is the overlay of the two subscenarios above prefixed with
appropriate conditions (here we denote the predicate A < B by lt):
[lt]((ALU+PCIU)→IFU→(ALU ′+PCIU ′)→IFU ′)+[lt]((ALU+PCIU)→PCIU ′→IFU ′).

This expression can be simplified using the rules of TPG-algebra:2

(ALU + PCIU)→ [lt]IFU → (PCIU ′ + [lt]ALU ′)→ IFU ′.

#123 to PC This instruction performs a conditional branching in which the branch
address or offset is specified explicitly as a constant. We consider the two possible
scenarios:

(1) A < B holds: First, ALU compares A and B concurrently with a PC increment;
sinceA < B holds, the ALU sets flag lt and the constant is fetched to the instruction
register: (ALU +PCIU)→ IFU . After that ALU performs the branching operation
by modifying PC, ALU ′. After PC is changed, the next instruction is fetched, IFU ′.

(2) A < B does not hold: the scenario is exactly the same as in the #123 to Rn case
when A < B does not hold.

Hence, the overall scenario is the overlay of the two subscenarios above prefixed with
appropriate conditions (here we denote the predicate A < B by lt):

[lt]((ALU+PCIU)→IFU→ALU ′→IFU ′)+[lt]((ALU+PCIU)→PCIU ′→IFU ′).

2This case illustrates the advantage of using the new hierarchical approach that allows to specify the sys-
tem as a composition of scenarios and formally manipulate them in an algebraic fashion. In the previous
paper [Mokhov et al. 2011] the CPOG for this class of instruction was designed monolithically, and because
of this the arc between ALU ′ and IFU ′ was missed. Adding this arc not only fixes the dangerous race be-
tween these two blocks, but also leads to a smaller microcontroller due to the additional similarity between
TPGs for this class of instructions and for the one described below.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

143:20 A. Mokhov and V. Khomenko

c

(a) >+c ⊥

c

(b) > c+⊥

c

(c) c a∧b ⊥+ c a∧b >

c

(d) c a t+ t b ⊥+ c a >+ c b >

Fig. 12: Synthesis of a switching network implementing functionality of a NAND gate

This expression can be simplified using the rules of TPG-algebra:

(ALU + PCIU)→ ([lt]PCIU ′ + [lt](IFU → ALU ′))→ IFU ′.

The overall specification of the microcontroller can now be obtained by prefixing the
scenarios with appropriate conditions and overlaying them. These conditions can be
naturally derived from the instruction opcodes. The opcodes can be either imposed
externally or chosen with the view to optimise the microcontroller. In the latter case,
TPG-algebra and TPGs allow for a formal statement of this optimisation problem and
aid in its solving; in particular, the sizes of the TPG-algebra expression or TPG are
useful measures of microcontroller complexity (there is a compositional translation
from a TPG-algebra expression into a linear-size circuit). In this paper we do not go
into details of how to select the optimal encoding, but see [Mokhov et al. 2011]. We
just note that it is natural to use three bits for opcodes as there are eight classes of
instructions, and give an example of optimal 3-bit encoding in the table in Fig. 11; the
TPG specification of the corresponding microcontroller is shown in the right part of
this figure (the TPG-algebra expression is not shown because of its size).

6.3. NAND gate in CMOS technology
This section demonstrates application of TUPG-algebra to switching networks, on the
example of synthesising a NAND gate as a transistor network. Given two input signals
a and b, the transistor network produces the output signal c connected to the ground
(represented by the special vertex ⊥) if the condition a ∧ b holds, and to the power
supply (the special vertex >) otherwise. The networks implementing functionality of
these two scenarios are shown in Figs. 12(a,b). Overlaying them with the appropriate
conditions, we obtain the following TUPG expression:

NAND = [a ∧ b](>+ c ⊥) + [a ∧ b](> c+⊥).

Simplifying this expression yields:

NAND = c
a ∧ b ⊥+ c

a ∧ b >.

The corresponding switching network is shown in Fig. 12(c). Since in the CMOS tech-
nology each switch can be controlled only by one signal (positive literals correspond
to n-type transistors, and negative ones correspond to p-type transistors), we have to
refine the result by splitting the switches into simpler ones. This requires an addition
of a new auxiliary node t:

NAND ∼ c a
t+ t

b ⊥+ c
a >+ c

b >.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

Algebra of Parameterised Graphs 143:21

Fig. 12(d) shows the final circuit, which matches the standard NAND gate imple-
mentation in the CMOS technology. (In general, this approach is not restricted to
complementary-symmetric transistor networks as in CMOS.)

7. CONCLUSIONS
We introduced a new formalism called Parameterised Graphs and the corresponding
algebra. The formalism allows one to manage a large number of system configurations
and execution scenarios, exploit similarities between them to simplify the specifica-
tion, and to work with groups of configurations and modes rather than with individual
ones. The modes and groups of modes can be managed in a compositional way, and
the specifications can be manipulated (transformed and/or optimised) algebraically in
a fully formal and natural way.

We develop two variants of the algebra of parameterised graphs, corresponding to
the two natural graph equivalences: graph isomorphism and isomorphism of transitive
closures. We also introduce the undirected versions of these algebrae. All four cases
are specified axiomatically, and the soundness, minimality and completeness of the
resulting sets of axioms are formally proved. Moreover, the canonical forms of algebraic
terms are developed in each case.

The usefulness of the developed formalism has been demonstrated on several case
studies: i) a phase encoding controller, ii) a processor microcontroller, and iii) synthe-
sis of a CMOS switching network. The formalism allows one to capture all the execu-
tion scenarios in these examples algebraically, by composing individual scenarios and
groups of scenarios. The possibility of algebraic manipulation is essential to obtain the
optimised final specification in each case.

The developed formalism is also convenient for implementation in a tool, as manipu-
lating algebraic terms is much easier than general graph manipulation; in particular,
the theory of term rewriting can be naturally applied to derive the canonical forms.

In future work we plan to automate the algebraic manipulation of PGs, and imple-
ment automatic synthesis of PGs into digital circuits. For the latter, much of the code
developed for the precursor formalism of Conditional Partial Order Graphs (CPOGs)
can be re-used. One of the important problems that needs to be automated is that of
simplification of (T)PG expressions, in the sense of deriving an equivalent expression
with the minimum possible number of operators. Our preliminary research suggests
that this problem is strongly related to modular decomposition of graphs [McConnell
and de Montgolfier 2005].

Acknowledgements The authors would like to thank Arseniy Alekseyev, Ashur
Rafiev, and Alex Yakovlev for their help in preparation of the previous versions of this
work. This research was supported by the EPSRC grants EP/I038357/1 (eFuturesXD,
project POWERPROP) and EP/K001698/1 (UNCOVER).

REFERENCES
M. Bauderon and B. Courcelle. 1987. Graph expressions and graph rewritings. Mathematical Systems Theory

20, 1 (1987), 83–127.
E. Best, R. Devillers, and M. Koutny. 2001. Petri Net Algebra. Springer.
A. Bizjak and A. Bauer. Faculty of Mathematics and Physics, University of Ljubljana, 2011. ALG User Man-

ual.
B.A. Carré. 1971. An algebra for network routing problems. IMA Journal of Applied Mathematics 7, 3 (1971),

273–294.
C. D’Alessandro, A. Mokhov, A. Bystrov, and A. Yakovlev. 2007. Delay/Phase Regeneration Circuits. In Proc.

of International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC).
G. de Micheli. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Education.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

143:22 A. Mokhov and V. Khomenko

D. Eppstein. 1992. Parallel recognition of series-parallel graphs. Information and Computation 98, 1 (1992),
41–55.

F. Gadducci and R. Heckel. 1998. An inductive view of graph transformation. In Recent Trends in Algebraic
Development Techniques. Springer, 223–237.

F. Gécseg. 1974. Composition of automata. In Automata, Languages and Programming. Springer, 351–363.
C.A.R. Hoare. 1978. Communicating sequential processes. Commun. ACM 21, 8 (1978), 666–677.
ITRS 2011. International Technology Roadmap for Semiconductors: Design. (2011). URL: http://www.itrs.

net/Links/2011ITRS/2011Chapters/2011Design.pdf.
M.B. Josephs and J.T. Udding. 1993. An overview of DI algebra. In Proceeding of the Twenty-Sixth Hawaii

International Conference on System Sciences, Vol. 1. 329–338.
R. McConnell and F. de Montgolfier. 2005. Linear-time modular decomposition of directed graphs. Discrete

Applied Mathematics 145, 2 (2005), 198–209.
R. Milner. 1982. A calculus of communicating systems. Springer.
R. Milner, J. Parrow, and D. Walker. 1992. A Calculus of Mobile Processes, Part I. Information and compu-

tation 100, 1 (1992), 1–40.
A. Mokhov. 2015. An Algebra of Switching Networks. IET Computers and Digital Techniques (to appear in

2015).
A. Mokhov, A. Alekseyev, and A. Yakovlev. 2011. Encoding of processor instruction sets with explicit concur-

rency control. IET Computers and Digital Techniques 5, 6 (2011), 427–439.
A. Mokhov, V. Khomenko, A. Alekseyev, and A. Yakovlev. 2011. Algebra of Parametrised Graphs. Technical

Report CS-TR-1307. School of Computing Science, Newcastle University. URL: http://www.cs.ncl.ac.uk/
publications/trs/papers/1307.pdf.

A. Mokhov, M. Rykunov, D. Sokolov, and A. Yakovlev. 2014. Design of Processors with Reconfigurable Mi-
croarchitecture. Journal of Low Power Electronics and Applications 4, 1 (2014), 26–43.

A. Mokhov and A. Yakovlev. 2010. Conditional Partial Order Graphs: Model, Synthesis and Application.
IEEE Trans. Comput. 59, 11 (2010), 1480–1493.

MSP430x4xx. MSP430x4xx Family User’s Guide. http://www.ti.com/lit/ug/slau056l/slau056l.pdf
C. E. Shannon. 1938. A Symbolic Analysis of Relay and Switching Circuits. Transactions of the American

Institute of Electrical Engineers 57 (1938), 713–723.
F. Xia, A. Mokhov, Y. Zhou, Y. Chen, I. Mitrani, D. Shang, D. Sokolov, and A. Yakovlev. 2012. Towards

power-elastic systems through concurrency management. Computers & Digital Techniques, IET 6, 1
(2012), 33–42.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 143, Publication date: July 2014 (pre-print).

