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Abstract

Adopting a systematic approach for the design of a processor instruction sets is instrumental for tackling

the complexity, which rules most of modern processors.

We present a tool-chain which follows the designer through all the phases of the design, from the spe-

cification of instructions to the hardware synthesis of a microcontroller. The flow is also meant to simplify

the understanding of the Instruction Set Architecture (ISA) reference manuals. Often, these documents are

semi-formal, hard to read and fully understand. We believe that designers will benefit from a visual graph-

based model, automatically derived from the ISA specification, and customisable to fit different needs. Some

of the tools have already been developed and tested on ARMv6-M architecture, others yet need to be fully

implemented.

The design flow will be integrated inside the Workcraft framework. We also compare the presented ap-

proach with the others available in the literature.

1 Introduction

Technology progress allows industries to integrate always more transistors over the same amount of area, fol-
lowing Moore’s law. In turn, design complexity of these systems progressively increases. This led research to
be focused on raising the level of abstraction of the languages used at the early-stages of design. This work
presents a design flow for an easier specification, visualisation, simulation, customisation and hardware syn-
thesis of instruction sets.

The consultation of an ISA reference manual (i.e. ARMv6-M [11]) can be a difficult and tedious operation.
Anthony Fox, in his attempt to describe a model of the ARMv7 instruction set, argues: “official reference
manuals are large, stretching to many hundreds of pages - one can easily overlook subtle details or become
bogged down with “uninteresting” background information” ([6], Section 1). And yet: “official descriptions are
semi-formal (ambiguous)” ([6], Section 1).

In the light of the above, a simple and formal way to specify and, more specifically, visualise instruction
sets is needed. A visual graph-based model can help designers for a quicker comprehension of the processor.
ISAs in fact provide a software level description of the hardware itself. We use Conditional Partial Order Graph
(CPOG) [1][2] as the visualisation model. They can efficiently represent concurrent and sequential behaviours,
and already come with a tested tool-kit for the customisation, encoding and hardware synthesis [3][4][5].
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We propose a new domain-specific language for ISA specification. The current implementation is embed-
ded in Haskell [12]. This is high-level functional language that provides static type checking and inference
capabilites, as well as useful predefined constructs and classes that we rely on in our implementation (i.e. the
Monad class).

The article is organised as follows: Section 2 describes the framework we have developed, and how this can
be used to interact with all the steps of the design flow. Section 3 presents a case-study: the ARMv6-M ISA and
how it can be converted into a more comprehensible CPOG representation. And finally, Section 4 summarises
the achieved results, outlining the future research directions.

1.1 Related work

An attempt to use partial orders to describe the instructions of a complex hardware structure can be found
in [10]. The author uses Conditional Partial Order Graphs to visually describe the instructions of the Intel 8051
Microcontroller. Yet, he used them for building an asynchronous controller and managing the internal execution
flow of the datapath elements. The manual construction of partial orders is an error-prone process. Connecting
all the operations taking into account their dependencies and order is a complex task. This further inspired our
research, and led us to bridge this gap with an automated approach.

Regarding the language we chose to adopt, it is not difficult to find other cases where functional languages
have been used as a starting point for ISA specification. In this direction, [8] provides an interesting attempt
to build an infrastructure for instruction set development. The authors developed the concepts of state and
transformations. The former represents the current state of the machine, which evolves over time according
to the transformations (instructions). F. Yuan and K. I. Eder instead, created a formal and hierarchical model,
which can be refined for fitting the needs of a particular ISA. This model (characterised in [7]) is composed by 4
abstract layers. Each of these layers describes a particular aspect of the instruction set. The deeper the designer
explores this hierarchical representation, the more refined will be the final system.

Another example can be found in [6]. The authors here built a framework which can be extended to tailor
instruction sets. They use a monadic programming style, based on three basic operations: return, bind and
parallel. These are meant to mimic the flow of an entity (the hardware system), which is always returned as a
result of the execution of an instruction. Instructions can be bound together either sequentially or in parallel.
Here, the case study used is the ARMv7, a widespread instruction set embedded by the Cortex-A8 processor.
An additional example of how an ISA might be specified inside a tool is present in [9]. Both the modules and
the instructions here are introduced via a xml-based language, fairly readable but not very flexible.

In this work we aim at developing a Domain Specific Language based on Haskell, called Farfalle. This will
be adopted for the representation of the ARMv6-M, used as the case study. The target representation abstracts
some details such as the bit-length of the registers or immediate values. The goal is the integration of the
framework presented in Section 2.1 into a systematic design flow (Section 2.2), while easier the understanding
of a processor instruction set with a graph-based model (Section 3.3).

2 Domain Specific Language: Farfalle

The language used to describe the framework is Haskell [12]. This is a functional language with high abstrac-
tion capabilities. We followed the path, already explored in [6], implementing the monad class to build the
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infrastructure of the domain specific language (DSL).
The processor is seen as an entity composed by a combination of an internal and external storage. Respect-

ively, the former is represented by a set of registers, while the latter by a memory that contains both instructions
and data; in compliance with the von Neumann architecture.

The processor executes instructions, that modify the state of the modelled machine.

P(Regs,Mem)⇒ P′(Regs,Mem)

Every time the processor executes an instruction indeed, the state of the system evolves into a new state P′

different from the previous one. Where either the registers and the memory might be different. This approach
is relatively similar to the processor description in [8]. Therefore, we are confident that the high degree of
abstraction obtained will allow the bidirectional connection of these two representations.

This section is organised as follow: Section 2.1 describes the structure of the framework. A characterisa-
tion of the design flow derived by this approach is presented in Section 2.2, while a brief description of the
verification side, related to Event-B interpretation, is discussed in Section 2.3.

2.1 Structure of the framework

What marks our approach is the high degree of flexibility and abstraction that can be tailored to every pro-
cessor. The framework we present in this document is composed by different layers (modelled in various and
interconnected modules). Each of them plays an important role in the structure.

The module in charge of modelling the low-level hardware functions is named basics. Positioned at very
bottom layer, this defines the ways through which the memory elements can be accessed, the behaviour of the
data-path components, as well as the monad basic functions: return and bind.

Furthermore, the types used in the structure are defined. The registers and the memory are internally imple-
mented with two maps of integer values. The former can be accessed either via the name of a special purpose
register, or using the pattern R Int (i.e. R 5, to point out the fifth location in the register file). Memory is ac-
cessed via an integer type address instead. Immediate values are also internally seen as integers. This approach
is not accurate. Some of the features – the bit length of the registers, or the endianness of the data – are lost.
Nonetheless, the high level of abstraction of the framework allows the interpretation of the model from several
point of view (see Section 2.2).

Finally, ComputationType is defined. This is a flexible type in input to the arithmetic logic unit (ALU),
which can be modified according to the ISA needs. As far as this unit is concerned in fact, different combinations
of inputs can be given to it: one single register for an increment/decrement operation, either two registers, or
one register and an immediate for an ADD/SUB/MUL operation, and so on. Therefore, ComputationType is
not a fixed type and can be extended for fitting different ALU architectures.

Microprogram is the interface based on the low-level module just described. In this, just a few operations,
always present in a general purpose processor, are implemented. The function for incrementing the program
counter and fetching the next instruction, the pop and push instructions, the interface methods for accessing
the registers and memory (internally modelled in the module basics). In addition to the set of internal registers
usually contained in a generic processor, this module defines three registers more: the program counter, the
instruction register and the stack pointer.
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ISA_model is the module where the user is supposed to introduce the custom instruction set architecture.
Based on the bottom layers, this module can be customised adding other special purpose registers and types for
the ALU. Most importantly, this will contain all the instructions one wants to include in a custom ISA. This will
act as an interface for the software level simulation and will be taken into account for the conversion towards
other models and languages (Section 2.2).

Main is the module meant for the high-level software simulation, in here all the instructions can be executed
over the processor modelled. This might be useful for having a first proof of a consistent architecture. Indeed,
the possible implementation errors can be captured analysing the behaviour of the whole system.

Hardware

Low-level functions

Basic ISA structure

Custom ISA

Software simulationmain

ISA_model

microprogram

basics

Figure 1: Functional structure of the framework.

In Figure 1, the structure of the framework is depicted, pinpointing on the interconnections between the
modules described. The structure is rather simple and small, and can be potentially extended with new proced-
ures and types, making this approach flexible and scalable.

In Section 3 we will show how this framework has been implemented and extended to model the ARMv6-M.

2.2 Functionalities & interpretations

Our main goal with this article is to open the path towards an easier specification and visualisation of instruction
sets. Nonetheless, quite a few other interpretations can be given to this work. The Domain Specific Language
indeed, once used to model a processor, can be potentially translated into other languages. In turn, they can be
progressively employed with the advantages and tools they come with. It is worth mentioning that some of the
functionalities discussed in this section have not been implemented yet. Though, they will be part of our future
work in this area (see Section 4.1).

The ISA specification might be converted into Event-B language [13]. This is a formal technique used
to analyse the model at the system level. It comes with some theorem provers which are able to verify the
consistency of the system, proving that there are no inconsistencies between instructions. This is an interesting
feature itself, which could be particularly useful when applied to instruction sets. It falls within the side of the
formal verification (see Section 2.3 for a detailed description).

Visualisation and synthesis are two other interpretations which can be given to this framework, somehow
connected to each other via CPOG formalism. Even though Haskell provides readable and simple constructs,
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instruction set specifications are intrinsically difficult to read and understand. Capturing all the dependencies
between every micro-operation within the instruction is complex and, as already mentioned, error-prone. Read-
ing the whole reference manual can take a long time. In the light of the above, formal specification can be
converted into partial orders, a visual graph-based representation composed by nodes and arcs, much more
comprehensible than reference psuedo-code or Haskell statements.

Speci cation

Simulation

Synthesis

Visualisation

 DSL - Haskell

CPOG

requirements 

unsatis ed

Veri cation

Event-B

Start

*

*

design inconsistent

Figure 2: Design flow supported by the Farfalle framework.

This allows the user to employ the tool-chain around the conditional partial order graphs, enabling the visual
customisation of the dependencies of the instructions in Workcraft and CPOG-based synthesis tools. A fairly
accurate measurement of the size of the final microcontroller for the processor control unit can be automatically
derived therefore, allowing the designer to come back at the specification phase if some of the requirements
(area, power consumption) have not been met.

The whole design-flow is illustrated in Figure 2.

2.3 Verification with Event-B

Design validation process is instrumental for any kind of systems. A typical system design process requires
numerous minor optimization modifications. The system needs to be re-validated after each refinement step,
making this phase not particularly cost and time effective. Applying formal techniques is a complex task, which
requires a deep mathematical understanding and rigorous analysis of the system. Furthermore, training domain
specific engineers to mathematical techniques can be very expensive. Therefore, our approach will include
methods and tool support, which intends to hide mathematical complexity by automating validation process.

Event-B [15], originated from well known formalism called B method, is one of the most used specification
languages in safety critical software development area. Over the years, Event-B proved to be successful mainly
due to a few large academic research projects. Nowadays, this is commonly used in industry. Excellent tool
support and proof driven process [16] were key aspects which led us to choose this particular method.

The formalism is based on First Order Logic and Zermelo-Fraenkel set theory. This is a high-level and
expressive language. System specification is the initial step in formal validation and it starts with describing
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requirements for the design. System requirements should completely cover functionality and environment of
the design. Next stage is represented by the system development. Here, the model is developed: starting with
the most abstract model, this is gradually refined broadening the level of granularity.

Formal verification is another major branch of formal modelling. After the system is specified and abstrac-
ted, its conditions need to be rigorously proved. Model is considered correct if and only if all conditions, also
known as proof obligations, are satisfied. Beforehand, designer is required to define invariants of the system,
which need to hold as system progress. In Event-B these conditions are used to construct verification conditions
for Invariant Preservation Rule. There are few of these rules, but the most important are Invariant Preservation
Rule, Deadlock Freedom Rule and also satisfaction of refinement obligation. These set of rules just indicates
what needs to be proven.


A(c)
I(c,v) ` Ii(c,E(c,v))
G(c,v)

Figure 3: Invariant Preservation Rule

In Figure 3, sequent of Invariant Preservation Rule is stated, where hypothesis consists of axioms, invariants
and guards of the events. The goal is to validate whether invariants hold after event.

3 A case study: ARMv6-M

Case study section intends to demonstrate potential of our domain specific language by analysing ARM Cortex
M0+ microprocessor instruction set. This section starts with a brief description of the ARMv6-M instruction
set and information we used to construct our model (Section 3.1). Further, concrete example of translated
instruction to is demonstrated together with visual graph representation (Sections 3.2 and 3.3). As the basis for
our experiment, we used microprocessor manual [11], which includes short descriptions of each instruction as
well as functionality pseudocode and encodings. We used this information to build an instruction set model of
this specific microprocessor.

3.1 Features & issues at the specification phase

The faithfulness of ARMv6-M model with the reference specification was our main concern. We aimed at
representing each instruction listed in the ISA document using the framework presented in this work, with the
least loss of information. This required to be as consistent as possible with the manual, replicating the flow of
the operations with the same order, as well as using the same names of the variables and functions at times.

As far as the reference documents are concerned, instructions characterised in there tend to come up with
a bare description. Hence, sometimes being completely accurate with the source system is complex, also be-
cause of the lack of technical information about the original architecture. This was the case for some of the
functions such as DataMemoryBarrier, BkptInstrDebugEvent, Hint_SendEvent, and so on [11]. None of them
are described in the reference manual, therefore these functions are considered to be executed atomically (by
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one single node). Obviously, this might not be the case and a deeper research with the producers of the core is
needed to untangle these operations.

Based on the structure described in Section 2.1, we built the model on top of the microprogram module.
Therefore, many of the instructions characterised are supported by the methods present at the bottom layers.
For instance, the operation incAndFetchInstruction (depicted in the partial order in Figure 7) consists of three
sequential micro-operations: incrementing the program counter (PC) register, writing the result back into such
a register and eventually moving the contents of the memory location pointed out by the PC into the instruction
register (IR). This operation is executed at the end of nearly all the instructions, except for the ones involving
any branching mechanisms. Another example which can be analysed is the pop operation. It is in charge
of decrementing/incrementing the stack pointer (SP) register (according to the internal architecture), and then
fetching from the memory location addressed by the SP a chunk of data. These two operations are used inside
the main instruction set architecture.

Another part which is worth discussing is the one related to the variety of the registers present inside the
core. Each of them has got a different function which we have attempted to replicate as much as we could. In this
case, the purpose of each register is not described with much detail in the document. This partially limited the
accuracy of the final model. Nonetheless, the high degree of abstraction we kept downsizes the importance of
these problems. The registers present in our model are: linked register (LR), application program status register
(APSR), interrupt program status register (IPSR), execution program status register (EPSR), the special-purpose
mask register (also called PRIMASK), the special-purpose control register (CONTROL). They are needed to
manage different internal functions. In our model, we limited at reading and writing them according to the
reference description.

Additionally, all the arithmetic, logical and bitwise operations are represented in our model. The lack of
technical details is present also in this side, limiting the accuracy of the model. We assumed that all these
operations are performed via the arithmetic logic unit (ALU). Unfortunately, this is just an assumption, we are
not sure whether the shift operation is truly accomplished through such a unit or via another dedicated one, for
instance. This problem does not interfere with our main purpose of developing a systematic approach though.
Indeed, the designer of a system is expected to have such a technical knowledge, which can be employed to
reach a high degree of faithfulness in the target model.

Given this general introduction about the model, in the next section some of the instructions characterised
in our representation will be showed, pinpointing at the high level of similarity with the instruction set that we
aimed at shaping.

3.2 Target model description

All the instructions included in the ARMv6-M have been characterised in our representation. According to
the reference manual description, the ARMv6-M is a subset of ARMv7-M and supports Thumb 16-bit instruc-
tion set, including a small number of 32-bit instructions introduced to the architecture as part of the Thumb-2
technology in ARMv6T2.

An interesting feature of the ISA is that some instructions have two opcodes, named T1 and T2. This
provides a more flexible architecture, which in turn comes up with a flexible assembly language. This is the
case for the ADD (immediate) instruction, for instance. The first encoding T1 has a seven bit opcode, and the
rest of the instruction encoding is meant for hosting an immediate value (3-bit), and two more register locations
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15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0

Encoding T1

15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0

Encoding T2

opcode7

opcode5

imm3

imm8

Rn Rd

Rdn

0   0   0   1   1   1   0 0  1  1 0  0  1 1  0  1

0   0   1   1   0 1  0  0 0  1  0  0  0  0  0  1

ADD R5, R1, #3

ADD R4, #65

Figure 4: ADD (immediate) encodings - ARMv6-M ([11], p.107-108)

(3-bit each): the source of the first operand and the destination of the result. The second encoding T2 instead
comes up with a quite different pattern. The opcode associated to it is has only 5 bits, then there is a register
(3-bit) which acts both as the source operand and the destination of the result; the remaining 8 bits contain a
longer immediate value. Both of the encodings are depicted in Figure 4, where also an example of how these
two encoding might be used is present. These instructions can be used for different purposes. Because of time
constraints, we focused just on the instructions with the encoding T1. Nonetheless, we plan to represent the
second encoding in future work, in order to create a fully realistic benchmark (see Section 4.1).

1 EncodingSpecificOperations ();
2 ( result , carry , overflow) = AddWithCarry(R[n], imm32, ’0’);
3 R[d] = result ;
4 if setflags then
5 APSR.N = result<31>;
6 APSR.Z = IsZeroBit(result);
7 APSR.C = carry;
8 APSR.V = overflow;

Listing 1: ADD (immediate) instruction - Reference specification

The pseudocode specification of the instructions have been translated into the domain specific language
(described in Section 2). During the conversion process, we assumed that all the parameters which are involved
in the internal operations are available and ready to be used. This is the case for the imm32 value, for instance,
present in some of the instructions. This is over 32 bits, and is obtained extending the immediate value present
inside the instruction, over 3, 5 or 8-bit long at times. We assumed to have a decoding function able to decode the
instruction by the opcode. This is theoretically supposed to execute the right operations (such as the immediate
extension) prior to the instruction execution.

Let us focus on the pseudocode specification of the ADD (immediate) instruction (showed in Listing 1).
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Three parameters are needed for this instruction: R[n], R[d] and imm32. setflags is a flag always set to true
for this instruction, therefore is not considered in our implementation. We can similarly characterise this
instruction via the framework presented in this work, see Listing below.

1 add_ImmT1 rn rd imm32 = do
2 result <− alu (adcRegImm rn imm32 0)
3 writeRegister rd result
4 updateN result
5 updateZ result
6 updateC
7 updateV
8 incAndFetchInstruction

Listing 2: ADD (immediate) instruction - specification in Farfalle

The instructions takes in input two registers and an immediate value over 32 bits. According to the reference
document, the procedure EncodingSpecificOperation() is the one in charge of performing the right operations
depending on the encoding read. As already mentioned, we assume this step to be already performed beforehand
to instruction execution. All the other statements are quite similar to the source counterparts. The only thing
worth mentioning is that the alu operation is in charge of setting the carry and the overflow bits internally. That
is the reason why those two are not present in the Farfalle implementation. The IsZeroBit() procedure simply
checks if a value is 0, this is implemented inside the function updateZ. At the end of the Farfalle specification
is present the incAndFetchInstruction, which is in charge of updating the program counter register and fetching
the next instruction.

Another instruction which might be of interest to the reader is the store, also known as STR (register). This
instruction computes the address where to store a chunk of data, from a base address and an offset, both defined
into two registers. Although the offset can be optionally shifted in a general ISA architecture, this feature has
not been implemented in the ARMv6-M. The shift_n variable in fact, which is supposed to contain the num-
ber of bits that the register R[m] must be shifted by, is always set to 0. Below the source specification is showed:

1 EncodingSpecificOperations ();
2 offset = Shift(R[m], shift_t , shift_n, APSR.C);
3 address = R[n] + offset ;
4 MemU[address,4] = R[t];

Listing 3: STR (register) instruction - Reference specification

The specification based on the Haskell framework is listed in Listing 4. According to the source description,
this instruction takes in input three registers. rn contains the base address, rm the optionally shifted offset
(shifted by 0 bits in this implementation), and rt that contains the data chunk to be stored into the memory
location pointed by the final result, eventually placed in the variable address. The arithmetic logic unit is in
charge of performing either the shift and the addition, as described in Section 3.1. writeMemory is one of the
procedure implemented in the module basics (see Section 2.1). readBit procedure, simply returns the bit 29,
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where the carry flag is stored.

1 str_RegT1 rm rn rt = do
2 offset <− alu (shlRegImm rm 0 (readBit apsr 29))
3 address <− alu (adcRegImm rn offset 0)
4 writeMemory address rt
5 incAndFetchInstruction

Listing 4: STR (register) instruction - specification in Farfalle

The two Haskell-based specifications showed along this section are fairly similar to the reference pseudo-
code. The degree of precision the designer can go for depends on the accuracy the source specification have
been characterised with. There has not been loss of information in the conversion process.

3.3 Visualisation

Going towards a more comprehensible ISA representation was one of our main goals. As discussed in Section 1
in fact, often instruction set architecture reference documents are hard to read and fully understand. We believe
that having a visual representation of the operations which occur inside each instruction would make the un-
derstanding easier and quicker. That is the main reason why we chose to adopt partial orders to represent the
behaviour of instructions. Each instruction can be analysed singularly. The behaviour can be isolated, focusing
on the causality of the operations to execute.

(b)

(a)

Figure 5: Examples of sequential and concurrent behaviours.

The capability of representing sequential and concurrent behaviours is instrumental for modelling instruc-
tions. Partial orders address this requirement with the usage of nodes (©) and dependencies (→). Figure 5(a)
depicts a partial order where the three operations are executed sequentially. Figure 5(b) instead shows four
operations {A,B,C,D} which can be executed with different orders. A→ B and C→D are concurrent paths. A
detailed description can be found in [2].

In the light of the above, we are working on automating the conversion process from the specification in
Farfalle to partial orders. The tool will be able to analyse the ISA_module file, capture the dependencies between
the operations within each instruction and build a partial order.

Multiple levels of abstraction can be chosen for the conversion. Components such as the arithmetic logic unit
can be adopted for the execution of different operations: i.e. addition, multiplication, shift, etc. One might want
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to represent each single operation separately with a different node (trading off some readability with accuracy),
or raise the level of abstraction losing the information about the actual operation.

(a) (b)

(c)

Figure 6: Allowed and not allowed conversions.

The partial representation of the data, in some of the operations entailing registers and memory access,
represents another layer of abstraction which can be traded for readability. This would allow the development
of a more accurate model without overlapped register/memory accesses. For instance, let us assume that the
register file has got two different input writing ports. This would allow two different registers to be written at the
same time. The destination of a writing operation should be taken into consideration therefore, in order to avoid
a simultaneous access at the same location of the register file (see Figure 6). The partial order in Figure 6(b)
is not allowed because the two writing mechanisms can be triggered concurrently. A dependency should be
inserted, as in the graph in Figure 6(c).

The following example clarifies the above issue. Listing 6 gives a specification of the AND (register)
instruction (ARMv6-M ISA [11]).

1 and_RegT1 rm rdn = do
2 shifted <− alu (shlRegImm rm 0 apsr[29])
3 result <− alu (andRegImm rdn shifted)
4 writeRegister rdn result
5 updateN result [31]
6 updateZ result
7 updateC carry
8 incAndFetchInstruction

Listing 5: AND (register) instruction - specification in Farfalle

This instruction can be automatically translated into the partial order in Figure 7. Every statement of the spe-
cification corresponds to a node in the graph. For instance, the one on fourth line correspond to the node named
“writeReg”. The dependencies between the nodes are obtained by looking at the values which are needed for the
execution of each operation. For instance, the second ALU operation needs the value called “shifted”, computed
during the first ALU operation. Therefore, the second action depends on the first one. “incAndFetchInstruc-
tion” is a basic operation defined inside the module microprogram (see Section 2.1). This is composed by
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three sequential operations, which are in this case extracted and depicted in the partial order, for an increased
accuracy.

incAndFetchInstruction

Figure 7: AND (register) instruction - ARMv6-M ([11], p.116)

The graph in Figure 7 is more readable than the specification in Farfalle, listed in Listing 6. The dependen-
cies between the various operations are clearly expressed via arcs. In addition, the graph-based model provides
a good degree of fidelity; combined with the code-based specification it can lead to a good tradeoff between
readability and accuracy.

Another example worth a discussion is the unconditional branch. This instruction simply causes a branch
to a target address. The specification in Farfalle is depicted below:

1 b imm32 = do
2 nextInstrLocation <− alu (adcRegImm pc imm32 0)
3 writeRegister pc nextInstrLocation
4 readMemory nextInstrLocation ir

Listing 6: B instruction - specification in Farfalle

The particularity of this instruction is the lack of the incAndFetchInstruction step. The new instruction register
indeed is obtained by the address computed internally, adding an 32-bit immediate address with the current
program counter register. In Figure 8 the partial order associate to the branch instruction is showed. The reader
should notice that there is no direct dependency between the writeReg and the readMemory nodes. Nonetheless,
a dependency has been inserted in order to fetch the new instruction once that the PC register has been updated.
This might be named a functional dependency and is implicit to the incAndFetchInstruction procedure either.
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Figure 8: Branch instruction - ARMv6-M ([11], p.119)

We did not have the time yet to implement the tool for the conversion. The example showed along this
section has been obtained by hand. Therefore, we reserve for a future article the results and considerations
related to the synthesis of the final controller.

3.4 Instruction Verification

This subsection briefly describes how instruction correctness can be validated. Constructing Event-B model
is refinement driven process, where developer starts with the most abstract concept of the system. We started
by declairing very basic concepts of microprocessors system. A typical, Event-B model structure consists of
context and machine frames, our intial context was used to declare some trivial constants and data types e.g.
microprocessors’ word size. Original context then was refined by adding more information about operation
type structure, decoding opcode/operands functions etc. For instance, in (1), we state that instruction is pair
type with opcode and three operands, whereas i.e. opcode-decode function can be defined as shown in (2).

(opcode,(value,(value,value))) ∈ OPERAT ION (1)

DECODE ∈ OPERAT ION→ OPCODE (2)

After declaration of variables, types and structures in the context file, machine file was created, which
extended those concepts as well as included events. Machine model required further expansion of some key
concepts of data, registers, program counter, but most importantly it contained instruction events. In Event-
B, event can be conditional or unconditionally fired, depending on system requirements for that event. In the
context of the microprocessor and our model, event of the particular instruction is executed if opcode satisfies
the guard of the event. For example, (3) shows one of the guards of the ADD instruction.

DECODE(CODE(pc)) = ADD (3)

Satisfying guard condition means action in the event can be executed. In the context of ADD instruction
simple addition of two source registers is performed and the sum is loaded to the destination register, which is
then followed by increment of program counter register.

However, analysis of ARM Cortex M0+ instruction set showed us that even simple instructions like addition
are difficult to specify formally in Event-B. Therefore, to make our model more feasible another refinement
step would be necessary in order to capture the same level of details as in specifications. Another important
requirement for instruction validation would be translation automation. Currently, we had to define the system
and correctness conditions as well as prove them. As stated before it is our objective to hide this mathematical
modelling exercise from engineers. Hence, together with creating a general framework, we need to automate
this process.
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4 Conclusion

This work represents the first step towards a formal and yet readable specification of processor instruction sets.
We demonstrated how the specification of a real ISA, which has been embedded into the ARM Cortex-M0, can
be specified via our framework without loosing any information or lowering the accuracy of the representation.

In addition, we showed how such a framework can be converted into a visual-based representation with dif-
ferent tradeoffs for maximising either the readability or the accuracy of the graph-based model. The latter, based
on the Conditional Partial Order Graph, can exploit a built-in tool-chain embedded in Workcraft for visualisa-
tion and hardware synthesis purposes. In particular, this representation aims at simplifying the understanding
of the processor instruction sets.

This open-source framework [17] opens the path towards different other languages and tools which can be
adopted in the design flow. Event-B might be one such piece of the puzzle which we hope to be able to complete,
together with the whole community in this field.

4.1 Future research directions

Much research can be carried on about the work presented. First of all we will expand the framework developed,
providing some procedures to capture the internal instruction dependencies, automatically deriving a partial
order according to the level of abstraction chosen by the user. This will be used to move from the DSL - Farfalle
framework, into the CPOG representation (see Figure 2), avoiding likely human errors. In turn, this will allow us
to derive the hardware microcontroller and make a consistent comparison (in terms of area, power consumption,
latency, etc.) with the one which the ARM Cortex-M0 embeds.

Secondly, we will work on a plugin to automatically convert the specification into the Event-B language.
This will allow the usage of sound theorem provers for the formal verification of the ISA, an extremely useful
instrument which designers might benefit from.

From the point of view of the case study itself, the model will be expanded to include the T2 encodings.
Other case studies will be carried out, such as the instruction sets of the Texas Instruments MSP430 and the
Intel 8051 processors. As is pointed out in [14], nowadays there are quite a few architectures with a relevant
market size - by ARM, ARC, Xtensa, MIPS. Unit volumes are progressively increasing, hence we believe the
need for modelling and experimenting by these companies will do so. Eventually, designers and end users will
benefit from a systematic approach to the design of processor instruction sets.

Acknowledgements: The authors would like to thank Dr. Andrey Mokhov for helping with this work.

References

[1] A. Mokhov, A. Yakovlev. “Conditional partial order graphs: Model, synthesis, and application”. IEEE
Transactions on Computers, Volume 59, Pages 1480-1493, November 2010.

[2] A. Mokhov. “Conditional Partial Order Graphs”. Ph.D. Thesis, Newcastle University, September 2009.

[3] I. Poliakov, D. Sokolov, A. Mokhov. “Workcraft: A static data flow structure editing, visualisation and

analysis tool”. Petri Nets and Other Models of Concurrency - ICATPN 2007. Pages 505-514, 2007.

NCL-EEE-MICRO-TR-2015-200, Newcastle University 14



Alessandro de Gennaro, Paulius Stankaitis: Towards a Systematic and Automated Approach in the Design of
Processor Instruction Sets

[4] A Mokhov, A Alekseyev, A Yakovlev. “Encoding of processor instruction sets with explicit concurrency

control”. Computers & Digital Techniques, IET. Volume 5, Pages 427-439. November 2011.

[5] A. de Gennaro, P. Stankaitis, A. Mokhov. “A Heuristic Algorithm for Deriving Compact Models of Pro-

cessor Instruction Sets”. 15th International Conference on Application of Concurrency to System Design
(In Press). June 24-26, 2015.

[6] A. Fox, M. Myreen. “A Trustworthy Monadic Formalization of the ARMv7 Instruction Set Architecture”.
Interactive Theorem Proving (ITP), pages 243-258, 2010.

[7] F. Yuan, K. Eder. “A Generic Instruction Set Architecture Model in Event-B for Early Design Space

Exploration”. Technical Report CSTR-09-006, University of Bristol, September 2009.

[8] T. A.Cook, E. Harcourt. “A Functional Specification Language for Instruction Set Architectures”. Pro-
ceedings of the 1994 International Conference on Computer Languages. Publisher IEEE, pages 11-19.
May 1994.

[9] A. Abbas, A. Ahmed, A. Ahmed, W. Uz Zaman Bajwa, A. Anwar, S. Abbasi. “A retargetable tool-suite

for the design of application specific instruction set processors using a machine description language”.
IEEE International Symposium on Circuits and Systems, 2002. Volume 1, pages 425-428. ISCAS 2002.

[10] M. Rykunov. “Design of Asynchronous Microprocessor for Power Proportionality”. Ph.D. Thesis, New-
castle University. Technical Report Series NCL-EEE-MICRO-TR-2013-182, December 2013.

[11] ARM Ltd. “ARMv6-M Architecture Reference Manual”. ARM DDI 0419C (ID092410), 2010.

[12] S. P. Jones (editor) et al. “Haskell 98 Language and Libraries The Revised Report”. December 2002.

[13] C. MÃ c©tayer, J.-R. Abrial, L. Voisin. “Event-B Language”. Project IST-511599. 31st May 2005

[14] J. Turley. “CPUs Get Cheaper; Transistors Get More Expensive”. Electronic Engineering Journal: http:
//www.eejournal.com/archives/articles/20151104-synopsys. November 4, 2015

[15] Abrial, Jean-Raymond. “Modeling in Event-B: System and Software Engineering”. Cambridge University
Press, New York, NY, USA. 2010

[16] J. Welte, H. Manz. “openETCS D2.1: Report on existing methodologies”. ITEA2 Project Technical Re-
port. January 2012

[17] ISA DSL github repository: https://github.com/allegroCoder/Farfalle.

NCL-EEE-MICRO-TR-2015-200, Newcastle University 15


