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Abstract

Continued technology scaling in VLSI has enabled more and more computation cores to be integrated in

the same chip. This has facilitated the parallelization of processing and the increase of performance whilst

keeping energy consumption at reasonable levels. To study the potential improvement of performance in such

many core systems, three existing models have been popular in both the research community and industry.

Amdahl’s law is the original speedup model that estimates the maximum performance improvement with fixed

workloads. Gustafson’s law is a popular model that introduces variable workloads and estimates fixed time

speedup. Sun and Ni combined the above two models into one considering the memory-bounded situation.

These models are further extended via Hill-Marty model through considerations of homogeneous and a limited

assumption of heterogeneous core configurations to estimate performance computation via Pollack’s rule. This

report investigates into these models and extends them to cover a generalized assumption of core heterogeneity

more relevant for contemporary many-core architectures. We also present power and energy models based on

the extended heterogeneous models making them usable for power and energy normalized performance and

similar system metrics. Our models, being entirely general, cover popular power and performance control

methods such as Dynamic Voltage Frequency Scaling (DVFS), power gating, etc. A case study is performed

with an ARM big.LITTLE architecture containing Cortex A7 and A15 cores, including a comprehensive

analysis with different ratios of parallel and sequential workloads to identify the most energy-efficient system

configuration based on these models.

1 Introduction

Technology scaling has facilitated significant performance improvement at reduced power consumption
through increased operating frequency and smaller device geometries [1]. According to Dennard’s CMOS scal-
ing law [2] despite such smaller geometries the power density of these devices remains constant. This is because
the number of transistors per unit of area is also increasing substantially, which also conforms to Moore’s [3]
and Koomey’s laws [4]. Dennard’s law further states that the performance per watt is growing exponentially,
doubling every 1.5 years.

Over the years significant research has been carried out to understand the trend of performance growth with
many interconnected cores. An examples of these models is Pollack’s Rule, which suggests that performance is
increasing approximately proportional to the square root of the complexity [5]. Following this rule, a twofold
growth of the components in a double processor will provide double the performance, in contrast to a single
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Table 1: Existing Speedup Models and the Proposed Model
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[6] Yes No No No No Yes No No
[7] Yes No No No No Yes Yes No
[8] Yes No No No No Yes Yes Yes
[14] Yes Simple No No No Yes No No
[15] Yes Simple No No No Yes Yes Yes
[16] Yes Simple Yes Yes Yes Yes No No
[17] Yes No No No No Yes Yes Yes
Extended
Model

Yes General Yes Yes Yes Yes Yes Yes

processor [1]. Therefore, multicore systems will deliver further improvement in throughput and latency for the
same die area.

The most appropriate metric to describe performance gain is speedup. The first scalable model in relation to
the multicore processor model is explained by Amdahl’s law [6]. It assumes that a fixed workload is executed in
N processors of a multi- or many-core system and compares the throuput/perfromance with the same workload
executed in a single processor. In 1988, Gustafson introduced the principle of scalable computing in multicore
processors pertaining to the fixed time model. This model proposes a linear speedup model that increases the
workload proportional to increasing machine scalability, while the execution time remains fixed [7].

In other words, more parallel processors complete larger workloads spending the same amount of time and
the speedup is calculated according to how much larger the workload is in multiple cores compared with that
in a single core. In 1990, Sun and Ni suggested a new model, which included extended workload calculations
by considering the capability of the memory. It is important to note that the executed workload and time should
change based on the capability of the system, while the performance calculations appeared linear within the
increasing cores [8, 9].

On the other hand, power consumption management is a significant issue in scalable systems. For instance,
DVFS, clock gating and power gating techniques are designed for this reason. The fine grain power management
suggested by [1], [10] [11] [12] [13] are some of the scaling techniques used in order to decrease power con-
sumption. Speedup models described in existing studies for the comprehensive understanding of core modeling
are listed in Table 1. The Hill-Marty model extended Amdahl’s law to cover not only homogeneous structures
but also heterogeneous configurations fitting a limited simple assumption of core heterogeneity applicable to
such practical systems as CPU-GPU structures. [14]. The study in [17] extended this analysis to all three major
speedup models. The authors of [15] evaluated the homogeneous speedup models alone. The other important
issue represented by energy efficiency is demonstrated by [16] for the homogeneous and simple heterogeneous
Amdahl’s model.

From Table 1, it can be seen that the existing models [6–13], however, have a general limitation of not
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studying the energy-efficiency of computer system configurations, in addition to limiting any study of core het-
erogeneity to a simple assumption only applicable to CPU-GPU like configurations. To address these limitation,
this report makes the following contributions:

. extends the assumption of system core heterogeneity to a completely general case covering such modern
configurations as FPGA-based acceleration schemes, complex structures with many types of cores, com-
plex Systems on Chip (SoC) including mobile computing platforms, data centers with large numbers of
heterogeneous processing units, etc.;

. extends the three major speedup models (Table 1) to estimate power and energy normalized speedup
metrics [14–17];

. studies the comparative power/performance trade-offs of these models for energy-efficient computing
based on homogeneous and heterogeneous configurations;

. incorporates representations of the effects of such power and energy optimization techniques as DVFS
and clock and power gating in the power models, i.e. heterogeneity in power control methods in addition
to core structures;

. uses a mobile computing platform centered around ARM big.LITTLE Cortex A7-A15 cores in the form
of Odroid-XU3 as a case study covering all aspects of the new modeling.

To the best of our knowledge this is the first comprehensive power and energy normalized performance ana-
lysis of the major many-core speedup models. It also represents the first attempt to extend these models to cover
a fully general assumption of core heterogeneity. The rest of the report is organized as follows. Section II gives
the background on existing speedup models for homogeneous systems; Section III extends existing speedup
models to cover the general assumption of core heterogeneity; Section IV derives the average power consump-
tion models for all three extended models; Section V describes a method for power and energy normalized
performance analysis of these extended models for homogeneous and heterogeneous configurations; Section VI
describes the case study; Section VII gives the outcomes of power and energy normalized performance analysis
of homogeneous and heterogeneous models; And Section VIII concludes the report.

2 Homogeneous Speedup Models

For a homogeneous system we consider a system consisting of N cores, each core having performance of IPS1

instructions per second. This section descibes various existing models for determining the system’s speedup
SP(N) in relation to a single core, which can be used to find the performance of the system:

IPSN = SP(N) · IPS1. (1)

The parallel part of a workload is P and the sequential part is (1−P), the communication overhead is negligible.

2.1 Amdahl’s Law (Fixed Workload)

The general idea of this model is to compare execution time for some fixed workload WL on a single core with
the execution time for the same workload on the entire N-core system [6].
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Time T (1) to execute workload WL on a single core is WL/IPS1, whereas T (N) adds up the sequential execu-
tion time on one core and the parallel execution time on all N cores:

T (N) =
(1−P) ·WL

IPS1
+

P ·WL
N · IPS1

, (2)

thus the speed up can be found as follows:

SP(N) =
T (1)
T (N)

=
1

(1−P)+ P
N

. (3)

2.2 Gustafson’s Model (Fixed Time)

Gustafson re-evaluated the fixed workload speedup model to derive a new fixed time model [7]. In this model,
the workload increases with number of cores, while the execution time is fixed.

Let’s denote the initial workload and extended workload as WL and WL′ respectively. The time to execute
initial workload and expanded workload are T (N) and T ′ (N) respectively. The workload scaling ratio can be
found from:

T (1) =
WL
IPS1

, (4)

T (N) =
(1−P) ·WL

IPS1
+

P ·WL′

N · IPS1
. (5)

and, since T (1) = T (N) , the extended workload can be found as:

WL′ = N ·WL. (6)

T ′ (1) =
(1−P) ·WL

IPS1
+

P ·N ·WL
IPS1

. (7)

From the relation of scaled and unscaled execution time the following equation for speedup can be calcu-
lated:

SP(N) =
T ′ (1)
T (1)

= (1−P)+P ·N. (8)

The sequential part of the workload uses one core to perform its calculation at the performance IPS1, and
the parallel execution uses N cores to perform its calculation at the performance N · IPS1.

2.3 Sun and Ni’s Model (Memory Bounded)

Sun and Ni mixed the previous two speedup models by consider the memory bounded constrains [8,9]. In this
model the execution time and the workload change according to the memory capability. The parameter g(N)

reflects the scaling of the workload in relation to scaling the memory with the number of cores:

WL′ = g(N) ·WL. (9)

A typical example g(N) is given for an M×M matrix multiplication, which has the memory requirement
of M2 and the computation cost (workload) of M3. In this case, g(N) = N

3
2 . The time to execute the scaled
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Figure 1: The proposed general structure of a heterogeneous system (c) compared to a homogeneous system (a)
and the previous assumption [14] on heterogeneity (b).

workload can be found from (4) and (5).

T ′ (1) =
(1−P) ·WL

IPS1
+

P ·g(N) ·WL
IPS1

, (10)

T ′ (N) =
(1−P) ·WL

IPS1
+

P ·g(N) ·WL
N · IPS1

. (11)

The speedup is calculated as follows:

SP(N) =
T ′ (1)
T ′ (N)

=
(1−P)+P ·g(N)

(1−P)+ P·g(N)
N

. (12)

Because the workload is scaled by g(N) according to (9), one of the important properties of this model is
that for g(N) = 1 Sun and Ni’s model (12) transforms into Amdahl’s Law (3), and for g(N) = N it becomes
Gustafson’s Law (8).

3 Heterogeneous Speedup Models

Previous attempts to extend speedup laws to heterogeneous systems were mainly focused on a single high-
performance core and many smaller cores [14], which is relevant for CPU+GPU systems. In this work we
aim to fully generalize the models. Hence, for a heterogeneous system we consider a system consisting of
X clusters (types) of homogeneous cores with number of cores defined as a vector N = (N1, . . . ,NX ). Vector
α = (α1, . . . ,αX ) defines the performance of each core by cluster (type) in relation to some base core equivalent

(BCE), such that for some 1≤ i≤ X we have IPSi = αi · IPS1. The structure is shown in Figure 1. This section
extends homogeneous speedup models for determining the heterogeneous system’s speedup SP

(
N
)

in relation
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to a single BCE, which can then be used to find the performance of the system using (1).

3.1 Heterogeneous Amdahl’s Law (Fixed Workload)

For heterogeneous systems the combined performance of all cores while executing the parallel code P can be
found as a weighted sum of all performances:

Nα · IPS1 =
X

∑
i=1

Ni ·αi · IPS1, (13)

Nα is called a performance-equivalent number of BCEs. In other words, this performance is equal to
Nα BCE cores executing the same parallel code; Nα can be a fractional number. However, in the case of
synchronized-parallel execution (i.e. if the parallel execution waits for the slowest core to finish), a different
equation has to be used to find Nα :

Nα = minα ·
X

∑
i=1

Ni. (14)

For the use case calculations in this report we used (13).
We also assume that the sequential part is executed on a single core in the cluster X . Hence, the time to

execute the fixed workload WL on the given heterogeneous system is:

TX
(
N
)
=

(1−P) ·WL
αX · IPS1

+
P ·WL

Nα · IPS1
. (15)

The speedup in relation to single BCE is:

SP
(
N
)
=

T (1)
TX
(
N,α

) = 1
(1−P)

αX
+ P

Nα

. (16)

3.2 Heterogeneous Gustafson’s Model (Fixed Time)

Because of the workload scaling, we cannot directly compare speedup while executing the sequential code in
the core X to single BCE execution. Let’s first find the speedup SPX

(
N
)

relative to a single core X . This is done
similarly to Gustafson’s derivation (Section 2.2).

TX (1) =
WL

αX · IPS1
, (17)

TX (N) =
(1−P)WL
αX · IPS1

+
P ·WL′

Nα · IPS1
, (18)

TX (1) = TX (N) , hence the extended workload can be found as:

WL′ =
Nα

αX
·WL. (19)

T ′X (1) =
(1−P) ·WL

αX · IPS1
+

P ·Nα ·WL
αX · IPS1

, (20)
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SPX
(
N
)
=

T ′X (1)
TX (1)

= (1−P)+
P ·Nα

αX
. (21)

The speedup of a single core X in relation to BCE is αX , thus the total speedup relative to BCE is:

SP
(
N
)
= αX ·SPX

(
N
)
= (1−P) ·αX +P ·Nα . (22)

The sequential part of the workload uses one core in the cluster X to perform its calculation at the perform-
ance αX · IPS1, and the parallel execution uses all cores to perform its calculation at the performance Nα · IPS1.

3.3 Heterogeneous Sun and Ni’s Model (Memory Bounded)

Similarly to Amdahl’s and Gustafson’s cases, we can extend Sun and Ni’s model to the general heterogeneous
case as follows:

T ′X (1) =
(1−P) ·WL

αX · IPS1
+

P ·g
(
N
)
·WL

αX · IPS1
, (23)

T ′X (N) =
(1−P) ·WL

αX · IPS1
+

P ·g
(
N
)
·WL

Nα · IPS1
, (24)

SPX
(
N
)
=

T ′X (1)
T ′X (N)

=
1

αX
·
(1−P)+P ·g

(
N
)

(1−P)
αX

+
P·g(N)

Nα

. (25)

The speedup in a heterogeneous system relative to BCE is calculated as follows:

SP
(
N
)
= αX ·SPX

(
N
)
=

(1−P)+P ·g
(
N
)

(1−P)
αX

+
P·g(N)

Nα

. (26)

When g
(
N
)
= 1, this model transforms into heterogeneous Amdahl’s Law (16), and for g

(
N
)
= Nα

αX
it

becomes heterogeneous Gustafson’s Law (22), as expected from (19).
For all heterogeneous models, substitution αX = 1,Nα = N will give the homogeneous versions of respective
models. In other words, homogeneity is a special case of heterogeneity.

4 Average Power Consumption Models

The power consumption models are built under the assumption that the cores consume power when idle. When
idle power is zero, this assumption covers the special case of power gating.

Let’s the active power of a core in the homogeneous system (Section 2) be WA and the idle power of a core
be Wi respectively. Active power can also be expressed as a sum of idle power and effective power W1 (used
for computation), WA = W1 +Wi. In the total power consumption of the system, the constant term of total idle
power Widle does not benefit to the model and can be added later. The power models W (N) are focused on the
effective power, and the total power of the system can be calculated as follows:

Wtotal =W (N)+Widle, (27)

In the heterogeneous system (Section 3), the difference between power consumptions of the cores is ex-
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pressed by the vector β = (β1, . . . ,βX ), which defines the effective power in relation to a BCE’s effective power,
such that for some 1≤ j ≤ X we have effective power Wj = β j ·W1. All idle powers of heterogeneous cores are
combined into Widle. In general case, we say that:

Widle = Ni ·Wi, (28)

where Ni is idle power equivalent number of BCEs and Wi is the idle power of a single BCE.
The effective power model can be found as a time-weighted average of the sequential power WS the and

parallel power WP:

W (N) =
WS ·TS (N)+WP ·TP (N)

TS (N)+TP (N)
, (29)

where TS (N) and TP (N) are speedup-dependent times to execute sequential and parallel parts respectively.
In the homogeneous system:

WS =W1, WP = N ·W1. (30)

In the heterogeneous system, if we execute the sequential code on a single core X :

WS = βX ·W1,

WP =W1 ·∑X
j=1 β j ·N j = Nβ ·W1.

(31)

Nβ is called a power-equivalent number of BCEs. Heterogeneous power models will transform into homogen-
eous if αX = βX = 1 and Nα = Nβ = N.

4.1 Power Model for Amdahl’s Law (Fixed Workload)

From (15) we know that:

TS
(
N
)
=

(1−P) ·WL
αX · IPS1

, TP
(
N
)
=

P ·WL
Nα · IPS1

. (32)

By substituting (32) and (31) into (29) we have a power model for the heterogeneous system:

W
(
N
)
=

(
βX

αX
· (1−P)+

Nβ

Nα

·P
)
·SP

(
N
)
·W1, (33)

where the speedup SP
(
N
)

is calculated using (16). For homogeneous system, this will transform into:

W (N) = SP(N) ·W1, (34)

thus for Amdahl’s Law the power scales with the speedup.

4.2 Power Model for Gustafson’s Model (Fixed Time)

In this model we have a fixed time T , so the workload splits execution into:

TS
(
N
)
= (1−P) ·T, TP

(
N
)
= P ·T. (35)
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Thus, we can find a power model for the heterogeneous system:

W
(
N
)
=

(
βX · (1−P)+Nβ ·P
αX · (1−P)+Nα ·P

)
·SP

(
N
)
·W1, (36)

For homogeneous system, this will transform into:

W (N) = SP(N) ·W1, (37)

where the speedup SP
(
N
)

is calculated using (22).

4.3 Power Model for Sun and Ni’s Model (Memory Bounded)

From (24) we can find:

TS
(
N
)
=

(1−P) ·WL
αX · IPS1

, TP
(
N
)
=

P ·g
(
N
)
·WL

Nα · IPS1
. (38)

Thus, we can find a power model for the heterogeneous system:

W
(
N
)
=

 βX
αX
· (1−P)+

Nβ

Nα
·P ·g

(
N
)

(1−P)+P ·g
(
N
)

 ·SP
(
N
)
·W1, (39)

where the speedup SP
(
N
)

is calculated using (26). This model will transform into (33) if g
(
N
)
= 1, or (36) for

g
(
N
)
= Nα

αX
. For homogeneous system, (39) will also transform into:

W (N) = SP(N) ·W1. (40)

All power models – (33), (36), and (39) – can be represented using power scaling PS
(
N
)
, which can be

derived from the respective model equations:

W
(
N
)
= PS

(
N
)
·SP

(
N
)
·W1. (41)

5 Power-normalized and Energy-normalized Performance

The power model explains the total power consumption in this model during workload execution. It is likewise
represents the cooling capacity. Furthermore, it is simple to model the performance achievable at the same
cooling capacity from calculating performance per watt (Perf/Watt). This model is reciprocal of energy per
instruction (EPIN) because performance is the reciprocal of execution time.
EPIN can be found from dividing the total power (27) by the system’s performance (1):

EPIN =
Wtotal

IPSN
=

W
(
N
)
+Widle

IPS1 ·SP
(
N
) , (42)

which is true for all cases of W
(
N
)
: Amdahl’s, Gustafson’s, or Sun and Ni’s.
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For a single BCE we can denote energy per instruction as a sum of effective energy EPS1 and idle en-
ergy EPSi:

EPIBCE =
W1

IPS1
+

Wi

IPS1
. (43)

Applying the power model (41) to (42) and also considering (28), we find:

EPIN = EPI1 ·PS
(
N
)
+

Ni ·EPIi

SP
(
N
) . (44)

This equation shows that the effective component of the energy increases with the power scaling PS
(
N
)
,

and the idle energy decreases with the speedup SP
(
N
)
.

Energy-normalized performance represents how much performance one can gain if willing to increase energy
per operation. This gain in relation to BCE can be found as:(

IPSN

EPIN

)
·
(

IPS1

EPIBCE

)−1

= SP
(
N
)
· EPIN

EPIBCE
. (45)

The equation shows that the increment factor scales with the speedup, and this is true for all three models.

6 Case Study

We carried out an extensive case study demonstrating the use of these models. This study is based on a
multi-core mobile platform, the Odroid-XU3 board [18]. The main part of it is the 28nm Application Processor
Exynos 5422. It is an SoC hosting an ARM big.LITTILE heterogeneous octa-core processor consisting of four
Cortex A7 cores and four Cortex A15 cores. The big Cortex-A15 is a high performance 32-bit core having 32
KB instruction and 32KB data L1 caches and 2 MB L2 cache and the maximum frequency of 2.0 GHz. The
LITTLE Cortex-A7 is a low power 32-bit core including the same L1 cache size and 512 KB L2 cache, and the
maximum frequency of 1.4 GHz.

This SoC also has four power domains: A7 power domain, A15 power domain, GPU and memory power
domains. The Odroid-XU3 board allows per-domain DVFS using voltage-frequency pairs, however for fre-
quencies within the range of 200MHz to 800MHz, the voltage stays constant (DFS-only).

The traditional simple assumption for heterogeneous architectures, shown in ure 1(b), cannot describe sys-
tems such as big.LITTLE. Hence, the presented use case is a perfect application for our generalized heterogen-
eous models.

A set of characterization experiments was carried out to determine power consumptions and performances
for each core type. The main parameters for this study can be arranged into the following points.

System’s heterogeneity

Following the general heterogeneous system structure assumption proposed in Section III, we can set the
constants for Odroid-XU3. Two types of cores (A7 and A15) give us X = 2. In our experiments, in order to
improve measurement accuracy, one of the A7 cores was reserved for exclusive use by the operating system.
Therefore the numbers of cores by type are NA7 = 3 and NA15 = 4.
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Core active powers

Theoretical active power calculations are derived from the experiments. The power is measured while ex-
ecuting a full workload on the processor’s cores and sweeping through all DVFS points [19]. In general, the
theoretical dynamic power estimation can be calculated by the power equation [20]:

PowerDynamic =C ·V 2 ·F, (46)

where V is the voltage, F is the frequency, and C is the constant, which relates to the combined capacitance
of the switching logic. We used the experimental data to curve-fit by MATLAB and derive the Cortex A7 and
A15 power equations. The result is the following values for C: in A7 it is equal to 1.0nF and in A15 it is 6.0nF.
Considering A7 as BCE, we have βA7 = 1,βA15 = 6.0 to supply our power models from Section IV.

Core idle powers

Theoretical idle power calculations supported by the experiments [19] give the value of A15 idle power as
WiA15 = 0.021W . Having one of the A7 cores occupied by the operating system prevents measuring idle power
for that domain. In this study we accept the minimum measured power of 0.008W as the domain’s idle power
WiA7, which is also our BCE’s idle power Wi. We also do not switch off the cores, so the total idle power of the
system remains constant: Widle = Ni ·Wi. From the above measurements, we calculated Ni = 14.5.

Relative performance of cores

We did not use performance counters to find the actual number of clocks per instruction (CPI) for different
types of instructions. Given these are RISC processors, we assume the general value of CPI = 1 without losing
generality. From the characterization experiments, we found that on the average an A15 core has 1.5 times the
throughput of an A7 core when both are running at the same frequency. We also want to calculate the models
for different DVFS points. However, for frequency values when A7 cannot be run and A15 can, or for the
DFS-only region, the performance specifying vector α changes. Therefore, for each DVFS point the value for
αA15 is computed as follows:

αA15 = 1.5 · f reqA15

f reqA7
. (47)

We assume αA7 = 1 considering A7 is our BCE.

Parallelization parameter

The speedup models take parameter P from the nature of the executed workload. In our theoretical calculations
we investigated a number of values for P. In the next section we provide results for two example values (P = 0.9
and P = 0.1) covering highly parallelizable and not parallelizable cases.

7 Outcomes

In this section we present selected calculation results organized in three groups.
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P = 0.9 P = 0.1

P = 0.9 P = 0.1

Figure 2: Metric explorations on a fixed DVFS point (1400MHz)
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Figure 3: Energy per Instruction - P = 0.9.

 

Figure 4: Energy per Instruction - P = 0.1.

7.1 Metric explorations on a fixed DVFS point

In the first group of results we present the following metrics of interest calculated for a various combination of
active and idle cores on a fixed DVFS point ( f reqA7 = f reqA15 = 1400MHz):

• Performance IPSN according to (1),

• Average power consumption Wtotal according to (27),

• Energy per instruction EPIN according to (44),

• Energy-normalized performance according to (45).

These parameters have been estimated for all presented heterogeneous speedup and power models. The
graphs for different models display similar trends, hence we only present Sun and Ni’s model for its generality;
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Figure 5: Energy Normalized Performance - P = 0.9.

 

Figure 6: Energy Normalized Performance - P = 0.1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) P = 0.9                              (b) P = 0.1 

Figure 7: Energy per instruction for a homogeneous system.

g(N) was set to the matrix multiplication example presented in Section II:

g
(
N
)
=

(
Nα

αA15

) 3
2
.
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(a) P = 0.9                        (b)  P = 0.1 

Figure 8: Performance of homogeneous A7 cores

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) P = 0.9                              (b) P = 0.1 

Figure 9: Average power consumption of homogeneous A7 cores

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) P = 0.9                              (b) P = 0.1 

Figure 10: Energy per instruction of homogeneous A7 cores

Figure 8 shows the graphs for the listed parameters for P = 0.9 and P = 0.1.
It can be seen from the data that although the power consumption increases with the number of cores

participating in the computation, the performance also increases with the cumulative effect being that the per-
formance per unit of power spent still improving with more cores used. This is mainly because of the influence
of idle power. If you don’t use a core, the idle power is wasted.

The higher the parallelization factor, the better the performance and energy-normalized performance, as
expected.

More interestingly, from the energy per instruction metric one can see it increasing when the number of
A15 cores increase but decrease when the number of A7 cores increase. This is on account of the much higher
efficiency of A7 cores in terms of energy per instruction.

NCL-EEE-MICRO-TR-2016-198, Newcastle University 15



Mohammed A. Noaman Al-hayanni, Ashur Rafiev, Rishad Shafik, Fei Xia, Alex Yakovlev: Extended Power
and Energy Normalized Performance Models for Many-Core Systems

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) P = 0.9                              (b) P = 0.1 

Figure 11: Power normalized performance of homogeneous A7 cores

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) P = 0.9                              (b) P = 0.1 

Figure 12: Energy normalized performance of homogeneous A7 cores

 

Figure 13: Performance of heterogeneous cores - P = 0.9

7.2 Frequency scaling

This group of results illustrate the scaling of the energy per instruction EPIN and the energy-normalized
performance with the system’s frequency. The values for frequencies have been selected within the allowed
range of 200MHz to 2000MHz and the same frequency have been set for A7 and A15 cores if possible (for
values above 1400MHz, the frequency for A7 is set to the allowed maximum of 1400MHz). This point causes a
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Figure 14: Performance of heterogeneous cores - P = 0.1

 

Figure 15: Average power consumption of heterogeneous cores - P = 0.9

non-smooth change in αA15 leading to a peculiar non-smooth behaviour of the metrics. There are two other less
obvious behaviour boundaries: 800MHz, where DVFS switches to DFS, and 1900MHz, above which the A15
cores experience throttling because of thermal issues. All these points are reflected by our models.
Figure 3 shows the graphs for the energy per instruction EPIN in different heterogeneous core combinations for
P = 0.9. Figure 5 shows the graphs for the energy-normalized performance, also for P = 0.9.

7.3 Homogeneous example

Figure 7 presents an example of applying the presented models to a homogeneous system for completeness,
demonstrating that X = 1 also works. From this figure, we can make an interesting observation: if you put
more cores to solving a problem with a low parallelization capability (P = 0.1), energy per instruction suffers,
especially at the lower frequencies.
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Figure 16: Average power consumption of heterogeneous cores - P = 0.1

 

Figure 17: Power normalized performance of heterogeneous cores - P = 0.9

8 Conclusions

This report addresses the emerging issue of the system heterogeneity becoming more common and diverse in
its structure well beyond the traditional CPU+GPU assumption. This is done by introducing the general model
for system heterogeneity. The three known speedup models (Amdahl’s Law, Gustafson’s model, Sun and Ni’s
model) are extended to cover this general heterogeneity. In addition to performance speedup, the report presents
the models for power and energy related system metrics.

The derived theoretical models have been applied to a real-life heterogeneous system, whose structure does
not fit into the traditional heterogeneity assumption. The model parameters have been characterized from a set
of experiments, and the metrics of interest have been calculated to demonstrate the model capabilities. These
metric include performance scaling, average power scaling, energy per instruction, and energy-normalized
performance. However, so far we have not done cross-validation of the results against any other set of
experimental results. This cross-validation is a candidate for immediate future work.
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Figure 18: Power normalized performance of heterogeneous cores - P = 0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) P = 0.9                              (b) P = 0.1 

Figure 19: Energy normalized performance of homogeneous A7 cores
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