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Abstract

One of the possible approach to the design of hardware systems is to start with the description of their

behaviours. Each of them represents a task that the system is supposed to execute. A task, also known

as scenario, is nothing else but the set of operations which need to be performed in a certain order for the

achievement of the requested answer.

This has been validated with the design, fabrication and verification of an asynchronous reconfigurable

pipeline (using a miniASIC with TSMC 90nm technology). The models and tools used are available in the

open source Workcraft framework. Other models and theories for the synthesis of scenario-based hardware

systems are also considered and briefly examined, in order to picture the benefits that the presented design-flow

comes with.

1 Introduction

Over the years, hardware architectures are increasingly getting more complex. Processors gain new instructions
and system-level features, hardware parallelism also grows due to the working frequency limit given by the
slower transistors down-scaling. Formal specification and modelling is becoming an important area of research
not only in academic environments, but also in leading processor companies like ARM [1]. Various are the
reasons why using a systematic yet formal approach to the design of hardware systems is becoming appealing.
Firstly, documenting the specification of hardware structures via mathematical models helps designers, with
different backgrounds, develop a good understanding of the system [2]. Secondly, abstracting the system leads
to a reduction in the design time, since the majority of the mistakes can be captured and solved earlier. Further-
more, using a systematic approach can be beneficial either for optimising the whole system and for obtaining a
scalable entity which supports yearly architectural updates.

The higher hardware complexity brings a progressively longer delay in the design phase. To deal with this
problem, a task is usually divided into multiple sub-tasks. Each sub-task is assigned to a different engineer/team
which is in charge of solving that particular problem respecting the specification assigned. The latter is useful
to let all the sub-answers be compatible to each other. This further fosters the importance of having a formal
specification. The systems, which can be divided into independent sub-systems, (also known as scenarios)
are named scenario-based systems. This approach can be applied to a wide range of applications: processor
instruction sets [9], process-mining traces [10] and analogue system specifications [11]. The aim of this article
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is to show that, from scenario-based specifications, it is possible to obtain hardware architectures able to satisfy
the scenarios that the system is composed of.

In the literature, different attempts to build a hardware system starting from its scenarios are
present [3][4][5]. There are models and theories such as Live Sequence Charts (LSCs) [6], Message Sequence
Charts (MSCs) [7] and UML Sequence Diagrams(UML SDs) [8]. The above methods are not supported by
industry-strength EDA software. The approach presented in this article relies on two graph-based models which
have been validated over sound and extensive case studies: Conditional Partial Order Graphs (CPOG) [13][14]
and Dataflow Structures (DFS) [15][16]. The former representation can be used for the design of the control
side of the architecture, whereas the latter for the datapath. These two models are implemented as tool-plugins
in the Workcraft framework [17][18].

The case study used is an algorithm for the ordinal pattern encoding (OPE) [19]. The article characterises
a rationale for the computation of the ordinal analysis, meant for the examination and the prediction of various
data-streams. The architecture is a pipeline of modules which, trough various operations, analyses chains of
numbers. The length of the chain that the structure can analyse is given by the length of the pipeline. My
goal was building an asynchronous reconfigurable pipeline for the analysis of different stream-lengths. The
structure has been first implemented into a FPGA-based board (Maxeler [21]), and then into an ASIC using
TSMC 90nm technology with Europractice facilities [20]. Itself, this technique finds different applications:
from stock market prediction to some medical data analysis.

The article is divided as follows: Section 2 introduces the CPOG and DFS models, presenting how they
can be adopted together for the design of hardware systems. Section 3 reviews the case study used for this
work (OPE), highlighting the steps which brought the rationale to FPGA-based design. In Section 4 the ASIC
fabricated for the validation of the design-flow is presented and evaluated. Section 5 concludes the article.

2 Scenario-based design with CPOG & DFS

Several hardware structures can be clustered into two parts: the control and the datapath. The former reads
the current state of the system, by looking at the input stimuli coming from the external environment and from
the datapath, activates the modules within the datapath for the current state execution, and eventually move the
system into a next state. The datapath, instead, is in charge of executing the current state. They both are very
important, and due to their interaction a malfunctioning on one of the two may cause the system to give a wrong
answer.

Processors fit this view: the control unit is indeed in charge of the activation of the right modules, structurally
defined within the datapath, to use for the execution of an instruction. Let us consider the execution of an
addition, for instance. When the opcode associated of such an operation is recognised, the modules that are
needed to perform the addition are activated. The register file for fetching the operands, the adder for the sum
computation and the memory for storing the final result. The implementation of these modules is not important
for the control unit. The latter does not need to know if the sum will be given by a simple ripple carry adder,
or by a more sophisticated and faster sparse tree adder. What really matters is how these modules interact to
each other. The control unit should, indeed, be able to manage them in the proper way. When the addition is
done, the control unit moves to the next instruction. Due to the different nature of these two units, it makes
sense describing them by using different models. In this article, I use Conditional Partial Order Graphs for the
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description of the control unit, and Dataflow Structures for the description of the datapath.
The case study used for this research is an algorithm for the computation of the ordinal pattern encoding [19].

A pipeline composed by n stages is needed for analysing streams of n numbers. By modelling the control unit via
CPOG, and the datapath via DFS we aim at building a pipeline which can be adjusted from 4 to 18 stages. For
sake of brevity, in this section the design flow will be applied to the design of a pipeline for the computation of
algebraic polynomial of different degrees. The principle is the same since both the two structures are composed
by the same pipeline stage repeated as many times as the length of the streams to support.

2.1 Control unit description via CPOG

Composability is the most important concept when dealing with control unit description. A control unit can
be defined as the set of possible behaviours that may happen inside a system. Each behaviour can be fired by
a certain key, this activates a number of building blocks that, connected together, guide the Datapath to give
a certain answer. All the behaviours, or scenarios, that compose a system share the same building blocks, or
operations. If a scenario does not include some operations within itself, it does not mean that the system does not
have to deal with those blocks when executing that particular scenario. Conversely, those block must be turned
off at any time throughout the execution of the scenario. The notion of sharing is important because the control
unit is the composition of all its internal scenarios, and their shared operations. When dealing with the design
of a control unit, the operations (basic blocks) must first be identified. Afterwards, their dependencies must be
enclosed into different scenarios which will be eventually enclosed into the highest level entity, the control unit.
In Figure 1 the hierarchy between these three blocks is depicted. The operations set only contains the blocks
which will implemented in the Datapath, Scenarios set contains also the dependencies between operations and
the control unit set associates the scenarios with an unique key.

Operations

Scenarios

Control unit

Figure 1: Control unit hierarchy blocks.

Conditional Partial Order Graphs [13] is a graph-based formalism convenient for representing scenario-
based systems. The scenarios, their keys, operations and dependencies can be drawn in a graphical-friendly
form with a sound math basis. In Figure 2 a CPOG composed of two scenarios is depicted. {a,b,c,d} are the
operations which the graphs share, the arcs represent the dependencies between them and the variable x encloses
the key associated to the behaviours: if x = 1 the scenario on the left-hand side is activated, if x = 0 the one on
the right is activated instead.
The conditional partial order graph at the top of the figure can be used for the synthesis of a hardware micro-
controller. The latter, connected to a datapath that contains the operations defined {a,b,c,d}, that the control
unit captured, can be eventually turned out into a working hardware system.

The main case study of the article is a self-timed reconfigurable pipeline that implements the OPE (see
Section 3). For sake of brevity, I will focus on the design of a reconfigurable asynchronous pipeline that, given
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Figure 2: CPOG composed of two scenarios.

a stream of values xi computes corresponding polynomials pi = anxn
i + ...+ a1xi + a0 and possibly aggregates

the values on the fly, that is, computing qi = p0 + ...+ pi. The degree n and coefficients ai of the polynomial, as
well as the aggregation function, are free parameters that can be specified during the reconfiguration stage [23].
The design of a reconfigurable pipeline for the computation of polynomials of degree 5, 4 and 3 will be shown.

The pipeline is composed by the same operation repeated as many times as the degree of the algebraic
polynomial that we achieve to compute. The operation, named mad which stands for multiply and add, is
described in the next section with the Dataflow structure. This is instantiated n times, according to the length
of the stream to process. This approach for the polynomial computation is based on the Horner’s method [22].
The polynomial is computed by subsequent multiplications and additions according to the formula below.

p(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−1 +anx)))

The goal is building a pipeline able to selectively compute the three functions below:

f (x) = a[g]x5 +a[h]x4 +a[i]x3 +a[ j]x2 +a[k]x+a[0] (1)

f (x) = a[g]x4 +a[h]x3 +a[ j]x2 +a[k]x+a[0] (2)

f (x) = a[g]x3 +a[h]x2 +a[k]x+a[0] (3)

Mad should be therefore instantiated 5 times inside the datapath, these will be shared between three scenarios,
represented by the three functions above. The dependencies between the operations are straightforward: the
data stream should simply go through the pipeline of multiply and add modules one by one. The three scenarios
are depicted in Figure 3. The partial order 1 models the behaviour of the Equation 1, the remaining ones of
the Equations 2 and 3 respectively. The three scenarios can be composed into the CPOG at the bottom of the
Figure 3.

Two variables are needed the three scenarios selectively: {C_0,C_1}. In this case, the first partial order is
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(1)

(2)

(3)

Figure 3: CPOG & scenarios for the computation of algebraic polynomials from third to fifth degree.

encoded with the code {1,1}, the second one by the code {0,1} and the third one by {1,0}. When the latter
code is selected, for instance, the operations mad2 and mad3 are off and the polynomial computed has degree 3
(Figure 4). The control signals that this CPOG generates will feed the Datapath, described in the next section.

Figure 4: CPOG when code {1,0} is selected.

The hardware synthesis from the CPOG, the scenarios encoding and graph visualisation plugins are available
in the Workcraft framework. The latter also supports algebraic notation for entering CPOGs [12]. They have
been extensively tested over several benchmarks [9][10][11], this guarantees the reliability of the design.

2.2 Datapath description via DFS

On the other side of the architecture there is the datapath, where the main computational units reside. Each unit
can be described singularly via the DFS model, which, together with its dynamic extension, can be used for
the description of more units interconnected together. This is due to the conditional activations of some nodes
brought by the dynamic DFS extension. The Dataflow representation contains two different kinds of elements:
the static and the dynamic nodes (Figure 5). The former can be either register or combinational nodes. These are
used for representing single units as could be an adder, a linear feedback shift register (LFSR), etc. The latter,
instead, is composed of elements (control, push, pop) which are meant to control the data paths, dynamically
connecting or disconnecting some particular parts of the architectures. A token models a data item which goes
through these elements. The structure fits well to the representation of asynchronous circuits, as the token game
naturally follows the rules of 4 phases dual-rail self-timed protocol [24]. The latter has been used for our main
case study (Section 3). Readers can find more information about the model and its math basis in [15].
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Figure 5: Five types of DFS nodes.
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(b) Multiply-and-add (MAD) operation

Figure 6: Reconfigurable pipeline for polynomial computation.

In Figure 7(a) a 4-bit linear feedback shift register is depicted as an example. The second and fourth registers
are connected back to the first through a xor gate. This circuit can be used for the pseudo random generation
of cyclic set of n values, where n depends on the number of the registers composing the unit. This component
can be easily modelled via DFS (see Figure 7(b)) resulting in an asynchronous 4-bit LFSR. Each register is
doubled due to the need for a master and a slave register of the 4-phases dual rail protocol. The connections
to the XOR_GATE are similar to the one in Figure 7(a), even though in the self-timed counterpart the slave
register are the one in charge of propagating the data item back to the left-most register via r0. The • symbol
contained inside the master registers model the data tokens. DFS is indeed very convenient for the initialisation
of asynchronous components, a simulation can be run in Workcraft in order to make sure that the structure
works finely.

In order to show how a reconfigurable pipeline can be modelled I will refer to the polynomial example
started in the previous section. It has been shown how the control unit can be described via the CPOG model.
The actual computational units should now be described and then connected each other, in such a way to come
up with a pipeline where some of the stages can be activated and deactivated at times. In Figure 8 the template
of one stage of the pipeline is depicted. The stage is composed by four main elements: the input/output register
which are in charge of propagating the values in and out the pipeline stage. The combinational logic block
which implements the operation that needs to be performed (MAD in our case). The sequential logic register
that simply stores the result computed. And finally the demultiplexer and multiplexer. These latter elements
abstract the dynamic nodes shown in Figure 5. When the path addressed by a logic 1 is selected by the control
coefficients, which also control the CPOG-based control unit, the modules enclosed between these elements are
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R4

(a) 4-bit LFSR

(b) 4-bit self-timed LFSR model via DFS

Figure 7: 4-bit LFSR modelled via DFS.

activated. In Figure 8(b) the dynamic components hidden by the demux and the mux are shown. The control

register activates the bottom path (including the combinational node) if controller by a logic 1, and the top path
if by a logic 0.

0

1

0

1

combinational logic
(function)

sequential logic
(register)

demultiplexer multiplexer

source
(input)

sink
(output)

control 
signal

(a) Implementation abstracted by demux/mux (b) Implementation with dynamic nodes

Figure 8: One stage template of polynomial reconfigurable self-timed pipeline.

Once that the template of a pipeline stage has been described, let us focus on the description of the polyno-
mial example. First of all, the MAD unit has to be modelled (Figure 6(b)), this has to perform the multiplication
and the addition by a constant value for the computation of px+ a. This module is placed 5 times inside the
Polynomial calculator Figure 6(c). The latter implements the reconfigurable pipeline. For sake of simplifica-
tion the dynamic nodes in Figure 5 have been abstracted by multiplexers and demultiplexers. The Polynomial

calculator is eventually integrated within the Function calculator e/o aggregator, in Figure 6(a), which is in
charge of the aggregations of the values on the fly: qi = p0 + ...+ pi.

The flow described in this section can be used for the design of reconfigurable asynchronous pipelines, and
of all the structures where the control and the datapath sides can be described separately. In the next section,
the OPE case study will be presented and used for the validation of this design approach presented.

3 Theory and Maxeler-based implementation

Ordinal pattern encoding (OPE) is an operation that can be applied for the analysis of data streams. In [19], a
reconfigurable pipelined accelerator for the execution of this operation is presented. This represents the main
case study of this research. The accelerator, accordingly modified to fit our needs, has been first implemented
into a FPGA-based board [21], and then into a an ASIC.
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OPE definition [19]. Given a sequence of n distinct values b = (b1, ...,bn), the ordinal pattern of b is
mathematically described by a permutation π = (k1, ...,kn) such that b′ = (bk1 , ...,bkn) is in ascending order.

For instance, let us consider the data stream b = (58,20,56,10,22) for subsequences of length 3. Three
subsequences have to be considered: b1 = (58,20,56), b2 = (20,56,10) and b3 = (56,10,22). The result for
the three streams are: OP1 = (2,3,1), OP2 = (3,1,2) and OP3 = (2,3,1). The ordinal pattern results
contain information about the regularity of the stream b, that can be used for some analysis. The number
of s-length subsequences that can be found in a data stream composed by n uncorrelated values is equal to
n− s+1. The OP requires the streams to be sorted, which has a negative impact either in terms of area or speed
in hardware [25][26]. The algorithm described in [19] converts data streams into Lehmer code, which is in turn
compressed via a factorial number representation to provide the result.

Lehmer code definition [19]. Let x = (x1, ...,xn) be a sequence of length n, the Lehmer code of x is also a
sequence with length n in the form of L (x) = (l1, ..., ln) where:

li = #{x j : j < i,x j < xi}

For instance, below is shown how to compute the Lehmer code of x = (25,35,12,89,2):

L (x1) = 0, ⇒ @ x j : j < i,x j < xi

L (x2) = 1, ⇒ x j : j < i,x j < xi = x1

L (x3) = 0, ⇒ @ x j : j < i,x j < xi

L (x4) = 3, ⇒ x j : j < i,x j < xi = x1,x2,x3

L (x5) = 0, ⇒ @ x j : j < i,x j < xi

Assuming, at first, the L (x) = (0,0,0,0,0) and the first value of the stream to be fed into the pipeline, 2, not to
be in yet. The below Formula explains how each digit of mathcalL is computed at each iteration:

L (li) =

li +1 i f xi > x0

li otherwise
⇒L (x) = (0,1,0,3,0)

Lehmer code can be eventually used for the computation of the OPE. In this section, the implementation in
the Maxeler desktop [21] (based on a FPGA-based board) is described.

3.1 Maxeler-based desktop implementation

The final goal is the design of an asynchronous reconfigurable pipeline, willing to support different stream
lengths for the OPE. The reconfigurable accelerator has been first implemented in the Maxeler workstation [21].
This is a desktop which contains either a FPGA-based board, where digital circuits can be synthesised, and a
CPU, able to run software. The hardware description of the circuits supposed to be implemented into the
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FPGA is abstracted by a friendly java-based language, easy to learn and use. The CPU, connected toward
the internal FPGA-board by default, provides a quick and way to test the hardware implementation. These
reasons encouraged me to the usage of this architecture as a test environment before going for the final ASIC
implementation. The pipeline is synchronous in this implementation, and reconfigurable upon code compilation.

The design is divided into two separated parts. The C-code run in the CPU and the hardware implementation
of the pipeline synthesised into the FPGA. The software compiled for the CPU has a couple of purposes. Firstly,
it is meant to randomly generate data streams to feed the pipeline. Secondly, it collects the final result generated
by the FPGA for checking the correctness. The test vectors, indeed, are also used by the CPU for computing the
OPE in software (a C-based implementation of the algorithm is indeed present in the CPU for the computation
of the OPE). The equality of the two results represents a good proof that the value generated by the pipeline is
correct. Either the pipeline and the random stream length can be adjusted upon complication.

Sequence buffers

Comparators

Lehmer adders

Lehmer buffers

Packed result

R

+ + + +

R R R R

< < < <

R R R R

Input

Output

Figure 9: OPE HW structure for streams of length 4. Figure taken from [19] and modified.

The FPGA, instead, contains the hardware structure for computing the Lehmer code, which can be used for
the computation of the OPE. The structure of the pipeline is shown in Figure 9. The original accelerator de-
scribed in [19] contains an array of multipliers for compacting the final result using the factorial representation.
This simplifies the computation of the OPE. In my implementation, instead, the Packed result is obtained with
the concatenation of all the Lehmer buffers. The size either of the buffers and the results is given by the length
of the stream to analyse. This implementation requires an increased number of output pins but less area, we
also used it into the ASIC presented in the next section.

4 ASIC implementation & evaluation

We apply the proposed method to the design of an asynchronous dataflow accelerator for reconfigurable or-
dinal pattern encoder (OPE) [19]. The first stage is always included in the pipeline, the remaining stages are
reconfigurable. Using the developed WORKCRAFT plugin, we could visually simulate and formally verify the
reconfigurable OPE pipeline at the abstract technology-independent level and with data represented by abstract
tokens. Several cases of deadlock and non-persistent behaviour (mostly due to incorrect initialisation of control
registers) were identified, analysed and corrected during the design process.
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The top-level schematic of the chip designed is shown in Figure 10a. It comprises two implementations of
OPE pipeline, static and reconfigurable, that are activated by the config input. The former is implemented as a
18-stage pipeline and computes a permutation entropy parameter for 18 last numbers in a stream of input data.
The latter can be configured to have from 3 to 18 stages.

LFSR

accumulator

static OPE reconfig. OPE

seed configin

out

count

mode

0 1

0 1

0 1

0 1

0 1

(a) High-level structure.

accumulatorstatic
OPE

reconfig
OPELFSR

(b) Floorplan. (c) Testbench setup.

Figure 10: Ordinal pattern encoding chip [15].

The chip can be used either in normal or random mode, as selected by the mode input. In normal mode
a stream of input data supplied via in port are processed and the results are produced at the out port at every
iteration.

0.5 0.6 0.8 1 1.2 1.4 1.6
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10

100

0.1

1

10
reconfigurable

sta�csta�c
reconfigurable

Voltage [V]

Computa�on �me Consumed energy

nominal voltage

2.74mJ

1.22s

Figure 11: Computation time and energy consumption under different voltages [15].

In random mode a series of count random numbers are produced by a linear-feedback shift register (LFSR)
based on user-defined seed. A checksum of the output stream is calculated in accumulator and a single data
item is produced when all the generated data is processed. This mode is convenient for testing both the chip
performance and functionality, as there is no overheads on interfacing the chip to the testbench environment.
The produced checksum can be validated against the output of OPE behavioural model initialised with the same
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seed and count parameters.
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Figure 12: Power consumption at changing supply voltage [15].

The chip floorplan and its main components are shown in Figure 10b. It has been fabricated using Europa-
ractice facilities in TSMC 90nm CMOS gate family for low-power applications [20].

A custom PCB was developed to interface the packaged chip with a XILINX VIRTEX 7 FPGA to run the
tests and check the correctness of the results. A series of experiments was run, each in random mode for a
stream of 16M LFSR-generated numbers, at supply voltages from 1.6V down to 0.3V. The computation time
was measured by the FPGA with 1ms precision. The power consumption was monitored using KEITHLEY

2612B SYSTEM source meter [27], with 1nW accuracy. The testbench setup is shown in Figure 10c.
Being completely asynchronous, the chip can operate in a wide range of voltages, dynamically adapting its

speed. The computation time and energy consumption are characterised in Figure 11 for supply voltages from
0.5V to 1.6V. The length of reconfigurable pipeline (dashed lines) is set to the maximum value and matches that
of the 18-stage static pipeline (solid lines). Both the computation time and the consumed energy are normalised
to the corresponding measurements of static pipeline at the nominal voltage of 1.2V (the reference values
are 1.22s and 2.74mJ, respectively). As expected, the lower the voltage the slower, but at the same time more
energy-efficient, is the circuit. The energy consumption of reconfigurable implementation is slightly higher (5%
overhead) due to the additional control logic for managing pipeline configuration. The high computation time
of reconfigurable pipeline (36% overhead) is due to inefficient implementation of synchronisation between the
stages using a daisy-chain C-element structure. This can be significantly improved (by our estimates below
10% overhead for configuration logic) using a tree-like C-element implementation (the same as in static OPE
pipeline).

All configurations of reconfigurable OPE pipeline (from 3 to 18 stages) were exercised for 0.5-1.6V supply
voltages. The experiments show that both the computation time and the energy consumption increase linearly
with the length of the pipeline; the slope of increment is reverse-proportional to the supply voltage.

Another experiment demonstrates the capability of asynchronous pipelines to operate at fluctuating voltage
supply down to the near-threshold values. Figure 12 shows the power consumption of the reconfigurable OPE
pipeline (all 18 stages activated) during a single LFSR-generated experiment. At the very beginning (left side
of the graph), the voltage is set to 0.5V. Here the circuit does nothing and the power consumption is due to
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the leakage current of the cells. Then, the up spike represents the beginning of computation – the cells start
switching and consume more power. Throughout the experiment, we gradually decreased the supply voltage
down to 0.34V (the circuit starts malfunction at lower voltage). At this voltage the chip operation is frozen (the
chip can be left at this voltage for hours with no progress being made. When the voltage is raised up again
the circuit completes the remaining part of computation (down spike) without errors – the produced result is as
expected. Note that in order for the chip core to communicate with the IO cells, the core voltage must be at least
0.5V (the threshold voltage of the IO cells).

In Figure 13 the variability of the computation time, power consumption and the consumed energy of the
test is depicted. The reconfigurable OPE pipeline with 18 stages is taken into account under different voltages.
The test is started at the instant 0 of the x-axis, and finishes at a different time which depends on the voltage
which powers the core of the chip. The energy consumption (depicted under each curve) decreases with the
voltage.
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Figure 13: Power, energy and time absolute values of reconfig. OPE 18 stages under different voltages.

5 Conclusion

This article shows how to systematically design a hardware scenario-based system via two graph-based models:
CPOG and DFS. The former is used for the design of the control unit, while the latter for the datapath. Some
room for improvement is still present: new encoding techniques targeting specific parameter (area, power,
latency) optimisation can be developed, for instance. However, the tool-chain is mature enough and can be
therefore used. Conditional Partial Order Graphs provides a friendly graphical user interface for the develop-
ment of scenarios, their composition, encoding, synthesis and technology mapping processes. Dataflow Struc-
tures can whereas be used to model hardware components, for the simulation and verification [15]. The tools
are embedded in Workcraft [17][18].

The case study chosen for this work is an asynchronous reconfigurable pipeline. The chip has been tested
and verified in Section 4. The tests demonstrate the high degree of flexibility and reliability that the manufac-
tured self-timed chip has with respect to a range of supply voltages. This affects its performance and energy
consumption, which can be tuned meeting the user needs. Designing reconfigurable pipelines is proved to be
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feasible also with asynchronous protocols. The simplification in the design of reconfigurable pipelines, that
this DFS-based design approach fosters, helps reducing the performance/flexibility trade-off between ASIC and
flexible architectures (FPGA-like). Furthermore, the correct behaviour of the chip provides a good proof that the
DFS model tailors well the 4-phases protocol used for the pipeline. Components such as the LFSR (Figure 7),
and the accumulator match exactly the representation via DFS.

CPOGs verification [28] represents one of the research direction we would like to inspect. The composi-
tional graph derived by the single scenarios can be only simulated through the generation of a circuit, up to this
point. Having a tool for checking graph consistency (only deadlock-free graphs can be valid), or the Boolean
equations generated would give one more reason to adopt the presented design-flow. We also would like to per-
form some electromagnetic measurements over the chip fabricated. These will hopefully demonstrate the wide
frequency variability that self-timed circuits produce. One of the reasons which might bring them to be used
for highly secure applications (bank card chip). Having low electromagnetic interference chips is particularly
useful for increasing the reliability of hardware systems. Peaks in the frequency spectrum of a generic circuit
may indeed cause errors in other close electronic circuits.
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