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Abstract

Traditional speedup models, such as Amdahl’s, facilitate the study of the impact of running parallel work-

loads on manycore systems. However, these models are typically based on software characteristics, assuming

ideal hardware behaviors. As such, the applicability of these models for energy and/or performance-driven

system optimization is limited by two factors. Firstly, speedup cannot be measured without instrumenting the

original software codes, and secondly, the parallelization factor of an application running on specific hardware

is generally unknown.

In this paper, we propose a novel method, whereby standard performance counters found in modern many-

core platforms can be used to derive speedup without instrumenting applications for time measurements. We

postulate that speedup can be accurately estimated as a ratio of instructions per cycle for a parallel manycore

system to the instructions per cycle of a single core system. By studying the application instructions and sys-

tem instructions for the first time, our method leads to the determination of the parallelization factor and the

optimal system configuration for energy and/or performance. The method is extensively demonstrated through

experiments on three different platforms with core numbers ranging from 4 to 61, running parallel benchmark

applications (including synthetic and PARSEC benchmarks) on Linux operating system. Speedup and parallel-

ization estimations using our method and their extensive cross-validations show negligible errors (up to 8%) in

these systems. Additionally, we demonstrate the effectiveness of our method to explore parallelization-aware

energy-efficient system configurations for many-core systems using energy-delay-product based formulations.

1 Introduction

Aggressive technology scaling has facilitated significant reductions in device geometries and hence circuit delay,
leading to performance improvement [1]. According to Moore’s and Koomey’s laws the trend of scaling has led
to doubling of performance per watt every 1.5 years [2, 3].

Many studies have been undertaken to date realize the trend of performance growth with many CPU cores.
For instance Pollack’s rule suggests that performance is increasing approximately proportional to the square root
of the complexity defined by the power density per unit area [4]. According to this rule, doubling the number
of processors also doubles the performance [1]. As such, multi- or many-core systems are expected to deliver
further improvement in throughput and latency for the same die area. However, such performance growth is
also being inhibited by high performance densities typically seen in modern technology nodes, leading to the
concept of dark silicon [5]. Hence, energy-efficient resource allocation is of crucial importance for many-core
systems with high-performance requirements [3].
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Speedup models are popular methods to reason technology-independent normalized performance improve-
ments with many-cores. In 1967 the first speedup model was proposed by Amdahl [6], which described how the
performance of fixed workloads can be estimated when executed on N processors. Many studies followed the
idea of Amdahl’s model to extend performance reasoning for parallel workloads executed on multi- or many-
cores systems. In [7] Hill and Marty complemented Amdahl’s model to define performance expectations of
systems with heterogeneous and dynamic configurations via Pollack rules [4]. In [8] these performance models
were generalized for homogeneous system configurations. Both of these models were elaborated further by [9]
to investigate the theoretical multi-core scalability and to determine the optimal multi-core performance.

In [10] performance models were defined as a function of the system architecture. Detailed account for
the additional uncore theoretical components was proposed, including contributions from on-chip interconnect,
pipeline and cache memory subsystems. The effect of memory was also highlighted by [11], which showed
how performance speedup can be capped by shared memories in a homogeneous many-core system. The power
contributions of different architectural components for various system configurations were elaborated by [12].
The power models demonstrated the trade-offs between speedup and relevant power consumptions.

Table 1 shows summary of the existing studies relevant to speedup models. As can be seen, these models
have the following limitations. Firstly, the ideal assumptions on both the workload and the system platform limit
the applicability of the models for real systems. For instance, they do not consider real system overheads, such
as scheduling and hardware synchronizations. Secondly, they do not use real benchmark applications to estimate
the system performance. Thirdly, they do not highlight determination of application parallelization factors and
their impacts on the speedup models; instead they consider theoretical limits of parallelization factors. As such,
using speedup and parallelization models to identify suitable core allocations remains challenging for energy
efficiency considerations. To address these limitations, this paper makes the following contributions:

Table 1: Existing Speedup Models and the proposed model.
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[6–11] Yes No No No user control No
[12] Yes No No No user control Yes

[13, 14] No Yes No Yes No No
[15] Yes Yes No No No No
[16] similar principle Yes No Yes No Yes
[17] related Yes No Yes No No
[18] similar principle Yes No Yes estimated No
[19] Yes Yes No Yes estimated Yes

Proposed Model Yes Yes Yes Yes user control and estimated Yes

• Extend Amdahl’s speedup model considering applications and system software related overhead separ-
ately.

• Propose a new method to model parallelization and speedup via performance counters to avoid the need
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for instrumenting applications. We show that speedup can be accurately estimated as a ratio of instructions
retired/executed per cycle of parallel many-core system to that of a single core system.

• Extensive analysis of synthetic and real (PARSEC) benchmarks to validate the speedup and parallelization
factors based on our proposed model.

• Demonstrate the effectiveness of our method for identifying parallelization-aware energy-efficient system
configurations using power normalized performance and energy-delay-product metrics.

The rest of the paper is organized as follows. Section 2 gives the background on our proposed models.
Section 3 describes the proposed speedup model, together with power and energy related metrics. Section 4
describes our experimental set up, the performance counters and the benchmark application used. Section 5
presents the cross-validation of the models with measured speedups and applicability of our method. Section 6
proposes the new paradigm of parallelization-aware energy-efficient computing. Finally, Section 7 concludes
the paper.

2 Background

We consider a system consisting of N cores, and a workload with a parallel part and a sequential part. The
fraction of parallel workload is P; hence, the sequential part of workload is (1−P). The P value known as the
parallelization factor varies from 0 to 1; 0 indicates all sequential workload and 1 indicates fully parallelizable
workload. In our study we use a synthetic benchmark application [20], whereby the parallelization P and core
allocations (from 1 to N) can be controlled.

Amdahl’s speedup model calculations are based on a comparison of execution time for a fixed workload I0

on a single core with the execution time for the same workload executed on the entire N-core system. Time
T (1) is needed to execute both the sequential and parallel parts of workload I0 on a single core, and T (N) is
needed to execute the sequential part of workload I0 on a single core and the parallel part on N cores [21, 22].

T (1) =
I0

IPSI0
,and (1)

T (N) =
(1−P) · I0

IPSI0
+

P · I0

N · IPSI0
, (2)

where IPSI0 is the throughput measured in instructions per second for the workload I0 on a single core. Thus
IPS based Amdahl’s speedup model can be derived as follows [6].

SP(N) =
T (1)
T (N)

=
1

(1−P)+ P
N

. (3)

According to [22], this speedup can also be define as:

SP =
IPSI0(N)

IPSI0
. (4)

In other words, speedup is also the ratio of the throughput achieved by executing on N cores to the throughput
achieved by executing on a single core [21].
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3 Proposed Speedup Models

Amdahl’s speedup model assumes that the workload has a single P. In real systems, the overall workload
usually consists of multiple tasks, including system software (e.g. OS), and each task may exhibit a different
parallelizability and therefore different P. One potential method of run-time management is the parallelizability-
aware optimization of performance and/or energy. For that it is important to treat individual applications and the
system software separately. In this section we develop a new speedup model that calculates application speedup
and consider realistic system software overhead separately.

In the rest of the paper, we deal with the case of a single application running on a real system with system
software at the same time. Expanding to multiple concurrently running applications will be a future task.

3.1 Modeling Basics

We consider that the overall workload is the number of total instructions executed by the system during the
execution of any specific application. The total number of instructions I when a specific application is executed
includes the application instructions I0 plus the system software instructions and halt cycles caused due to
resource sharing, ∆I, given as:

I = I0 +∆I . (5)

If the number of instructions I0 in (5) can be obtained, in order to calculate speedup we need to find out IPS.
In other words, in addition to the number of instructions, we need to know the time spent on executing these
instructions, which usually implies instrumenting both applications and system software for time monitoring.
On the other hand, instructions per clock IPC does not need the monitoring of time and only requires counting
the number of clock cycles spent in the execution. In the next section we will explain how to obtain the relevant
clock cycle, with which the IPC can be calculated as follows:

IPC = IPCI0 + IPC∆I =
I0

C
+

∆I
C

, (6)

where C is the number of clock cycles spent on the execution. In a many-core system the estimation of effective
IPC for a parallel workload given by (6) can be challenging as the instructions retired per core against their
corresponding execution cycles cannot be used to estimate an overall average IPC. This is because some cores
execute parallel workloads independent of of the other cores, while the core that is in charge of spawning
threads executes mostly sequential, but also some parallel workloads. The execution of a workload therefore
causes participating cores to record different numbers of clock cycles. We hypothesize that Cmax (recorded
from the core with the highest unhalted clock C value among all cores), generally gives a good indication of
the overlapped parallel execution times, measured by the time-stamp counter. As such, the effective IPC in (6)
can be defined as:

IPC =
I0

CMax
+

∆I
CMax

, (7)

Our experiments in Sections (4) and (5) will show that (7) can be used with confidence to model speedup. The
resulting throughput expressed by IPS as follows:

IPSI0 = IPCI0 ·F , (8)
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where F is the system operating frequency. This supports the calculations of sequential and parallel execution
time in (1) and (2).

3.2 Speedup Calculations

For speedup, we can substitute IPC for IPS as the system frequency is eliminated from the equation in case of
the system running at the same frequency, i.e.

SP =
IPSI0(N)

IPSI0
=

IPCI0(N)

IPCI0
, (9)

where IPCI0 and IPSI0 are the instruction per clock and instruction per second, respectively in single core with
full sequential workload, and IPCI0(N) and IPSI0(N) are the instruction per clock and instruction per second,
respectively for given P and N configurations of a parallel application on a many-core system.

3.3 Estimation of Parallelization Factor

Once the speedup of an application is known through (9) it can be used to calculate the parallelization factor P

from equation (3) as:

P =
N · (1−SP)
SP · (1−N)

. (10)

This expression is used in Section (5.3) to calculate parallelization using performance counters. Note that the
calculation for (N > 1) give negative numerator and denominator, thus it gives positive parallelization value.

3.4 Power and Energy Normalized Performance

Power normalized performance is an established metric related to the power efficiency of systems. It is
simple to model the performance achievable at the same cooling capacity by calculating performance per watt
(Per f/Watt) [12, 21]. Power normalized performance can be calculated from dividing the system performance
from (9) by the total power (Wtotal):

Per f/Watt =
IPSI0(N)

Wtotal
. (11)

Power normalized performance model is the reciprocal of energy per instruction (EPIN) because performance
is the reciprocal of execution time [12,21]. Thus, EPIN can be calculated from dividing the total power (Wtotal)
by the system’s performance (9):

EPIN =
Wtotal

IPSI0(N)
. (12)

As metrics, EPI and power normalized performance can be limiting. For instance, if an execution progresses
extremely slowly but consumes very little energy, it can result in good EPI and power normalized performance
numbers because it consumes almost zero power. On the other hand, it may not get anything useful done. In
effect, EPI and power normalized performance promote the minimization of energy but does not care much
about performance. To capture this concern the metric known as energy-delay-product (EDP) [23] puts more
emphasis on the completion of tasks by explicitly incorporating delay. In our method, EDP can be obtained
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Table 2: Experimental platforms used in this work.

Parameters Intel CPU Type
Processor Name Core i7 Xeon Xeon Phi
Processor No. i7-4820k E5-2630V2 7120X
Lithography 22 nm 22 nm 22 nm
No. of Sockets 1 2 1
Cores per Socket 4 6 61
No. of Cores 4 12 61
L1D Unified Cache 32 KB 32 KB 32 KB
L1I Unified Cache 32 KB 32 KB 32 KB
L2 Unified Cache 256 KB 256 KB 512 KB
L3 Shared Cache 10 MB 15 MB -
Base Frequency 3.7 MHz 2.60 MHz 1.24 MHz

from (11) and (2) as follows:

EDP =Wtotal · (
(1−P) · I0

IPSI0
+

P · I0

N · IPSI0
)2. (13)

4 Experimantal studies

The models on speedup, parallelization, power and energy metrics are demonstrated in this section through
experiments.

4.1 Experimental Platforms

In this work we make use of three different Intel platforms. Table 2 explains the general architecture details
of all platforms. All of these systems additionally allow hyper-threading. In all our experiments we disabled
hyper-threading by allocating tasks to physical (not logical) cores. Although these systems are from Intel, other
platforms such as those from ARM also provide similar performance counters which supports the generality of
this work. Extending this investigation to other platforms will be part of our future work.

4.2 Performance Counters

Hardware performance counters are a set of special purpose regisers built into CPUs to store the counts of
hardware activites in a specific system. Users depend on those counters to collect low-level performance ana-
lysis. This performance data varies depending on the performance monitoring hardware and system software
configuration. An interface to access model specific registers from user space is provided via the Linux Model-
Specific Register (MSR) module. This allows the user to extract hardware performance counter events with an
unmodified Linux kernel. Likwid, used in this paper, is a lightweight performance oriented tool suite for x86
multi-core processors [24, 25].

The following performance counters are used in this work.
INST R_RET IRED_ANY counts the instruction retired which leave the retirement unit. Such instructions

have been executed and their results are correct [26].
CPU_CLK_UNHALT ED_CORE counts the number of unhalted clocks while the core is not in a halt state.

This performance counter is obtained through clock cycle recording. If the clock frequency changes the number
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of cycles will not be proportional to time. And halted states also affect the accuracy of using this performance
counter to represent time [27].

CPU_CLK_UNHALT ED_REF counts the number of reference clocks at the Time Step Counter (T SC) rate,
while the core is not in a halt state. This event is not affected by core frequency changes. It counts at the same
frequency as the T SC [27].

In our model, we need both the number of instructions and the number of clock cycles for calculating IPC.
For the number of instructions, we use INST R_RET IRED_ANY as application workload I0 in equation (5). For
the number of clock cycles we use CPU_CLK_UNHALT ED_CORE as IPCI0 in equation (7) which represent
the accurate perfromance counter to calculate IPC [27].

In Section (3) we showed that the number of cycles represents time. CPU_CLK_UNHALT ED_REF shows
the number of cycles which includes halted cycles, hence is closer to representing real execution time. In the
real world, halted cycles occur when the system has nothing to run. This occurs when threads waite for interrupt
thus the counting includes halted cycles in real execution time [28, 29]. However it is not always available in
Intel, as Intel focuses on unhalted clock for IPC calculations [27]. In our experiments we explore the use of
unhalted clock to calculate speedup, and the outcome is presented in Section (5).

In addition, hardware performance counters exist that provide power and energy information. For instance,
PWR_PKG_ENERGY counts the CPU energy consumption [27]. In previous work, it has been shown that this
performance counter produces reliable results validated through direct measurements such as DC instrumntation
[30]. It is used in conjunction with the execution time information inferred from unhalted clock performance
counters in Section (6.1) to derive all power and energy information. In this paper we focus on CPU energy
which changes with the number of utilized cores and the parallelization factor P and disregard other energy
consumption which have weak correlations with these factors (e.g. memory energy).

From (3), it is possible to calculate speedup if T(1) and T(N) can be obtained. However, this requires running
a workload at least twice, with different core configurations. To avoid having to run a workload more than once,
time-based calculations of P require the knowledge of sequential and parallel time, which requires instrumenting
the code of a workload. By using the performance counters listed above, however, it may be possible to obtain
the same functionality as instrumenting separate parallel and sequential time monitoring, whilst only needing
to monitor the start and end of a workload. This means that there is no need to modify workloads in any way.

Even though we motivate our work to avoid time measurements, in our experiments we use time-
instrumented workload code when possible as well as make pairs of runs with different numbers of cores. This
helps demonstrate the validity of our approach of avoiding direct time measurements through comparisons.

4.3 Benchmark Application

4.3.1 Synthetic Benchmark

The synthetic benchmark is executed in all three platforms as shown in Table 2 at the base frequencies.
The calculation of the theoretical speedup models heavily relies on the knowledge of the parallelization

factor P. However, a typical application has an unknown and variable P. Hence, we developed a synthetic
benchmark, which allows the control of its P value. The benchmark is available for free usage and research
from [20].

The benchmark has distinct sequential and parallel sections, as shown in Fig. 1. Inside, it performs a looped
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Figure 1: Flowchart of the benchmark application with programmable P, considering a total workload of X
cycles.
arithmetic calculation (square root), which ensures a CPU-heavy workload with minimal memory access. The
number of cycles in parallel and sequential parts is determined by the requested P value. The sequential part is
pinned to Core 0, and the parallel code is evenly distributed between cores using core-affinities.

It is important to note that the benchmark can accept P=1 and run only the parallel section. However, the
actual parallelization achieved by the platform may not meet the requirement. This will be carefully considered
when analyzing experimental results.

4.3.2 PARSEC Benchmarks

PARSEC benchmarks are executed at base frequency on the Core-i7 platform only.
PARSEC [31, 32] is a reference application suite used in many fields including industry and academia, for

studying concurrent applications on parallel hardware. Some of them parallelized with OpenMP, while the
others parallelized with gcc-pthreads.

PARSEC consists of 12 applications representing a diverse set of commercial and emerging workloads [31].
In our study we choose 9 PARSEC benchmarks having different parralelizabilties and memory usage intens-

ities, [31–33]. The input set used is ”native” and the benchmarks chosen are bodytrack, blackscholes, facesim,
fluidanimate, freqmine, swaptions, streamcluster, canneal and dedup.

5 Results and validation

This section describes the model calculations and experimental outcomes. We classify the calculations into
fixed workload part and extra workload, demonstrate the validations of execution time and speedup and the
estimation of parallelization factor P.

5.1 ∆I Calculation

In the first stage of our experiments, we use the Core i7 platform to find ∆I and I0. The synthetic benchmark
application was run on all core configurations (from N=1 to N=4) and programmed P ranging from (0 to 1).
The first observation was that for all N=1 experiments Core 0 showed exactly the same number of instructions
retired with no random variation, which is an indication that all system workloads have been scheduled on idle
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Figure 2: Application instructions per clock for synthetic benchmark using variable N and P.

cores (cores that do not have applications running), and Core 0 has been exclusively running the application
workload I0, which is 5.6E+09.

Knowing I0, we were able to calculate IPCI0 from (6) and the speedup based on IPCI0 from (9). The results
are presented in Figures 2 and 3. Fig. 2 shows the throughput, in IPS, that is achieved with the application’s
programmed P value ranging from 0 to 1 and the number of cores ranging from 1 to 4. The maximum throughput
is clearly achieved with P=1 and N=4. It is important to note that with a programmed P of 0 (i.e. non-
parallelizable code) increasing the number of cores does not affect the throughput, and with a single core, no
matter what the programmed P is the throughput is also constant. Fig. 3 shows the speedup as a function of N

and P. It can be seen that the maximum speedup achievable with N=4 and P=1 is close to 4, which shows that
the synthetic benchmark dose not have hidden synchronizations and other effects limiting parallelizability, and
the hardware platform’s impact on IPC-based speedup is small.

The second finding is that ∆I reduces with N and P increasing. We tested the hypothesis that system
workload ∆I is proportional to time, and confirmed that ∆I/T (N) approximates to a constant with the average
of 6.58E+04 and the standard deviation of 9.53E+03.

Also the system software workload is very small i.e. 1-2%. However, these extra instructions can cause
resource constraints and result in halt cycle. In our experiments we have observed a 1.55% increase of halt
cycles for P=0 and N=1.

In the second stage, we run PARSEC benchmarks; the applications run in all core configurations (from N

= 1 to N = 4), in PARSEC we do not have programmed P. The first observation is that the total instruction
retired have fixed values for each application, with small changes (<6%), the total instructions reduced with N

increasing and execution time decreasing. Thus, we use linear regression to calculate fixed I0 and variable ∆I,
where ∆I is a function of number of cores N and execution time.

∆I = αt +βN (14)
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Figure 3: Performance counter based speedup for synthetic benchmark using variable N and P.

Table 3: System software workloads ∆I/T (N) for different PARSEC applications.

Name Average Standard
Deviation

bodytrack 1.37E+09 4.15E+08
blackscholes 3.92E+08 1.47E+07

facesim 6.78E+08 2.33E+08
fluidanimate 6.66E+08 4.16E+08

freqmine 3.09E+08 4.36E+07
sweptions 3.12E+08 5.86E+07

streamcluster 4.88E+09 1.89E+09
canneal 3.44E+08 1.83E+07
dedup 4.79E+08 1.21E+08

It confirmed that ∆I/T (N) approximates to a constant in most cases as shown in Table 3, Where the standard
deviations tend to be much smaller than the averages. The benchmarks bodytrack, facesim, streamcluster,
canneal and dedup have a small changes in ∆I rather than blacksholes, freqmine, sweptions and fluidanimate.

5.2 Time and Speedup Validation

Table 4 shows the validation results of synthetic benchmark of the speedup estimated with performance counters
using (9), against the traditionally used time measurements. From Table 4, two observations can be made.
Firstly we validate the use of performance counters by comparing the measured execution time with the time
calculated from (2) and (8) by using the programmed P and the measured IPC and I. We then validate the use of
performance counters for speedup estimation by comparing the measured speedup, as the execution time ratio
T (1)/T (N), to the IPC-based speedup calculated from the performance counters according to (9).

In these experiments, the errors are generally small; however they increase to nearly 8% when P=1. This is
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Table 4: Cross-validation results for fixed workload I0 using synthetic benchmark [20].

Time, ms Speedup
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r %

Core-i7

0.1 2 3492 3492 0.01 1.05 1.052 0.05
0.1 3 3430 3430 0.03 1.07 1.071 0.03
0.1 4 3400 3400 0.01 1.08 1.081 0.02
0.9 1 3675 3676 0.03 1 0.999 0.02
0.9 3 1470 1570 0.03 2.5 2.501 0.09
0.9 4 1205 1194 0.86 3.05 3.074 0.84

Xeon

0.1 1 521 534.171 2.47 1 1.000 0.00
0.1 4 483 494.108 2.25 1.078 1.080 0.36
0.1 12 474 485.205 2.31 1.099 1.100 0.01
0.9 2 294 293.794 0.07 1.772 1.666 2.62
0.9 8 115 113.511 1.31 4.530 3.331 3.83
0.9 12 95 93.4799 1.63 5.484 3.747 4.11

Xeon Phi

0.1 8 29939 30540.26 1.97 1.118 1.118 2.06
0.1 16 29744 30331.08 1.94 1.126 1.126 2.09
0.1 61 30182 30176.76 0.02 1.109 1.108 0.05
0.9 1 32853 33468.78 1.84 1.019 1.019 1.91
0.9 4 10655 10877.35 2.04 3.143 3.145 2.23
0.9 32 4372 4288.18 1.95 7.660 7.848 0.55

expected as the programmed P value does not correspond to the real parallelization factor in the platforms. The
observation is that real platforms cannot keep up with the programmed parallelization, presumably due to extra
interactions between components.

However, the speedup based on unhalted clock calculation of IPC matches the theoretical speedup from
Amdahl’s Law (3) with virtually no error (<0.5%). This result can be found in the full set of data and calculations
[20]. It indicates that the discrepancy between the measured speedup and the unhalted clock-based speedup is
due to halting of the cores. Additionally, this property can be exploited to estimate the application software P

value as discussed in Section (5.3).
For PARSEC benchmarks, we run the nine PARSEC applications on the Intel Core-i7 platform at base

frequency (3.7 GHz). We collect the appropriate hardware performance counters in Section (4.2), thus the
speedup can be calculated by (9). Fig. 4 shows the speedup calculations for these benchmarks, the performance
counter based speedup calculations show a good cross-validation with general execution time based speedup
calculations. The error ratio does not exceed 6.5%. Finally, The parallelization factor P can be calculated as
explained in Section (5.3).

5.3 Estimating Parallelization Factor P

The effectiveness of scaling to more cores in order to obtain more speedup is related to the value of the paral-
lelization factor P (Section 2). In general, from equation (3), scaling to more cores may not improve speedup
for a smaller P as much as for a larger P. If it is possible to determine the P value of running any task on
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Figure 4: Performance counter based speedup for PARSEC benchmark applications.

any platform, this knowledge may be useful for run-time task to core scheduling. This may be called P-aware
run-time management.

P can be estimated if the speedup is known. This can be done for any known N through equation (10).
It is also possible to determine P using data from experiments based on multiple N configurations through
the method of regression, based on such criteria as least squares [19]. Regression has been used for run-time
optimization based on learning for multi-core systems [34] where the models are unknown. Given equation
(10), the motivation of using potentially expensive regression during run-time is weaker here. However, we first
need to establish that equation (10) provides the same quality as regression-based methods.

The other question we must consider is the avoidance of instrumenting applications for time. Can we replace
time measurements with clock-related performance counter data for P estimation? In this section we attempt
to estimate P from speedup derived from both clock performance counters and from direct time measurements,
using both regression and equation (10) calculations, and compare the results. These again cover both the
synthetic as well as PARSEC benchmarks.

Table 5 shows the results for the synthetic benchmark. Here it is regarded as desirable if the estimated PLS

values are obtained with least squares regression and PEQ values obtained with equation (10) are closer to the
software-programmed PSW set within the benchmark. It can be observed that the differences between regression
and equation (10) is small with PEQ tracking PSL closely in both time measurement and clock derived cases. It
can also be observed that PLSC values are very close to PLST values and PEQC values are very close to PEQT values,
meaning that using clock performance counters is valid. And finally, all the estimated P values are very close to
the programmed P values set in the benchmark. In other words, this shows that 1) estimating P from speedup is a
valid approach and 2) using clock performance counter data to replace time instrumentation is a valid approach.
Table 6 shows the results for PARSEC benchmarks, whose intrinsic P values are unknown and not explicitly

set within the programs. They also have more memory access which might introduce unpredictable waiting
and synchronization effects making their P values potentially different from run to run. As a result, it is not
possible to compare estimated P values to a reference value, and the comparison tries to answer two questions:
Is it a valid approach to use equation (10) to avoid regression and is it a valid approach to make use of clock

NCL-EEE-MICRO-TR-2017-205, Newcastle University 12



Mohammed A. Noaman Al-hayanni, Rishad Shafik, Ashur Rafiev, Fei Xia, Alex Yakovlev: Speedup and
Parallelization Models for Energy-Efficient Many-Core Systems Using Performance Counters

Table 5: Parallelization (P) calculations for synthetic benchmark [20].

SoC PSW PLST
PEQT
(10) PLSC

PEQC
(10)

Core-i7 0.1 0.0994 0.0993 0.0999 0.0998
Core-i7 0.4 0.3990 0.3996 0.3990 0.3999
Core-i7 0.7 0.6840 0.6834 0.6990 0.6999
Core-i7 0.9 0.8970 0.8985 0.8820 0.8999
Xeon 0.1 0.0900 0.0892 0.1002 0.1002
Xeon 0.3 0.2940 0.2912 0.3002 0.3001
Xeon 0.7 0.7000 0.6852 0.7001 0.6999
Xeon 0.9 0.8905 0.8849 0.9000 0.9001

Xeon Phi 0.1 0.1008 0.1086 0.1007 0.1087
Xeon Phi 0.4 0.4003 0.4007 0.4012 0.4015
Xeon Phi 0.5 0.5037 0.5038 0.5038 0.5036
Xeon Phi 0.9 0.8892 0.9020 0.9008 0.9029

Table 6: Parallelization factor (P) calculations of PARSEC benchmarks.

Benchmark PLST
PEQT
(10) PLSC

PEQC
(10)

bodytrack 0.981 0.925 0.937 0.965
blackscholes 0.841 0.852 0.868 0.872

facesim 0.900 0.920 0.941 0.948
fluidanimate 0.895 0.902 0.927 0.926

freqmine 0.985 0.984 0.985 0.986
swaptions 0.990 0.993 0.994 0.995

streamcluster 0.859 0.858 0.884 0.873
canneal 0.757 0.762 0.774 0.776
dedup 0.940 0.927 0.953 0.938
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performance counter data to avoid instrumenting applications for time monitoring. The results show that the
answer is yes for both questions with differences between the approaches generally being very small.

As a result, we propose to make use of equation (10) directly to estimate P from speedup estimated from
clock performance counters in run-time P-aware scaling management, which is our immediate future work.

6 Parallelization-aware Energy Efficient Computing

As mentioned in Section 5.3, if the P value of an application running on a platform is known, run-time decisions
may be made based on this knowledge to improve speedup. Beyond just speedup, Shafique etal have shown
that in dark silicon operations, the P values of workloads need to be considered to arrive at optimal resource
allocations through such techniques as dark silicon patterning [35–37].

In this section, we investigate whether it is possible to optimize energy efficiency with a knowledge of P.
For this purpose experiments are carried out to relate metrics of energy efficiency to P. We don’t make dark
silicon assumptions in this study. Parallelization in dark silicon will be a future topic of research.

6.1 Energy and Power Data

Energy consumption data is collected from experiments described in the preceding sections using the method
described in Section 4.2. The energy performance counter PWR_PKG_ENERGY gives total energy consumed
by all cores. We calculate the total power consumption Wtotal by dividing energy by the realistic execution time
obtained by CPU_CLK_UNHALT ED_REF . Fig. 5 shows the energy consumption in Intel Core-i7 quad core
processor for the synthetic benchmark. Applications that have high parallelization factors consume less energy
in high frequency scaling and maximum core allocations as shown in Fig. 5(a) for the P factor equal to 0.9,
whereas applications with low parallelization factors consume higher energy as shown in Fig. 5(b) for the P

factor equal to 0.1. We observe that for low parallelization factors the best energy consumption is obtained with
three cores and highest frequency scaling.

6.2 Power Normalized Performance and Energy-Delay-Product

Both power normalized performance and EDP are metrics on energy efficiency, with different emphasises, as
discussed in Section 3.4. Here we calculate power normalized performance from (11) and EDP from (13).
Fig. 6 shows power normalized performance of the synthetic benchmark, in high parallelization factor the
best performance is obtained from maximum number of cores and maximum frequency as shown in Fig. 6(a),
in low parallelization factor the best performance is obtained from high frequency scaling in 3 or 4 cores as
shown in Figure 6(b). Fig. 7 shows the calculation of energy-delay-product of synthetic benchmark, in high
parallelization factor the best outcome is obtained from high frequency scaling and 3 or 4 number of cores as
shown in Fig. 7(a), in low parallelization factor the best outcome is obtained from high frequency scaling in 3
and 4 cores as shown in Fig. 7(b).

The data presented in this section shows that optimal energy efficiency, as measured in either metric, is a
function of P. As a result, the idea of parallelization-aware energy efficient computing is valid and we propose
to study more examples and develop optimization methods that may be used at run-time as part of our immediate
future work.
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Figure 5: Energy consumption for synthetic application: a) high parallelization factor P=0.9, b) low paralleliz-
ation factor P=0.1.
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Figure 6: Power normalized performance for synthetic application: a) high parallelization factor P=0.9, b) low
parallelization factor P=0.1.
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Figure 7: Energy-delay-product for synthetic application: a) high parallelization factor P=0.9, b) low parallel-
ization factor P=0.1.

7 Conclusions and Discussions

This paper is the first attempt to address the problem of making use of Amdahl speedup model without knowing
the parallelization factor P and without instrumenting applications for time monitoring. Performance counters
are proposed as a solution to this problem. Speedup can be indicated by IPS data from before and after paral-
lelization rather than directly from time delays. And by using IPC in place of IPS we make it possible to use
instruction and clock performance counters for calculating speedup.

In this paper, we also solve the problem of differentiating application instructions from system software
instructions and discover the behavior of typical system software instructions.

Extensive cross-validations have been performed by comparing model-calculated speedup with speedup
derived from measured time, with small errors shown. The maximum error, which rarely occurs, is 8%. We
followed performance counter speedup model to calculate PARSEC benchmark speedup, the outcomes show a
sound error ratio related to outcomes derived from measured time (less than 6.5%).

We also propose a method of determining P once speedup is known, and this is cross-validated by com-
paring with the programmed P values in our experimental benchmark with very small errors (less than 3.26%).
Furthermore, the parallelization factor of PARSEC benchmarks are calculated via the same model.

Based on these parallelization and speedup models we developed models for power, energy, power normal-
ized performance and energy-delay-product explored the energy efficiency of core scaling.

We believe that the speedup, parallelization, and EDP models developed in this paper will give rise to
a new method of run-time system control optimizing speedup and/or energy efficiency. This may be called
parallelization-aware run-time management for performance and/or efficiency. We will focus on this direction
in our future work.
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Table 7: Bodytrack outcomes

Bodytrack
No. of Cores Freq. GHz IPS Power Energy PNP EDP

1 3.7 1.41E+08 33.3267 3876.54 4.24E+06 450913.9
2 3.7 5.56E+08 40.0218 2484.25 1.39E+07 154203.3
3 3.7 1.24E+09 45.5925 2041.54 2.72E+07 91416.12
4 3.7 1.82E+09 49.985 1821.49 3.63E+07 66376.68
1 3 1.46E+08 28 4014.86 5.21E+06 575683.3
2 3 5.78E+08 30.9679 2369.37 1.87E+07 181281.6
3 3 1.28E+09 34.495 1903.73 3.72E+07 105064.6
4 3 1.87E+09 37.5794 1696.86 4.97E+07 76620.03
1 2.1 1.49E+08 19.0503 3890.17 7.83E+06 794399.2
2 2.1 5.89E+08 21.7254 2368.27 2.71E+07 258162.1
3 2.1 1.30E+09 23.8536 1891.87 5.46E+07 150047.4
4 2.1 1.89E+09 25.5147 1675.87 7.42E+07 110075.3
1 1.2 1.92E+08 14.3102 5132.51 1.34E+07 1840831
2 1.2 7.58E+08 15.5774 2989.11 4.87E+07 573569.5
3 1.2 1.61E+09 16.2813 2467.54 9.88E+07 373973.7
4 1.2 2.38E+09 17.0491 2082.52 1.39E+08 254379

Table 8: Blackscholes outcomes

Blackscholes
No. of Cores Freq. GHz IPS Power Energy PNP EDP

1 3.7 1.54E+09 32.5513 4011.54 4.72E+07 494368.3
2 3.7 5.46E+09 37.85 2896.1 1.44E+08 221595.7
3 3.7 1.11E+10 41.597 2205.16 2.66E+08 116901.1
4 3.7 1.75E+10 43.7334 2027.26 3.99E+08 93973.31
1 3 1.53E+09 25.5882 3905.09 5.99E+07 595967.8
2 3 5.46E+09 29.2635 2551.36 1.87E+08 222442.5
3 3 1.11E+10 32.063 2081.86 3.45E+08 135175.8
4 3 1.77E+10 33.5748 1909.29 5.27E+08 108575.7
1 2.1 1.54E+09 18.77121 4079.51 8.18E+07 886591.6
2 2.1 5.47E+09 20.8801 2588.58 2.62E+08 320912.6
3 2.1 1.11E+10 22.5031 2071.56 4.92E+08 190701.1
4 2.1 1.74E+10 23.3228 1962.28 7.45E+08 160248.7
1 1.2 1.54E+09 14.0864 5336.35 1.09E+08 2021559
2 1.2 5.44E+09 15.0891 3261.72 3.61E+08 705066.5
3 1.2 1.10E+10 15.8809 2550.62 6.96E+08 2021559
4 1.2 1.68E+10 16.1715 2506.98 1.04E+09 388645.6
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Table 9: Facesim outcomes

Facesim
No. of Cores Freq. GHz IPS Power Energy PNP EDP

1 3.7 1.91E+09 34.1186 10555.5 5.60E+07 3265611
2 3.7 7.26E+09 42.2812 7047.98 1.72E+08 1174849
3 3.7 1.61E+10 49.285 5891.13 3.27E+08 704179.1
4 3.7 2.55E+10 53.9555 5666 4.72E+08 594995.4
1 3 1.98E+09 26.866 10000.2 7.35E+07 3722323
2 3 7.38E+09 32.4118 6536.38 2.28E+08 1318161
3 3 1.66E+10 37.4017 5355.39 4.45E+08 766818.3
4 3 2.72E+10 37.5764 5322.87 7.24E+08 571733.3
1 2.1 2.01E+09 19.5201 10225.3 1.03E+08 5356356
2 2.1 7.45E+09 22.8024 6513.93 3.27E+08 1860817
3 2.1 1.71E+10 25.7204 5130.79 6.63E+08 1023514
4 2.1 2.77E+10 26.953 4797.1 1.03E+09 853787
1 1.2 2.02E+09 14.4745 13163.2 1.40E+08 11962189
2 1.2 7.64E+09 16.0473 7822.34 4.76E+08 3813053
3 1.2 1.72E+10 17.4906 6031.5 9.84E+08 11962189
4 1.2 2.56E+10 17.57 6136 1.45E+09 2141822

Table 10: Fluidanimate outcomes

Fluidanimate
No. of Cores Freq. GHz IPS Power Energy PNP EDP

1 3.7 6.54E+09 32.8663 8577.75 1.99E+08 2238697
2 3.7 1.22E+10 39.8553 5590.33 3.06E+08 784135.1
3 3.7
4 3.7 2.15E+10 51.5408 4397.92 4.17E+08 366294.2
1 3 5.36E+09 25.8324 8212.93 2.08E+08 2611159
2 3 1.03E+10 30.6432 5208.21 3.37E+08 885203
3 3
4 3 1.81E+10 38.5308 3976.37 4.70E+08 410362.3
1 2.1 3.81E+09 18.9217 8477.13 2.01E+08 3797847
2 2.1 7.24E+09 21.7517 5145.98 3.33E+08 1217434
3 2.1
4 2.1 1.28E+10 25.9019 3791.33 4.96E+08 554942.1
1 1.2 2.20E+09 14.1821 10996 1.55E+08 8525687
2 1.2 4.19E+09 15.5346 6335.77 2.70E+08 2584038
3 1.2
4 1.2 7.34E+09 17.174 4725.44 4.27E+08 1300220
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Table 11: Freqmine outcomes

Freqmine
No. of Cores Freq. GHz IPS Power Energy PNP EDP

1 3.7 1.88E+09 32.9068 12228.9 5.71E+07 4544525
2 3.7 7.42E+09 40.2589 7575.36 1.84E+08 1425424
3 3.7 1.65E+10 47.2594 5994.43 3.50E+08 760339.4
4 3.7 2.88E+10 53.6251 5237.49 5.37E+08 511537.1
1 3 1.88E+09 25.8325 11775.5 7.29E+07 5367738
2 3 7.42E+09 30.8163 7133.38 2.41E+08 1651230
3 3 1.65E+10 35.6672 5589.81 4.62E+08 876038.9
4 3 2.88E+10 40.0203 4792.14 7.20E+08 573826.5
1 2.1 1.88E+09 18.9092 12343.7 9.93E+07 8057843
2 2.1 7.44E+09 21.7122 7157.25 3.43E+08 2359346
3 2.1 1.66E+10 24.5888 5460.65 6.74E+08 1217835
4 2.1 2.88E+10 26.7948 4599.32 1.07E+09 789474.6
1 1.2 1.88E+09 14.1876 16142 1.33E+08 18404579
2 1.2 7.45E+09 15.4509 8898.99 4.82E+08 5125401
3 1.2 1.66E+10 16.7064 6489.08 9.95E+08 18404579
4 1.2 2.86E+10 17.7848 5375.96 1.61E+09 1625043

Table 12: Swaptions outcomes

Swaptions
No. of Cores Freq. GHz IPS Power Energy PNP EDP

1 3.7 1.95E+09 32.7793 6458.178 5.95E+07 1272390
2 3.7 7.79E+09 39.9148 3933.077 1.95E+08 387552.8
3 3.7 1.74E+10 46.7286 3089.779 3.72E+08 204301.8
4 3.7 3.08E+10 53.5201 2711.098 5.76E+08 137332.6
1 3 1.95E+09 25.7678 6262.039 7.57E+07 1521788
2 3 7.80E+09 30.6113 3715.079 2.55E+08 450873.2
3 3 1.74E+10 35.2736 2875.775 4.93E+08 234455.4
4 3 3.05E+10 39.7899 2508.813 7.65E+08 158184.4
1 2.1 1.95E+09 18.8835 6548.042 1.03E+08 2270599
2 2.1 7.80E+09 21.6226 3752.97 3.61E+08 651391.7
3 2.1 1.74E+10 24.2525 2829.127 7.17E+08 330026.1
4 2.1 3.04E+10 26.861 2394.312 1.13E+09 213422
1 1.2 1.95E+09 14.1618 8692.116 1.38E+08 5334978
2 1.2 7.80E+09 15.4853 4707.206 5.04E+08 1430892
3 1.2 1.74E+10 17 3404.732 1.04E+09 5334978
4 1.2 3.02E+10 17.6992 2902.633 1.71E+09 476026.1
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Table 13: Streamcluster outcomes

Streamcluster
No. of Cores Freq. GHz IPS Power Energy PNP EDP

1 3.7 7.07E+08 32.1193 12895.4 2.20E+07 5177317
2 3.7 2.50E+09 38.8517 8849.88 6.43E+07 2015877
3 3.7 5.11E+09 45.1131 7551.27 1.13E+08 1263967
4 3.7 8.47E+09 49.3584 7051.74 1.72E+08 1007467
1 3 8.03E+08 25.5804 11156.6 3.14E+07 4865788
2 3 2.86E+09 30.3155 7420.11 9.44E+07 1816169
3 3 5.90E+09 34.866 6238.71 1.69E+08 1116293
4 3 9.80E+09 37.684 5773.43 2.60E+08 884521.8
1 2.1 9.59E+08 19.0446 9919.02 5.04E+07 5166132
2 2.1 3.53E+09 21.8828 6210.98 1.61E+08 1762854
3 2.1 7.38E+09 24.581 5026 3.00E+08 1027592
4 2.1 1.20E+10 26.053 4728.51 4.62E+08 858187.7
1 1.2 1.16E+09 14.37 10807 8.09E+07 8118082
2 1.2 4.43E+09 15.801 6250.59 2.80E+08 2472434
3 1.2 9.45E+09 17.174 4828.36 5.50E+08 1357447
4 1.2 1.49E+10 17.425 4836.72 8.54E+08 1342424

Table 14: Canneal outcomes

Canneal
No. of Cores Freq. GHz IPS Power Energy PNP EDP

1 3.7 8.11E+08 31.374 4896.63 2.59E+07 764203
2 3.7 1.33E+09 35.7485 3408.9 3.71E+07 325065.7
3 3.7 1.68E+09 38.8212 2954.51 4.33E+07 224854.8
4 3.7 1.93E+09 41.1022 2796.56 4.69E+07 190275.8
1 3 7.37E+08 25.0352 4287.19 2.95E+07 734162.1
2 3 1.21E+09 27.971 2927.49 4.31E+07 306398.1
3 3 1.53E+09 30.0626 2520 5.10E+07 211365.8
4 3 1.75E+09 31.447 2374.36 5.57E+07 179255.8
1 2.1 6.09E+08 18.6227 3856.12 3.27E+07 798465.3
2 2.1 1.00E+09 20.2889 2572.97 4.93E+07 326297.3
3 2.1 1.27E+09 21.589 2185.64 5.89E+07 219645.4
4 2.1 1.44E+09 22.187 2056.92 6.50E+07 190659.3
1 1.2 4.23E+08 14.1044 4222.12 3.00E+07 1263884
2 1.2 6.90E+08 14.9147 2737.35 4.63E+07 502397.6
3 1.2 8.11E+08 15.5127 2313.64 5.23E+07 1263884
4 1.2 8.11E+08 15.681 2208.82 5.17E+07 311135.2
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Table 15: Dedup outcomes

Dedup
No. of Cores Freq. GHz IPS Power Energy PNP EDP

1 3.7 6.20E+09 33.0578 769.0467 1.88E+08 17890.87
2 3.7 1.12E+10 38.7201 497.0886 2.89E+08 6381.624
3 3.7 1.76E+10 38.1756 419.0765 4.61E+08 4600.454
4 3.7 2.16E+10 36.7373 441.6228 5.89E+08 5308.791
1 3 5.04E+09 25.8977 760.659 1.95E+08 22341.86
2 3 9.45E+09 30.1822 460.834 3.13E+08 7036.196
3 3 1.39E+10 30.0052 413.341 4.65E+08 5693.505
4 3 1.75E+10 34.938 343.616 5.01E+08 3378.769
1 2.1 3.53E+09 19.3 778.404 1.83E+08 31393.18
2 2.1 6.74E+09 21.559 457.983 3.12E+08 9728.823
3 2.1 9.60E+09 23.827 352.767 4.03E+08 5222.593
4 2.1 1.19E+10 22.8442 377.395 5.22E+08 6234.722
1 1.2 2.02E+09 14.4223 1026.79 1.40E+08 73102.1
2 1.2 3.86E+09 15.6656 558.897 2.46E+08 10913.75
3 1.2 8.11E+08 16.5723 425.285 4.89E+07 73102.1
4 1.2 8.11E+08 16.9 418.162 4.80E+07 10498.38
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