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Abstract

Amdahl’s Law is the classical model of parallelization speedup. Its simplistic assumptions
have caused it to be extended on multiple occasions to cover wider workload and system realities.
This report describes the newest step in the continued extension and generalization of Amdahl’s
Law to better cover modern multi- and many-core architectures executing realistic workloads.
The key contribution is the vectorization of both parameters of Amdahl’s Law, which allows
the representation of wide system architecture heterogeneity and the effects of the parallelism of
workloads.

Classical Amdahl’s Law [1] is based on dividing the workload into the parallel f and sequential
(1− f) fractions. Classical Amdahl’s speedup model for n-core system is

S (n) =
[
(1− f) + f

n

]−1
. (1)

One problem with this model is that most workloads do not contain infinitely parallel fractions. Work-
loads and parts thereof usually display finite parallelism. Parallelism p is defined as the maximum
speedup for a workload given an infinite number of cores [2]:

p = T1

T∞
, (2)

where T1 is the time required to execute the workload on one core and T∞ is the time required to
execute the same workload on an infinite number of cores. Parallelism can be intuitively understood
as the number of threads a workload has for mapping onto multiple cores. This means that a workload
displays different f , depending on the relationship of its parallelism p and the number of cores n onto
which it is mapped.

A number of research teams attempted to tackle this issue by introducing multiple parallel fractions
f1, . . . , fn so that, for any 1 ≤ j ≤ n, fj is the fraction of the workload that is executed on j

cores [3, 4, 5]. In this report, we call such models multi-fraction speedup models, but focus primarily
on the work of Yun et al. [5].

In their paper, Yun et al. present a method of extracting f values from the application’s task
graph. Figure 1 shows an example of a task graph. For simplicity, the tasks are shown to be of the
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Figure 1: An example of a task graph and respective instantaneous values of parallelism.

same size, but this is not required by the method. The method groups the tasks with the same p under
the respective fp and then normalizes the value by the total number of tasks. In the shown example,
the f values are: f1 = 3/12 = 0.25, f2 = 2/12− 0.166... , f3 = 3/12 = 0.25, and f4 = 4/12 = 0.333... .

The multi-fraction homogeneous speedup model proposed by Yun et al. is

S (n) =

 n∑
j=1

fj
j

−1

. (3)

The sum of f values should equal to 1 in order to represent the entire workload:

n∑
j=1

fj = 1 . (4)

It is important to note that f values are dependent on n: if the task graph allows more parallelism
than the number of available cores, the mapping to f values should consider the effects of scheduling
by respectively “stretching” the task times. Therefore j never exceeds n regardless of the parallelism
in the task graph.

An interesting consequence of this dependency that was overlooked by Yun et al. is that their
method implicitly supports workload scaling models like Gustafson’s [6] and Sun-Ni’s [7]. The classical
workload scaling models, based on Amdahl’s Law, assume that f does not change with the number of
cores, hence they introduce a separate parameter – the scaling function g (n) – so the scaled parallel
part of the workload becomes f · g (n). This parameter is not required for the Yun et al. model as
the f values already can represent the workload that changes with n; the only required extension is
to allow the task graph to change with the number of cores. However, an important detail is that,
according to Gustafson and Sun-Ni, the workload scaling may break the condition (4). In fact, the
total sums of their scaled workload fractions are always greater than 1 for n > 1. Therefore, in their
models, they have to explicitly re-normalize the speedup, so (3) becomes

S (n) =

 n∑
j=1

fj

 ·
 n∑
j=1

fj
j

−1

. (5)

One can verify that (5) transforms into Sun-Ni’s model by substituting f1 with (1− f) and fn with

NCL-EEE-MICRO-TR-2018-211, Newcastle University 2



A. Rafiev, M. A. N. Al-hayanni, F. Xia, R. Shafik, A. Romanovsky, A. Yakovlev:
Extending Multi-fraction Speedup Models to Normal Form Heterogeneity

f · g (n). For g (n) = n the model further transforms into Gustafson’s. However, the method of
extracting f values from the task graph, proposed by Yun et al., produces normalized f values by
design, so their models hold the condition (4) and do not actually require explicit re-normalization (5).
In this report, we also assume (4) and do not re-normalize our speedup equations.

For the heterogeneous case, Yun et al. consider ARM big.LITTLE system configuration consisting
of nL low power LITTLE and nb high performance big processors. They set the performance of
LITTLE cores to be 1, and the relative performance of big cores as αb. The authors also assume that
the scheduling always prioritizes high performance cores. Their heterogeneous model is

S (nb, nL) =
[
nb∑
b=1

fb
αb · b

+
nL∑
L=1

fnb+L

αb · nb + L

]−1

. (6)

This heterogeneous model is limited to a single practical system.
A more general heterogeneity in multi-fraction approach is supported by the method known as

Multiamdahl [8]. This model links heterogeneity with the allocation of some resource X, which can be
divided into n arbitrary sections, and each section xj is dedicated to run a fraction of the workload fj ,
1 ≤ j ≤ n. These arbitrary sections are capable to universally represent any type of heterogeneity;
however, the authors put a very specific constraint on their model: these sections can only be executed
sequentially, so that the total execution time Texec is:

Texec =
n∑
j=1

fj · e (xj) , (7)

where e (xj) is the so-called efficiency function (although the name is somewhat misleading as the
larger values of e (xj) cause longer execution times; in other words, this function is reciprocal to the
performance achieved by the resource xj). The model also explicitly states that the resources do not
overlap:

n∑
j=1

xj ≤ X . (8)

Multiamdahl paper does not explicitly specify the equation for the speedup and focuses directly at
minimizing Texec under the constraint (8), but since they define their execution time in relation to a
baseline T1 = 1, it is straightforward to deduce that the speedup in their case is calculated as:

S (n) = T1

Texec
=

 n∑
j=1

fj · e (xj)

−1

. (9)

Despite the generality of Multiamdahl, its assumption of sequentially executing hardware sections has
been a major criticism against the practicality of the model [9].

The goal of our report is to extend (6) to a general representation of heterogeneity without re-
straining the model by any specific scheduling priorities or constraints.

In our previous work [10] we defined normal form (NF) heterogeneity based on x types of cores, such
that for each type 1 ≤ i ≤ x, the number of cores of this type is defined as ni and the performance of
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each core of this type is defined as αi in relation to some base core equivalent (BCE). These parameters
can be viewed as vectors n = (n1, . . . , nx) and α = (α1, . . . , αx). A simplified version of the NF does not
group cores into types and works with n cores and a vector α = (α1, . . . , αn) that defines performance
coefficients for each core individually. In this report, we use the latter approach.

The original definition of NF-based speedup model uses the classical Amdahl’s subdividing into
sequential (single core) and fully parallel (all n cores) fractions. In order to apply multi-fraction
approach to NF heterogeneity, we still require to add a general representation of scheduling for inter-
mediate fractions where only some of the n cores are being used.

One way of doing this is to enumerate the cores in the order of their priority. However, this is not
general enough as the priorities may shift depending on the number of parallel threads. For example,
some run-time managers [11] use a single high performance core for sequential execution, when p = 1,
and then shift to all low power cores for higher degrees of parallelism, when p > 1. We present two
methods to generalize the scheduling model: core-based and configuration-based.

Core-based generalization In this type of generalization, we assume that the scheduling behavior
is determined by the instantaneous parallelism. Thus, for any 1 ≤ j ≤ n, we define a separate vector
αj = (αj1, . . . , αjj) representing the BCE-relative performances of exactly those j cores that execute
the fraction fj . The combined performance of these cores is

Aj =
j∑
i=1

αji , 1 ≤ j ≤ n. (10)

With this consideration, the NF-extended Yun et al. model takes the following form:

S (n) =

 n∑
j=1

fj
Aj

−1

. (11)

An important note on the variable Aj is that is has the same semantic meaning as Nα in [10],
which brings the question whether we should consider the effect of load balancing in the presented
models. In other words, what happens when during the fj phase some k cores finish early (for example,
if they are faster cores)? According to Yun et al., the execution then switches to f(j−k), hence the
load balancing is already captured by the multiple f values, and Aj always equals to the sum of
performances, as in (10). This simplifies the model, but adds practical complexity to determining f
values: for heterogeneous systems, the task graph needs to be analyzed with regard to the system’s
load balancing.

Configuration-based generalization The most general way of representing the scheduling is to
build the entire model around the set {α1, . . . , αQ} of system configurations (or scheduling “policies”),
where Q ≥ 1 is the number of configurations. Each configuration defines the vector of n performance
coefficients αj = (αj1, . . . , αjn), where 1 ≤ j ≤ Q, in which the performances of inactive cores are set
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to 0. The combined performance of the configuration is the sum of its n performance coefficients:

Aj =
n∑
i=1

αji , 1 ≤ j ≤ Q. (12)

An important difference is that the workload fractions f1, . . . , fQ now correspond to the configurations
rather than the numbers of cores. In other words, fj represents the fraction of the workload that is
executed in the configuration αj . Configuration-based NF Yun et al. model takes the following form:

S (n) =

 Q∑
j=1

fj
Aj

−1

. (13)

The latter equation is closely connected with Multiamdahl model (9). Indeed, if we subdivide the
resource X into Q parts instead of n and define the efficiency function as e (xj) = 1/Aj , the equation
(9) transforms into (13). The major difference, however, is that the constraint (8) is not required:
different configurations are allowed to reuse the same cores or resources because their execution times
do not overlap. This even applies to classical Amdahl’s Law where the core executing sequential
fraction is also involved in the parallel execution. The issue with Multiamdahl approach can be solved
by modifying (8) as:

xj ≤ X , (14)

or in other words, the fraction fj can use any amount of system resources as long as it does not exceed
the system total. This can also be applied to (12) in the following form:

Aj ≤ Amax , (15)

where Amax is the maximum performance that can be achieved by the system.

The core-based normal-form multi-fraction model of (11) is a special case of (13). There is also a
broader understanding of what a configuration is, which extends the semantic strength of this model
to exceed a world view of threads running on cores.

In this general understanding, a workload is executed on some machine, which has Q distinctive
modes of operation. Each mode j, 1 ≤ j ≤ Q, has a relative performance Aj when executing the
workload, compared to some base equivalent performance, which hasAbase = 1. The variable fj denotes
the probability of the workload being executed in mode j. The probability understanding extends the
fraction assumption for deterministic systems to cover stochastic behaviour, and agrees well with the re-
normalization for Gustafson’s and Sun-Ni’s models. The vector of mode (configuration) performances
A = (A1, ...AQ) is the generalized computation capability improvement index, and a vector of real
numbers. Each of these real numbers is the improvement, over that of the base equivalent performance
of Abase = 1, achieved by a particular mode of the machine.

This broader understanding of the normal-form multi-fraction model returns to the broader un-
derstanding of the original form of Amdahl’s Law (1), where the computation capability improvement
index n could be a real number, which may not necessarily have anything to do with parallel process-
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ing or multiple cores. Similarly, operating modes do not have to achieve their computation capability
improvements through parallel processing or multiple cores. Speedup is a result of improvement, and
therefore a function of the improvement index A. The model is valid regardless of the specific method
from which any improvement derives.
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