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PUF-Based Authority Device Scheme

Konstantinos Goutsos

Abstract

With the rise of the Internet-of-Things, followed a tendency to create unified architectures with
a great number of edge nodes and inherent security risks due to centralisation. At the same time,
security and privacy defenders advocate for decentralised solutions which divide the control and
the responsibility among the entirety of the network nodes. However, spreading the responsibility
among a great number of parties also leads to increased risk of leakage for secret information.

A solution to achieving the best of both worlds could be the primitive of unclonability which
forms the basis of any relationship, be it human or between devices, as it provides proof of unique-
ness for the communicating entities. This uniqueness also has a direct effect on the value of an
unclonable object since no other copies exist to share this value. From the IoT perspective, un-
clonability can offer strong security guarantees, distinction among otherwise identical edge nodes,
and higher levels of control over the system by its owners.

Unclonability has been realised on a physical level via the use of Physical Unclonable Functions
(PUFs) but methods to expand it to fully formed security frameworks have not been developed.
In this report we attempt to set the foundations for the development of an unclonability stack,
propagating the primitive from the unclonable chips of PUFs, to devices, network links and even-
tually through to unclonable systems. To that end, we also present an Authority Device Scheme
(ADS) and discuss its security properties, along with a basic prototype.

The role of the ’authority devices’ is that of a consolidated, observable root of ownership, which
can be verifiably handed over or destroyed, all the while without requiring a central authority for
the normal operation of the system. As such, these devices are used to bootstrap the operation
of a network system and introduce network nodes to each other, enabling them to form groups or
neighbourhoods. This is achieved via asymmetric cryptography with secrets that are generated on
demand by PUFs and never saved in persistent storage. After their introduction, nodes are able
to identify and interact with their peers, exchange keys and form relationships that enable novel
features in the higher layers of the stack.
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1 Introduction

In this report we present Authority Device Scheme(ADS), a collection of cryptographic proto-
cols based on Physical Unclonable Functions(PUFs) and one or more authority devices (ADs).
The scheme includes protocols for the introduction, mutual authentication and clustering for
network nodes along with advanced features by combining the novel properties of Physical
Unclonable Functions with existing key management methods and public key cryptography.

The ADS enables grouping nodes into clusters or neighbourhoods, making them aware of
their neighbours and using this awareness as a security enabler. This is achieved through the
distribution of identifiers among the nodes, through the authority devices. These devices act
as a proxy both among pairs of nodes and between the system and its owner.

Researchers have proposed numerous solutions for securely introducing devices to each other
and forming clusters, including the assumption of a secure environment[1] or the use of user
input like PIN codes[2]. However, an entity which owns a system should be able to ascertain
this authority, since it is only via this ownership that the system exists in its current form.
In other words, the owning entity (an individual or an organisation) should have complete
authority over the hardware but also the information that powers in the system.

Nevertheless, it is neither secure, nor convenient for human operators to have access to the
device secrets such as cryptographic keys, identifiers etc. In our scheme, by representing the
authority of the system owner with authority devices, the owner retains her authority over the
system without being exposed to implementation secrets and specifics. As a result, the user is
relieved of the burden of key provisioning and management, reducing the attack surface, and
advanced features such as delegation of authority, and behaviour attestation are enabled while
higher security is obtained via exploiting the unclonability property of PUFs. Additionally,
strong guarantees can be achieved regarding the decommissioning of devices, since it is possible
to revoke these authority devices. In contrast it is not feasible to revoke information, such as
cryptographic keys, that has already been exposed.

In practice, unclonability can be manifested with Physical Unclonable Functions (PUFs),
self-contained physical blocks producing unique outputs based on their physical features. Sec-
tion 2 offers a more detailed view of unclonability, PUFs, and our vision for unclonable systems.

The proposed scheme has a dual purpose: to act as an enabler for introducing the unclon-
ability primitive in higher level protocols but also further research around the primitive. We
strongly believe that there is high value in new methods of managing the security of network
systems via exploiting secret information that inherently occurs in electronic devices, without
manual generation or exposure to the device’s environment.

Due to the nature of the scheme, there is no need for a permanent managing authority that
would create a single point of failure. In fact, if the application scenario requires it, authority
devices can be physically destroyed after the initial system setup. System operation would then
continue normally, albeit without the ability to make topology or identity modifications.

We also introduce a reference architecture for a cryptographic core (cryptocore) that includes
a PUF. While the PUF provides an unclonable root of trust to the system, the core serves as
a physical container, providing a secure interface to the PUF, and accelerating the required
cryptographic operations.

In order to focus on a high-level view of the proposed methods, this report does not discuss
specific cryptographic algorithms which would be used by the scheme. In the prototype of
Section 6, a number of design decisions were made to match common practice at the time of
writing. As a result, Section 6 can also be seen as guidelines that would be considered secure
in the context of our work. However, it will be made clear that the ADS is fully flexible as it
merely relies on the generic features of unclonability and asymmetric cryptography and can be
adapted to the application or future cryptography needs.
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1.1 Use Cases

The ADS can be used in a number of topologies such as the ones pictured in Fig. 1. In the figure
we can discern three main configurations, representing the majority for real world scenarios,
with devices under the same authority grouped in circles.

The first case (Fig. 1a) is one where nodes under different ownership are divided into separate
neighbourhoods with distinct authority devices. For example, this would correspond to a
number of discrete company departments.

In the second case of Fig. 1b on the other hand, a subset of the nodes belongs to two different
groups, and is under the control of two different authority devices, as is the case for the same
company employees who belong in multiple teams.

Fig. 1c illustrates a hierarchy of nodes where members of one of the groups are tasked with
interacting and relaying information between otherwise separate authority domains. The higher
level domains interacts directly with just a small number of nodes in the lower level groups,
essentially creating two layers of relays. Evidently, this case corresponds to a company with a
management hierarchy and individual team leaders.

In this section we present a number of typical use cases for the proposed scheme, in order
to clarify the subsequent description of our design choices.

(a) Independent ownership (b) Multiple ownership (c) Third party gateways

Node Multiple-owner Node Authority Device

Figure 1: Example Topologies

1.1.1 Military Sensors

Military units often operate in a tree structure where the soldiers (tree leaves) report to higher
rank officers (intermediate tree nodes) who recursively report to the next rank, continuing
upwards until the commanding officer (root of the tree). Also, soldiers need to be able to
perform simple tasks as instructed with the least training possible.

We can envision a situation where a number of sensors need to be deployed over a battlefield
to gather and relay sensitive information. The commanding officer, having the authority over
the sensors, prefers to avoid exposure and, as a result, needs to delegate the task of configuring
the system to soldiers who are not experts in networking or security. At the same time, it is
necessary to ensure that in case a soldier or a sensor is captured, the damage will be contained
to the smallest possible organisational unit.

Using an authority device, the commanding officer is able to perform the setup process at
the military base, and pass the AD on to his soldiers who will install and configure the sensors
in the field. Since the history of the AD is observable, the officer can verify the correctness of
the system and be certain that any unexpected behaviour will be detected.

Extending the above to multiple units with separate commanding officers, similarly to
Fig. 1a, if a soldier bearing the AD for the group is captured, then the officer will be eas-
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ily able to detect the threat and isolate it, being certain that no sensor secrets were stored on
the AD and no other units are affected. Additionally, if a number of sensors are compromised,
the remaining ones can be readily reconfigured with a new AD device, invalidating any action
or communication performed by the compromised nodes.

1.1.2 Smart Cities

In smart city applications, hundreds of smart nodes are deployed over urban areas and perform
operations based on coordination. These devices need to be installed in a physically secure
manner but this is not always possible, due to the inability to supervise the devices and the
complexity of the task for city staff. As a result, the devices are often not secure, bearing the
same secrets as their peers, and waiting to be compromised.

With the ADS, we envisage applications where the supervisor of a smart city managing team
will be able to give her employees an authority device and ask them to install and configure
the nodes. Upon completing the installation, the city employees will simply connect the AD to
each of the nodes and the configuration would be performed automatically, without exposing
any secrets to any persons involved. Furthermore, the AD can keep a list of all the nodes it
came in contact with, making it possible for the supervisor to verify that all nodes were set up
correctly.

A similar topology involving multiple projects with different city officials running them, can
be seen in Fig. 1a.

1.1.3 Corporate Computers

It is a common occurrence in corporate environments for employees to use ’off-the-shelf’ com-
puters that are reused when they are no longer needed. Also, certain employees might work
on projects that involve multiple departments. As such, it would be beneficial for the IT
department to be able to easily configure employee machines in a secure way.

In this scenario, resembling Fig. 1c, the same employee holds multiple authority devices,
corresponding to different teams. Using the ADS a large number of company workstations
can be efficiently configured to provide granular access and communication between different
departments. Due to the minimal user interaction required, this configuration can be performed
by team leaders and department heads, removing the need for time-consuming requests to the
IT department.

Thus, it is clear that the security and usability of the company’s security policy is greatly
improved. Without authority devices, the IT team would have to manually install secrets
to each machine and consequently be in knowledge of the secrets. Furthermore, in larger
companies, managing the complexity of machines belonging to different departments is often
problematic, resulting in insecure solutions of granting access to more entities that it is required.

In summary, the Authority Device Scheme delivers the following:

Improved security: All key pairs are dynamically and automatically generated based on
PUFs challenged with randomised inputs. Thus, no parties outside the cryptographic core,
have access to any private key material. This leads to the minimisation of trust relationships
and thus, increased security since no party can be coerced into revealing device secrets.

In addition, even if an adversary obtains an authority device, the information stored on it
will only allow her to perform high level operations on the system without compromising
the communication of the nodes.

Reduced complexity and improved scalability: Due to the dynamic nature of the key
material, the need for user interaction is reduced to simply connecting an authority device to
the nodes. Additionally, on-demand key generation removes the need for secure non-volatile
storage as the keys are only present while the system is powered on.
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Decentralised operation: After their initial introduction, nodes operate without the need
for a central authority. Thus, neither the security nor the robustness of the system depend
on a single device.

Novel neighbourhood features: The ADS encompasses the first four layers of the un-
clonability stack described in Section 2 (provider, core, device, and protocols) and, when
combined with the strong security properties of unclonability, enables a range of new scen-
arios and features. Those include the detection of distortions in the system (cloned, removed,
moved or misbehaving nodes) and behaviour monitoring of neighbourhoods. Work on those
features will be presented in future publications.

The remainder of the report is organised as follows: Section 2 discusses the theoretical and
practical building blocks underpinning the development of the ADS. A reference architecture of
the cryptographic core is presented in Section 2.4 and Section 3 sets the basis for the subsequent
description of the ADS. The operation of the scheme is detailed in Section 4 and its security
analysis in Section 5. Finally, a prototype implementation is briefly examined in Section 6
followed by the concluding Section 7.

2 Background

2.1 Unclonability

In order to formulate the notion of unclonability, we first need to define the meaning of clone. In
the context of physical objects, clones can appear on two levels: mathematical and physical[3].
Mathematical clones essentially treat the original object as a black box and try to emulate its
behaviour, usually generating the same mapping of inputs to outputs. Physical clones on the
other hand, are identical copies of the physical structure of the object in detail.

There exist different levels of success in cloning an object and, in practice, it is quite difficult
to achieve a perfect cloning result. Therefore, the task of cloning and that of clone detection are
evaluated by the complexity needed to produce satisfactory results. To make clone detection
possible (and thus achieve unclonability) one needs to draw on one or more features which are
inherent to the object and beyond any level of control that would allow their exact reproduction,
given the available technology.

Unclonability refers to the difficulty in controlling all the features of an object in a meaningful
way, with the aim of producing a clone that is, or appears to be, an exact copy of the original
object. Thus, there are the following prerequisites for an object to be unclonable:

1. The presence of individualising features [3] which differentiate it from other similar or
dissimilar objects.

2. The ability of an observer to measure those features in a quantifiable manner and utilise
the results.

3. The persistence of those features over the lifetime of the object or the time of interest.

While individualising features can vary considerably between different types of objects, all
of them share some common qualities, to be considered exploitable in practice:

Unclonability: Being hard to thoroughly copy or otherwise reproduce.

Modelling resistant: Exhibiting behaviour that is hard to represent with a model.

Small intra-distance: Generating the same response over multiple observations of the
same object, up to a bounded error.

Large inter-distance: Generating very different responses over multiple observations of
different objects.
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Observability: Providing an practical and efficient way of observation.

Stability: Retaining the same value over time.

In conclusion, it is evident that unclonability is closely related to ownership and authority,
and while it sounds attractive in theory, there remains a lot to be done for it to be used in
practical applications. Importantly, a big part of human interactions in modern societies takes
place remotely where there is often little physical proof that the participating parties are who
they claim to be. As such, there is a need to unequivocally prove one’s identity while keeping
it safe in an increasingly connected world. Until humans can directly interact with the digital
world, intermediate ”identity devices” will need to be employed to provide these features.

2.2 Unclonability Stack

Exploiting the unclonability primitive, we can construct an unclonability stack, a collection of
layers building on unclonability to enable novel applications.

The stack is summarised in Fig. 2 and can be divided into two domains: physical and logical.
The layers of the physical domain have to be implemented in and supported by hardware for
various security reasons discussed below. On the other hand, the logical domain is mainly
concerned with the higher level interactions of the system and can be implemented in either
software or hardware. Each of the layers is providing its features to the higher layers via an
interface that aims to reduce complexity and improve security by

Despite resembling the OSI model, the unclonability stack is concerned with the security
interactions between devices and systems rather than the exchange of application data. Con-
sequently, a different set of methods and protocols has to be employed to transmit and receive
application data. Traditional communication protocols would be suitable and as the stack is
designed to provide additional security features to existing communication infrastructure.

Application

System

Neighbourhood

Link

Device

Core

Provider

Logical

Physical

Figure 2: Unclonability Stack

Provider: A low-level hardware construction that provides physical unclonability. In our
work, Physical Unclonable Functions, as they are described in Section 2.3, serve as providers.

Core: With the provider as its centrepiece, the core provides cryptographic operations such
as key generation, encryption, and signing, to the higher layers. It also provides access to
the unclonability Provider through a secure interface. The purpose of the core is to prevent
exposure of the internal secrets of the Provider via physical and logical separation. The
aforementioned secure interface facilitates the logical separation by defining strict rules for
a small number of simple operations. By keeping the operations of this layer as well-defined
as possible, the attack surface for the Core is reduced, and attack attempts can be detected.
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Device: The Device layer represents a networked device (node) that includes a Core. On
a conceptual level, the boundaries between the Core and the Device can be fuzzy but, in
essence, the Device usually has more complex functionality to serve the purpose of the
application. This functionality is unrelated to the security aspects of the Device and of-
ten expands the attack surface for potential adversaries. As a result, logical and physical
separation between the Core and Device is not needed but highly advisable.

Link: The Link layer includes protocols that enable the establishment of identity between
nodes, the detection of distortions etc.

Neighbourhood: Nodes are organised in clusters or ’neighbourhoods’. Due to the features
provided by the Link layer, neighbourhoods can be established and distortions can be de-
tected on a collective level, enabling the monitoring of neighbouring nodes and the response
to attacks. In addition, neighbourhoods can exploit their topology to provide more security
features, including among others redundant paths and traffic pattern obfuscation.

System: The System comprises a number of neighbourhoods which interact through strict
protocols. These protocols are designed to enable inter-neighbourhood communication while
retaining high levels of security by transforming and routing packets appropriately.

Application: Leveraging the inherent unclonability of the system, application developers
can create novel scenarios or drastically improve the security of existing implementations.

2.2.1 Unclonable Device

Atomicity is exceptionally difficult to achieve in networked systems where devices are assumed
to be identical to each other, forming a swarm of perceived clones. While this assumption
simplifies the development of large systems, it also hinders the operation of sophisticated se-
curity methods. By being unable to differentiate between nodes, security protocols can only
distinguish among classes of devices rather than individual ones.

In the past, identifying these devices was based on some kind of secret that had to be
generated, safely stored and recalled every time it was used. However, in a lot of cases, there
are no safeguards in place to prevent the secret from being copied, allowing the impersonation
of the original device. Some attempts to prevent this cloning have been made in the past but
most of them were eventually proven insecure or impractical due to high implementation costs.

In IoT scenarios, the mathematical guarantees provided via cryptographic means are becom-
ing increasingly irrelevant since attackers have access to the device hardware, allowing them to
recover secrets by physical attacks. Furthermore, a lot of applications involve a great number of
devices, making the process of generating and storing unique secrets inefficient. An unclonable
node is able to provide a secure and high-entropy method of generating a unique secret on the
device itself, recreating it every time it is needed, without the need for secure storage. Addi-
tionally, the use of unclonable network nodes provides the ability to impede a further class of
attacks. For example, since device identity can be unquestionably proven, a number of topology
distortions can be detected, as discussed in Section 2.2.2.

An unclonable device is defined as a generic computing device with components summarised
below. A reference architecture with these component is shown in Fig. 3.

Unclonability Core: A self-contained block, with the features and architecture discussed
in Section 2.4, providing a root of unclonability to the device, as well as performing the
necessary cryptographic operations for the ADS.

General Purpose Logic: Capable of performing the operations required by the applica-
tion.

ADS Logic: Implementing the Authority Device Scheme.
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Communication Interfaces: Networking and other I/O interfaces, employed by the ADS
and the application logic.

Input/Output
Controller 

CryptoCore ADS

Application
LogicNV Storage

Tx/RxNetwork
Interface

I/O

Figure 3: Unclonable Device Reference Architecture

Exploiting this architecture, an unclonable device is able to securely generate keys that are
bound to the intrinsic physical properties of the hardware instance, and execute the required
operations to support the features of higher level schemes including the ADS. Acting as an
unclonable root of trust via undeniably proving its identity, the device is able to participate in,
and organise unclonable network links and neighbourhoods.

2.2.2 Unclonable Neighbourhoods

The higher layers of the unclonability stack are not in the scope of this report. However, in
this section we will attempt to provide a view of the concept of unclonable neighbourhoods, to
clarify the goals of the Authority Device Scheme.

In networking terms, neighbourhoods of nodes are equivalent to clusters. As is the case in a
town neighbourhood, neighbours need to be introduced to each other to form trust relationships.
Nodes that are introduced to each other assume that the remote node is approved by a higher
level entity (possibly a central node) that is eventually controlled by the owner of the system.
In practice, a few layers of ownership relationships can exist between the owner and the nodes,
i.e. system owner → system administrator → authorisation token → node.

Neighbourhood unclonability can be realised with protocols which take into account both
the topology of the system and the relationships among neighbouring nodes. In essence, by
extending the unclonability properties of individual nodes, we can envisage unclonable links
between nodes leading to unclonable clusters of devices.

Based on unclonable neighbourhoods we can create a system model where any topology
distortions can be detected. Distortions modify the structure of the network and can be the
result of an attack by an adversary or simply a modification by a legitimate source. We can
discern a number of basic cases of distortions:

Node removed An enrolled (known) node is removed from the network.

Node replaced A known node is replaced by an unknown, possibly malicious or comprom-
ised node.

Node introduced A unknown node is introduced, being either honest or malicious.

Node moved A known node is moved to a different logical position.

Neighbourhood unclonability protocols should detect the above distortions and take actions
that might include alerting a higher level party, destroying secrets, initiating recovery proced-
ures etc. Nonetheless, it is important to make the distinction between distortion detection and
distortion recovery. For the purposes of security, it is acceptable and even desirable for the
system to seize operating normally after a distortion occurs, requiring an exceptional ’author-
ity action’ for recovery. However counter-intuitive, this feature ensures that the system will
operate in a predictable manner even in case of an attack.
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2.3 Physical Unclonable Functions

The most prominent practical embodiment of unclonability are Physical Unclonable Functions
(PUFs). Initially proposed in an analogue form by Pappu[4], PUFs make use of intrinsic
variations in the fabrication process of hardware components, to accept a challenge and produce
a response. In other words they are functions with two inputs: the challenge and the physical
features of the physical block. Evidently, PUFs are an efficient way to harness a secret from
the physical domain and use it repeatedly without being able to alter or copy it.

While many types of PUFs exist, electronic PUFs have been the focus of most research
efforts, due to their efficiency and low cost. Thus in our work, we only consider electronic PUFs
which have digital inputs and outputs making it possible to integrate them in algorithms and
methods designed for binary operands. At the same time, electronic PUFs can be constructed
out of components that are often encountered in digital systems like SRAM chips, arbiters,
XOR gates, delay circuits etc.[5]–[7]

In the context of our work, PUFs are able to provide the following advantages which, in
many cases, intertwine:

Core of unclonability Evidently, PUFs can serve as the main primitive in scenarios in-
volving unclonability.

High quality cryptographic keys Due to their high entropy output and their inherent
physical protection, the responses of PUFs can be used in the place of regular cryptographic
keys. It is also possible to regenerate the keys on demand without direct user interaction,
making secure storage unnecessary.

Trust relationship minimisation Users and administrators of PUF-enabled hardware do
not have access to the cryptographic secrets of the system. Thus, due to the removal of the
human element, trust relationships can be minimised, leading to a reduced attack surface
and a higher cost of attack.

2.3.1 Definition

PUFs can be formalised as a mapping τ : C → R : τ(c) = r, c ∈ C, r ∈ R generating the
challenge-response pairs(CRPs) (ci, ri) = (ci, τ(ci)) and exhibiting the following properties[3],
[8]:

1. Evaluable: given τ and challenge c, it is fairly easy to get the response r = τ(c).

2. Unclonable: given τ it is hard to construct a procedure γ : ∀c ∈ C, γ(c) ≈ τ(c) up to a
small error.

3. Unpredictable: Given a set Q of CRPs: Q = {ci, ri} it is hard to compute ru = t(cu), cu /∈ Q

4. Unique: ∀c ∈ C, τ(c) is uniquely mapped to the physical entity in a way that no other
entity, however similar will present the same CRP even up to a small error.

5. One way : Given only r and τ it is hard to find cst.r = τ(c)

6. Tamper evident : Any intrusion attempt to the physical construction is highly likely to
transform τ to τ ′st.∀c ∈ C : τ(c) 6= τ ′(c) with this difference being significant and
detectable.

7. Reproducible: For a set c ∈ C, r = τ(c) is reproducible with a small, bounded error.

Due to their properties, PUFs can be used as a building block in a variety of security
scenarios and protocols including identification[4], [9], authentication[2], [10], [11], signature[12],
key generation and storage[13]–[15], and key exchange[4].
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2.3.2 Taxonomy

In the recent years a number of efficient and highly secure PUF constructions have been pro-
posed with the most notable being SRAMs[5], Arbiters[6], and Ring Oscillators[7]. Most elec-
tronic PUF constructions can be adapted to provide the Input/Output behaviour required by
our scheme, and thus reviewing specific implementations is out of the scope of our work.

An important distinction of PUF constructions is between strong and weak PUFs[16]. A
strong PUF has a infinite challenge-response space and its responses are completely unpredict-
able and uncorrelated. The former property is especially important in authentication scenarios
where a large number of unique CRPs is used. Despite the fact that no practical strong PUF
construction has been proposed, various protocols in literature are based on strong PUFs. Our
scheme avoids the assumption of a large CRP space and strives to reduce the number of CRPs
required throughout its protocols.

A number of more sophisticated PUFs have also been proposed. Reconfigurable PUFs allow
one-way updating of their internal state, invalidating all previous CRPs[17], [18]. Erasable
PUFs provide both a large CRP space and are able to erase specific CRPs from their state[19].
Finally, matched PUFs, are based on creating two distinct ICs that will have the same behaviour
(up to an acceptable error) but at the same time making it statistically impossible for a third
matching IC to be created[20].

Unfortunately, physical complexity is both the major advantage and a hindrance when
it comes to implementing sophisticated unclonability solutions. As a result, most proposals
discussed above have limited practical value, until they are developed further.

2.3.3 PUF Authentication and Identification Protocols

By definition, authentication and identification protocols involve two parties: the prover and
the verifier. Typically, the verifier aims to establish that the prover possesses some required
attributes (i.e. what the prover has, knows, or is[21]) via a series of queries. These queries are
designed to demonstrate the possession of the aforementioned attributes with a high probability.

Most methods of utilising PUFs in authentication protocols consists of two phases: enrol-
ment and verification. It the simplest case, during enrolment the prover’s PUF is queried with
a number of random challenges and the resulting challenge-response pairs (CRPs) are stored
in a database on the verifier. In the verification phase, the verifier picks a random CRP from
its database and sends the challenge to the prover who is required to reproduce the response
generated during the enrolment phase to be successfully authenticated. This method has a
number of drawbacks including large storage requirements, exposure of the PUF responses,
and placing a great amount of trust in the verifier.

A number of works based on this method have been published, including Gassend et al.[9],
and Devadas et al.[22]. More recent publications [23] extend the classic CRP technique with
the integration of additional physical features but they do not effectively alleviate any of the
method’s drawbacks.

To make matters worse, PUF responses are rarely perfectly stable, with an error rate of
7% to 20%[3], resulting in the need for computationally intensive error correction methods.
In the case of simple identification protocols however, it is possible to completely avoid using
error collection logic and identify the PUF devices with an appropriately calibrated difference
threshold. Of course, the main drawback of this method is the difficulty in specifying a threshold
that would disallow false positives in critical applications.

In order to improve the error correction performance, Van Herrewege et al.[24] relocated the
expensive error correction calculations to the verifier device which is typically more powerful
than the prover. Their method provides mutual authentication while the CRP pairs are never
publicly revealed and thus there is no need for them to be discarded after every protocol round.
Nevertheless, the need for a large CRP database is still present in this solution, with the
associated scalability issues.
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A different class of PUF protocols is based on the ability of the verifier to construct and
securely store a model of the prover’s PUF. A number of solutions have been proposed based
on this idea, including Slender[25] which uses fuses to physically disable the PUF’s modelling
interface after enrolment, and (SIMPL) systems[26] which are based on the assumption that
a model will always be orders of magnitude slower that the real PUF. However, the latter
has not been implemented in practice, due to the difficulty of guaranteeing the validity that
assumption.

Finally, algebraic schemes making use of more complex mathematical structures have been
proposed, in order to achieve specific security goals. A representative example is the method
proposed by Krzywiecki in [21], using Lagrangian interpolation to allow anonymous authentic-
ation of users equipped with a PUF device.

2.4 Cryptographic Core

The ADS is based on a set of security primitives: public key cryptography, physical unclonable
functions, and physical security. For a correct and secure operation, a minimal set of require-
ments has to be satisfied, and we find that these requirements would be best supported by
a separate cryptographic core that will enable both physically secure and efficient operation.
A reference architecture of this core is presented in Fig. 4 and discussed in this section. In
summary, an implementation of the core would require the following minimum features:

• Non-volatile memory for key challenges and helper data.

• PUF block with an externally accessible secure interface, to generate (a) unclonable seeds
for key generation, and (b) PUF CRPs to be used in the ADS protocols.

• Cryptographic processor supporting public key cryptography, mainly key generation and
signature generation/verification.

• True random number generator (TRNG) to generate the random tokens required by the
scheme.

PUF

Helper Data

ECC

Cryptographic
Operation

Result
Public 

Key

Input

Cryptographic
ProcessorKey Challenge

External
Challenge

Key 
Response

PUF
Response

Operation
Select

TRNG
Request Random

 Response

HashHash

NV Memory

Hash

Figure 4: Cryptographic Core Reference Architecture
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2.4.1 Operation Modes

The scheme requires two main functions from the cryptographic core: generating and verifying
cryptographic signatures, and providing a secure interface to the PUF block. In the first mode,
the private key for the cryptographic part is generated by the PUF, using a challenge stored
in memory. Subsequently the key is used in the cryptoprocessor for the required tasks but it is
never stored in memory as it can be regenerated on demand. In the second mode of operation,
the core accepts arbitrary inputs, uses them as challenges to the PUF and returns the responses
after they are sufficiently post-processed to enhance security.

2.4.2 Non-Volatile Memory

Two types of data need to be stored in non-volatile memory: key challenges and PUF helper
data. The key challenges are used as inputs to the PUF to produce the private keys while the
helper data are produced (and subsequently consumed) by the error correction (ECC) block to
enable the error elimination of unstable bits in the PUF response. As per the adversary model
of Section 3, the data written in persistent storage is considered public, thus even a memory
block that is shared with the rest of the system would meet the requirements.

2.4.3 PUF

The PUF block is an abstract representation of an electronic PUF construction. For the
purposes of the ADS, the PUF is treated as a black box that accepts challenges and provides
the appropriate responses as discussed in Section 2.3. The rest of the cryptographic core makes
use of these responses as instructed by the protocols of the ADS.

As seen in the following sections, PUF responses are used in the ADS either as a seed for key
generation or directly in authentication protocols. This results in some PUF responses being
made available to third parties and even adversaries. Thus, the cryptocore needs to ensure
that challenges that have been used in the past for key generation are not used for any other
purpose. This is achieved by simply hashing the PUF output once more, if it is to be shared
outside the boundaries of the cryptocore.

2.4.4 Error Correction and Hashing

The pair of Error Correction Code (ECC) and Hash blocks ensures that the PUF response is
both stable and secure, by performing error correction and obfuscating the raw PUF output.
To enable the error correction coding, helper data are produced and stored when a response is
generated for the first time. The data is retrieved and used as an input to the error correction
algorithm when the same response needs to be reconstructed. Various error correcting methods
have been proposed in literature (e.g. [3], [11], [13], [27]) with different advantages and disad-
vantages. An important consideration for selecting an error correction method is the possible
leakage of PUF entropy through the helper data, since the latter are stored in unprotected
memory.

Before being released to the output, PUF responses are hashed with a cryptographic hash
function, enhancing the entropy of the responses, impeding modelling attempts against the
PUF, and, as discussed above, ensuring the secrecy of the key material. In practice, both the
input and output of the PUF might be hashed, compressing them to pre-defined sizes.

The details of error correction and hashing are not discussed, as we are mainly interested
in higher level protocols, but have been extensively presented in literature along with PUF
operation specifics[3], [11], [13], [27]. The work presented in Section 6 makes uses of state-of-
the-art techniques to simulate the cryptocore in software but these techniques could be replaced
by future research developments as long as the I/O behaviour of the blocks remains unchanged.
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2.4.5 Cryptographic processor

The cryptographic processor (cryptoprocessor) performs three main tasks in the Authority
Device Scheme: key generation, signature generation, and signature verification. Thus, the
cryptoprocessor is required the support public key cryptography. By implementing all the
blocks of the cryptocore on a single chip, physical security measures can be taken against side
channel attacks. To allow for the use of the cryptoprocessor by other applications besides the
ADS, an interface to the cryptoprocessor itself is provided, with the restriction of accepting
and producing strictly public data.

2.4.6 True Random Number Generator

Throughout the scheme a number of random nonces are employed to ensure the freshness of the
protocols and it is required that these nonces are not repeated over the lifetime of the system,
to prevent replay attacks. Thus the cryptocore includes a True Random Number Generator
(TRNG). An additional PUF component can possibly serve as a TRNG as seen in literature[28].

This requirement, at least in the context of the ADS, can be eliminated if other methods of
replay attack prevention are used, such as including session counters to the exchanged nonces.
However, such information would require the verification of its integrity before use, if stored in
non-volatile memory.

2.4.7 Physical Security

The ADS and the proposed cryptocore architecture are designed to make use of PUF features
with the aim of minimising the need for physical security. Thus, the only data paths that
need to be protected are the raw PUF output and the private key bus (both marked with bold
lines in Fig. 4). Apart from these two buses, no other part of the cryptocore requires physical
protection, as all other data (in transit or at rest) are considered public. The PUF itself and its
internal state are assumed to be protected by the inherent properties of the PUF which make
it impossible to perform physical attacks on it without destroying the underlying secret.

Although not strictly required by the scheme, physical and logical isolation of the cryptocore
from any other system components provides an additional level of security against physical
attacks (i.e. invasive or side-channel attacks).

3 Preliminaries

3.1 Application Scenario

The system comprises a number of networked nodes and at least one authority device which
is mobile. The architecture of all the devices, nodes and ADs, is a variant of the reference
architecture described in Section 2.2.1 but, to match common Internet-of-Things scenarios, the
nodes are assumed to be more resource constrained than the ADs.

In the context of this section, PUFs are considered a component providing the behaviour dis-
cussed in Section 2.3 with responses that are reliably reproduced, error-corrected, and entropy-
enhanced at the hardware level, since these issues have been extensively studied in literature[3],
[24], [29]. Namely, the PUF component can be modelled as an augmented hash function with
outputs that are uniformly random based on the internal PUF state and the corresponding
challenge.

As per the adversary model discussed below, any data that is stored in non-volatile memory
during the operation of the scheme is considered accessible to potential adversaries and should
thus be appropriately protected. When, in the remainder of this paper, we refer to storing
and retrieving data, we implicitly assume that the integrity of these data is verified. This
assumption is based on existing solutions in literature, for example by Hoffman et al.[30].
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Symbol Value or Operation

AD Authority device
Nx Node x
Px Public key of x
Sx Private key of x
IDx Identifier of device x
SIGy(x) Signature of data block x with private key y
V ERy(x, s) Verification of the signature s with data x and public key y
PUFy(x) Evaluation of PUF y with challenge x
TRNGy() Evaluation of TRNG of device y
PKG(x) Derivation of an asymmetric key pair based on seed x
‖ Concatenation
REQx Request to initiate protocol x
ACK Acknowledgement

Table 1: Summary of symbols

In the basic application scenario for the scheme, a party which we call the owner, purchases
a number of networked devices (nodes). The owner needs to deploy the nodes in the field,
creating a network of devices. As in many practical applications, we assume that the nodes are
manufactured by an honest entity and then come under the control of the owner who has full
authority on them and performs the initial setup. However, for practical or security reasons,
the owner might want to delegate the duty of enrolment (performed in the field) to an external
party that is again partially trusted. This third party is tasked with enrolling the nodes and
given an authority device to make this possible.

The authority device is designed to be connected to each of the nodes. The connection can
be wired or wireless but a physical proximity between nodes and ADs is required while they
are taking part in a protocol, to ensure the physical validation of the nodes. Upon connection,
the AD performs the necessary operations to enable the nodes to act as a group and effectively
join the same ownership domain or neighbourhood. It should be highlighted that none of the
configuration requires special expertise from any of the human operators.

Multiple ownership is achieved with different authority devices. Using a large number of ADs
does not affect the scalability of the scheme as those devices only take part in operations that
are performed offline and not during the normal operation of the system. Also, as evidenced in
the prototype implementation (discussed in Section 6), the size of the information that devices
have to retain throughout the protocol is relatively small in comparison to modern device
capabilities. In any case, most practical scenarios would require the use of a limited number of
authority devices. In the following sections we will refer to a maximum of two authority devices
for clarity, although all protocols are designed to support any non-zero number of ADs.

The scheme employs the properties of Physical Unclonable Functions to: (a) securely gener-
ate cryptographic keys, without the need of keeping them in storage, and (b) enable the system
entities to undeniably prove and verify the identity of their interacting parties.

3.2 Notation

To simplify the protocol descriptions, we make use of the notation summarised in Table 1.
Operations that are considered well-known or have been described in a different section, are
omitted from the descriptions for clarity, unless they are crucial for presentation of the protocol.
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3.3 Adversary Model

The various protocols of the Authority Device Scheme can be divided into two broad phases:
initialisation, and normal operation. It is assumed that the initialisation phase is performed in
a secure environment or using secure channels established via other methods. This assumption
means that there are no adversaries involved in the protocols of this phase.

On the other hand, the system spends the majority of its lifetime in normal operation
where adversaries can be active. Our adversary model is based on the Dolev-Yao model[31]
expanded and modified to include the physical properties provided by unclonability and PUFs.
In summary, the following assumptions are made:

Channel: There is no limitation to the physical medium of communication i.e. wired or
wireless. The adversary can eavesdrop on any communication without being detected.

Adversary Capabilities: The adversary is able to observe, intercept, modify, delay, replay
and synthesise messages. She is able to guess keys and run the cryptographic algorithms
involved in the protocols. She is however unable of directly attacking the algorithms them-
selves.

It is assumed to be computationally impractical, over the lifetime of the system, for the
adversary to exhaustively search the cryptographic key space or the CRP space of any PUF
chips or otherwise accurately generate new CRPs without access to the chips themselves.

On a physical level, the adversary has the ability to observe the operation of the system and
its individual parts either during normal operation or by removing and probing the hardware.
In other words, data in device memory and data buses are considered to be available to
the adversary unless they are contained in the cryptocore specified in Section 2.4. Most
importantly, due to the properties of PUFs, the adversary is unable to probe any PUF chips
and extract information that they do not make available through their interfaces, without
destroying their internal secrets.

Protocol: The adversary acts as a legitimate node and is capable of initiating and taking
part in protocols with any of the parties involved in the scheme.

4 Protocols

The proposed scheme acts as an enabler for the unclonability stack of Section 2.2 through
providing the following features:

• Key material is initially generated when the device is powered on using the inherent,
unclonable randomness of the PUFs. The key is regenerated when needed without being
stored in non-volatile memory. (Protocol 1: Key Generation)

• The ADs and the nodes can be introduced prior to deployment, as an extra layer of
security. This allows for a decoupling of the owner and the actual holder of the authority
device. (Protocols 2 and 3: Node Setup, Node Verification)

• Nodes can be added to one or more ownership domains (neighbourhoods) by interacting
with one or more authority devices. (Protocols 4 and 5: Node Enrolment)

• After their addition to a neighbourhood, nodes are able to become members of additional
neighbourhoods with additional authority devices but only after the approval of the initial
authority device. (Protocols 5 and 7: Authority Device Authentication, Node Enrolment)

• After their addition to a neighbourhood, nodes are aware of their membership, can ex-
change public keys with their neighbours, and authenticate them. (Protocols 8 and 9:
Node Key Exchange, Node Mutual Authentication)
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• After their enrolment, nodes are able to authenticate their owning authority devices.
(Protocol 7: Authority Device Authentication)

• Authority devices are able to decommission nodes of their authority domain, effectively
removing them from the neighbourhood. (Protocol 6: Node Decommission)

The required set of protocols can be divided in four conceptual domains: key generation,
member preparation, membership management, and member interaction. These domains and
their relationships are visualised in Fig. 5.

Key Generation

Membership Management
Node Enrolment

Node Decommission
AD Authentication

Member Preparation
Node Setup

Node Verification

Member Interaction
Node Key Exchange

Node Mutual Authentication

Figure 5: ADS Protocol Domains

To formulate the different protocols we use a multiple ownership scenario, including two
authority devices and a number of nodes. Every node starts with no configuration in state SU .
After performing the Setup process (reaching state S00) and being deployed in the field, the
node is enrolled by one of the authority devices X or Y and transitions to states S10 or S01

respectively. Subsequently, the node can start interacting with other enrolled nodes, enrolled
with the second AD, or decommissioned. The different states of a node in the two-AD scenario
are shown in Fig. 6. As can be seen from the descriptions below, the assumption of only two
ADs is merely contributing to the clarity of our descriptions and all methods and protocols can
be extended to an arbitrary number of authority devices.

SUstart

S00

S01 S10

S11

S

+Y +X

+XY

−Y

+YX

−X

−X −Y

Symbol Action

S Node Setup
+X Enrolment with X
+Y Enrolment with Y

+XY Enrolment with X, approved by Y
+YX Enrolment with Y, approved by X
−X Decommission with X
−Y Decommission with Y

Figure 6: Node states in two-AD scenario with authority devices X and Y

4.1 Key Generation

An important feature of the ADS is the elimination of private data from both non-volatile
memory and human interaction. The unclonable key generation process connects the two lower
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layers of the unclonability stack, the unclonable provider and the unclonable core.
The generation takes place on every device after it is powered on, using the entropy provided

by the PUF block by challenging it with a random input. The output of the PUF is then used
as a seed for the key generation of the chosen public key algorithm.

The random challenge is stored in non-volatile memory to allow the reproduction of the key
pair after a device power cycle. To avoid repeating expensive calculations, public keys can also
be stored in non-volatile memory and recalled, but their private counterpart is never stored or
shared outside the boundary of the cryptocore.

Protocol 1 (Key Generation). Device D equipped with a cryptocore. At the end of the protocol,
D possesses an public key PD and a secret key SD.

1. D generates random challenge C = TRNGD().

2. D evaluates the PUF with the challenge, generating a seed R = PUFD(C) and derives the
key pair (PD, SD) = PKG(R).

3. D stores the challenge C to allow key regeneration.

4.2 Node Setup

Prior to the deployment of the nodes, a preparation step is performed between the AD and
the nodes in an environment controlled by the system owner and assumed to be secure. This
preparation serves as an introduction for nodes and ADs, configuring them to recognise each
other. This is achieved securely, combining the secrets of the node and the AD to protect the
CRP of the node in case of the AD is compromised. In addition, this process also enables
the important feature of authority delegation, since it allows for the AD to be passed to an
honest-but-curious third party which will perform the node enrolment after deployment in the
field.

Protocol 2 (Node Setup). Node N and authority device X. At the end of the protocol, N and
X have been introduced and are able to verify each other. See Fig. 7.

1. X verifies that N has not been decommissioned and aborts on failure.

2. X generates a random challenge CN = TRNGX() and sends it to N.

3. N uses CN as a challenge to its PUF to generate a response KN = PUFN(CN).

4. N sends (KN , PN) to X.

5. X generates the response RN = PUFX(KN).

6. X replies with its public key PX .

7. N stores PX in its list of potential ADs and replies with an acknowledgement.

8. X stores the tuple (PN , CN , RN).

4.3 Node Verification

The verification protocol is based on the CRP database that was created on the AD during the
Setup protocol described above. The protocol essentially makes the AD unable to enrol any
nodes other than the ones pre-approved during Setup, under the control of the system owner.

The verification protocol is only designed to be run right after the deployment of the nodes,
or in case changes need to be made to the configuration of the system. As a result, to prevent
replay attacks, the CRP exchanged during this protocol is discarded and a new Setup protocol
execution is required before further verifications.
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X N

Decommission check

Abort on failure

CN = TRNGX()

CN

KN = PUFN (CN )

(KN , PN )

RN = PUFX(KN )

Store (PN , CN , RN )

PX

Store PX

ACK

Figure 7: Node Setup

Protocol 3 (Node Verification). Node N and authority device X. At the end of the protocol, X
has verified that it was introduced to N during the Setup protocol. See Fig. 8.

1. X sends a verification request to N along with its public key PX .

2. N verifies that PN exists in the list of authorised ADs created during Setup and aborts on
failure.

3. N replies with its public key PN .

4. X verifies that N has not been decommissioned and aborts on failure.

5. X retrieves the tuple (PN , CN , RN) from its database.

6. X signs the challenge CN and sends the signature along with the challenge to N.

7. N verifies the signature and aborts on failure. This prevents unauthorised parties from
querying the PUF of N.

8. N uses CN as a challenge to its PUF to generate K ′
N = PUFN(CN) and sends K ′

N to X.

9. X generates the PUF response R′
N = PUFX(K ′

N), verifies that R′
N = RN and aborts on

failure.

10. X replies with an acknowledgement and discards (CN , RN).

4.4 Node Enrolment

Node enrolment is equivalent to an AD (and its holder) claiming ownership of a node. An
enrolled node is regarded as a member of the neighbourhood controlled by the corresponding
authority device and possesses the necessary information to prove its membership and commu-
nicate with other members. In practice, the AD adds a node to a neighbourhood by signing its
public key, thus certifying the validity of the public key.

There are two variants of this protocol to satisfy the scheme goals: (a) for nodes that have
not been enrolled before, shown in Protocol 4, and (b) for nodes that are already enrolled,
shown in Protocol 5. In the latter case, at least one previous AD is required to participate in
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X N

REQver, PX

Verify PX stored in Setup

Abort on failure

PN

Decommission check

Abort on failure

Retrieve stored (PN , CN , RN )

QXN = SIGSX
(CN )

(CN , QXN )

V ERPX
(CN , QXN )

Abort on failure

K ′
N = PUFN (CN )

K ′
N

R′
N = PUFX(K ′

N )

Abort if R′
N 6= RN

ACK

Discard (CN , RN )

Store PN as verified

Figure 8: Node Verification

an approval process for the new AD. The task of verifying the legitimacy of the new AD is the
responsibility of the holder of the previous AD is thus not included in the protocol. Enrolling
with a new AD however, does not remove any previous owners but creates joint ownership
relationships.

Protocol 4 (Node Single Enrolment). Authority device X and Node N, previously set up with
X but not enrolled. At the end of the protocol, N is enrolled with X. See Fig. 9.

1. X verifies that N has not been decommissioned and aborts on failure.

2. X executes a Verification protocol with N and aborts on failure.

3. X initiates the enrolment by sending an enrolment request and its public key PX to N.

4. N verifies that PX is in the list of approved ADs and aborts on failure. This list is populated
by either the Setup protocol (Protocol 2) or the first part of the multiple enrolment process
(Protocol 5).

5. N executes the AD authentication protocol with X (Protocol 7) and aborts on failure.

6. N sends PN to X.

7. X verifies PN against the one stored during the Setup protocol and aborts on failure.

8. X generates QXN = SIGSX
(PN) and sends (QXN , PX) to N.
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9. N verifies that the received signature matches the received public key and its own public
key and aborts on failure.

10. N stores (QXN , PX) and replies with an acknowledgement.

11. X stores N in its list of enrolled nodes.

X N

Decommission check

Verification

(REQenrol, PX)

Verify PX authorised

Abort on failure

AD Authentication

PN

Verify PN verified

Abort on failure

QXN = SIGSX
(PN )

(QXN , PX)

V ERPX
(PN , QXN )

Abort on failure

Store (QXN , PX)

ACK

Figure 9: Node Single Enrolment

In the multiple enrolment case, the Verification protocol is omitted, since new, unseen at the
time of Setup, ADs might be added over the lifetime of the node. Attacks where an adversary
eavesdrops on the communication between Y and N and later replays the

Replay attacks by recording the (PY , QXY ) and replaying it for a different, unauthorised
AD are implicitly prevented: N initially accepts the new AD (since the signature verification
is successful) but in the subsequent enrolment protocol, the malicious AD will have to perform
an AD authentication protocol using SY . The malicious AD is unable to do that without
compromising the private key, which never leaves the boundaries of the cryptocore of Y .

Protocol 5 (Node Multiple Enrolment). Authority devices X and Y, and node N, previously
enrolled with X. At the end of the protocol, N is enrolled with Y and stays enrolled with X. See
Fig. 10.

1. Y sends IDN to X.

2. X verifies that N is enrolled and aborts on failure.

3. X replies with an acknowledgement.

4. Y sends PY to X.

5. X produces a signature QXY = SIGSX
(PY ‖PN) and sends it to Y.

6. Y replies to X with an acknowledgement and sends (PY , QXY ) to N.
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7. N verifies the signature with PX , stored during its enrolment V ERPX
(PY ‖PN , QXY ) and

aborts on failure.

8. N stores PY as an authorised authority device.

9. N replies to Y with an acknowledgement.

10. Y initiates the enrolment by sending an enrolment request and its public key PY to N.

11. The remainder of the process is identical to Protocol 4, skipping the node verification step.

X Y

IDN

Check IDN

Abort on failure

ACK

PY

QXY = SIGSX
(PY ‖PN )

QXY

ACK

Y N

(REQenrol, PY , QXY )

V ERPX
(PY ‖PN , QXY )

Abort on failure

Store PY as authorised

ACK

Enrolment

Figure 10: Node Enrolment: Multiple Ownership

4.5 Node Decommission

Decommissioning a node refers to removing it from one of its neighbourhoods. Since the
neighbourhood is controlled by an AD, this AD is responsible for instructing the node to delete
any signed keys. As mentioned, the nodes are assumed to be visually verifiable during their
interactions with an authority device. Additionally, the decommission protocol includes a step
of verifying that the node is still in possession of its private key and, in extension, of its PUF.
Based on these guarantees, the actual deletion of the signed keys is left to the node, and no
further key revocation takes place.

Additionally, ADs keep a ’black list’ with the nodes they decommission, in order to take
appropriate action if they encounter them again. In case a node is believed to be compromised,
a new enrolment round can take place with a fresh key pair for the authority device. At the
end of this round, all previous signatures of the AD would be rendered invalid and the nodes
would instantly seize to accept them.

Protocol 6 (Node Decommission). Authority device X and Node N, previously enrolled with
X. At the end of the protocol, N no longer belongs to the neighbourhood controlled by X, has
erased the relevant identifiers, and has been added to a decommission ’black list’ kept by X. See
Fig. 11.
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1. X initiates the protocol by sending a decommission request to N, including its public key
PX as an identifier.

2. N executes the AD authentication protocol with X (Protocol 7).

3. N removes (QXN , PX) from its storage and replies with an acknowledgement.

4. X removes N from its list of enrolled nodes and adds it to its black list.

X N

(REQdecom, PX)

AD Authentication

Remove QXN and PX

ACK

Blacklist N

Figure 11: Node Decommission

4.6 Authority Device Authentication

Since the authority device has control of node membership, any subsequent ownership oper-
ations need to be performed with the approval of that device. Thus, before accepting any
command, the nodes have to authenticate their owning ADs.

Protocol 7 (Authority Device Authentication). Authority device X and node N, previously
enrolled with X. At the end of the protocol, N has authenticated X as one of the ADs with which
N has been enrolled. See Fig. 12.

1. N generates a random nonce T = TRNGN() and sends it to X.

2. X signs the nonce generating Q = SIGSX
(T ) and sends it N.

3. N verifies the signature V ERPX
(T,Q) and aborts on failure.

4. N replies with an acknowledgement.

N X

T = TRNGN ()

T

Q = SIGSX
(T )

Q

V ERPX
(T,Q)

Abort on failure

ACK

Figure 12: Authority Device Authentication
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4.7 Node Key Exchange

This protocol is used to exchange keys between nodes, resembling public key certificate methods.
Since each node’s public key is signed by the AD during the enrolment phase, all nodes can
verify each other’s key validity using the public key of the AD. This key, also stored on the nodes
while they were enrolled, acts as an authority anchor. By verifying the signature of each other’s
public key, the nodes can identify their neighbours and form neighbourhood relationships that
will enable further, higher-level protocols. Additionally, the exchanged keys can be used for the
establishment of secure communication channels between the nodes, to provide any required
application-level services.

Protocol 8 (Node Key Exchange). Nodes N1 and N2 belonging to the same neighbourhood,
both enrolled with AD X. At the end of the protocol, both nodes possess the public keys of each
other. See Fig. 13.

1. N1 initiates the protocol by sending the AD public key PX to N2.

2. N2 verifies that it has been enrolled with X and aborts on failure.

3. N2 replies with (IDN2 , PN2 , QXN2) as stored in the enrolment phase.

4. N1 verifies the received key and signature V ERPX
(PN2 , QXN2) and aborts on failure.

5. N1 sends with (IDN1 , PN1 , QXN1) as stored in the enrolment phase, to N2.

6. N2 verifies the received key and signature V ERPX
(PN1 , QXN1) and aborts on failure.

7. N2 replies with an acknowledgement.

8. If successful, N1 stores (IDN2 , PN2) and N2 stores (IDN1 , PN1).

N1 N2

(REQkeyex, PX)

Verify enrolment with PX

Abort on failure

(IDN2 , PN2 , QXN2)

V ERPX
(PN2 , QXN2)

Abort on failure

(IDN1 , PN1 , QXN1)

V ERPX
(PN1 , QXN1)

Abort on failure

ACK

Store (IDN2 , PN2) Store (IDN1 , PN1)

Figure 13: Key Exchange

4.8 Node Mutual Authentication

Based on exchanged public keys, nodes can mutually attest the authenticity of their remote
partners by taking turns in signing and verifying a random nonce with their respective key
pairs. As with all asymmetric cryptography operations, signing and verifying signatures is
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relatively expensive and thus node authentication is designed to be part of relatively infrequent
protocols.

Protocol 9 (Node Mutual Authentication). Nodes N1 and N2 belonging to the same neighbour-
hood, both enrolled with AD X, and have previously exchanged public keys. At the end of the
protocol, the nodes have authenticated each other and verified each other’s group membership.
See Fig. 14.

1. N1 retrieves (IDN2 , PN2) which was stored during the Key Exchange protocol.

2. N1 generates a random token T1 = TRNGN1() and signs it Q1 = SIGSN1
(T1).

3. N1 initiates the authentication by sending (REQauth, PX , IDN1 , T1, Q1) to N2.

4. N2 verifies that IDN1 is in its list of peers enrolled by PX and aborts on failure.

5. N2 retrieves (IDN1 , PN1) which was stored during the Key Exchange protocol.

6. N2 verifies the received signature V ERPN1
(T1, Q1) and aborts on failure.

7. N2 generates its own random token T2 = TRNGN2() and signs it Q2 = SIGSN2
(T1‖T2).

8. N2 sends the token and the signature to N1.

9. N1 verifies the received signature V ERPN2
(T1‖T2, Q2) and aborts on failure.

10. N1 replies with an acknowledgement.

N1 N2

Retrieve stored (IDN2 , PN2)

T1 = TRNGN1()

Q1 = SIGSN1
(T1)

(REQauth, PX , IDN1 , T1, Q1)

Verify IDN1 peer with PX

Abort on failure

Retrieve stored (IDN1 , PN1)

V ERPN1
(T1, Q1)

Abort on failure

T2 = TRNGN2()

Q2 = SIGSN2
(T1‖T2)

(T2, Q2)

V ERPN2
(T1‖T2, Q2)

Abort on failure

ACK

Figure 14: Node Mutual Authentication
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5 Security Analysis

In this section we present a security analysis of the Authority Device Scheme in the form of a
number of lemmas and theorems. In the following, we are taking into account a single PPT
adversary, referred to as A. Since the basis of our hypothesis is the unclonability of the system
entities, our analysis focuses on the ability of A to masquerade as a legitimate entity, be it an
AD, an enrolled node, or a new node.

Lemma 1. The security of the cryptographic algorithms employed in the ADS is guaranteed.

Proof. Proving the security of the low level cryptographic primitives is out of the scope of our
work. As such, we assume that those primitives fulfil their purpose in a secure way. Due to the
relaxed requirements for specific cryptographic algorithms, the ADS can be easily adapted to
use algorithms proposed in the future as long as they are secure against existential and selective
forgery.

Lemma 2. In the event of a node compromise, an adversary A is not able to gain access to or
tamper with the internal secrets of the node.

Proof. Based on the features of the cryptocore discussed in Section 2.4, attempts in invasive
probing or tampering with the cryptocore will result in the internal secrets being either des-
troyed or significantly transformed. Both cases would lead to inability of legitimate operation
for the node.

Lemma 3. The private key of all entities is physically protected and never exposed outside the
boundaries of the cryptocore.

Proof. As seen in Protocol 1, the key pair for every entity is dynamically generated by its
PUF and is never stored in non-volatile memory. Due to the unpredictability property of the
PUF, it is infeasible to derive the private key directly from the challenge, without access to the
generating PUF chip. In addition, the private key is only used inside the cryptocore which by
Lemma 2 is physically secure.

Lemma 4. An adversary A with access to an entity for a short period of time, is not able to
copy the entity’s PUF.

Proof. According to the properties of PUFs, as they were introduced in Section 2.3 the following
are true:

• The knowledge of a limited number of CRPs does not allow A to predict additional CRPs.

• The CRP space is sufficiently large and given the PPT capabilities of A, she is unable to
exhaustively query the PUF in a bounded time period.

• A is unable to control the PUF behaviour with the aim of producing specific responses.

Additionally, A is unable to manipulate the protocols involved in ADS in order to gain access
to the internal secrets of any PUF, as shown in Lemma 5 and Lemma 7 and a particularly small
number of CPRs are used during the expected lifetime of the system, rendering any modelling
attempts impractical.

Lemma 5. Upon inspection of the storage of a compromised authority device, an adversary A
is not able to recover the CRPs corresponding to any node.

Proof. The Setup protocol shown in Protocol 2, makes use of both the PUF of the AD and the
PUF of the node. This method essentially combines two internal secrets from the node and the
AD into a unique output. Additionally, due to the unpredictability property of PUFs and as
discussed in Lemma 4, A is unable to predict the response of a PUF to a given challenge, except
with negligible probability. Thus, the response of the node is stored in a form that provides no
sensitive information about the node’s PUF in case of a later compromise of the AD.

Newcastle University, July 2019 25



Konstantinos Goutsos PUF-Based Authority Device Scheme

Lemma 6. A legitimate entity can authenticate to another legitimate entity, except for negligible
probability.

Proof. A legitimate entity would have access to its PUF thus being able to generate the re-
quired key pair and successfully participate in the authentication protocols of Protocol 7 and
Protocol 9.

Lemma 7. An eavesdropping or man-in-the-middle adversary A is not able to use previously
transmitted data to successfully perform any of the protocols of the scheme.

Proof. The data transmitted during the protocols comprises:

• Random tokens are generated by a TRNG. Due to the properties of TRNGs the token
values are never repeated and thus replaying of older messages containing a random token
will fail.

• Public keys which do not provide any advantage if they are recorded and replayed, since
all protocols involve the use of a secret information counterpart to the public keys.

• Signatures generated with secret keys that are not permanently stored and never revealed
to third parties.

• PUF CRPs involved in the Setup(Protocol 2) and Verification(Protocol 3) protocols.

• When random token are not included in the interactions, replay attacks are implicitly
prevented by the protocols, as discussed in the relevant protocol descriptions.

Evidently, the only truly useful information exchanged between system entities are the PUF
CRPs. However, the Setup protocol is performed in a secure environment in the absence of
adversaries and the Verification protocol discards used CRPs thus replaying them would have
no result for A.

Lemma 8. An adversary A is able to impersonate or clone any authority device or node, only
with negligible probability.

Proof. Before a node has been introduced to an AD with the Setup protocol, it is probable
that it is replaced with a malicious node. However, this is deemed impossible due to the secure
environment assumption for the Setup protocol.

After the node has performed the Setup protocol, by virtue of 1, impersonating a system
entity would require the compromise of said entity’s private key, due to Lemma 2. Thus, the
probability of the former being impersonated is the same as that of predicting the responses of
the node’s PUF. By Lemma 4 this probability is negligible.

Lemma 9. In the event of a node compromise, an adversary A does not gain any advantage
towards compromising the rest of the system.

Proof. A node compromise can take place either during its normal operation or after it has
been decommissioned. In the first case, the node does not have access to secret information of
any entity but itself. At the same time, due to Lemma 2 the security of the node’s PUF and
secret key is guaranteed. In the second case of compromise after decommission, the above still
holds, with the addition of Lemma 10.

Lemma 10. An adversary A is not able to re-enrol a decommissioned node.

Proof. The authority device corresponding to a neighbourhood is always involved in the enrol-
ment of new nodes in that neighbourhood. In addition, as shown in Protocol 6, the authority
devices keep a list of nodes that were previously decommissioned and thus will disallow any
re-enrolment attempts.
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Lemma 11. An adversary A is not able to use a malicious authority device to gain control the
system.

Proof. During the Enrolment protocol (Protocol 4 and Protocol 5), the nodes verify that the
ADs attempting to enrol them are legitimate via a list of authorised ADs. This list is populated
during either the Setup protocol or the Enrolment protocol itself, in case of multiple enrolments.
The Setup is performed in a secure environment, disallowing the existence of adversaries. In
addition, when attempting to enrol a node which has already been enrolled, an AD is required
to obtain the approval of at least one of the ADs previously used to enrol the same node, which
would be unsuccessful for a malicious AD.

Theorem 1. Given the security of the appropriate ADs, there can be no change to the mem-
bership attributes of any node, whether the node is legitimate or malicious.

Proof. By the above lemmas, it is evident that modifications of any form to the membership
of a node in any neighbourhood require the participation and authorisation of the appropriate
authority devices. Great care has been taken to minimise the trust relationships among the
entities taking part in the ADS enabling those ADs to become the roots of trust for the system.

This is an important feature of the scheme since it allows for the verification of the state of
the system at any point, as well as the assurance that there are no distortions to the neighbour-
hood memberships as long as the authority devices is under the control of trusted individuals.
Providing further security for those ADs is mainly a social rather than technical issue but,
due to the unclonability properties of our scheme, ADs are bound to be unique, existing at
only a single place at any given moment, thus guaranteeing the detection of their physical
compromise.

Theorem 2. The Authority Device Scheme ensures the confidentiality of all private information
used in the context of the scheme.

Proof. The private information used by all entities throughout the operation of the ADS falls
under two categories: PUF secrets, and private keys. Both are kept confidential on a physical
level as shown in Lemma 2 and are never shared as shown in Lemma 7. Additionally, PUF
secrets are protected as per Lemma 4 and Lemma 5, and private keys are unavailable to
adversaries as shown in Lemma 3.

Theorem 3. The Authority Device Scheme provides a method for the establishment of network
clusters, in an unclonable and physically secure manner.

Proof. Using the above lemmas, we can conclude that the Authority Device Scheme is both
correct and secure.

By Theorem 2 only legitimate nodes are able to join and leave neighbourhoods and by
Lemmas 6 and 7 only nodes are be able to interact in those neighbourhoods. At the same time,
malicious attempts to access and modify the nature of the neighbourhoods are prevented and
contained as shown in Lemmas 4 and 7 to 11.

Additionally, by Lemma 2 and Lemma 3 we can conclude that private entity information
is protected at a physical level. Finally, by Lemma 5, Lemma 7, and Theorem 2 we can be
confident that the unclonability goals of the scheme are achieved.

6 Prototype

The proposed scheme was implemented as a prototype virtual network, built on the Linux
Kernel Virtual Machine (KVM)[32] virtualisation platform, using Python 3[33]. KVM was
selected for the ability to be extensively controlled through a command line interface, allowing
for automated of our test network.
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Additionally, Python made a good candidate for rapid prototyping since it abstracts away
from low level details, especially taking into account its wide library support. At the same
time, we were able to use pure TCP as the underlying communication mechanism, with a
custom message structure. We used the PyCryptodome library[34] to carry out the required
cryptographic operations, due to its wide acceptance in the Python community.

Each message carries a header besides its payload, including the current ’phase’ and ’com-
mand’ of the scheme as well as auxiliary flags and length information, detailed in Fig. 15. The
auxiliary flags comprise an initialisation (INIT / I) and final (FIN / F) flag representing the
first and last steps of the current protocol respectively. Accordingly, the communicating parties
make use of the header information to advance their state and detect potential violations of
the protocol. A summary of the header values used in our prototype is given in Table 2.

0 15 21 22 23 31 39

Message Length Reserved I F Phase Command

Payload
(variable length)

Figure 15: Message structure

Header Value Hexadecimal Value

Phase Null 00
Setup 01
Verification 02
Enrolment 03
Decommission 04
Authentication 05
Key Exchange 06
Authority Device Authorisation 07
Ratchet Setup 08
Ratchet Step 09
Ratchet ZK Setup 0A
Ratchet ZK Step 0B

Command Null 00
PUF Challenge 01
PUF Response 02
Public Key 03
Acknowledgement 04
Failure 05
Initiate 06
Signature 07
Nonce 08
Id 09
Commitment 0A
Proof 0B

Table 2: Message header values

Newcastle University, July 2019 28



Konstantinos Goutsos PUF-Based Authority Device Scheme

6.1 Implementation Parameters

The aim of this prototype is to verify, as well as showcase the operation of the Authority
Device Scheme. Indeed, during the development of the prototype, numerous shortcomings of
the protocols became apparent and were rectified in subsequent iterations. As such, the choices
of specific implementation parameters, summarised in Table 3, were made based on security
guidelines (e.g. [35]) with the aim of creating a close analogy to real world applications, rather
than optimising the performance of the scheme.

For the signature operations the Elliptic Curve Digital Signature Algorithm (ECDSA)[36].
In the context of IoT, an Elliptic Curve algorithm is preferable to, e.g. RSA, since it is
generally both faster and requires a much smaller key size to achieve the same security level.
As an example, for our chosen parameters the RSA key would be 30 times larger than the ECC
key for the same level of security.

As seen in the relevant NIST guidelines[35], private keys of 512-bit length for ECC provide
the equivalent of 256 bits of security and would be sufficient against the vast majority of
adversaries, at least over the next two decades. As a result, we chose to use the NIST P-256
curve which is also widely used in practice.

The cryptographic keys are represented in binary DER format as specified in [37]. This
format includes additional information about the algorithm, leading to a slightly larger total
size for the key representation: 65 bytes in uncompressed form and 59 bytes in compressed
form. Evidently, the compressed form requires less storage space and less bandwidth but also
involves the cost of decompression operation every time the key is used. Due to the nature of
the ADS as an enabler for other protocols, the frequency of cryptographic operations involving
public keys is ordinarily low, and as a result, we used the compressed key form to reduce the
required storage space on the devices.

We emulated the PUF component with a randomly generated lookup table to provide the
CRP mapping. The internal state of the PUF is seeded by a combination of parameters, aiming
to emulate the uniqueness of the component between different instances, despite it being created
from the same Python class. Additionally, random bit errors of up to 20% were added to the
PUF responses, as this a common maximum error rate in practical PUF instantiations[3].

Since the bit error rate present in the PUF responses was up 20% (or 51.2 bits per 256-bit
response), a [n = 255,k =21,t = 55] BCH block code was used for error correction, allowing the
removal of up to 55 bit errors while producing 234 bits of helper data.

Object Length in bits

BCH Helper Data 234
PUF Response 256
Random Nonce 256
ECDSA Public Key (Compressed DER) 472
ECDSA Signature 512
Device ID 16

Table 3: Implementation parameters

An overview of the storage requirements for ADs and nodes is given in Table 4. As expected,
the storage requirements for the authority devices scale linearly (O(n)) with the number of
nodes and similarly, peer information stored by nodes themselves is also proportional to the
number of peers. There is also a constant cost for each CRP produced by the PUF, since the
associated helper data is stored for future use. However, in typical scenarios each node should
only be required to produce only one CRP per AD, in addition to the key CRP. Thus the total
storage on any device would be in the region of a few hundred kilobytes.
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Device Type Object Length in bits

All PUF challenge for the key seed 256
Helper data for each PUF CRP 234

AD Public key for each enrolled node 472
CRP for each node that has been set up 512

Node Public key for each authorised AD 472
Public key for each enrolling AD 472
Signature for own public key from each enrolling AD 512
Interacting peer public key 472

Table 4: Storage requirements

6.2 Simulation Scenarios

We devised a number of example scenarios to verify and showcase the features of the scheme:

Simple: The basic protocols of setup, verification, enrolment, and decommission are per-
formed between a single node and a single authority device.

Multiple nodes: Takes place in two phases, with two nodes and a single AD. In the first
phase, the AD performs the setup, verification, and enrolment operations with both nodes,
the equivalent of adding the nodes to a neighbourhood. Subsequently, the nodes take part
in a key exchange and take turns authenticating each other.

Multiple authority devices: With two ADs and a single node, this scenario demonstrates
the interactions involved in managing multiple ownership. The first authority device initially
executes the setup and the enrolment with the node and afterwards the second AD proceeds
to with the enrolment of the node, after it has received authorisation from the first AD. After
the completion of this process, the node reaches a state where it simultaneously belongs to
two neighbourhoods.

All scenarios were executed on a virtual network which included a different virtual machine
to represent each of the devices. In addition, the TShark network protocol analyser[38] was used
to observe the traffic between the virtual machines and verify the validity of the scheme(Fig. 16).

6.3 Observations

The message exchanges among the devices taking part in the above scenarios were analysed in
Wireshark[39]. As expected, the high-level functionality of the protocols was confirmed by the
results. Nevertheless, a number of implementation issues arose while constructing the prototype
leading to further iterations of the scheme, and verifying our initial intuition for the value of a
prototype.

Fig. 16 presents an example TCP flow for the Key Exchange protocol between two nodes.
In this exchange the nodes have been given the identifiers ’node-master’ and ’node-slave’ to
signify the entity which initiates the protocol. The message headers, marked with a rectangle
comprise: the total length, flags, phase, command, and payload. As per Table 2, the value
of the Phase header is 0x06 for the all the messages of the Key Exchange protocol. The rest
of the headers are detailed in Fig. 16 where their value is given in parentheses following their
hexadecimal representation.
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Packet Source Destination Length Flags Command

1 Master Slave 0040 (64) 01 (INIT) 06 (Initiate)
2 Slave Master 0040 (64) 01 (INIT) 03 (Public Key)
3 Slave Master 0045 (69) 00 07 (Signature)
4 Master Slave 0010 (16) 00 09 (ID)
5 Master Slave 0040 (64) 00 03 (Public Key)
6 Slave Master 0005 (5) 02 (FIN) 04 (Acknowledgement)

Figure 16: TCP packet flow for the Key Exchange protocol

7 Conclusions

Integrating the unclonability primitive in consumer devices would have a profound impact on
the societal concepts of ownership, authority, and eventually trust. We have presented ADS, a
collection of security protocols that allow the formation of network neighbourhoods, with the
aim of exploiting the primitive of unclonability to provide novel features for networked systems,
focused on Machine-to-Machine and Internet-of-Things scenarios.

Our work aims to integrate unclonability in the basis of modern networking scenarios while
retaining and even improving the usability of existing security solutions. This is achieved in
two ways: by designing protocols which guarantee their security without requiring excessive
configuration, and by constraining the system authority operations to physical entities that can
be secured and verified. The most important advantage of our solution is the combination of
these two methodologies into a scheme that isolated the secrets of all the devices of the system,
irrevocably locking them into the physical domain, a feature that enables the users to apply,
hand over, verify, and destroy the secrets as they would with a physical key. At the same time,
this key cannot be duplicated and thus bears a much higher value than it otherwise would.

Our overarching goal is to continue with this integration on multiple networking levels
to create a truly unclonable networking stack as it was described in the introduction of this
report. To that end, we are already working on constructing methods and protocols which
create unclonable link and neighbourhoods, expanding the reach of the unclonability primitive.
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In addition, it would be interesting to explore the integration of unclonability and inherent
randomness in routing decisions, taking advantage of the highly redundant paths of Machine-
to-Machine systems.
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