
µSystems Research Group

School of Engineering

Investigation into Scalable Energy and
Performance Models for Many-Core Systems

Mohammed A. Noaman Al-hayanni

Technical Report Series

NCL-EEE-MICRO-TR-2019-213

May 2019

Contact: m.a.n.al-hayanni@ncl.ac.uk

Supported by EPSRC grant EP/K034448/1 and EP/N023641/1

NCL-EEE-MICRO-TR-2019-213
Copyright c© 2019 Newcastle University

µSystems Research Group
School of Engineering
Merz Court
Newcastle University
Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

Mohammed A. Noaman Al-hayanni: Investigation into Scalable Energy and Performance Models for
Many-Core Systems

Investigation into Scalable Energy and Performance Models for

Many-Core Systems

Mohammed A. Noaman Al-hayanni

May 2019

NCL-EEE-MICRO-TR-2019-213, Newcastle University 1

INVESTIGATION INTO SCALABLE ENERGY AND
PERFORMANCE MODELS FOR MANY-CORE SYSTEMS

Mohammed A. Noaman Al-hayanni

A Thesis Submitted for the Degree of

Doctor of Philosophy at Newcastle University

School of Engineering

Faculty of Science, Agriculture and Engineering

May 2019

Mohammed A. Noaman Al-hayanni: Investigation Into Scalable Energy and
Performance Models For Many-Core Systems ©2019

D E C L A R AT I O N

I hereby declare that this thesis is my own work and effort and that it has not
been submitted anywhere for any award. Where other sources of information
have been used, they have been acknowledged.

Newcastle upon Tyne - May 2019

Mohammed A. Noaman
Al-hayanni

C E RT I F I C AT E O F A P P R O VA L

I confirm that, to the best of my knowledge, this thesis is from the student’s
own work and effort, and all other sources of information used have been
acknowledged. This thesis has been submitted with my approval at the School
of Engineering / Newcastle University for the degree of PhD in Electrical and
Electronic Engineering / Computer Engineering.

Alex Yakovlev

Rishad Shafik

Fei Xia

To my lovely family.
— Mohammed Al-hayanni

A C K N O W L E D G E M E N T S

I would like to express my sincere gratitude to my supervisors Prof. Alex

Yakovlev, Dr. Rishad Shafik and Dr. Fei Xia for their support and guidance

through my Ph.D. journey. They have always been a source of motivation and

my inspirational model as a researcher.

I am grateful to my sponsor Higher Committee of Education Development

(HCED) in Iraq for funding my Ph.D. study through their scholarship program.

Furthermore, I am thankful to the University of Technology-Iraq for giving

the opportunity to join the scholarship and also would like to express my

sincere gratitude to the Iraqi Cultural Attache in London.

I would like to express my great thanks to (PRiME) project members for

their support and useful discussions.

I am thankful to Dr. Ashur Rafiev for his supporting through continues

discussions, experimental works, and preparing synthetic benchmark

programs.

I am also grateful to Dr. Waleed Fawwaz for his advice and suggestions for

preparing some Matlab codes.

I would also like to express my gratefulness and appreciation to my

colleagues and friends in the School of Engineering, particularly those in

µSystems Research Group at Newcastle University for their assistance

through my study.

I would like to offer my special regards to all the staff of the Electrical and

Electronic Engineering in the School of Engineering at Newcastle University.

Last but not least, I would like to thank my beautiful family for their

continuous support and motivation throughout my Ph.D. journey.

vi

Recite in the name of your Lord who created - Created man from a
clinging substance. Recite, and your Lord is the most Generous - Who

taught by the pen -Taught man that which he knew not.

The holy Quran - Chapter 30 - Verse 96 - (1-5).

vii

A B S T R A C T

It is likely that many-core processor systems will continue to penetrate
emerging embedded and high-performance applications. Scalable energy and
performance models are two critical aspects that provide insights into the
conflicting trade-offs between them with growing hardware and software
complexity. Traditional performance models, such as Amdahl’s Law,
Gustafson’s and Sun-Ni’s, have helped the research community and industry
to better understand the system performance bounds with given processing
resources, which is otherwise known as speedup. However, these models and
their existing extensions have limited applicability for energy and/or
performance-driven system optimization in practical systems. For instance,
these are typically based on software characteristics, assuming ideal and
homogeneous hardware platforms or limited forms of processor
heterogeneity. In addition, the measurement of speedup and parallelization
factors of an application running on a specific hardware platform require
instrumenting the original software codes. Indeed, practical speedup and
parallelizability models of application workloads running on modern
heterogeneous hardware are critical for energy and performance models, as
they can be used to inform design and control decisions with an aim to
improve system throughput and energy efficiency.

This thesis addresses the limitations by firstly developing novel and
scalable speedup and energy consumption models based on a more general
representation of heterogeneity, referred to as the normal form heterogeneity.
A method is developed whereby standard performance counters found in
modern many-core platforms can be used to derive speedup, and therefore
the parallelizability of the software, without instrumenting applications. This
extends the usability of the new models to scenarios where the
parallelizability of software is unknown, leading to potentially Run-Time
Management (RTM) speedup and/or energy efficiency optimization. The
models and optimization methods presented in this thesis are validated
through extensive experimentation, by running a number of different
applications in wide-ranging concurrency scenarios on a number of different
homogeneous and heterogeneous Multi/Many Core Processor (M/MCP)
systems. These include homogeneous and heterogeneous architectures and

viii

range from existing off-the-shelf platforms to potential future system
extensions. The practical use of these models and methods is demonstrated
through real examples such as studying the effectiveness of the system load
balancer.

The models and methodologies proposed in this thesis provide guidance to
a new opportunities for improving the energy efficiency of M/MCP systems.

ix

S TAT E M E N T O F O R I G I N A L I T Y

The contributions in this thesis have supported by diverse publications which
include a large amount of work during the journey of my study. They are
published in different papers including journal, magazine, conferences and
technical reports. The materials are covered in separate chapters. The
publications which include the contributions of this thesis are listed as
follows:

Journals and Magazines Publications:

1. Ashur Rafiev; Mohammed A. N. Al-hayanni; Fei Xia; Rishad Shafik;
Alexander Romanovsky; Alex Yakovlev, Speedup and Power Scaling
Models for Heterogeneous Many-Core Systems, Transactions on Multi-Scale
Computing Systems (TMSCS), 12 January 2018, Page(s): 436 - 449, DOI:
10.1109/TMSCS.2018.2791531, Publisher: IEEE, Electronic ISSN:
2332-7766.

The underpinning studies of this paper can be found in Chapter 3 and
Chapter 4. It includes the essential contributions of this literary work
which represented by extending the assumption of system heterogeneity
to cover such modern Multi/Many-Core Processors (M/MCP)
configurations. It presents the attempt to extend the classical speedup
models (Amdahl, Gustafson, and Sun-Ni) to estimate power and energy
normalized speedup metrics. Thus, it studies the power/performance
trade-offs of the extended models for energy-efficient computing in
diverse M/MCP configurations. Further, This literature considers the
effect of Dynamic Voltage Frequency Scaling (DVFS) techniques on all
power and energy models. Moreover, it clarifies the limitations of the
Amdahl-like heterogeneous models and outlining further challenges of
heterogeneous speedup and power modeling.

On the other hand, this paper performs intensive validations
experiments. It validates the extended models on real heterogeneous
platforms on the Odroid XU3 platform and dual-GPU laptop under a
set of carefully controlled model parameters. Furthermore, it uses these

x

models to evaluate the efficiency of the Linux scheduler’s load
balancing while running realistic workloads.

In addition, the synthetic benchmark used in this paper has been
included in Appendix A, the source code for Open Computing
Language (OpenCL) version is also available in [1], and the full data set
have included in Appendix B.

Conference Publications:

1. Mohammed A. N. Al-hayanni; Ashur Rafiev; Rishad Shafik; Fei Xia ,
Power and Energy Normalized Speedup Models for Heterogeneous Many-Core
Computing, 16th International Conference on Application of
Concurrency to System Design (ACSD), 19-24 June 2016, pp 84 - 93,
DOI: 10.1109/ACSD.2016.16, Publisher: IEEE.

The underpinning studies of this paper can be found in Chapters 3, 4

and 5. This paper demonstrates the first attempt to extend the classical
speedup models (Amdahl, Gustafson, and Sun-Ni) for energy efficient
computing. It demonstrates the theoretical calculations for all extended
speedup models. In addition, it explains the first set of experimental
work.

2. Mohammed A. N. Al-hayanni; Rishad Shafik; Ashur Rafiev; Fei Xia;
Alex Yakovlev, Speedup and Parallelization Models for Energy-Efficient Many-
Core Systems Using Performance Counters, International Conference on
High-Performance Computing and Simulation (HPCS), 17-21 July 2017,
PP: 410 - 417, DOI: 10.1109/HPCS.2017.68, Publisher: IEEE.

The underpinning studies of this paper can be found in Chapter 5.
It extends the Amdahl’s speedup model considering applications and
system software related overhead separately. Moreover, It proposes a
novel method to model the parallelization ratio for executed applications.
This paper performs intensive validations experiments to validate the
proposed models. Furthermore, it demonstrates the effectiveness of our
method for identifying parallelization-aware energy-efficient system
configurations using power/energy metrics.

xi

Technical Reports and Memos:

1. Mohammed A. N. Al-hayanni; Ashur Rafiev; Rishad Shafik; Fei Xia;
Alex Yakovlev, Extended Power and Energy Normalized Performance Models
for Many-Core Systems, Technical Report Series,
NCL-EEE-MICRO-TR-2016-198, Year: 2016, Newcastle University,
µSystems Research Group, School of Engineering. Available at
http://async.org.uk/tech-reports/NCL-EEE-MICRO-TR-2016-198.pdf.

The underpinning studies of this paper can be found in Chapters 3, 4

and 5. It attempts to extend the assumption of heterogeneity for
classical speedup models. It includes the theoretical modeling and
calculations of all performance and power models. Also, it contains the
first set of experimental works.

2. Mohammed A. N. Al-hayanni; Rishad Shafik; Ashur Rafiev; Fei Xia;
Alex Yakovlev, Speedup and Parallelization Models for Energy-Efficient
Many-Core Systems Using Performance Counters, Technical Report Series,
NCL-EEE-MICRO-TR-2017-205, Year: 2017, Newcastle University,
µSystems Research Group, School of Engineering UK. Available at
http://async.org.uk/tech-reports/NCL-EEE-MICRO-TR-2017-205.pdf.

The underpinning studies of this paper can be found in Chapter 5. It
attempts to extend the Amdahl speedup model and system software
separately. It uses hardware performance counter to avoid the need for
instrumenting applications. In addition, This paper proposes a new
method to model the parallelization ratio for different applications.
Furthermore, it performs extensive synthetic and real benchmarks
experiments to validate all models. The full data set of performance and
power of the Princeton Application Repository for Shared-Memory
Computers (PARSEC) benchmarks of this paper included in AppendixC

Other Contributions:

I also contributed in the following work:

1. Fei Xia; Ashur Rafiev; Ali Aalsaud; Mohammed A. N. Al-hayanni;
James Davis; Joshua Levine; Andrey Mokhov; Alexander Romanovsky;

xii

Rishad Shafik; Alex Yakovlev; Sheng Yang, Voltage, Throughput, Power,
Reliability, and Multicore Scaling, Journal : Computer, Year: 2017, Volume :
50, Issue: 8, pp: 34 - 45, DOI: 10.1109/MC.2017.3001246, ISSN: 0018-9162.

xiii

C O N T E N T S

I Thesis Chapters 1

1 introduction 2

1.1 Motivation and Challenges . 2

1.2 Aim and Objectives . 5

1.3 Thesis Organization and Key Findings 6

2 background and literature review 8

2.1 Introduction . 8

2.2 Micro/Nano Electronic Technology Scaling 9

2.3 From Single-Core to Multi/Many-Core (M/MCP) 10

2.4 M/MCP Architecture . 12

2.4.1 Homogeneous M/MCP 13

2.4.2 Heterogeneous M/MCP 13

2.4.3 Dynamic M/MCP . 15

2.5 The Methods of Energy Efficiency 15

2.5.1 Dynamic Voltage Frequency Scaling (DVFS) 16

2.5.2 Thread to Core Affinity Managements 16

2.5.3 Energy Efficient Load Balancing, Task Migration and
Task Scheduling Over M/MCP 17

2.6 Speedup Models . 18

2.6.1 Extended Speedup Models in M/MCP 20

2.6.1.1 Extended Speedup Models for Performance
Calculations in M/MCP (Hill-Marty Models) . 20

2.6.1.2 M/MCP Overheads 22

2.6.1.3 Parallelization Factor (p) 24

2.6.1.4 Extended Speedup Models in Networks 24

2.6.1.5 Extended Speedup Models in Run-Time
Management (RTM) System 25

2.6.1.6 Extended Speedup Models for Energy
Efficiency in M/MCP 26

2.6.1.7 Dark Silicon . 28

2.6.2 Multi-Amdahl Model . 29

xiv

contents xv

2.7 Discussions and Conclusions . 30

3 speedup and power scaling models 33

3.1 Introduction . 33

3.2 Existing Speedup Models . 36

3.2.1 Amdahl’s Law (Fixed Workload) 36

3.2.2 Gustafson’s Model (Fixed Time) 37

3.2.3 Sun-Ni’s Model (Memory Bounded) 38

3.2.4 Hill-Marty’s Heterogeneous Models 39

3.3 Heterogeneous System . 39

3.3.1 The Challenges of Heterogeneous Modeling 39

3.3.1.1 Hardware-dependent parallelizability 40

3.3.1.2 Workload equivalence and performance
comparison . 40

3.3.2 Platform Assumptions . 41

3.3.3 Normal Form Representation of Heterogeneity 42

3.4 Proposed Heterogeneous Speedup Models 42

3.4.1 Workload Distribution . 43

3.4.1.1 Equal-share workload distribution 44

3.4.1.2 Balanced workload distribution 45

3.4.2 Heterogeneous Amdahl’s Law 45

3.4.3 Workload Scaling . 46

3.4.4 Heterogeneous Gustafson’s Model 46

3.4.4.1 Purely parallel scaling mode 47

3.4.4.2 Classical scaling mode 47

3.5 Proposed Heterogeneous Power Models 48

3.5.1 Power Modeling Basics . 49

3.5.2 Power Distribution and Scaling Models 50

3.5.3 Energy and Power-Normalized Performance 51

3.6 Discussion and Conclusion . 52

4 experimental validation of speedup and power

scaling models 54

4.1 Introduction . 54

4.2 CPU-only Experimental Validations 54

4.2.1 Platform Description . 55

4.2.2 Benchmark Description and Model Characterization . . 55

4.2.2.1 Controlled parameters 56

contents xvi

4.2.2.2 Relative performances of cores 57

4.2.2.3 Core idle and active powers 58

4.2.3 Amdahl’s Workload Outcomes 59

4.2.4 Gustafson’s Workload Outcomes 60

4.2.5 Balanced Execution . 61

4.3 CPU-GPU Experimental Validations 62

4.3.1 Platform Description and Characterization 63

4.3.2 Speedup Validation Outcomes 65

4.4 Realistic Application Workloads 67

4.4.1 Model Characterization 68

4.4.2 Quality of Load Balancer 69

4.5 Discussion and Conclusion . 71

5 speedup and parallelization models using

performance counters 73

5.1 Introduction . 73

5.2 Experimantal studies . 74

5.2.1 Experimental Platforms 74

5.2.2 Performance Counters . 75

5.3 Proposed Speedup Models . 76

5.3.1 Modeling Basics . 76

5.3.2 Speedup Calculations . 78

5.3.3 Estimation of Parallelization Factor 80

5.3.4 Average Power Consumption Models 80

5.3.5 Power and Energy Normalized Performance 80

5.3.6 Benchmark Applications 82

5.4 Results and validation . 82

5.4.1 System Software Instructions Calculation 82

5.4.2 Time and Speedup Validation 85

5.4.3 Estimating the Parallelization Factor p 88

5.5 Parallelization-aware Energy Efficient Computing 90

5.5.1 Power and Energy Data 90

5.5.2 Power Normalized Performance (PNP) and
Energy-Delay Product (EDP) 95

5.6 Conclusions and Discussions . 98

6 conclusions and future work 100

6.1 Summary and Conclusion . 100

contents xvii

6.2 Future Work . 104

II Thesis Appendices 105

a benchmark application 106

a.1 Synthetic Benchmark . 106

b data set 110

b.1 Odroid XU3 . 110

b.2 OpenCL . 111

b.3 PARSEC . 112

c parsec results 121

III Thesis Bibliography 126

bibliography 127

L I S T O F F I G U R E S

Figure 1.1 Micro/nanoelectronic scaling over time [2] 2

Figure 2.1 M/MCP architecture. 12

Figure 2.2 Diversity of M/MCP. 12

Figure 2.3 Distributed M/MCP. 14

Figure 2.4 Architecture of a Central Processing Unit-Graphics
Processing Unit (CPU−GPU) chip. 14

Figure 2.5 homogeneous speedup (S(n)) vs number of cores (n) for
(a) Amdahl’s law (b) Gustafson’s model and (c) Sun-Ni’s
model . 19

Figure 2.6 M/MCP diversity. (a) Symmetric Multi-Core
Processor (SMCP) with 16 one-Base Core
Equivalent (BCE) cores, (b) Asymmetric Multi-Core
Processor (AMCP) with 4 four-BCE cores, and (c) AMCP
with 1 four-BCE core and 12 one-BCE cores. These
figures eliminate important structures such as memory
interfaces, shared caches, and interconnects. They
assume that area, not power, is a chip’s limiting
resource. [3] . 21

Figure 3.1 The proposed extended structure of a heterogeneous
system (c) compared to a homogeneous system (a) and
the previous assumption [3] on heterogeneity (b). The
numbers in the core boxes denote the equivalent number
of Base Core Equivalents (BCEs). 42

Figure 3.2 Workload distribution examples following
(a) equal-share model and (b) balanced model. 44

Figure 4.1 Experimental big.LITTLE platform description 55

xviii

List of Figures xix

Figure 4.2 Synthetic application with controllable parallelization
factor and equal-share workload distribution. Parameter
parallelization factor (p), unscaled workload size (I) ,
parallel workload scaling factor (g(n)), total number of
heterogeneous cores (N), type of core executing
sequential workload (s) and set of core
allocations (c)=

(
c1, . . . , cN

)
are specified as the

program arguments. 57

Figure 4.3 Speedup validation results for the heterogeneous
Amdahl’s law showing percentage error of the
theoretical model in relation to the measured speedup. . 59

Figure 4.4 Total power dissipation results for the heterogeneous
Amdahl’s law showing percentage error of the theoretical
model in relation to the measured power. 59

Figure 4.5 Gustafson’s model outcomes showing the measured
speedup gain from using the purely parallel workload
scaling compared to the classical scaling. 61

Figure 4.6 Comparison of the measured speedup, power, and
energy between equal-share and balanced execution. . . 62

Figure 4.7 The effect of Open Computing Language (OpenCL)
overheads on performance, can be ignored for
sufficiently large workload sizes. 64

Figure 4.8 Investigating the scalability potential for the requested p

= 1. 65

Figure 4.9 Speedup validation results for the heterogeneous
Amdahl’s law in the OpenCL platform. 66

Figure 4.10 Comparison of the measured speedups between equal-
share and balanced execution in the OpenCL platform. . 66

Figure 4.11 Princeton Application Respository for Shared-Memory
Computers (PARSEC) speedup range results from
heterogeneous system setup determining quality metric
of load balancimg algorithm (q). 70

Figure 5.1 Synthetic benchmark using variable n and p for
Amdahl’s model (a) Application instructions per clock.
(b) Performance counter based speedup. 83

List of Figures xx

Figure 5.2 Synthetic benchmark using variable n and p for
Gustafson’s model (a) Application instructions per
clock. (b) scaled workload size (I ′). (c) Performance
counter based speedup. 84

Figure 5.3 Performance counter based speedup for PARSEC

benchmark applications. 87

Figure 5.4 Power consumption for synthetic application of extended
Amdahl’s power model using: a) high p = 0.9, b) low p =
0.1. 93

Figure 5.5 Power consumption for synthetic application of extended
Gustafson’s power model using: a) high p = 0.9, b) low p

= 0.1. 94

Figure 5.6 Energy consumption for synthetic application of
extended Amdahl’s energy model using: a) high p = 0.9,
b) low p = 0.1. 94

Figure 5.7 Energy consumption for synthetic application of
extended Gustafson’s energy model using: a) high p =
0.9, b) low p = 0.1. 95

Figure 5.8 Power Normalized Performance (PNP) results in full-
domain Dynamic Voltage Frequency Scaling (DVFS) for
synthetic application of extended Amdahl’s speedup
model using: a) high p = 0.9, b) low p = 0.1. 95

Figure 5.9 PNP results in full-domain DVFS for synthetic application
of extended Gustafson’s speedup model using: a) high p

= 0.9, b) low p = 0.1. 96

Figure 5.10 PNP results in per-core DVFS for synthetic application of
extended Amdahl’s speedup model using: a) high p =
0.9, b) low p = 0.1. 96

Figure 5.11 PNP results in per-core DVFS for synthetic application of
extended Gustafson’s speedup model using: a) high p =
0.9, b) low p = 0.1. 96

Figure 5.12 Energy-Delay Product (EDP) results in full-domain DVFS

for synthetic application of extended Amdahl’s speedup
model using: a) high p = 0.9, b) low p = 0.1. 97

Figure 5.13 EDP results in full-domain DVFS for synthetic application
of extended Gustafson’s speedup model using: a) high p

= 0.9, b) low p = 0.1. 97

List of Figures xxi

Figure 5.14 EDP results in per-core DVFS for synthetic application of
extended Amdahl’s speedup model using: a) high p =
0.9, b) low p = 0.1. 98

Figure 5.15 EDP results in per-core DVFS for synthetic application of
extended Gustafson’s speedup model using: a) high p =
0.9, b) low p = 0.1. 98

Figure B.1 Speedup validation results for the heterogeneous
Amdahl’s law showing percentage error of the
theoretical model in relation to the measured speedup. . 112

Figure B.2 Total power dissipation results for the heterogeneous
Amdahl’s law showing percentage error of the theoretical
model in relation to the measured speedup. 113

Figure B.3 Speedup validation results for the heterogeneous
Amdahl’s law with balanced workload showing
percentage error of the theoretical model in relation to
the measured speedup. 113

Figure B.4 Total power dissipation results for the heterogeneous
Amdahl’s law with balanced workload showing
percentage error of the theoretical model in relation to
the measured speedup. 114

Figure B.5 Speedup validation results for the heterogeneous
Gustafson’s model with classical scaling showing
percentage error of the theoretical model in relation to
the measured speedup. 114

Figure B.6 Total power dissipation results for the heterogeneous
Gustafson’s model with classical scaling showing
percentage error of the theoretical model in relation to
the measured speedup. 115

Figure B.7 Speedup validation results for the heterogeneous
Gustafson’s model with purely parallel scaling showing
percentage error of the theoretical model in relation to
the measured speedup. 115

Figure B.8 Total power dissipation results for the heterogeneous
Gustafson’s model with purely parallel scaling showing
percentage error of the theoretical model in relation to
the measured speedup. 116

Figure B.9 Comparison of the measured speedup, power and energy
between equal-share and balanced execution. 116

List of Figures xxii

Figure B.10 Gustafson’s model outcomes showing the measured
speedup gain from using the purely parallel workload
scaling compared to the classical scaling. 117

Figure B.11 OpenCL speedup validation results for the heterogeneous
Amdahl’s law showing percentage error of the theoretical
model in relation to the measured speedup. 118

Figure B.12 OpenCL speedup validation results for the
heterogeneous Amdahl’s law with balanced workload
showing percentage error of the theoretical model in
relation to the measured speedup. 119

Figure B.13 Comparison of the measured OpenCL speedup between
equal-share and balanced execution. 120

Figure B.14 PARSEC speedup range results from heterogeneous
system setup determining q – the quality of the system
load balancer. 120

L I S T O F TA B L E S

Table 2.1 Literature summary . 31

Table 3.1 Summary of the existing speedup models and the
proposed model . 35

Table 4.1 Characterization experiments: single core execution . . . 58

Table 4.2 OpenCL device capabilities 63

Table 4.3 OpenCL characterization experiments 65

Table 4.4 Characterization of PARSEC benchmark parallelizability
from homogeneous system setup 68

Table 5.1 Experimental platforms used in this work. 75

Table 5.2 System software workloads over execution time for
different PARSEC applications. 85

Table 5.3 Cross-validation results for I using synthetic benchmark [4]. 86

Table 5.4 Cross-validation results for fixed time using synthetic
benchmark . 86

Table 5.5 p calculations for synthetic benchmark using Amdahl’s
speedup model [4]. 89

Table 5.6 p calculations for synthetic benchmark using Gustafson’s
speedup model. 89

Table 5.7 p calculations of PARSEC benchmarks. 90

Table 5.8 Voltage Frequency Scaling Readings 92

Table C.1 Performance and power calculations of Bodytrack 121

Table C.2 Performance and power calculations of Blackscholes . . 122

Table C.3 Performance and power calculations of Facesim 122

Table C.4 Performance and power calculations of Fluidanimate . . 123

Table C.5 Performance and power calculations of Freqmine 123

Table C.6 Performance and power calculations of Swaptions 124

Table C.7 Performance and power calculations of Streamcluster . . 124

Table C.8 Performance and power calculations of Canneal 125

Table C.9 Performance and power calculations of Dedup 125

xxiii

L I S T O F A C R O N Y M S

ALU Arithmetic Logic Unit

AMCP Asymmetric Multi-Core Processor

BCE Base Core Equivalent

BCEs Base Core Equivalents

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processing Unit

CPU−GPU Central Processing Unit-Graphics Processing Unit

CUDA Compute Unified Device Architecture

DMCP Dynamic Multi-Core Processor

DVFS Dynamic Voltage Frequency Scaling

EDP Energy-Delay Product

ENP Energy Normalized Performance

EPI Energy per Instruction

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

HeMCP Heterogeneous Multi-Core Processor

HoMCP Homogeneous Multi-Core Processor

HPC High Performance Computing

IPC Instructions per Clock

IPS Instructions per Second

ISA Instruction Set Architecture

ISSCC International Solid-State Circuits Conference

1

acronyms 2

ITRS International Technology Roadmap for Semiconductors

M/MCP Multi/Many Core Processor

MIDs Mobile Internet Devices

MSR Model-Specific Register

MOSFET Metal Oxide Semiconductor Field Effect Transistor

NoC Networks-on-Chip

OpenMP Open Multi-Processing

OpenCL Open Computing Language

OS Operating System

PNP Power Normalized Performance

PARSEC Princeton Application Respository for Shared-Memory Computers

POSIX Portable Operating System Interface for Unix

RTM Run-Time Management

SoC System-on-Chip

SIMD Single Instruction, Multiple Data

SMCP Symmetric Multi-Core Processor

TSC Time Stamp Counter

L I S T O F S Y M B O L S

α performance factor for the core

αi performance factor for the core type i

αs performance factor of sequential execution

α vector of the core performance factors

β power factor of core

βi power factors of core type i

βs power factor of sequential execution

β vector of core power factors

θ base core equivalent performance

Θ(n) homogeneous system performance on number of cores

Θ (r) relative performance of Hill-Marty assumption

C number of clock cycle

∆I system software instructions

a activity factor

A0 product of activity factor by capacitance for idle power consumption

An product of activity factor by capacitance for effective power

C switch capacitance

c set of core allocations

Dw (n) power distribution characteristic function

Dw(n) power distribution function for homogeneous system

e effective energy

E total energy consumption

i

acronyms ii

E0 idle energy

F clock frequency

g(n) parallel workload scaling factor

g(n) workload/memory scaling

h(n) proportional workload scaling factor

I unscaled workload size

I ′ scaled workload size

IAmd total number of instructions for Amdahl’s model

IGus total number of instructions for Gustafson’s model

n number of cores

ni number of cores of type i

n vector of core numbers

N total number of heterogeneous cores

Nα performance-equivalent number of Base Core Equivalents

Nβ power-equivalent number of Base Core Equivalents

p parallelization factor

pAmd Amdahl’s parallelization factor

pGus Gustafson’s parallelization factor

q quality metric of load balancimg algorithm

s type of core executing sequential workload

S(n) heterogeneous speedup

S(n) homogeneous speedup

Slow (n) lower speedup limit

Shigh (n) higher speedup limit

t(n) unscaled workload execution time

acronyms iii

t ′(n) scaled workload execution time

t(1) workload execution time in a single core

t(n) workload execution time in the number of cores

t ′(n) extended workload execution time

t ′p(n) parallel execution time

t ′s(n) sequential execution time

t ′p (n) speedup-dependent parallel execution time

t ′s (n) speedup-dependent sequential execution time

V supply voltage

w0 idle power of a core

w effective power of Base Core Equivalent

wa active power of a core

W0 total background power

W (n) total effective power

W(n) total effective power of homogeneous system

Wtotal total power of the system

ws sequential effective execution power

wp parallel effective execution power

WAmd Amdahl’s total power consumption

WGus Gustafson’s total power consumption

Wl leakage power

x clusters (types) of homogeneous cores

Part I

Thesis Chapters

1

1
I N T R O D U C T I O N

1.1 motivation and challenges

Micro/nanoelectronic scaling technology has facilitated significant
performance improvements with reduced power consumption in
microprocessor system design through increased operating frequency and
smaller device geometries [5]. Furthermore, the number of transistors per unit
area is also increasing substantially, which also conforms to Moore’s [6] and
Koomey’s laws [7]. It is further stated that performance per watt is growing
exponentially and the number of electronic components is doubling every 1.5
years [6].

(a) (b)

Figure 1.1: Micro/nanoelectronic scaling over time [2]

In order to predict the future of component scalability, some additional
studies and research groups have proposed the future roadmaps, such as
the International Technology Roadmap for Semiconductors (ITRS) [8] and the
International Solid-State Circuits Conference (ISSCC) [9]. Figure 1.1 explains
the goals and projections of the ITRS [8] and ISSCC [9] for the growth in

2

1.1 motivation and challenges 3

the number of microelectronics components over time for dynamic memory
density in Figure 1.1(a) and the number of transistors in chips in Figure 1.1(b).

Over the years, significant research has been carried out to understand
the trends of growth in performance in single and many interconnected
cores. An example of these models is Pollack’s Rule, which suggests that an
increase in performance are approximately proportional to the square root of
complexity [10]. Following this rule, a doubling of the number of components
in a double processor will provide twice the performance in contrast to
a single processor [5]. Therefore, several-core systems will deliver further
improvements in throughput and latency for the same die area. Many studies
have demonstrated the necessity of the evolution from single to Multi/Many
Core Processor (M/MCP) to achieve performance improvements in the whole
system alongside reducing in power consumption [5].

The calculation of performance is essential to the growth of M/MCP. One of
the most appropriate methods to discover the suitable performance in M/MCP

is speedup. Several recent studies have explained the ideas behind speedup
calculations; however, the most familiar classical speedup models are
considered by most of these studies. The first scalable and familiar model in
relation to M/MCP is explained in Amdahl’s law [11]. Amdahl assumed that
the speedup model for a fixed workload can be calculated by comparing the
performance of the workload executed in a single core with the performance
of the same workload executed in the number of cores (n). The model shows
the limitations in speedup with increasing n. In 1988, Gustafson introduced
the principle of scalable computing in M/MCP pertaining to a fixed time
model. Gustafson proposed a linear speedup model where increases in
workload are proportional to increasing machine scalability, while execution
time remains fixed [12]. In 1990, Sun and Ni suggested a new model which
includes extended workload calculations by increasing the capability of
memory. It is important to note that the executed workload and time should
change based on the capability of the system, whereas the performance
calculations appear to be super-linear within the cores increasing [13, 14].

On the other hand, power consumption management is a significant issue
which should be considered in calculations of scalable systems and M/MCP.
Several techniques have been designed to manage power consumption. For
instance, Dynamic Voltage Frequency Scaling (DVFS), clock, and power gating
techniques and fine grain power management. [15, 16, 17, 18] are some of the
scaling techniques used to decrease power consumption.

1.1 motivation and challenges 4

Currently, most consumer devices and embedded systems make use of
the computational performance and power of M/MCP. The number of cores
is growing constantly, and hence speedup models remain very important.
Amdahl’s law and models derived from it do not require complex modeling
and the simulation of individual inter-process communication. Instead, they
operate according to average platform and application characteristics and
provide simple analytical solutions that project the system’s capabilities in a
clear and understandable way. However, it is crucial to keep the models up
to date to make sure that they remain relevant and correctly represent novel
aspects of platform design.

The classical speedup models of Amdahl, Gustafson, and Sun-Ni have
been investigated in several studies to gain an understanding of M/MCP
modeling. Hill and Marty extended Amdahl’s model to simple homogeneous
and heterogeneous configurations [3]. Other studies [19, 20] have extended
all three major speedup models following the principle of the Hill-Marty
models. Meanwhile, researchers in [21, 22] have extended Hill-Marty’s models
to consider the problem of energy efficiency in simple homogeneous and
heterogeneous configurations.

The concept of heterogeneity has emerged within the study of the increase
in system complexity and integration. Basically, this phenomenon appears in
specialized accelerator forms such as Graphics Processing Unit (GPU). Recently,
several types of Central Processing Unit (CPU) cores integrated into a single
processor have also been made popular, such as the ARM big.LITTLE processor
which has found wide use in mobile devices [23]. Heterogeneous systems
have added more research and engineering challenges. From the perspective
of the trade-offs between performance and power, the goal is to achieve better
performance with the available power. From the perspective of load balancing
and scheduling, the goal is to improve the core utilization to more efficiently
use the performance available.

The Hill-Marty models and related studies have considered simple
heterogeneous configurations consisting of a single big core and many
smaller ones of exactly the same type [3, 19, 20], which relates to the Central
Processing Unit-Graphics Processing Unit (CPU−GPU) type of heterogeneity.
In addition, the problem of energy efficiency has been addressed in [21] for
simple homogeneous and heterogeneous Hill-Marty models.

Parallel programming and its effects on power/energy management
techniques are one of the vital issues in M/MCP. It may be facing some
obstacles within the developments in hardware and software complexity [24].

1.2 aim and objectives 5

Parallel programming is represented in many recent studies by workload
parallelism in a different level of software design [25, 26, 26]. The classical
and related speedup models [11, 12, 13, 14] consider workload parallelism by
a fixed controlled parameter called parallelization factor (p). On the other
hand, the parallelization factor has also been modeled based on the average
of a program’s parallelism and its variance in parallelism [27]. In addition, the
implications of the parallelization factor modeling according to Amdahl’s law
in M/MCP has been considered [28] describing the level of parallelism
achieved in different parts of the calculation. The effects of p on calculations
for performance, power and energy metrics has described by [21] for a simple
different architecture of M/MCP. This leads to focus more on the study of
parallelization in Run-Time Management (RTM)[29, 30].

1.2 aim and objectives

This thesis describes research which seeks to extend existing classical speedup
models in the context of contemporary M/MCP architectures, which are not
covered by existing models. In addition, it includes power and energy models
in the same context. The investigations extend to making these models more
practically applicable for such goals as the RTM optimization of M/MCP
systems. Experimental investigations using real off the shelf systems support
the research at all points. The objectives of this thesis can be summarized as
follows:

1. This thesis seeks to extend the classical theoretical M/MCP speedup
models to cover modern system homogeneity and heterogeneity. The
models can capture the interplay between energy and performance.
Furthermore, these models are expected to be used for analyzing
workload balancing methods.

2. This thesis sets out to propose a novel method to model p based on
the extended speedup models. It should explain the effect of different
application parallelizability on energy efficient computation for M/MCP.

3. This thesis seeks to validate all models by extensive experiments on
different homogeneous and heterogeneous M/MCP by using designed
synthetic and real Princeton Application Respository for Shared-Memory
Computers (PARSEC) benchmarks.

1.3 thesis organization and key findings 6

4. This thesis seeks to establish M/MCP power , energy, and other efficiency
models considering full-domain DVFS and per-core DVFS.

1.3 thesis organization and key findings

This thesis is organized into six chapter. The major contributions of this thesis
are described in 2 parts. The extended speedup, power models and the
validations experiments of M/MCP are covered in Chapter 3 and Chapter 4.
The p modeling, full-domain DVFS and per-core DVFS power modeling with
all their experimental work are coverd in Chapter 5. The chapters are
summarized as follows:

Chapter 1 "Introduction". Introduces the motivations and challenges, aim
and objectives, and the layout of the thesis.

Chapter 2 "Background and Literature Review". Provides a background
literature survey establishing the environment and baseline of this research.
The survey takes an in-depth look at the trend of integration of digital
electronics, the development and significance of parallelization in M/MCP

systems, and the modeling of speedup, power and energy in parallel
processing systems. The chapter summarizes existing related work to
illustrate the gaps this research sets out to fill and gaps for potential future
work to fill.

Chapter 3 "Speedup and Power Scaling Models". Extends the assumption of
system core heterogeneity in order to cover modern configurations such as
big.LITTLE. The assumption establishes by extending the classical speedup
models (Amdahl, Gustafson, and Sun-Ni) [11, 12, 13] in order to cover
modern system heterogeneity. Furthermore, It extend the speedup models to
estimate power and energy normalized speedup metrics. It incorporates the
representations of the power and energy optimization effects techniques such
as DVFS in the extended power models. In addition, it incorporates the
calculations of workload balancing methods within extended performance
and power modeling.

Chapter 4 "Experimental Validation of Speedup and Power Scaling Models".
Validates the extended models from Chapter 3 on real heterogeneous

1.3 thesis organization and key findings 7

platforms including big.LITTLE and CPU−GPU through extensive
experimentation. Moreover, this chapter uses these models to evaluate the
efficiency of Linux scheduler’s load balancing while running realistic
workloads in a heterogeneous system.

Chapter 5 "Speedup and Parallelization Models Using Performance Counters".
Presents a new method of p modeling from the extended speedup models.
Furthermore, extensive experiments and analysis of synthetic and real PARSEC
benchmarks have been applied. In addition, it presents novel full-domain
DVFS and per-core DVFS power models for M/MCP.

Chapter 6 "Conclusions and Future Work". Summarizes the work and
contributions of this thesis and identifies promising directions for future
work.

2
B A C K G R O U N D A N D L I T E R AT U R E R E V I E W

2.1 introduction

There is a growing body of literature that recognizes the importance of
micro/nano electronic in computer system development. The principles of
electronic scaling permit to double the electronic components in the same die
area every two years [6, 7]. Furthermore, the trend toward processors
fabrication from single core to Multi/Many Core Processor (M/MCP) became
necessary to improving performance and produce energy-efficient
processors [5]. In general, M/MCP may be configured into Homogeneous
Multi-Core Processor (HoMCP), where all the cores have a similar architecture
such as Intel core i7-4820k and Intel Xeon Phi 7120X, or Heterogeneous
Multi-Core Processor (HeMCP), where the cores have different architectures
such as ARM big.LITTLE [31, 32, 3]. The HeMCP may incorporate diverse
architectures of processing units such as, Central Processing Unit (CPU)s,
Graphics Processing Unit (GPU) and embedded Field-Programmable Gate
Array (FPGA) [33, 34].

Along the exploitation of micro/nano electronics component scaling to
produce high performance and energy efficient M/MCP, additional techniques
have been developed for dealing with same issues. For instance, Dynamic
Voltage Frequency Scaling (DVFS) is a technique has developed to manage
power consumption within processor clusters or individual cores [35, 36], the
CPU affinity allows a task to core mapping, which may be used to reduce
energy consumption. Other techniques targeting the same concerns include the
energy efficient load balancing, task migration, and scheduling have invented
for the same issues [37, 38, 39, 40].

This chapter reviews the literature on M/MCP, particularly those related to
speedup models such as Amdahl [11], Gustafson [12] and Sun-Ni [13, 14]. It
studies the background of the speedup models. Extended speedup models
for M/MCP for improving performance and energy will also be discussed. The
survey will also deal with theoretical models and practical validation methods
found in the literature. In addition, it discusses the overheads that can affect
performance and power consumption, explain the parallelization calculation,

8

2.2 micro/nano electronic technology scaling 9

and consider dark silicon calculation in extended speedup models. Finally, it
summarises the discussed studies by the Table 2.1. The contributions of this
chapter can be addressed as follows:

1. Provides basic concepts and theory of micro/nano electronic scalability,
the trend from single to M/MCP, M/MCP architecture, the methods of
performance improvements and power/energy consumption reduction
in M/MCP (Section 2.2 to 2.5).

2. Gives a brief survey including the concepts of classical speedup models
Amdahl, Gustafson, and Sun-Ni and related speedup models such as,
(Downey), the extended speedup models in M/MCP such as
Hill-Marty (Section 2.6).

3. Provides an extensive survey of the overhead calculations in speedup
models, the parallelization factor, the useful utilization of speedup
models in networking, Run-Time Management (RTM), dark silicon, and
power/energy normalized extended models (Section 2.6).

4. Summarizes all literature in this chapter in Table 2.1 to clarify the
contributions of each study.

2.2 micro/nano electronic technology scaling

The evolution of electronics components has been continuing since the
transistor was invented. Technology scaling, traditionally a good method of
improving energy efficiency, has been facing challenges [41]. Dennard
presented the Metal Oxide Semiconductor Field Effect Transistor (MOSFET)
scaling law. The study considers the design, fabrication, and characterization
of very small MOSFET switching devices appropriate for digital integrated
circuits [42]. Consequently, The Dennard law states that approximately, if
transistors get smaller their power density stays constant. Thus, the power
calculations remain in proportion to the die area. Dennard scaling relates to
Moore’s Law [6] which explains that a reduction in the transistor’s size
leading to more transistors per chip at the same cost. Furthermore, Moore’s
law states that the performance per watt is growing exponentially at the same
rate. This claim is related to Koomey’s law [7] which elucidates that electrical
efficiency performance has double roughly every 1.5 years. This leads to the
efficiency improvements that enables many devices creations, such as mobile
smartphone and wireless sensors.

2.3 from single-core to multi/many-core (m/mcp) 10

Recently, Dennard scaling starts facing challenges. The study in [43]
explains the collapse of Dennard scaling even though Moore’s law continued.
The essential reason is that at a small size, current leakage presents greater
challenges related to power increases and a threat of thermal dissipation.
Thus, the energy cost should increase. Based on these challenges, numerous
researchers and architects have switched to focusing on developing
microprocessors fabrication to M/MCP scaling [5].

The Pollack rule simplifies the explanation of the scaling trends [10]. It
demonstrates the changes with each technology generation, frequency
increases by 50%, transistor density doubles, and the voltage is lowered.
Moreover, the study explains the improvement in manufacturing technology
that allowed to increase die size without cost increases. Generally, the die size
still limited by power, because of the increase in power dissipation which
leads to several new challenges.

In the same field of Complementary Metal-Oxide-Semiconductor (CMOS)
scalability, the study in [44] explains the next generations of CMOS scaling by
using different data of Intel microprocessors. However, the analysis
correspondingly applicable to other types of logic designs that meet the goals
forecast by scaling theory introduced in this study [44]. The main
consequences of scaling theory analyzed microprocessor performance by
increasing the operating frequency and reducing gate delay, double the
transistor density, and reduce power consumption.

The scaling aims to find the solutions for all challenges and predict the
future of the next generation of technology. For instance, the study in [45]
describes the possibility of exascale performance via voltage scaling for logic
and memory, managing hierarchical interconnects concurrency and system
level resilience. Generally, International Technology Roadmap for
Semiconductors (ITRS) provides a set of up-to-date reference documents
defining the requirements of the semiconductor technology advancements
which takes into consideration the past, present and future related to both
industry and academic fields [8].

2.3 from single-core to multi/many-core (m/mcp)

The continuity of microelectronics scaling gives a chance to integrate billions
of transistors in a single chip, and this has been expected to double every 18

months [6, 7].

2.3 from single-core to multi/many-core (m/mcp) 11

The demand for increased performance in the field of a computer is
continuing with every new improvement in processors, which leads to a
higher level of requirements from users and businesses. More recently, the
performance progress no longer relates to speed improvement solely, it does
include smaller portable devices with higher efficiency, long battery life and
better price per performance for one watt and lowest cooling costs [46, 23].

Formerly, performance improvements of the processors were achieved by
increasing microelectronics technology scaling. Increasing clock speeds and
power dissipation. Recently, the clock speeds have stagnated, and the power
dissipation remained flat [47]. Thus, the principle of M/MCP has established
as one of the new methods to improve processors performance. To explain this
principle clearly, consider a logic block with an operating voltage of 1 unit, a
frequency of 1, a throughput of 1, and a power of 1. If the designer reduced
the voltage to 0.7, then the frequency must also reduce to 0.7 by considering
DVFS technique. Thus, the throughput reduces to 0.7, and the power reduces
to 0.35. The power can be calculated by 2.1 [48] with a hypothesis that constant
C equal to 1, V is voltage, F is operating frequency and PDyn is the dynamic
power.

PDyn = C · V2 · F. (2.1)

If the logic block is then replicated and two blocks operate in parallel. The
total power for the two blocks is 0.7, and the throughput is 1.4.
This illustrates how parallel processing can increase performance while
cutting power consumption.

Continuing the process of doubling the logic in a single processor core is
not the unique method to improve processor performance within the same
power envelope. This leads to using additional techniques, such as M/MCP
and Multi-thread technology. Pollack assumed that a single thread processor
would provide a diminishing return in performance versus power [10].

On the other hand, M/MCP has several benefits related to power
consumption reduction [5] such as:

1. The cores can be individually turned on or off, thus saving power when
a core is not needed.

2. Each processor core may have its own supply voltage and frequency,
providing flexibility.

2.4 m/mcp architecture 12

3. Easier distribute heat across the die with core work matching.

4. It can potentially produce lower die temperatures, improving reliability
and leakage.

Figure 2.1 demonstrates the simple architecture of M/MCP.

 Chip Boundary

Core 1 Core 2 Core 3 Core 4

Individual

Memory

Individual

Memory

Individual

Memory

Individual

Memory

Shared Memory

Bus Interface

Off-Chip Components

Bus Interface

Figure 2.1: M/MCP architecture.

2.4 m/mcp architecture

The continued increase in the number of microelectronic components allowed
the development of M/MCP in the number of architectures. In general, it
has been proposed to classify the M/MCP architectures into homogeneous,
heterogeneous and dynamic as shown in Figure 2.2 [32, 3, 49].

(a)

Single Core

(b)

Homogeneous

(c)

Heterogeneous

(d)

Dynamic

Figure 2.2: Diversity of M/MCP.

2.4 m/mcp architecture 13

2.4.1 Homogeneous M/MCP

HoMCP integrates M/MCP that have the same architecture of Symmetric Multi-
Core Processor (SMCP) as shown in Figure 2.2 (a) [31, 32, 3]. In this type all the
cores have identical performance and Instruction Set Architecture (ISA) [50, 51].
HoMCP has several benefits such as the flexibility to run different processes

simultaneously. They may also execute independent threads spawned from a
single process to improve the performance of a single application.

One of the specific types of HoMCP is GPU which are designed as special
purpose processors for visual processing [52]. Modern GPUs may incorporate
hundreds of cores to achieve parallel processing by handling thousands of
threads simultaneously [53]. Generally, GPU is similar to CPU. However, it
includes many smaller cores in comparison with multi bigger cores in CPU

and has some differences such as CPU may be designed for speedup including
(latency/throughput) improvements while GPU tend to be designed generally
to improve throughput [54].

2.4.2 Heterogeneous M/MCP

HeMCP incorporates the large number of different computational units that
may have different architecture. These include full-blown latency oriented
cores for sequential processing, massively parallel Single Instruction, Multiple
Data (SIMD) accelerators such as GPU, embedded FPGA and media
accelerators [33, 34].

The Asymmetric Multi-Core Processor (AMCP) is a special case of
heterogeneity when the processor includes two types of different cores) as
shown in Figure 2.2 (b) [31, 32, 3]. In this type, not all the cores have the same
performance and may have a single ISA [50, 55] or more than one ISA [56].

The HeMCP suffer from challenges brought by the flexibility to run different
processes simultaneously. However, one advantage of heterogeneity is the
high ability to manage performance/power trade-off to improve system
performance and reduce power consumption. For instance, the big.LITTLE
technology from ARM is HeMCP incorporating a cluster of ’big’ cores for high
performance and a cluster of ’LITTLE’ cores for low power consumption.
Further, some studies interested to study the software model design to
manipulate the executed workload in HeMCP [23, 57].

2.4 m/mcp architecture 14

In
te

rc
o

n
n

ec
ti

o
n

 N
et

w
o

rk

(a)

Distributed Multi-Core Chips

Figure 2.3: Distributed M/MCP.

M/MCP architectures may feature in single chips or form distributed
structures with multiple cores connected through communications facilities
such as networks [58]. Figure 2.3 shows a simple architecture of distributed
M/MCP.
HeMCP could include CPUs or Central Processing Unit-Graphics Processing

Unit (CPU−GPU) in single chip as shown in Figure 2.4. The CPU−GPU

integration in single chip offer performance imrovements [59, 60]. Further
advantages include reduced communication overheads and costs, specially
designed shared memory for avoiding explicit data copying [61]. They may
also deliver more power and energy efficient computations [62, 59, 60].

Processing cores Processing cores

Control

D
R

A
M

D
R

A
MControl

 Cache

CPU GPU

Figure 2.4: Architecture of a CPU−GPU chip.

Recently, it has been claimed in the literature that optimization targeting
certain applications have resulted in performance speedup from 25x to 100x
or more utilizing GPU instead of CPU [63]. The main reason for this comes

2.5 the methods of energy efficiency 15

from the differences in the architecture of each unit. CPU and GPU are
designed in order to execute different types of applications [64, 65]. These
differences cause CPU achieve better performance on latency-sensitive
applications which need to respond rapidly to specific events and partially
parallel applications [66, 64, 65]. On the other hand, GPU achieves better
performance with latency-tolerant applications, and the processor utilization
may be high due to multithreading [67, 68], highly parallel applications and
independent applications [63]. Thus, the overall performance on CPU and GPU

depends on the application characteristics. Moreover, other works have
focused on heterogeneous architecture to combine unconventional cores such
as custom logic or FPGA in the traditional M/MCP to achieve superior energy
efficiency and performance improvements [59, 65]. This new paradigm
considers the relationships between a conventional processor and a various
set of unconventional cores. It forecasts future architecture from scaling
developments predicted by ITRS [8].

2.4.3 Dynamic M/MCP

The Dynamic Multi-Core Processor (DMCP) has the ability to configure cores
dynamically to adjust their computational resources through execution. Thus,
it can provide superior system performance and lowest power consumption.
It tackles the problem of performance/power trade-off which faces M/MCP
architecture [32]. Figure 2.2(d) shows the simple idea of DMCP architecture, it
can dynamically configure the number and the size of cores. For instance, if
the executing program is easy to parallelize, the system may be configured
into an increasing the number of cores. Whereas, it can combine several cores
into one large one to improve the M/MCP performance for the sequential
portion of a program. The overall aim of this type of dynamic configuration is
to improve system performance.

2.5 the methods of energy efficiency

In parallel with the development from single to M/MCP, methods have been
developed to improve these issues. This section provides an overview of some
important techniques which relate to this study.

2.5 the methods of energy efficiency 16

2.5.1 Dynamic Voltage Frequency Scaling (DVFS)

DVFS is a technique designed to manage power and energy consumption in
M/MCP [35]. Essentially, a controller can scale the voltage and frequency up
and down in order to save the power. This technique can be found in a wide
range of commercial M/MCP from embedded systems and mobile devices to
servers [16]. [36, 69, 5] claim that the modern M/MCP have supported
per-core DVFS, for instance, Intel and ARM’s big.LITTLE. [5] suggests fine
grain power management design, particularly with the power management
for idle cores. The study considers two frequency operations for each
Microprocessor core, with maximum frequency for fast processing and 1/2 of
maximum frequency for idle cores. When a core operates at f/2, it uses lower
voltage, subsequently consuming only a few of the maximum dynamic power.
Furthermore, when there is support for DVFS for each core individually, each
core will have specific performance and power consumption
calculations [17, 18, 70]. It is possible to control technique by use dynamic
sleep transistor and body biasing in conjunction with clock gating in CMOS

technology to reduce power for idle cores [15]. Certain systems even provide
the capability to scale voltage and frequency up-and-down
independently [36]. Recently, M/MCP systems extended mechanisms to
control cores and uncore components which include the components out of
cores but connected to the core closely, such as Arithmetic Logic Unit (ALU),
L1 and L2 cache [71, 72, 73, 74].

2.5.2 Thread to Core Affinity Managements

Modern processors lose a significant amount of time and energy when moving
data. With the increase of core numbers, the importance of energy expenditure
will increase with time. Thread-to-core affinity may also be used as a technique
to enhance performance and/or reduce power.
CPU affinity or pinning is a technique that can enable the binding and

unbind of tasks (thread or process) to specific cores in M/MCP. As a result, the
tasks execute on the particular core or cores rather than any random core [75].
Generally, there are two types of CPU affinity, software, and hardware. The
software affinity is used by an Operating System (OS) or specific application’s
scheduler to keep tasks on a CPU. Hardware itself may also provide affinity
capabilities which makes particular threads execute on specific hardware.

2.5 the methods of energy efficiency 17

The affinity technique has several trends to utilize the tasks in an efficient
method. One area where affinity may help improve energy efficiency is in
cache memory use. If shared cache between different cores needs to be used, all
cores involved must validate the data, which is a costly procedure. Bouncing
the same thread between different cores can also cause increased cache misses
and increasing demands on cache validation [76].

Further, the performance of multi-thread applications can be improved
when they are accessing the same data. It is better to bind them to the
same CPU or core in M/MCP. Thus, the threads do not contend over data
and increase cache misses [76]. Besides performance, thread-to-core affinity
can also improve the performance to power consumption ratio. For instance,
High Performance Computing (HPC) employ different thread to core affinity
strategies to maximize the performance-power ratio. [75] demonstrates these
improvements through extensive experimenting with HPC benchmarks.

The management of real-time and time-sensitive applications can also be
improved based on this technique. Usually, the processors spend a significant
amount of time, power and energy to move data. The system processes can be
bound to a subset of cores in M/MCP, while other applications can be bound
to the remaining cores [76]. Moreover, the core affinity relates to scheduling
of real-time tasks on M/MCP. Thus, the unscheduled tasks can be pinned to
a single core while the scheduled tasks can be pinned to multiple cores [77].
Furthermore, the impact of threads and data mapping mechanism on the
communication traffic of Networks-on-Chip (NoC) is an important issue in
relation to execution time in M/MCP. Following a mechanism to approach
the lowest communication traffic through threads affinity with data results in
significant communication traffic reduction and energy saving [78].

Usually, each application has a parallelization ratio, splitting sequential and
parallel sections to schedule the parallel code to run on multiple cores can
improve performance and decrease power consumption [79].

2.5.3 Energy Efficient Load Balancing, Task Migration and Task Scheduling Over
M/MCP

Workload task manipulation is a significant and necessary consideration when
aiming to improve M/MCP and embedded system performance and energy-
efficient computations trough resources optimization, maximize throughput

2.6 speedup models 18

and minimize response time. The techniques of task manipulation include
load balancing, task migration and task scheduling [37, 38, 39, 40].

Load balancing is a technique used to improve the distribution of workload
across multiple cores [37, 38, 39]. Diverse types of load balancing algorithms
may be employed to improve performance and reduce energy consumption,
particularly during task migration [39]. The algorithms should consider the
task behavior and M/MCP architecture to achieve system optimization.

Task migration is the transfer technique of partially executed tasks from a
core or cluster of cores to another core or cluster of cores in M/MCP [37, 38,
40, 39]. Task migration may be used to migrate a task from heavily loaded
cores to lightly loaded or idle cores in M/MCP particularly HeMCP to balance
the load across all cores. Thus, the average response time will be reduced to
improve performance and decrease energy consumption [37, 40].

Task scheduling is the technique used to assign the start and end times to
a set of tasks [80, 40]. The main challenges in real-time systems are how to
satisfy better performance and minimize energy consumption [81], particularly
in embedded real-time system and mobile devices. Task scheduling can be
implemented by task scheduler software or OS process schedulers [80].

2.6 speedup models

Speedup is a number comparing the performance of using multiple
computation units (cores) to solve a particular problem to the performance of
solving the same problem with a single unit (core). One of the most
important speedup models was presented in 1967 by Amdahl [11]. Amdahl’s
law pertains to fixed workloads. It compares the latency/performance of a
fixed workload executed on a single core with the performance of the same
workload executed in a number of cores (n).

It assumes that any specific workload consists of parallelizable and
non-parallelizable parts, with a parallelization factor (p) (0 6 p 6 1). This
means that with no scheduling overhead, a portion p of the entire quantity of
computation for the fixed workload is entirely parallelizable, while the
remaining (1 - p) portion must be executed entirely sequentially. Figure 2.5(a)
shows the simple speedup calculations of Amdahl’s speedup model in
M/MCP. This is an idealized model that incorporates issues such as
communication overheads and data access to a constant non-parallelizable
part. Workloads with different p values that follow this model behave

2.6 speedup models 19

differently on M/MCP platforms. Speedup is below linear when p < 1. The
smaller p is, the worse the speedup.

(a)

(b)

(c)

Figure 2.5: S(n) vs n for (a) Amdahl’s law (b) Gustafson’s model and (c) Sun-Ni’s
model

2.6 speedup models 20

In 1988, Gustafson re-evaluated Amdahl’s law to introduce the principle of
scalable computing in M/MCP related to fixed time workload calculations [12].
It proposes a linear speedup model for workloads that can scale up their
parallel part according to the number of computation units available after
the sequential part has been completed. As a result, the executed workload
during a fixed amount of time grows linearly with the number of available
cores. The speedup is calculated according to how much larger the workload
is in M/MCP in comparison with the workload in a single core. Workloads that
follow this model do not have the non-linear scaling problem which Amdahl’s
type workloads suffer. Then M/MCP performance improvement is linear even
with low p as shown in Figure 2.5 (b).

In 1990, Sun and Ni proposed a superlinear speedup model which extends
parallel workload calculation based on the theoretical computation of memory
capability [13, 14]. In this model the executed workload and execution time
change based on memory capacity. The speedup calculations of this model
appear a super linear outcomes with increasing cores. This is an artifact of the
memory-bound nature of workloads following this model.

As cores are not the limiting factor of speedup, throughput can scale
superlinearly to n in certain situations as shown in Figure 2.5 (c).

There are other types of speedup models, such as Downey’s model [27]
which are similar to the described models. They calculate speedup using
different formulas based on the same principles.

2.6.1 Extended Speedup Models in M/MCP

A considerable amount of literature has been published on extending speedup
models in the context of reasoning about the performance and energy trade-off
in M/MCP. The literature of speedup models may be divided into the number
of categories related to the performance improvements calculations, energy-
efficient computing, parallelization factor computations, and networking.
Further, some others include memory wall and communication overheads
calculations.

2.6.1.1 Extended Speedup Models for Performance Calculations in M/MCP (Hill-
Marty Models)

Hill and Marty attempted to enhance Amdahl’s law [3]. They assume that
M/MCP consists of units of the same type, called Base Core Equivalents (BCEs),

2.6 speedup models 21

and multiple BCEs can be reconfigured into larger cores each of which is an
integer multiple of BCEs [3], see Figure 2.6.

(a) (c) (b)

Figure 2.6: M/MCP diversity. (a) SMCP with 16 one-BCE cores, (b) AMCP with 4 four-
BCE cores, and (c) AMCP with 1 four-BCE core and 12 one-BCE cores. These
figures eliminate important structures such as memory interfaces, shared
caches, and interconnects. They assume that area, not power, is a chip’s
limiting resource. [3]

The chip configuration can consist of n BCEs to behave as HoMCP as shown
in Figure 2.6 (a) where (n equal to 16 BCEs). It can also incorporate larger
cores of the same size to behave as cores to utilize as HoMCP as shown in
Figure 2.6 (b) where (each core includes 4 BCEs, thus the chip configures into 4

large cores. On the other hand, a system can be configured into different-sized
cores to form HeMCP as shown in Figure 2.6 (c) where a large single core
incorporating 4 BCEs work with 12 small BCEs).

The configurations can cover three M/MCP types which are (SMCP with
multi identical big/small multi/many cores, AMCP with single large core and
many small cores and DMCP which configure cores dynamically as mentioned
in 2.4.3. This was based on their then prediction of what system hardware
would become capable of in the future, which has not entirely been proven
correct. The Hill-Marty model omits essential issues such as memory wall
and communication overheads. Investigations in the literature show that
DMCP may hold performance advantages over AMCP which may in turn hold
advantages over SMCP. In addition, [82] offers quantitative comprehension of
Hill-Marty’s study for computer architects in M/MCP scalability. This work
also contains additional investigations on finding optimal performance in
M/MCP within technology developments according to Moore’s law. It suggests
a future work direction of focusing on improving the parallelizability of
programs and developing more efficient cores to target sequential processing.

Several studies follow the Hill-Marty’s principle, [49] extends the
performance calculations of Hill-Marty’s model to help designers find the
optimal performance of Amdahl’s law. This study focuses on the theoretical

2.6 speedup models 22

analysis of M/MCP scalability by adding a performance index into SMCP,
AMCP and DMCP configurations. The main principle of the performance index
is to improve speedup models by considering the effect of the parallelization
factor, the number of the total budget of cores n and the performance of
individual configure cores in the total performance. Moreover, [83] addresses
the limitations of Amdahl’s and Gustafson’s speedup models extended by
Hill-Marty assumptions by using a (Generalized Scaled Speedup Equation)
which incorporates Amdahl’s and Gustafson’s models via exchanging the
appropriate application scaling function. The scaling function is proportional
to the executed parallel, unlike constant as in Amdahl’s law, but it does not
scale linearly as in Gustafson’s model either. Further, [20] extends the
assumptions of the extended Hill-Marty model for Amdahl’s, Gustafson’s
and Sun-Ni’s speedup models in HoMCP and HeMCP. It complements existing
studies and provides a clear understanding of M/MCP architecture design.

The studies described in this section do not include other structural issues
such as communication overheads or memory wall, these will be covered in
section 2.6.1.2.

2.6.1.2 M/MCP Overheads

In recent years, there has been an increasing amount of studies on overheads
calculation. Overheads are considered to be one of the greatest challenges of
performance improvements in M/MCP. They are a combination of extra
computation time required by networking, memory bandwidth or other
additional parts of processors system that are essential to achieving a specific
task. Overheads can be classified into subcategories such as memory wall,
communication, and synchronization overheads.

The memory wall characterizes the effects of the memory-processor
performance gap on the entire system. The insufficiency in memory latency
and bandwidth, for instance, limits the processor’s capability of accessing
instructions and data. In this case, the processor will stall waiting on memory
to continue computation. This issue becomes more complicated in M/MCP

and shared memory [84, 85, 86].
The communication overheads describe the effect of communication on the

total performance of M/MCP [87, 88, 89].
The synchronization overheads describe the effects on performance of the

joining and handshaking of multiple processes and data in M/MCP [87, 90, 89].

2.6 speedup models 23

The studies in this field may include one or more types of overheads. The
work in [91] extend Amdahl’s, Gustafson’s and Sun-Ni’s speedup models to
focus on the speedup models from the scalable computing point of view.
These models combine a new dimension of scalable computing represented
by communication overheads and data access memory wall calculations to
satisfy better scalability. The calculations of new dimensions are
demonstrated via some case studies. This work explains the ability to
improve the M/MCP scalability in the approaches of industry and academia.
Further, [31] evaluates HoMCP and HeMCP architectures in order to achieve
highest performance for a given power budget. This study incorporates
synchronization and communication overheads into Amdahl’s model to
calculate theoretical upper bound performance. The outcomes appear that
HeMCP achieves better performance than HoMCP for the same power budget.

Moreover, some studies extend Hill-Marty model to consider the overheads
calculations. The studies in [92, 93] extend the Hill-Marty model by
considering (Overhead of Data Preparation) of M/MCP. The Overhead of Data
Preparation includes memory access, on-chip communications and
synchronization among cores. These papers extend theoretical work within
three core configurations HoMCP, CPU−GPU HeMCP and CPU−GPU DMCP.
They illustrate the importance of reducing Overhead of Data Preparation in
M/MCP particularly HoMCP. Moreover, [94] introduces a simple theoretical
Hill-Marty model to account for uncore components such as communication
overheads. The uncore components on a chip are not considered as cores,
they consider other components such as last level caches, on-chip
interconnections. The study explains the importance of continuity to design
uncore components to scale sub-linearly to sustain the M/MCP scalability.
Further, [95] extends Hill-Marty model in diverse topology (HoMCP, HeMCP
and DMCP) considering CPU and GPU like organizations to project upper
bounds on performance. The speedup models in this study are given as a
function of single core performance, micro-architectural features, application
parameters, chip organization, and M/MCP topology. They incorporate first
order effects exposing more bottlenecks than Amdahl’s law.

On the other hand, the study in [19] enhances the principle of Hill-Marty’s
and Sun-Chen’s models [3, 19] in HoMCP. It satisfies the ability of extensive
scalability in M/MCP and considers a theoretical study of memory wall in
speedup models.

2.6 speedup models 24

2.6.1.3 Parallelization Factor (p)

Certain existing research into speedup has focused on the calculations of
average parallelism of a program. The study in [27] proposes a new speedup
model calculation for parallel applications based on the average parallelism of
a program and its variance in parallelism. It suggests two main theoretical
parallelization variance models low variance model and high variance model
which cover software parallelization diversity. These models have methods to
calculate the characteristics of the program. These methods are then applied
to speedup curves from real applications in a number of different
architectures. The study uses Stanford Parallel Applications for
Shared-Memory-2 [96] benchmarks and achieved good speedup model
validations. Furthermore, [28] considers the implications of Amdahl’s law in a
HeMCP in which each processor is a HoMCP. It presents a parallelism function
which includes flexible workload distributions, including uneven
distributions, onto multiple cores. Some calculations of parallelism function
explain the improvements in performance in HeMCP over the performance in
HoMCP. The investigations in [27, 28] avoid M/MCP system obstacles such as
the effects of synchronization overheads, communication delays and memory
coherency, but [28] suggests the ability to include those challenges in the
calculations of parallelism function.

2.6.1.4 Extended Speedup Models in Networks

The speedup models can be extended to cover distributed CPUs across a
network or many cores on a chip across NoC [97]. In this case, the network
should be considered as additional parameters to determine the
communications overhead. The study in [98] has started to tackle the problem
of a real-time system which should ensure the time response requirements in
the M/MCP. It extends Amdahl’s law by including the communication
overheads to analyze the quantitive relationship between speedup and
communication based on the ratio of the communication time to the
computation time. Thus, it can estimate the lower and upper bounds on
speedup calculations. Further, [99] extends the communication overheads for
Amdahl’s speedup model by considering the effects of
communication/computation ratio, network topology, traffic mode, and
network size. This study includes experiments using real data of parallel
applications on M/MCP NoC platforms.

2.6 speedup models 25

Moreover, the studies in [100, 58] include the theoretical calculations of
communications overheads caused by network limitations in distributed
M/MCP. They extend Hill-Marty’s [3] and Sun-Chen’s models [19] to focus on
the impact of communications on latency and throughput. The studies
explain the accuracy of new models in comparison to Amdahl’s law. The
study [101] also considers the communication overheads through additional
theoretical calculations into Hill-Marty’s [3] and Sun-Chen’s models [19]. It
models communication time to divide execution into four parts including the
sequential and parallel workload of computation and communication. Firstly,
the study evaluates the effects of interconnects on overall speedup models.
Secondly, it proposes a hardware cost model which includes the area of cores
and interconnects. Finally, it applies the hardware cost model to speedup
models leading to extended speedup models under area constraints. The
results of [101] support the explicit inclusion of inter-core communication in
M/MCP speedup models.

2.6.1.5 Extended Speedup Models in Run-Time Management (RTM) System

Debate continues about the best strategies for the management of applications
in RTM. The speedup models have been extended to cover this area. The
performance and power of most applications change during RTM. It is,
therefore, necessary to establish a technique to monitor and control important
events in any application. Hardware performance counters can serve as
monitors for this purpose. [102] examines the use of hardware performance
counters and finds that they can be useful in providing power allocation
predictions. Furthermore, the approach of application-aware power
management has been presented. In [103] the study combines continuous
monitoring of critical workload indicators for performance-based speedup
usage, online power, and timely state control. This study shows two new
power management solutions by using Standard Performance Evaluation
Corporation benchmarks on an Intel Pentium M platform during RTM.
Performance maximizer can find the best performance under specific power
constraints and power saver can save energy while keeping performance
specified requirements. Furthermore, the study in [104] includes the dynamic
effects of a wide range of DVFS on the performance-based speedup, power
and energy calculations in real time. It proposes an online performance,
power, and energy prediction framework that proactively searches the DVFS

2.6 speedup models 26

space. The study verified its results on modern AMD processors with 152

benchmarks at 5 distinct DVFS states.
[29] proposes a system called Varuna which is able to dynamically,

continuously, transparently and rapidly adapt to a program’s parallelism. The
adaptation matches the instantaneous capabilities of the hardware resources
while satisfying different efficiency metrics. Varuna was designed to be
applicable for both task-based and multi-threaded programs. It can be
inserted into the OS or an application without changing the source code of
either.

[105] demonstrates this principle through experiments with multi-thread
applications in M/MCP. It develops a framework called Thread Reinforcer to
dynamically monitor the execution of multi-threaded applications. Thus, It
can determine the number of threads that can produce optimal speedup.

The design of an efficient RTM system for M/MCP is presented in [106]
which satisfies system requirements by cooperating multi-threaded programs
and DVFS in tandem. The proposed system which is called
(Performance-Per-Power Optimization) optimizes the system performance
under a power constraint. It is based on a heuristic algorithm which uses
hardware performance monitoring units aiming for the prediction of power
and performance. The algorithm controls the threads to be executed within
specific cores at specific operating frequencies to distribute the power budget
to each program.

2.6.1.6 Extended Speedup Models for Energy Efficiency in M/MCP

The traditional methods of performance improvements such as extracting
more parallelism from applications or increasing clock frequencies are losing
their effect because of the power wall. Essentially, the speedup models have
proven to be significantly useful for performance insights to parallel
applications in M/MCP. However, the power-aware model can generalize
familiar speedup models such as Amdahl’s model [107] by considering the
effects of active power-management strategies. A wide set of studies have
extended speedup models particularly Amdahl’s model for energy efficient
computing. The Study in [31] evaluates HoMCP and HeMCP architectures to
achieve highest performance for a given power budget. This study
incorporates synchronization and communication overheads into Amdahl’s
model calculate the theoretical upper bound for performance. The results
show that HeMCP achieves better performance than HoMCP for the same

2.6 speedup models 27

power budget. [108] illustrates the interaction between the workload’s
parallelization and energy consumption in a parallelizable application. It
derives the optimal operating frequencies allocated to the serial and parallel
portions’ regions in the specific application to minimize the total energy
consumption, while the execution time is preserved. The paper shows a
number of points, firstly the function of dynamic energy improvement due to
parallelization rising faster with increasing the number of cores than the
speedup improvement function of Amdahl’s law. Secondly, it establishes the
relationship between parallelization, speedup, and energy consumption. In
sum, these points can be used in energy-aware M/MCP resource management.
In addition, [109] presents a study of energy efficient improvements based on
hardware parallelization rather than performance increase. It shows the
ability to know the number of parallel cores which permits a system to
achieve maximum energy improvements for a given throughput. It derives
the number of formulas based on Amdahl’s law for HoMCP and presents the
serial and parallel ratios of parallel application. It gives the ability to find the
optimum frequency, voltage, and energy improvements while preserving
execution time. Furthermore, [110] analyzes the performance, power and
power normalized performance of Mobile Internet Devices (MIDs) which
became very important for industry, academia, and customers. This study
presents prediction models and analysis models based on Amdahl’s law.
Moreover, [60] investigates the effects of power constraints on energy
efficiency and scalability of HoMCP, HeMCP and hybrid CPU−GPU HeMCP. It
presents analytical models which extend Amdahl’s law by accounting for
energy limitations. It suggests important improvements in hardware and
software approaches. For hardware, it suggests that the future of M/MCP
should include one or a few large cores along many small cores to support
energy efficient hardware platforms. For software, it suggests that increasing
the parallelism of applications should not be the exception, and it can create
energy-efficient applications suitable for the future of M/MCP architectures.

Other literature also extends Hill-Marty’s model for theoretical energy-
efficient computing in M/MCP. [21] consider the principle of Hill-Marty with
a view to estimate HoMCP and HeMCP performance and power consumption.
Thus, the calculation of Power Normalized Performance (PNP) can be achieved
by dividing performance, which is calculated from speedup, over power. PNP
represents the performance achievable at the same cooling capacity. This
metric is reciprocal to energy based on the definition of performance as the
reciprocal of execution time. Additionally, It calculates the Energy Normalized

2.6 speedup models 28

Performance (ENP) for evaluating the performance achievable in the same
battery life cycle which is equivalent to the reciprocal of Energy-Delay Product
(EDP).

2.6.1.7 Dark Silicon

There is a rich research literature focusing on the phenomenon of dark silicon.
Dark silicon refers to the amount of circuitry of a chip that can not be
powered on at the nominal operating voltage for a given (Thermal Design
Power) constraint. This phenomenon presents new challenges and
opportunities for CPU designers. It becomes more interesting particularly in
the interaction with thermal management, Thermal Design Power diversity
and reliability trade-offs and the leveraging and exploiting of variability
concern. A simple theoretical study of dark silicon is presented by [111]. It
uses extended Amdahl’s law by considering Hill-Marty principle and using
DVFS to decrease the amount of dark silicon and improve total performance.
The paper presents a HeMCP model for diverse workload parallelism at
different power budgets. The theoretical contributions make it possible to
determine the improvement in calculated speedup and energy efficient
system by using DVFS for a high parallel workload.

Dark silicon remains a major and significant challenge for the future of
M/MCP scaling. [112, 113] demonstrate the understanding of the sustainability
of M/MCP scaling in the historical exponential performance growth in the
energy limited era. They bring together transistor technology, processors core
and application models (HoMCP, HeMCP and DMCP Amdahl based models)
to support this understanding. With the increase of the number of cores, the
power constraints may prevent powering all cores at their highest speed. In
this case, a portion of cores has to power off at all times to be dark. The models
in these papers explain that the ratio of dark cores may be as much as 50%
within three process generations based on ITRS projection. Thus, the effect
of dark silicon may prevent the scaling to the high number of cores. The
outcomes from this study show that realistic assumptions of M/MCP provide
less performance gain over next three generations than parallel workload
M/MCP scaling, and much less when parallel workload is unavailable. In
summary, these papers suggest other directions to continue the historical rate
of performance improvement.

Further, [114, 115] investigate the dark silicon phenomenon and provide
experimental evidence for the (Electronic Design Automation) community by

2.6 speedup models 29

running benchmarks on a M/MCP. One of the important sides of these
experiments is the effects of p of an application on the calculated performance
which calculated by Amdahl’s law at the RTM. Further, [116] presents a
technique called DsRem to managing thermally constrained resources of
M/MCP. The technique selects the number of active cores with their voltage
frequency scaling levels to maximize the overall performance by considering
the (Instruction Level Parallelism) or (Thread Level Parallelism) nature of
different Princeton Application Respository for Shared-Memory
Computers (PARSEC) applications. These studies were followed by [117],
which presents a new power budget concept called (Thermal Safe Power)
which is a technique capable of providing safe power and power density
constraints as a function of active cores. Thermal Safe Power has the ability to
support M/MCP in many ways. If the cores are executing at power
consumption below Thermal Safe Power, the (Dynamic Thermal
Management) will not trigger. This method can inform task partition and core
mapping decisions.

2.6.2 Multi-Amdahl Model

Multi-Amdahl is an analytic optimization technique aiming to help HeMCP

design. It considers the diverse range of applications, the performance of
each computational unit, and the total available resources [33, 118, 34]. [33,
34] establish Multi-Amdahl framework to model the performance of each
computational unit as a function of available resources such as unit area,
power or energy. Based on this framework, the analytical optimization for
resource sharing among heterogeneous units may be obtained using the
Lagrange multiplier method.

Hill-Marty’s model has considered the impact of accelerating one portion
of the workload on the overall execution as described in section 2.6.1.1 [3].
The Multi-Amdahl models [33, 34] generalize Amdahl’s law from two types
of execution environments serial and parallel to n types of different execution
segments, by modeling different design constraints and accounting for their
impacts. Thus, the new model is suitable for different resource constraints
and efficiency models. However, the Multi-Amdahl models assume that only
one of the computational units (accelerators) is active at any time, which is
not the case for current and future real-life platforms and applications.

2.7 discussions and conclusions 30

2.7 discussions and conclusions

This chapter includes a comprehensive survey of speedup model related
literature. An existing survey [119] covers some of the fields but is not geared
toward the direction of work covered by this thesis. This new survey helps
establish the baseline for the research work reported in this thesis, which can
be summarized into the following points. None of these points have been
addressed by existing work. Table 2.1 compares existing work and this thesis
in an organized manner.

1. This thesis extends the assumption of classical speedup models Amdahl,
Gustafson and Sun-Ni to cover contemporary commercial system core
homogeneity and heterogeneity. The models cover modern architectures
such as Intel homogeneous M/MCP, ARM big.LITTLE heterogeneous
cores, CPU−GPU configuration, FPGA-based acceleration schemes and
complex structures with many types of cores and complex System-on-
Chip (SoC).

2. This thesis extends speedup models to cover other non-functional
properties including power and energy. These models provide the basis
for studying the power/performance trade-offs for energy-efficient
computing.

3. This thesis makes use of these models to evaluate the efficiency of the OS
scheduler load balancing while running realistic application, particularly
in a heterogeneous system.

4. This thesis proposes a new method of estimating the parallelization
factor to study the effect of this factor on energy-efficient computing.

5. This thesis generates a new full-domain DVFS and per-core DVFS power
models for M/MCP.

2.7 discussions and conclusions 31

Table 2.1: Literature summary

Literature

Amdahl

Gustafson

Sun-Ni

Hill-M
arty

Homogeneity

Heterogeneity

Dynamically

Distributed

CPU-GPU

Performance

Power -

Energy

Overhead
calculations

Parallelization
Factor

Theoretical

modeling

Real
application

DVFS

Coreaffinity

DarkSilicon

RunTime

Management

[1
1
]

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

C
on

tr
ol

le
d

Ye
s

N
o

N
o

N
o

N
o

N
o

[1
2
]

Ye
s

Ye
s

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

C
on

tr
ol

le
d

Ye
s

N
o

N
o

N
o

N
o

N
o

[1
3
,1

4
]

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

C
on

tr
ol

le
d

Ye
s

N
o

N
o

N
o

N
o

N
o

[2
7
]

si
m

ila
r

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

C
al

cu
la

te
d

Ye
s

Ye
s

N
o

N
o

N
o

N
o

[3
,8

2
]

Ye
s

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

Ye
s

N
o

N
o

C
on

tr
ol

le
d

Ye
s

N
o

N
o

N
o

N
o

N
o

[4
9
]

Ye
s

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

Ye
s

N
o

N
o

C
on

tr
ol

le
d

Ye
s

N
o

N
o

N
o

N
o

N
o

[8
3
]

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

Ye
s

N
o

N
o

C
on

tr
ol

le
d

Ye
s

N
o

N
o

N
o

N
o

N
o

[2
0
]

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

C
on

tr
ol

le
d

Ye
s

N
o

N
o

N
o

N
o

N
o

[8
4
]

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

M
em

or
y

N
o

Ye
s

N
o

N
o

N
o

N
o

N
o

[8
5
]

N
o

N
o

N
o

N
o

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

N
o

M
em

or
y

N
o

Ye
s

N
o

N
o

N
o

N
o

N
o

[8
7
]

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Ye
s

Ye
s

C
om

m
un

ic
at

io
n

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

[8
9
]

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Sy
nc

hr
on

iz
at

io
n

C
om

m
un

ic
at

io
n

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

[8
8
]

N
o

N
o

N
o

N
o

Ye
s

Ye
s

N
o

N
o

N
o

N
o

N
o

C
om

m
un

ic
at

io
n

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

[9
1
]

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

N
o

N
o

Ye
s

N
o

M
em

or
y

C
on

tr
ol

le
d

Ye
s

N
o

N
o

N
o

N
o

N
o

[1
9
]

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

N
o

Ye
s

N
o

M
em

or
y

C
on

tr
ol

le
d

Ye
s

N
o

N
o

N
o

N
o

N
o

[3
1
]

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

N
o

N
o

N
o

Ye
s

Ye
s

Sy
nc

hr
on

iz
at

io
n

C
om

m
un

ic
at

io
n

C
on

tr
ol

le
d

Ye
s

N
o

N
o

N
o

N
o

N
o

[9
2
,9

3
]

Ye
s

N
o

N
o

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

N
o

Sy
nc

hr
on

iz
at

io
n

C
om

m
un

ic
at

io
n

C
on

tr
ol

le
d

Ye
s

Ye
s

N
o

N
o

N
o

N
o

[9
4
]

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

N
o

N
o

N
o

Ye
s

Ye
s

M
em

or
y

C
om

m
un

ic
at

io
n

C
on

tr
ol

le
d

C
al

cu
la

te
d

Ye
s

Ye
s

N
o

N
o

N
o

N
o

[9
5
]

Ye
s

N
o

N
o

Ye
s

Ye
s

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

M
em

or
y

C
on

tr
ol

le
d

Ye
s

Ye
s

N
o

N
o

N
o

N
o

[2
8
]

Ye
s

N
o

N
o

N
o

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

C
al

cu
la

te
d

Ye
s

N
o

N
o

N
o

N
o

N
o

[1
2

0
]

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

C
al

cu
la

te
d

Ye
s

N
o

N
o

N
o

N
o

N
o

2.7 discussions and conclusions 32

Table 2.1 Continued: Literature summary

Literature

Amdahl

Gustafson

Sun-Ni

Hill-M
arty

Homogeneity

Heterogeneity

Dynamically

Distributed

CPU-GPU

Performance

Power -

Energy

Overhead
calculations

Parallelization
Factor

Theoretical

modeling

Real
application

DVFS

Coreaffinity

DarkSilicon

RunTime

Management

[9
8
]

Ye
s

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Ye
s

N
o

C
om

m
un

ic
at

io
n

C
on

tr
ol

le
d

Ye
s

N
o

N
o

N
o

N
o

Ye
s

[9
9
]

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

N
o

C
om

m
un

ic
at

io
n

C
on

tr
ol

le
d

Ye
s

Ye
s

N
o

N
o

N
o

N
o

[1
0

0
,5

8
]

Ye
s

Ye
s

N
o

Ye
s

Ye
s

N
o

N
o

Ye
s

N
o

Ye
s

N
o

C
om

m
un

ic
at

io
n

C
on

tr
ol

le
d

Ye
s

Ye
s

N
o

N
o

N
o

N
o

[1
0

1
]

Ye
s

Ye
s

N
o

Ye
s

Ye
s

N
o

N
o

N
o

N
o

Ye
s

N
o

C
om

m
un

ic
at

io
n

Ev
al

ua
te

d
Ye

s
Ye

s
N

o
N

o
N

o
N

o

[1
0

2
]

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

Ye
s

N
o

[1
0

3
]

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

Ye
s

N
o

[1
0

4
]

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

Ye
s

Ti
m

e
N

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
N

o

[2
9
]

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

Ye
s

Lo
ad

ba
la

nc
in

g

Sc
he

du
lin

g

Pr
og

ra
m

pa
ra

lle
lis

m
Ye

s
Ye

s
N

o
N

o
Ye

s
N

o

[1
0

5
]

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

N
o

Ti
m

e
N

o
N

o
Ye

s
N

o
Ye

s
N

o
N

o

[1
0

6
]

N
o

N
o

N
o

N
o

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

Ye
s

Ti
m

e
N

o
N

o
Ye

s
Ye

s
Ye

s
Ye

s
N

o

[1
0

7
]

Ye
s

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Ye
s

Ye
s

Ti
m

e
N

o
N

o
N

o
N

o
N

o
N

o
N

o

[2
1
]

Ye
s

N
o

N
o

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

Ye
s

N
o

co
nt

ro
lle

d
Ye

s
N

o
N

o
N

o
N

o
N

o

[6
0
]

Ye
s

N
o

N
o

N
o

Ye
s

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

N
o

co
nt

ro
lle

d
Ye

s
N

o
N

o
N

o
N

o
N

o

[1
0

8
]

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

N
o

Ye
s

N
o

co
nt

ro
lle

d
Ye

s
N

o
N

o
N

o
N

o
N

o

[1
0

9
]

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

Ye
s

C
om

m
un

ic
at

io
n

C
on

tr
ol

le
d

Ye
s

Ye
s

N
o

N
o

N
o

N
o

[1
1

0
]

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

N
o

N
o

N
o

[1
1

1
]

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

N
o

N
o

N
o

Ye
s

Ye
s

N
o

C
on

tr
ol

le
d

Ye
s

N
o

Ye
s

N
o

N
o

Ye
s

[1
1

2
,1

1
3
]

Ye
s

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

M
em

or
y

C
on

tr
ol

le
d

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

[1
1

4
]

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

[1
1

5
]

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

[1
1

6
]

N
o

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

Ye
s

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

[1
1

7
]

N
o

N
o

N
o

N
o

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

Ye
s

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

[3
3

,1
1

8
,3

4
]

Ye
s

N
o

N
o

Ye
s

Ye
s

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

N
o

C
on

tr
ol

le
d

Ye
s

N
o

N
o

N
o

N
o

N
o

3
S P E E D U P A N D P O W E R S C A L I N G M O D E L S

3.1 introduction

From the early days of computing systems, there has been a persistent
engineering effort to improve computation speed by distributing the work
across multiple devices. Predicting the system’s gain in performance, called
the speedup, has been a major focus in this area of the research. Amdahl’s law
has been known since 1967 [11]. It assumes that a fixed workload is executed
in n processors and compares the performance with the same workload
executed in a single processor. The model shows that the speedup will
quickly saturate with increasing n if the workload requires synchronization.
In 1988, Li and Malek explicitly considered inter-processor communications
in this model [98]. In the same year, Gustafson introduced the principle of
workload scaling pertaining to the fixed time model [12]. This model
proposes to extend the workload proportionally to the scalability of systems
with the result of having a linear increase in the speedup. In 1990, Sun and Ni
suggested a new model, which included extended workload calculations by
considering the capability of the memory [13, 14].

Over the years, technology scaling has facilitated significant performance
improvement at reduced power consumption through increased operating
frequency and smaller device geometries [5]. The number of transistors per
unit of area have increased substantially conforming to Moore’s [6] and
Koomey’s laws [7], and Pollack’s rule suggests that performance is increasing
approximately proportional to the square root of the complexity [10].

As a result, nowadays almost every consumer device or embedded system
uses the computational power of M/MCP. The number of cores in a device
is constantly growing, hence the speedup scaling models remain of high
importance. They provide a valuable insight into system scalability and have
become pivotal for multi-scale systems research. However, it is still important
to keep the models up to date, to make sure they stay relevant and correctly
represent novel aspects of platform design.

With increasing system complexity and integration, the concept of
heterogeneous computation has emerged. Initially, the heterogeneity

33

3.1 introduction 34

appeared in a form of specialized accelerators, like GPU. In recent years,
multiple types of CPU cores in a single device have also been made popular.
For instance, the ARM big.LITTLE processor has found a wide use in mobile
devices [23]. Heterogeneous systems pose additional engineering and
research challenges. In the area of scheduling and load balancing, the aim is
to improve core utilization for more efficient use of the available performance.
Operating systems traditionally implement SMCP scheduling algorithms
designed for homogeneous systems, and ARM have done dedicated work on
modifying the Linux kernel to make load balancing suitable for their
big.LITTLE architecture [121].

In addition to performance concerns, power dissipation management is also
a significant issue in scalable systems: according to Dennard’s CMOS scaling
law [42] despite smaller geometries the power density of devices remains
constant.

Hill-Marty extended Amdahl’s speedup model to cover simple
heterogeneous configurations consisting of a single big core and many
smaller ones of exactly the same type [3], which relates to the CPU−GPU type
of heterogeneity. The studies in [19, 20] extended Hill-Marty analysis to all
three major speedup models. The problem of energy efficiency has been
addressed in [21, 22] for the homogeneous and simple heterogeneous
Amdahl’s model. This overview covers only the most relevant publications,
an extensive survey can be found in chapter 2 and summarized in Table 2.1.

In order to be relevant to more general and emerging types of
heterogeneous systems, new types of models need to be developed. This
chapter extends the classical speedup models to a so-called normal form
representation of heterogeneity, which describes core performances as a
vector. This representation can fit a wider range of systems, including the
big.LITTLE processor, homogeneous processors with multiple DVFS islands,
as well as multi-GPU heterogeneous systems.

The initial work on this topic includes the derivation of the speedup
models as well as a set of power models for this extended representation of
heterogeneity [122, 123]. In addition to fixed-workload Amdahl’s law,
workload scaling from the works of Gustafson and Sun-Ni have also been
considered. In addition, we expand the work by addressing the effects of
workload distribution and load balancing, and also explore additional modes
of workload scaling relevant only to heterogeneous systems. We discover that
the presented models inherit certain limitations from the Amdahl’s law,

3.1 introduction 35

which may be significant for heterogeneous modeling and need to be taken
into account. The work provides a concise discussion on the matter.

Table 3.1: Summary of the existing speedup models and the proposed model

ho
m

og
en

.

he
te

ro
ge

n.

po
w

er

m
em

or
y

in
te

rc
on

.

A
m

da
hl

G
us

ta
fs

on

Su
n-

N
i

[11, 124] yes no no no no yes no no
[98] yes no no no yes yes no no
[12] yes no no no no yes yes no
[13] yes no no yes no yes yes yes
[27] yes no no no no similar no no
[29] yes no yes no no yes no no
[94] yes simple no no yes yes no no
[3, 49] yes simple no no no yes no no
[19, 20] yes simple no yes no yes yes yes
[21] yes simple yes no no yes no no
proposed models yes normal form yes no no yes yes yes

The major contributions of this chapter are:

1. Extends the classical speedup models to normal form heterogeneity in
order to represent modern examples of heterogeneous systems.

2. Extends models to include power estimation.

3. Clarifies the limitations of the Amdahl-like heterogeneous models and
outlining further challenges of heterogeneous speedup and power
modeling.

This work lays the foundation for newer types of heterogeneous models, and
does not yet cover all system aspects. The effects of memory and interconnects
are planned as future model extensions. Table 3.1 compares this chapter’s
contributions to the range of related research publications.

The experimental work which validating this chapter’s models will be
present in Chapter 4.

3.2 existing speedup models 36

3.2 existing speedup models

In homogeneous systems, all cores are identical in terms of performance,
power, and workload execution.

Homogeneous system considers system consisting of n cores, each core
having a base core equivalent performance (θ) = unscaled workload
size (I)/workload execution time in a single core (t(1)), where I is the given
workload and t(1) is the time needed to execute the workload on the core.
This section describes various existing models for determining the S(n) in
relation to a single core, which can be used to find the homogeneous system
performance on number of cores (Θ(n)):

Θ (n) = θS (n) . (3.1)

Amdahl-like speedup models are built around the parallelizability factor p,
0 6 p 6 1, which reflects the application’s capability of performing parallel
computation. The fundamental assumption is that any application has a
sequential part, which is not parallelizable at all, and a parallel part, which is
infinitely parallelizable (i.e. it can be split into up to an infinite number of
parallel threads). This leads to the following statement regarding the
parallelizability factor: Given a total workload of I, the parallel part of a
workload is pI and the sequential part is (1− p) I.

3.2.1 Amdahl’s Law (Fixed Workload)

The general idea of this model is to compare execution time for some fixed
workload I on a single core with the execution time for the same workload on
the entire n-core system [11].

Time to execute workload I on a single core is t(1), whereas workload
execution time in the number of cores (t(n)) adds up the sequential execution
time on one core at the performance θ and the parallel execution time on all n
cores at the performance nθ:

t (1) =
I

θ
, t (n) =

(1− p) I

θ
+
pI

nθ
, (3.2)

3.2 existing speedup models 37

thus the speedup can be found as follows:

S (n) =
t (1)

t (n)
=

1

(1− p) + p
n

. (3.3)

This speedup in relation to n for different values of p is shown
in Figure 2.5(a).

3.2.2 Gustafson’s Model (Fixed Time)

Gustafson re-evaluated the fixed workload speedup model to derive a new
fixed time model [12]. In this model, the workload increases with the number
of cores, while the execution time is fixed. An important note is that the
workload scales asymmetrically: the parallel part is scaled to the number
of cores, whilst the sequential part is not increased. A classical example is
the manufacture of copies of data. The reading of data is the sequential part
and the writing of data can be infinitely parallelized. This kind of workload
generally follows Gustafson’s model because the writing part of the workload
scales with the availability of writing hardware (e.g. cores). Hence this is not a
fixed workload, but the speedup due to parallelization can still be studied by
analyzing what happens during a fixed time period.

Let’s denote the initial workload as I and extended workload as scaled
workload size (I ′). The time to execute initial workload is t(n) and extended
workload execution time (t ′(n)). The workload scaling ratio can be found from:

t (1) =
I

θ
, t (n) =

(1− p) I

θ
+
pI ′

nθ
, (3.4)

and, since t(1) = t(n), the extended workload can be found as I ′ = nI. The
time that would take to execute I ′ on a single core is:

t ′ (1) =
(1− p) I

θ
+
pnI

θ
, (3.5)

which means that the achieved speedup equals to:

S (n) =
t ′ (1)

t (1)
= (1− p) + pn. (3.6)

3.2 existing speedup models 38

Not all applications can provide workload extension only in the
parallelizable part without changing the sequential part, hence there is a
limitation on the applicability of the extended workload models. The main
contribution of Gustafson’s model, however, is to show that it is possible to
build an application that scales to multiple cores without suffering saturation.
Figure 2.5(b) shows Gustafson’s model of the speedup in relation to n.

3.2.3 Sun-Ni’s Model (Memory Bounded)

Sun and Ni took into account the previous two speedup models by considering
the memory bounded constraints [13, 14]. In this model the execution time
and the workload change according to the memory capability. The parameter
workload/memory scaling (g(n)) reflects the scaling of the workload in relation
to scaling the memory with the number of cores:

I ′ = g (n) I. (3.7)

A typical example g(n) is given for an m×m matrix multiplication, which
has the memory requirement of O

(
m2

)
and the computation cost (workload)

of O
(
m3

)
. In this case, g(n) = n

3
2 .

The model calculates the speedup as follows:

S (n) =
t ′ (1)

t ′ (n)
=

(1− p) + pg (n)

(1− p) +
pg(n)
n

. (3.8)

Because the workload is scaled by g(n) according to (3.7), one of the
important properties of this model is that for g(n) = 1 Sun-Ni’s model (3.8)
transforms into Amdahl’s law (3.3), and for g(n) = n it becomes Gustafson’s
law (3.6). Figure 2.5(c) shows the speedup for g(n) = n

3
2 . Further in this

chapter, we do not specifically relate g(n) to the memory access or any other
property of the system and consider it as a given or determined parameter
pertaining to a general case of workload scaling.

3.3 heterogeneous system 39

3.2.4 Hill-Marty’s Heterogeneous Models

Hill-Marty extended speedup laws for heterogeneous systems were mainly
focused on a single high-performance core and many smaller cores of the
same type [3].

Core performances are related to some BCE, which is considered to have
θ = 1. This model studies a system with one big core and (n−r) little cores.
The big core has relative performance of Hill-Marty assumption (Θ (r)) while
little cores have BCE performances, as shown in Figure 3.1(b). The sequential
workload is executed on the faster core, while the parallel part exercises all
cores simultaneously. This transforms Amdahl’s law (3.3) as follows:

S (n, r) =
1

(1−p)
Θ(r) + p

Θ(r)+(n−r)

. (3.9)

A reconfigurable version of this model can be extended to cover multi-GPU
systems, but still implies only one active accelerator at a time [34, 22]. This
chapter aims to cover more diverse cases of heterogeneity pertaining to such
modern architectures as ARM big.LITTLE [125] and multi-GPU platforms with
simultaneous heterogeneous execution, which are not directly covered by
Hill-Marty’s models.

3.3 heterogeneous system

Homogeneous models are used to compare the speedup between different
numbers of cores. Similarly, heterogeneous models should compare the
speedup between core configurations, where each configuration defines the
number of cores in each available core type. This section discusses the
problems of modeling consistency across different core types and provides
the foundation for all heterogeneous models presented later in this chapter.

3.3.1 The Challenges of Heterogeneous Modeling

Heterogeneous models must capture the performance and other characteristics
across different types of cores in a comparable way. Such a comparison is
not always straightforward, and in many ways similar to cross-platform
comparison. This section discusses the assumptions behind Amdahl’s law and

3.3 heterogeneous system 40

similar models under the scope of heterogeneous modeling and outlines the
limitations they may cause.

3.3.1.1 Hardware-dependent parallelizability

In the models presented in Section 3.2, there is a clear time-separation of the
synchronous and parallel executions of the entire workload. In other words, all
threads synchronize at the same time. These models do not explore complex
interactions between the processes, hence they do not provide exact timing
predictions and should not be used for time-critical analyses like real-time
systems research. Solving for process interactions is possible with Petri Net
simulations [126] or process algebra [127]. Amdahl-like models, in contrast,
focus on generic analytical solutions that give approximate envelopes for
platform capabilities.

The parameter p is a workload property, assuming that the workload is
running on ideal parallel hardware. Realistic hardware affects the p value of
any workload running on it. From the standpoint of heterogeneous modeling,
the potential differences in parallelizability between core types or cache islands
will cause the overall p to change between core configurations. In this chapter,
we do not attempt to solve this challenge. As demonstrated further in this
chapter, it is still possible to build heterogeneous models around a constant p
and use a range of possible values to determine the system’s minimum and
maximum speedup capabilities.

3.3.1.2 Workload equivalence and performance comparison

The workload is a model parameter that links performance with the execution
time. In many cases, a popular metric for performance is Instructions per
Second (IPS), in which case a workload is characterized by its number of
instructions. IPS is convenient as it is an application-independent property of
the platform; it is also used for deriving power optimization metrics such as
Energy per Instruction (EPI).

In heterogeneous models, it is important to have a consistent metric across all
core types. For devices of different architecture types, the same computation
may be compiled into different numbers of instructions. In this case, the
total number of instructions can no longer meaningfully represent the same
workload, and IPS cannot be universally used for cross-platform performance
comparison. This is particularly clear when comparing CPU and GPU devices.

3.3 heterogeneous system 41

In order to build a valid cross-platform performance comparison model,
there is a need to reason about the workload as a meaningful computation,
and two workloads are considered equivalent as long as they perform the
same task. In this chapter, workload is measured in so-called “workload
items”, which can be defined on a case by case basis depending on the
practical application. Respectively, instead of energy per instruction, energy
per workload item will be used.

Hill-Marty’s model, presented in Section 3.2.4, describes the performance
difference between the core types as Θ (r). In real life, this relation is
application dependent, as will be demonstrated in Sections 4.2 and 4.3.
Differences in hardware, such as pipeline depth and cache sizes, cause
performance differences on a per-instruction basis [128]. As a result, even
within the same instruction set, core type i may execute workload A faster
than core type j, but core type j may execute workload B faster than core type
i. Hence, A and B must use different performance ratios to describe the same
heterogeneous platform.

3.3.2 Platform Assumptions

We build our models under the assumptions listed below. These assumptions
put limitations on the models as discussed earlier in this section. The same
assumptions are used in the classical Amdahl’s law and similar models, hence
there is no further reduction in generality.

• The models and model parameters are both application and hardware
specific.

• The relation between performances of cores of different types can be
approximated to a constant ratio.

• The parallelizability factor p can be approximated by a constant and is
known or can be determined (exactly or within a range).

• Environmental factors, such as temperature, are not considered.

Memory and communication-related effects [98, 99, 19] are not explicitly
considered in this work and are the subject of future work outlined in
Chapter 6.

3.4 proposed heterogeneous speedup models 42

(a)
1 1 1 1 1 1 1 1

n cores

(b)
1 1 1 1 1 �(r)

(n – r) small cores 1 large core

n1 type 1 cores

�1�1 �1�1 �1�1 �1�1 �1�1 �1�1

(c)

n2 type 2 cores

�1�2 �1�2 �1�2 �1�2 �1�2
..
.

nX type x cores

�x

1

virtual
BCE

�x �x

Figure 3.1: The proposed extended structure of a heterogeneous system (c) compared
to a homogeneous system (a) and the previous assumption [3] on
heterogeneity (b). The numbers in the core boxes denote the equivalent
number of BCEs.

3.3.3 Normal Form Representation of Heterogeneity

Performance-wise, the models presented in subsequent sections describe
heterogeneity using the following normal form representation.

The normal form of heterogeneous system configuration considered in this
chapter consists of clusters (types) of homogeneous cores (x) with the
numbers of cores defined as a vector of core numbers (n) = (n1, . . . ,nx). The
total number of cores in the system is denoted as total number of
heterogeneous cores (N), which equal to summation of number of cores of
type i (ni), N =

∑x
i=1 ni. The vector of the core performance factors (α)

includes the performance factor for the core (α) of x clusters, viz α

= (α1, . . . ,αx) defines the performance of each core by cluster (type) in
relation to some BCE, such that for all 1 6 i 6 x we have θi = αiθ. As
discussed earlier, the parameter α is application- and platform-dependent.
The structure is shown in Figure 3.1(c).

3.4 proposed heterogeneous speedup models

This section extends homogeneous speedup models for determining the
heterogeneous speedup (S(n)) of a heterogeneous system in relation to a

3.4 proposed heterogeneous speedup models 43

single BCE, which can then be used to find the performance of the system
using (3.1).

3.4.1 Workload Distribution

Homogeneous models distinguish two states of performance: the parallel
execution exercises all cores, and the sequential execution exercises only one
core while others are idle. The cores in such systems are considered identical,
hence they all execute equal shares of the parallelizable part of the workload
and finish at the same time. Consequently, the combined performance of the
cores working in parallel is θn. In heterogeneous systems this is not as
straightforward: each type of cores works at a different performance rate,
hence the execution time depends greatly on the workload distribution
between the cores. Imperfect distribution causes some cores to finish early
and become idle, even when the parallelizable part of the workload has not
been completed.

In real systems, the scheduler is assisted by a load balancer, whose task is
to redistribute the workload during run-time from busy cores to idle cores.
However, its efficiency is not guaranteed to be optimal [129]. The actual
algorithm behind the load balancer may vary between different operating
systems, and the load balancer typically has access to run-time only
information such as CPU time of individual processes and the sizes of waiting
queues. Hence it is virtually impossible to accurately describe the behavior of
the load balancer as an analytical formula. This section addresses the problem
by studying two boundary cases, which may provide a range of minimum
and maximum parallel performances.

By definition, the total execution time for the workload I ′ is a sum of sequential
execution time (t ′s(n)) and parallel execution time (t ′p(n)), and it represents the
time interval between the first instruction in I ′ starting and the last instruction
in I ′ finishing. This means that during a parallel execution, only the longest
running core has an effect on the total execution time. In other words:

To be analogous to the homogeneous models and to simplify our equations,
we also define the system’s parallel performance via the performance-equivalent
number of BCEs denoted as performance-equivalent number of Base Core
Equivalents (Nα):

3.4 proposed heterogeneous speedup models 44

3.4.1.1 Equal-share workload distribution

In homogeneous systems, the parallelizable workload is equally split between
all cores. As a results, many legacy applications, developed with the
homogeneous system architecture in mind, would also equally split the
workload by the total number of cores (threads). This leads to a very
inefficient execution in heterogeneous systems, where everyone is waiting for
the slowest core (thread), as illustrated in Figure 3.2(a). In this case, Nα is
calculated from the minimum of α:

Nα = N ·
x

min
i=1

αi. (3.10)

The above equation implies that the workload cannot be moved between
the cores. If the system load balancer is allowed to re-distribute the work, then
the real Nα may be greater than that calculated by (3.10). This equation can be
used to define a lower performance bound corresponding to naïve scheduling
policy with no balancing.

time

α1 = 4

α2 = 3

α3 = 6

sequential parallel

(a)

time

α1 = 4

α2 = 3

α3 = 6

sequential parallel

(b)

13

13

1310

10

12

9

18

ts tp

ts tp

Figure 3.2: Workload distribution examples following (a) equal-share model and
(b) balanced model.

3.4 proposed heterogeneous speedup models 45

3.4.1.2 Balanced workload distribution

Figure 3.2(b) shows the ideal case of workload balancing, which implies zero
waiting time, hence all cores should theoretically finish at the same time. Nα
for optimal workload distribution is as follows:

Nα =

x∑
i=1

αini. (3.11)

Nαθ represents the system’s performance during the parallel execution,
hence Nα values from (3.10) and (3.11) define the range for heterogeneous
system parallel performances. A load balancer that violates the lower
bound (3.10) is deemed to be worse than naïve. The upper bound (3.11)
represents the theoretical maximum, which cannot be exceeded.

3.4.2 Heterogeneous Amdahl’s Law

We assume that the sequential part is executed on a single core in the cluster
type of core executing sequential workload (s), hence the system’s performance
during sequential execution is equal to multiplying the performance factor
of sequential execution (αs) by θ. In Section 3.4.1 parallel performance has
defined as Nαθ. Hence, the time to execute the fixed workload I on the given
heterogeneous system is:

t (n) = ts (n) + tp (n) =
(1− p) I

αsθ
+

pI

Nαθ
. (3.12)

The speedup in relation to a single BCE is:

S (n) =
t (1)

t (n)
=

1
(1−p)
αs

+ p
Nα

. (3.13)

One can verify that this equation also covers Hill-Marty’s model (3.9), in
which case n = (n− r, 1), α = (1,Θ (r)), αs = Θ (r)), and Nα is calculated for
the balanced workload distribution (3.11).

3.4 proposed heterogeneous speedup models 46

3.4.3 Workload Scaling

As in the homogeneous case, Amdahl’s law works with a fixed workload,
while Gustafson and Sun-Ni allow changing the workload with respect to
the system’s capabilities. In this section we consider a general assumption on
workload scaling, which defines the extended workload using characteristic
functions parallel workload scaling factor (g(n)) and proportional workload
scaling factor (h(n)) as follows:

I ′ = h (n) · ((1− p) I+ pg (n) I) , (3.14)

where h(n) represents the symmetric scaling of the entire workload, and
g(n) represents the scaling of the parallelizable part only.

The sequential and parallel execution times are respectively:

t ′s (n) =
(1− p) I · h (n)

αsθ
, t ′p (n) =

pg (n) I · h (n)
Nαθ

. (3.15)

Hence, in the general case, for given workload scaling functions g(n) and
h(n), the speedup is calculated as follows:

S (n) =
I ′(

t ′s + t
′
p

)
θ
=

(1− p) + pg (n)
(1−p)
αs

+
pg(n)
Nα

. (3.16)

Note that the speedup does not depend on the symmetric scaling h(n).
Indeed, the execution time proportionally increases with the workload, and
the performance ratio (i.e. the speedup) remains constant. However, changing
the execution time is important for the fixed-time Gustafson’s model.

3.4.4 Heterogeneous Gustafson’s Model

In the Gustafson’s model, the workload is extended to achieve equal time
execution: scaled workload execution time (t ′(n))= t(1). For homogeneous
Gustafson’s model: g(n) = n and h(n) = 1. For a heterogeneous system, there
are more than one way to achieve equal time execution.

3.4 proposed heterogeneous speedup models 47

3.4.4.1 Purely parallel scaling mode

The maximum speedup for equal time execution is achieved by scaling only
the parallel part, i.e. h(n) = 1. We know that Gustafson’s model requires equal
execution time, hence:

t ′s (n) + t
′
p (n) = t (1) , (3.17)

which leads to:

pg (n)

Nα
= 1−

(1− p)

αs
. (3.18)

From this, we can find that:

g (n) =

(
1−

(1− p)

αs

)
Nα

p
, (3.19)

however, this equation puts the number of restrictions on the system. Firstly,
it doesn’t work for p = 0, because it is not possible to achieve equal time
execution for a purely sequential program if αs 6= 1 and only the parallel
workload scaling is allowed. Secondly, a negative g(n) does not make sense,
hence the relation αs > (1− p) must hold true. This means that the sequential
core performance must be high enough to overcome the lack of parallelization.
Another drawback of this mode is that it requires the knowledge of p to
properly scale the workload.

In this scenario, the speedup is calculated from 3.16 and 3.19 as:

S (n) = (1− p) +

(
1−

(1− p)

αs

)
Nα. (3.20)

3.4.4.2 Classical scaling mode

In order to remove the restrictions of the purely parallel scaling mode, and to
provide a model generalizable to p = 0, we need to allow scaling of the
sequential execution. However, since this mode potentially increases the
sequential execution time, it exercises the cores less efficiently than the

3.5 proposed heterogeneous power models 48

previous mode and leads to lower speedup. In this case, (3.17) can be updated
to:

h (n) ·
(
t ′s (n) + t

′
p (n)

)
= t (1) . (3.21)

From this, in the case of p = 0, we find that h(n) = αs. And for the case of
p > 0 and h(n) = αs:

g (n) =

(
1

h (n)
−

(1− p)

αs

)
Nα

p
=
Nα

αs
. (3.22)

This scaling mode relates to the classical homogeneous Gustafson’s model,
which requires g(n) to be proportional to the ratio between the system
performances of the parallel and sequential executions. In the homogeneous
case, if the sequential performance is θ, the parallel performance would be nθ,
leading to g(n) = n.

For the heterogeneous Gustafson’s model in classical scaling mode, the
speedup is calculated from 3.16 and 3.22 as:

S (n) = αs (1− p) + pNα. (3.23)

3.5 proposed heterogeneous power models

We base our power models on the concept of power state modeling, in which
a device has the number of distinct power states, and the average power over
an execution is calculated from the time the system spent in each state.

For each core in the system, we consider two power states: active and
idle. Lower power states such as sleeping and shutting down the cores are
not included in the presented models. However, it is possible to extend the
models to cater to these effects. Let’s denote the active power of a core in a
homogeneous system as active power of a core (wa) and the idle power of
a core (w0). Active power can also be expressed as a sum of idle power w0
and effective power of Base Core Equivalent (w) that is spent on workload
computation, wa = w0 +w. In this view, the idle component is no longer
dependent on the system’s activity and can be expressed as a system-wide

3.5 proposed heterogeneous power models 49

constant term total background power (W0), called background power. The total
power of the system (Wtotal) is:

Wtotal =W0 +W (n) , (3.24)

The total effective power (W (n)) is the total effective power of active cores –
this is the focus of our models. The constant term of background power W0
can be studied separately.

3.5.1 Power Modeling Basics

In the normal from representation of a heterogeneous system (Section 3.3),
the difference between power dissipations of the cores is expressed by the
vector of core power factors (β) which includes power factor of core (β), viz
β = (β1, . . . ,βx), which defines the effective power in relation to a BCE’s
effective power, such that for all 1 6 i 6 x we have effective power wi = power
factors of core type i (βi) by w. The effective power model can be found as a
time-weighted average of the sequential effective execution power (ws) and
parallel effective execution power (wp) of the system:

W (n) =
wst

′
s (n) +wpt

′
p (n)

t ′s (n) + t
′
p (n)

, (3.25)

where speedup-dependent sequential execution time (t ′s (n)) and speedup-
dependent parallel execution time (t ′p (n)). They required to execute sequential
and parallel parts of the extended workload respectively.

In a homogeneous system:

ws = w , wp = nw. (3.26)

In a heterogeneous system, if we execute the sequential code on a single
core s:

ws = βsw,

wp = Nβw,
(3.27)

3.5 proposed heterogeneous power models 50

which gives for the balanced case of parallel execution (3.11):

Nβ =

x∑
i=1

βini, (3.28)

For equal-share execution (3.10), power-equivalent number of Base Core
Equivalents (Nβ) is calculated as follows:

Nβ = minα ·
x∑
i=1

βini
αi

. (3.29)

Nβ is called a power-equivalent number of BCEs. Heterogeneous power models
will transform into homogeneous if αs = power factor of sequential execution
(βs) = 1 and Nα = Nβ = n.

3.5.2 Power Distribution and Scaling Models

We express the scaling of effective power in the system via the speedup and
the power distribution characteristic function (Dw (n)):

W (n) = wDw (n)S (n) . (3.30)

Dw (n) represents the relation between the power and performance in a
heterogeneous configuration. Since the speedup models are known from
Section 3.4, this section focuses on finding the matching power distribution
functions.

From (3.27) and (3.25), we can find that in the general case:

Dw (n) =
(
βst

′
s (n) +Nβt

′
p (n)

)
· θ
I ′

, (3.31)

thus substituting the workload scaling definition (3.14) and execution
times (3.15) will give us:

Dw (n) =

βs
αs

(1− p) + pg (n)
Nβ
Nα

(1− p) + pg (n)
. (3.32)

3.5 proposed heterogeneous power models 51

It is worth noting that for homogeneous systems, power distribution
function for homogeneous system (Dw(n)) = 1 in all cases, and the effective
power equation will transform into:

W (n) = wS (n) , (3.33)

i.e. in homogeneous systems the power scales in proportion to the speedup.
Power distribution for Amdahl’s workload, g(n) = 1, hence the power

distribution function becomes:

Dw (n) =
βs

αs
(1− p) + p ·

Nβ

Nα
, (3.34)

Power distribution for Gustafson’s workload following the same general
form (3.32) for the effective power equation, we can find power distribution
functions Dw (n) for two cases of workload scaling described in Section 3.4.4.

For the classical scaling mode:

Dw (n) =
βs (1− p) + pNβ
αs (1− p) + pNα

. (3.35)

For the purely parallel scaling mode:

Dw (n) =
βs (1− p) + (αs − (1− p))Nβ
αs (1− p) + (αs − (1− p))Nα

. (3.36)

3.5.3 Energy and Power-Normalized Performance

Power modeling is typically used for optimizing system power dissipation.
Due to the power-performance trade-off, advanced metrics are required as
optimization targets. For example, PNP (performance per Watt) represents
the performance achievable at a given power capacity. This parameter is the
reciprocal of EPI (in our case, per workload item), which can be found from
dividing the total power (3.24) by the system’s performance (3.1):

EPI =
Wtotal

Θ (n)
=
W0 +W (n)

θS (n)
. (3.37)

3.6 discussion and conclusion 52

For a single BCE we can denote energy per workload item as a sum of
effective energy (e) and idle energy (E0). Applying the power model (3.30)
to (3.37):

EPI = e ·Dw (n) +
E0
S (n)

. (3.38)

The system-wide sum of idle energy per workload item is denoted as E0.
This equation shows that the power distribution function Dw (n) increases the
effective component of the energy as more power-hungry cores are being
active, and the speedup S(n) decreases the idle energy component due to
better core utilization. The total energy consumption (E) during the execution
of the extended workload I ′ is E = EPI I ′.
EDP is another optimization metric that improves energy and performance

at the same time. EDP is the reciprocal of power normalized performance
squared (PNP2). It is one of the possible weighted products with power and
performance as the two criteria in the optimization of power and performance.
Other weights are also possible but PNP and EDP (PNP2) are the most commonly
used ones. In our method, EDP can be obtained as follows:

EDP (n) =Wtotal · (
t(n)

I ′
)2. (3.39)

3.6 discussion and conclusion

The models presented in this chapter enhance our understanding of scalability
in heterogeneous many-core systems and will be useful for platform designers
and electronics engineers, as well as for system level software developers.

This chapter extends three classical speedup models – Amdahl’s law,
Gustafson’s model and Sun-Ni’s model – to the range of heterogeneous
system configurations that can be described as a normal form of
heterogeneity. The provided discussion shows that the proposed models are
not reducing applicability in comparison to the original models and may
serve as a foundation for multiple research directions in the future. Important
aspects, such as workload distribution between heterogeneous cores and
various modes of workload scaling, are included in the model derivation. In
addition to performance, this chapter addresses the issue of power modeling

3.6 discussion and conclusion 53

by calculating power dissipation for the respective heterogeneous speedup
models.

The extended models of performance and power in this chapter developed
to cover performance-power trade-off. In addition, they can calculate different
performance/energy metrics including PNP, EPI, and EDP. These models can
be extended to cover other weighted product type metrics in a
straightforward manner. The capabilities of the models are therefore not
restricted to the example metrics provided in the chapter. One important
comment is that because these models have been shown to work with
weighted product optimization metrics, they can be used to reason about any
kind of performance target involving speedup/throughput, and not restricted
to the notion of energy efficiency.

4
E X P E R I M E N TA L VA L I D AT I O N O F S P E E D U P A N D
P O W E R S C A L I N G M O D E L S

4.1 introduction

The theoretical extensions of the classical speedup models in Chapter 3

potentially expands the use of Amdahl’s, Gustafson’s and Sun-Ni’s models to
cover the normal form of core heterogeneity. However, it is essential to
validate these extended models through experimental investigation. This
chapter describes an extensive set of experiments which help validate the
proposed models on both heterogeneous big.LITTLE CPU and CPU−GPU on a
dual-GPU laptop, and explore their practical use. The major contributions of
this chapter can be summarize as follows:

1. Validates the extended models from Chapter 3 on real heterogeneous
platforms through a set of carefully designed experiments.

2. Practically using these models to evaluate the efficiency of the Linux
scheduler’s load balancing while running realistic workloads in a
heterogeneous system.

This chapter is presented in two parts, focusing on CPU-only in Section 4.2
and CPU−GPU in Section 4.3.

4.2 cpu-only experimental validations

This section describes attempts of validating the models presented in
Sections 3.4 and 3.5 using a set of experiments on a real CPU-only
heterogeneous platform. In these experiments, the goal is to determine the
accuracy of the models when all model parameters, such as the
parallelization factor p, are under control.

54

4.2 cpu-only experimental validations 55

4.2.1 Platform Description

This study is based on a Multi-Core mobile platform, the Odroid-XU3

board [125]. The main part of it is the 28nm application processor
Exynos 5422. As shown in Figure 4.1, the platform is an SoC hosting an ARM
big.LITTLE heterogeneous processor consisting of four Cortex A7 cores
(C0 to C3) and four Cortex A15 cores (C4 to C7). The big Cortex A15 is a
high-performance 32-bit core having 32KB instruction and 32KB data
L1 caches and 2MB L2 cache and the maximum frequency of 2.0GHz. The
LITTLE Cortex A7 is a low power 32-bit core including the same L1 cache size
and 512 KB L2 cache, and the maximum frequency of 1.4 GHz. There are
compatible Linux and Android distributions available for Odroid-XU3; in our
experiments we used Ubuntu 14.04. This SoC also has four power domains:
A7 power domain, A15 power domain, GPU, and memory power domains.
The Odroid-XU3 board allows per-domain DVFS using predefined
voltage-frequency pairs.

Figure 4.1: Experimental big.LITTLE platform description

The previous assumption by Hill and Marty for heterogeneous architectures,
shown in Figure 3.1(b), cannot describe systems such as big.LITTLE. Our
models do not suffer from these restrictions and can be applied to big.LITTLE
and similar structures.

4.2.2 Benchmark Description and Model Characterization

The models operate on application- and platform-dependent parameters,
which are typically unknown and imply high efforts in characterization.
However, to prove that the proposed models work, it is sufficient to show that,
if α, β and p are defined, the performance and power behavior of the system

4.2 cpu-only experimental validations 56

follows the model’s prediction. These parameters can be fixed by a synthetic
benchmark. This benchmark does not represent realistic application behavior
and was designed only for model validation purposes. Experiments with real
application examples are presented in Section 4.4.

The model characterization is derived from single core experiments. These
characterized models are used to predict M/MCP execution in different core
configurations. The predictions are then cross-validated against experimental
results.

4.2.2.1 Controlled parameters

The benchmark has been developed specifically for these experiments in order
to provide control over the parallelization parameter p. Hence, p is not a
measured parameter, but a controlled parameter that tells the application
the ratio between the parallel (multi-threaded) and sequential (single thread)
execution.

The application is based on Portable Operating System Interface for
Unix (POSIX) threads, and its flow is shown in Figure 4.2. Core configurations,
including homogeneous and heterogeneous, can be specified per application
run as the sequential execution core s and the set of core
allocations (c)=

(
c1, . . . , cN

)
, where N is the number of parallel threads;

s, cj ∈ {C1, . . . , C7} for 1 6 j 6 N. C0 is reserved for OS and power monitors.
These variables define n used in the models. We do not shut down the cores
and use per-thread core pinning via pthread_attr_setaffinity_np to avoid
unexpected task migration. To improve experimental setup and reduce the
interference, we reserve one A7 core (C0) for OS and power monitors, hence it
is not used to run the experimental workloads, and the following results
show up to 3 A7 cores.

The workload size I and the workload scaling g(n) are also given
parameters, which are used to test Gustafson’s models against Amdahl’s law.
The application implements three workload functions: square root calculation
(sqrt), integer arithmetic (int), and logarithm calculation (log) repeated in a
loop. These computation-heavy tasks use minimal memory access to reduce
the impact of hardware on the controlled p. A fixed number of loop iterations
represents one workload item. The functions are expected to give different
performance characteristics, hence the characterization and cross-validation
experiments are done separately for each function.

4.2 cpu-only experimental validations 57

START

END

Pin to Core s

Execute
(1–p)·I cycles

... Pin to Core cN

Execute
p·g(n)·I/N cycles

Create N threads

Join threads

s
e
q
u
e
n
ti
a

l
p
a
ra

lle
l Pin to Core c1

Execute
p·g(n)·I/N cycles

Figure 4.2: Synthetic application with controllable parallelization factor and equal-
share workload distribution. Parameter p, I , g(n), N, s and c=

(
c1, . . . , cN

)
are specified as the program arguments.

Figure 4.2 shows equal-share workload distribution, where each parallel
thread receives equal number of pg(n) I

N
workload items. This execution

gives Nα and Nβ that correspond to naïve load balancing according to (3.10)
and (3.29). Additionally, after collecting the characterization data for α, we
implemented a version that uses α to do optimal (balanced) workload
distribution by giving each core cj ∈ c a performance-adjusted workload of
pg(n) I

N
· αjA , where A =

∑N
j=1 αj. This execution follows different Nα and Nβ,

which can be calculated from (3.11) and (3.28).

4.2.2.2 Relative performances of cores

All experiments in this section are run with both A7 and A15 cores at 1.4GHz.
Running both cores at the same frequency exposes the effects of architectural
differences on the performance. In addition, by avoiding higher frequencies
we reduce the temperature effects and avoid throttling. In this study, we set
BCE to A7, hence αA7 = 1; and αA15 can be found as a ratio of single core
execution times αA15 = tA7 (1) /tA15 (1), as shown in Table 4.1. The three
different workload functions have different αA15 values.

It can be seen that A15 is unsurprisingly faster than A7 for integer arithmetic
and logarithm calculation, however, the square root calculation is faster on
A7. This is confirmed multiple times in many experiments. We did not fully
investigate the reason of this behavior since the board’s production and
support have been discontinued, and this is in any case outside the scope of

4.2 cpu-only experimental validations 58

this chapter. A newer version of the board, Odroid-XU4, which is also built
around Exynos 5422, does not have this issue. It is important to note that we
compiled all our benchmarks using the same gcc settings. We include this
case of non-standard behavior in our experiments to explore possible negative
impacts on the performance modeling and optimization.

Table 4.1: Characterization experiments: single core execution

benchmark sqrt int log
base workload 40000 40000 40000

core type i A7 A15 A7 A15 A7 A15

measured
execution time, ms

49969 53206 52844 42665 41820 23506

measured active
power, W

0.2655 0.8361 0.2760 0.8305 0.3036 0.9496

power
measurement
std dev

0.82% 0.18% 0.96% 0.87% 0.93% 0.42%

calculated effective
power, W

0.1158 0.4887 0.1264 0.4830 0.1540 0.6022

performance factor
for the core type i
(αi)

1 0.9392 1 1.2386 1 1.7791

βi 1 4.2183 1 3.8221 1 3.9094

4.2.2.3 Core idle and active powers

The Odroid-XU3 board provides power readings per power domain, i.e. one
combined reading per core type, from which it is possible to derive single
core characteristic values w0 and w.

Idle powers are determined by averaging over 1 min of measurements while
the platform is running only the operating system and the power logging
software. The idle power values are w0,A7 = 0.1571W and w0,A15 = 0.3552W,
which are used across all benchmarks. The standard deviation during the idle
power measurements is 1.1% of the mean value.

Effective powers wA7,wA15 are calculated from the measured active powers
by subtracting idle power according to (3.24). The power ratios are then found
as βA7 = 1 and βA15 = wA15/wA7; the values are presented in Table 4.1.

4.2 cpu-only experimental validations 59

4.2.3 Amdahl’s Workload Outcomes

A large number of experiments have been carried out covering all functions
(sqrt, int, log) in various core configurations, and repeated for p = 0.3 and
p = 0.9. This set of runs use a fixed workload of 40000 items with equal-share
workload distribution between threads. Model predictions and experimental
measurements for a single example are shown in Figures 4.3 and 4.4; the full
data set can be found in the Appendix B, Figures B.1, B.2, B.3, B.4. The
measured speedup is calculated as the measured time for a single A7 core
execution tA7 (1), shown in Table 4.1, over the benchmark’s measured
execution time, in other words unscaled workload execution time (t(n)):

S (n) =
tA7 (1)

t (n)
. (4.1)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.00%

-0.37%

-0.64%

-0.87%

0.00%

-0.48%

-0.64%

-0.77%

-0.86%

0.06%

-0.67%

-0.81%

-0.90%

-1.03%

0.10%

-0.82%

-0.94%

-1.07%

-1.13%

Speedup: log, p=0.9
theory measured

Figure 4.3: Speedup validation results for the heterogeneous Amdahl’s law showing
percentage error of the theoretical model in relation to the measured
speedup.

0.0

0.5

1.0

1.5

2.0

2.5

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.30%

-1.01%

-2.68%

-0.60%

1.27%

2.05%

3.10%

3.67%

1.14%

-0.48%

1.76%

1.68%

3.36%

0.33%

-1.18%

-0.42%

1.69%

3.05%

3.27%

Power, W: log, p=0.9
theory measured

Figure 4.4: Total power dissipation results for the heterogeneous Amdahl’s law
showing percentage error of the theoretical model in relation to the
measured power.

4.2 cpu-only experimental validations 60

The observations validate the model (3.13) by showing that the differences
between the model predictions and the experimental measurements are very
small. The speedup error never exceeds 1%, and the power error never exceeds
4%, which is comparable to the standard deviation of the characterization
measurements. A possible explanation for the low error values can be that our
synthetic benchmark produces very stable α and β, and accurately emulates
p. However, these small errors also prove that the model can be used with
high confidence if it is possible to track these parameters. The model can
also be confidently used in reverse to derive parallelization and performance
properties of the system from the speedup measurements, as demonstrated
in Section 4.4.

The counter intuitive result for 7-core (three A7 cores and four A15 cores)
execution having lower power dissipation than four A15 cores and no A7

cores can be explained by the equal-share workload distribution. Because the
parallel workload is equally split between these cores, the A15 cores finish
early and wait for A7 cores. This idling reduces the average total power
dissipation, however, it implies that intelligent workload distribution can
improve core utilization by scheduling more tasks to A15 cores than to A7

ones so that they finish at the same time. This is investigated in Section 4.2.5.

4.2.4 Gustafson’s Workload Outcomes

Two sets of experiments have been carried out to validate heterogeneous
Gustafson’s models in both purely parallel and classical workload scaling
modes described in Section 3.4.4. The initial workload I is set to 40000, and the
scaled workload I ′ is defined by (3.14). These experiments also use equal-share
workload distribution and s is fixed to A15.

The measured speedup is calculated as the ratio of performances according
to (3.1), or as the time ratio multiplied by the workload size ratio: S(n) =

(tA7(1)/t(n)) · (I ′/I). The observed errors are similar to Amdahl’s model with
the speedup estimated within 3.21% error (0.54% average) and the power
dissipation estimated within 6.23% difference between the theory and the
measurements. A complete set of data can be found in the Appendix B,
Figures B.5, B.6, B.7, B.8.

4.2 cpu-only experimental validations 61

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-1%

22%

36%

46%

0%

2%

16%

26%

34%

0%

16%

26%

34%

40%

0%

26%

34%

40%

45%

Speedup: log, p=0.3
classical scaling purely parallel scaling

Figure 4.5: Gustafson’s model outcomes showing the measured speedup gain from
using the purely parallel workload scaling compared to the classical
scaling.

Figure 4.5 compares the speedup between two workload scaling modes for
p = 0.3. The purely parallel scaling has more effect for less parallelizable
applications as it focuses on reducing the sequential part of the execution,
hence the experiments with p = 0.9 show insignificant gain in the speedup
and are not presented here. Even though the purely parallel scaling is harder
to achieve in practice as it requires the knowledge of p, it provides a highly
significant speedup gain, especially if the difference between the core
performances is high, which, in the case of log, gives almost 50% better
speedup.

4.2.5 Balanced Execution

Previously described experiments use equal-share workload distribution,
which is simpler to implement, but results in faster cores being idle while
waiting for slower cores. The balanced distribution, defined in (3.11), gives
the optimal speedup for a given workload. This section implements balanced
distribution of a fixed workload and compares it to the equal-share distribution
outcomes of Amdahl’s law. The results are presented for p = 0.9, as it provides
larger differences between equal-share and balanced distributions.

In terms of model validation, the results are also very accurate, giving up
to 4.63% error in power estimation and within 1.3% error for the speedup.
Figure 4.6 explores the differences between the equal-share and optimal
(balanced) cases of workload distribution in terms of performance and energy
properties of the system. The balanced distribution gives up to 41% increase
in the speedup. The average power dissipation is also increased up to 36% as
the cores are exercised with as little idling as possible.

4.3 cpu-gpu experimental validations 62

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0%

0%

0%

-0%

0%

33%

40%

41%

41%

0%

21%

29%

32%

33%

0%

15%

22%

25%

24%

Speedup: log, p=0.9
equal-share balanced

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-1%

-0%

-1%

-1%

-0%

24%

36%

34%

31%

0%

20%

28%

29%

36%

-0%

16%

25%

35%
27%

Power, W: log, p=0.9
equal-share balanced

0

200

400

600

800

1000

1200

1400

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-1%

-0%
-1%

-1%

-0%

-29%

-31%
-33% -34%

0%

-18%
-23% -26% -23%

-0%
-12% -16% -14% -18%

Energy-delay product, Js: log, p=0.9
equal-share balancedFigure 4.6: Comparison of the measured speedup, power, and energy between equal-

share and balanced execution.

4.3 cpu-gpu experimental validations

The previous section explores the heterogeneity within the devices having
the same instruction set. However, many modern platforms also include
specialized accelerators such as general purpose GPUs.

Open Computing Language (OpenCL) programming model [130] enables
cross-platform development for parallelization by introducing the notion of a
kernel. A kernel is a small task written in a cross-platform language that can
be compiled and executed in parallel on any OpenCL device. It also provides
a hardware abstraction level. GPU devices often have a complex hierarchy of
parallel computation units: a few general purpose units can have access to a
multitude of shader ALUs, which in turn implement vector instructions that
may also be used to parallelize scalar computation. Consequently, behind the
OpenCL abstraction, we consider ni not as the number of device cores but as a
degree of parallelism – the number of kernels that can be executed in parallel.

This section presents the experimental validation using the synthetic
benchmark shown in Figure 4.2, but reimplemented in OpenCL with kernels

4.3 cpu-gpu experimental validations 63

replacing POSIX threads. The kernels implement the same looped
computation (sqrt, int, and log). The source code for OpenCL version is also
available [1].

4.3.1 Platform Description and Characterization

The experiments presented in this section have been carried out on a 2012 Dell
XPS 15 laptop with Intel Core-i7 CPU (denoted as CPU further in this section)
and two GPUs: integrated GPU (intGPU) and a dedicated Nvidia card (Nvidia).
Table 4.2 shows device specifications as reported by OpenCL. The platform
runs Windows 7 SP1 and uses OpenCL v1.2 as a part of Nvidia Compute
Unified Device Architecture (CUDA) framework. The platform has no facility
to measure power to the granularity required for the power model validation,
hence this section is focused only on the speedup. Time measurement is done
using the combination of the system time (for long intervals) and OpenCL

profiling (for short intervals).
An important feature of the platform is that both GPU devices can execute

the workload at the same time. This is done by individually calling
clEnqueueNDRangeKernel on separate OpenCL device contexts. This chapter’s
models cover this type of heterogeneity, while the reconfigurable Hill-Marty
model [3] can model only one active type of parallel cores at a time. This has
been the primary criterion for selecting a CPU−GPU platform for this section.

Table 4.2: OpenCL device capabilities

core type i CPU intGPU Nvidia

device name Intel Core Intel HD GeForce
i7-3520M Graphics 4000 GT 640M

max core freq 2.9GHz 350MHz 708MHz
compute units 4 (2+hyper) 16 2

(384 shaders)
max workgroup 1024 512 1024

max ni 1 256 1024 (log: 64)

OpenCL adds overheads when scheduling the kernel code and copying data.
However, we use computation-heavy benchmarks that do not scale the memory
requirement with the workload, hence the overhead is constant, and becomes
negligible if the primary computation is large enough. A series of experiments

4.3 cpu-gpu experimental validations 64

have been carried out to find out the smallest required computation for OpenCL
overheads to be negligible: 106 work items, as demonstrated in Figure 4.7.

Figure 4.7: The effect of OpenCL overheads on performance, can be ignored for
sufficiently large workload sizes.

Table 4.2 reports the max workgroup size, which represents the maximum
number of “parallel” kernels, although OpenCL does automatic
sequentialization if there are not enough real computation units. We
experimentally find the real maximal degree of parallelism ni for each
benchmark by attempting to execute p = 1 workload and increasing the
number of cores until the scaling is no longer linear. Figure 4.8 shows the
outcome. The first observation is that CPU does not scale well in OpenCL,
hence it has been decided to limit CPU to a single core used only for
sequential execution. Nvidia scales perfectly for sqrt and int to its maximum
allowed workgroup, but with log its performance starts to drop after 64 and
completely flattens at 256. An interesting behavior is observed with intGPU:
starting from 16 cores its performance drops by 25% (15% with log), but
otherwise, the scaling continues to be perfectly linear up to 256 and slightly
dips at 512. We model this by representing intGPU as two devices, as shown
in Table 4.3. intGPU is used as BCE, and the performance ratios α are
calculated as the ratio of execution times from single core experiments (except
for intGPU16+, which uses 64-core execution time).

4.3 cpu-gpu experimental validations 65

Figure 4.8: Investigating the scalability potential for the requested p = 1.

Table 4.3: OpenCL characterization experiments

bench core type i workload exec time, ms αi

sqrt

CPU 8.0 · 107 3335 24.351

intGPU
4.0 · 106 4060 1

intGPU16+ 5281 0.769

Nvidia 8.0 · 107 5421 14.980

int

CPU 8.0 · 107 953 44.819

intGPU
8.0 · 106 4273 1

intGPU16+ 5553 0.769

Nvidia 8.0 · 107 5421 7.881

log

CPU 8.0 · 107 2158 42.194

intGPU
8.0 · 106 4554 1

intGPU16+ 5318 0.856

Nvidia 1.0 · 106 4613 0.247

4.3.2 Speedup Validation Outcomes

Due to the sheer amount of work, it is not practical to test all possible core
combinations. Instead, we select configurations evenly distributed across the
range. The following models have been experimentally validated: equal-share
Amdahl’s law and balanced Amdahl’s law. Every core type is tested in the
role of sequential executor s in the case of p = 0.9. For p = 0.3, CPU is always
used for s as the fastest of the devices. The speedup is calculated against the
single core intGPU experiment. Since the other devices are generally much

4.3 cpu-gpu experimental validations 66

faster, and Nvidia is capable of executing 1024 parallel kernels, the observed
maximum speedup is 395.7 for Amdahl’s workload, p = 0.9.

Figure 4.9 shows a typical result for Amdahl’s law; the full set of results
can be found in the Appendix B, Figures B.11, B.12, B.13. On average, the
experiments with Amdahl’s law show 1% error across the tested core
combinations, but going up to 6-8% in a few points. The performance
difference between the balanced and equal-share workload distributions is
presented in Figure 4.10. Given the core performances of intGPU and Nvidia
are very different, load balancing plays a crucial role, and can provide over
400 percent performance boost in some cases.

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

3.65%

1.84%1.07%0.44%

0.07%

0.03%

0.48%

1.51%
4.09%

-0.01%0.44%
0.59%

0.43%
5.69%

0.75%1.29%1.04%
1.81%

3.66%

sqrt, p=0.9, s=CPU
theory measured

Figure 4.9: Speedup validation results for the heterogeneous Amdahl’s law in the
OpenCL platform.

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

0%

-1% 0% -0%

0%

419%

212% 68% 22%

0%

108%

154% 70% 29%

-1% 18%
52% 43% 24%

Speedup: sqrt, p=0.9, s=CPU
equal-share balanced

Figure 4.10: Comparison of the measured speedups between equal-share and
balanced execution in the OpenCL platform.

4.4 realistic application workloads 67

4.4 realistic application workloads

This section is focused on experiments with realistic workloads based on
the PARSEC benchmark suite [131, 132]. PARSEC is a reference application
suite used in many fields including industry and academia, for studying
concurrent applications on parallel hardware. Some of them parallelized
with Open Multi-Processing (OpenMP), while the others parallelized with
gcc-pthreads. PARSEC benchmarks are designed for parallel multi-threaded
computation and include diverse workloads that are not exclusively focused
on high-performance computing. Each application is supplied with a set of
pre-defined input data, ranging from small sizes (test) to large (simlarge) and
very large (native) sizes. Each input is assumed to generate a fixed workload
on a given system. To our knowledge, PARSEC benchmarks do not implement
workload scaling to Gustafson’s or Sun-Ni’s models, hence this section is
focused on Amdahl’s law only.

In our experiments we run a subset of PARSEC benchmarks, namely ferret
(CPU-heavy), fluidanimate (memory-heavy), and bodytrack (mixed), and use
simlarge input. Core pinning of is done at the application level using the
taskset command in Linux. The command takes a set of cores as an argument
and ensures that every thread of the application is scheduled onto one of these
cores. However, the threads are still allowed to move between the cores within
this set due to the influence of the system load balancer [129]. This is different
from the synthetic benchmark described in Section 4.2, which by itself and not
through a system function, performed secure pinning of individual threads,
one thread per core.

In this chapter, we do not study the actual algorithm of the load balancing
or the internal structure of PARSEC benchmarks, hence the workload
distribution between the cores is considered a black box function: Nα is
unknown. Section 3.4.1 addressed this issue by providing the range of values
for Nα. The minimum value corresponds to equal-share workload distribution
and gives the lower speedup limit (Slow (n)); the maximum value is defined by
the balanced workload and gives higher speedup limit (Shigh (n)).

The goal of the following experiments is to calculate these limits and to
find how the real measured speedup fits in the range. The relation provides
a quality metric of load balancimg algorithm (q), where q=1 corresponds
to the theoretically optimal load balancer, and q=0 is equivalent to a naive
approach (equal-share). Negative values may also be possible and show that

4.4 realistic application workloads 68

the balancing algorithm is not working properly and creates an obstacle to
the workload execution. The metric q is calculated as follows:

q =
S (n) − Slow (n)

Shigh (n) − Slow (n)
. (4.2)

The motivation for load balancing is to improve speedup by approaching the
balanced workload behavior. Hill-Marty [3] and related existing work [19, 20]
covering core heterogeneity all assume that the workload is already balanced
in their models, implying q=1. This work makes no such assumption and
studies real load balancer behaviors for different benchmarks, using novel
models facilitating quantitative comparisons.

4.4.1 Model Characterization

The PARSEC experiments are executed on the Odroid XU3 platform described
in Section 4.2. The model characterization is obtained from the homogeneous
configuration experiments, and then the models are used to predict system
behavior in heterogeneous configurations. Each benchmark is studied
independently. Table 4.4 shows the obtained parameter values.

Table 4.4: Characterization of PARSEC benchmark parallelizability from homogeneous
system setup

A7

app S (2) S (3) S (4) pA7

bodytrack 1.8787 2.6484 3.3211 0.9336 ±0.0018

ferret 1.8833 2.6716 3.3706 0.9381 ±0.0004

fluidanimate 1.5749 — 2.2288 0.7326 ±0.0025

A15

app S (2) S (3) S (4) pA15 α15

bodytrack 1.7980 2.4447 3.0090 0.8881 ±0.0021 1.9946

ferret 1.9111 2.7576 3.4400 0.9518 ±0.0060 1.8830

fluidanimate 1.4531 — 1.9443 0.6356 ±0.0120 1.8186

A7 is once again used as BCE, αA7 = 1; αA15 values are derived from single
core executions as the time ratio tA7 (1) /tA15 (1). Core frequencies of both A7

and A15 are set to 1.4GHz.

4.4 realistic application workloads 69

Parameter αs is not known because it is not guaranteed that the sequential
part of the workload will be executed on the fastest core, and it is also possible
for the sequential execution to be re-scheduled to different core types, however
αs must stay within the range of

[
αA7,αA15

]
.

p is determined from the measured speedup S(n) for n > 1 solving (3.3)
for p. The calculations of p is discussed in chapter 5 with more details. For
different values of n, the equation gives different p, however the differences are
insignificant within the same type of core. On the other hand, the differences
in p for different core types are substantial and cannot be ignored.

The lowest values of the model parameters p and αs are used to calculate
the lower limit of the heterogeneous speedup Slow (n), and the highest values
are used to calculate Shigh (n).

4.4.2 Quality of Load Balancer

Figure 4.11 presents the outcomes of the experiments for the selected
benchmarks and heterogeneous core configurations; full data set can be found
in Appendix B, Figure B.14. Time measurements have been collected from 10

runs in each configuration to avoid any random flukes, however the results
were surprisingly consistent within 0.2% variability. This indicates that the
system scheduler and load balancer behave deterministically in given
conditions.

The graphs display the calculated speedup ranges [Slow (n),Shigh (n)] and the
measured speedup S(n). The numbers represent the load balancer quality q,
calculated from (4.2).

4.4 realistic application workloads 70

0.0

2.0

4.0

6.0

8.0

10.0

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
3

2
3

3
3

4
3

1
4

2
4

3
4

4
4

A7
A15

0.15 -0.35 -0.60 -0.71

0.49 0.22 0.03 -0.10

0.55 0.39 0.25 0.16

0.64 0.58 0.53 0.49

bodytrack
low measured high

0.0

2.0

4.0

6.0

8.0

10.0

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
3

2
3

3
3

4
3

1
4

2
4

3
4

4
4

A7
A15

0.89
0.77

0.46 -0.02 0.91
0.78

0.65 0.48 0.94
0.86 0.72 0.61 0.94

0.86
0.79

0.76

ferret
low measured high

0.0

2.0

4.0

6.0

8.0

10.0

1
1

3
1

2
2

1
3

4
4

A7
A15

0.15 -0.05
0.25

0.36
0.27

fluidanimate
low measured high

Figure 4.11: PARSEC speedup range results from heterogeneous system setup
determining q.

The first interesting observation is that the ferret benchmark is executed
with incredible scheduling efficiency despite the system’s heterogeneity. The
average value of q is 0.81 and the maximum goes to 0.94. According to the
benchmark’s description, its data parallelism employs a pipeline, i.e. the
application implements a producer-consumer paradigm. In this case, the
workload distribution is managed by the application. Consequently, the cores
are always given work items to execute and the longest possible idling time is
less than the execution of one item.

The observed q values never exceed 1, which validates the hypothesis that
(3.11) refers to the optimal workload distribution and can be used to predict

4.5 discussion and conclusion 71

the system’s performance capacity. The lower bound of q=0 is also mostly
respected. This is not a hard limit, but a guideline that separates appropriate
workload distributions. This boundary is significantly violated only in one
case, as described below.

Bodytrack and fluidanimate show much less efficient workload distribution,
compared to ferret, and their efficiency seems to decrease when the core
configuration includes more little than big cores. This effect is exceptionally
impactful in the case of three A7 cores and one A15 core executing four
threads of the bodytrack application. The value of q for this configuration
lies far in the negative range and can serve as an evidence of load balancer
malfunction. Indeed, the speedup of this four-thread execution is only slightly
higher than two-threaded runs on one A7 and one A15. The execution time
is close to a single thread executed on one A15 core, showing almost zero
benefit from bringing in three more cores, and the result is consistent across
multiple runs of the experiment. This issue requires a substantial investigation
and lies beyond the scope of this Chapter, however, it demonstrates how the
presented method may help analyze the system behavior and detect problems
in the scheduler and load balancer.

4.5 discussion and conclusion

The practical part of this work includes experiments on multi-type CPU and
CPU−GPU systems pertaining to model validation and real-life application.
The models have been validated against a synthetic benchmark in a controlled
environment. The experiments confirm the accuracy of the models and show
that the models provide deeper insights and clearly demonstrate the effects
of various system parameters on performance and energy scaling in different
heterogeneous configurations.

The modeling method enables the study of the quality of load balancing,
used for improving speedup. A quantitative metric for load balancing quality
is proposed and a series of experiments involving PARSEC benchmarks are
conducted. The modeling method provides quantitative guidelines of load
balancing quality against which experimental results can be compared. The
Linux load balancer is shown to not always provide high-quality results. In
certain situations, it may even produce worse results than the naïve equal-
share approach. The study also showed that application-specific load balancing

4.5 discussion and conclusion 72

using pipelines can produce results of much higher quality, approaching the
theoretical optimum obtained from the models.

5
S P E E D U P A N D PA R A L L E L I Z AT I O N M O D E L S U S I N G
P E R F O R M A N C E C O U N T E R S

5.1 introduction

The speedup and power models presented in Chapter 3 and validated in
Chapter 4, similar to the classical models, deal with a workload with a p,
which is constant throughout the workload. This assumption makes the task
of finding simple models clear and straightforward. However, when using
these models, it must always be clear what exactly is regarded as a ’workload’.

It is a usual practice that system operations are focused on individual
pieces of application software, which are normally executed to satisfy
particular requirements of a system’s users. Systems also usually execute
system software, such as operating systems, which support the running of
applications. In this environment, it seems natural to regard manageable
parts of system software as well as individual applications as workloads,
which would each have its corresponding p value depending on its
parallelizability characteristics.

For M/MCP systems, one of the most important issues is operating efficiency,
which is related to speedup and energy consumption. To improve efficiency
many off-line and RTM methods of system management have been developed,
one example discussed in Chapters 3 and 4 is the system load balancer. Typical
actuators that M/MCP systems have include DVFS of the cores and the mapping
of particular software tasks to particular cores (task to core mapping). Control
decisions on these actuator actions can have a very significant relationship
with the parallelizability of workloads. For instance, it is intuitive that it would
not be very efficient to map a workload with a very low p value onto a large
number of cores - most of the cores will be idle most of the time in this case.

It may, therefore, be advantageous to have knowledge of a workload’s p
value before making a control decision on how to execute it on a M/MCP

system. This chapter further develops the models derived in Chapter 3 and
validated in Chapter 4, with an aim for improving their usability in this context.
The main reason for requiring this further development is that individual
applications rarely have a constant time-invariant p value. This motivates

73

5.2 experimantal studies 74

periodic monitoring of the p values of applications. This monitoring has also
been made possible by the prevalence of hardware performance counters,
some of which will be used in this chapter to support p value monitoring.

The major contributions of this chapter are:

1. Extend Amdahl’s and Gustafson’s speedup models considering
applications and system software related overhead separately.

2. Propose a new method to model parallelization and speedup via
performance counters to avoid the need for instrumenting applications.
We show that speedup can be accurately estimated as a ratio of
instructions retired/executed per cycle of parallel M/MCP to that of a
single core system.

3. Extensive analysis of synthetic and real PARSEC benchmarks to validate
the speedup and p based on our proposed model.

4. Generate a novel full-domain DVFS and per-core DVFS power models for
M/MCP.

5. Demonstrate the effectiveness of our method for identifying
parallelization-aware energy-efficient system configurations using PNP

and EDP metrics.

5.2 experimantal studies

5.2.1 Experimental Platforms

In this chapter, we make use of three different Intel platforms. Table 5.1
explains the general architecture details of these platforms. All of these
systems additionally allow hyper-threading. In all our experiments we
disabled hyper-threading by allocating tasks to physical (not logical) cores.
Although these systems are from Intel, other modern platforms such as those
from ARM also provide similar hardware performance counters which
support the generality of this work. Extending this investigation to other
platforms will be part of our future work. Certain specialized platforms such
as ARM’s M-series microcontrollers may not have hardware performance
counters. For those kinds of systems, this method may need the construction
of software performance monitors, which may or may not be practical.

5.2 experimantal studies 75

Table 5.1: Experimental platforms used in this work.

Parameters Intel CPU Type
Processor Name Core i7 Xeon Xeon Phi
Processor No. i7-4820k E5-2630V2 7120X
Lithography 22 nm 22 nm 22 nm
No. of Sockets 1 2 1

Cores per Socket 4 6 61

No. of Cores 4 12 61

L1D Unified Cache 32 KB 32 KB 32 KB
L1I Unified Cache 32 KB 32 KB 32 KB
L2 Unified Cache 256 KB 256 KB 512 KB
L3 Shared Cache 10 MB 15 MB -
Base Frequency 3.7 MHz 2.60 MHz 1.24 MHz

5.2.2 Performance Counters

Hardware performance counters are a set of special purpose registers built
into CPUs to store the counts of hardware activities in a specific
system [133, 134]. Users depend on those counters to collect low-level
performance data for analysis. This performance data varies depending on
the performance monitoring hardware and system software
configuration [135]. An interface to access platform-specific registers from
userspace is provided via the Linux Model-Specific Register (MSR) module.
This allows the user to extract hardware performance counter events with an
unmodified Linux kernel. Likwid, used in this chapter, is a lightweight
performance-oriented tool suite for x86 M/MCP [136].

The following performance counters are used in this chapter.
INSTR_RETIRED_ANY counts the instruction retired which leave the

retirement unit. Such instructions have been executed and their results are
correct [137].
CPU_CLK_UNHALTED_CORE counts the number of accumulated clock

cycles while the core is not in a halt state. This performance counter is obtained
through clock cycle recording. If the clock frequency changes the number
of cycles will not be proportional to time. And halted states also affect the
accuracy of using this performance counter to represent time [138].
CPU_CLK_UNHALTED_REF counts the number of reference clocks at the

Time Stamp Counter (TSC) rate, while the core is not in a halt state. This event

5.3 proposed speedup models 76

is not affected by core frequency changes. It counts at the same frequency as
the TSC [138].

5.3 proposed speedup models

Speedup models usually assume that the workload has a single p. In real
systems, the overall workload usually consists of multiple tasks, including
system software (e.g. OS), and each task may exhibit a different parallelizability
and therefore different p. One potential method of RTM is the parallelizability-
aware optimization of performance and/or energy. For that, it is important
to treat individual applications and the system software separately. In this
section, we develop a new speedup model that calculates application speedup
and consider realistic system software overhead separately.

In the rest of this chapter, we deal with the case of a single application
running on a real system with system software at the same time. Expanding
to multiple concurrently running applications will be a future task.

5.3.1 Modeling Basics

We consider that the overall workload is the number of total instructions
executed by the system during the execution of any specific application.
The total number of instructions for Amdahl’s model (IAmd) when a specific
application is executed includes the fixed application instructions I plus the
system software instructions (∆I).

IAmd = I+∆I. (5.1)

While the total number of instructions for Gustafson’s model (IGus) when a
specific application is executed includes the I ′ and application instruction is:

IGus = I
′ +∆I. (5.2)

If the number of instructions I + ∆I in (5.1) and I ′ + ∆I in (5.2) can be
obtained, with a view to calculate speedup we need to find out IPS. In other
words, in addition to the number of instructions, we need to know the time
spent on executing these instructions, which usually implies instrumenting

5.3 proposed speedup models 77

both applications and system software for time monitoring. On the other
hand, Instructions per Clock (IPC) does not need the monitoring of time and
only requires counting the number of clock cycles spent on the execution. In
the next section we will explain how to obtain the relevant clock cycle, with
which IPC can be calculated for Amdahl’s and Gustafson’s speedup models as
follows:

IPCAmd = IPCI + IPC∆I =
I

C
+
∆I

C
, (5.3)

IPCGus = IPCI ′ + IPC∆I =
I ′

C
+
∆I

C
, (5.4)

where number of clock cycle (C) is the number of clock spent on the
execution. In a M/MCP system the estimation of effective IPCAmd and IPCGus
for a parallel workload given by (5.3) and (5.4) respectively can be challenging
as the instructions retired per core against their corresponding execution
cycles cannot be used to estimate an overall average IPCAmd and IPCGus. This
is because some cores execute parallel workloads independent of the other
cores, while the core that is in charge of spawning threads executes mostly
sequential, but also some parallel workloads. The execution of a workload
therefore causes participating cores to record different numbers of clock
cycles. We hypothesize that Cmax (recorded from the core with the highest
unhalted clock C value among all cores), generally gives a good indication of
the overlapped parallel execution times, measured by the time-stamp counter.
As such, the effective IPCAmd and IPCGus in (5.3) and (5.4) can be defined as:

IPCAmd =
I

CMax
+

∆I

CMax
, (5.5)

IPCGus =
I ′

CMax
+

∆I

CMax
, (5.6)

5.3 proposed speedup models 78

Our experiments in Sections (5.2) and (5.4) will show that (5.5) and (5.6)
can be used with confidence to model speedup. The resulting throughput
expressed by IPS as follows:

IPSI = IPCI · F, (5.7)

IPSI ′ = IPCI ′ · F, (5.8)

where clock frequency (F) F is the system operating frequency. This supports
the calculations of sequential and parallel execution time in (3.2) and (3.4).

5.3.2 Speedup Calculations

For Amdahl’s speedup, we can substitute IPC for IPS as the system frequency
is eliminated from the equation in case of the system running at the same
frequency, i.e.

SAmd =
IPSI(n)

IPSI
=
IPCI(n)

IPCI
, (5.9)

where IPCI and IPSI are the instructions per clock and instructions per
second, respectively in single core with full sequential workload, and IPCI(n)

and IPSI(n) are the instructions per clock and instructions per second,
respectively for given p and n configurations of a parallel application on an
M/MCP. In other words, speedup is also the ratio of the throughput achieved
by executing on n cores to the throughput achieved by executing on a single
core.

The Gustafson’s speedup is similar:

SGus =
IPSI ′(n)

IPSI
=
IPCI ′(n)

IPCI
, (5.10)

where IPCI ′(n)
and IPSI ′(n)

are the instructions per clock and instructions
per second, respectively for given p and n configurations of a parallel
application for Gustafson’s model on an M/MCP.

5.3 proposed speedup models 79

The Gustafson’s speedup can also be defined as:

SGus =
I ′

I
. (5.11)

In our model, we need both the number of instructions and the number
of clock cycles for calculating IPC. For the number of instructions, we use
INSTR_RETIRED_ANY as application workload I in (5.1) and I ′ in (5.2). For
the number of clock cycles we use CPU_CLK_UNHALTED_CORE as IPCI in
(5.3) and IPCI ′ in (5.4) which represent the accurate perfromance counter to
calculate IPC [138].

In Section 5.3 we showed that the number of cycles represents time.
CPU_CLK_UNHALTED_REF shows the number of cycles which includes
halted cycles, hence is closer to representing real execution time. In the real
world, halted cycles occur when the system has nothing to run. This occurs
when threads wait for interrupt thus the counting includes halted cycles in
real execution time [139, 140]. However, it is not always available in Intel, as
Intel focuses on unhalted clock for IPC calculations [138]. In our experiments,
we explore the use of unhalted clock to calculate speedup, and the outcome is
presented in Section 5.4.

In addition, hardware performance counters exist that provide power and
energy information. For instance, PWR_PKG_ENERGY counts the CPU energy
consumption [138]. In previous work, it has been shown that this performance
counter produces reliable results validated through direct measurements such
as DC instrumentation [141]. It is used in conjunction with the execution time
information inferred from unhalted clock performance counters in Section
(5.5.1) to derive all power and energy information. In this chapter we focus on
CPU energy which changes with p and disregard other energy consumption
which has weak correlations with these factors (e.g. memory energy).

From (3.3), it is possible to calculate speedup if t(1) and t(n) can be obtained.
However, this requires running a workload at least twice, with different core
configurations. To avoid having to run a workload more than once, time-
based calculations of p require the knowledge of the sequential and parallel
time, which requires instrumenting the code of a workload. By using the
performance counters listed above, however, it may be possible to obtain the
same functionality as instrumenting separate parallel and sequential time
monitoring, while only needing to monitor the start and end of a workload.
This means that there is no need to modify workloads in any way.

5.3 proposed speedup models 80

Even though we motivate our work to avoid time measurements, in our
experiments we use time-instrumented workload code when possible as well
as make pairs of runs with different numbers of cores. This helps demonstrate
the validity of our approach of avoiding direct time measurements through
comparisons.

5.3.3 Estimation of Parallelization Factor

Once the speedup of an application is known through (5.9) it can be used to
calculate Amdahl’s parallelization factor (pAmd) for Amdahl’s speedup model
from (3.3) as:

pAmd =
n · (1− SAmd)
SAmd · (1−n)

. (5.12)

This expression is used in Section (5.4.3) to calculate parallelization using
another reason for pulling hardware performance counters forward. Note that
the calculation for n > 1 gives negative numerator and denominator, thus it
gives positive parallelization value.

In the same manner we can calculate Gustafson’s parallelization factor (pGus)
for Gustafson’s speedup model form (3.6) as:

pGus =
(SGus − 1)

(n− 1)
. (5.13)

5.3.4 Average Power Consumption Models

In this chapter, the power consumption models are established under the
hypothesis that the idle power and leakage power are not zero. We use
hardware performance counters to calculate total power consumption, the
modeling of power consumption in M/MCP will explain with more details in
Section 5.5.1.

5.3.5 Power and Energy Normalized Performance

PNP is an established metric related to the power efficiency of systems. It is
simple to model the performance achievable at the same cooling capacity

5.3 proposed speedup models 81

by calculating performance per watt (Perf/Watt) [21]. PNP can be calculated
from dividing the system performance from (5.9) by the Wtotal:

PNPAmd =
IPSI(n)

Wtotal
. (5.14)

PNPGus =
IPSI ′(n)

Wtotal
. (5.15)

PNP model is the reciprocal of energy per instruction EPI because
performance is the reciprocal of execution time [21]. Thus, EPI can be
calculated from dividing the Wtotal by the system’s performance (5.9):

EPIAmd =
Wtotal

IPSI(n)
. (5.16)

EPIGus =
Wtotal

IPSI ′(n)
. (5.17)

As metrics, EPI and PNP can be limiting. For instance, if an execution
progresses extremely slowly but consumes very little energy, it can result
in good EPI and PNP numbers because it consumes almost zero power. On the
other hand, it may not get anything useful done. In effect, EPI and PNP promote
the minimization of energy but does not care much about performance. To
capture this concern the metric known as EDP [142] puts more emphasis on
the completion of tasks by explicitly incorporating delay.

EDPAmd =Wtotal · (
t(n)

I
)2. (5.18)

EDPGus =Wtotal · (
t(n)

I ′
)2. (5.19)

5.4 results and validation 82

5.3.6 Benchmark Applications

We use two methods to validate the extended models, the synthetic and
PARSEC benchmarks. We design the synthetic benchmark (described in Section
4.2.2) to experience the extended models with a control in p. Compared with
our synthetic benchmark, PARSEC benchmarks are closer to real applications
that typically exploit the parallelism provided by M/MCP systems. PARSEC is
described in Section 4.4. It consists of 12 applications representing a diverse
set of commercial and emerging workloads [131]. In this chapter we choose
9 PARSEC benchmarks having different parralelizabilties and memory usage
intensities, [131, 132, 143]. The input set used is ”native” (large enough for
stable outcomes) and the benchmarks chosen are bodytrack, blackscholes,
facesim, fluidanimate, freqmine, swaptions, streamcluster, canneal and dedup.
PARSEC benchmarks are executed at the base frequency on the Core i7

platform only (See Section 5.2.1).

5.4 results and validation

This section describes the model calculations and experimental outcomes. We
classify the calculations into fixed workload part I (for Amdahl’s model), scaled
workload I ′ (for Gustafson’s model) and extra workload ∆I, and demonstrate
the validations of execution time and speedup and the estimation of p.

5.4.1 System Software Instructions Calculation

In the first stage of our experiments, we use the Core i7 platform to find I, I ′

and ∆I. The synthetic benchmark application was run on all core configurations
from n = 1 to n = 4 and programmed p ranging from 0 to 1. The first observation
was that for all n = 1 experiments Core 0 showed exactly the same number of
instructions retired with no random variation, which is an indication that all
system workloads have been scheduled on idle cores (cores that do not have
applications running), and Core 0 has been exclusively running the application
workload I, whose size is 5.6E+09. I ′ is obtained by running the synthetic
benchmark as Gustafson’s model, the results show that the highest additional
workload occurs at high p.

Knowing I, we are able to calculate IPCI from (5.3) and the speedup based
on IPCI from (5.9) for Amdahl’s model. The results are presented in Figure

5.4 results and validation 83

5.1. Figure 5.1(a) shows the throughput, in IPS, that is achieved with the
application’s programmed p value ranging from 0 to 1 and the number of
cores ranging from 1 to 4. The maximum throughput is clearly achieved with
p = 1 and n = 4. It is important to note that with a programmed p of 0 (i.e.
non-parallelizable code), increasing the number of cores does not affect the
throughput, and with a single core, no matter what the programmed p is the
throughput is also constant. Figure 5.1(b) shows the speedup as a function of
n and p. It can be seen that the maximum speedup achievable with n = 4 and
p = 1 is close to 4, which shows that the synthetic benchmark does not have
hidden synchronizations and other effects limiting parallelizability, and the
hardware platform’s impact on IPC-based speedup is small.

(a) (b)

n n

Figure 5.1: Synthetic benchmark using variable n and p for Amdahl’s model (a)
Application instructions per clock. (b) Performance counter based speedup.

Knowing I ′ enables the calculation of IPCI ′ from (5.4) and the speedup
based on IPCI ′ from (5.10). In addition, the speedup can also be calculated
from (5.11). Figure 5.2(a) shows the throughput, in IPS, that is achieved with
the application’s programmed p value ranging from 0 to 1 and the number of
cores ranging from 1 to 4. As expected, different from Amdahl-type workloads
Gustafson-type workloads lead to linear speedup, as shown in Figure 5.2.

The second finding is that ∆I reduces with n and p increasing. We tested the
hypothesis that system workload ∆I is proportional to time, and confirmed
that ∆I/t(n) approximates to a constant with the average of 6.58E+04 and the
standard deviation of 9.53E+03.

Also, the system software workload is very small i.e. 1-2%. However, these
extra instructions can cause resource constraints and result in halt cycles. In

5.4 results and validation 84

our experiments we have observed a 1.55% increase of halt cycles for p = 0

and n = 1.

(a)

(c)

(b)

 n n

n

Figure 5.2: Synthetic benchmark using variable n and p for Gustafson’s model (a)
Application instructions per clock. (b) I ′. (c) Performance counter based
speedup.

In the second stage, we run PARSEC benchmarks; the applications run in all
core configurations from n = 1 to n = 4. In PARSEC we do not have programmed
p. The first observation is that the total instruction retired have fixed values for
each application, with small changes < 6%, the total instructions reduced with
n increasing and execution time decreasing. Thus, we use linear regression to
calculate fixed I and variable ∆I, where ∆I is a function of execution time and
number of cores n.

∆I = αt+βn. (5.20)

It confirmed that ∆I/t(n) approximates to a constant in most cases as shown
in Table 5.2, where the standard deviations tend to be much smaller than

5.4 results and validation 85

the averages. The benchmarks bodytrack, facesim, streamcluster, canneal and
dedup have a small changes in ∆I rather than blacksholes, freqmine, swaptions
and fluidanimate.

Table 5.2: System software workloads over execution time for different PARSEC

applications.

Name Average Standard Deviation

bodytrack 1.37E+09 4.15E+08

blackscholes 3.92E+08 1.47E+07

facesim 6.78E+08 2.33E+08

fluidanimate 6.66E+08 4.16E+08

freqmine 3.09E+08 4.36E+07

swaptions 3.12E+08 5.86E+07

streamcluster 4.88E+09 1.89E+09

canneal 3.44E+08 1.83E+07

dedup 4.79E+08 1.21E+08

5.4.2 Time and Speedup Validation

The results of model calculations and validation measurements of time and
speedup for Amdahl’s and Gustafson’s models are summarized in
Tables 5.3 and 5.4. Table 5.3 shows the validation results of the synthetic
benchmark of the Amdahl’s speedup estimated with performance counters
using (5.9), against the traditionally used time measurements. From Table 5.3,
two observations can be made. Firstly we validate the use of performance
counters by comparing the measured execution time with the time calculated
from (3.2) and (5.7) by using the programmed p and the measured IPC and I.
We then validate the use of performance counters for Amdahl’s speedup
estimation by comparing the measured speedup, as the execution time ratio
(t(1)/t(n)), to the IPC-based speedup calculated from the performance
counters according to (5.9) and (5.10). The differences between performance
counter results and time measurement results are small, showing that
performance counters can be used to replace time measurements, thus
avoiding having to run an application twice.

In addition, we validate the use of performance counters for Gustafson’s
speedup estimation. Table 5.4 shows the validation results of synthetic

5.4 results and validation 86

benchmark of the Gustafson’s speedup estimated with performance counters
using (5.10) and (5.11). Table 5.4 again shows small errors.

Table 5.3: Cross-validation results for I using synthetic benchmark [4].

Time, ms Speedup

p n M
ea

su
re

d

C
al

cu
la

te
d

Er
ro

r
%

M
ea

su
re

d

C
al

cu
la

te
d

Er
ro

r
%

C
or

e
i7

0.1 2 3492 3492 0.01 1.05 1.052 0.05

0.1 3 3430 3430 0.03 1.07 1.071 0.03

0.1 4 3400 3400 0.01 1.08 1.081 0.02

0.9 1 3675 3676 0.03 1 0.999 0.02

0.9 3 1470 1570 0.03 2.5 2.501 0.09

0.9 4 1205 1194 0.86 3.05 3.074 0.84

X
eo

n

0.1 1 521 534.171 2.47 1 1.000 0.00

0.1 4 483 494.108 2.25 1.078 1.080 0.36

0.1 12 474 485.205 2.31 1.099 1.100 0.01

0.9 2 294 293.794 0.07 1.772 1.666 2.62

0.9 8 115 113.511 1.31 4.530 3.331 3.83

0.9 12 95 93.4799 1.63 5.484 3.747 4.11

X
eo

n
Ph

i

0.1 8 29939 30540.26 1.97 1.118 1.118 2.06

0.1 16 29744 30331.08 1.94 1.126 1.126 2.09

0.1 61 30182 30176.76 0.02 1.109 1.108 0.05

0.9 1 32853 33468.78 1.84 1.019 1.019 1.91

0.9 4 10655 10877.35 2.04 3.143 3.145 2.23

0.9 32 4372 4288.18 1.95 7.660 7.848 0.55

Table 5.4: Cross-validation results for fixed time using synthetic benchmark

Speedup
p n Theoretical Calculated Error %

C
or

e
i7

0.1 2 1.1 1.12 2.66

0.1 3 1.2 1.23 3.31

0.1 4 1.3 1.34 3.12

0.9 1 1 1 0.00

0.9 3 2.8 2.8 0.04

0.9 4 3.7 3.73 0.82

5.4 results and validation 87

In these experiments, the errors are generally small; however, they increase
to nearly 8% when p = 1. This is expected as the programmed p value does
not correspond to the real p in the platforms. The observation is that real
platforms cannot keep up with the programmed parallelization, presumably
due to extra interactions between components.

However, the speedup based on unhalted clock calculation of IPC matches
the theoretical speedup from Amdahl’s law (3.3) with virtually no error <0.5%.
This result can be found in the full set of data and calculations [4]. It indicates
that the discrepancy between the measured speedup and the unhalted clock-
based speedup is due to halting of the cores. Additionally, this property can be
exploited to estimate the application software p value as discussed in Section
5.4.3. Similar discussions can be made for the Gustafson’s type workload case.

For PARSEC benchmarks, we run the 9 PARSEC applications on the Intel
Core i7 platform at its base frequency of 3.7 GHz. We collect the appropriate
hardware performance counters in Section 5.2.2, so that the speedup can
be calculated by (5.9). Figure 5.3 shows the speedup calculations for these
benchmarks. The performance counter based speedup calculations show good
cross-validation with general execution time-based speedup calculations. The
full calculations of PARSEC including IPS, power, energy, PNP and EDP can be
found in Appendix C. The error ratio does not exceed 6.5%. Finally, The p can
be calculated as explained in Section 5.4.3.

Figure 5.3: Performance counter based speedup for PARSEC benchmark applications.

5.4 results and validation 88

5.4.3 Estimating the Parallelization Factor p

The effectiveness of scaling to more cores in order to obtain more speedup is
related to the value of the p (see Section 5.3). In general, from (3.3) and (3.6),
scaling to more cores may not improve speedup for a smaller p as much as for
a larger p. If it is possible to determine the p value of running any task on any
platform, this knowledge may be useful for RTM task to core scheduling. This
may be called p-aware RTM.
p can be estimated if the speedup is known. This can be done for any

known n through (5.12) and (5.13). It is also possible to determine p using data
from experiments based on multiple n configurations through the method
of regression, based on such criteria as least squares [144]. Regression has
been used for RTM optimization based on learning for M/MCP [145] where
the models are unknown. Given (5.12), the motivation of using potentially
expensive regression during RTM is weaker here. However, we first need to
establish that (5.12) and (5.13) provides the same quality as regression-based
methods.

The other question we must consider is the avoidance of instrumenting
applications for time. Can we replace time measurements with clock-related
performance counter data for p estimation? In this section we attempt to
estimate p from speedup derived from both clock performance counters and
from direct time measurements, using both regression and (5.12) calculations,
and compare the results. These again cover both the synthetic as well as
PARSEC benchmarks.

Tables 5.5 and 5.6 show the results for the synthetic benchmark used for
Amdahl’s and Gustafson’s speedup models respectively. Here it is regarded
as desirable if the estimated pLS values obtained with least squares regression
and pEQ values obtained with (5.12) and (5.13) are closer to the software-
programmed pSW set within the benchmark. It can be observed that the
differences among regression and (5.12) are small with pEQ tracking pLS

closely in both time measurement and clock derived cases. It can also be
observed that pLSC (least squares clock-based p) values are very close to pLST
(least squares time based p) values and pEQC (equation-clock based p) values
are very close to pEQT (equation-time based p) values as shown in table 5.5 for
Amdahl’s speedup model, meaning that using clock performance counters is
valid. And finally, all the estimated p values are very close to the programmed
p values set in the benchmark. In other words, this shows that 1) estimating
p from speedup is a valid approach and 2) using clock performance counter

5.4 results and validation 89

data to replace time instrumentation is a valid approach, and 3) our equations
produce as good results as the much more expensive linear regression method.
Table 5.6 shows these are also true for Gustafson’s type workloads.

Table 5.5: p calculations for synthetic benchmark using Amdahl’s speedup model [4].

pSW pLST pEQT (5.12) pLSC pEQC (5.12)
C

or
e

i7
0.1 0.0994 0.0993 0.0999 0.0998

0.4 0.3990 0.3996 0.3990 0.3999

0.7 0.6840 0.6834 0.6990 0.6999

0.9 0.8970 0.8985 0.8820 0.8999

X
eo

n
Ph

i 0.1 0.0900 0.0892 0.1002 0.1002

0.3 0.2940 0.2912 0.3002 0.3001

0.7 0.7000 0.6852 0.7001 0.6999

0.9 0.8905 0.8849 0.9000 0.9001

X
eo

n
Ph

i 0.1 0.1008 0.1086 0.1007 0.1087

0.4 0.4003 0.4007 0.4012 0.4015

0.5 0.5037 0.5038 0.5038 0.5036

0.9 0.8892 0.9020 0.9008 0.9029

Table 5.6: p calculations for synthetic benchmark using Gustafson’s speedup model.

pSW pLSC pEQC (5.13)

C
or

e
i7

0.1 0.099 0.1
0.4 0.399 0.4
0.7 0.699 0.7
0.9 0.889 0.9

Table 5.7 shows the results for PARSEC benchmarks, whose intrinsic p

values are unknown and not explicitly set within the programs. They also
have more memory access which might introduce unpredictable waiting and
synchronization effects making their p values potentially different from run to
run. As a result, it is not possible to compare estimated p values to a reference
value and the comparison tries to answer two questions: Is it a valid approach
to use (5.12) to avoid regression and is it a valid approach to make use of
clock performance counter data to avoid instrumenting applications for time
monitoring. The results show that the answer is yes for both questions with
differences between the approaches generally being very small.

5.5 parallelization-aware energy efficient computing 90

Table 5.7: p calculations of PARSEC benchmarks.

Benchmark pLST pEQT (5.12) pLSC pEQC (5.12)

bodytrack 0.981 0.925 0.937 0.965

blackscholes 0.841 0.852 0.868 0.872

facesim 0.900 0.920 0.941 0.948

fluidanimate 0.895 0.902 0.927 0.926

freqmine 0.985 0.984 0.985 0.986

swaptions 0.990 0.993 0.994 0.995

streamcluster 0.859 0.858 0.884 0.873

canneal 0.757 0.762 0.774 0.776

dedup 0.940 0.927 0.953 0.938

As a result, we propose to make use of (5.12) and (5.13) directly to estimate
p from speedup estimated from clock performance counters in RTM p-aware
scaling management.

5.5 parallelization-aware energy efficient computing

As mentioned in Section 5.4.3, if the p value of an application running on a
platform is known, RTM decisions may be made based on this knowledge to
improve speedup. Beyond just speedup, Shafique et al have shown that in
dark silicon operations, the p values of workloads need to be considered to
arrive at optimal resource allocations through such techniques as dark silicon
patterning [117, 115, 116].

In this section, we investigate whether it is possible to optimize energy
efficiency with a knowledge of p. For this purpose experiments are carried
out to relate metrics of energy efficiency to p. We don’t make dark silicon
assumptions in this study. Parallelization in dark silicon will be a future topic
of research.

5.5.1 Power and Energy Data

Energy consumption data is collected from experiments described in the
preceding sections using the method described in Section 5.2.2. The energy
performance counter PWR_PKG_ENERGY gives total energy consumed by all
cores. The study in this chapter does not include uncore power calculations

5.5 parallelization-aware energy efficient computing 91

[72] which may be a topic for future work. We calculate the total power
consumption of cores Wtotal by dividing energy by the realistic execution time
obtained by CPU_CLK_UNHALTED_REF.

In this chapter, we aim to model Wtotal from the collected data by specific
hardware performance counters. Basically, we consider that total power Wtotal
includes total background power (idle switching power) W0, total effective
power of homogeneous system (W(n)) and leakage power (Wl) [146].

Wtotal =W0 +W(n) +Wl, (5.21)

In general Wtotal equation can be expressed as [72]:

Wtotal = a ·C · V2 · F+Wl, (5.22)

where activity factor (a), switch capacitance (C). The W0 and W(n) are the
function of supply voltage (V) and F, while Wl is constant.

In this chapter we establish full-domain DVFS power model. In addition, we
model per-core DVFS [69] later in this section to cover lower power states such
as shutting down individual idle cores.

The steps taken to find all models are explained as follows. Firstly, we run
a full workload into the Core i7 processor with a wide available range of
frequency scaling to collect the voltage readings. We use the Linux-monitoring
sensor lm_sensor, which is the Linux tool for monitoring voltage as shown
in Table. 5.8.

Secondly, we use (5.22) in Matlab curve fitting to find Wl for Amdahl’s and
Gustafson’s models. We use the collected power data for all available different
F, p and n.

The curve fitting for Wl produces good quality results, with best R-squared
value > 0.994. The results of Wl is virtually constant for all p, n and F as
expected. The average = 10.349 with standard deviation = 0.113 for Amdahl’s
speedup, and the average = 10.14 with standard deviation = 0.437 for
Gustafson’s model.

5.5 parallelization-aware energy efficient computing 92

Table 5.8: Voltage Frequency Scaling Readings

Frequency - GHz Voltage - Volt Power - Watt
3.7 1.1 49.683

3.5 1.07 45.785

3.3 1.05 42.263

3.2 1.04 40.668

3.0 1.02 37.111

2.8 0.99 34.209

2.6 0.97 31.490

2.4 0.94 29.075

2.3 0.93 27.754

2.1 0.91 25.234

1.9 0.89 23.198

1.7 0.86 21.157

1.6 0.85 20.492

1.4 0.82 18.886

1.2 0.81 17.181

The power models of M/MCP are the functions of p, n and F. Thus, finally,
we use the experimental data to curve-fit by Matlab and derive the power
equations for extended Amdahl’s and Gustafson’s models for all p, n and F.
The curve fitting produces good results with R-squared values = 0.994 and
= 0.989 for Amdahl’s and Gustafson’s models respectively. These models are
given by (5.23) and (5.24).

WAmd = V2 · F[A0 +An · (
1

(1− p) + p
n

)] +Wl. (5.23)

(5.23) is the Amdahl’s total power consumption (WAmd). The product of
activity factor by capacitance for idle power consumption (A0) = 3.506E-09

and the product of activity factor by capacitance for effective power (An) =
1.203E-09.

WGus = V
2 · F[A0 +An · ((1− p) + p ·n)] +Wl. (5.24)

5.5 parallelization-aware energy efficient computing 93

(5.24) gives the Gustafson’s total power consumption (WGus) where A0 =
3.009E-09 and An = 1.337E-09.

Fine grain supply power adjustments, down to per-core DVFS and the
turning off of individual cores, have been suggested [69]. Per-core DVFS

allowing individual cores to be turned off are not available on our
experimental platform but would provide much greater flexibility of control
for power and performance optimization. Here we investigate what may
happen if per-core DVFS is supported by our experimental platform. The
modeling techniques are generally applicable to any future system with
per-core DVFS and the on-demand turning off of individual cores.

The power calculations in (5.23) and (5.24) describe W0, W(n) and Wl

individually. Thus, it is possible to model each independently. We calculate
the activity factor multiplied to capacitance for per-core idle power as
A0i = A0/nmax, and the per-core leakage power as Wli = Wl/nmax. nmax is
the maximum number of cores in the system. Consequently, when only n out
of nmax cores are turned on, the total power becomes:

Wtotal = V
2 · F[

n∑
i=1

A0i +An · (S(n))] +
n∑
i=1

Wli . (5.25)

(b) (a)

n n

Figure 5.4: Power consumption for synthetic application of extended Amdahl’s power
model using: a) high p = 0.9, b) low p = 0.1.

Figures 5.4 and 5.5 show the Amdahl’s and Gustafson’s power
consumption respectively in Intel Core i7 (without per-core DVFS) (i.e. idle
cores are not turned off) for the synthetic benchmark. Applications that have

5.5 parallelization-aware energy efficient computing 94

high p consume high power in high frequency scaling and maximum
numbers of cores as shown in Figures 5.4(a) and 5.5(a) for p = 0.9, whereas
applications with low p consume lower power as shown in Figures 5.4(b) and
5.5(b) for p = 0.1. We observe the linear behavior of Gustafson’s power model
which emphasizes the linearity of Gustafson’s speedup model rather than
Amdahl’s speedup model.

(a) (b)
n n

Figure 5.5: Power consumption for synthetic application of extended Gustafson’s
power model using: a) high p = 0.9, b) low p = 0.1.

(b) (a)
n n

Figure 5.6: Energy consumption for synthetic application of extended Amdahl’s
energy model using: a) high p = 0.9, b) low p = 0.1.

Figures. 5.6 and 5.7 show the energy consumption of extended Amdahl’s
and Gustafson’s speedup models respectively in Intel Core i7 (without per-core
DVFS) for the synthetic benchmark. Applications that have high p in Amdahl’s
model consume less energy in high frequency scaling and maximum numbers
of cores as shown in Figure 5.6(a) for p = 0.9, whereas applications with low p

consume higher energy as shown in Figure 5.6(b) for p = 0.1. We observe that
for low p the best energy consumption is obtained with 3 - 4 cores.

5.5 parallelization-aware energy efficient computing 95

(a) (b)

n n

Figure 5.7: Energy consumption for synthetic application of extended Gustafson’s
energy model using: a) high p = 0.9, b) low p = 0.1.

Applications that have high p in Gustafson’s model consume low energy in
1 core as shown in Figure 5.7(a) for p = 0.9, whereas applications with low p

consume lower energy in 1 core as shown in Figure 5.7(b) for p = 0.1.
These results show that even without per-core DVFS, the p may be significant

in a task to core mapping controls when optimizing energy.

5.5.2 Power Normalized Performance (PNP) and Energy-Delay Product (EDP)

Both PNP and EDP are metrics for energy efficiency, with different emphasizes,
as discussed in Section 5.3.5. Here we calculate PNP from (5.14) and (5.15),
while we EDP from (5.18) and (5.19). Figures 5.8 and 5.9 show PNP of the
synthetic benchmark for extended Amdahl’s and Gustafson’s models in full-
domain DVFS. The best performance is obtained from maximum number of
cores in high and low p. We observe that Gustafson’s model achieves highest
performance over power in the same system.

(a) (b)

n n

Figure 5.8: PNP results in full-domain DVFS for synthetic application of extended
Amdahl’s speedup model using: a) high p = 0.9, b) low p = 0.1.

5.5 parallelization-aware energy efficient computing 96

(b) (a)

n n

Figure 5.9: PNP results in full-domain DVFS for synthetic application of extended
Gustafson’s speedup model using: a) high p = 0.9, b) low p = 0.1.

On the other hand, Figures 5.10 and 5.11 show PNP of the synthetic
benchmark for extended Amdahl’s and Gustafson’s models in per-core DVFS.

(a) (b)

n n

Figure 5.10: PNP results in per-core DVFS for synthetic application of extended
Amdahl’s speedup model using: a) high p = 0.9, b) low p = 0.1.

(a) (b)

n n

Figure 5.11: PNP results in per-core DVFS for synthetic application of extended
Gustafson’s speedup model using: a) high p = 0.9, b) low p = 0.1.

5.5 parallelization-aware energy efficient computing 97

In all cases, it is evident from our data that with up to 4 cores, the optimal
point of operation, even with per-core DVFS, is to run just a single core.
However, with high p for PNP, it can be seen from Figure 5.11(a) that if there
are more than 4 cores, it is possible that p-aware optimization may turn out to
be more relevant.

Figures 5.12 and 5.13 show the calculation of EDP in full-domain DVFS of
synthetic benchmark for Amdahl’s and Gustafson’s models respectively. For
both Amdahl’s and Gustafson’s models, in high and low p the lowest EDP is
obtained from maximum numbers of cores as shown in Figures 5.12 and 5.13.

(a) (b)

n n

Figure 5.12: EDP results in full-domain DVFS for synthetic application of extended
Amdahl’s speedup model using: a) high p = 0.9, b) low p = 0.1.

(a) (b)

n n

Figure 5.13: EDP results in full-domain DVFS for synthetic application of extended
Gustafson’s speedup model using: a) high p = 0.9, b) low p = 0.1.

Figures 5.14 and 5.15 show EDP of the synthetic benchmark for extended
Amdahl’s and Gustafson’s models in per-core DVFS.

5.6 conclusions and discussions 98

(b) (a)

n n Number of Cores n

Figure 5.14: EDP results in per-core DVFS for synthetic application of extended
Amdahl’s speedup model using: a) high p = 0.9, b) low p = 0.1.

(a) (b)

n n

Figure 5.15: EDP results in per-core DVFS for synthetic application of extended
Gustafson’s speedup model using: a) high p = 0.9, b) low p = 0.1.

Figures 5.14 and 5.15 show that with per-core DVFS running Amdahl’s and
Gustafson’s type workloads, the optimal task to core decision is p-dependent.
For different values of p, the best task to core mapping decisions are different.
This shows the relevance of p-aware optimization, already with a system
having only 4 cores.

The data presented in this section shows that optimal energy efficiency, as
measured in either metric, may be a function of p. As a result, the idea of
parallelization-aware energy-efficient computing is valid, and we propose to
study more examples and develop optimization methods that may be used at
RTM as part of our immediate future work.

5.6 conclusions and discussions

This chapter is the first attempt to address the problem of making use of
Amdahl’s and Gustafson’s models without knowing the p and without

5.6 conclusions and discussions 99

instrumenting applications for time monitoring. Performance counters are
proposed as a solution to this problem. Speedup can be indicated by IPS data
from before and after parallelization rather than directly from time delays.
And by using IPC in place of IPS we make it possible to use instruction and
clock performance counters for calculating speedup.

In this chapter, we also solve the problem of differentiating application
instructions from system software instructions and discover the behavior of
typical system software instructions.

Extensive cross-validations have been performed by comparing model-
calculated speedup with speedup derived from the measured time, with small
errors shown. The maximum error, which rarely occurs, is 8%. We followed the
performance counter speedup model to calculate PARSEC benchmark speedup,
the outcomes show a sound error of no more than 6.5% related to results
derived from measured time.

We also propose a method of determining p once speedup is known, and
this is cross-validated by comparing with the programmed p values in our
experimental benchmark with very small errors 6 3.26%. Furthermore, the p
of PARSEC benchmarks are calculated via the same model.

Based on these parallelization and speedup models we developed models
for power, energy, PNP and EDP to explore the energy efficiency of core scaling.

The extended power models of M/MCP in this work achieve good validations
with minimum errors 6 4.1%. These models can be used to extended power
calculations of EDP and PNP.

We hypothesize that the speedup, parallelization, and EDP models
developed in this chapter will give rise to a new method of RTM system
control optimizing speedup and/or energy efficiency. This may be called
parallelization-aware RTM for performance and/or efficiency. We will focus
on this direction in our future work.

6
C O N C L U S I O N S A N D F U T U R E W O R K

6.1 summary and conclusion

The ongoing developments in scaling technology are enabling increases in the
number of cores in the same die area. The trends of performance
improvements and reduction in power/energy consumption are continuing
in M/MCP systems. This leads to some challenges in managing
performance-energy tradeoffs for modern and future M/MCP systems. In the
past, important ideas were presented to model M/MCP systems by speedup
models, such as Amdahl’s law which is the most familiar model. It calculates
speedup by comparing the execution of a fixed workload in a single core with
the same workload in a M/MCP system. Many studies followed Amdahl’s law
and have developed methods to improve performance calculations such as
Gustafson’s model which considers the increase in workload in fixed
execution time, corresponding to core numbers, and Sun-Ni’s model which
considers changes in workload size and execution time based on the
capability of memory accesses. In addition, the Hill-Marty model developed
the assumption of Amdahl’s law by considering the performance of a
specified area of BCE to cover M/MCP heterogeneity.

The work in this thesis has improved speedup models based on the
understanding of the scalability of the M/MCP system by extending the
classical Amdahl’s law, Gustafson, and Sun-Ni in homogeneous and
heterogeneous M/MCP. In addition, a novel method is proposed to model
software parallelization factor based on hardware performance counter
readings. The presented models extend the principles of Hill-Mary models to
cover more general forms of heterogeneity. Furthermore, the presented
models are shown to be useful for the study of load balancing quality which
is related to speedup. All models derived in this thesis are useful for platform
designers, computer, and software engineers, as well as for system level
software developers.

The extended models in this thesis can be used for improvements in both
software and hardware in relation to M/MCP. In the software field, the
programmers can consider several techniques to improve their codes such as

100

6.1 summary and conclusion 101

load balancing, task migration, and core affinity. Also, parallelization is the
most important parameter that should be considered. In addition, the
electronics and computer designer in the hardware field can test different
types of homogeneous and heterogeneous core configurations with diverse
architectures in order to improve energy efficiency of their designs. In
addition, FPGAs can be used as an attractive alternative for implementing
computational-rich applications by design a part of hardware to perform the
heavy number crunching. Depending on the expected data flow, our models
may be extended to cover a greater range of parallelism including pipelining
in addition to M/MCP parallelism, leading to being useful for more complex
systems with both inter-core and intra-core parallelism.

The work in this thesis can be divided into two main parts, the first of
which extends the classical speedup models to apply to the range of
heterogeneous system configurations that can be described as the normal
forms of heterogeneity. A valid cross-platform performance comparison
model using workload measures in workload items instead of instructions is
built, and power calculations are implemented in terms of energy per
workload item. By moving away from the ISA-specific instructions to
ISA-independent workload items, all models are valid and can be applied to
different types of heterogeneity such as CPU and GPU. The extended models
have been demonstrated using real platforms in comparison to the original
models. They include substantial additional elements, such as the distribution
of workload between heterogeneous cores and various modes of workload
scaling. Moreover, this thesis has addressed the issue of power modeling by
calculating power dissipation for the respective homogeneous and
heterogeneous speedup models.

The subsequent practical work described in this thesis includes extensive
experiments on many different types of CPU and CPU−GPU systems relating
to model validation using synthetic and real applications. A synthetic
benchmark in a controlled environment has been used to validate the models.
The accuracy of the models has been demonstrated by the results of
experiments which shows that the models supply deeper insights and clearly
explain the effects of different system parameters on performance and energy
scaling in various heterogeneous configurations. The heterogeneous
Amdahl’s speedup validations with equal-share workload present accurate
results with low errors (not exceeding 1.13%) in all available core
configurations. In addition, the power dissipation outcomes for the same
speedup model present accurate result with average absolute error = 1.32%

6.1 summary and conclusion 102

and do not exceed 5.57% in the worst case. The validations of heterogeneous
Amdahl’s speedup with a balanced workload show low error 6 1.26%.
Furthermore, the power dissipation for the same model present maximum
error 6 4.63% and average absolute error = 1.2%. Side by side, the
comparison between balanced and equal-share results show a gain in the
speedup, but also power increase, EDP can have up to 30% reduction for
balanced execution. The speedup validations for Gustafson’s model with
equal-share workload and classical workload scaling present accurate
outcomes with the absolute error not exceeding 0.49%. Power dissipation
results for Gustafson’s law show low average absolute error = 1.65% with
error = 6.23% in the worst case. Furthermore, Gustafson’s model with
equal-share workload and purely parallel workload scaling give accurate
outcomes for validations. The largest absolute error of 3.21% is observed for
one case, while the other errors do not go above 1.06%. The average absolute
error is 1.96% across all core combinations for power dissipation outcomes for
Gustafson’s model with equal-share workload and purely parallel workload
scaling, and the errors do not exceed 5.21%.

In addition, a series of experiments involving PARSEC benchmarks are
conducted and a quantitative metric for the qualities of load balancing is
proposed. The modeling method supplies quantitative guidelines for load
balancing quality to compare the experimental results. The results show that
the Linux load balancer does not always provide high-quality results. It may
even in some cases produce worse results than the naïve equal-share approach.
This study explains that by using pipelines application-specific load balancing
can achieve much better results close to the optimum theoretical results from
the models.

In addition, a large number of validation experiments have been made
on OpenCL devices. The experiments use the following the number of cores
for the integrated GPU (IntGPU): 0, 8, 64, 256. Nvidia GPU is run with the
following core numbers: 0, 8, 64, 256, 1024; however, for log the upper limit
is reduced to 64 as the higher degree of parallelization is not achievable in
Nvidia for this computation. The speedup validation for Amdahl’s law with
equal-share workload presents the average absolute error = 1.5% across all
tested core combinations. The largest absolute error = 9.0% is observed for the
case of 256 IntGPU and 64 Nvidia cores. In addition, the speedup validation
for Amdahl’s law with balanced workload presents the average absolute error
= 1.5% across all tested core combinations. The largest absolute error = 9.3%
is observed for the case of 256 IntGPU and 64 Nvidia cores. The comparison

6.1 summary and conclusion 103

between balanced and equal-share results showing the speedup gain in the
balanced workload.

The second part of the work in this thesis represents the first attempt to
extend the use of Amdahl’s and Gustafson’s speedup models without
instrumenting applications for time monitoring as well as without knowing
the parallelization factor p. This part of the study has tackled these problems
by using hardware performance counters. This work focuses on extending
homogeneous speedup models for performance and energy calculations as
well as deriving novel parallelization factor p models. The performance
calculations are performed by using an IPS scale which is also used to
calculate the speedup before and after parallelization rather than using time
delays. Furthermore, the study finds that IPC can be used instead of IPS in
order to calculate speedup, and it is possible to use the clock and instruction
retired hardware performance counters to calculate speedup. In addition, the
problem of differentiating application instructions from system software
instructions has been solved, and the behavior of system software instructions
has been investigated. Alongside the parallelization and speedup models, a
new method of power modeling has been developed based on the speedup
models. Also, the extended models for energy, PNP and EDP have been
explored to cover the energy efficient computing of many-core scaling.

Extensive sets of experiments have been designed and performed for all
methods in the second part of the work. Cross-validations have been
performed by comparing the derived speedup based on execution time
measurements with the model-calculated. The validation shows small errors,
the maximum errors occur rarely at 6 8%. Additionally, the performance
counter speedup models have been used in order to calculate PARSEC

benchmark speedup, the results show low errors from the measured time of
6 6.5%.

A method of determining the parallelization factor p once speedup is known
has been proposed. The cross-validation of this approach has been established
by comparing the results using this method with the programmed p values in
our synthetic benchmark and the outcomes show small errors of 6 3.26%. In
addition, the parallelization factors p of the PARSEC benchmarks are calculated
using the same method.

The calculations of the derived theoretical power model provide very
accurate results in comparison with the experimental results. The calculations
appear to be highly accurate with low error 6 4.1%.

6.2 future work 104

6.2 future work

Different research approaches can be used employing the extended speedup
and parallelization models proposed in this thesis. Some of the research
directions that can extend the present work described in this thesis are
explained in this section.

The speedup and parallelization models as well as PNP and EDP models
that have been developed in this thesis can provide guidance to designing
parallelization-aware RTM algorithms for the optimization of speedup and
energy efficiency based on the parallelization factor p. Additional techniques
can be included into the RTM algorithms, such as task migration and load
balancing to improve energy efficient system.

The speedup models may be further extended to include calculations of the
effect of network access time in a distributed network or NoC.

The models proposed in this thesis can be modified to include memory
wall effects, particularly for a single and concurrent application which can be
classified based on memory usage for different types of application
management.

One important motivation for such more precise modeling into parts of
applications is using the models in RTM towards the optimization of goals
related to performance and/or power dissipation. It is more typical for RTM
control decisions to be made at regular intervals of time, unrelated to the start
and completion of whole applications, hence the importance of phases within
each application.

The parallelization factor models in this thesis can help electronics and
computer designers to manage dark silicon calculations in M/MCP. For
instance through task partition and mapping decisions. Goals of such
management and control may include the reduction of power and managing
the trade-offs between thermal design power diversity and reliability.

Part II

Thesis Appendices

105

A
B E N C H M A R K A P P L I C AT I O N

a.1 synthetic benchmark

#define _GNU_SOURCE

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <math.h> // compile with -lm

#include <pthread.h> // compile with -lpthread

#include <time.h> // compile with -lrt

struct thread_info {

pthread_t thread_id;

int thread_num;

};

int verbose = 0;

struct thread_info *tinfo;

static void* thread_start(void *arg) {

int n = *(int*) arg;

double x = 0.0;

long i, j;

for(j=0; j<n; j++)

for(i=0; i<4000L; i++) {

x = sqrt(3.0*x+4.0);

}

return NULL;

}

unsigned long print_time(unsigned long prev_tstamp, const char* prompt)

{

struct timespec t;

unsigned long tstamp;

clock_gettime(CLOCK_REALTIME, &t);

tstamp = (t.tv_sec)*1000L + (t.tv_nsec)/1000000L;

printf("%s:\t%lu\n", prompt, tstamp - prev_tstamp);

106

A.1 synthetic benchmark 107

return tstamp;

}

void parallelize(int num_threads, char *affinities, void *(*start_

routine) (void *), void *arg) {

int tnum, err;

pthread_attr_t attr;

cpu_set_t cpus;

pthread_attr_init(&attr);

for(tnum = 0; tnum < num_threads; tnum++) {

tinfo[tnum].thread_num = tnum + 1;

// set affinity attribute

CPU_ZERO(&cpus);

CPU_SET((int)(affinities[tnum]-48), &cpus);

err = pthread_attr_setaffinity_np(&attr, sizeof(cpu_set_

t), &cpus);

if(err)

printf("*error(%d): pthread_attr_setaffinity_np,

%d\n", __LINE__, err);

// start thread

err = pthread_create(&tinfo[tnum].thread_id, &attr,

start_routine, arg);

if(err)

printf("*error(%d): pthread_create, %d\n", __

LINE__, err);

}

// wait for all threads to finish

for(tnum = 0; tnum < num_threads; tnum++) {

pthread_join(tinfo[tnum].thread_id, NULL);

}

}

int main(int argc, char *argv[])

{

pthread_t t0;

cpu_set_t cpus;

int num_threads, err, opt;

int npar, nseq, r;

int repeat = 5;

int ntotal = 10000;

float p = 0.5;

A.1 synthetic benchmark 108

float adjust = 1.0; // parallelization overread adjustment, 1 =

no adjustment

char* affinities = "01";

int t0_affinity = 0;

unsigned long prev_tstamp = 0L;

unsigned long start_tstamp;

// parse arguments

while((opt = getopt(argc, argv, "vj:p:w:r:z:c:")) != -1) {

switch (opt) {

case ’v’:

verbose = 1;

break;

case ’p’:

p = atof(optarg);

break;

case ’j’:

adjust = atof(optarg);

break;

case ’w’:

ntotal = atoi(optarg);

break;

case ’r’:

repeat = atoi(optarg);

break;

case ’z’:

t0_affinity = atoi(optarg);

break;

case ’c’:

affinities = malloc(strlen(optarg));

strcpy(affinities, optarg);

break;

default:

fprintf(stderr, "Usage: %s [-v] [-p

parallel_ratio] [-j adjust] [-w

workload] [-r repeat] [-z parent_

affinity] [-c child_affinities]\n",

argv[0]);

exit(EXIT_FAILURE);

}

}

A.1 synthetic benchmark 109

// init

npar = (int)(ntotal*p*adjust);

nseq = (int)(ntotal*(1.0-p));

num_threads = strlen(affinities);

printf("%d threads...\n", num_threads);

tinfo = calloc(num_threads, sizeof(struct thread_info));

// set thread0 affinity, also used for sequential operations

t0 = pthread_self();

CPU_ZERO(&cpus);

CPU_SET(t0_affinity, &cpus);

err = pthread_setaffinity_np(t0, sizeof(cpu_set_t), &cpus);

if(err)

printf("*error(%d): pthread_getaffinity_np, %d\n", __

LINE__, err);

prev_tstamp = print_time(prev_tstamp, "Start");

start_tstamp = prev_tstamp;

for(r=0; r<repeat; r++) {

// execute parallel workload

parallelize(num_threads, affinities, &thread_start, &

npar);

if(verbose)

prev_tstamp = print_time(prev_tstamp, "Parallel

");

// execute sequential workload

thread_start(&nseq);

if(verbose)

prev_tstamp = print_time(prev_tstamp, "

Sequential");

}

print_time(start_tstamp, "Total");

return 0;

} �

B
D ATA S E T

This appendix provides a full set of validation data for the Odroid XU3

platform (Figures B.1–B.10) and OpenCL results obtained from Dell XPS 15

laptop (Figures B.11–B.13).

b.1 odroid xu3

Figure B.1 presents the speedup validation for Amdahl’s law with equal-share
workload. The largest absolute error of 1.13% is observed for the case of 3 A7

and 4 A15 cores running log with p = 0.9. The average absolute error is 0.20%
across all core combinations. Power dissipation results are for Amdahl’s law
are shown in Figure B.2. The largest absolute error of 5.57% is observed for the
case of 3 A7 and 4 A15 cores running int with p = 0.9. The average absolute
error is 1.32% across all core combinations.

Figure B.3 presents the speedup validation for Amdahl’s law with balanced
workload. The largest absolute error of 1.26% is also observed for the case of
3 A7 and 4 A15 cores running log with p = 0.9. The average absolute error is
0.19% across all core combinations. Power dissipation results are for balanced
Amdahl’s law are shown in Figure B.4. The largest absolute error of 4.63% is
observed for the case of 2 A7 and 4 A15 cores running log with p = 0.9. The
average absolute error is 1.20% across all core combinations.

Figure B.9 displays balanced and equal-share results side by side with
the numbers showing the speedup gain, but also power increase (p = 0.9).
Energy-delay product can have up to 30% reduction for balanced execution.

Figure B.5 presents the speedup validation for Gustafson’s model with
equal-share workload and classical workload scaling. The largest absolute
error is 0.49%, and there are multiple points with similar accuracy. The average
absolute error is 0.10% across all core combinations. Power dissipation results
are for Gustafson’s law are shown in Figure B.6. The largest absolute error
of 6.23% is observed for the case of 3 A7 and 4 A15 cores running sqrt with
p = 0.9. The average absolute error is 1.65% across all core combinations.

Figure B.7 presents the speedup validation for Gustafson’s model with equal-
share workload and purely parallel workload scaling. The largest absolute

110

B.2 opencl 111

error of 3.21% is observed for the case of 3 A7 and 4 A15 cores running sqrt
with p = 0.3. The other heterogeneous points of sqrt with p = 0.3 also show
increased errors (above 1%). Excluding sqrt benchmark, the error does not go
above 1.06%, and the average absolute error is 0.33% across remaining core
combinations. Power dissipation results are for parallel-scaled Gustafson’s
law are shown in Figure B.8. The largest absolute error of 5.21% is observed
for the case of 0 A7 and 4 A15 cores running log with p = 0.9. The average
absolute error is 1.96% across all core combinations.

Figure B.10 displays two Gustafson’s workload scaling modes side by side
with the numbers showing the speedup gain (p = 0.3), but also demonstrates
how improper use may cause poor performance, as seen in the sqrt example
using A15 for the sequential execution, which is slower than A7 for this
function.

b.2 opencl

It would be very impractical to test all core combinations for the available
OpenCL devices. In the following experiments we use the following numbers
of cores for the integrated GPU (IntGPU): 0, 8, 64, 256. Nvidia GPU is ran with
the following core numbers: 0, 8, 64, 256, 1024; however, for log the upper
limit is reduced to 64 as the higher degree of parallelization is not achievable
in Nvidia for this computation. Parameter s denotes the core type used in
sequential workload execution. In this section, the speedup is shown on a
logarithmic scale.

Figure B.11 presents the speedup validation for Amdahl’s law with equal-
share workload. The largest absolute error of 9.0% is observed for the case of
256 IntGPU and 64 Nvidia parallelization when running int with p = 0.3. The
average absolute error is 1.5% across all tested core combinations.

Figure B.12 presents the speedup validation for Amdahl’s law with balanced
workload. The largest absolute error of 9.3% is observed for the case of
256 IntGPU and 64 Nvidia parallelization when running int with p = 0.9. The
average absolute error is 1.5% across all tested core combinations.

Figure B.13 displays balanced and equal-share results side by side with the
numbers showing the speedup gain.

B.3 parsec 112

b.3 parsec

The experimental results for PARSEC benchmarks are shown in Figure B.14.
Only heterogeneous core combinations are shown as the homogeneous
configurations have been used for model characterization. For fluidanimate,
the number of configurations is limited as the benchmark can only run a
power-of-two number of threads.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.01%
-0.02%0.01%

0.00%
-0.01%

-0.02%0.00%
-0.01%0.00%-0.01%-0.01%-0.01%-0.02%-0.05%0.00%-0.01%-0.01%-0.06%-0.02%

Speedup: sqrt, p=0.3
theory measured

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.00%

-0.01%

0.01%

0.06%

0.00%

-0.05%

-0.04%

0.01%
0.05%

0.01%

-0.04%

-0.01%
0.04%

0.03%

0.02%
-0.01%

0.02%
0.03%

0.10%

Speedup: sqrt, p=0.9
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.02%
-0.04%0.00%

-0.02%

-0.01%

-0.04%
0.01%0.00%0.00%

-0.01%

0.00%-0.02%-0.01%
-0.06%

0.00%

-0.01%-0.05%-0.07%-0.02%

Speedup: int, p=0.3
theory measured

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.00%

-0.05%

0.01%

0.01%

0.00%

0.03%

0.05%

0.11%

0.18%

0.01%

0.02%

0.04%

0.11%
0.08%

0.02%

0.02%

0.03%
0.04%

0.10%

Speedup: int, p=0.9
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.27%

-0.30%
-0.52%-0.65%

0.32%

0.02%
-0.29%

-0.44%-0.55%

0.38%

-0.28%
-0.45%-0.55%

-0.66%

0.43%

-0.45%-0.54%
-0.65%-0.71%

Speedup: log, p=0.3
theory measured

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.00%

-0.37%

-0.64%

-0.87%

0.00%

-0.48%

-0.64%

-0.77%

-0.86%

0.06%

-0.67%

-0.81%

-0.90%

-1.03%

0.10%

-0.82%

-0.94%

-1.07%

-1.13%

Speedup: log, p=0.9
theory measured

Figure B.1: Speedup validation results for the heterogeneous Amdahl’s law showing
percentage error of the theoretical model in relation to the measured
speedup.

B.3 parsec 113

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.81%
0.06%3.32%

4.43%

0.14%

0.27%
0.54%2.61%

4.11%

1.59%

1.58%1.37%
2.42%2.69%

-0.19%

-0.16%0.78%
2.56%2.16%

Power, W: sqrt, p=0.3
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.32%

-0.92%

-0.87%

0.30%

1.41%

0.75%

-0.87%

1.04%

-0.95%

-0.61%

-0.08%

-0.60%

0.61%

2.41%

-1.28%

0.41%

0.06%

1.68%

-1.15%

Power, W: sqrt, p=0.9
theory measured

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

2.04%
1.45%2.23%

3.30%

0.68%

0.85%
1.18%1.61%

2.21%

0.11%

0.18%0.85%
1.98%2.37%

0.05%

0.79%0.82%
1.71%2.07%

Power, W: int, p=0.3
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.28%

-1.54%

0.50%

-1.11%

1.23%

0.84%

-0.44%

0.04%

1.09%

-0.48%

0.20%

0.14%

2.71%

2.27%

-1.03%

-0.39%

-1.38%

4.70%
5.57%

Power, W: int, p=0.9
theory measured

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.37%
1.32%2.03%

2.95%

1.01%

-0.38%
-0.27%0.59%

-0.51%

0.68%

-0.98%
-0.10%-0.81%

0.41%

0.90%

-0.16%-1.86%
-0.38%-1.09%

Power, W: log, p=0.3
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.30%

-1.01%

-2.68%

-0.60%

1.27%

2.05%

3.10%

3.67%

1.14%

-0.48%

1.76%

1.68%

3.36%

0.33%

-1.18%

-0.42%

1.69%

3.05%
3.27%

Power, W: log, p=0.9
theory measured

Figure B.2: Total power dissipation results for the heterogeneous Amdahl’s law
showing percentage error of the theoretical model in relation to the
measured speedup.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.01%
-0.01%0.01%

0.00%
-0.02%

-0.01%0.02%
0.00%0.01%0.00%-0.01%-0.01%0.00%-0.03%0.01%-0.01%-0.03%-0.05%-0.02%

Speedup: sqrt, p=0.3
theory measured

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.00%

-0.01%
0.03%

0.05%

0.00%

0.04%
0.04%

0.11%
0.19%

0.02%
-0.01%

0.03%
0.09%

0.08%

0.03%
0.02%

0.03%
0.04%

0.10%

Speedup: sqrt, p=0.9
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.02%
-0.02%0.00%

-0.01%

-0.01%

0.00%
-0.01%-0.01%-0.04%

-0.01%

-0.02%-0.02%-0.01%
-0.06%

0.01%

-0.01%-0.01%-0.06%-0.05%

Speedup: int, p=0.3
theory measured

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.00%

-0.03%

-0.01%

0.03%

0.00%

0.01%

-0.02%

0.03%
0.13%

0.01%

0.00%

0.00%
0.04%

0.01%

0.02%

0.01%
0.06%

0.03%
0.10%

Speedup: int, p=0.9
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.25%

-0.32%
-0.53%-0.66%

0.32%

-0.10%
-0.38%-0.56%

-0.66%

0.40%

-0.33%
-0.53%-0.63%

-0.75%

0.44%

-0.49%-0.63%
-0.73%-0.80%

Speedup: log, p=0.3
theory measured

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.00%

-0.37%

-0.64%

-0.86%

0.00%

-0.11%

-0.31%

-0.47%

-0.61%

0.06%

-0.46%

-0.55%

-0.70%

-0.89%

0.08%

-0.69%

-0.76%

-0.91%

1.26%

Speedup: log, p=0.9
theory measured

Figure B.3: Speedup validation results for the heterogeneous Amdahl’s law with
balanced workload showing percentage error of the theoretical model in
relation to the measured speedup.

B.3 parsec 114

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-1.40%
-0.17%1.55%

2.98%

0.87%

0.44%
1.08%1.86%

1.42%

-0.89%

-0.74%1.02%
1.16%0.45%

-0.78%

-0.91%0.55%
1.95%1.73%

Power, W: sqrt, p=0.3
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.17%

-1.55%

-1.66%

-0.70%

1.61%

0.25%

-1.83%

0.05%
-0.98%

-0.27%

-0.47%

-0.32%

-0.52%
-1.28%

-1.43%

-0.19%

-0.03%
1.47%

0.64%

Power, W: sqrt, p=0.9
theory measured

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

2.11%
2.77%3.42%

3.90%

0.02%

0.74%
2.19%2.74%

2.84%

-0.84%

-0.06%1.18%
2.01%1.91%

-0.51%

0.59%0.77%
1.05%0.88%

Power, W: int, p=0.3
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.64%

-1.50%

0.70%

2.27%

1.18%

0.92%

0.18%

0.86%

-0.10%

-0.33%

0.34%

0.74%

0.27%
0.98%

-0.87%

-0.31%

1.02%

0.66%
4.17%

Power, W: int, p=0.9
theory measured

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.23%
1.16%2.23%

0.22%

2.11%

0.50%
0.53%0.45%

-0.73%

-0.06%

-0.64%
-1.38%-1.07%

1.07%

1.21%

-0.32%-0.29%
0.25%3.49%

Power, W: log, p=0.3
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.04%

-1.72%

-2.81%

-0.57%

1.33%

0.24%

-1.96%

1.91%

2.70%

-0.82%

-0.24%

-0.64%

2.70%

-4.63%

-1.13%

-1.13%

-1.03%

-4.60%

3.19%

Power, W: log, p=0.9
theory measured

Figure B.4: Total power dissipation results for the heterogeneous Amdahl’s law with
balanced workload showing percentage error of the theoretical model in
relation to the measured speedup.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.02%
-0.02%

-0.01%
0.01%

-0.01%
-0.03%

-0.03%
0.00%

0.01%

0.00%
-0.03%

-0.03%
0.01%

0.03%

-0.01%
-0.01%

-0.01%
0.03%

0.06%

Speedup: sqrt, p=0.3
theory measured

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.00%

-0.03%

0.01%

0.06%

0.00%

-0.10%

-0.05%

0.02%

0.07%

0.01%

-0.06%

-0.04%

0.05%

0.11%

-0.01%
-0.03%

0.02%

0.12%

0.17%

Speedup: sqrt, p=0.9
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.00%

-0.01%

0.00%

0.00%

-0.02%

0.01%
0.02%

0.04%
0.04%

0.00%

-0.01%
0.01%

0.02%
0.04%

-0.01%

0.00%
0.03%

0.06%
0.07%

Speedup: int, p=0.3
theory measured

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.00%

-0.02%

0.00%

0.04%

0.00%

0.02%

0.05%

0.11%

0.19%

0.02%

0.02%

0.03%

0.09%

0.16%

0.00%

0.01%

0.06%

0.12%

0.16%

Speedup: int, p=0.9
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.26%

0.26%

0.26%

0.27%

0.33%

0.10%
0.02%

-0.03%
-0.04%

0.33%

0.01%
-0.04%

-0.07%
-0.10%

0.32%

-0.04%
-0.08%

-0.12%
-0.11%

Speedup: log, p=0.3
theory measured

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.00%

-0.03%

0.00%

0.06%

0.00%

-0.45%

-0.48%

-0.42%

-0.37%

0.00%

-0.49%

-0.48%

-0.44%

-0.43%

-0.01%

-0.49%

-0.48%

-0.45%

-0.41%

Speedup: log, p=0.9
theory measured

Figure B.5: Speedup validation results for the heterogeneous Gustafson’s model with
classical scaling showing percentage error of the theoretical model in
relation to the measured speedup.

B.3 parsec 115

0.0

0.5

1.0

1.5

2.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.28%
-0.08%

-0.22%
-0.30%

2.18%

-0.27%
-0.37%

-0.71%
-0.37%

1.24%

-0.21%
-1.24%

-0.24%
-0.95%

1.08%

-0.74%
-1.05%

-1.03%
-0.95%

Power, W: sqrt, p=0.3
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.92%

-1.91%

-2.98%

-3.98%

2.04%

-0.85%

-2.81%

-3.81%

-4.51%

-0.83%

-2.37%

-3.91%

-4.73%

-5.44%

-2.48%

-3.18%

-4.39%

-4.94%

-6.23%

Power, W: sqrt, p=0.9
theory measured

0.0

0.5

1.0

1.5

2.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.88%
0.50%

-0.80%
1.05%

2.68%

0.89%
0.44%

-0.43%
1.11%

1.33%

-0.19%
0.46%

0.78%
-0.56%

0.95%

0.10%
-0.33%

0.15%
0.11%

Power, W: int, p=0.3
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.76%

-1.78%

-3.37%

-4.07%

1.77%

-0.01%

-2.15%

-1.92%

-3.85%

-0.47%

-1.58%

-3.26%

-3.95%

-3.29%

-2.23%

-3.00%

-3.45%

-4.40%

-4.53%

Power, W: int, p=0.9
theory measured

0.0

0.5

1.0

1.5

2.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.29%

0.30%

-1.17%

-0.50%

2.04%

0.31%
0.93%

2.86%
0.94%

-0.57%

-1.36%
-0.26%

0.39%
2.05%

-0.81%

-0.59%
-0.20%

2.05%
3.29%

Power, W: log, p=0.3
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.30%

-1.16%

-2.69%

-4.43%

1.68%

2.00%

-0.55%

-1.65%

-0.23%

-0.36%

0.01%

-0.50%

-2.02%

-2.10%

-1.85%

-1.97%

-1.69%

-1.56%

-1.36%

Power, W: log, p=0.9
theory measured

Figure B.6: Total power dissipation results for the heterogeneous Gustafson’s model
with classical scaling showing percentage error of the theoretical model in
relation to the measured speedup.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.01%
1.01%

1.74%
2.26%

-0.01%1.02%
1.73%

2.25%
2.64%

-0.01%1.72%
2.23%

2.63%
2.95%

-0.01%2.24%
2.63%

2.95%
3.21%

Speedup: sqrt, p=0.3
theory measured

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.00%

0.08%

0.14%

0.21%

0.00%

0.01%

0.09%

0.16%

0.22%

0.01%

0.07%

0.12%

0.21%

0.28%

-0.01%
0.13%

0.18%

0.28%

0.36%

Speedup: sqrt, p=0.9
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.09%

0.10%

0.11%

0.11%

0.01%

0.07%
0.07%

0.12%
0.17%

0.01%

0.04%
0.05%

0.10%
0.14%

0.00%

0.08%
0.09%

0.12%
0.15%

Speedup: int, p=0.3
theory measured

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.10%

0.10%

0.10%

0.14%

0.00%

0.06%

0.06%

0.13%

0.23%

0.02%

0.03%

0.05%

0.10%

0.17%

0.00%

0.04%

0.08%

0.13%

0.18%

Speedup: int, p=0.9
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.68%

0.67%

0.69%

0.71%

0.32%

0.98%

0.97%

1.00%

1.06%

0.32%

0.97%

0.98%

0.99%

1.03%

0.32%

0.97%

0.99%

1.00%

1.03%

Speedup: log, p=0.3
theory measured

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.75%

-0.78%

-0.75%

-0.71%

0.00%

-0.32%

-0.31%

-0.26%

-0.20%

0.01%

-0.34%

-0.29%

-0.29%

-0.24%

-0.01%

-0.32%

-0.31%

-0.26%

-0.21%

Speedup: log, p=0.9
theory measured

Figure B.7: Speedup validation results for the heterogeneous Gustafson’s model with
purely parallel scaling showing percentage error of the theoretical model
in relation to the measured speedup.

B.3 parsec 116

0.0

0.5

1.0

1.5

2.0

2.5

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.17%
0.53%

1.07%
1.72%

2.51%

0.86%
0.79%

0.85%
1.71%

1.45%

0.12%
0.48%

1.07%
2.55%

0.85%

0.08%
0.64%

1.34%
1.48%

Power, W: sqrt, p=0.3
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.88%

-1.82%

-2.68%

-3.87%

2.06%

-0.90%

-2.08%

-3.00%

-4.09%

-0.41%

-2.04%

-3.37%

-3.96%

-4.45%

-2.38%

-3.14%

-3.97%

-4.82%

-5.17%

Power, W: sqrt, p=0.9
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.66%
-0.45%

-0.76%
-1.44%

1.97%

0.02%
-1.08%

-0.71%
-0.17%

1.35%

-0.63%
-1.36%

-1.18%
-1.09%

0.88%

-1.04%
-2.10%

-1.27%
-1.31%

Power, W: int, p=0.3
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.91%

-1.67%

-2.77%

-4.26%

2.08%

-0.37%

-2.27%

-2.56%

-3.47%

-1.34%

-2.50%

-3.57%

-4.49%

-4.70%

-2.81%

-3.84%

-4.77%

-4.74%

-5.09%

Power, W: int, p=0.9
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-0.70%

-2.14%

-3.81%

-2.90%

1.89%

0.35%
-1.17%

-0.09%
-0.67%

1.96%

-0.02%
-1.85%

-0.62%
-0.92%

1.00%

-1.60%
-2.54%

-1.22%
-1.70%

Power, W: log, p=0.3
theory measured

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0.79%

-2.14%

-3.87%

-5.21%

1.94%

2.06%

-1.62%

-0.32%

-2.28%

-0.14%

-1.04%

-1.88%

-2.03%

-3.91%

-2.01%

-2.98%

-2.39%

-3.89%

-2.26%

Power, W: log, p=0.9
theory measured

Figure B.8: Total power dissipation results for the heterogeneous Gustafson’s model
with purely parallel scaling showing percentage error of the theoretical
model in relation to the measured speedup.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0%

-0%

0%

-0%

0%

10%

12%

13%
13%

0%

6%

9%
10%

10%

0%

4%
6%

7%
8%

Speedup: int, p=0.9
equal-share balanced

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0%

0%

0%

-0%

0%

33%

40%

41%

41%

0%

21%

29%

32%

33%

0%

15%

22%

25%
24%

Speedup: log, p=0.9
equal-share balanced

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

1%

0%

0%
-3%

0%

8%

10%

10%

12%

0%

6%

8%

13%
12%

0%

6%

5%

13%
11%

Power, W: int, p=0.9
equal-share balanced

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-1%

-0%

-1%

-1%

-0%

24%

36%

34%

31%

0%

20%

28%

29%

36%

-0%

16%

25%

35%
27%

Power, W: log, p=0.9
equal-share balanced

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

1%

0%

0%
-3%

0%

-11%

-13%
-13% -11%

0%

-6%
-8% -6% -8%

0% -3% -7% -2% -5%

Energy-delay product, Js: int, p=0.9
equal-share balanced

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-1%

-0%
-1% -1%

-0%

-29%
-31% -33% -34%

0%

-18% -23% -26% -23%
-0%

-12% -16% -14% -18%

Energy-delay product, Js: log, p=0.9
equal-share balancedFigure B.9: Comparison of the measured speedup, power and energy between equal-

share and balanced execution.

B.3 parsec 117

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0%
-4%

-7%
-9%

0% -4%
-7%

-9%
-11%

0% -7%
-9%

-11%
-12%

0% -9%
-11%

-12%
-12%

Speedup: sqrt, p=0.3
classical scaling purely parallel scaling

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

0%

10%

17%

21%

-0%

7%
13%

18%
21%

-0%

13%
18%

21%
24%

-0%

18%
21%

24%
26%

Speedup: int, p=0.3
classical scaling purely parallel scaling

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0
1

0
2

0
3

0
4

1
0

1
1

1
2

1
3

1
4

2
0

2
1

2
2

2
3

2
4

3
0

3
1

3
2

3
3

3
4

A7
A15

-1%

22%

36%

46%

0%

2%

16%

26%

34%

0%

16%

26%

34%

40%

0%

26%

34%

40%

45%

Speedup: log, p=0.3
classical scaling purely parallel scaling

Figure B.10: Gustafson’s model outcomes showing the measured speedup gain from
using the purely parallel workload scaling compared to the classical
scaling.

B.3 parsec 118

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1
0

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

0.00%

0.00%
-0.09%

0.01%0.02%0.03%-0.09%-0.05%-0.04%-0.07%0.05%-0.02%-0.07%-0.11%0.04%0.02%

sqrt, p=0.9, s=IntGPU
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

0
1

0
8

0
64

0
256

0
1024

8
8

8
64

8
256

8
1024

64
8

64
64

64
256

64
1024

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

-0.05%

-0.05%

-0.05%-0.05%-0.09%

0.04%

1.84%

4.91%
3.49%

1.01%
2.57%

4.81%
4.97%

4.80%4.94%3.67%
5.99%

sqrt, p=0.9, s=Nvidia
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

3.65%

1.84%1.07%0.44%

0.07%

0.03%

0.48%

1.51%
4.09%

-0.01%0.44%
0.59%

0.43%
5.69%

0.75%1.29%1.04%
1.81%

3.66%

sqrt, p=0.9, s=CPU
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

1.87%-1.01%0.16%0.20%

0.27%
1.14%

2.15%1.23%0.82%1.79%2.15%-0.04%2.72%1.17%5.22%6.00%4.68%1.91%0.74%

sqrt, p=0.3, s=CPU
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1
0

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

0.00%

-0.03%
-0.07%

0.00%-0.03%-0.02%-0.01%0.11%-0.12%0.02%-0.05%-0.06%0.01%-0.07%-0.01%0.01%

int, p=0.9, s=IntGPU
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

0
1

0
8

0
64

0
256

0
1024

8
8

8
64

8
256

8
1024

64
8

64
64

64
256

64
1024

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

0.00%

0.02%

0.02%0.03%-0.02%

0.18%

1.27%
3.21%3.98%

1.27%
1.86%

3.30%5.07%3.52%3.01%4.43%5.79%

int, p=0.9, s=Nvidia
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

0.52%

2.43%
-0.78%-2.74%

-0.12%

0.01%

-1.49%

0.24%
0.12%

-0.32%-0.16%
-0.34%

-1.30%
7.48%

-1.40%-1.29%1.43%
1.97%

3.68%

int, p=0.9, s=CPU
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

2.39%-1.89%-2.69%
-0.98%

-1.49%
-3.89%

-0.25%0.37%-2.35%-1.04%0.39%-4.35%-0.18%
0.44%3.13%-0.70%9.00%5.40%-1.27%

int, p=0.3, s=CPU
theory measured

0.125

0.250

0.500

1.000

2.000

4.000

8.000

16.000

32.000

64.000

128.000

256.000

1
0

8
0

8
8

8
64

64
0

64
8

64
64

256
0

256
8

256
64

IntGPU
Nvidia

0.00%

-0.18%
1.65%

2.46%-0.19%2.53%2.17%
-0.15%1.04%0.85%

log, p=0.9, s=IntGPU
theory measured

0.125

0.250

0.500

1.000

2.000

4.000

8.000

16.000

32.000

64.000

128.000

256.000

0
1

0
8

0
64

8
8

8
64

64
8

64
64

256
8

256
64

IntGPU
Nvidia

0.00%

0.00%
0.00%

0.48%
0.33%0.76%0.00%0.00%0.00%

log, p=0.9, s=Nvidia
theory measured

0.125

0.250

0.500

1.000

2.000

4.000

8.000

16.000

32.000

64.000

128.000

256.000

0
8

0
64

8
0

8
8

8
64

64
0

64
8

64
64

256
0

256
8

256
64

IntGPU
Nvidia

0.09%

0.53%

0.01%

0.02%

0.68%

-0.39%

0.71%
1.84%

1.92%

2.29%2.96%

log, p=0.9, s=CPU
theory measured

0.125

0.250

0.500

1.000

2.000

4.000

8.000

16.000

32.000

64.000

128.000

256.000

0
8

0
64

8
0

8
8

8
64

64
0

64
8

64
64

256
0

256
8

256
64

IntGPU
Nvidia

0.02%

0.10%
0.04%

0.22%

3.64%
-0.33%

0.40%0.38%
5.67%1.16%0.92%

log, p=0.3, s=CPU
theory measured

Figure B.11: OpenCL speedup validation results for the heterogeneous Amdahl’s law
showing percentage error of the theoretical model in relation to the
measured speedup.

B.3 parsec 119

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

1
0

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

0.00%

0.02%

0.43%0.08%0.20%0.18%-0.08%0.54%-0.03%0.11%-0.18%-0.02%0.22%0.25%0.12%-0.16%

sqrt, p=0.9, s=IntGPU
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

0
1

0
8

0
64

0
256

0
1024

8
8

8
64

8
256

8
1024

64
8

64
64

64
256

64
1024

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

-0.05%

-0.05%
-0.05%-0.05%-0.09%

2.73%
4.31%3.07%0.75%

3.29%
3.14%2.98%0.76%7.02%3.53%

2.95%0.78%

sqrt, p=0.9, s=Nvidia
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

3.47%

2.79%0.67%0.67%

-0.02%

4.28%

6.08%4.62%2.12%

-0.16%

4.44%
5.13%5.60%2.20%

1.61%5.12%
5.49%4.84%0.58%

sqrt, p=0.9, s=CPU
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

-0.85%-0.65%-1.87%0.26%

-0.29%

5.14%1.15%0.03%-0.13%-0.30%4.74%2.01%-0.31%-0.35%5.62%4.07%0.68%-2.33%0.02%

sqrt, p=0.3, s=CPU
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

1
0

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

0.00%

-0.03%
0.67%0.03%0.26%-0.01%0.05%0.39%0.37%0.26%0.00%-0.02%0.47%0.35%0.14%-0.10%

int, p=0.9, s=IntGPU
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

0
1

0
8

0
64

0
256

0
1024

8
8

8
64

8
256

8
1024

64
8

64
64

64
256

64
1024

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

0.01%

0.03%
0.03%0.04%-0.01%

1.30%
1.60%1.27%0.83%

1.91%
3.11%2.93%0.84%3.70%3.67%2.67%0.85%

int, p=0.9, s=Nvidia
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

0.18%

3.34%
3.49%-1.29%

-0.04%

2.84%

2.23%
0.27%-1.68%

-0.38%

3.94%

3.93%
2.20%2.72%

-0.66%4.90%
9.30%

4.99%-1.84%

int, p=0.9, s=CPU
theory measured

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

3.43%-4.59%-5.63%-2.09%

-1.23%

0.05%1.16%-7.78%-1.50%-1.48%1.67%
0.21%-4.99%-4.70%1.65%7.42%0.09%-5.27%-3.74%

int, p=0.3, s=CPU
theory measured

0.125

0.250

0.500

1.000

2.000

4.000

8.000

16.000

32.000

64.000

128.000

256.000

1
0

8
0

8
8

8
64

64
0

64
8

64
64

256
0

256
8

256
64

IntGPU
Nvidia

0.00%

-0.23%0.39%
0.20%-0.23%-0.01%-0.20%

-0.19%-0.20%-0.20%

log, p=0.9, s=IntGPU
theory measured

0.125

0.250

0.500

1.000

2.000

4.000

8.000

16.000

32.000

64.000

128.000

256.000

0
1

0
8

0
64

8
8

8
64

64
8

64
64

256
8

256
64

IntGPU
Nvidia

-0.04%

0.08%
-0.24%1.78%1.90%1.89%1.94%0.99%0.61%

log, p=0.9, s=Nvidia
theory measured

0.125

0.250

0.500

1.000

2.000

4.000

8.000

16.000

32.000

64.000

128.000

256.000

0
8

0
64

8
0

8
8

8
64

64
0

64
8

64
64

256
0

256
8

256
64

IntGPU
Nvidia

0.09%

0.32%

-0.18%0.85%

0.40%

-0.51%1.80%2.00%

0.40%8.57%1.87%

log, p=0.9, s=CPU
theory measured

0.125

0.250

0.500

1.000

2.000

4.000

8.000

16.000

32.000

64.000

128.000

256.000

0
8

0
64

8
0

8
8

8
64

64
0

64
8

64
64

256
0

256
8

256
64

IntGPU
Nvidia

0.05%

0.31%
-0.86%1.08%

1.59%
1.57%0.87%2.31%2.22%5.12%4.43%

log, p=0.3, s=CPU
theory measured

Figure B.12: OpenCL speedup validation results for the heterogeneous Amdahl’s law
with balanced workload showing percentage error of the theoretical
model in relation to the measured speedup.

B.3 parsec 120

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

0%

-1% 0% -0%

0%

419%

212% 68% 22%

0%

108%
154% 70% 29%

-1% 18%
52% 43% 24%

Speedup: sqrt, p=0.9, s=CPU
equal-share balanced

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

0
8

0
64

0
256

0
1024

8
0

8
8

8
64

8
256

8
1024

64
0

64
8

64
64

64
256

64
1024

256
0

256
8

256
64

256
256

256
1024

IntGPU
Nvidia

0%

-1%
-4% -1%

-0%

278%

242%
102% 32%

0%
72%

172%
104% 44%

-1% 10%
52%

61% 39%

Speedup: int, p=0.9, s=CPU
equal-share balanced

0.125

0.250

0.500

1.000

2.000

4.000

8.000

16.000

32.000

64.000

128.000

256.000

0
8

0
64

8
0

8
8

8
64

64
0

64
8

64
64

256
0

256
8

256
64

IntGPU
Nvidia

0%

0%

0% 147%

32%

0% 188%104%

2% 137%125%

Speedup: log, p=0.9, s=CPU
equal-share balanced

Figure B.13: Comparison of the measured OpenCL speedup between equal-share and
balanced execution.

0.0

2.0

4.0

6.0

8.0

10.0

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
3

2
3

3
3

4
3

1
4

2
4

3
4

4
4

A7
A15

0.15 -0.35 -0.60 -0.71

0.49 0.22 0.03 -0.10

0.55 0.39 0.25 0.16

0.64 0.58 0.53 0.49

bodytrack
low measured high

0.0

2.0

4.0

6.0

8.0

10.0

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
3

2
3

3
3

4
3

1
4

2
4

3
4

4
4

A7
A15

0.89
0.77

0.46 -0.02 0.91
0.78

0.65 0.48 0.94
0.86 0.72 0.61 0.94

0.86
0.79

0.76

ferret
low measured high

0.0

2.0

4.0

6.0

8.0

10.0

1
1

3
1

2
2

1
3

4
4

A7
A15

0.15 -0.05
0.25

0.36
0.27

fluidanimate
low measured high

Figure B.14: PARSEC speedup range results from heterogeneous system setup
determining q – the quality of the system load balancer.

C
PA R S E C R E S U LT S

Table C.1: Performance and power calculations of Bodytrack

Bodytrack

No. of Cores freq MHz IPS Energy power PNP EDP

1 3.7 6.92E+09 3905.54 33.66 2.05E+08 453139.58

2 3.7 1.36E+10 2523.52 40.96 3.31E+08 155468.47

3 3.7 1.93E+10 2048.08 46.90 4.12E+08 89438.83

4 3.7 2.44E+10 1826.32 52.19 4.67E+08 63909.41

1 3 5.63E+09 3798.48 26.66 2.11E+08 541109.88

2 3 1.09E+10 2407.64 31.53 3.47E+08 183875.11

3 3 1.56E+10 1909.43 35.39 4.41E+08 103023.83

4 3 1.97E+10 1680.10 38.83 5.07E+08 72685.82

1 2.1 4.05E+09 3882.82 19.03 2.13E+08 792088.21

2 2.1 7.71E+09 2381.46 22.03 3.50E+08 257416.19

3 2.1 1.09E+10 1863.76 24.18 4.52E+08 143670.22

4 2.1 1.37E+10 1623.61 26.11 5.26E+08 100978.11

1 1.2 2.31E+09 5117.72 14.39 1.61E+08 1819750.76

2 1.2 4.39E+09 2986.41 15.69 2.80E+08 568370.17

3 1.2 6.11E+09 2311.13 16.74 3.65E+08 319044.15

4 1.2 7.47E+09 2024.61 17.62 4.24E+08 232635.80

121

parsec results 122

Table C.2: Performance and power calculations of Blackscholes

Blackscholes

No. of Cores freq MHz IPS Energy power PNP EDP

1 3.7 5.53E+09 4199.55 32.94 1.68E+08 535373.45

2 3.7 9.78E+09 2799.67 37.81 2.59E+08 207320.16

3 3.7 1.34E+10 2277.58 41.91 3.20E+08 123788.89

4 3.7 1.64E+10 2060.89 45.00 3.64E+08 94391.06

1 3 4.46E+09 4116.64 25.98 1.72E+08 652423.69

2 3 7.99E+09 2697.26 29.44 2.71E+08 247118.99

3 3 1.11E+10 2163.13 32.28 3.43E+08 144975.08

4 3 1.34E+10 1919.82 34.41 3.90E+08 107109.81

1 2.1 3.22E+09 4105.80 18.85 1.71E+08 894514.59

2 2.1 5.67E+09 2642.31 21.02 2.70E+08 332224.35

3 2.1 7.72E+09 2137.11 22.61 3.41E+08 202009.36

4 2.1 9.45E+09 1897.12 23.97 3.94E+08 150129.83

1 1.2 1.84E+09 5366.67 14.11 1.31E+08 2041890.24

2 1.2 3.28E+09 3294.99 15.12 2.17E+08 717863.56

3 1.2 4.41E+09 2631.79 15.82 2.79E+08 437734.28

4 1.2 5.44E+09 2309.18 16.57 3.28E+08 321872.04

Table C.3: Performance and power calculations of Facesim

Facesim

No. of Cores freq MHz IPS Energy power PNP EDP

1 3.7 7.24E+09 10174.34 32.40 2.23E+08 3195365.02

2 3.7 1.38E+10 7094.84 42.85 3.21E+08 1174764.14

3 3.7 2.04E+10 5911.50 49.80 4.10E+08 701793.49

4 3.7 2.51E+10 5532.28 55.91 4.49E+08 547414.66

1 3 5.91E+09 10187.28 27.31 2.17E+08 3799874.77

2 3 1.13E+10 6622.48 33.11 3.40E+08 1324685.99

3 3 1.71E+10 5347.50 38.02 4.50E+08 752199.75

4 3 2.14E+10 4905.55 41.86 5.11E+08 574879.13

1 2.1 4.20E+09 10311.39 19.62 2.14E+08 5418475.93

2 2.1 8.02E+09 6458.28 23.03 3.48E+08 1811418.81

3 2.1 1.22E+10 5109.18 25.97 4.71E+08 1005290.81

4 2.1 1.52E+10 4694.00 28.08 5.40E+08 784657.39

1 1.2 2.42E+09 13659.55 15.00 1.62E+08 12438636.71

2 1.2 4.64E+09 7829.55 16.12 2.88E+08 3803940.35

3 1.2 3.09E+09 6187.93 17.51 1.76E+08 2186225.66

4 1.2 8.35E+09 5812.14 18.21 4.59E+08 1855359.78

parsec results 123

Table C.4: Performance and power calculations of Fluidanimate

Fluidanimate

No. of Cores freq MHz IPS Energy power PNP EDP

1 3.7 1.04E+08 8555.73 33.17 3.14E+06 2206957.18

2 3.7 1.95E+08 5622.75 40.79 4.79E+06 775017.83

3 3.7

4 3.7 3.45E+08 4284.47 53.97 6.39E+06 340131.28

1 3 5.29E+09 8375.15 26.26 2.01E+08 2671430.18

2 3 1.03E+10 5320.71 31.54 3.27E+08 897523.41

3 3

4 3 1.90E+10 3829.62 40.35 4.70E+08 363482.28

1 2.1 3.81E+09 8424.10 19.02 2.00E+08 3730606.00

2 2.1 7.35E+09 5152.43 22.01 3.34E+08 1206237.49

3 2.1

4 2.1 1.36E+10 3601.20 27.05 5.02E+08 479351.12

1 1.2 2.20E+09 10887.19 14.19 1.55E+08 8356016.27

2 1.2 4.26E+09 6293.88 15.56 2.74E+08 2546224.42

3 1.2

4 1.2 7.75E+09 4317.46 17.79 4.36E+08 1047881.06

Table C.5: Performance and power calculations of Freqmine

Freqmine

No. of Cores freq MHz IPS Energy power PNP EDP

1 3.7 6.90E+09 12335.36 33.06 2.09E+08 4602386.39

2 3.7 1.37E+10 7717.39 40.97 3.34E+08 1453586.16

3 3.7 2.04E+10 6100.80 48.29 4.23E+08 770736.60

4 3.7 2.70E+10 5270.18 54.97 4.90E+08 505257.03

1 3 5.43E+09 12364.13 26.10 2.08E+08 5857848.46

2 3 1.11E+10 7279.42 31.43 3.54E+08 1686011.80

3 3 1.66E+10 5662.12 36.37 4.56E+08 881511.56

4 3 2.18E+10 4846.90 40.85 5.34E+08 575086.55

1 2.1 3.89E+09 12558.70 18.99 2.05E+08 8306133.98

2 2.1 7.85E+09 7195.71 21.94 3.58E+08 2359692.03

3 2.1 1.16E+10 5469.50 24.65 4.71E+08 1213807.70

4 2.1 1.52E+10 4633.93 27.29 5.56E+08 786893.13

1 1.2 2.26E+09 16121.58 14.12 1.60E+08 18407108.16

2 1.2 4.50E+09 8876.99 15.51 2.90E+08 5081527.99

3 1.2 6.62E+09 6231.96 16.00 4.14E+08 2427138.47

4 1.2 8.45E+09 5501.99 18.01 4.69E+08 1680969.72

parsec results 124

Table C.6: Performance and power calculations of Swaptions

Swaptions

No. of Cores freq MHz IPS Energy power PNP EDP

1 3.7 6.99E+09 6694.45 32.97 2.12E+08 1359383.58

2 3.7 1.41E+10 4098.59 40.54 3.47E+08 414328.34

3 3.7 2.08E+10 3250.14 47.55 4.37E+08 222133.61

4 3.7 2.82E+10 2745.95 54.58 5.17E+08 138151.80

1 3 5.71E+09 6468.57 26.00 2.20E+08 1609337.81

2 3 1.13E+10 3933.77 31.34 3.61E+08 493687.58

3 3 1.72E+10 2984.39 36.18 4.76E+08 246194.01

4 3 2.29E+10 2517.65 40.56 5.64E+08 156278.45

1 2.1 4.09E+09 6583.68 18.94 2.16E+08 2288314.45

2 2.1 8.19E+09 3798.71 21.87 3.74E+08 659906.92

3 2.1 1.21E+10 2872.44 24.42 4.95E+08 337933.93

4 2.1 1.59E+10 2425.18 27.14 5.86E+08 216712.97

1 1.2 2.34E+09 8549.87 14.09 1.66E+08 5188724.66

2 1.2 4.69E+09 4684.30 15.44 3.04E+08 1421583.79

3 1.2 6.81E+09 3482.71 16.65 4.09E+08 728602.71

4 1.2 8.89E+09 2867.65 17.93 4.96E+08 458714.42

Table C.7: Performance and power calculations of Streamcluster

Streamcluster

No. of Cores freq MHz IPS Energy power PNP EDP

1 3.7 2.92E+09 12729.37 32.30 9.03E+07 5017185.18

2 3.7 4.98E+09 8495.96 39.41 1.26E+08 1831561.94

3 3.7 6.91E+09 7135.69 45.83 1.51E+08 1111041.45

4 3.7 8.59E+09 6422.53 51.63 1.66E+08 798922.63

1 3 2.42E+09 11123.39 25.90 9.34E+07 4776373.74

2 3 4.46E+09 7256.75 30.87 1.45E+08 1705906.09

3 3 6.36E+09 5913.80 35.30 1.80E+08 990714.33

4 3 8.02E+09 5304.18 39.57 2.03E+08 711084.76

1 2.1 2.02E+09 9809.43 19.03 1.06E+08 5056064.61

2 2.1 3.74E+09 6139.67 21.94 1.71E+08 1717964.59

3 2.1 5.36E+09 4858.40 24.60 2.18E+08 959626.05

4 2.1 6.78E+09 4302.31 26.80 2.53E+08 690611.58

1 1.2 1.38E+09 10707.24 14.27 9.70E+07 8031485.07

2 1.2 2.58E+09 6461.65 15.93 1.62E+08 2621338.88

3 1.2 3.77E+09 4873.99 17.01 2.22E+08 1396793.43

4 1.2 4.73E+09 4270.35 18.06 2.62E+08 1009682.33

parsec results 125

Table C.8: Performance and power calculations of Canneal

Canneal

No. of Cores freq MHz IPS Energy power PNP EDP

1 3.7 8.06E+08 4942.14 31.73 2.54E+07 769661.46

2 3.7 1.35E+09 3392.85 36.01 3.75E+07 319695.35

3 3.7 1.76E+09 2885.52 39.17 4.49E+07 212571.81

4 3.7 2.06E+09 2667.93 41.41 4.97E+07 171896.23

1 3 7.36E+08 4349.86 25.49 2.89E+07 742371.09

2 3 1.24E+09 2968.02 28.64 4.32E+07 307568.67

3 3 1.59E+09 2490.65 30.74 5.19E+07 201828.43

4 3 1.95E+09 2265.42 32.20 6.06E+07 159372.19

1 2.1 6.08E+08 3861.71 18.69 3.25E+07 798076.69

2 2.1 1.02E+09 2571.75 20.42 5.00E+07 323939.42

3 2.1 1.35E+09 2143.70 21.65 6.25E+07 212224.63

4 2.1 1.61E+09 1963.60 22.80 7.05E+07 169112.30

1 1.2 4.21E+08 4216.27 14.11 2.98E+07 1259953.94

2 1.2 7.20E+08 2731.83 14.96 4.82E+07 498996.81

3 1.2 9.64E+08 2243.60 15.53 6.21E+07 324140.69

4 1.2 1.17E+09 2025.54 15.89 7.35E+07 258206.94

Table C.9: Performance and power calculations of Dedup

Dedup

No. of Cores Freq GHz IPS Energy power PNP EDP

1 3.7 6.19E+09 808.47 33.02 1.88E+08 19794.43

2 3.7 1.22E+10 577.42 34.16 3.58E+08 9760.99

3 3.7 1.74E+10 472.52 35.15 4.96E+08 6352.48

4 3.7 2.31E+10 459.63 35.94 6.43E+08 5877.73

1 3 4.94E+09 818.74 25.66 1.92E+08 26128.20

2 3 9.11E+09 464.00 31.52 2.89E+08 6831.29

3 3 1.41E+10 351.17 34.85 4.05E+08 3538.35

4 3 1.88E+10 329.17 37.21 5.06E+08 2911.60

1 2.1 3.52E+09 780.43 19.43 1.81E+08 31344.91

2 2.1 6.68E+09 482.47 20.91 3.19E+08 11129.99

3 2.1 9.90E+09 421.82 22.06 4.49E+08 8065.08

4 2.1 1.26E+10 317.61 25.40 4.96E+08 3971.90

1 1.2 2.01E+09 1024.96 14.49 1.39E+08 72482.96

2 1.2 3.85E+09 566.03 15.66 2.46E+08 20464.02

3 1.2 5.65E+09 413.03 16.68 3.39E+08 10225.63

4 1.2 7.22E+09 383.16 17.26 4.18E+08 8507.99

Part III

Thesis Bibliography

126

B I B L I O G R A P H Y

[1] “PThreads benchmark.” https://github.com/ashurrafiev/PThreads.

[2] R. C. Jaeger and T. N. Blalock, Microelectronic Circuit Design, 4th Edition.
New York, NY, USA: McGraw Hill, 2011.

[3] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, pp. 33–38, July 2008.

[4] M. A. N. Al-hayanni, R. Shafik, A. Rafiev, F. Xia, and A. Yakovlev, “Data
of speedup and parallelization models for many-core systems using
performance counters.” http://async.org.uk/data/speed-up-2016/.

[5] S. Borkar, “Thousand core chips: a technology perspective,” in
Proceedings of the 44th annual Design Automation Conference, pp. 746–749,
ACM, June 2007.

[6] G. E. Moore, “Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114

ff.,” IEEE Solid-State Circuits Society Newsletter, vol. 11, pp. 33–35,
September 2006.

[7] J. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications of
historical trends in the electrical efficiency of computing,” IEEE Annals
of the History of Computing, vol. 33, pp. 46–54, March 2011.

[8] “The international technology roadmap for semiconductors.”
http://www.itrs2.net/, 2017.

[9] “IEEE international solid-state circuits conference (ISSCC).”
http://isscc.org/, 2017.

[10] F. J. Pollack, “New microarchitecture challenges in the coming
generations of cmos process technologies (keynote address)(abstract
only),” in Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture, MICRO 32, (Washington, DC, USA),
p. 2, IEEE Computer Society, 1999.

127

bibliography 128

[11] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” IEEE Solid-State Circuits Society
Newsletter, vol. 12, pp. 19–20, Summer 2007.

[12] J. L. Gustafson, “Reevaluating amdahl’s law,” Communications of ACM,
vol. 31, pp. 532–533, May 1988.

[13] X. H. Sun and L. M. Ni, “Another view on parallel speedup,” in
Proceedings Super Computing ’90, pp. 324–333, November 1990.

[14] X.-H. Sun and L. M. Ni, “Scalable problems and memory-bounded
speedup,” Journal of Parallel and Distributed Computing, vol. 19, no. 1,
pp. 27–37, 1993.

[15] J. Tschanz, S. Narendra, Y. Ye, B. Bloechel, S. Borkar, and V. De,
“Dynamic-sleep transistor and body bias for active leakage power control
of microprocessors,” pp. 102–481 vol.1, February 2003.

[16] S. Eyerman and L. Eeckhout, “Fine-grained DVFS using on-chip
regulators,” ACM Transactions on Architecture and Code Optimization,
vol. 8, pp. 1:1–1:24, February 2011.

[17] A. Das, M. Schuchhardt, N. Hardavellas, G. Memik, and A. Choudhary,
“Dynamic directories: A mechanism for reducing on-chip interconnect
power in multicores,” in 2012 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 479–484, March 2012.

[18] T. Somu Muthukaruppan, A. Pathania, and T. Mitra, “Price theory based
power management for heterogeneous multi-cores,” SIGARCH Computer
Architecture News, vol. 42, pp. 161–176, February 2014.

[19] X.-H. Sun and Y. Chen, “Reevaluating amdahl’s law in the multicore
era,” J. Parallel Distributed Computer, vol. 70, pp. 183–188, February 2010.

[20] N. Ye, Z. Hao, and X. Xie, “The speedup model for manycore processor,”
in 2013 International Conference on Information Science and Cloud Computing
Companion, pp. 469–474, December 2013.

[21] D. H. Woo and H. H. S. Lee, “Extending amdahl’s law for energy-
efficient computing in the many-core era,” Computer, vol. 41, pp. 24–31,
December 2008.

bibliography 129

[22] U. Gupta, S. Korrapati, N. Matturu, and U. Y. Ogras, “A generic energy
optimization framework for heterogeneous platforms using scaling
models,” Microprocessors and Microsystems, vol. 40, no. Supplement C,
pp. 74 – 87, 2016.

[23] P. Greenhalgh, “White paper: big.little processing with arm cortex-A15

and cortex-A7 - improving energy efficiency in high-performance mobile
platforms,” 2011.

[24] E. Humenay, D. Tarjan, and K. Skadron, “Impact of process variations
on multicore performance symmetry,” in 2007 Design, Automation Test in
Europe Conference Exhibition (DATE), pp. 1–6, April 2007.

[25] B. R. Rau and J. A. Fisher, “Instruction-level parallelism,” in Encyclopedia
of Computer Science, pp. 883–887, John Wiley and Sons Ltd.

[26] J. T. Oplinger, D. L. Heine, and M. S. Lam, “In search of speculative
thread-level parallelism,” in 1999 International Conference on Parallel
Architectures and Compilation Techniques (Cat. No.PR00425), pp. 303–313,
1999.

[27] A. B. Downey, “A model for speedup of parallel programs,” tech. rep.,
Berkeley, CA, USA, 1997.

[28] D. Moncrieff, R. E. Overill, and S. Wilson, “Heterogeneous computing
machines and amdahl’s law,” Parallel Computing, vol. 22, no. 3, pp. 407–
413, 1996.

[29] S. Sridharan, G. Gupta, and G. S. Sohi, “Adaptive, efficient, parallel
execution of parallel programs,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’14,
(New York, NY, USA), pp. 169–180, ACM, 2014.

[30] H. Wong and T. M. Aamodt, “The performance potential for single
application heterogeneous systems,” in 8th Workshop on Duplicating,
Deconstructing, and Debunking, 2009.

[31] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ayguade,
“Performance, power efficiency and scalability of asymmetric cluster
chip multiprocessors,” IEEE Computer Architecture Letter, vol. 5, pp. 4–17,
January 2006.

bibliography 130

[32] T. Sato, H. Mori, R. Yano, and T. Hayashida, “Importance of single-core
performance in the multicore era,” in Proceedings of the 35th Australasian
Computer Science Conference - Volume 122, ACSC ’12, (Darlinghurst,
Australia, Australia), pp. 107–114, Australian Computer Society, Inc.,
2012.

[33] T. Zidenberg, I. Keslassy, and U. Weiser, “Multiamdahl: How should
I divide my heterogenous chip?,” IEEE Computer Architecture Letters,
vol. 11, pp. 65–68, July 2012.

[34] A. Morad, T. Y. Morad, Y. Leonid, R. Ginosar, and U. Weiser,
“Generalized multiamdahl: Optimization of heterogeneous multi-
accelerator soc,” IEEE Computer Architecture Letters, vol. 13, pp. 37–40,
January 2014.

[35] S. Mittal, “A survey of techniques for improving energy efficiency in
embedded computing systems,” International Journal of Computer Aided
Engineering and Technology, vol. 6, no. 4, pp. 440–459, 2014.

[36] Y. H. Chen, Y. L. Tang, Y. Y. Liu, A. C. H. Wu, and T. Hwang, “A
novel cache-utilization based dynamic voltage frequency scaling (DVFS)
mechanism for reliability enhancements,” in 2016 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 79–84, March 2016.

[37] L. F. Wilson and W. Shen, “Experiments in load migration and dynamic
load balancing in speedes,” in 1998 Winter Simulation Conference.
Proceedings (Cat. No.98CH36274), vol. 1, pp. 483–490 vol.1, December
1998.

[38] J. C. Ryou and J. S. K. Wong, “A task migration algorithm for load
balancing in a distributed system,” in Proceedings of the Twenty-Second
Annual Hawaii International Conference on System Sciences. Volume II:
Software Track, vol. 2, pp. 1041–1048 vol.2, January 1989.

[39] S. Johari and A. Kumar, “Algorithmic approach for applying load
balancing during task migration in multi-core system,” in 2014
International Conference on Parallel, Distributed and Grid Computing, pp. 27–
32, December 2014.

[40] Y. Li, J. Niu, X. Long, and M. Qiu, “Energy efficient scheduling with
probability and task migration considerations for soft real-time systems,”

bibliography 131

in 2014 IEEE Computers, Communications and IT Applications Conference,
pp. 287–293, October 2014.

[41] A. B. Kaul, Microelectronics to Nanoelectronics: Materials, Devices and
Manufacturability. CRC Press, August 2012.

[42] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc, “Design of ion-implanted mosfet’s with very small physical
dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, pp. 256–268,
October 1974.

[43] M. Bohr, “A 30 year retrospective on dennard mosfet scaling paper,”
IEEE Solid-State Circuits Society Newsletter, vol. 12, pp. 11–13, Winter
2007.

[44] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19,
pp. 23–29, Julay 1999.

[45] S. Borkar, “Exascale computing - a fact or a fiction?,” in 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, pp. 3–3,
May 2013.

[46] R. Ramanathan, “White paper: Intel multi-core processors making the
move to quad-core and beyond,” tech. rep., 2006.

[47] J. Parkhurst, J. Darringer, and B. Grundmann, “From single core to multi-
core: Preparing for a new exponential,” in 2006 IEEE/ACM International
Conference on Computer Aided Design, pp. 67–72, November 2006.

[48] J. Rabaey and M. Pedram, Low Power Design Methodologies. The Springer
International Series in Engineering and Computer Science, Springer US,
2012.

[49] E. Yao, Y. Bao, G. Tan, and M. Chen, “Extending amdahl’s law in the
multicore era,” SIGMETRICS Perform. Eval. Rev., vol. 37, pp. 24–26,
October 2009.

[50] A. Vajda, Multi-core and Many-core Processor Architectures. Springer US,
2011.

[51] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded

bibliography 132

workload performance,” in Proceedings. 31st Annual International
Symposium on Computer Architecture, 2004., pp. 64–75, June 2004.

[52] M. G. Arenas, A. M. Mora, G. Romero, and P. A. Castillo, GPU
Computation in Bioinspired Algorithms: A Review, pp. 433–440. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011.

[53] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100 GPU
architecture,” IEEE Micro, vol. 31, pp. 50–59, March 2011.

[54] M. Andersch, J. Lucas, M. A. LvLvarez-Mesa, and B. Juurlink,
“On latency in GPU throughput microarchitectures,” in 2015 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 169–170, March 2015.

[55] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-isa heterogeneous multi-core architectures: the potential for
processor power reduction,” in Proceedings. 36th Annual IEEE/ACM
International Symposium on Microarchitecture, 2003. MICRO-36., pp. 81–92,
December 2003.

[56] A. Venkat and D. M. Tullsen, “Harnessing isa diversity: Design of
a heterogeneous-isa chip multiprocessor,” in 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA), pp. 121–132,
June 2014.

[57] V. W. Lee, E. Grochowski, and R. Geva, “Performance benefits of
heterogeneous computing in hpc workloads,” in 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops PhD
Forum, pp. 16–26, May 2012.

[58] N. P. Khanyile, J.-R. Tapamo, and E. Dube, “An analytic model for
predicting the performance of distributed applications on multicore
clusters,” 2012.

[59] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip
heterogeneous computing: Does the future include custom logic, FPGAs,
and GPGPUs?,” in 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 225–236, December 2010.

[60] A. Marowka, “Extending amdahl’s law for heterogeneous computing,”
in 2012 IEEE 10th International Symposium on Parallel and Distributed
Processing with Applications, pp. 309–316, July 2012.

bibliography 133

[61] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill,
S. K. Reinhardt, and D. A. Wood, “Heterogeneous system coherence
for integrated CPU-GPU systems,” in 2013 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 457–467,
December 2013.

[62] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra, “Integrated CPU-GPU
power management for 3D mobile games,” in Proceedings of the 51st
Annual Design Automation Conference, DAC ’14, (New York, NY, USA),
pp. 40:1–40:6, ACM, 2014.

[63] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, “Debunking the 100x GPU vs. CPU myth: An evaluation
of throughput computing on CPU and GPU,” SIGARCH Computer
Architecture News, vol. 38, pp. 451–460, June 2010.

[64] J. Palacios and J. Triska, “A comparison of modern GPU and CPU
architectures: And the common convergence of both,” 2011.

[65] C. Cullinan, C. Wyant, T. Frattesi, and X. Huang, “Computing
performance benchmarks among CPU, GPU, and FPGA,”
Internet: www. wpi. edu/Pubs/E-project/Available/E-project-030212-
123508/unrestricted/Benchmarking Final, 2013.

[66] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time (BVT) scheduling:
Supporting latency-sensitive threads in a general-purpose scheduler,”
SIGOPS Oper. Syst. Rev., vol. 33, pp. 261–276, December 1999.

[67] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz,
J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung, “The mit
alewife machine: Architecture and performance,” SIGARCH Computer
Architecture News, vol. 23, pp. 2–13, May 1995.

[68] B. Boothe and A. Ranade, “Improved multithreading techniques for
hiding communication latency in multiprocessors,” SIGARCH Computer
Architecture News, vol. 20, pp. 214–223, April 1992.

[69] W. Kim, M. S. Gupta, G. Y. Wei, and D. Brooks, “System level analysis of
fast, per-core DVFS using on-chip switching regulators,” in 2008 IEEE
14th International Symposium on High Performance Computer Architecture,
pp. 123–134, February 2008.

bibliography 134

[70] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable power control for many-
core architectures running multi-threaded applications,” in 2011 38th
Annual International Symposium on Computer Architecture (ISCA), pp. 449–
460, June 2011.

[71] “Intel.” https://www.intel.co.uk/content/www/uk/en/homepage.html,
2017.

[72] B. Goel and S. A. McKee, “A methodology for modeling dynamic
and static power consumption for multicore processors,” in 2016
IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pp. 273–282, May 2016.

[73] P. Bogdan, R. Marculescu, and S. Jain, “Dynamic power management for
multidomain system-on-chip platforms: An optimal control approach,”
ACM Transactions on Design Automation of Electronic Systems (TODAES)-
Special Section on Networks on Chip: Architecture, Tools, and Methodologies,
vol. 18, pp. 46:1–46:20, October 2013.

[74] A. Bhattacharjee and M. Martonosi, “Thread criticality predictors
for dynamic performance, power, and resource management in chip
multiprocessors,” SIGARCH Computer Architecture News, vol. 37, pp. 290–
301, June 2009.

[75] S. Huang, M. Lang, S. Pakin, and S. Fu, “Measurement and
characterization of haswell power and energy consumption,” in
Proceedings of the 3rd International Workshop on Energy Efficient
Supercomputing, E2SC ’15, (New York, NY, USA), pp. 7:1–7:10, ACM,
2015.

[76] P. B. S. Raju and P. Govindarajulu, “Pi-tool to improve performance of
application in multi-core architecture,” International Journal of Computer
Science and Security (IJCSS), vol. 8, no. 4, pp. 84–96, 2014.

[77] Y. Li, J. Niu, J. Zhang, M. Atiquzzaman, and X. Long, “An optimized
RM algorithm by task affinity on multi-core processor,” in 2016 IEEE
22nd International Conference on Parallel and Distributed Systems (ICPADS),
pp. 286–293, December 2016.

[78] Q. Hu, P. Liu, and M. C. Huang, “Threads and data mapping: Affinity
analysis for traffic reduction,” IEEE Computer Architecture Letters, vol. 15,
pp. 133–136, July 2016.

bibliography 135

[79] J. Ye, S. Li, T. Chen, M. Wu, and L. Liu, “Core affinity code block schedule
to reduce inter-core data synchronization of spmt,” in IEEE International
Conference on High Performance Computing and Communications, IEEE
6th Intl Symp on Cyberspace Safety and Security, IEEE 11th International
Conference on Embedded Software and System (HPCC,CSS,ICESS), pp. 1002–
1007, August 2014.

[80] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation
and thread scheduling via performance counters,” ACM SIGARCH
Computer Architecture News, vol. 37, no. 2, pp. 46–55, 2009.

[81] M. A. Qayum, N. A. Siddique, M. A. Haque, and A. S. M. Tayeen,
“Future of multiprocessors: Heterogeneous chip multiprocessors,” in
2012 International Conference on Informatics, Electronics Vision (ICIEV),
pp. 372–376, May 2012.

[82] E. Yao, Y. Bao, and M. Chen, “What Hill–Marty model learn from and
break through Amdahl’s law?,” Information Processing Letters, vol. 111,
no. 23, pp. 1092–1095, 2011.

[83] B. Juurlink and C. H. Meenderinck, “Amdahl’s law for predicting
the future of multicores considered harmful,” SIGARCH Computer
Architecture News, vol. 40, pp. 1–9, May 2012.

[84] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of
the obvious,” SIGARCH Computer Architecture News, vol. 23, pp. 20–24,
Mar. 1995.

[85] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin,
“Scaling the bandwidth wall: Challenges in and avenues for cmp scaling,”
SIGARCH Computer Architecture News, vol. 37, pp. 371–382, June 2009.

[86] R. W. W. Sally A. McKee, Memory Wall. Springer US, 2011.

[87] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in multi-core
architectures: understanding mechanisms, overheads and scaling,” in
32nd International Symposium on Computer Architecture (ISCA’05), pp. 408–
419, June 2005.

[88] E. R. Rodrigues, F. L. Madruga, P. O. A. Navaux, and J. Panetta, “Multi-
core aware process mapping and its impact on communication overhead

bibliography 136

of parallel applications,” in 2009 IEEE Symposium on Computers and
Communications, pp. 811–817, July 2009.

[89] T. B. Ahmad and M. Ciesielski, “An approach to multi-core functional
gate-level simulation minimizing synchronization and communication
overheads,” in 2013 14th International Workshop on Microprocessor Test and
Verification, pp. 77–82, December 2013.

[90] R. Zurawski, Embedded Systems Handbook, Second Edition: Embedded
Systems Design and Virification. Taylor and Francis, 2009.

[91] X.-H. Sun, Y. Chen, and S. Byna, “Scalable computing in the multicore
era,” in Proceedings of the International Symposium on Parallel Architectures,
Algorithms and Programming, 2008.

[92] S. Pei, J. Zhang, L. Jiang, M.-S. Kim, and J.-L. Gaudiot, “Reevaluating
the overhead of data preparation for asymmetric multicore system on
graphics processing.,” KSII Transactions on Internet & Information Systems,
vol. 10, no. 7, 2016.

[93] S. Pei, M. S. Kim, and J. L. Gaudiot, “Extending amdahl’s law for
heterogeneous multicore processor with consideration of the overhead
of data preparation,” IEEE Embedded Systems Letters, vol. 8, pp. 26–29,
March 2016.

[94] G. H. Loh, “The cost of uncore in throughput-oriented many-core
processors,” in In Proc. of Workshop on Architectures and Languages for
Troughput Applications (ALTA), pp. 1–9, 2008.

[95] E. Blem, H. Esmaeilzadeh, R. S. Amant, K. Sankaralingam, and D. Burger,
“Multicore model from abstract single core inputs,” IEEE Computer
Architecture Letters, vol. 12, pp. 59–62, July 2013.

[96] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
splash-2 programs: Characterization and methodological considerations,”
SIGARCH Computer Architecture News, vol. 23, pp. 24–36, May 1995.

[97] L. Yavits, A. Morad, and R. Ginosar, “The effect of communication
and synchronization on amdahl’s law in multicore systems,” Parallel
Computing, vol. 40, no. 1, pp. 1 – 16, 2014.

bibliography 137

[98] X. Li and M. Malek, “Analysis of speedup and
communication/computation ratio in multiprocessor systems,”
in Proceedings. Real-Time Systems Symposium, pp. 282–288, December
1988.

[99] X. Chen, Z. Lu, A. Jantsch, and S. Chen, “Speedup analysis of data-
parallel applications on multi-core nocs,” in 2009 IEEE 8th International
Conference on ASIC, pp. 105–108, October 2009.

[100] N. P. Khanyile, J.-R. Tapamo, and E. Dube, “Performance prediction
model for distributed applications on multicore clusters,” 2012.

[101] T. Huang, Y. Zhu, M. Qiu, X. Yin, and X. Wang, “Extending amdahl’s
law and gustafson’s law by evaluating interconnections on multi-core
processors,” The Journal of Supercomputing, vol. 66, pp. 305–319, October
2013.

[102] R. Joseph and M. Martonosi, “Run-time power estimation in high
performance microprocessors,” in Proceedings of the 2001 International
Symposium on Low Power Electronics and Design, ISLPED ’01, (New York,
NY, USA), pp. 135–140, ACM, 2001.

[103] K. Rajamani, H. Hanson, J. Rubio, S. Ghiasi, and F. Rawson, “Application-
aware power management,” in Workload Characterization, 2006 IEEE
International Symposium on, pp. 39–48, IEEE, 2006.

[104] B. Su, J. Gu, L. Shen, W. Huang, J. L. Greathouse, and Z. Wang, “Ppep:
Online performance, power, and energy prediction framework and
DVFS space exploration,” in Microarchitecture (MICRO), 2014 47th Annual
IEEE/ACM International Symposium on, pp. 445–457, IEEE, 2014.

[105] K. K. Pusukuri, R. Gupta, and L. N. Bhuyan, “Thread reinforcer:
Dynamically determining number of threads via OS level monitoring,”
in 2011 IEEE International Symposium on Workload Characterization (IISWC),
pp. 116–125, November 2011.

[106] H. Sasaki, S. Imamura, and K. Inoue, “Coordinated power-performance
optimization in manycores,” in Proceedings of the 22nd International
Conference on Parallel Architectures and Compilation Techniques, pp. 51–
61, September 2013.

bibliography 138

[107] K. W. Cameron and R. Ge, “Generalizing amdahl’s law for power and
energy,” Computer, vol. 45, pp. 75–77, March 2012.

[108] S. Cho and R. Melhem, “Corollaries to amdahl’s law for energy,” IEEE
Computer Architecture Letters, vol. 7, pp. 25–28, January 2008.

[109] S. M. Londono and J. P. de Gyvez, “Extending amdahl’s law for energy-
efficiency,” in 2010 International Conference on Energy Aware Computing,
pp. 1–4, December 2010.

[110] J. Issa and S. Figueira, “Performance and power-consumption analysis
of mobile internet devices,” in 30th IEEE International Performance
Computing and Communications Conference, pp. 1–6, November 2011.

[111] H. Nejatollahi and M. E. Salehi, “Effect of voltage scaling on symmetric
multicore’s speed-up,” in 2014 22nd Iranian Conference on Electrical
Engineering (ICEE), pp. 862–867, May 2014.

[112] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,
“Dark silicon and the end of multicore scaling,” IEEE Micro, vol. 32,
pp. 122–134, May 2012.

[113] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,
“Power challenges may end the multicore era,” Communications of ACM,
vol. 56, pp. 93–102, February 2013.

[114] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The eda
challenges in the dark silicon era: Temperature, reliability, and variability
perspectives,” in Proceedings of the 51st Annual Design Automation
Conference, DAC ’14, (New York, NY, USA), pp. 185:1–185:6, ACM, 2014.

[115] M. Shafique, D. Gnad, S. Garg, and J. Henkel, “Variability-aware dark
silicon management in on-chip many-core systems,” in Proceedings of
the 2015 Design, Automation & Test in Europe Conference & Exhibition,
pp. 387–392, EDA Consortium, 2015.

[116] H. Khdr, S. Pagani, M. Shafique, and J. Henkel, “Thermal constrained
resource management for mixed ILP-TLP workloads in dark silicon
chips,” in 52nd ACM/EDAC/IEEE (DAC), pp. 1–6, June 2015.

[117] S. Pagani, H. Khdr, J. J. Chen, M. Shafique, M. Li, and J. Henkel,
“Thermal safe power (TSP): Efficient power budgeting for heterogeneous

bibliography 139

manycore systems in dark silicon,” IEEE Transactions on Computers,
vol. 66, pp. 147–162, January 2017.

[118] T. Zidenberg, I. Keslassy, and U. Weiser, “Optimal resource allocation
with MultiAmdahl,” Computer, vol. 46, pp. 70–77, July 2013.

[119] B. M. Al-Babtain, F. J. Al-Kanderi, M. F. Al-Fahad, and I. Ahmad, “A
survey on Amdahl’s law extension in multicore architectures,” vol. 3,
pp. 30–46, 01 2013.

[120] D. Moncrieff, R. E. Overill, and S. Wilson, “α critical for parallel
processors,” Parallel computing, vol. 21, no. 3, pp. 467–471, 1995.

[121] “Juno arm development platform soc technical overview.”
http://www.arm.com/, 2016.

[122] M. A. N. Al-hayanni, A. Rafiev, R. Shafik, and F. Xia, “Power and energy
normalized speedup models for heterogeneous many core computing,”
in 2016 16th International Conference on Application of Concurrency to System
Design (ACSD), pp. 84–93, June 2016.

[123] M. A. N. Al-hayanni, A. Rafiev, R. Shafik, F. Xia, and A. Yakovlev,
“Extended power and energy normalized performance models for many-
core systems,” Tech. Rep. NCL-EEE-MICRO-TR-2016-198, Newcastle
University, 2016.

[124] A. I. Elnashar, “To parallelize or not to parallelize, speed up issue,” arXiv
preprint arXiv:1103.5616, 2011.

[125] “Odroid platform.” http://www.hardkernel.com/main/products/,
2015.

[126] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1981.

[127] J. Baeten and K. Middelburg, Process Algebra with Timing : Real Time and
Discrete Time. Elsevier, 2001.

[128] K. Georgiou, S. Kerrison, Z. Chamski, and K. Eder, “Energy transparency
for deeply embedded programs,” ACM Trans. Archit. Code Optim., vol. 14,
pp. 8:1–8:26, Mar. 2017.

bibliography 140

[129] J.-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and A. Fedorova,
“The linux scheduler: a decade of wasted cores,” in Proceedings of the
Eleventh European Conference on Computer Systems, p. 1, ACM, 2016.

[130] “OpenCL overview.” https://www.khronos.org/opencl.

[131] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: characterization and architectural implications,” in Proceedings
of the 17th international conference on Parallel architectures and compilation
techniques, pp. 72–81, ACM, 2008.

[132] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for chip-
multiprocessors,” in Proceedings of the 5th Annual Workshop on Modeling,
Benchmarking and Simulation, June 2009.

[133] B. Sprunt, “The basics of performance-monitoring hardware,” IEEE
Micro, vol. 22, no. 4, pp. 64–71, 2002.

[134] X. Wu and V. Taylor, “Utilizing hardware performance counters
to model and optimize the energy and performance of large scale
scientific applications on power-aware supercomputers,” in 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 1180–1189, May 2016.

[135] G. T. Chetsa, L. Lefévre, J. Pierson, P. Stolf, and G. D. Costa, “Exploiting
performance counters to predict and improve energy performance of
hpc systems,” Future Generation Computer Systems, vol. 36, pp. 287 – 298,
2014. Special Section: Intelligent Big Data Processing Special Section:
Behavior Data Security Issues in Network Information Propagation
Special Section: Energy-efficiency in Large Distributed Computing
Architectures Special Section: eScience Infrastructure and Applications.

[136] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments,” in ICPPW, ICPPW
’10, (Washington, DC, USA), pp. 207–216, IEEE Computer Society, 2010.

[137] V. M. Weaver and S. A. McKee, “Can hardware performance counters
be trusted?,” in Workload Characterization, 2008. IISWC 2008. IEEE
International Symposium on, pp. 141–150, September 2008.

[138] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume
3B: System Programming Guide, Part 2. 2016.

bibliography 141

[139] P. Calafiura, S. Eranian, D. Levinthal, S. Kama, and R. A. Vitillo, “Gooda:
The generic optimization data analyzer,” in Journal of Physics: Conference
Series, vol. 396, p. 052072, IOP Publishing, 2012.

[140] A. Nowak, D. Levinthal, and W. Zwaenepoel, “Hierarchical cycle
accounting: a new method for application performance tuning,” in
(ISPASS), pp. 112–123, IEEE, 2015.

[141] D. Hackenberg, T. Ilsche, R. Schöne, D. Molka, M. Schmidt, and W. E.
Nagel, “Power measurement techniques on standard compute nodes: A
quantitative comparison,” in (ISPASS), pp. 194–204, IEEE, 2013.

[142] J. H. Laros III, K. Pedretti, S. M. Kelly, W. Shu, K. Ferreira, J. Van Dyke,
and C. Vaughan, Energy-efficient high performance computing: measurement
and tuning. Springer Science & Business Media, 2012.

[143] M. Bhadauria, V. weaver, and S. A. Mckee, “A characterization of the
PARSEC benchmark suite for CMP design,” Tech. Rep. CSL-TR-2008-
1052, Computer System Laboratory, Cornell University, Ithaca, NY, 2008.

[144] F. Xia, A. Rafiev, A. Aalsaud, M. A. N. Al-hayanni, J. Davis, J. Levine,
A. Mokhov, A. Romanovsky, R. Shafik, A. Yakovlev, and S. Yang,
“Voltage, throughput, power, reliability, and multicore scaling,” Computer,
vol. 50, no. 8, pp. 34–45, 2017.

[145] S. Yang, R. A. Shafik, G. V. Merrett, E. Stott, J. M. Levine, J. Davis,
and B. M. Al-Hashimi, “Adaptive energy minimization of embedded
heterogeneous systems using regression-based learning,” in 2015 25th
International Workshop on Power and Timing Modeling, Optimization and
Simulation (PATMOS), pp. 103–110, September 2015.

[146] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power
consumption in digital cmos circuits,” Proceedings of the IEEE, vol. 83,
pp. 498–523, April 1995.

	Declaration
	Certification
	Dedication
	Acknowledgements
	Abstract
	Statement of originality
	Contents
	List of Figures
	List of Tables
	Acronyms

	I Thesis Chapters
	1 Introduction
	1.1 Motivation and Challenges
	1.2 Aim and Objectives
	1.3 Thesis Organization and Key Findings

	2 Background and Literature Review
	2.1 Introduction
	2.2 Micro/Nano Electronic Technology Scaling
	2.3 From Single-Core to Multi/Many-Core (M/MCP)
	2.4 M/MCP Architecture
	2.4.1 Homogeneous M/MCP
	2.4.2 Heterogeneous M/MCP
	2.4.3 Dynamic M/MCP

	2.5 The Methods of Energy Efficiency
	2.5.1 Dynamic Voltage Frequency Scaling (DVFS)
	2.5.2 Thread to Core Affinity Managements
	2.5.3 Energy Efficient Load Balancing, Task Migration and Task Scheduling Over M/MCP

	2.6 Speedup Models
	2.6.1 Extended Speedup Models in M/MCP
	2.6.1.1 Extended Speedup Models for Performance Calculations in M/MCP (Hill-Marty Models)
	2.6.1.2 M/MCP Overheads
	2.6.1.3 Parallelization Factor (p)
	2.6.1.4 Extended Speedup Models in Networks
	2.6.1.5 Extended Speedup Models in Run-Time Management (RTM) System
	2.6.1.6 Extended Speedup Models for Energy Efficiency in M/MCP
	2.6.1.7 Dark Silicon

	2.6.2 Multi-Amdahl Model

	2.7 Discussions and Conclusions

	3 Speedup and Power Scaling Models
	3.1 Introduction
	3.2 Existing Speedup Models
	3.2.1 Amdahl's Law (Fixed Workload)
	3.2.2 Gustafson's Model (Fixed Time)
	3.2.3 Sun-Ni's Model (Memory Bounded)
	3.2.4 Hill-Marty's Heterogeneous Models

	3.3 Heterogeneous System
	3.3.1 The Challenges of Heterogeneous Modeling
	3.3.1.1 Hardware-dependent parallelizability
	3.3.1.2 Workload equivalence and performance comparison

	3.3.2 Platform Assumptions
	3.3.3 Normal Form Representation of Heterogeneity

	3.4 Proposed Heterogeneous Speedup Models
	3.4.1 Workload Distribution
	3.4.1.1 Equal-share workload distribution
	3.4.1.2 Balanced workload distribution

	3.4.2 Heterogeneous Amdahl's Law
	3.4.3 Workload Scaling
	3.4.4 Heterogeneous Gustafson's Model
	3.4.4.1 Purely parallel scaling mode
	3.4.4.2 Classical scaling mode

	3.5 Proposed Heterogeneous Power Models
	3.5.1 Power Modeling Basics
	3.5.2 Power Distribution and Scaling Models
	3.5.3 Energy and Power-Normalized Performance

	3.6 Discussion and Conclusion

	4 Experimental Validation of Speedup and Power Scaling Models
	4.1 Introduction
	4.2 CPU-only Experimental Validations
	4.2.1 Platform Description
	4.2.2 Benchmark Description and Model Characterization
	4.2.2.1 Controlled parameters
	4.2.2.2 Relative performances of cores
	4.2.2.3 Core idle and active powers

	4.2.3 Amdahl's Workload Outcomes
	4.2.4 Gustafson's Workload Outcomes
	4.2.5 Balanced Execution

	4.3 CPU-GPU Experimental Validations
	4.3.1 Platform Description and Characterization
	4.3.2 Speedup Validation Outcomes

	4.4 Realistic Application Workloads
	4.4.1 Model Characterization
	4.4.2 Quality of Load Balancer

	4.5 Discussion and Conclusion

	5 Speedup and Parallelization Models Using Performance Counters
	5.1 Introduction
	5.2 Experimantal studies
	5.2.1 Experimental Platforms
	5.2.2 Performance Counters

	5.3 Proposed Speedup Models
	5.3.1 Modeling Basics
	5.3.2 Speedup Calculations
	5.3.3 Estimation of Parallelization Factor
	5.3.4 Average Power Consumption Models
	5.3.5 Power and Energy Normalized Performance
	5.3.6 Benchmark Applications

	5.4 Results and validation
	5.4.1 System Software Instructions Calculation
	5.4.2 Time and Speedup Validation
	5.4.3 Estimating the Parallelization Factor p

	5.5 Parallelization-aware Energy Efficient Computing
	5.5.1 Power and Energy Data
	5.5.2 Power Normalized Performance (PNP) and Energy-Delay Product (EDP)

	5.6 Conclusions and Discussions

	6 Conclusions and Future Work
	6.1 Summary and Conclusion
	6.2 Future Work

	II Thesis Appendices
	A Benchmark Application
	A.1 Synthetic Benchmark

	B Data Set
	B.1 Odroid XU3
	B.2 OpenCL
	B.3 PARSEC

	C PARSEC Results

	III Thesis Bibliography
	Bibliography

